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PREFACE

For this 12th iteration of the International Conference on Educational Data Mining (EDM 2019),
the conference returned to its birthplace in Montreal, Quebec, Canada. EDM is organized under
the auspices of the International Educational Data Mining Society in Montreal, Canada. The con-
ference, held July 2nd through 5th, 2019, follows eleven previous editions (Buffalo 2018, Wuhan
2017, Raleigh 2016, Madrid 2015, London 2014, Memphis 2013, Chania 2012, Eindhoven 2011,
Pittsburgh 2010, Cordoba, 2009 and Montreal 2008).

The theme of this year’s conference is EDM in Open-Ended Domains. As EDM has matured it
has increasingly been applied to open-ended and ill-defined tasks such as writing, design, and col-
laborative problem solving. And it has been used in new informal contexts where student actions
are at best semi-structured. This iteration of the conference includes a range of work in these and
other areas. This year’s conference features three invited talks: Julita Vassileva, Professor at the
Department of Computer Science, University of Saskatchewan, Canada; Steve Ritter, Co-Founder
and Chief Scientist, Carnegie Learning Inc., Pittsburgh, USA; and Michael Mozer, Professor De-
partment of Computer Science and Institute of Cognitive Science University of Colorado, USA.

This year’s EDM conference has adopted a double-blind review process. Further, the program
committee has been substantially extended, both to better reflect the community presenting works
at EDM in the past years and to keep the review load for each member manageable. The number
of papers submitted in the research track has increased compared to preceding years, resulting in
185 long and short paper submissions from 32 countries. Of these, 22 were accepted as full papers
and 42 accepted as short papers. The combined acceptance rate of long and short papers is 34.6%.
The acceptance rate for long papers is 21%. An additional 47 papers were accepted to the poster
track. The poster and demo track itself accepted 14 contributions out of 34 submissions.

Together with the Journal of Educational Data Mining (JEDM), the EDM 2019 conference held
a JEDM Track that provides researchers a venue to deliver more substantial mature work than
is possible in a conference proceeding and to present their work to a live audience. The papers
submitted to this track followed the JEDM peer review process. Seven papers were submitted
and two papers are featured in the conference’s program. Additionally this year, papers that were
regularly published in the journal in 2018 were invited for presentation at the conference. Two
authors accepted this invitation.

The main conference invited contributions to an Industry Track in addition to the main track. The
EDM 2019 Industry Track received eleven submissions of which six were accepted. These figures
are comparable, though slightly increasing, with last year’s figures and suggest that connections
between industry researchers and the academic research community become firmer.

The EDM conference continues its tradition of providing opportunities for young researchers to
present their work and receive feedback from their peers and senior researchers. The doctoral con-
sortium this year features eight such presentations.

Finally, stepping in the footsteps of last year’s conference, this year’s conference includes also an
invited talk by the authors of the 2018 winner of the EDM Test of Time Award. This year’s talk
is delivered by Mykola Pechenizkiy.
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In addition to the main program, there are three workshops: Learning Analytics: Building bridges
between the Education and the Computing communities, Reinforcement Learning for Educational
Data Mining, and Workshop on EDM & Games: Leveling Up Engaged Learning with Data-Rich
Analytics, and three tutorials as well: Sharing and Reusing Data and Analytic Methods with Learn-
Sphere, Causal Discovery with Tetrad in LearnSphere’s Tigris and Designing and Developing Open,
Pedagogically-Based Predictive Models using the Moodle Analytics API.

We thank the sponsors of EDM 2019 for their generous support: Tourism Montréal, Prodigy, Ivado,
SAS, Squirrel AI Learning, and ACT as well as our two host institutions: Université du Québec
à Montréal (UQAM) and Polytechnique Montréal. We are also thankful to the senior program
committee and regular program committee members and reviewers, without whose expert input
this conference would not be possible. Finally, we thank the entire organizing team and all authors
who submitted their work to EDM 2019. And we thank EasyChair for their infrastructural support.

Collin F. Lynch North Carolina State University, Program Chair
Agathe Merceron Beuth University of Applied Sciences Berlin, Program Chair
Michel Desmarais Polytechnique Montréal, General Chair
Roger Nkambou Université du Québec à Montréal, General Chair

July 2nd, 2019
Montreal, QC, Canada.
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Andrew Olney University of Memphis
Shai Olsher University of Haifa
Elizabeth Owen Age of Learning, Inc.
Andreas Paepcke Stanford University
Luc Paquette University of Illinois at Urbana-Champaign
Abelardo Pardo University of South Australia
Zach Pardos University of California, Berkeley
Philip I. Pavlik Jr. University of Memphis
Mykola Pechenizkiy Eindhoven University of Technology
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Best Paper Selection

The conference chairs selected the three best papers based upon the reviews and meta-reviews for
each paper. The papers were then sent to an outside awards committee. Each committee member
read and ranked the three papers. The best paper award was attributed to the highest ranked
paper. The best student paper was awarded to the next highest ranked paper in the set.

Best Paper Award Committee

• Rakesh Agrawal

• Ryan Baker

• Andrew Olney

• Luc Paquette

• Kalina Yacef

Best Paper Nominees

Benôıt Choffin, Fabrice Popineau, Yolaine Bourda and Jill-JÃ lnn Vie. DAS3H: a new student
learning and forgetting model for optimally scheduling distributed practice of skills page 39.

Markel Sanz Ausin, Hamoon Azizsoltani, Tiffany Barnes and Min Chi. Leveraging Deep Reinforce-
ment Learning for Pedagogical Policy Induction in an Intelligent Tutoring System page 178.

Ye Mao, Rui Zhi, Farzaneh Khoshnevisan, Thomas Price, Tiffany Barnes and Min Chi. One
minute is enough: Early Prediction of Student Success and Event-level Difficulty during Novice
Programming Tasks page 129.
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Wiebe, Bradford Mott, Kristy Boyer and James Lester

Modeling and Experimental Design for MOOC Dropout Prediction: A Replication Perspective 49

Josh Gardner, Yuming Yang, Ryan Baker and Christopher Brooks

What will you do next? A Sequence Analysis of the Student Transitions between Online
Platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Niki Gitinabard, Sarah Heckman, Tiffany Barnes and Collin Lynch

Academic Performance Estimation with Attention-based Graph Convolutional Networks . . . . . . 69

Qian Hu and Huzefa Rangwala

Evaluating Fairness and Generalizability in Models Predicting On-Time Graduation from
College Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Stephen Hutt, Margo Gardner, Angela L. Duckworth and Sidney D’Mello

Measuring students’ thermal comfort and its impact on learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Han Jiang, Matthew Iandoli, Steven Van Dessel, Shichao Liu and Jacob Whitehill

The Influence of School Demographics on the Relationship Between Students’ Help-Seeking
Behavior and Performance and Motivational Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Shamya Karumbaiah, Jaclyn Ocumpaugh and Ryan S Baker

xi Proceedings of the 12th International Conference on Educational Data Mining



Table of Contents

Exploring Neural Network Models for the Classification of Students in Highly Interactive
Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
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On the Ethics of Data-Powered Instruction,
Recommendation, Persuasion, and Behaviour Change

Keynote

Julita Vassileva
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada
jiv@cs.usask.ca

Abstract
Advances in information technology and miniaturization, along with falling prices, allow affordable and powerful computing
devices and sensors to become ubiquitous. These devices, equipped with advanced software and learning technologies resulting
from 40 years of research in the areas of AI in education and cognitive modeling, can transform the way people learn and
truly democratize education. Technological learning tools also generate valuable data about human learning processes and
interactions. Through learning analytics and data mining, predictive models can be built enabling tailored or personalized
support for individual learners and groups. For example, recent advances in reinforcement learning or partially observable
Markov decision processes combined with semantic domain and pedagogical knowledge representations enable the design of
optimized subject curriculums as well as flexible individualized learning and evaluation sequences. Progress in data mining
including new fast algorithms for tensor decomposition enable recommending educational content appropriate to the learner’s
context, goals, knowledge, cultural background, personality, and motivational and affective states.

In parallel with developments in AI and Cognitive Psychology, research focus in the areas of Artificial Intelligence in Education
(AIED) and Educational Data Mining (EDM) has broadened to address affective and social aspects of learning, as well as
increasing the motivation of learners and engaging them in productive behaviours. Persuasive technologies, based on methods
and strategies developed by neuroscientists, social psychologists and behavioural economists have shown effectiveness in
engaging people in the desired behaviours.

This keynote talk focuses on the potential of persuasive technologies for supporting human learning. Many researchers in
the AIED and EDM communities may not be aware of this potential. Persuasive technologies can make a bigger difference
than gaining a fraction of percentage point on the RMSE of predicting the success rate over the next recommended item
(a common debate on the value of accuracy of student skills modeling). Similarly, persuasive visualizations of individual or
group student models facilitates processes of reflection, social learning, social comparison and competition, which have been
shown to motivate learners and engage them in learning activities.

In my vision for the not-too-distant future personalized intelligent educational and persuasive technologies converge to support
lifelong learning as people adapt to the rapidly changing natural and social environment. People will learn not only curriculum-
based knowledge, but also knowledge on demand to achieve important goals like preserving the environment and enhancing
civil society. Technologies of this scope face ethical challenges, related to their fairness and trustworthiness, power-balance,
and the need to sustain the mental-health of people increasingly interacting exclusively with and through technology. Research
attention in the Machine Learning (ML), Recommender Systems (RecSys), and Artificial Intelligence (AI) communities has
already zoomed in on the ethical issues of the technologies they develop, specifically on the fairness, accountability and
transparency (FAT) of data-driven systems, but understandably seeking mostly algorithmic solutions. Persuasive technology
can provide methods for increasing the transparency of algorithms and correspondingly, the user trust in systems’ data-driven
decisions. Yet many of the problems with fairness and accountability are not algorithmic, but come from the complex, messy,
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and inconsistent data fed to the algorithms. Bias in the ways data is collected, managed, annotated and used combined with
lacking legal frameworks can lead to poor decisions, discrimination, violating the privacy of individuals, and exposing them
to manipulation, which can have detrimental effects on society.

Data-hungry algorithms require big data, which leads to data hoarding. This generates multi-billion dollar businesses, and
creates a great asymmetry in power between individuals, societies, or states and data-harvesting companies. Big data is
opaque due to limited human cognitive processing power and attention span; full transparency seems intractable. A lot more
research is needed to enable environments that offer equally good services, but are not so data-hungry, environments using
small data, collected and used in context and then forgotten, managed by enforceable contracts with the users who can also
gain rewards from sharing their data.

Personalized and persuasive social media applications has been blamed for being addictive by exploiting dopamine reward
loops in the brain. We notice increased frequency of mental health issues, such as anxiety, depression, manias, addictions in
young people but still we plan to engage them even more with our systems, reinforcing these problems. Maybe our systems
should be teaching them how to detach from the technology, how to change their behaviours to engage with the real world
and in real relationships, to meditate and find peace in the frenzy of information?

The keynote talk will address some of these issues and how persuasive technology, interactive visualization, and distributed
ledgers can be used to provide solutions. It will also touch on research that isn’t yet happening, but is needed, for example,
enhancing learners’ awareness of the dangers of personalization technology through personalized persuasive technology.

Bio
Dr. Julita Vassileva is a professor at the University of Saskatchewan and a leading researcher in user modelling, personalization
and social computing, as well as AI in Education. She has authored over 250 research papers in the areas of intelligent tutoring
and recommender systems, user modeling and personalization, trust and reputation, persuasion and behavior change. She is
a member of the editorial boards of several reputed journals, including User Modeling and User Adapted Interaction, IEEE
Transactions of Learning Technologies, ACM Transactions on Social Computing, International Journal of AI in Education
and is the founding Editor-in-Chief of Frontiers in AI section on AI Supporting Human Learning and Behaviour Change. Dr.
Vassileva was elected in 2017 to the Board of CS-Can |Info-Can (the Canadian Computer Science Society), and serves as a
Chair of the Research Committee of the Board. Over her 20 years on faculty, she has advised over 35 graduate students (10
PhD and 27 MSc) and was nominated by her students and received the two main awards of the University of Saskatchewan
for graduate supervision: the University’s Distinguished Graduate Supervisor Award (2014), and the Advising Excellence
Award by the Graduate Student Association (2013). Dr. Vassileva held the NSERC/Cameco Chair for Women in Science
and Engineering for the Prairies region (2005 – 2011) and started a science outreach program for aboriginal youth in the
North, called “Science Ambassadors”, which has now completed 12 years of impactful activity in over 25 communities and has
engaged over 25,000 indigenous youth in science. For her leadership and mentorship she was awarded the Saskatoon’s YWCA
“Women of Distinction Award (Science and Research)” in 2015.
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Reconsidering two sigma: Educational data mining for the
complete instructional system

Keynote

Steve Ritter
Carnegie Learning

Pittsburgh, Pennsylvania, USA
sritter@carnegielearning.com

Abstract
Educational software developers have long focused on achieving Bloom’s (1984) goal of producing software that is as effective
as a personal human tutor. Much progress has been made and, by some measures, this goal has been achieved (van Lehn,
2011). But maybe this is the wrong goal. The two sigma problem sets up a competition between teacher-based instruction
and educational software. In the classrooms where Carnegie Learning’s MATHia software is most used, there is no need to
pick a winner. Most student usage of the software is in the presence of a teacher, and students can benefit from both. A
better goal than improving on the teacher’s instruction, then, may be to think of the teacher and the software as cooperating
instructional resources with differing characteristics.

This perspective on the goal of educational software can lead to better design decisions focused on improving the overall
educational experience for the student. Instead of attempting to reduce the teacher’s classroom role, we focus on focusing
the teacher on opportunities to have the biggest impact. During class, the software and the teacher communicate insights
about student abilities and needs, enabling each to do a better job. In this talk I will illustrate ways that we use data to
provide teachers with insights that help them assist students using MATHia. The teacher, in turn, provides MATHia with
information that enables the software to perform better. While this is a new perspective for us, we are starting to see how
this systems approach has led to even stronger educational outcomes for students.

Bio
Steve Ritter is Founder and Chief Scientist at Carnegie Learning. He has been developing and evaluating educational systems
for over 20 years. He earned his Ph.D. in Cognitive Psychology at Carnegie Mellon University and helped start Carnegie
Learning to ensure that the successful Cognitive Tutor approach was available to students across the country. Carnegie
Learning’s blended mathematics curricula, including MATHia software (formerly called Cognitive Tutor) are currently used
by over 500,000 students each year.

Dr. Ritter was instrumental in the development and evaluation of the Cognitive Tutors for mathematics. He is the author of
numerous papers on the design, architecture and evaluation of Intelligent Tutoring Systems and other advanced educational
technology and is recognized as an expert on the design and evaluation of educational technology and on educational analytics.
He is lead author of an evaluation that is one of the few to be judged by the US Department of Education’s What Works
Clearinghouse as meeting their standards without reservations. He have received several awards, including the Best Paper
award at the International Conference on Educational Data Mining.

Dr. Ritter leads Carnegie Learning’s research group, which is charged with focusing on improving student outcomes through
data mining and field experimentation.
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Educating a synthetic student

Keynote

Michael C. Mozer
University of Colorado at Boulder

and Google Brain
Boulder, Colorado, U.S.A.
mozer@colorado.edu

Abstract
In educational data mining, we use behavioral data to better understand learners and the nature of learning. I hope you
agree with this characterization because it says nothing about whether the learner is a biological or a synthetic agent. In this
talk, I focus on deep neural networks as learners. Modern nets have become so complex that we need to use experimental
and modeling tools to characterize their behavior, just as we do for humans. Such analyses support the design of robust AI
agents, but they also help to identify human-surrogate models that can be used to optimize instructional methods for people.

Bio
Michael Mozer received a Ph.D. in Cognitive Science at the University of California at San Diego in 1987. Following a
postdoctoral fellowship with Geoffrey Hinton at the University of Toronto, he joined the faculty at the University of Colorado
at Boulder and is presently a Professor in the Department of Computer Science and the Institute of Cognitive Science, as
well as a Visiting Faculty Researcher at Google Brain (Mountain View). He is secretary of the Neural Information Processing
Systems (NeurIPS) Foundation, has served as Program Chair and General Chair at NeurIPS and as chair of the Cognitive
Science Society. He is interested in human-centric artificial intelligence, which involves designing machine learning methods
that leverage insights from human cognition, and building software tools to optimize human performance using machine
learning methods.
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Predictiveness of Prior Failures is Improved by
Incorporating Trial Duration.

Luke G. Eglington
Institute for Intelligent Systems

University of Memphis
lgglngtn@memphis.edu

Philip I. Pavlik Jr
Institute for Intelligent Systems

University of Memphis
ppavlik@umemphis.edu

Abstract
In recent years, there has been a proliferation of adaptive learner models that seek to predict student correctness. Improvements
on earlier models have shown that separate predictors for prior successes, failures, and recent performance further improve
fit while remaining interpretable. However, students that engage in ”gaming” or other off-task behaviors may reduce the
predictiveness of learner models that treat counts of prior performance equivalently across gaming and non-gaming student
populations. The present research evaluated how sub-groups of students that varied in their potential gaming behavior were
differently fit by a logistic learner model, and whether any observed differences between sub-groups could inspire the creation
of new predictors that might improve model fit. Student data extracted from a college-level online learning application were
clustered according to speed and accuracy using Gaussian mixture modelling. Distinct clusters were found, with similar cluster
patterns detected in three separate datasets. Subsequently, each cluster was separately fit to a Performance Factors Analysis
model (PFA). Significantly different parameter coefficients across clusters implied that students more likely to have been
gaming benefitted less from prior failures. These differences inspired new and modified predictors that were found to improve
overall model fit - an improvement that varied in magnitude across clusters. The present findings indicate that incorporating
trial duration into counts of prior failures can improve the predictive power of learning models.

Citation
Full article published as: Luke G. Eglington and Philip I. Pavlik Jr. Predictiveness of prior failures is improved by incorporating
trial duration. Journal of Educational Data Mining, 2019
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Will this Course Increase or Decrease Your GPA? Towards
Grade-aware Course Recommendation

Sara Morsy
Department of Computer Science and

Engineering
University of Minnesota, Twin Cities

USA
morsy@cs.umn.edu

George Karypis
Department of Computer Science and

Engineering
University of Minnesota, Twin Cities

USA
karypis@cs.umn.edu

Abstract
In order to help undergraduate students towards successfully completing their degrees, developing tools that can assist students
during the course selection process is a significant task in the education domain. The optimal set of courses for each student
should include courses that help him/her graduate in a timely fashion and for which he/she is well-prepared for so as to
get a good grade in. To this end, we propose two different grade-aware course recommendation approaches to recommend
to each student his/her optimal set of courses. The first approach ranks the courses by using an objective function that
differentiates between courses that are expected to increase or decrease a student’s GPA. The second approach combines the
grades predicted by grade prediction methods with the rankings produced by course recommendation methods to improve the
final course rankings. To obtain the course rankings in both approaches, we adapt two widely-used representation learning
techniques to learn the optimal temporal ordering between courses. Our experiments on a large dataset obtained from the
University of Minnesota that includes students from 23 different majors show that the grade-aware course recommendation
methods can do better on recommending more courses in which the students are expected to perform well and recommending
fewer courses in which they are expected not to perform well in than grade-unaware course recommendation methods.

Citation
Full article published as: Sara Morsy and George Karypis. Will this course increase or decrease your gpa? towards grade-aware
course recommendation. Journal of Educational Data Mining, 2019. (to appear)
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The Continuous Hint Factory - Providing Hints in Vast and
Sparsely Populated Edit Distance Spaces
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Abstract
Intelligent tutoring systems can support students in solving multi-step tasks by providing hints regarding what to do next.
However, engineering such next-step hints manually or via an expert model becomes infeasible if the space of possible states is
too large. Therefore, several approaches have emerged to infer next-step hints automatically, relying on past students’ data.
In particular, the Hint Factory (Barnes and Stamper, 2008) recommends edits that are most likely to guide students from
their current state towards a correct solution, based on what successful students in the past have done in the same situation.
Still, the Hint Factory relies on student data being available for any state a student might visit while solving the task, which is
not the case for some learning tasks, such as open-ended programming tasks. In this contribution we provide a mathematical
framework for edit-based hint policies and, based on this theory, propose a novel hint policy to provide edit hints in vast and
sparsely populated state spaces. In particular, we extend the Hint Factory by considering data of past students in all states
which are similar to the student’s current state and creating hints approximating the weighted average of all these reference
states. Because the space of possible weighted averages is continuous, we call this approach the Continuous Hint Factory. In
our experimental evaluation, we demonstrate that the Continuous Hint Factory can predict more accurately what capable
students would do compared to existing prediction schemes on two learning tasks, especially in an open-ended programming
task, and that the Continuous Hint Factory is comparable to existing hint policies at reproducing tutor hints on a simple
UML diagram task.

Citation
Full article published as: Benjamin Paaßen, Barbara Hammer, Thomas Price, Tiffany Barnes, Sebastian Gross, and Niels
Pinkwart. The continuous hint factory - providing hints in vast and sparsely populated edit distance spaces. Journal of
Educational Datamining, 10(1):1–35, 2018.
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Using Sequence Mining to Analyze Metacognitive 
Monitoring and Scientific Inquiry based on Levels of 

Efficiency and Emotions during Game-Based Learning. 
 
 

Michelle Taub and Roger Azevedo
 

University of Central Florida 
12494 University Blvd  

Orlando, Florida  
{michelle.taub; roger.azevedo}@ucf.edu 

 
Abstract 
Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as 
emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although 
many studies have investigated metacognitive monitoring and scientific inquiry skills during game-based learning, few studies have 
investigated how the sequence of behaviors involved during hypothesis testing with game-based learning differ based on both efficiency 
level and emotions during gameplay. For this study, we analyzed 59	undergraduate	students’	(59% female) metacognitive monitoring and 
hypothesis testing behavior during learning and gameplay with CRYSTAL ISLAND, a game-based learning environment that teaches students 
about microbiology. Specifically, we used sequential pattern mining and differential sequence mining to determine if there were sequences 
of hypothesis testing behaviors and to determine if the frequencies of occurrence of these sequences differed between high or low levels of 
efficiency at finishing the game and high or low levels of facial expressions of emotions during gameplay. Results revealed that students 
with low levels of efficiency and high levels of facial expressions of emotions had the most sequences of testing behaviors overall, 
specifically engaging in more sequences that were indicative of less strategic hypothesis testing behavior than the other students, where 
students who were more efficient with both levels of emotions demonstrated strategic testing behavior. These results have implications for 
the strengths of using educational data mining techniques for determining the processes underlying patterns of engaging in self-regulated 
learning conducted through hypothesis testing as they unfold over time; for training students on how to engage in the self-regulation, 
scientific inquiry, and emotion regulation processes that can result in efficient gameplay; and for developing adaptive game-based learning 
environments that foster effective and efficient self-regulation and scientific inquiry during learning. 

 
Citation 
Full article published as: Taub, M., & Azevedo, R. (2018). Using sequence mining to analyze metacognitive monitoring and 
scientific inquiry based on levels of efficiency and emotional expressivity during game-based learning. Journal of Educational 
Data Mining, 10, 1-26. 
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ABSTRACT
Each year, roughly 30% of first-year students at US bac-
calaureate institutions do not return for their second year
and billions of dollars are spent educating these students.
Yet, little quantitative research has analyzed the causes and
possible remedies for student attrition. What’s more, most
of the previous attempts to model attrition at traditional
campuses using machine learning have focused on small, ho-
mogeneous groups of students. In this work, we model stu-
dent attrition using a dataset that is composed almost exclu-
sively of information routinely collected for record-keeping
at a large, public US university. By examining the entirety
of the university’s student body and not a subset thereof,
we use one of the largest known datasets for examining at-
trition at a public US university (N = 66,060). Our results
show that students’ second year re-enrollment and eventual
graduation can be accurately predicted based on a single
year of data (AUROCs = 0.887 and 0.811, respectively).
We find that demographic data (such as race, gender, etc.)
and pre-admission data (such as high school academics, en-
trance exam scores, etc.) - upon which most admissions
processes are predicated - are not nearly as useful as early
college performance/transcript data for these predictions.
These results highlight the potential for data mining to im-
pact student retention and success at traditional campuses.

1. INTRODUCTION
Student attrition has long been a topic of great interest in
higher education research, with government reports on at-
trition dating back over 100 years [31]. This interest stems
from the fact that students who do not graduate are a lost in-
vestment on many fronts. For higher education institutions,
limiting attrition is central to their financial sustainability as
they devote scarce resources towards classes and services for
non-completing students [17]. In particular, it is estimated
that 30% of United States (US) first-year students do not re-
turn for their second year of post-secondary education with

US taxpayers spending nearly $2 billion annually on educat-
ing non-returning first-year students alone [28]. Institutions
are also concerned with attrition rates because they are cen-
tral to estimates of institutional effectiveness, thereby af-
fecting funding opportunities and government support [14].
Highlighting the impact of attrition at the institutional level
also says nothing of its impact on students, who devote time,
effort, and finances towards unfinished educational pursuits.
Leaving college drastically alters career trajectories for stu-
dents and those without college degrees face continually de-
clining job growth and worsening job prospects [9].

In light of this, understanding motivations for students to
drop out and possible remedies thereof is of great importance
[12]. Empirical evidence to build student attrition theory
has traditionally focused on survey-based research [30, 8].
However, survey instruments are often costly to implement,
time-consuming for data collection, and produce results that
are not always generalizable across institutions due to vastly
different student profiles [34, 7, 8]. Institutional data that is
routinely collected at colleges and universities (e.g. student
application and transcript data) can provide an alternative
data source and a way to supplement survey-based measures
[8]. Leveraging data sources already in existence can add
a means to more efficiently examine the student attrition
problem and help institutions remedy the issue of attrition.
One field that is primed to take advantage of this institu-
tional data is educational data mining (EDM) and its focus
on data-intensive techniques in educational settings [26, 4].

EDM is an emerging field with much of its research on at-
trition centered on massive online open courses (MOOCs)
and other online environments (e.g. [35, 13]). Studying at-
trition in MOOCs and other online settings lends itself to
expansive data collection opportunities and a detailed mon-
itoring of students [23]. This limits the extent to which this
work can be generalized to more traditional campus set-
tings (i.e. campuses where learning is primarily on-campus,
in-classroom). Meanwhile, EDM-centric work on predicting
attrition at traditional campuses has been scarce and usu-
ally limited to small, homogeneous subsets of students rather
than the entirety of a college student population. Addition-
ally, the focus when predicting attrition is usually on how
well it can be predicted and less so on what type of data is
best for these predictions.

In this work, we predict the attrition of a large number of un-
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dergraduate students (N = 66,060) using only their first year
of academic data. The students we examine are not from a
single department or major within a university. Rather, they
span the entirety of a student body, thereby comprising a
dataset with heterogeneous aspirations, backgrounds, and
goals. In addition, we rely almost entirely on data that is
routinely collected at institutions of higher education. With
this data, we seek to answer two questions: to what ex-
tent can undergraduate student attrition be predicted using
a limited amount of data from registrar records and what
types of data from registrar records are most useful in pre-
dicting attrition. The first of these has been explored in the
past while using smaller and/or homogeneous student pop-
ulations; the second has not been systematically examined
in the literature to our knowledge.

To answer the above questions, we mine the institutional
data records at a large, public university in the US and
engineer features for predictions. We then create numer-
ous machine learning models using the engineered features
and compare the performance of these models to each other.
Then, we create separate machine learning models using
only groups of features and not the entirety of the feature
space to compare the predictive power of different subsets of
institutional data. This work is an extension of our previous
work on modeling student attrition using a limited amount
of data [3] but where we previously focused on using the first
term’s data in generating features for prediction, we use the
first year’s in this work. We also extend our previous work
to build additional machine learning models, predict attri-
tion as defined according to two different definitions (overall
graduation and re-enrollment after students’ first year), and
examine the types of feature subsets most useful in predic-
tions. In so doing, we present two key findings, both of
which have many implications for administrative policy in
higher education:

• We demonstrate that the graduation and second-year re-
enrollment of students can be predicted using data that is
routinely gathered at institutions of higher education.

• We show that demographic and pre-entry features have
less predictive power than data on student academics.

2. RELATED WORK
There are many examples of predicting attrition at tradi-
tional campuses. Most of these focus on small, homogeneous
subsets of students. Moseley predicted the graduation of
528 nursing students using rule induction methods, obtain-
ing high accuracies but not controlling for the number of
terms/semesters examined for each student [21]. Dekker et
al looked at only the first semester grades of 648 students
in the Electrical Engineering department at the Eindhoven
University of Technology and were able to predict dropout
with 75-80% accuracy [10]. Kovačić used tree-based meth-
ods on a similarly-sized dataset of 453 students at the Open
Polytechnic of New Zealand, finding ethnicity and students’
course taking patterns to be highly useful in prediction [18].
Bayer et al. looked at 775 applied informatics students at
the Czech Republic’s Masaryk University across three years
[5]. Without limiting the amount of information available
for each student, they found that including features related
to students’ social behavior can boost prediction accuracy by
over 10% for some models. These and similar studies, how-

ever, focus on relatively small (e.g. N < 2,000) subgroups of
students with similar academic pursuits/foci. In addition,
there is little consistency with respect to the timeframes
across which data is examined for each student. Other
approaches to predict attrition at traditional campuses in-
clude early alert systems, which are often labor intensive and
poorly funded [29]. These alert systems have been shown to
positively benefit students (e.g. [16]), but usually rely on
data gathered in the midst of a course or an academic term
(e.g. [27, 15]), which may not always be feasable.

The work we present more closely relates to a subset of lit-
erature looking at student attrition in the context of the
heterogeneity of students across an entire campus and not
just a subset thereof. Our work also deals with much larger
student populations than those described above and, in this
sense, it more closely resembles a more recent body of litera-
ture. Delen used 8 years of institutional data on over 25,000
students at a large, public US university, predicting whether
the students would return for their second year [11]. How-
ever, due to class imbalances, Delen re-sampled the majority
class and ultimately used only 6,454 students for predictions.
Ram et al. used data on about 6,500 freshmen at a large,
public US university to predict whether students would drop
out after their first semester, and for those that did not,
whether they will drop out after an additional term [25].
Ram et al. supplemented data from institutional databases
with student smart card transactions to infer social inte-
gration. More recently, Nagy and Molontay predicted the
dropout of 15,825 students from the Budapest University
of Technology and Economics using only their information
prior to college entry with some success [22].

There are a few ways in which our work contributes to this
body of literature. Firstly, we use a much larger dataset
than has been previously examined specifically for attrition
(66,060 students). We examine the entirety of a large uni-
versity’s student body and we do not limit the extent of het-
erogeneity of the students in the dataset. Additionally, we
also address the question of what types of features are most
useful in predicting student attrition. In particular, previous
works have generally used all available data sources concur-
rently in determining which students will attrite. In this
work, we explore what types of routinely-collected institu-
tional data fare best when predicting attrition by comparing
performance using different data subsets in isolation. Fi-
nally, we concurrently compare predictions for two different
definitions of “attrition,” highlighting the degree to which
operationalizing the term can impact results.

3. METHODS
We describe the methods for this work by first detailing the
data used in the project. We then give relevant operational
definitions with respect to how we define attrition. There-
after, we discuss the data subsets used in the predictions
and the features generated. Lastly, we describe the setup of
the machine learning experiments.

3.1 Data Description
We collected psuedonomyized, de-identified data from the
University of Washington (the University) data stewards in
2017. The University is a traditional campus setting where a
vast majority of instruction is in person and face-to-face. No
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personally identifiable information was collected for the stu-
dents; instead, students were referenced using unique iden-
tifying keys. Table 1 shows the tables that were pulled from
the registrar databases. In general, the data included in-
formation on students’ demographics, complete transcript
records at the University, and information from applications
to the University. We did not have any information on stu-
dents’ financial aid status or economic status other than that
which was derived from their ZIP code, as described below.
Socioeconomic factors can play a large role in the student
attrition process [6], however, we did not have access to stu-
dent finances for use in this work. We also did not have
access to any exit surveys from students who had either left
the University or had graduated.

Table 1: Data pulled from registrar databases

Table Description

Application Data Information from student applica-
tions to the University including
high school coursework

Guardian Data Information on student guardians
as pulled from student applications
to the University

Demographic Data Information on student demograph-
ics including date of birth, race,
ethnicity, gender, etc.

Major Data Information on majors declared
by students on a term-by-term
(quarter-by-quarter) basis

Test Score Data Information on student standard-
ized test results

Transcript Data Information on student coursework
and grades on a term-by-term
(quarter-by-quarter) basis

We restricted data to high school graduates who first en-
rolled at the University as matriculated, baccalaureate-
degree-seeking undergraduate students between 1998 and
2010 without previously attending another post-secondary
institution full-time. These students are henceforth referred
to as“freshmen.” The dataset included students who were in
a college in high school program but excluded those who at-
tended junior/community college full-time after high school
and then transferred to the University. Because the data was
pulled in 2017, we used the year 2010 as a cutoff to allow for
six full years of visibility on student academics at the Univer-
sity before labelling a student as a “non-completion,” as de-
fined in Section 3.2. In total, the dataset consisted of 66,060
unique freshmen entrants. We then further limited the data
for each student to information through one calendar year
from each student’s first enrollment at the University. This
data was limited to one calendar year for all students, re-
gardless of the number of courses they took/passed, their
grades, or their backgrounds.

After joining tables of interest using the unique student iden-
tifiers, we created features for the prediction experiments by
either pulling them directly from the raw data or engineer-
ing them for each student. The features were grouped in 7

groupings, which are described in Section 3.3; a comprehen-
sive list of features and descriptions thereof is available upon
request but was not provided in this writing in the interest
of space. In total, there were 1,405 features and all features
were generated for each student without exception.

3.2 Definitions
Ambiguity with respect to operational definitions of dropout
in literature on student attrition can make it difficult to com-
pare results across studies [24, 33]. There are numerous ways
in which attrition has been defined in existing literature, be
it students dropping out from a particular course (e.g. [21]),
re-enrolling after their first term (e.g. [1]), re-enrolling after
their first year (e.g. [11]), graduating on time (e.g. [3]), or
reaching some other relevant milestone (e.g. [10]). In this
work, we defined attrition in two ways and analyze both. We
examined attrition from students’ first year to their second
(“re-enrollment” and “non-re-enrollment”) as well as looking
at whether a student graduated on time (“graduate” and
“non-completion”). We do not examine attrition on a term-
by-term basis because of the relatively few students who
leave the University after only a single term, as discussed in
Section 4.1. We operationally defined non-completion and
re-enrollment as described below.

3.2.1 Non-Completion
We defined “non-completion” as any freshman student who
did not graduate with a baccalaureate degree from the Uni-
versity within 6 calendar years of first entry to the Univer-
sity. We defined a “graduate” as a freshman who graduated
from the University with a baccalaureate degree within 6 cal-
endar years of first enrollment. The University uses a quar-
ter term system and we used the span of four consecutive
academic quarters as a measure of one calendar year. Six
calendar years for graduation was thus the span of 24 consec-
utive academic quarters. This definition of non-completion
only accounted for students’ first baccalaureate degree and
did not take into account double-majors or double degrees.
For example, if a student was simultaneously pursuing two
baccalaureate degrees but only graduated with one in five
years, they would be a graduate; alternatively, if the stu-
dent had graduated with both degrees but during their sev-
enth year, they would be considered a non-completion. Be-
cause we focused on registrar records from a single institu-
tion, defining non-completion in this manner does not take
into account students’ academic progression after leaving the
University. This is because we only had access to registrar
records from a single institution and did not track students
across multiple institutions - they could have very well trans-
ferred from the University and graduated in good standing.

We accounted for students who took part in a college in high
school program by converting their transferred credit total
to a count of academic quarters completed while assuming
typical full-time enrollment at the University. For example,
if a student completed 30 credits in a college in high school
program, we converted this credit total to a count of terms
completed at the University (in this case, 2, as students typ-
ically take 15 credits per term). We rounded the result from
this conversion where appropriate. We then deducted this
number when determining whether the student had gradu-
ated within an appropriate amount of time.
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3.2.2 Re-Enrollment
We defined “re-enrollment” as a student who completed at
least one additional course within one calendar year of the
end of their first calendar year at the University (i.e. within
4 academic quarters from the end of their first year). “Non-
re-enrollments” were students who were not re-enrollments.
In this work, the definitions of graduation and re-enrollment
were treated mutually exclusive in that all graduates were
not necessarily re-enrollments. It should be noted that the
University requires students who do not enroll for two con-
secutive terms without an excused leave to be re-admitted
at the discretion of the University.

3.3 Feature Groupings
For every student, we engineered the subsets of features
that are described below. For all student grades, we cal-
culated a grade percentile and a z-score by comparing each
students’ grades to the grades of all undergraduate students
who had taken the same course at the same time. References
to grades include the student’s GPA (on a 4.0 scale), their
percentile score (from 0-100), and their z-score for courses
(representing the number of standard deviations from the
mean, assuming a normal grade distribution). References
to “performance” for the feature groupings include grades
and credits earned, at the least. In some cases, references to
performance may also include the number of graded credits
earned (versus courses taken pass-fail) and the number of
credits attempted. A brief description of each of the feature
subsets is provided in Table 2.

Table 2: Data subsets used in predictions

Subset Description

Base Data Year and quarter of University entry
(included with every other data subset)

Demographic
Data

Non-academic data prior to entry to the
University, including demographics

Department-
level Data

Measures of performance aggregated by
course department

First-Year Sum-
mary Data

Aggregated measures of academic per-
formance during first year

Grouped Course
Data

Measures of performance aggregated by
course number and STEM gatekeepers

Major Data Counts of majors declared on a term-
by-term basis

Pre-Entry Data Academic data prior to entry to the Uni-
versity.

3.3.1 Base Data
Base data consisted of only three features and was included
in the feature space when making predictions using every
other data subset described. The base data included stu-
dents’ calendar year of entry to the University, their quarter
of entry to the university (i.e. which of the four academic
quarters was a student’s first; ranging from 1 to 4, with 1, 2,
3, and 4 corresponding to winter, spring, summer, and au-
tumn academic quarters, respectively), and a quarter-year
variable which consisted of students’ year of entry multiplied
by 4 and added to the quarter of entry to create a relative

time scale. These features were included to account for any
time-related variation in graduation rates.

3.3.2 Demographic Data
Demographic data consisted of student’s non-academic in-
formation prior to entry to the University. This included,
but was not limited to, students’ gender, race, ethnicity, age
at college enrollment, veteran status, and student athlete
status. We also included information from students’ appli-
cation to the University, such as information on the stu-
dents’ high schools (excluding high school grades), parents’
educational attainment, and students’ ZIP (postal) code,
which was either pulled from their high school information
or, when unavailable, from their university application. We
joined students’ ZIP codes with 2015 US census data1 to
find the average income and educational attainment in each
ZIP code. We also included the distance from the Univer-
sity to each student’s home ZIP code. Features derived from
ZIP codes were the only features from sources external to
the University’s registrar databases.

3.3.3 Department-level Data
Department-level data consisted of student performance in
course offerings grouped by course prefix. For example, this
included performance in all BIOL (biology) courses grouped
together, performance in all HIST (history) courses grouped
together, etc. We excluded course prefixes wherein at least
10 students from the dataset did not take a course. In all,
this included 200 unique course prefixes and 1000 features,
with GPA, percentile grade, z-score, credits earned, and
graded credits earned calculated for each prefix. We used
department-level data instead of individual course data af-
ter preliminary modeling using individual courses did not
yield strong results. The expansive feature space when en-
gineering features across individual courses also significantly
increased the requisite computational power/time for mod-
eling and we decided against pursuing this further.

3.3.4 First-Year Summary Data
First-year summary data consisted of aggregate measures of
students’ first year at the University. This included, among
other things, students’ course performance, credits taken,
number of courses failed, number of quarters enrolled, and
enrollment in a freshman seminar courses. The first-year
summary data also included aggregate measures of students’
performance in their first, second, third, and fourth quarters
as well as student performance in the last academic quarter
for which they were enrolled during their first year (regard-
less of which quarter it was). We also included differences
between students’ performance in successive quarters.

3.3.5 Grouped Course Data
Grouped course data consisted of student course perfor-
mance grouped either by course number or by performance
in “STEM gatekeepers.” To group courses by course num-
ber, we aggregated performance across all courses that were
numbered below 100, from 100-199, from 200-299, from 300-
399, and 400+. The course numbering generally reflected
whether the course was designed to be taken by lowerclass-
men or upperclassmen and, in some cases, also indicated

1From the US Census Bureau’s American Fact Finder
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during which year students typically took the course. STEM
gatekeepers refer to introductory science, technology, engi-
neering, and math (STEM) courses which often function as
pre-requisites for STEM majors and degrees. These gate-
keeper courses tend to be highly competitive and perfor-
mance in these courses is a key determinant of whether a
student will be accepted into any of the highly competitive
STEM majors. We grouped the performance in STEM gate-
keepers by course department and topic (e.g. the calculus
series, the general chemistry series, the organic chemistry
series, etc.) as well as across all STEM gatekeepers.

3.3.6 Major Data
Major data consisted of counts of students’ major declara-
tions during their first academic year. In most cases, stu-
dents entered the University with a “pre-major” designation
before declaring their major(s) of interest some time dur-
ing their first or second year. These pre-major designations
varied based on field of interest (e.g. pre-engineering, pre-
nursing, pre-health, etc.). Students’ majors were recorded
on a per-quarter basis by the University (once per quarterly
transcript record) and we tallied the counts of major decla-
rations for each student across the entirety of their first year.
For example, a student who declared a math major in their
first two quarters only to switch to geography in their third
quarter and then add a history double major in their fourth
quarter would have the values 2, 2, 1 in the math major,
geography major, and history major features, respectively.

3.3.7 Pre-Entry Data
Pre-entry data consisted of students’ academic information
prior to attending the University. This included, among
other things, students’ entrance exam scores, high school
GPA, high school coursework, and college in high school
program participation and performance. We did not include
any information on students after their enrollment at the
University in the pre-entry data.

3.4 Machine Learning and Predictions
We randomly divided the students into training and test
sets using a 80-20 split (N in training = 52,848; N in test =
13,212). We used the same test set when evaluating the pre-
dictive performance of each of the models to allow for direct
comparisons to be made. The data was highly skewed with
graduates and re-enrollments comprising 78.5% and 93.1%
of all the data, respectively. Graduates and re-enrollments
comprised 78.0% and 92.9% of the test data, respectively.
Though dealing with class imbalances is of great interest
when examining freshmen attrition [32], we did not use any
balancing techniques as we wanted to work with the data in
its original, unaltered form. We scaled the training data by
subtracting the median of each feature and dividing by the
respective feature’s interquartile range. We subsequently
scaled the test data using the scaling values for each feature
from the training data.

We used five different machine learning models to predict
each student’s graduation and re-enrollment: regularized lo-
gistic regression (LR), K-Nearest Neighbors (KNN), random
forests (RF), support vector machines (SVM), and gradi-
ent boosted trees (XGB). We trained each model across the
entirety of the training data and used the same training

instances to train each of the models. We trained each
model separately to predict graduation and re-enrollment.
We tuned model hyperparameters for each model using 5-
fold cross validation on the training data, after which the
models were re-trained on the entirety of the training data
using the tuned hyperparameters. We report final error met-
rics and performance on the test set, which was consistent
across all models, regardless of whether predicting gradua-
tion or re-enrollment.

After developing predictive models using all features, we cre-
ated regularized logistic regression models using each of the
6 feature subsets highlighted in Section 3.3 in isolation. The
base data (see Table 2) was included in the feature space for
each data subset. The rationale behind using regularized lo-
gistic regression for these models is further discussed in Sec-
tion 4.3. We understand that an alternative approach would
be to test all the models listed above for each of the data sub-
sets to find the best performing model/subset combinations.
That said, we believe our approach was still suitable for com-
paring different data subsets. When modeling using data
subsets, we used the same observations as before to train
each of the models and, as before, we developed a separate
model for predicting graduation and re-enrollment for each
of the data subsets. As such, the training instances were
the same across models but the training features differed
depending on the feature subset used. We tuned the reg-
ularization strength for these regularized logistic regression
models using 5-fold cross validation on the training dataset
and we report results on the test set.

4. RESULTS AND DISCUSSION
4.1 Student Characteristics
We show the number and proportion of graduates and re-
enrollments in Figure 1. In all, 78.5% of students were la-
belled graduates while 93.1% of students were labelled re-
enrollments. These proportions were verified with the Uni-
versity’s office of institutional analysis. Such highly skewed
data towards graduates and re-enrollments can be expected
in a large, tier-1 research university setting where there has
been considerable, long-standing effort to improve the over-
all attrition rate over time. That said, it must also be noted
that at an institution with such a large student population,
even small fractions of the student body represent hundreds
of students on an annual basis. Across the timeline of the
dataset (13 cohorts), 14,196 non-completions and 4,593 non-
re-enrollments represent 1,092 and 351 students on an an-
nual basis, respectively.

We show the cumulative percentage of students who either
graduated or left the University across time in Figure 2. We
used the first year as a cutoff for the data because, histor-
ically, a large number of students decide whether they will
continue with their higher education pursuits during and
immediately after their first year [28]. As such, developing
models that can predict whether students will re-enroll for
a second year and whether they are on a trajectory towards
successful graduation could help administrators and aca-
demic advisors more effectively develop and deliver interven-
tions directed towards students in need of assistance. When
examining the data, 27.5% of all non-completions leave the
university prior to the start of their 2nd year, 51.9% of non-
completions leave the University between their 2nd and 6th
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Figure 1: Counts and percentages of classes in the
dataset. Definitions are provided in Section 3.2.

year, and 20.6% continued to be enrolled at the University
after their 6th year. The difference in number between non-
completions who did not return for their 2nd year and non-
re-enrollments can be attributed to non-re-enrollments who
later returned to the University and graduated on time. Less
than 5% of non-completions and less than 15% of non-re-
enrollments left the University after only one term, leading
us to not examine attrition after the first and second terms.
In settings where attrition rates are higher after students’
first and second terms, it may be more relevant to examine
the performance of classifiers after one or two terms.

Figure 2 also shows that a majority of graduates (65.6%)
completed their degrees during their fourth year at the Uni-
versity. The mean and median completion time for all gradu-
ates was 16.6 and 15.0 calendar quarters, respectively, from
first enrollment. This is particularly apparent due to the
near-sigmoidal shape of the cumulative graph for graduates,
with a sharp rise during students’ fourth year. We also see
that there is a relative lack of students who graduated prior
to the start of their third year. This highlights the difficulty
in predicting graduation based on students’ first year - a
student typically does not graduate until several years later,
during which a host of influences can shape an academic
trajectory, be they personal, financial, or academic.

4.2 Predictions Using Different Algorithms
Table 3: Prediction results using all data features.
Baseline values are based on test set.

Graduation Re-Enrollment
Model Accuracy AUROC Accuracy AUROC

Baseline 78.0% 0.500 92.9% 0.500

LR 83.2% 0.811 95.0% 0.882
RF 83.1% 0.806 95.3% 0.887
XGB 83.0% 0.806 95.1% 0.885
KNN 82.5% 0.798 94.8% 0.876
SVM 78.0% 0.780 92.9% 0.862

We show the performance of each of the models using the en-
tirety of the feature space in Table 3. The baseline measure
in the Table refers to the majority class compositions in the
test set. Generally speaking, most of the models had a sim-
ilar comparative performance for each prediction task (i.e.
predicting either graduation or re-enrollment). This hints at

Figure 2: Cumulative graduation and non-
completion curves of students. Years and quarters
are relative to the time of first enrollment. The dot-
ted line indicates the point to which data is limited
for each student. Only students’ first six years are
shown, per the definition of “graduate.”

an effective ceiling with respect to predictive power from the
types of features being used (i.e. ones pulled from registrar
records) and that additional representations of the student
experience (be they academic or social) should be incorpo-
rated. Alternatively, a more complex predictive model (e.g.
deep neural networks) may also fare better in making these
predictions. That said, given the data used, the models are
able to predict the eventual graduation and re-enrollment
of students fairly successfully, as evidenced by the relative
improvements over baseline values for both prediction tasks.

For predicting graduation, logistic regression was the best-
performing model, followed by random forests. When pre-
dicting re-enrollment, random forests performed the best,
followed by gradient boosted trees and logistic regression.
These results are generally in line with our previous work on
similar tasks, where we found that logistic regression tends
to work well compared to other models for predicting grad-
uation and STEM attrition [2]. When examining the worst-
performing models, the SVM model made predictions that
consisted entirely of the majority class when predicting both
graduation and re-enrollment, as seen by the models’ accu-
racy being the same as the baseline values. Such results are
typical of classifiers without much predictive strength on a
dataset consisting of highly disproportionate classes. In this
specific case, it may be remedied by using alternate kernels
for the model, which we did not explore in this work.

We show the ROC curves for the models in Figure 3.
These curves further illustrate the lack of differentiation
with respect to model performance. For the same pre-
diction task, the resulting ROC curves across the mod-
els were nearly identical with little difference in curvature.
The more notable difference was when comparing the ROC
curves for predicting graduation with those for predicting re-
enrollment, as the curves for predicting re-enrollment were
more prominently convex compared to those for predicting
graduation. These curvatures, along with the metrics shown
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Figure 3: Receiver operating characteristic curves
when using different machine learning models.

in Table 3, demonstrate that predicting students’ eventual
graduation is a more difficult task than predicting students’
re-enrollment. We expected this as the cutoff for the data
used in the predictions (i.e. students’ first year) was near the
point at which a student is classified as a re-enrollment (after
their second year) but was much earlier than when a student
was classified as a non-completion (after their sixth year).
This helps highlight the degree to which differing operational
definitions of attrition can vastly alter the perceived predic-
tive strength of these classifiers. For other scenarios, alter-
nate definitions of attrition may be more appropriate and
the effectiveness of efforts to build predictive models will be
colored by these definitions and institutional contexts.

We show the confusion matrices for the best models for
predicting graduation and re-enrollment (logistic regression
and random forests, respectively) in Figure 4. These ma-
trices show a lower rate of false negatives for the models
but a higher rate of false positives (i.e. students incor-
rectly classified by the models as having graduated or re-
enrolled). To better understand this higher rate of false
positives, we examined the complete transcript records of
students who were classified accordingly. Across the false
positives, we found numerous instances of non-completions
and non-re-enrollments who had left the University with rel-
atively strong grades in comparison to their graduating and

Figure 4: Confusion matrices when examining the
top performing algorithms for predicting graduation
(LR, left) and re-enrollment (RF, right).

re-enrolling peers. These students also often appeared to be
pursuing very competitive majors and/or appeared to have
rigorous post-graduation plans (e.g. pre-medical and pre-
dental students). Many of these students remained in a pre-
major state prior to their departure, indicating that though
they had relatively strong grades, they likely were not able
to enter into their degree program(s) of choice for various
reasons and had to leave the University to pursue these am-
bitions as a result. Unfortunately, the University does not
have a centralized major application database for admissions
and rejections to specific majors. Having so could shed light
on much of the motivation behind these students’ desire to
leave the University and if it was, in fact, motivated by not
getting into competitive majors. That said, the fact that
many of these students were academically similar to their
graduating and re-enrolling counterparts further illustrates
why there appears to be an effective ceiling with respect to
predictive power using the given data, as seen in Table 3.

From a practical perspective, it should be noted that the
classification thresholds for these models were not tuned
with respect to either sensitivity or specificity. In practice,
when developing institutional systems to identify students
at-risk of leaving, it may be useful to raise the classifica-
tion threshold when predicting whether a student will grad-
uate or re-enroll, thus favoring lower recall at the expense of
higher precision. This would effectively reduce the number
of students who are predicted to graduate but in actuality
do not (i.e. false positives) at the expense of more false neg-
atives, which could be more acceptable when developing an
alert system for students at risk of dropping out.

4.3 Predictions Using Different Data Subsets
After examining the results from predicting graduates and
re-enrollments using all features, we used regularized logis-
tic regression to predict graduation and re-enrollment using
subsets of the data. We used logistic regression after we saw
that it performed very well relative to other models for both
prediction tasks (see Section 4.2) and because it had rela-
tively fast training times due to having fewer hyperparam-
eters to tune. This allowed us to more efficiently train the
12 different models that were needed when examining the
performance of specific data subsets (i.e. separately mod-
eling graduation and re-enrollment while using 6 different
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Table 4: Prediction results using specific data sub-
sets. Baseline values are based on test set.

Graduation Re-Enrollment
Subset Accuracy AUROC Accuracy AUROC

Baseline 78.0% 0.500 92.9% 0.500

All 83.2% 0.811 95.0% 0.882
FY-Sum. 83.0% 0.795 94.9% 0.855
Department 82.3% 0.788 94.6% 0.847
Grouped 82.5% 0.781 94.6% 0.845
Major 79.9% 0.661 94.2% 0.768
Demo 78.0% 0.634 92.9% 0.643
Pre-Entry 77.3% 0.630 92.9% 0.616

data subsets in isolation for each).

We show the results when using data subsets in Table 4
alongside the performance of the logistic regression clas-
sifier from Section 4.2. Transcript-based features tended
to perform better than information on students’ prior to
their enrollment at the University. More specifically, de-
mographic data and pre-entry information did relatively
poorly in predicting both graduation and re-enrollment. In-
tuitively, this is not a surprise as the admissions process at
highly-competitive universities tends to be fairly selective
with an emphasis on supporting and sustaining a success-
ful yet diverse student body. Additionally, such institutions
may already have efforts in place to reduce demographic
disparities for student success. Meanwhile, when looking at
transcript-based data subsets, first-year summary data per-
formed the best with performance that was similar to using
the entirety of the data. This is particularly noteworthy as
the first-year summary data contained fewer features than
the other transcript-based data subsets but was centered on
summaries of performance across time rather than aggrega-
tions across course departments/numberings.

These findings are particularly interesting in light of work by
other researchers. For instance, Nagy and Molontay found
that attrition could be accurately predicted using what we
outline as demographic and pre-entry features alone [22].
However, we do not see similar success here. We believe this
could be due to vastly different educational settings and stu-
dent profiles (e.g. here, most students tend to graduate/re-
enroll while Nagy’s student population primarily dropped
out). In earlier work, Dekker et al. found that transcript-
based features tend to have more predictive strength than
pre-entry features, but examined this across rather limited
data subsets [10]. Our results echo this finding. Recently,
Manrique et al. found that attrition could be predicted us-
ing student performance in a few key courses [20]. Here,
we find that aggregates across the first year tend to work
better than more fine-grain representations of course-taking
(e.g. grouping classes by course prefix and numbering). As
discussed in Section 3.3.3, we decided against using individ-
ual course representations in this work.

We show the ROC curves for the regularized logistic regres-
sion models using each of the data subsets as well as the
entire feature space in Figure 5. The fact that demographic
and pre-entry data gave generally worse performance than

Figure 5: Receiver operating characteristic curves
when using different subsets of data.

transcript-based features is very much apparent from the
ROC curves. Data on majors, meanwhile, tended to per-
form worse than other transcript-based features but better
than demographic and pre-entry data. The fact that using
data on majors did not yield particularly strong results likely
relates to the fact that most students in the dataset were in a
pre-major state across their first year and formally declared
their major of interest later in their undergraduate careers.
As noted above, a centralized major application system was
not available, else it could have been leveraged in addition to
data on majors to draw a more clear picture of student aca-
demic interest. The other transcript-based datasets, mean-
while, had very similar curvatures for the ROC curves when
predicting both graduation and re-enrollment.

We show confusion matrices from using the best-performing
data subset in Figure 6. The best-performing data subset
for both prediction tasks was first-year summary data. By
comparing these confusion matrices to those shown in Fig-
ure 4, it can be seen that using just a limited subset of
features tends to classify the data similarly to models built
on the entirety of the data. This is true not only in terms
of how effective the models are in making predictions, but
also with respect to the relatively high rate of false positives
seen across all four matrices.
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Figure 6: Confusion matrices when examining the
top performing data subset for predicting gradua-
tion (left) and re-enrollment (right). The top per-
forming data subset was the same for both tasks
(first-year summary data).

5. FUTURE DIRECTIONS
We believe the findings regarding the data subsets have
wide-ranging policy implications, particularly for identifying
students at risk of dropping out in large, public universities.
In such settings, there may be longstanding effort to decrease
demographic disparities with respect to attrition and, as a
result, transcript records may be more viable as features
in predictive models than pre-entry/demographic informa-
tion. Furthermore, these settings may also be resource-
constrained with respect to time available for staff to hand
engineer features. In such settings, knowing which features
would be most predictive of attrition without the need to
hand-engineer features across the entirety of data available
to institutions could save time and effort in building mod-
els. We have had conversations with administrators at the
University for better interpreting our results and improving
the processes for identifying students in need of assistance.

Another direction of interest is better understanding the fea-
tures used in predicting attrition. This includes not only
further examining key individual determinants of attrition,
as we have done in previous work [3, 2], but also finding the
best combination of features across the subsets. We would
like to examine this “minimum viable feature space” in the
context of data available in registrar databases as well as
investigate the degree to which these features relate to es-
tablished theory on student attrition [12].

6. CONCLUSIONS
In this work, we use data from the registrar databases of a
large, public US university to predict both graduation and
re-enrollment using information limited to students’ first cal-
endar year at the university. We do this using a dataset of
students that spans the entirety of the university student
body and is thus much larger than previous studies predict-
ing student attrition (N = 66,060). In so doing, we demon-
strate that both graduation and re-enrollment can be effec-
tively predicted using features generated from data that is
routinely collected at institutions of higher education. Addi-
tionally, we also examine the degree to which specific subsets
of registrar data can be useful in predicting attrition, finding
that transcript-based features tend to outperform features

based on student histories prior to college. This implies that
effective strategies for intervention can be outlined based on
registrar records.

Predicting re-enrollment after students’ first year was a
much more tractable task than predicting graduation. This
can be attributed to the fact that predicting graduation ne-
cessitates predicting academic success years into the future
from the point to which data was limited whereas predicting
re-enrollment is within a much shorter timeframe. Consider-
ing the unpredictable influences that cause students to leave
college prior to graduating (e.g. financial limitations, per-
sonal hardships, etc.), a more reliable prediction task may
be to examine whether a student will return on a term-by-
term basis. This could be particularly useful to develop alert
systems to identify students at risk of dropout. However,
this was not explored in this work due to the relatively few
students who left the University after a single term.

We found that there appears to be an upper limit for pre-
dictive power for our dataset. This demonstrates the limi-
tations when relying solely on registrar data and shows the
need for additional features on the student experience to
improve predictive power. Some potential features of inter-
est include measures of social integration on campus and of
financial aid. Better understanding student aspirations be-
yond simply using declared majors could also be of interest,
especially using alternate representations of student course-
taking behavior, as shown recently by Luo and Pardos [19].

Lastly, we show that features generated from transcript
records, particularly aggregates and summaries of students’
academics, perform better for predictions than demographic
and pre-entry data. Much of this is likely due to the selec-
tivity of the University and its admissions policy. Never-
theless, it demonstrates how useful transcript data can be
for such prediction tasks in contrast to information on stu-
dents prior to college. We demonstrate that using subsets
of data from registrar databases (in this case, aggregates of
students’ first year) can be nearly as effective for predictions
as hand-generating a wide swath of features from different
institutional data sources.
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ABSTRACT
For the development of successful human-agent dialogue-
based tutoring systems, it is essential to understand what
makes a human-human tutorial dialogue successful. While
there has been much research on dialogue-based intelligent
tutoring systems, there have been comparatively fewer stud-
ies on analyzing large-scale datasets of human-human online
tutoring dialogues. A critical indicator of success of a tutor-
ing dialogue can be student satisfaction, which is the focus
of the study reported in the paper. Specifically, we used
a large-scale dataset, which consisted of over 15,000 tuto-
rial dialogues generated by human tutors and students in
a mobile app-based tutoring service. An extensive analysis
of the dataset was performed to identify factors relevant to
student satisfaction in online tutoring systems. The study
also engineered a set of 325 features as input to a Gradient
Tree Boosting model to predict tutoring success. Experi-
mental results revealed that (i) in a tutorial dialogue, fac-
tors such as efforts spent by both tutors and students, ut-
terance informativeness and tutor responsiveness were posi-
tively correlated with student satisfaction; and (ii) Gradient
Tree Boosting model could effectively predict tutoring suc-
cess, especially with utterances from the later period of a
dialogue, but more research effort is needed to improve the
prediction performance.

Keywords
Intelligent Tutoring Systems, Student Satisfaction, Educa-
tional Dialogue Analysis, Gradient Tree Boosting

1. INTRODUCTION
Intelligent tutoring systems (ITS) are computer systems that
are designed to act as human tutors and provide personal-
ized instruction or feedback to students in online learning
environments [3, 41]. Ultimately, ITS aim at replicating
the benefits of one-to-one tutoring in contexts where stu-
dents cannot receive such tutoring during the learning pro-

cess [49]. In the past decades, numerous researchers have
been actively involved in the investigation and development
of various types of ITS, among which representative exam-
ples include AutoTutor [19], BEETLE [16], ASSISTments
[25], and Cognitive Tutor [36]. More importantly, these sys-
tems have been applied in different educational contexts for
hundreds of thousands of students to use and have facili-
tated student learning. With the aid of ITS, students with
an internet connection can receive guidance tailored to their
needs and enhance their learning anytime and anywhere. At
the same time, instructors and educational institutions can
improve their teaching quality and educational programs by
analyzing the fine-grained data collected by ITS [1, 3].

Figure 1: A tutoring dialogue example.

A special class of ITS is dialogue-based intelligent tutoring
systems such as AutoTutor and BEATTLE, which empha-
size the use of human-agent dialogue in one-to-one tutoring.
Such systems have been built on advances in psycho-/socio-
linguistics, computational linguistics, and natural language
processing [14, 35] to create productive learning experiences
in human-agent dialogue tutoring.

In line with [47], we argue that the future development of
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dialogue-based systems can benefit greatly from the anal-
ysis of massive datasets collected in online tutoring. On-
line tutoring has been promoted by a growing number of
applications, e.g., Chegg1, Skooli2 and Wyzant3, that of-
fer human-human online tutoring at scale and the learning
subjects covered by these applications include math, sci-
ence, language learning, humanities, etc. Specifically, we
are interested in understanding what constitutes successful
human-human online tutoring. In this paper, we report on
the findings of a study that looked at factors that predict
student satisfaction with human-human online tutoring.

The analysis of human-human online tutoring requires con-
sideration of factors that shape the entire tutorial process.
Online tutoring, especially helping students to solve prob-
lems, is a complex process, in which a student is expected
to clearly explain the problems to be solved to a tutor and
the tutor is expected to use her knowledge as well as appro-
priate tutoring strategies to guide the student to solve the
problems. The success of such a process depends on many
factors, e.g., whether the student clearly explains the prob-
lem, whether the tutor asks appropriate questions to guide
the student, and whether the tutor provides sufficient emo-
tional support. As shown in the example in Figure 1, the
student ended the tutoring session because the tutor did not
respond to the student in a timely manner and the student
only rated the tutoring session as 1 on the scale of (1, 5),
which indicated that the student was not satisfied with the
tutoring service at all and thus the tutorial dialogue was
unsuccessful.

To our knowledge, few studies have attempted to identify
the crucial factors that are correlated with the success of a
tutoring session. Thus, our work aimed at (i) identifying
factors that are correlated with the success of a dialogue-
based tutoring session, and further (ii) utilizing the identi-
fied features as input to a state-of-the-art machine learning
model to predict the tutoring success. Formally, our work
was guided by the following research question:

RQ: What factors are related to student satisfaction
with online tutoring service?

By investigating the RQ, we expected to (i) help tutors in
existing online tutoring systems to better direct their ef-
forts in guiding students, and (ii) inform the design of future
dialogue-based ITS.

To this end, we first formulated a set of hypotheses about
potential factors that were correlated with the success of
a dialogue-based tutoring, which were grounded in previ-
ous research findings on online tutoring or relevant educa-
tional topics. Then, we conducted an extensive analysis of
a large-scale dataset provided by a company offering online
tutoring services to students, which contained transcripts of
over 15,000 dialogue-based tutoring sessions generated by
more than 5,000 students, to test the formulated hypothe-
ses. Based on the analysis, we designed a set of 325 fea-
tures and used these features as input to a state-of-the-art

1https://www.chegg.com/
2https://www.skooli.com/
3https://www.wyzant.com/

machine learning model (i.e., Gradient Tree Boosting) to
predict whether a tutorial dialogue would be successful or
not.

Experimental results showed that the success of a dialogue-
based online tutoring session was associated with factors
such as the efforts made by both tutors and students, the
informativeness of the utterances, and the sentiment polar-
ity conveyed through the utterances. We further showed
that Gradient Tree Boosting was an effective method in pre-
dicting the success of tutoring sessions. In particular, we
observed that the utterances from the later period of a tu-
toring session (e.g., the last 20% utterances in a dialogue)
could deliver prediction accuracy comparable to that using
the whole dialogue as input, and more research effort can be
invested to further boost the prediction performance.

2. RELATED WORK
Our work is mainly related to research on educational dia-
logue analysis [39]. One common theme that has been in-
vestigated for years is the development and refinement of a
coding scheme for educational dialogue acts [30, 38]. For in-
stance, by building upon the language-as-action theory, [21]
proposed a coding scheme that attempts to map utterances
to their inherent functions in a dialogue and validated the
effectiveness of the proposed scheme in two different learn-
ing contexts (one from primary school and the other from
secondary school).

Another common strand of work in the field is the inves-
tigation of the relationship between tutorial dialogues and
student performance [29]. For example, [47] adopted corre-
lation analysis to capture the effects of dialogues on student
performance. In particular, the dialogue acts of tutors (e.g.,
those related to providing explanations) were found to be
significantly predictive of students’ learning gain. Similarly,
[5] found that the choice of corrective tutorial acts adopted
by tutors, which serves as an approach to deal with incorrect
problem-solving actions, has a significant influence on stu-
dents’ learning gain. In a different vein, [32] measured the
quality of a tutorial dialogue with the Classroom Assess-
ment Scoring System-Secondary observational instrument
and demonstrated that the quality of educational dialogues
was positively associated with student performance. Other
relevant works include [13, 17, 24, 31].

Compared to the related works described above, our work
distinguished itself in several aspects. Firstly, our work
aimed at discovering factors that are related to student satis-
faction instead of student performance, though both of them
can be regarded as indicative predictors for the success of
a tutorial dialogue. Secondly, our work analyzed various
types of factors associated with student satisfaction (which
are described in Section 3), while prior works have mainly
analyzed one or two specific types of factors, e.g., dialogue
acts [5, 47] and dialogue quality [32]. Thirdly, the tutorial
dialogue dataset used in our work consists of dialogues col-
lected from over 15,000 tutoring sessions initialized by more
than 5,000 students, while previous work often used datasets
containing a few hundred tutorial dialogues generated by
dozens of students.
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3. APPROACH
In this section, we first describe the dataset we used for
analysis. Then, we outline and justify the hypotheses upon
which we grounded our work to explore factors that are as-
sociated with student satisfaction, and then introduce the
method we used to test these hypotheses. Lastly, we de-
scribe the machine learning model for predicting student
satisfaction.

3.1 Dataset
The dataset used in our work was prepared by an educa-
tional technology company that provides on-demand tutor-
ing services via a mobile application and covers topics in-
cluding mathematics, chemistry, and physics. With the mo-
bile application, a student can take a picture of the problem
she encounters or directly write down the problem and se-
lect the category to which the problem belongs to. Then,
the student will be connected to a professional tutor who
can guide the student to solve the problem by leveraging
texts and pictures to communicate. Originally, the dataset
consisted of dialogues of 18,203 tutoring sessions, which ac-
counted for over 7,000 tutoring hours. To ensure the validity
and generalizability of the experimental results, we filtered
out dialogues with less than 10 utterances or of duration less
than 60 seconds. This was carried out because tutors were
unlikely to deliver meaningful tutoring in those sessions.

Table 1: Dataset statistics.

Category
Row
ID

Metric Value

Basic
statistics

1 # Sessions 15,756
2 # Utterances 1,250,270
3 # Tutors 116
4 # Students 5,468
5 Avg. ratings 4.22

Dialogue
length

6 Avg. session duration (mins) 28.75
7 Avg. # utterances / session 79.35
8 Avg. # words / session 610.87
9 Avg. # unique words / session 183.80

Activeness
10 Avg. % utterances sent by tutors 57.92
11 Avg. % words sent by tutors 78.02
12 Avg. % new words sent by tutors 74.92

Platform
experience

13 Avg. # sessions guided by tutors 135.83
14 Avg. # sessions owned by students 2.88

After filtering, the dataset contained a total of 15,756 dia-
logues generated by 116 tutors and 5,468 students together,
as described in Table 1. It is noteworthy that more than
79% of the dialogues received a rating of 4 or 5 (out of a
scale of (1, 5)), as shown in Figure 2, and only about 16% of
the dialogues were of rating 1 or 2. This indicates that most
of the students were satisfied with the help they received
from tutors and those tutoring sessions were successful.

To enable a better understanding of the characteristics of the
tutor/student behavior in online tutoring, we further ana-
lyzed the dataset from the following perspectives: the length
of dialogues, how active tutors/students were in dialogues,
and the experiences of tutors/students in using the tutoring
platform, and the results are given in Table 1 (Rows 6-14).
Firstly, the average duration of all tutorial sessions is about
29 minutes, and we observed that about 50% of the sessions

Figure 2: The distribution of student ratings for tu-
toring sessions.

Figure 3: The distribution of the duration of tutor-
ing sessions.

Figure 4: The distribution of the number of unique
words in dialogues.

were less than 20 minutes, as shown in Figure 3. On aver-
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age, about 80 utterances and 610 words were contained in
a dialogue. However, we found only 184 unique words were
contained in a dialogue, which was only about 30% of the
average number of words used in a dialogue. In fact, most
of the dialogues (over 70%) only contained 50∼250 unique
words (Figure 4). This is in line with previous research find-
ing [6], i.e., people tend to use a relatively small number of
words during the conversational process. Also, we observed
that tutors were more active than students, i.e., on average,
58% of the utterances in a dialogue were sent by tutors (as
shown in Figure 5, tutors sent 50%∼70% of the utterances in
almost 80% of the dialogues). We had a similar observation
when analyzing the average fraction of words sent by tutors,
i.e., in over 70% of the dialogues, tutors sent 70%∼90% of
the words. In particular, 75% of the new words (i.e., words
which never appeared in previous utterances) were from tu-
tors. In fact, tutors were in charge of introducing 60%∼90%
of the new words in 88% of the dialogues (as depicted in
Figure 6). This implies that, most of the dialogues were led
by the tutors, e.g., tutors were responsible for introducing
new concepts to help students solve the problem and guid-
ing students by providing detailed explanations. In terms
of platform experience, on average, tutors guided more than
135 sessions, while students only had less than 3 sessions.
A detailed analysis revealed that only 43% of the students
used the tutoring service for more than once.

Figure 5: The distribution of the fraction of utter-
ances sent by tutors in dialogues.

Figure 6: The distribution of the fraction of new
words sent by tutors in dialogues.

3.2 Research Hypotheses
Based on prior work, we can make the following hypotheses
related to our RQ.

H1 The more efforts a student/tutor spends in a tutorial
dialogue, the more likely the dialogue will be success-
ful..
The efforts spent by students in learning (e.g., the en-
gagement with course materials) have long been re-
garded as predictive indicators of their performance [8,
15, 37]. Similarly, we hypothesized that the amount of
effort spent by tutors, which directly determines how
much help students can receive, also affect students’
performance and tutoring success.

H2 The more informative the utterances sent by a stu-
dent/tutor are, the more likely a tutorial dialogue will
be successful.
Generally, informative tutoring feedback provided by
tutors to students plays a positive role in assisting
students in most learning contexts [33]. Here we ar-
gue that the informativeness of student utterances also
contributes to the success of a tutoring session because
it helps tutors quickly understand the difficulties faced
by students and correspondingly come up with effec-
tive tutoring strategies to help the students.

H3 The less time a student spends waiting to receive a re-
sponse from a tutor, the more likely a tutorial dialogue
will be successful.
Previous research on investigating the design and de-
livery of feedback in online learning environments showed
that not only the feedback itself but also the timing of
feedback provision impacted student learning [27]. As
suggested in [42], effective feedback should be timely
so that students can recall the steps of addressing a
learning task. Given the fact that a tutoring session is
initialized by a student seeking help to solve a problem,
this, to a certain extent, implies that the student lacks
necessary knowledge but is eager to receive responses
from a tutor and solve the problem.

H4 The higher the lexical entrainment of a tutorial dia-
logue is, the more likely the dialogue will be successful.
[6] pointed out that people involved in a conversation
tend to coordinate with each other in terms of the
words they use (so-called lexical entrainment), e.g.,
both the tutor and the student mentioned the word
triangle in the dialogue in Figure 1. [34] argued that
lexical entrainment is key to facilitate both produc-
tion and comprehension in dialogues, and more im-
portantly, correlated with task success.

H5 The less complex the utterances sent by a student/tutor
are, the more likely the dialogue will be successful.
[40] suggested that, in the setting of classroom-based
education, tutors should intend to gradually increase
the complexity level of their verbal communication with
students so as to foster students’ level of competency.
However, in the setting of online tutoring, in which
a tutoring session usually lasts no more than half an
hour (as shown in Section 3.1) and the learning task is
relatively simple (e.g., solving a math problem), we hy-
pothesized that the complexity level of tutor/student
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utterances would be negatively correlated with the tu-
toring success as complex utterances usually take more
time to understand and respond.

H6 The more questions a tutor/student asks, the more
likely a tutorial dialogue will be successful.
Previous research demonstrated that questioning is an
essential method for tutors to help students build up
their understanding and promote effective learning [20,
44, 50]. Likewise, questions asked by a student repre-
sent the student’s activeness in learning what is un-
known to her at the moment and are generally viewed
as positively related to her learning performance [43,
45, 46].

H7 The more positive sentiment conveyed through the ut-
terances sent by a student/tutor, the more likely a tu-
torial dialogue will be successful.
[9, 51] suggested that students’ sentiment expressed
via forum posts in a MOOC is correlated with the re-
tention rate of the course. This led us to postulate
that the success of a tutoring session could be revealed
by students’ sentiment conveyed in the dialogue utter-
ances. Also, the positive sentiment contained in tutors’
utterances, e.g., those used to encourage students, can
be indicative of the success of a tutoring session.

H8 The more prior tutorial dialogues a student/tutor has,
the more likely the current dialogue will be successful.
On the one hand, the number of prior tutorial dia-
logues that tutors have can be used to estimate their
prior tutoring experience, which is generally believed
to have a positive effect on students’ learning outcome
[48]. On the other hand, if a student has multiple ses-
sions before the current session, this may imply that
(i) the student is familiar in using the tutoring plat-
form; and (ii) the tutoring platform has gained the
trust of the student by providing satisfactory learning
experiences; thus the student repeatedly returns to the
platform and uses the service.

3.3 Hypotheses Testing
To test the formulated hypotheses, we first classified tutorial
dialogues receiving ratings of 4 or 5 from students as the
Success group and those of ratings of 1 or 2 as the Failure
group. Then, we defined a set of metrics to describe the
factors investigated in each hypothesis and compared the
two groups with Mann-Whitney test on the relevant metrics
to test our hypotheses.

For H1, we quantified the efforts of tutors/students made
in a tutoring session from three perspectives:

M1 Session duration: the duration of a tutoring session;

M2 # Utterances: the number of utterances made by a
tutor/student;

M3 # Words: the number of words contained in the ut-
terances made by a tutor/student;

To investigate H2, we considered four metrics to measure
utterance informativeness:

M4 # Unique words: the number of unique words con-
tained in utterances sent by a tutor/student;

M5 # Unique concepts: the number of concepts con-
tained in utterances introduced by a tutor/student;

M6 % New words: the fraction of unique words sent by a
tutor/student for the first time (so-called new words);

M7 % New concepts: the fraction of unique concepts
introduced by a tutor/student for the first time (so-
called new concepts);

Counting the number of unique words (M4) was one indica-
tor to measure the informativeness of utterances. Besides,
given that both tutors and students often use concepts dur-
ing the conversational problem-solving process (as shown in
Figure 1 where triangle was mentioned by both the tutor and
the student), and such concepts often bring new information,
we also calculated the number of unique concepts (M5) to
measure the utterance informativeness. As concepts typi-
cally appear as nouns, we extracted the nouns contained in
an utterance and used them as proxies to capture the men-
tioned concepts. For this, we use NLTK4 to extract nouns
from utterances. In addition, we also defined M6 and M7 to
measure the extent to which the new words/concepts were
spoken by tutors/students, as indicators to distinguish the
main contributor in bringing new information in a dialogue.

We tested H3 from two angles:

M8 Wait time: the amount of time between a student
initialized a request for help and the student was con-
nected to a tutor;

M9 Avg. response time: the average amount of time
that a student needed to wait before receiving a reply
from a tutor after the student sent an utterance;

To investigate H4, we defined the following metric:

M10 Entrainment: the score describing the level of en-
trainment between the tutor utterances and the stu-
dent utterances;

Inspired by [4], we calculated M10 as the similarity be-
tween the distribution of respective words used by tutors
and students. Specifically, we first needed to decide the
set of considered words used to calculate entrainment score.
[34] suggested that function words (i.e., frequent words like
is, do, can) and punctuation marks are important for mea-
suring the degree to which people align with each other in
successful dialogues. Therefore, we took all of the words
appearing in dialogues into account for calculating M10
(denoted as Entrainment (All)). In addition, as indicated
before, both tutors and students often use concepts during
the tutoring process and we hypothesized that the entrain-
ment between such concepts was of particular importance
to indicate whether a dialogue would be successful or not.
Therefore, we also calculated M10 by only considering con-
cepts (denoted as Entrainment (Concepts)). Similar to H2,
we extracted nouns in utterances and regarded them as the
concepts mentioned by tutors and students. With the set
of considered words defined, we counted the occurrence of

4https://www.nltk.org
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each word for the utterances made by a tutor/student in a
dialogue, respectively, which were represented as two vec-
tors (one for the tutor and the other for the student). Then,
we measured the similarity of the two vectors by comput-
ing their cosine similarity [22], which served to describe how
close the tutor and the student were in terms of the vocab-
ulary they used in a dialogue and thus to indicate to what
extent they coordinated the words to each other.

To test H5-8, we respectively defined the following metrics:

M11 Complexity: the average complexity of utterances
sent by a tutor/student;

M12 # questions: the number of questions asked by a
tutor/student;

M13 Sentiment: the overall sentiment polarity scores of
utterances sent by a tutor/student;

M14 Platform experience: the number of tutorial dia-
logues that a tutor/student has prior to the current
one;

Specifically, we measured the complexity (M11) of an utter-
ance by calculating its Flesch readability score [12], which
specify to what extent a piece of text is readable to people
by returning a score between [0, 100]. A piece of text with
a higher Flesch readability score indicates it is easier to un-
derstand. Given that questions often ended with a question
mark, we, therefore, computed M12 as the number of sen-
tences ending with a question mark in the utterances made
by a tutor/student. For M13, we again use NLTK to deter-
mine the sentiment polarity score for each utterance. The
returned score was of range (−1, 1) with -1 being very nega-
tive and 1 being very positive. Then, the values of all utter-
ances sent by a tutor/student were summed up as the overall
score of the tutor/student in a dialogue, and the scores of
all dialogues in a group were averaged as the final score for
the group.

3.4 Tutoring Success Prediction
We aimed to predict whether a tutoring session would be
successful or not based on the transcript of the tutorial di-
alogue, which could be regarded as a binary classification
problem. Previous research indicated that there are var-
ious techniques that can be used for binary classification
problems, such as logistic regression, decision trees, random
forests, support vector machines, and neural networks. Gra-
dient Tree Boosting (GTB) [11, 18] is a machine learning
technique which can be used for both regression and classi-
fication problems. Similar to random forests, GTB is based
on the belief that multiple predictors aiming to predict the
same target variable will do a better job than any single
predictor alone. Therefore, GTB constructs a set of predic-
tors (i.e., decision trees), which are typically trained with
a random sub-sample of the data (thus each predictor is
slightly different from the others) and the predictions of all
predictors are taken into account to give a final prediction.
In random forests, the predictors are built independently
and the predictions are combined by using techniques like
weighted average and majority vote. However, in GTB, the
predictors are built sequentially in which the later predictors
can learn from mistakes committed by previous predictors

and thus reduce prediction errors. This usually takes less
time to reach close to actual predictions. Previous research
has demonstrated that GTB is one of the most robust ma-
chine learning approaches and can deal with various types of
feature data and has reliable predictive power when dealing
with unbalanced data (as in our case) [10]. Therefore, we
select GTB over other approaches for our prediction task.

We used all of the metrics described in Section 3.3, i.e.,
M1-14, as features for the Gradient Tree Boosting model.
Note that we calculated M2-7, M11-14 for both tutors and
students, respectively. M10 was calculated by taking all of
the words as well as only the concepts into consideration.
In addition, as a common practice in solving text classi-
fication problems, we extracted N-grams features, i.e., uni-
grams, bigrams, and trigrams, from the dialogue transcripts.
Prior to the N-grams extraction, we preprocessed the dia-
logue transcripts by removing stopwords (e.g., can, a, be, is,
are), which are of high frequency but seldom carry useful
information for classification purposes. To avoid overfitting,
we only took the top 100 most frequent unigrams, bigrams,
and trigrams into consideration. In total, we designed 325
features.

To set up the experiment, we randomly sampled 80% of
the data as the training dataset, and the remaining 20%
as the validation and testing datasets (10% for each). To
demonstrate the effectiveness of GTB in predicting tutoring
success, we selected random forests as the baseline method
for comparison. We implemented random forests as well as
GTB by using the machine learning library scikit-learn5

for Python. The parameters for both random forests and
GTB were optimized through grid search on the validation
dataset, and then we evaluated the models’ performance on
the testing dataset. In line with previous works on classi-
fication problems, especially those dealing with imbalanced
data, we adopted three representative metrics for evaluation,
i.e., Area Under the Curve (AUC), F1 score, and Cohen’s
kappa coefficient (Cohen’s κ) [23].

In particular, the design of our experiments was guided by
the following three questions:

Q1 How does GTB perform in predicting the success of a
tutorial dialogue?

Q2 How much data is needed to successfully predict tu-
toring success?

Q3 Which of the designed features are of particular im-
portance for the prediction performance?

To our knowledge, there have been few works attempting to
predict the success of a tutorial dialogue with a large-scale
dataset and our work has contributed to this by enabling
a better understanding of this problem. By investigating
Q1, we expected to examine the capability of GTB, which
is regarded as a state-of-the-art machine learning technique,
in solving this particular prediction task. Previous works
demonstrated that the earlier a student is identified as being
at risk, the more help a tutor can offer to help the student
continue to learn. Similarly, the earlier an unsuccessful tu-

5https://scikit-learn.org/
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toring session can be identified, the more effective interven-
tion can be provided to the student by a tutor. Therefore,
by investigating Q2, we expected to identify how early an
unsuccessful tutoring session can be identified and to shed
light on the practicability of using GTB to assist tutors dur-
ing their interaction with students. Lastly, by answering Q3,
we expected to examine the contributions made by each type
of features for the prediction performance.

4. RESULTS
In this section, we describe the experimental results on hy-
potheses testing as well as tutoring success prediction.

4.1 Results on Hypotheses Testing
For H1, we calculated the mean values of M1-3 for all the
dialogues contained in the Failure and Success groups, which
are given in Table 2 (so as the other results for H2-8). Based
on the results, we observed that the Success dialogues were
50% longer than the Failure dialogues (31.20 vs. 19.27).
In addition, compared to the Failure dialogues, both tutors
and students had more utterances in the Success dialogues.
We had similar observations when comparing the number of
words sent by tutors/students in the two groups. Therefore,
we conclude that H1 was supported.

Table 2: Results on validating the formulated hy-
potheses. T represents tutors and S represents stu-
dents. Significant differences (according to Mann-
Whitney test) between Failure group and Success
group are marked with ** (p < 0.001).

Hypo-
theses

Metrics Failure Success

H1

Session length (mins) ** 19.27 31.20
# Utterances (T) ** 28.79 51.46
# Utterances (S) ** 21.32 35.36
# Words (T) ** 315.95 518.21
# Words (S) ** 82.33 146.44

H2

# Unique words (T) ** 117.1 157.12
# Unique words (S) ** 47.43 74.52
# Unique concepts (T) ** 102.84 138.43
# Unique concepts (S) ** 41.73 64.34
# New words (T) ** 76.75 74.38
# New words (S) ** 23.25 25.62
# New concepts (T) ** 76.39 74.66
# New concepts (S) ** 23.61 25.34

H3
Wait time 24.09 24.37
Avg. response time ** 32.93 27.89

H4
Alignment (All) ** 0.83 0.86
Alignment (Concepts) ** 0.87 0.89

H5
Complexity (T) ** 83.93 85.11
Complexity (S) 100.71 101.26

H6
# Questions (T) ** 10.34 17.14
# Questions (S) ** 1.85 4.05

H7
Sentiment (T) ** 4.58 9.38
Sentiment (S) ** 1.54 3.32

H8
Experience (T) 160.66 162.56
Experience (S) ** 9.11 12.67

To validate H2, we computed M4-7 over all the utterances
sent by a tutor(student) in a dialogue and summed up the
values to measure how informative the tutor(student) was
in the dialogue. Then, the metric values of all dialogues
contained in a group were averaged as the final value. We
found that both tutors and students used a higher num-
ber of unique words as well as unique concepts (M4-5) in
the Success group than those in the Failure group. In par-
ticular, students of Success group used about 50% more
unique words and concepts than their peers in the Failure
group. These results suggest that, in order to solve prob-
lems, both tutors and students in the Success group intro-
duced a greater variety of words during tutoring process and
thus were more informative. Interestingly, when inspecting
the results of M6-7, we found that the Success students in-
troduced a larger fraction of new words as well as new con-
cepts compared to the Failure students, and correspondingly
the Success tutors were less active than the Failure tutors
in bringing new words and concepts to their dialogues. This
motivates us to design further experiments to investigate,
during the tutoring process, whether tutors should intention-
ally encourage students to use more new words and concepts
to explain problems as well as their thoughts so as to help
students solve the problems. To summarize, the observed
results indicate that H2 was supported by the analysis of
our dataset.

For H3, we only observed a significant difference between
the two groups in terms of M9. Compared to Failure stu-
dents, Success students spent less time (about 5 seconds)
in waiting for responses from tutors. Thus, there was some
support for H3.

From the reported results of M10, we concluded that H4 was
supported, i.e., the tutors and students were more likely to
align with each other in terms of the words they used in
the Success group than in the Failure group. In particular,
when only taking concepts into account, we had a slightly
higher entrainment score, which implies a higher degree to
which tutors and students coordinated concepts than other
words in the tutorial dialogues.

By inspecting the results of M11, we discovered that the ut-
terances made by tutors in the Success group were slightly
less complex than those in the Failure group (85.11 vs. 83.93).
However, we did not observe a significant difference between
the utterances made by students in the two groups. There-
fore, H5 was only supported for tutors.

For H6, the results of M12 were in line with our assumption:
both tutors and students asked more questions in success-
ful tutoring sessions than those in unsuccessful ones. Par-
ticularly, the Success students asked more than two times
of questions than Failure students. Also, it is important to
note that, in both groups, tutors asked many more questions
than students (about 4∼5 times). This is aligned with our
previous findings related to the testing of H1: tutors tended
to make more efforts than students in tutoring sessions.

For H7, we noted that the tutors as well as students in the
Success group displayed a higher level of positive sentiment
than those in the Failure group. Also, the tutors were more
likely to use words of positive sentiment than students in
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both groups. Therefore, we concluded H7 was supported.

Lastly, we observed a significant difference on M14 for stu-
dents, i.e., the platform experience of the Success students
was significantly higher than that of the Failure students.
Thus, we concluded that H8 was only supported for stu-
dents.

4.2 Results on Tutoring Success Prediction
For Q1 described in 3.4, i.e., whether GTB is capable of
predicting the success of a tutoring session, we reported
the results of GTB as well as the baseline method (random
forests) in Rows 1-2 in Table 3. The results indicated that
GTB outperformed random forests on all of three evalua-
tion metrics. This demonstrated the effectiveness of GTB
for predicting whether a tutoring session will be successful
or not. Particularly, GTB attained an improvement of 21%
over random forests in terms of Cohen’s κ, though the value
was only 0.4323, which implied that the constructed predic-
tion model achieved a moderate performance level [28]. This
calls for further research effort in developing more effective
prediction models for this particular task.

To answer Q2, we trained GTB by using different portions of
the dialogue utterances, i.e., the first 20%/40%/60%/80%.
The results are reported in Rows 3-6 in Table 3. To our
surprise, even using the first 80% of the data to train GTB,
the achieved performance was still much inferior to that of
using the whole dataset. For instance, the AUC of using the
first 80% data was 0.7368, which was 10% lower than that of
using the whole dataset. When it comes to Cohen’s κ, the
difference became even larger (28% lower). This may imply
that the utterances made by tutors and students in the later
stage of a tutoring dialogue (especially the last 20%) possibly
contained more information for predicting the success of a
tutoring session. This motivated us to train the model with
the last 20%/40%/60%/80% of the dialogue utterances and
reported their performance in Rows 7-10 in Table 3. The re-
sults aligned with our assumption. Specifically, solely using
the last 20% data already achieved performance that was
comparable to that of using the whole dataset. For AUC,
it even achieved slightly better performance. This could be
explained by the fact that, at the end of successful tutoring
sessions, tutors tended to praise students and acknowledge
their achievements and students were likely to express their
gratitude to the tutors. As a sanity check, we randomly se-
lected 100 successful and unsuccessful dialogues and checked
the last 20% utterances in these dialogues. We found that,
most of the successful dialogues contained N-grams like (ap-
preciate), (thanks), (well, done), and (good, job), which were
seldom observed in unsuccessful dialogues. Undoubtedly,
these linguistic features served as good indicators for GTB
to determine a dialogue’s success.

Lastly, we conducted an ablation study to answer Q3. An
ablation study is a frequently-used method to determine to
what extent a feature contributes to the performance of a
model. Typically, the contribution of a feature is deter-
mined by comparing the performance of a model including
the feature with that without the feature. The more the
performance decreases after removing a feature, the more
contribution the feature makes to the model. Instead of
identifying the contributions made by each feature we engi-

neered, we were more interested in determining the contri-
butions made by each type of features, i.e., the eight types of
feature investigated in 3.3 (efforts, informativeness, respon-
siveness, entrainment, complexity, questions, sentiment and
platform experience) and the linguistic features (unigrams,
bigrams, trigrams). Therefore, we removed each type of fea-
ture at a time and reported the model performance in Row
11-20 in Table 3.

We observed that, the top 3 types of feature that made
the most contributions to the prediction performance were
unigrams, bigrams, and efforts. This was in line with the
observation we had when answering Q2, i.e., the linguistic
features were predictive in terms of distinguishing successful
dialogues from unsuccessful ones.

5. DISCUSSION AND CONCLUSION
Implications for Online Tutors. Through the extensive
analysis presented in Section 3.3, we demonstrated that stu-
dent satisfaction is correlated with a set of dialogue features,
which include (i) the efforts invested by tutors/students;
(ii) the informativeness of tutor/student utterances; (iii) the
readability level of tutor utterances; (iv) tutor responsive-
ness; (v) the number of questions asked by tutors/students;
(vi) the entrainment level of a tutorial dialogue; (vii) the
positive sentiment level of tutor/student utterances; and
(viii) students’ experience in using the tutoring service. This
may shed some light on how to better direct online tutors’ ef-
forts in guiding students. For example, tutors may consider
to provide prompt responses, use more words of positive sen-
timent and suitable readability level, and ask a suitable num-
ber of questions to assist students to solve problems. How-
ever, it should be noted that the identified dialogue features
(as well as the corresponding tutoring implications) may be
correlated with each other, e.g., the increased number of
utterances might introduce a higher number of questions
asked by tutors/students. Further experiments, e.g., online
A/B testing, are needed to verify which factors are actually
affecting student satisfaction in this context. Also, it is nec-
essary to further investigate whether there are any other fac-
tors contributing to the observed correlation. For example,
though we observed that students’ experience (measured by
the number of tutoring sessions they had before) is associ-
ated with their satisfaction, it is still unclear whether this is
because of students’ familiarity in using the platform, which
enables them to quickly find a tutor and solve a problem, or
because of their established loyalty in using the tutoring ser-
vice. For the former case, it would be beneficial to develop
guidelines to help novice students quickly learn how to use
the tutoring service. For the latter case, it would be nec-
essary to scrutinize the tutoring sessions that students had
before so as to better investigate the elements contributing
to students’ established loyalty for the tutoring platform.

Improvement space for satisfaction prediction. Our
study demonstrated that Gradient Tree Boosting model is
effective in predicting tutoring success with all of the utter-
ances or the utterances from the later period of a tutorial
dialogue as input. However, this might be of little value to
improve online tutoring service in the real-world setting, i.e.,
if an unsuccessful dialogue can only be identified (almost)
until the end, there is not much a tutor can do to change
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Row
ID

Method
Data
usage

Features
Compared

row
AUC F1 Cohen’s κ

1 Random Forests
All All

- 0.7913 0.8885 0.3571
2 GTB 1 0.8225 (↑ 3.95%) 0.9018 (↑ 1.49%) 0.4323 (↑21.05%)

3

GTB

First 20%

All 2

0.6847 (↓16.75%) 0.8612 (↓ 4.50%) 0.1584 (↓63.37%)
4 First 40% 0.7088 (↓13.83%) 0.8705 (↓ 3.47%) 0.2098 (↓51.47%)
5 First 60% 0.7086 (↓13.84%) 0.8783 (↓ 2.60%) 0.2473 (↓42.79%)
6 First 80% 0.7368 (↓10.42%) 0.8880 (↓ 1.52%) 0.3115 (↓27.95%)

7

GTB

Last 20%

All 2

0.8275 (↑ 0.61%) 0.8735 (↓ 3.13%) 0.3901 (↓ 9.76%)
8 Last 40% 0.8388 (↑ 1.98%) 0.8808 (↓ 2.32%) 0.4038 (↓ 6.58%)
9 Last 60% 0.8349 (↑ 1.51%) 0.8924 (↓ 1.04%) 0.4239 (↓ 1.93%)
10 Last 80% 0.8271 (↑ 0.56%) 0.8882 (↓ 1.51%) 0.3754 (↓13.17%)

11

GTB All

w/o Efforts

2

0.8217 (↓ 0.09%) 0.8887 (↓ 1.45%) 0.3749 (↓13.29%)
12 w/o Infomativeness 0.8145 (↓ 0.97%) 0.8965 (↓ 0.58%) 0.4032 (↓ 6.73%)
12 w/o Complexity 0.8205 (↓ 0.24%) 0.8961 (↓ 0.63%) 0.4018 (↓ 7.06%)
13 w/o Responsiveness 0.8170 (↓ 0.66%) 0.8974 (↓ 0.49%) 0.4180 (↓ 3.31%)
14 w/o Questions 0.8196 (↓ 0.35%) 0.9002 (↓ 0.17%) 0.4213 (↓ 2.54%)
15 w/o Entrainment 0.8230 (↑ 0.06%) 0.8988 (↓ 0.33%) 0.4205 (↓ 2.73%)
16 w/o Sentiment 0.8204 (↓ 0.26%) 0.8985 (↓ 0.36%) 0.4156 (↓ 3.86%)
17 w/o Experience 0.8178 (↓ 0.57%) 0.8974 (↓ 0.49%) 0.4180 (↓ 3.31%)
18 w/o Unigrams 0.8045 (↓ 2.18%) 0.8818 (↓ 2.22%) 0.3692 (↓14.59%)
19 w/o Bigrams 0.8168 (↓ 0.69%) 0.8954 (↓ 0.70%) 0.3829 (↓11.44%)
20 w/o Trigrams 0.8233 (↑ 0.10%) 0.8993 (↓ 0.27%) 0.4302 (↓ 0.49%)

Table 3: Experimental results on tutoring success prediction. The percentage value within brackets indicates
the increased/decreased (denoted by ↑/↓, respectively) performance of evaluation metrics, which were com-
puted by taking the results of the compared row as a comparison. The results in bold represent the top 3
decreased performance among Rows 10-20.

the situation. Therefore, more research is needed to build
effective satisfaction prediction models, especially with only
the utterances close to the beginning of a dialogue as in-
put. Since we only engineered relatively shallow linguistic
features (i.e., unigrams, bigrams, trigrams) as input for the
prediction model, which made much larger contributions to
the prediction performance compared to other types of fea-
ture, it is worthwhile to explore more in-depth linguistic fea-
tures (e.g., word/phrase/sentence embedding [2]) to boost
the prediction performance. Also, noteworthy is that all the
features we designed as input for Gradient Tree Boosting
model is derived from dialogue utterances without consid-
ering the sequential nature between them. In the future, it
would be useful to explore the suitability of time series mod-
els to capture the underlying time-aware interaction patterns
between tutors and students for this prediction task. In ad-
dition, it is recognized that data imbalance (as in our case)
can have a big impact on the classification performance [26].
We posit that techniques used to reduce impacts of data
imbalance like SMOTE [7] would probably help in future
research on this problem.
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Computational sociolinguistics: A survey. Computational
linguistics, 42(3):537–593, 2016.

[36] J. F. Pane, B. A. Griffin, D. F. McCaffrey, and R. Karam.
Effectiveness of cognitive tutor algebra i at scale.
Educational Evaluation and Policy Analysis,
36(2):127–144, 2014.

[37] T. Phan, S. G. McNeil, and B. R. Robin. StudentsâĂŹ
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Research in Science & Technological Education,
34(2):142–163, 2016.

[41] J. Psotka, L. D. Massey, and S. A. Mutter. Intelligent
tutoring systems: Lessons learned. Psychology Press, 1988.

[42] J. R. Anderson, A. T. Corbett, K. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. Journal of
the Learning Sciences, 4:167–207, 04 1995.

[43] L. B. Resnick and L. E. Klopfer. Toward the Thinking
Curriculum: Current Cognitive Research. 1989 ASCD
Yearbook. ERIC, 1989.
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ABSTRACT
Spaced repetition is among the most studied learning strate-
gies in the cognitive science literature. It consists in tem-
porally distributing exposure to an information so as to
improve long-term memorization. Providing students with
an adaptive and personalized distributed practice schedule
would benefit more than just a generic scheduler. However,
the applicability of such adaptive schedulers seems to be
limited to pure memorization, e.g. flashcards or foreign lan-
guage learning. In this article, we first frame the research
problem of optimizing an adaptive and personalized spaced
repetition scheduler when memorization concerns the appli-
cation of underlying multiple skills. To this end, we choose
to rely on a student model for inferring knowledge state and
memory dynamics on any skill or combination of skills. We
argue that no knowledge tracing model takes both memory
decay and multiple skill tagging into account for predicting
student performance. As a consequence, we propose a new
student learning and forgetting model suited to our research
problem: DAS3H builds on the additive factor models and
includes a representation of the temporal distribution of past
practice on the skills involved by an item. In particular,
DAS3H allows the learning and forgetting curves to differ
from one skill to another. Finally, we provide empirical evi-
dence on three real-world educational datasets that DAS3H
outperforms other state-of-the-art EDM models. These re-
sults suggest that incorporating both item-skill relationships
and forgetting effect improves over student models that con-
sider one or the other.

Keywords
Student modeling, adaptive spacing, memory, knowledge
components, q-matrix, optimal scheduling

1. INTRODUCTION
Learners have to manage their studying time wisely: they
constantly have to make a trade-off between acquiring new
knowledge and reviewing previously encountered learning

material. Considering that learning often involves build-
ing on old knowledge (e.g. in mathematics) and that efforts
undertaken in studying new concepts may be significant,
this issue should not be taken lightly. However, only few
school incentive structures encourage long-term retention,
making students often favor short-term memorization and
poor learning practices [37, 22].

Fortunately, there are simple learning strategies that help
students efficiently manage their learning time and improve
long-term memory retention at a small cost. Among them,
the spacing and the testing effects have been widely repli-
cated [36, 7] since their discovery in the 19th century. Both of
them are recommended by cognitive scientists [24, 46] in or-
der to improve public instruction. The spacing effect states
that temporally distributing learning episodes is more bene-
ficial to long-term memory than learning in a single massed
study session. The testing effect [35, 5] – also known as
retrieval practice – basically consists in self-testing after be-
ing exposed to new knowledge instead of simply reading the
lesson again. This test can take multiple forms: free recall,
cued recall, multiple-choice questions, application exercises,
and so on. A recent meta-analysis on the testing effect [1]
found a strong and positive overall effect size of g = 0.61 for
testing compared to non-testing reviewing strategies. An-
other meta-analysis [23] investigated whether learning with
retrieval practice could transfer to different contexts and
found a medium yet positive overall transfer effect size of
d = 0.40. Combining both strategies is called spaced re-
trieval practice: temporally distributing tests after a first
exposure to knowledge.

Recent research effort has been put on developing adap-
tive and personalized spacing schedulers for improving long-
term retention of flashcards [40, 33, 18]. Compared to non-
adaptive schedulers, they show substantial improvement of
the learners’ retention at immediate and delayed tests [19].
However, and to the best of our knowledge, there is no work
on extending these algorithms when knowledge to be remem-
bered concerns the application of underlying skills. Yet, the
spacing effect is not limited to vocabulary learning or even
pure memorization: it has been successfully applied to the
acquisition and generalization of abstract science concepts
[44] and to the practice of mathematical skills in a real edu-
cational setting [3]. Conversely, most models encountered in
knowledge tracing involve multiple skills, but do not model
forgetting. The goal of the present article is to start fill-
ing this gap by developing a student learning and forgetting
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model for inferring skills knowledge state and memory dy-
namics. This model will serve as a basis for the future devel-
opment of adaptive and personalized skill practice schedul-
ing algorithms for improving learners’ long-term memory.

Our contribution is two-fold. We first frame our research
problem for extending the flashcards-based adaptive spacing
framework to contexts where memorization concerns the ap-
plication of underlying skills. In that perspective, students
learn and reinforce skill mastery by practicing items involv-
ing that skill. We argue that this extension requires new
student models to model learning and forgetting processes
when multiple skills are involved by a single item. Thus,
we also propose a new student model, coined DAS3H, that
extends DASH [18, 22] and accounts for memory decay and
the benefits of practice when an item can involve multiple
knowledge components. Finally, we provide empirical evi-
dence on three publicly available datasets showing that our
model outperforms other state-of-the-art student models.

2. RELATED WORK
In this section, we first detail related work on adaptive spac-
ing algorithms before turning to student modeling.

In what follows, we will index students by s ∈ J1, SK, items
(or questions, exercises) by j ∈ J1, JK, skills or knowledge
components (KCs) by k ∈ J1,KK, and timestamps by t ∈ R+

(in days). To be more convenient, we assume that times-
tamps are encoded as the number of days elapsed since the
first interaction with the system. It is sufficient because
we only need to know the duration between two interac-
tions. Ys,j,t ∈ {0, 1} gives the binary correctness of student
s answering item j at time t. σ is the logistic function:
∀x ∈ R, σ(x) = 1/(1 + exp(−x)). KC(.) takes as input an
item index j and outputs the set of skill indices involved by
item j.

Let us quickly detail what we mean by skill. In this arti-
cle, we assimilate skills and knowledge components. Knowl-
edge components are atomistic components of knowledge by
which items are tagged. An item may have one or more KCs,
and this information is synthesized by a so-called binary q-
matrix [41]: ∀(j, k) ∈ J1, JK × J1,KK, qjk = 1k∈KC(j). We
assume that the probability of answering correctly an item
j that involves skill k depends on the student’s mastery of
skill k; conversely, we measure skill mastery by the ability
of student s to remember skill k and apply it to solve any
(possibly unseen) item that involves skill k.

2.1 Adaptive spacing algorithms
Adaptive spacing schedulers leverage the spaced retrieval
learning strategy to maximize learning and retention of a
set of items. They proceed by sequentially deciding which
item to ask the user at any time based on the user’s past
study history. Items to memorize are often represented by
flashcards, i.e. cards on which one side contains the question
(e.g. When did the Great Fire of London occur? or What
is the correct translation of “manger” in English? ) and the
other side contains the answer.

Early adaptive spacing systems made use of physical flash-
cards [17] but the advent of computer-assisted instruction
made possible the development of electronic flashcards [51],

thus allowing more complex and personalized strategies for
optimal reviewing. Nowadays, several adaptive spacing soft-
wares are available to the general public, e.g. Anki1, Super-
Memo2, and Mnemosyne3.

Originally, adaptive reviewing systems took decisions based
on heuristics and handmade rules [17, 30, 51]. Though
maybe effective in practice [20], these early systems lack per-
formance guarantees [40]. Recent research works started to
tackle this issue: for instance, Reddy et al. propose a math-
ematical formalization of the Leitner system and a heuristic
approximation used for optimizing the review schedule [32].

A common approach for designing spaced repetition adap-
tive schedulers consists in modeling human memory statisti-
cally and recommending the item whose memory strength is
closest to a fixed value θ [22, 18, 20]. Khajah, Lindsey and
Mozer found that this simple heuristic is only slightly less ef-
ficient than exhaustive policy search in many situations [14].
It has the additional advantage to fit into the notion of “de-
sirable difficulties”coined by Bjork [4]. Pavlik and Anderson
[26] use an extended version of ACT-R declarative memory
model to build an adaptive scheduler for optimizing item
practice (in their case, Japanese-English word pairs) given
a limited amount of time. ACT-R is originally capable of
predicting item correctness and speed of recall by taking re-
cency and frequency of practice into account. Pavlik and
Anderson extend ACT-R to capture the spacing effect as
well as item, learner, and item-learner interaction variabil-
ity. The adaptive scheduler uses the model estimation of
memory strength gain at retention test per unit of time to
decide when to present each pair of words to a learner.

Other approaches do not rely on any memory model: Reddy,
Levine and Dragan formalize this problem as a POMDP
(Partially Observable Markov Decision Process) and approx-
imately solve it within a deep reinforcement learning archi-
tecture [33]. However, they only test their algorithm on
simulated students. A more recent work [40] formalizes the
spaced repetition problem with marked temporal point pro-
cesses and solves a stochastic optimal control problem to
optimally schedule spaced review of items. Mettler, Massey
and Kellman [19] compare an adaptive spacing scheduler
(ARTS) to two fixed spacing conditions. ARTS leverages
students’ response times, performance, and number of tri-
als to dynamically compute a priority score for adaptively
scheduling item practice. Response time is used as an indi-
cator of retrieval difficulty and thus, learning strength.

Our work can more generally relate to the problem of au-
tomatic optimization of teaching sequences. Rafferty et al.
formulate this problem as a POMDP planning problem [31].
Whitehill and Movellan build on this work but use a hier-
archical control architecture for selecting optimal teaching
actions [48]. Lan et al. use contextual bandits to select
the best next learning action by using an estimation of the
student’s knowledge profile [16]. Many intelligent tutoring
systems (ITS) use mastery learning within the Knowledge
Tracing [8] framework: making students work on a given

1https://apps.ankiweb.net/
2https://www.supermemo.com/
3https://mnemosyne-proj.org/
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skill until the system infers that they have mastered it.

We can see that the traditional adaptive spacing framework
already uses a spaced retrieval practice strategy to opti-
mize the student’s learning time. However, it is not directly
adapted to learning and memorization of skills. In this lat-
ter case, specific items are the only way to practice one or
multiple skills, because we do not have to memorize the con-
tent directly. Students who master a skill should be able to
generalize to unseen items that also involve that skill. In
Section 3, we propose an extension of this original frame-
work in order to apply adaptive spacing algorithms to the
memorization of skills.

2.2 Modeling student learning and forgetting
The history of scientific literature on student modeling is
particularly rich. In what follows, we focus on the subprob-
lem of modeling student learning and forgetting based on
student performance data.

As Vie and Kashima recall [43], two main approaches have
been used for modeling student learning and predicting stu-
dent performance: Knowledge Tracing and Factor Analysis.

Knowledge Tracing [8] models the evolution of a student’s
knowledge state over time so as to predict a sequence of
answers. The original and still most widespread model of
Knowledge Tracing is Bayesian Knowledge Tracing (BKT).
It is based on a Hidden Markov Model where the knowledge
state of the student is the latent variable and skill mastery is
assumed binary. Since its creation, it has been extended to
overcome its limits and account for instance for individual
differences between students [52]. More recently, Piech et al.
replaced the original Hidden Markov Model framework with
a Recurrent Neural Network and proposed a new Knowledge
Tracing model called Deep Knowledge Tracing (DKT) [29].
Despite a mild controversy concerning the relevance of using
deep learning in an educational setting [50], recent works
continue to develop this line of research [53, 21].

Contrary to Knowledge Tracing, Factor Analysis does not
originally take the order of the observations into account.
IRT (Item Response Theory) [42] is the canonical model for
Factor Analysis. In its simplest form, IRT reads:

P(Ys,j = 1) = σ(αs − δj)

with αs ability of student s and δj difficulty of item j. One
of the main assumptions of IRT is that the student ability is
static and cannot change over time or with practice. Despite
its apparent simplicity, IRT has proven to be a robust and
reliable EDM model, even outperforming much more com-
plex architectures such as DKT [49]. IRT can be extended
to represent user and item biases with vectors instead of
scalars. This model is called MIRT, for Multidimensional
Item Response Theory:

P(Ys,j = 1) = σ (〈αs, δj〉+ dj) .

In this case, αs and δj are d-dimensional vectors, and dj is a
scalar that captures the easiness of item j. 〈., .〉 is the usual
dot product between two vectors.

More recent works incorporated temporality in Factor Anal-
ysis models, by taking practice history into account. For

instance, AFM (Additive Factor Model) [6] models:

P(Ys,j = 1) = σ

 ∑
k∈KC(j)

βk + γkas,k


with βk easiness of skill k and as,k number of attempts of
student s on KC k prior to this attempt. Performance Factor
Analysis [27] (PFA) builds on AFM and uses past outcomes
of practice instead of simple encounter counts:

P(Ys,j = 1) = σ

 ∑
k∈KC(j)

βk + γkcs,k + ρkfs,k


with cs,k number of correct answers of student s on KC k
prior to this attempt and fs,k number of wrong answers of
student s on KC k prior to this attempt.

Ekanadham and Karklin take a step further to account for
temporality in the IRT model and extend the two-parameter
ogive IRT model (2PO model) by modeling the evolution of
the student ability as a Wiener process [10]. However, they
do not explicitly account for student memory decay.

The recent framework of KTM (Knowledge Tracing Ma-
chines) [43] encompasses several EDM models, including
IRT, MIRT, AFM, and PFA. KTMs are based on factor-
ization machines and model the probability of correctness
as follows:

P(Yt = 1) = σ

µ+

N∑
i=1

wixt,i +
∑

1≤i<`≤N

xt,ixt,`〈vi, v`〉


where µ is a global bias, N is the number of abstract fea-
tures, be it item parameters, temporal features, etc., xt is a
sample gathering all features collected at time t: which stu-
dent answers which item, and information regarding prior
attempts, wi is the bias of feature i and vi ∈ Rd its em-
bedding. The features involved in a sample xt are typically
in sparse number, so this probability can be computed ef-
ficiently. In KTM, one can recover several existing EDM
models by selecting the appropriate features to consider in
the modeling. For instance, if we consider user and item
features only, we recover IRT. If we consider the skill fea-
tures in the q-matrix, and the counter of prior successes and
failures at skill level, we recover PFA.

One of the very first works on human memory modeling
dates back to 1885 and stems from Ebbinghaus [9]. He
models the probability of recall of an item as an exponen-
tial function of memory strength and delay since last review.
More recently, Settles and Meeder propose an extension of
the original exponential forgetting curve model, the half-life
regression [38]. They estimate item memory strength as an
exponential function of a set of features that contain infor-
mation on the past practice history and on the item to re-
member (lexeme tag features, in their case). More sophisti-
cated memory models have also been proposed: for instance
ACT-R (Adaptive Character of Thought–Rational) [2] and
MCM (Multiscale Context Model) [25].

Walsh et al. [45] offer a comparison of three computational
memory models: ACT-R declarative memory model [26],
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Predictive Performance Equation (PPE) and a generaliza-
tion of Search of Associative Memory (SAM). These models
differ in how they predict the impact of spacing on sub-
sequent relearning, after a long retention interval. PPE is
the only one to predict that spacing may accelerate subse-
quent relearning (“spacing accelerated relearning”) – an ef-
fect that was empirically underlined by their experiment.
PPE showed also superior fit to experimental data, com-
pared to SAM and ACT-R.

DASH [22, 18] bridges the gap between factor analysis and
memory models. DASH stands for Difficulty, Ability, and
Student History. Its formulation reads:

P (Ys,j,t = 1) = σ(αs − δj + hθ(ts,j,1:l, ys,j,1:l−1))

with hθ a function parameterized by θ (learned by DASH)
that summarizes the effect of the l − 1 previous attempts
where student s reviewed item j (ts,j,1:l−1) and the binary
outcomes of these attempts (ys,j,1:l−1). Their main choice
for hθ is:

hθ(ts,j,1:l, ys,j,1:l−1) =

W−1∑
w=0

θ2w+1 log(1 + cs,j,w)

− θ2w+2 log(1 + as,j,w)

with w indexing a set of expanding time windows, cs,j,w is
the number of correct outcomes of student s on item j in
time window w out of a total of as,j,w attempts. The time
windows w are not disjoint and span increasing time inter-
vals. They allow DASH to account for both learning and
forgetting processes. The use of log counts induces dimin-
ishing returns of practice inside a given time window and
difference of log counts formalizes a power law of practice.
The time module hθ is inspired by ACT-R [2] and MCM [25]
memory models.

We can see that Lindsey et al. [18] make use of the additive
factor models framework for taking memory decay and the
benefits of past practice into account. Their model outper-
forms IRT and a baseline on their dataset COLT, with an
accumulative prediction error metric. To avoid overfitting
and making model training easier, they use a hierarchical
Bayesian regularization.

To the best of our knowledge, no knowledge tracing model
accounts for both multiple skills tagging and memory decay.
We intend to bridge this gap by extending DASH.

3. FRAMING THE PROBLEM
In our setting, the student learns to master a set of skills by
sequentially interacting with an adaptive spacing system.
At each iteration, this system selects an item (or exercise,
or question) for the student, e.g. What is limx→0(sinx)/x?.
This selection is made by optimizing a utility function l that
rewards long-term mastery of the set of KCs to learn. Then,
the student answers the item and the system uses the cor-
rectness of the answer to update its belief concerning the
student memory and learning state on the skills involved by
the item. Finally, the system provides the student a correc-
tive feedback.

In a nutshell, our present research goal is to maximize mas-
tery and memory of a fixed set of skills among students dur-

ing a given time interval while minimizing the time spent
studying.

We rely on the following assumptions:

• information to learn and remember consists in a set of
skills4 k ∈ J1,KK;

• skill mastery and memorization of student s at time t is
measured by the ability of s to answer an (unseen) item
involving that skill, i.e. by their ability to generalize
to unseen material;

• students first have access to some theoretical knowl-
edge about skills, but learning happens with retrieval
practice;

• items are tagged with one or multiple skills and this in-
formation is synthesized inside a binary q-matrix [41];

• students forget: skill mastery decreases as time goes
by since last practice of that skill;

Unlike Lindsey et al. [18], we do not assume that items
involving skill k are interchangeable: their difficulties, for
instance, may differ from one another. Thus, the selection
phase is two-fold in that it requires to select the skill to
practice and the item to present. In theory, there should be
at least one item for practicing every skill k; in practice, one
item would be too few, since the student would probably
“overfit” on the item. This formalization easily encompasses
the flashcards-based adaptive spacing framework: it only
requires to associate every item with a distinct skill. This
wipes out the need to select an item after the skill.

Different utility functions l can be considered. For instance,
Reddy, Levine and Dragan consider both the likelihood of
recalling all items and the expected number of items recalled
[33]. In our case, the utility function should account for the
uncertainty of future items to answer. Indeed, if the goal
of the user is to prepare for an exam, the system must take
into account that the user will probably have to answer items
that they did not train with.

To tackle this problem, like previous work [22, 18], we choose
to rely on a student learning and forgetting model. In our
case, this model must be able to quantify mastery and mem-
ory for any skill or combination of skills. In the next section,
we present our main contribution: a new student learning
and forgetting model, coined DAS3H.

4. OUR MODEL DAS3H
We now describe our new student learning and forgetting
model: DAS3H stands for item Difficulty, student Ability,
Skill, and Student Skill practice History, and builds on the
DASH model presented in Section 2. Lindsey et al. [18] show
that DASH outperforms a hierarchical Bayesian version of
IRT on their experimental data, which consist in student-
item interactions on a flashcard-based foreign (Spanish)
language vocabulary reviewing system. They already talk

4These skills may be organized into a graph of prerequisites,
but this goes beyond the scope of this article.
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about knowledge components, but they use this concept to
cluster similar words together (e.g. all conjugations of a
verb). Thus, in their setting, an item has exactly one knowl-
edge component; different items can belong to the same
knowledge component if they are close enough. As a con-
sequence, their model formulation does not handle multiple
skills item tagging, which is common in other disciplines such
as in mathematics. Moreover, they assume that the impact
of past practice on the probability of correctness does not
vary across the skills: indeed, DASH has only two biases
per time window w, θ2w+1 for past wins and θ2w+2 for past
attempts. It may be a relevant assumption to prevent over-
fitting when the number of skills is high, but at the same
time it may degrade performance when the set of skills is
very diverse and inhomogeneous.

DAS3H extends DASH to items with multiple skills, and al-
lows the influence of past practice on present performance
to differ from one skill to another. One could argue that we
could aggregate every existing combination of skills into a
distinct skill to avoid the burden of handling multiple skills.
However, this solution would not be satisfying since the re-
sulting model would for instance not be able to capture item
similarities between two items that share all but one skill
in common. The use of a representation of multiple skills
allows to account for knowledge transfer from one item to
another. The item-skill relationships are usually synthesized
by a q-matrix and generally require domain experts’ labor.

We also leverage the recent Knowledge Tracing Machines
framework [43] to enrich the DASH model by embedding
the features in d dimensions and model pairwise interactions
between those features. So far, KTMs have not been tried
with memory features.

In brief, we extend DASH in three ways:

• Extension to handle multiple skills tagging: new tem-
poral module hθ that also takes the multiple skills into
account. The influence of the temporal distribution
of past practice and of the outcomes of these previous
attempts may differ from one skill to another;

• Estimation of easiness parameters for each item j and
skill k;

• Use of KTMs [43] instead of mere logistic regression.

For an embedding dimension of d = 0, the quadratic term
of KTM is cancelled out and our model DAS3H reads:

P (Ys,j,t = 1) = σ(αs − δj +
∑

k∈KC(j)

βk+

+ hθ (ts,j,1:l, ys,j,1:l−1)).

Following Lindsey et al. [18], we choose:

hθ(ts,j,1:l, ys,j,1:l−1) =
∑

k∈KC(j)

W−1∑
w=0

θk,2w+1 log(1 + cs,k,w)

− θk,2w+2 log(1 + as,k,w).

Thus, the probability of correctness of student s on item j
at time t depends on their ability αs, the difficulty of the
item δj and the sum of the easiness βk of the skills involved

by item j. It also depends on the temporal distribution and
the outcomes of past practice, synthesized by hθ. In hθ, w
denotes the index of the time window, cs,k,w denotes the
amount of times that KC k has been correctly recalled in
window w by student s earlier, as,k,w the amount of times
that KC k has been encountered in time window w by stu-
dent s earlier. Intuitively, hθ can be seen as a sum of memory
strengths, one for each skill involved in item j.

For higher embedding dimensions d > 0, in our implemen-
tation we use probit as the link function. All features are
embedded in d dimensions and their interaction is modeled
in a pairwise manner. For a more thorough description of
KTMs, see [43]. To implement a model within the KTM
framework, one must decide which features to encode in the
sparse x vector. In our case, we chose user s, item j, skills
k ∈ KC(j), wins cs,k,w and attempts as,k,w for each time
window w.

Compared to DASH and if we forget about additional pa-
rameters induced by the regularization scheme, DAS3H has
(d + 1)(K + 2W (K − 1)) more feature parameters to esti-
mate. To avoid overfitting, we use additional hierarchical
distributional assumptions for the parameters to estimate,
as described in the next section.

5. EXPERIMENTS
To evaluate the performance of our model, we compared
DAS3H to several state-of-the-art student models on three
different educational datasets. These models have been de-
tailed in Section 2.

5.1 Experimental setting
We perform 5-fold cross-validation at the student level for
our experiments. This means that the student population is
split into 5 disjoint groups and that cross-validation is made
on this basis. This evaluation method, also used in [43], has
the advantage to show how well an educational data mining
model generalizes over previously unseen students.

Following previous work [34, 43] we use hierarchical distri-
butional assumptions when d > 0 to help model training
and avoid overfitting. More precisely, each feature weight
and feature embedding component follows a normal prior
distribution N (µ, 1/λ) where µ and λ follow hyperpriors
µ ∼ N (0, 1) and λ ∼ Γ(1, 1). In their article [18], Lind-
sey et al. took a similar approach but they assumed that
the αs and the δi followed different distributions. Contrary
to us, they did not regularize the parameters θw associated
with the practice history of a student: our situation is dif-
ferent because we have more parameters to estimate than
them. We use the same time windows as Lindsey et al. [18]:
{1/24, 1, 7, 30,+∞}. Time units are expressed in days.

Our models were implemented in Python. Code for replicat-
ing our results is freely available on Github5. Like Vie and
Kashima [43], we used pywFM6 as wrapper for libfm7 [34] for
models with d > 0. We used 300 iterations for the MCMC

5https://github.com/BenoitChoffin/das3h
6https://github.com/jfloff/pywFM
7http://libfm.org/
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Gibbs sampler. When d = 0, we used the scikit-learn [28]
implementation of logistic regression with L2 regularization.

We compared DAS3H to DASH, IRT, PFA, and AFM within
the KTM framework, for three different embedding dimen-
sions: 0, 5, and 20. When d > 0, IRT becomes MIRTb,
a variant of MIRT that considers a user bias. We do not
compare to DKT, due to the mild controversy over its per-
formance [49, 50]. For DASH, we choose to consider item-
specific biases, and not KC-specific biases: in their original
setting, Lindsey et al. [18] aggregated items into equivalence
classes and trained DASH on this basis. This is not always
possible to us because items have in general multiple skill
taggings; however, we tested this possibility in Subsection
5.3 but it did not yield better results.

We used three different datasets: ASSISTments 2012-2013
(assist12) [11], Bridge to Algebra 2006-2007 (bridge06)
and Algebra I 2005-2006 (algebra05) [39]. The two latter
datasets stem from the KDD Cup 2010 EDM Challenge.
The main problem for our experiments was that only few
datasets that combine both time variables and multiple-KC
tagging are publicly available. As a result, only both KDD
Cup 2010 datasets have items that involve multiple KCs at
the same time. As a further work, we plan to test DAS3H
on datasets spanning more diverse knowledge domains and
having more fine-grained skill taggings. In ASSISTments
2012-2013, the problem_id variable was used for the items
and for the KDD Cup datasets, the item variable came from
the concatenation of the problem and the step IDs, as rec-
ommended by the challenge organizers.

We removed users for whom the number of interactions was
less than 10. We also removed interactions with NaN skills,
because we feared it would introduce too much noise. For
the KDD Cup 2010 datasets, we removed interactions which
seemed to be duplicates, i.e. for which the (user, item, times-
tamp) tuple was duplicated. Finally, we sparsely encoded
the features and computed the q-matrices. We detail the
dataset characteristics (after preprocessing) in Table 1. The
mean skill delay refers to the mean time interval (in days)
between two interactions with the same skill, and the mean
study period refers to the mean time difference between the
last and the first interaction for each student.

5.2 Results
Detailed results can be found in Tables 2, 3 and 4, where
mean area under the curve scores (AUC) and mean nega-
tive log-likelihood (NLL) are reported for each model and
dataset. Accuracy (ACC) is not reported by lack of space.
We found that ACC was highly correlated with AUC and
NLL; the interested reader can find it on the Github repos-
itory containing code for the experiments8. Standard devi-
ations over the 5 folds are also reported. We can see that
our model DAS3H outperforms all other models on every
dataset.

5.3 Discussion
Our experimental results show that DAS3H is able to more
accurately model student performance when multiple skill
and temporal information is at hand. We hypothesize that

8https://github.com/BenoitChoffin/das3h

Figure 1: AUC boost when using time windows
features instead of regular wins and attempts (all
datasets). Higher is better.
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this performance gain stems from a more complex temporal
modeling of the influence of past practice of skills on current
performance.

The impact of the multidimensional embeddings and the
pairwise interactions seems to be very small yet unclear,
and should be further investigated. An embedding dimen-
sion of d = 20 is systematically worse or among the worst
for DAS3H on every dataset, but with a smaller d = 5, the
performance is sometimes better than with d = 0. An inter-
mediate embedding dimension could be preferable, but our
results confirm those of Vie and Kashima [43]: the role of
the dimension d seems to be limited.

In order to make more sense of our results, we wanted to
know what made DAS3H more predictive than its counter-
parts. Our hypothesis was that taking the past temporal
distribution of practice as well as the outcome of previous
encounters with skills allowed the model to capture more
complex phenomena than just simple practice, such as for-
getting. To test this hypothesis, we performed some abla-
tion tests. We empirically evaluated the difference in terms
of AUC on our datasets when time windows features were
used instead of regular features for wins and attempts. For
each dataset, we compared the mean AUC score of the orig-
inal DAS3H model with a similar model for which the time
windows wins and attempts features were replaced with reg-
ular wins and fails counts. Thus, the time module hθ was
replaced with

∑
k∈KC(j) γkcs,k + ρkfs,k like in PFA. Since

wins, fails and attempts are collinear, it does not matter to
replace “wins and attempts” with “wins and fails”. The re-
sults are plotted in Figure 1. Mean and standard deviations
over 5 folds are reported. We chose an embedding dimen-
sion d = 0 since it was in general the best on the previous
experiments. We observe that using time window features
consistently boosts the AUC of the model.

We also wanted to know if assuming that skill practice ben-
efits should differ from one skill to another was a useful
assumption. Thus, we compared our original DAS3H for-
mulation to a different version, closer to the DASH formula-
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Dataset Users Items Skills Interactions
Mean
correctness

Skills
per item

Mean
skill delay

Mean
study period

assist12 24,750 52,976 265 2,692,889 0.696 1.000 8.54 98.3
bridge06 1,135 129,263 493 1,817,427 0.832 1.013 0.83 149.5
algebra05 569 173,113 112 607,000 0.755 1.363 3.36 109.9

Table 1: Datasets characteristics

model dim AUC ↑ NLL ↓

DAS3H 0 0.826± 0.003 0.414± 0.011
DAS3H 5 0.818± 0.004 0.421± 0.011
DAS3H 20 0.817± 0.005 0.422± 0.007
DASH 5 0.775± 0.005 0.458± 0.012
DASH 20 0.774± 0.005 0.456± 0.017
DASH 0 0.773± 0.002 0.454± 0.006
IRT 0 0.771± 0.007 0.456± 0.015

MIRTb 20 0.770± 0.007 0.460± 0.007
MIRTb 5 0.770± 0.004 0.459± 0.011

PFA 0 0.744± 0.004 0.481± 0.004
AFM 0 0.707± 0.005 0.499± 0.006
PFA 20 0.670± 0.010 1.008± 0.047
PFA 5 0.664± 0.010 1.107± 0.079
AFM 20 0.644± 0.005 0.817± 0.076
AFM 5 0.640± 0.007 0.941± 0.056

Table 2: Performance comparison on the Al-
gebra 2005-2006 (PSLC DataShop) dataset.
Metrics are averaged over 5 folds and standard
deviations are reported. ↑ and ↓ respectively
indicate that higher (lower) is better.

model dim AUC ↑ NLL ↓

DAS3H 5 0.744± 0.002 0.531± 0.001
DAS3H 20 0.740± 0.001 0.533± 0.003
DAS3H 0 0.739± 0.001 0.534± 0.002
DASH 0 0.703± 0.002 0.557± 0.004
DASH 5 0.703± 0.001 0.557± 0.001
DASH 20 0.703± 0.002 0.557± 0.002
IRT 0 0.702± 0.001 0.558± 0.001

MIRTb 20 0.701± 0.001 0.558± 0.001
MIRTb 5 0.701± 0.002 0.558± 0.001

PFA 5 0.669± 0.002 0.577± 0.002
PFA 20 0.668± 0.002 0.578± 0.003
PFA 0 0.668± 0.002 0.579± 0.002
AFM 5 0.610± 0.001 0.597± 0.001
AFM 20 0.609± 0.001 0.597± 0.003
AFM 0 0.608± 0.002 0.598± 0.002

Table 3: Performance comparison on the AS-
SISTments 2012-2013 dataset. Metrics are av-
eraged over 5 folds and standard deviations
are reported. ↑ and ↓ respectively indicate
that higher (lower) is better.

tion, in which all skills share the same parameters θ2w+1 and
θ2w+2 inside a given time window w. We refer to this version
of DAS3H as DAS3H1p. The results are given in Table 5.
They show that using different parameters for different skills
in hθ increases AUC performance. The AUC gain varies be-
tween +0.03 and +0.04. This suggests that some skills have
significantly different learning and forgetting curves.

One could argue also that this comparison between DAS3H
and DASH is not totally accurate. In their papers, Lindsey
et al. cluster similar items together to form disjoint knowl-
edge components. This is not possible to perform directly
for both KDD Cup datasets since some items have been
tagged with multiple skills. Nevertheless, the ASSISTments
2012-2013 dataset has only single-KC items. To evaluate
whether considering the temporal distribution and the out-
comes of past practice on the KCs (DASH [KC]) or on the
items (DASH [items]) would be better, we compared these
two DASH formulations on ASSISTments 2012-2013. De-
tailed results can be found in Table 6. We see that DASH
[items] and DASH [KC] have comparable performance.

Finally, let us illustrate the results of DAS3H by taking two
examples of KCs of Algebra I 2005-2006, one for which the
estimated forgetting curve slope is steep, the other one for
which it is more flat. As a proxy for the forgetting curve
slope, we computed the difference of correctness probabili-
ties when a “win” (i.e. a correct outcome when answering an
item involving a skill) left a single time window. This differ-
ence was computed for every skill, for every couple of time

model dim AUC ↑ NLL ↓

DAS3H 5 0.791± 0.005 0.369± 0.005
DAS3H 0 0.790± 0.004 0.371± 0.004
DAS3H 20 0.776± 0.023 0.387± 0.027
DASH 0 0.749± 0.002 0.393± 0.007
DASH 20 0.747± 0.003 0.399± 0.002
IRT 0 0.747± 0.002 0.393± 0.007

DASH 5 0.747± 0.003 0.399± 0.002
MIRTb 5 0.746± 0.002 0.398± 0.006
MIRTb 20 0.746± 0.004 0.399± 0.007

PFA 20 0.746± 0.003 0.397± 0.004
PFA 5 0.744± 0.007 0.402± 0.007
PFA 0 0.739± 0.003 0.406± 0.008
AFM 5 0.706± 0.002 0.411± 0.004
AFM 20 0.706± 0.002 0.412± 0.004
AFM 0 0.692± 0.002 0.423± 0.006

Table 4: Performance comparison on the Bridge to
Algebra 2006-2007 (PSLC DataShop) dataset. Met-
rics are averaged over 5 folds and standard devi-
ations are reported. ↑ and ↓ respectively indicate
that higher (lower) is better.
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d bridge06 algebra05 assist12
D

A
S
3
H 0 0.790± 0.004 0.826± 0.003 0.739± 0.001

5 0.791± 0.005 0.818± 0.004 0.744± 0.002
20 0.776± 0.023 0.817± 0.005 0.740± 0.001

D
A

S
3
H

1
p

0 0.757± 0.003 0.789± 0.009 0.701± 0.002
5 0.757± 0.005 0.787± 0.005 0.700± 0.001
20 0.757± 0.003 0.789± 0.006 0.701 (<1e-3)

Table 5: AUC comparison on all datasets between
DAS3H and DAS3H1p, a version of DAS3H for
which the influence of past practice does not dif-
fer from one skill to another. Standard deviations
are reported. Higher is better.

DASH d = 0 d = 5 d = 20

items 0.703± 0.002 0.703± 0.001 0.703± 0.002
KC 0.702± 0.001 0.701± 0.001 0.701± 0.001

Table 6: AUC comparison on ASSISTments 2012-
2013 between DASH [items] and DASH [KC]. Stan-
dard deviations are reported. Higher is better.

windows, and for every fold. The differences were then av-
eraged over the 5 folds and over the different time windows,
yielding for every skill the probability of correctness average
decrease when a win leaves a single time window. One of
the skills for which memory decays slowly concerns shading
an area for which a given value is inferior to a threshold:
in average and everything else being equal, the probability
of correctness for an item involving this skill decreases by
1.15% when a single “win” leaves a time window. Such a
skill is indeed not difficult for a student to master with a
few periodic reviews. On the contrary, the skill concerning
the application of exponents is more difficult to remember
as time goes by: for this KC, the correctness probability de-
creases by 2.74% when a win leaves a time window. This is
more than the double of the previous amount and is consis-
tent with the description of the KC.

In brief, we saw in this section that DAS3H outperforms
the other EDM models to which we compared it – includ-
ing DASH. Using time window features instead of regular
skill wins and attempts counts and estimating different pa-
rameters for different skills significantly boosts performance.
Considering that DAS3H outperforms its ablated counter-
parts and DASH, these results suggest that including both
item-skill relationships and forgetting effect improves over
models that consider one or the other. Using multidimen-
sional embeddings, however, did not seem to provide richer
feature representations, contrary to our expectations.

Besides its performance, DAS3H has the advantage to be
suited to the adaptive skill practice scheduling problem we
described in Section 3. Indeed, it encapsulates an estimation
of the current mastery of any skill and combination of skills
for student s. It can also be used to infer its future evolution
and thus, be leveraged to adaptively optimize a personalized
skill practice schedule.

6. CONCLUSION AND FUTURE WORK
In this article, we first formulated a research framework
for addressing the problem of optimizing human long-term
memory of skills. More precisely, the knowledge to be re-
membered here is applicative: we intend to maximize the
period during which a human learner will be able to lever-
age their retention of a skill they practiced to answer an item
involving this skill. This framework assumes multiple skills
tagging and is adapted to the more common flashcards-based
adaptive review schedulers.

We take a student modeling approach to start addressing
this issue. As a first step towards an efficient skill practice
scheduler for optimizing human long-term memory, we thus
propose a new student learning and forgetting model coined
DAS3H which extends the DASH model proposed by Lind-
sey et al. [18]. Contrary to DASH, DAS3H allows each item
to depend on an arbitrary number of knowledge components.
Moreover, a bias for each skill temporal feature is estimated,
whereas DASH assumed that item practice memory decayed
at the same rate for every item. Finally, DAS3H is based
on the recent Knowledge Tracing Machines model [43] be-
cause feature embeddings and pairwise interactions between
variables could provide richer models. To the best of our
knowledge, KTMs have never been used with memory fea-
tures so far. Finally, we showed that DAS3H outperforms
several state-of-the-art EDM models on three real-world ed-
ucational datasets that include information on timestamps
and KCs. We showed that adding time windows features
and assuming different learning and forgetting curves for
different skills significantly boosts AUC performance.

This work could be extended in different ways. First, the
additive form of our model makes it compensatory. In other
terms, if an item j involves two skills k1 and k2, a student
could compensate a small practice in k1 by increasing their
practice in k2. This is the so-called “explaining away” issue
[47]. Using other non-affine models [15] could be relevant.
Following Lindsey et al. [18], we used 5 time windows for
DAS3H during our experiments: {1/24, 1, 7, 30,+∞}. Fu-
ture work could investigate the impact of alternative sets of
time windows – for instance, with more fine-grained time
scales. However, one should pay attention not to add too
many parameters to estimate.
Future work should also compare DAS3H and DASH to ad-
ditional student models. For instance, R-PFA [12] (Recent-
Performance Factor Analysis) and PFA-decay [13] extend
and outperform PFA by leveraging a representation of past
practice that puts more weight on more recent interactions.
However, they do not explicitly take the temporal distribu-
tion of past practice to predict future student performance.
Other memory models, such as ACT-R [26] or MCM [25]
could also be tested against DAS3H. Latency, or speed of
recall, can serve as a proxy of retrieval difficulty and mem-
ory strength [19]. It would be interesting to test whether
incorporating this information inside DAS3H would result
in better model performance.
In a real-world setting, items generally involve multiple skills
at the same time. In such a situation, how should one select
the next item to recommend a user so as to maximize their
long-term memory? The main issue here is that we want to
anchor skills in their memory, not specific items. We could
think of a two-step recommendation strategy: first, select-
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ing the skill k? whose recall probability is closest to a given
threshold (this strategy is consistent with the cognitive psy-
chology literature, as Lindsey et al. recall [18]) and second,
selecting an item among the pool of items that involve this
skill. However, it could be impossible to find an item that in-
volves only this skill k?. Also, precocious skill reactivations
can have a harmful impact on long-term memory [7]. Thus,
a strategy could be to compute a score (weighted according
to the recall probability of each individual skill) for each skill
combination in the q-matrix and to choose the combination
for which the score is optimized.
Finally, we tested our model on three real-world educa-
tional datasets collected from automatic teaching systems
on mathematical knowledge. To experiment with our model,
we were indeed constrained in our choice of datasets, since
few publicly available of them provide both information on
the timestamps and the skills of the interactions. As fur-
ther work, we intend to test our model on other datasets,
from more diverse origins and concerning different knowl-
edge domains. Collecting large, fine-grained and detailed
educational datasets concerning diverse disciplines and mak-
ing them publicly available would more generally allow EDM
researchers to test richer models.
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ABSTRACT 
Recent years have seen a growing interest in block-based 
programming environments for computer science education. 
While these environments hold significant potential for novice 
programmers, they lack the adaptive support necessary to 
accommodate students exhibiting a wide range of initial 
capabilities and dispositions toward computing. A promising 
approach to addressing this problem is introducing adaptive 
feedback. This work investigates a key capability for adaptive 
support: training student models that predict student success in 
block-based programming activities for novice programmers. 
The predictive student models utilize four categories of 
features: prior performance, hint usage, activity progress, and 
interface interaction. In addition to evaluating the accuracy of 
these models for multiple block-based programming activities, 
we also investigate how quickly the models converge to 
accurate prediction, and we evaluate the additive value of each 
of the four categories of features. Results show that the 
predictive models are able to predict whether a student will 
successfully complete an exercise with high accuracy, as well 
as converge on this prediction early in the sequence of student 
interactions. 

Keywords 

Block-Based Programming, Student Performance Prediction, 
Predictive Student Models 

1. INTRODUCTION 
A central thrust of computer science education research in 
recent years has been improving the recruitment and retention 
of students into computing-related fields of study [2]. Yet, 
many undergraduate students face challenges in introductory 

programming courses [36], which have been found to be 
particularly difficult for novice learners [4]. Block-based 
programming languages are a promising approach to 
supporting novices because they reduce the need to focus on 
syntax, thereby reducing cognitive load and encouraging 
novices to attempt more complex implementations [40]. In 
contrast to text-based programming languages, students using 
block-based programming languages have been shown to 
spend proportionally more time on productive coding [24]. 
Further, some aspects of block-based code representations, 
such as the nesting of blocks and the closer alignment with 
natural language expression, can help students better 
understand programming concepts [37]. However, despite their 
benefits, block-based programming environments have 
typically provided limited support to students, which places a 
significant burden on students, as well as their instructors and 
teaching assistants who have limited availability. 
Adaptive learning environments have had success in a broad 
range of subject matters [19, 20, 32]. They also offer a 
promising vehicle for addressing the complexity of scaffolding 
and assessing students’ programming activities [3, 6, 8, 15]. A 
key feature of adaptive learning environments is their ability to 
leverage student models that assess knowledge and skills from 
observed learning activities and support learning based on the 
estimated competency levels in real time.  
In this paper, we introduce predictive student models that 
generate a series of predictions of student success on block-
based programming activities. As students complete 
programming activities, predictive student models can predict 
student performance, thereby enabling adaptive learning 
environments to make informed decisions on when to 
proactively provide support and scaffolding to struggling 
students. This paper presents predictive student models for 
block-based programming activities that were trained on over 
200 undergraduate students’ interactions with a block-based 
programming environment in an introductory engineering 
course. The models utilized four categories of student 
programming behavior: prior performance, hint usage, activity 
progress, and interface interaction. The trained models 
accurately predict student performance on future programming 
activities. Analyses of the feature sets reveal prior 
performance to be the most predictive feature early in the 
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programming exercises, with other features providing more 
predictive power as the exercises progress. 
This paper is structured as follows. Section 2 discusses related 
work on analyzing student block-based programs and 
predicting student coding performance. Section 3 describes 
PRIME, the block-based programming environment that was 
used to collect the dataset of students’ construction of block-
based programs. Section 4 presents the early prediction student 
modeling framework, as well as an evaluation of the 
effectiveness of the models, and Section 5 provides a 
discussion of the results and design implications. 

2. RELATED WORK 
Hint generation for block-based programming has been the 
subject of considerable attention. Given the vast solution 
spaces of programming exercises, data-driven methods of hint 
generation have been explored extensively. For example, hint 
generation for Python tutoring [28] as well as comparing the 
quality of generated hints to expert hints in a block-based 
programming environment [25] have both shown promise. 
However, even with high-quality hints, student performance 
can nevertheless suffer as a result of poor help-seeking 
behavior, which is prevalent among students who are most in 
need of assistance [1]. Approaches to hint generation need to 
address “gaming the system” behaviors, in which students 
request multiple levels of hints until they receive a “bottom-
out” hint [23] providing the answer to the activity. A potential 
solution is to design a proactive hint generation framework 
that can monitor students’ progress and deliver proactive 
support when necessary [5, 12]. The work presented in this 
paper seeks to enable such proactive feedback by creating 
predictive models capable of accurately detecting struggling 
students and doing so as early as possible. 

Student modeling in programming environments has largely 
focused on constructing granular models of student domain 
knowledge. These approaches seek to apply modeling 
techniques such as Bayesian Knowledge Tracing [7] to 
programming exercises, mapping exercises to individual 
knowledge components to identify which concepts students are 
struggling with [27], and to enable mastery learning [9, 18]. 
Related work has sought to leverage large datasets and deep 
neural architectures to analyze student behaviors and identify 
struggling students as they complete open-ended programming 
activities [35]. This work builds on these inner-loop student 
models by incorporating new features such as prior 
performance and hint usage to predict student performance. 

In addition to work on programming environments, examining 
student behaviors in open-ended environments has shown 
promise. For example, Sabourin et al. utilized dynamic 
Bayesian networks to create early prediction models of student 
learning in a game-based learning environment [31]. Min et al. 
used deep-learning techniques and multimodal datasets to 
recognize student goals in an open-ended game-based learning 
environment [21, 22]. Others have used textbook annotations 
to create early prediction models of student learning [38], 
clustering techniques for early prediction of students 
interacting in an open-ended exploratory simulation 
environment [11, 16], and fine-grained analysis of game-based 
learning behaviors to predict student quitting (or dropout) 
early [17]. 

3. METHODS 
In this work, we investigate college student interactions with a 
block-based programming environment using features that 
capture system-level interactions, prior student data, and 
programming progress. We first describe the learning 
environment, the coding activities, and interface design, 
followed by the study with college students and the coding 
problem-solving dataset collected for training and analysis. 

3.1 PRIME Environment 
PRIME is an adaptive learning environment designed to support 
novices in learning computer science concepts through block-
based programming. Students can use PRIME both during class 
time as well as for lab and homework assignments. 

3.1.1 Task Progression Design 
The curriculum for PRIME was informed by a review of the 
syllabi for introductory programming courses from the fifty 
top-rated undergraduate computer science programs in the US 
[33]. From this review, we identified the set of topics that are 
typically covered in the first five units of courses, as well as 
the order in which they are covered: 1) Input/Output, 
Variables, and Loops, 2) Functions, Parameters, and Return 
Values, 3) Conditional Execution, 4) String Manipulation and 
Basic Data Structures, and 5) Search and Sort Algorithms. The 
work presented in this paper focuses on Units 1-3 (Table 1). 

Table 1. Computer science curricular coverage.  

Unit Topics 

1 
PRIME environment tutorial, Input/Output, Numeric 
data types, Expressions (math), Variables, Iteration 
(definite) 

2 Abstraction, Functions (methods), Parameters, Return 
Values 

3 Boolean data types, Conditionals, Iteration 
(indefinite), Debugging 

 
Each unit of PRIME is typically covered in a week and consists 
of multiple sequential activities. Units 1 and 2 consist of seven 
activities each, with Unit 3 consisting of six activities. Within 
each unit, activities progressively build upon concepts and 
require students to build more complex programs to solve 
increasingly challenging problems.  

3.1.2 Interface Design 
To support the translation of block-based programs into their 
text-based equivalents (e.g., Python), PRIME uses Google’s 
Blockly framework [13] (Figure 1). The primary user interface 
provides a Program panel, a Console panel, a Feedback panel, 
and an Instructions panel. The Program panel consists of a 
visual coding widget with the block-based coding workspace 
and toolbox of available blocks.  
The default workspace is augmented with a “Start” block, 
which serves a purpose analogous to the “main” function or 
method in other programming languages. The toolbox varies 
for each task, gradually adding more blocks as students 
complete tasks and are introduced to new topics. This 
approach is based on prior work indicating that introducing 
new blocks only as needed may reduce extraneous cognitive 
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load [26] and increase interface usability for novice learners 
[29].  
The Console panel contains a “Run” button and shows the 
output generated from running the program. An input field also 
appears in this panel if a program prompts the user for input. 
Finally, the Instructions panel contains step-by-step 
instructions for a given task. This type of instruction format is 
common for adaptive learning environments [10], though it is 
rarely found in block-based programming environments. In 
addition to navigation buttons, this panel also contains positive 
feedback and links to the next task when a student has 
successfully completed the current task. Task completeness is 
checked every time students run their programs and is based 
primarily on a set of exemplar cases for each 
activity. Additionally, some activities also check for the 
presence/absence of certain blocks to ensure an appropriate 
solution was submitted. 
The Feedback panel contains the “Get Hint” button, allowing 
students to request textual hints. Hints are suggestions for 
minor changes to the program that direct students toward the 
solution. Hints check various aspects of the student code, 
including the presence or absence of certain blocks, structural 
features such as whether code is connected to the “Start” 
block, and the content of the parameters and fields of certain 
blocks.  
Multiple hints were authored for each activity (M = 5.40, SD = 
2.76) based on common errors identified from prior data 
collections and pilot testing. The maximum number of hints in 
an activity is 12, and the minimum authored is 2. An example 

of a hint is, “Instead of numbers, you can put other value 
blocks (like variables) inside the math operation block.” Hints 
were cast at a sufficiently abstract level that they do not 
directly provide the solution to an activity but rather nudge 
students in the right direction. These nudges are designed to 
assist the student to consider block creations, deletions, or 
moves that may be advantageous.  
Hints are delivered to students in the text panel if they click on 
the “Get Hint” button in the Feedback panel. If no new hints 
are available, then the button is disabled and cannot be 
pressed. If there is an available hint different than the one 
currently displayed, then pressing the button will display that 
hint. A set of test cases is used to determine which hint is 
given to the student at a specific point for each activity. The 
number of test cases passed determines both the specific hint 
to provide to the student as well as generating the “Next Step” 
prompt that students receive when completing an intermediate 
portion of the activity. After requesting a hint, if the student 
makes changes to satisfy the conditions of the displayed hint, 
the text of the hint converts to a strikethrough font, visually 
indicating its status to the student. 

3.2 Study Design 
Student programming interactions were collected in a study 
conducted at a large university in the southeastern United 
States. Participants were students enrolled in two sections of 
an online introductory course required for all engineering 
majors. The study sample consisted of 248 students, 222 of 
which attempted at least one activity.  

Instructions 
panel. 

Blockly 
panel with 
the toolbox 
(left) and 
student 
code (right). 

Feedback panel 
with hint. 

Console 
panel prior to 
running code. 

Figure 1. Screenshot of PRIME environment. 
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The average age of the participants was 18, with 31.5% of the 
group being female. The racial makeup was 75.8% White, 
12.9% Asian, 3.2% African American, and 1.2% Hispanic or 
Latino. The primary major reported was Non-CS Engineering 
(90.3%), with 6.9% reporting as Computer Science majors and 
the remaining either Undecided, Math, or Agricultural Science. 
Of the 222 students, 17.3% reported having prior experience 
with block-based programming. Of the 222 students who 
attempted at least one activity, the total number of activities 
was 2,170 (M = 9.77, SD = 6.24, Median = 8), and the total 
number of completed activities was 1,492 (M = 6.72, SD = 
4.87, Median = 4).  

3.3 Dataset 
The data used in this study was student interaction data 
collected from students coding with the PRIME block-based 
programming environment. The data collected for each student 
consist of actions the student or system took during the course 
of an attempted activity. For example, the system logs when 
students perform actions such as requesting a hint, moving a 
block, creating a block, and other interactions. When a student 
performs actions relating to a specific block, the system 
creates an identification number associated with each block to 
allow easier tracking of specific blocks that the student 
creates.  
As the goal of this work is to predict successful coding activity 
completion, the activities used for analysis were selected as 
those with completion rates between 30-70% (i.e., a 70% 
threshold for the incompletion/completion rate). Very high 
completion rates were seen in early activities geared for 
mastery-oriented introduction to block-based programming. As 
the activities become more difficult and once the student has 
been acquainted with the system, the completion rates drop 
slightly. At the other end of the spectrum, later activities did 
not have sufficient student attempts for a predictive model to 
be trained. We therefore focused on the middle activities: 5, 6, 
7, 10, 11, 12, 13, 14, 15, 16, 17, and 18. A summary of the 
completion rates for each activity is shown in Table 2. 

Table 2. Completion Rates for each Activity 

Activity Completed Attempted Success Rate (%) 

5 57 177 32.2 
6 61 126 48.4 
7 38 108 35.2 

10 59 92 64.1 
11 46 81 56.8 
12 45 71 63.4 
13 36 67 53.7 
14 32 60 53.3 
15 34 78 43.6 
16 38 59 64.4 
17 39 56 69.6 
18 37 55 67.3 

 

3.4 Feature Families 
We formulate the task of predictive student modeling for 
students’ coding activities as a binary classification task. We 

define successful completion of a block-based programming 
activity as a coding activity that the student completes from 
start to finish and fulfills each of the activity requirements. 
Completing an activity will only occur once for each attempt 
of an activity by a student, and it is important to note that there 
is no time limit for the completion to occur: a student’s 
interaction with an activity can last from the time they start the 
activity until the semester ends or until he or she has 
completed the activity. The input for the predictive models is 
the number of student-activity attempts where each pair 
denotes a student attempt on a particular activity. There were a 
total of 1,966 student-activity attempts in the dataset. This 
count is calculated as the number of student-activity attempts 
for which the student had at least 20 system-logged actions 
within the given activity, where an action is a system-logged 
interaction where the student clicks within the environment, 
creates/deletes/moves blocks, or interacts with any of the 
system components, such as the toolbox or “Save Workspace” 
button. Thus, the inputs of the predictive models are features 
derived from each of these student-activity attempts. We 
define the model input vectors formally with four categories of 
features: prior performance, hint usage, activity progress, and 
interface interaction. The prior performance feature is defined 
as the percentage of activities that a student has completed out 
of the total activities he or she has attempted up to that point. 
This feature only considers the activities listed in Table 2. The 
hint usage feature is the total number of times a student has 
requested a hint for the activity (i.e., pressed the “Get Hint” 
button).  
The activity progress features denote the system analysis of 
the student’s code up to a particular point within the activity. 
We use two features, test cases passed and checkpoints passed, 
to represent the student’s progress. These features are 
calculated by evaluating the student’s code with expert-
designed test cases. The test cases passed feature represents 
the overall test cases required to complete the activity, and the 
checkpoints passed feature consists of finer-grained test cases 
within the activity. The checkpoints passed feature is used to 
select which hint to give to the student when a hint is 
requested. In addition, these intermediate-level test cases are 
used to drive the “Next Step” prompts that the student sees 
when making incremental progress required to complete the 
activity.  
The final family of features, interface interaction, consists of 
12 features: enter button presses, last save loads, previous 
exercise code loads, next instruction clicks, previous 
instruction clicks, code runs, workspace saves, workspace 
changes, block creations, block deletions, block moves, and 
user interface clicks in block-display. These features are 
logged by the system over the course of a student’s attempt at 
the activity and represent a finer-grained snapshot of the 
student’s problem-solving interactions.  
We also use a temporal feature, time interval, to introduce a 
measurement of the student’s dynamic progress. We use this to 
encode sequential interactions and summarize the time 
interval-based cumulative counts of all other features. The 
time interval in this work is defined as the 30 second segment 
of cumulative features up to that point in time (e.g., interval 1 
consists of all features within the first 30 seconds, interval 5 
consists of the cumulative features up to the first 2 minutes 
and 30 seconds). There is variation in the maximal interval for 
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students within the same activity because certain students may 
take longer to complete (or not complete) the activity. As an 
example, one student may have spent 2 minutes and 30 
seconds on a particular activity, so he or she will have 5 rows 
of data, each considering the cumulative counts of each 
described feature. Each row is then indexed by the 
corresponding time interval, 1 through 5. Before passing the 
complete input vector into our predictive models, we perform 
standardization on each feature at the activity level (i.e., 
subtracting the mean and dividing by the standard deviation).  

4. RESULTS 
4.1 Activity Completion Predictions 
To account for differences in curricular content across 
activities, we trained a separate model for each activity. We 
maintained the same set of hyperparameter values for the 
predictive model for each activity in order to support better 
generalization to other tasks and to observe patterns spanning 
all interactions rather than within individual activities. Due to 
the nature of this predictive task and the fact that the 
sequential intervals for a particular student-activity attempt are 
indirectly dependent on one another when comparing the same 
student, we utilize leave-one-out cross-validation (LOOCV) at 
the student-level within each activity to validate results found 
by the predictive models. To report the most accurate results, 
we averaged the results from the cross-validation process to 
account for the fact that the student occurring in the test set 
each iteration does not account for the total distribution of the 
input data, thereby increasing variance in the results. This 
validation process was motivated by the occurrence of 
successive intervals for a given student-activity attempt being 
related. For example, a student who attempted a specific 
activity will have cumulative actions in their first interval that 
will also be counted in the next interval. LOOCV at the 
student-level thereby prevents data leakage. We adopt logistic 
regression for interpretability.   

Table 3. Classification performance using logistic 
regression. The results for the majority class baseline (BL), 

full feature set (Full), and best performing individual 
family of features (Ind.) are shown. 

 Accuracy F1 

Activity BL Full Ind. Full Ind. 

5 0.662 0.719 0.666 0.132 0.006 
6 0.668 0.751 0.774 0.491 0.469 
7 0.708 0.710 0.639 0.281 0.206 
10 0.636 0.757 0.815 0.575 0.555 
11 0.583 0.762 0.761 0.566 0.563 
12 0.747 0.737 0.729 0.680 0.729 
13 0.749 0.714 0.664 0.606 0.604 
14 0.695 0.704 0.766 0.599 0.611 
15 0.607 0.603 0.599 0.417 0.418 
16 0.625 0.718 0.694 0.621 0.618 
17 0.700 0.865 0.857 0.698 0.683 
18 0.757 0.818 0.916 0.701 0.729 

We report two metrics: accuracy and F1 score. As a 
classification problem, it is important to predict both the 
majority and minority classes at a high rate. In most cases, 
activity completion is the majority class, but in some cases, the 
classes are reversed. This occurs primarily when the activities 
become more difficult, and thus the incompletion rate is 
greater than the completion rate for that activity. In reporting 
these metrics, we show both the results from the full set of 
features (i.e., all four feature categories), and we choose the 
best single family of features as a comparison. In addition to 
these, we compare the results against a baseline of the majority 
class consisting of every time interval where students spent 
time on an activity. The label for each interval is the end 
outcome (completion/incompletion) during their interaction 
with that activity.  
Table 3 summarizes the cross-validation results of the full 
feature sets and the best performing family of features against 
the majority class baseline. Across all the activities, prior 
performance was the best performing family of features in 7 
out of 12 activities, or 58% of the time. Of the five remaining 
activities, interface interaction served as the best performing 
family once, activity progress twice, and hint usage twice.  

4.2 Feature Analysis 
After determining the best performing model for the entire set 
of features, it is informative to determine which of the features 
held the greatest predictive value. After training the model, we 
evaluated the feature coefficients of the trained regression to 
determine the relative importance of each of the features. Both 
the magnitude and sign of the coefficients can be used for 
interpretation in this case, as we can determine which features 
were positive or negative predictors in this classification.  

Table 4. Logistic regression model coefficients using the 
full feature set. 

Feature Mean SD Rank 

Prior Performance 1.269 0.889 1 
Time Interval -1.176 1.493 2 
Test Cases Passed 0.828 0.327 3 
Block Deletion 0.648 1.486 4 
Block Creation -0.465 0.692 5 
Enter Button Presses 0.458 0.528 6 
Checkpoints Passed -0.277 0.251 7 
Save Workspace -0.232 0.780 8 
Next Instruction 0.148 0.663 9 
Workspace Change 0.118 0.663 10 
User Interface Clicks 0.115 0.989 11 
Block Moves -0.094 0.633 12 
Hint Button Presses 0.067 0.799 13 
Load Last Save 0.063 0.618 14 
Load Previous Exercise Code 0.032 0.112 15 
Run Code -0.013 0.896 16 
Previous Instruction 0.004 1.022 17 
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In Table 4, the coefficient results for the full feature set are 
shown. The four strongest predictors in terms of magnitude 
were prior performance, time interval, test cases passed, and 
block deletion. Many of the features representing students’ 
interactions with the block-based environment (e.g., block 
creations, deletions) provided a strong boost to predictive 
performance. In addition, features encoding more productivity-
based actions, such as workspace saves and checkpoints passed 
also provided an improvement to the model. It is worth noting 
that time interval is a strong negative (coefficient direction) 
predictor, while prior performance was equally as strong of a 
positive predictor. 

4.3 Early Prediction 
As a predictive student model observes more student problem-
solving actions over time, we would like for its accuracy to 
improve. A more rapid convergence toward more accurate 
predictions would mean that an adaptive learning environment 
could proactively intervene and provide feedback at an earlier 
stage if the prediction were that the student would not 
successfully complete an activity. To evaluate this, we 
performed a survival-based analysis of the predictive models 
for each interval of each activity. Specifically, we evaluated 
the performance of our models at each time interval step, 
where the accuracy at each successive interval includes the 
students who have already finished interacting with the 

Figure 2. Survival-based analysis of student completion prediction over each interval. The green line represents the baseline for 
each activity, and the red lines denote the standard deviation of each interval’s average accuracy. 

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 44

LO 
A«uracy Over Time for Acti,,ity S 

LO 
Accuracy Over Time for Acti\'ity 6 

LO 
Accuracy Over Time for Activity 7 

0.8 0.8 08 t 

l l 
0.6 .., 0.6 t- t- :-.. 0.6 

! ~ ! 

' ~ 0.4 ~ 04 + ~ 04 t- + + 

02 +- + 0.2 +- + 0.2 + + 

0.0 00 0.0 
0 10 0 10 0 10 

lnccrval lntcn..1111 Interval 

LO 
Accuracy Over Time for Act ivity I 0 Accuracy Over Time for Activity 11 Accuracy Over Time for Activity 12 

I LO LO 

0.8 t 0.8 08 

l l 0.6 

I I I 
06 06 + 

! 

I [ 

I I 
! 

t 
i 04 ' ~ 0.4 + t- ~ 0.4 +- + 

0.2 0.2 + t- 02 +- + 

0.0 0.0 0.0 
0 10 0 10 0 10 

lntavt1I htav.l Interval 

LO 
Ace-uracy Over Time for Activity 13 Accuracy Over Time for Activity 14 Accuracy Over Time for Activity 15 

LO LO 

0.8 0.8 08 

I 
06 + 0.6 

l 
06 g [ r 

~ 0.4 + .lt! 0.4 + ~ 0.4 

0.2 t- + 0.2 + 0.2 

0.0 0.0 00 
0 10 0 10 0 10 

htcrval lnlcr,al """"' 
Accuracy Over Time for Acth'ity 16 

LO 
Accuracy Over Time for Activity 17 

LO 
Accuracy Over Time for Acti\' ity 18 

LO I 

0.8 08 r 0.8 

I 
+ 

I 
0.6 + :-.. 0.6 0.6 

! [ i I ' ~ 0.4 + + ~ 0 4 + ~ 0.4 t + 

0.2 + + 0.2 + 0.2 t + 

0.0 00 0.0 
0 10 0 10 0 10 

hlcrval lntcrv11I kltcrval 



activity as correct predictions. The results for this analysis are 
shown in Figure 2.  
For evaluation, we trained the same logistic regression models 
on each interval for each activity and recorded the number of 
errors. The accuracy for each interval is then the number of 
correct predictions divided by the total number of students 
who attempted that activity (i.e., the total number of samples 
for the first interval of that activity). Due to the decreasing 
size of data for each successive interval, we split the data into 
a 50% train and 50% test set on each interval for each activity, 
and we took the average performance over 10 randomly 
generated splits. We then plotted the accuracy over time, 
noting the standard deviation as the error bars for each 
interval. We did not perform LOOCV in this analysis because 
there is at most one interval per student in each activity, so the 
train/test split will not have data leakage. In other words, 
splitting the data in half for a train/test split will not have 
overlapping students in the test set no matter how the split is 
made. 
As noted above, the desired behavior for these predictive 
models is that accuracy improves over time as the models 
observe more student problem-solving interaction data. An 
additional desirable characteristic is that models surpass the 
baseline at a relatively fast rate. We note that in 8 of the 12 
activities, the accuracy of the first interval is at or above that 
of the baseline (interval-level class majority). For the 
remaining activities, and those where the accuracy dips below 
the baseline, the accuracy surpasses the respective baseline at 
interval 4, which corresponds to 2 minutes of interaction time 
with PRIME.  

 
Figure 3. Standardized convergence point metric for 
sequence prediction analysis. 
To quantify the rate at which predictions converged towards an 
accurate prediction, we also calculated metrics used in the 
related task of goal recognition for sequence analyses [14, 22]. 
Specifically, we measured model performance using accuracy 
rate, convergence rate, convergence point, and standardized 
convergence point. In this context, convergence rate calculates 
the proportion of sequences where predicted outcome for the 
final interval is correct. In other words, this metric quantifies 
how well by the final interval the predictive models can 
accurately predict whether the student will complete the 
programming activity. Thus, a higher value for this metric is 
desirable.  
Convergence point refers to the proportion of the sequence of 
intervals occurring before the predictive model has 
consistently begun to predict the correct outcome. In other 
words, this proportion measures a predictive model’s ability to 
converge to an early prediction. This implies that a lower 
number is more desirable for this metric. The overall 
convergence point is the average proportion of all sequences of 
intervals. An issue with using convergence point to measure 

how early in a sequence predictions converge is that 
convergence point is only calculated for sequences where the 
model successfully predicts the last action in a sequence (i.e., a 
sequence converged to the correct prediction). Standardized 
convergence point (Figure 3) takes this into account by adding 
a penalty factor for sequences where the last prediction is 
incorrect. If the prediction of the outcome (O) for a sequence 
of intervals (I) does not converge, then its value is calculated 
as (n + p)/n, where p is a penalty factor. For this work we set 
the penalty factor to 1 because of the relatively short length of 
the sequences investigated. As with convergence point, a lower 
value for these metrics is desirable. 
In Table 5, we report these metrics for our early prediction 
models using the same train/test split as mentioned previously. 
Thus, the sequences of intervals for each student-activity 
attempt in the test set used as the sequences for these metrics. 
We average the rates for 10 randomly produced train/test splits 
to validate the results. 
Table 5. Averaged rate results for logistic regression (LR) 

model. 
Metric  

Accuracy Rate 63.96% 
Convergence Rate 70.62% 
Convergence Point 35.84% 
Standardized Convergence Point 57.75% 
F1 Score 68.87% 

  

5. DISCUSSION 
Four families of features contribute to predictive student 
modeling. Prior performance, hint usage, activity progress, 
and interface interactions all play an important role in 
accurately predicting student success in programming 
activities. The predictive models outperform baselines which 
use majority class prediction of each individual interval. Using 
these enhanced models, we found that several features stood 
out as more predictive.  
The prior performance feature was the strongest positive 
(coefficient direction) predictor. If students have successfully 
completed more of their previous exercises, then they are 
likely to continue doing so. Because this feature accounts for 
successes on other activities, when students have just begun 
attempting activities, there will be no data to inform this 
feature. This is demonstrated in Table 3 when the F1 score is 
close to 0 for the individual family of features (Ind.) column. 
However, when no information is known about a student’s 
prior success (i.e., when they are just starting their 
interaction), the system can use the other features to account 
for this. A strong negative predictor of student activity 
completion was the time interval. If a student attempts an 
activity and begins taking more time, the likelihood of their 
completing that activity may decrease. This could be due to the 
student not grasping the underlying concept in which the 
activity is centered.  
Two strong positive predictors were checkpoints passed and 
test cases passed (activity progress), denoting how many steps 
a student has completed in the problem. This is a different 
measure than time interval, as time interval does not capture 
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the objective progress the student has made. Therefore, if a 
model is able to detect how much of the code the student has 
completed relative to the total code needed for the activity, this 
could boost predictions. The more incremental checkpoints the 
system designer uses to assess student code, the more likely 
this feature will be a strong predictor.  
Within the interface interaction family of features, block 
creations served as a negative predictor, while block deletions 
served as a positive predictor. These features are fundamental 
to understanding a student’s code. For systems that do not use 
built-in test cases, these can serve as core predictive features 
to use for this prediction task. In PRIME, students can freely 
create, delete, change, and move blocks according to their 
believed solution to the activity. Actions such as move and 
create may reveal a more “trial and error” approach, in which 
the student is attempting new ideas without knowledge of how 
these blocks interact. Similarly, actions such as deleting a 
block and changing a block could indicate when a student has 
tried a block configuration and no longer believes this to be 
the correct block configuration. In this case, the student is 
revising his or her answer, and this could point to a block 
configuration that is closer to an actual solution.  
A surprising result is the fact that hint button presses was not 
one of the strongest predictors. The hint request functionality 
in this environment guides student problem solving at a 
conceptual level. Hints are designed to nudge students to 
consider approaches that may spark a correct move or block 
creation. Thus, if students request many hints, it may be that 
they are not getting closer to the correct answer. If they keep 
requesting hints without successfully completing an activity, 
this could indicate either a lack of effort or lack of 
understanding, or perhaps both. For effort, analyses would 
need to be performed to determine if there is a pattern with 
other interface interaction features that indicate little attempt 
on the activity. For understanding, analyses would need to be 
performed to determine if the student is making little progress, 
such as is the case in wheel-spinning [34]. One reason that 
hints did not serve as a stronger predictor could be the fact that 
there were not a consistent number of hints per activity. In 
addition, these hints are not hierarchical. In other words, the 
hints do not utilize a “bottom-out” mechanism that becomes 
finer-grained as the student requests more hints at the same 
point in their code. This type of hinting system would allow 
for students who are clearly experiencing an impasse (or 
lacking effort) to receive more explicit hints, which would 
likely change the predictive value of the feature. 

5.1 Limitations 
In this analysis, predictive models were created to determine if 
a student will complete a block-based programming activity. 
We explored the possibility of making this prediction as early 
as possible. While we quantified this through the improvement 
of accuracy over time and through the use of convergence rate 
and convergence point, there are no clear standards or 
baselines for comparing these results. Without a baseline, it is 
impossible to fully know how this predictive model performs 
in relation to other models. When determining the type of 
model to use, we chose logistic regression due to its relative 
interpretability. However, other models may have higher 
performance, especially when tuned appropriately. It will be 
important to investigate other models in future work.  

Another limitation is that this analysis did not fully represent 
the temporal nature of the data. We created a time interval 
feature to account for 30-second intervals, but we do not treat 
the actions themselves as sequential features. An alternative to 
treating the features as sequential could be to create finer-
grained intervals (varying time lengths) and to use sequential-
based machine learning models, such as probabilistic graphical 
models or recurrent neural networks. Additionally, though the 
feature families were chosen to generalize well across learning 
environments, the underlying features are specific to this 
environment and may not generalize well. Further 
investigation is needed to understand the effectiveness of this 
modelling approach for both other programming environments 
as well as similarly structured environments from other 
domains. 
A final limitation of this work that should be investigated in 
future work is level of granularity at which analyses of student 
code is conducted. One way to analyze student code is to 
perform static tests, such as in checkpoints passed and test 
cases passed. Another method would be to create a new 
representation of the code and analyze this representation, as 
the automated code analysis approach presented in [39]. 

6. CONCLUSION 
With increasing interest in block-based programming 
environments for teaching introductory computer science, 
programming environments that can provide adaptive support 
hold considerable promise. In order for these environments to 
evolve beyond providing on-demand hints, there is a need to 
develop predictive models that can accurately and quickly 
identify whether a student will succeed or abandon a given 
activity.  
To explore this potential, we created predictive student models 
for the PRIME block-based programming environment that were 
informed by four families of features: prior performance, hint 
usage, activity progress, and interface interaction. Evaluations 
showed that the models could predict student activity 
completion more accurately than baselines, and results also 
demonstrate that by splitting up student-activity attempt data 
into time intervals, they can make accurate early predictions. A 
survival-based analysis showed that by 2 minutes of student 
interaction time, these models consistently outperform 
baselines, and prior performance, time interval, and test cases 
passed were the most predictive features.   
In future work, it will be important to investigate modeling 
frameworks that can better leverage sequential features of the 
data. Second, it will be important to explore more granular 
assessment rubrics of student programming artifacts, such as 
those that might be derived from an evidence-centered design 
approach [30] to drive the predictive models. Third, exploring 
models that integrate performance prediction with “sibling” 
models for help-seeking, off-task-behavior, and wheel-
spinning is a promising direction for future work. Here, an 
ensemble of predictive models could be assembled to most 
effectively support novice student programming. Finally, it 
will be important to investigate models that operate in tandem 
with block-based programming and text-based programming 
and that best support the transition from block-based to text-
based programming as students progress to increasingly 
complex computational problem-solving tasks. 
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ABSTRACT
Replication of machine learning experiments can be a useful
tool to evaluate how both modeling and experimental design
contribute to experimental results; however, existing repli-
cation efforts focus almost entirely on modeling alone. In
this work, we conduct a three-part replication case study of
a state-of-the-art LSTM dropout prediction model. In our
first experiment, we replicate the original authors’ method-
ology as precisely as possible in collaboration with the orig-
inal authors. In a second experiment, we demonstrate that
this initial experiment likely overestimates the generaliza-
tion performance of the proposed model due to the design
of its validation. In a third experiment, we attempt to
achieve the previously-reported performance in a more dif-
ficult, but more relevant, hold-out set design by exploring
a large space of model regularization configurations. We
demonstrate that we can reduce overfitting and improve gen-
eralization performance of the model, but cannot achieve the
previously-reported level of performance. This work demon-
strates the importance of replication of predictive model-
ing experiments in education, and demonstrates how exper-
imental design and modeling decisions can impact the extent
to which model performance generalizes beyond the initial
training data.

1. INTRODUCTION
The repeated verification of scientific findings is central to
the construction of robust scientific knowledge, particularly
in a fast-growing field such as educational data mining. This
can take the form of (a) reproduction (reproducibility), us-
ing the original methods applied to the original data to re-
produce the original results, and (b) replication (replicabil-
ity), applying the original methods to new data to assess

the robustness and generalizability of the original findings.
Since reproducibility is a necessary condition for replicability
(an experimental procedure cannot be applied to new data if
the procedure cannot be reproduced), achieving replicability
requires solving the problem of reproducibility.

In this work, we discuss the reproducibility crisis in ma-
chine learning, noting specific challenges faced by applied
researchers in the learning sciences, particularly in the sub-
fields of educational data mining and learning analytics. We
argue that existing frameworks for reproducible machine
learning such as open code-sharing platforms and public
code notebooks are valuable steps, but are insufficient to
fully address the challenges both within our subfield of in-
terest and the broader machine learning community. In par-
ticular, we argue that code-sharing does not address the
breadth of challenges – experimental, methodological, and
data – we face as practitioners, as Section 3 details. In-
stead, we propose a paradigm of end-to-end reproducibility
for machine learning: fully reproducing (or replicating) the
pipeline from raw data to model evaluation. End-to-end
reproducibility is possible with current freely-available com-
puting technologies, namely containerization.

Using an open-source platform for conducting reproducible
end-to-end machine learning experiments on large-scale edu-
cational data, the MOOC Replication Framework (MORF),
we conduct a three-stage replication experiment in Section
4, which is the primary contribution of this work.1 Our case
study evaluates both the experimental design, by comparing
different train-test regimes, as well as the modeling, by repli-
cating the original results and attempting to extend them via
modern neural network regularization methods. We present
practical recommendations based on our results in Section 5.
We describe additional benefits, beyond reproducibility, af-
forded by MORF, and replication in machine learning more
broadly, in Section 6, concluding in Section 7.

1The code to fully replicate these experiments, includ-
ing their execution environments and software depen-
dencies within a Docker environment, is available at
https://github.com/educational-technology-collective/dl-
replication/.
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2. PRIOR WORK
2.1 The Reproducibility Crisis in

Machine Learning
Much has been written about the reproducibility crisis in
science, particularly in fields which conduct human subjects
research such as social psychology. Recent empirical evi-
dence has shown that issues with reproducibility are also
widespread in the field of machine learning. A survey of
400 research papers from leading artificial intelligence venues
shows that none of the works surveyed document all aspects
necessary to fully reproduce the work; only 20-30% of the
factors evaluated were adequately reported in the works sur-
veyed [19]. A replication study of deep reinforcement learn-
ing algorithms [21] show that the variance inherent to sta-
tistical algorithms, the use of different hyperparameter set-
tings, and even different random number generation seeds
contribute to a lack of reproducibility in machine learning
research and have a direct impact on whether experimen-
tal results and baseline model implementations replicate. A
survey of 30 machine learning studies in text mining identi-
fied poor reproducibility due to lack of access to data, soft-
ware environment, randomization control, and implementa-
tion methods [28]. None of the 30 works surveyed provided
source code, and only one of 16 applicable studies provided
an executable to be used to reproduce the experiments.

These reproducibility issues are partly attributable to cul-
ture and convention. A survey of authors published in the
Journal of Machine Learning Research found that roughly
one third intentionally did not make their implementations
available, for reasons including a lack of professional incen-
tives, a reluctance to publish messy code, and the convention
that doing so is optional [33]. [30] observes that only five
of 125 published articles in the journal Biostatistics have
passed the (voluntary) reproducibility review since its in-
ception two years prior, yet considers this effort “successful”
compared to the reproducibility of previous work.

As big data and machine learning permeate disciplines, this
crisis in replication has also affected other fields of study,
including the learning sciences. This is especially relevant
in cases of very large datasets where the majority of learn-
ing is computer-mediated, such as in Massive Open On-
line Courses (MOOCs). For example, [16] showed that a
large-scale replication of machine learning models led to sub-
stantially different conclusions about the optimal modeling
techniques for MOOC dropout, with several findings repli-
cating significantly in the opposite direction of the origi-
nal study (which was conducted on only a single MOOC).
In an attempted replication of the “deep knowledge trac-
ing” method originally introduced in [31], the results showed
that much simpler methods could achieve equivalent perfor-
mance, and that the performance gains demonstrated in the
original work were at least partially due to data leakage [24].
Somewhat more favorably, in [2], the authors find that 12
of 15 experimental findings in MOOCs replicated using a
production-rule framework, but an additional two findings
replicated significantly in the opposite direction.

2.2 Existing Tools for Reproducible
Machine Learning

An exhaustive survey of tools and platforms to support re-
producible machine learning research is beyond the scope of
this paper. However, we include a brief survey of tools most
relevant to reproducible machine learning for predictive an-
alytics in education.

OpenML [35] is “an open, organized, online ecosystem for
machine learning” that allows users to create data science
pipelines to address specific “tasks”, such as classification
and clustering. The OpenAI Gym is an open-source inter-
face for developing and comparing reinforcement learning
algorithms [6]. Its wide use for both teaching and research
serve as an example of how a subfield can create and adopt
shared tools that meet researchers’ needs while enhancing
reproducibility. Recently, several publishing platforms dedi-
cated to reproducible computational research have also formed,
such as ReScience 2, CodaLab 3, and WholeTail [5]. These
platforms unify code, data, computation, and presentation
in a single location. CodaLab and WholeTail also use Docker
containerization to ensure reproducibility.

Each of these platforms is an important step toward repro-
ducible machine learning research, and many of them ad-
dress key barriers. However, these tools are insufficient for
many types of machine learning tasks, including supervised
learning with large-scale behavioral data from MOOCs. In
particular, none of these platforms supports replication where
the underlying data sets are privacy-restricted and cannot
be publicly shared. In some cases, such as WholeTail, the
platform scope is explicitly limited to public (non-restricted)
datasets [5]. However, in educational data, many of the
types of unanonymizable data that are privacy-restricted
are also necessary for analysis (such as the text of discus-
sion forum postings, IP addresses, or student names). Such
restrictions are also likely to drive away machine learning
researchers from working with this data, as gaining access
to unprocessed raw educational data can be difficult or im-
possible without close collaborators and strong institutional
support. Even with institutional support, government regu-
lations such as the Family Educational Rights and Privacy
Act (FERPA) may restrict or complicate data sharing.

3. THE MOOC REPLICATION
FRAMEWORK

The replication crisis is the result of a confluence of forces
which must be collectively addressed in order to achieve
end-to-end reproducibility. Prior work has identified three
groups of challenges: experimental, methodological, and data
challenges [17]. No existing solution discussed in Section 2.2
currently addresses all three barriers. In this section, we
outline three key barriers to reproducibility, and describe
how these barriers are addressed by the MOOC Replication
Framework (MORF), the research tool used to conduct this
experiment.

MORF itself is a Python toolkit, accompanied by a platform-

2http://rescience.github.io/about/
3http://codalab.org/
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Figure 1: End-to-end reproducibility requires addressing data, technical, and methodological issues with re-
producibility. Replication of the computational environment, in particular, is key to replicating this complete
pipeline from raw data to results. Each of the four stages of the supervised learning pipeline executed inside
the computational environment are encapsulated in MORF’s execution model (see Section 3).

as-a-service (the “MORF Platform”), which collectively ad-
dress the challenges faced by researchers studying large-scale
online learning data noted above [17].4

Users submit jobs to the MORF Platform using short, 4-5
line “controller” scripts which guide the execution of each
stage of the end-to-end supervised learning pipeline (ex-
tract, train, test, and evaluate) shown in Figure 1. The
use of controller scripts is a common approach to conduct-
ing reproducible computational research [25]. MORF’s com-
bination of containerization and controller scripts allow the
user to manage low-level experimental details (operating sys-
tem and software dependencies, feature engineering meth-
ods, and statistical modeling) by constructing a Docker con-
tainer which is submitted to MORF for execution. MORF
manages high-level implementation details (parallelization,
data wrangling, caching of results) by “bringing the compu-
tation to the data.” This prevents the download of sensitive
raw data (currently, this includes the complete raw data
exports from over 270 MOOCs offered by two institutions
[17]). The containers used to execute each job are persisted
in MORF’s public Docker Cloud repository, and the con-
figuration file and controller scripts are persisted in Zen-
odo and assigned a unique Digital Object Identifier (DOI).
This yields a reproducible end-to-end pipeline that is flexi-
ble, easy to use, and computationally efficient.

MORF eases the computational expense of conducting such
research at scale by providing nearly an order of magni-
tude greater computational infrastructure than any of the
platforms discussed in Section 2.2, and out-of-the-box par-
allelization to utilize it. See [17] for a more thorough com-
parison to other platforms.

3.1 Experimental Reproducibility via
Containerization

Experimental challenges with reproducibility relate to
reproducing the exact experimental protocol [17]. It has
been noted that code-sharing alone is insufficient to guaran-
tee reproducibility in computational research. For example,
[10] showed that the published code accompanying 20% of
their large sample of 613 published computer systems pa-
pers failed to build or run, and in total, it was not possible
to verify or reproduce 75.1% of studies surveyed using the

4The MORF website, which includes documentation
and short tutorials, is at https://educational-technology-
collective.github.io/morf/

artifacts provided in publication.

Even when code is available, other technical issues can pre-
vent reproducibility in research workflows [25]. These in-
clude code rot, in which code becomes non-functional or its
functionality changes as the underlying dependencies change
over time (for example, an update to a data processing li-
brary which breaks backwards compatibility, or a modified
implementation of an algorithm which changes experimen-
tal results), as well as dependency hell, in which configuring
the software dependencies necessary to install or run code
prevents successful execution [3]. This complex web of inter-
dependencies is rarely described or documented in published
machine learning and computational science work [19, 28],
despite over two decades of evidence that it is a necessary
condition for reproducing computational results [7].

MORF uses containerization to support end-to-end repro-
ducibility (Figure 1). The Docker containers submitted to
MORF fully encapsulate the code, software dependencies,
and execution environment of an end-to-end machine learn-
ing experiment in a single file, ensuring end-to-end repro-
ducibility and enabling sharing of the containerized experi-
ment. Docker containers were developed to resolve many of
the experimental reproducibility challenges described above
in software development contexts [27], and are frequently
used in industrial software applications, computational mod-
eling, and computer systems research [3, 9, 23]. A ma-
jor advantage of containerization over simple code-sharing
is that containers fully reproduce the entire execution en-
vironment of the experiment, including code, software de-
pendencies, and operating system libraries. Docker contain-
ers are more lightweight than a full virtual machine, but
achieve the same level of reproducibility [27, 23]. Build-
ing Docker containers requires only a single Dockerfile (akin
to a makefile) which contains instructions for building the
environment. This imposes minimal additional burden on
researchers relative to configuring, programming, and exe-
cuting an experiment, but achieves a considerable increase
in reproducibility. While other existing machine learning re-
search platforms sometimes utilize Docker“under the hood,”
this limits users’ ability to fully leverage containerization
by configuring or sharing these environments. We are not
aware of any platform which allows users to build and sub-
mit Docker images directly for execution as MORF does.

As part of MORF, we are assembling an open-source library
of pre-built Docker containers to replicate experiments con-

51 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

. _______ ., ...................................... . •[( )[ ___ ] ( J ( J 
~ .. ··································································································································································································-~ 



ducted on MORF to serve as shared baseline implementa-
tions. These containers can be loaded with a single line of
code, allowing the research community to replicate, fork,
interrogate, modify, and extend the results presented here5.

3.2 Methodological Reproducibility via
Platform Architecture

Existing work on reproducibility largely focuses on strictly
technical challenges, but as our experiment in Section 4
shows, methodological issues are at least as important. Method-
ological challenges to reproducibility reflect the methods of
the study, such as its procedure for model tuning or statisti-
cal evaluation. Poor methodological decisions can lead to a
lack of inferential reproducibility [19]. We see such issues in
e.g. the use of biased model evaluation procedures [8, 36];
improperly-calibrated statistical tests for classifier compar-
ison [12]; large-scale hypothesis testing where thousands of
hypotheses or models are tested at once, such as in massive
unreported searches of the hyperparameter space without
statistical evaluation or appropriate corrections, or “random
seed hacking,” wherein the random number generator itself
is systematically searched in order to make a target model’s
performance appear best or a baseline model worse [21].

MORF is designed to provide sensible default methodolog-
ical procedures for many machine learning tasks, such as
model evaluation, in practical terms nudging researchers to
make sound choices. For example, MORF avoids the use of
cross-validation for model evaluation: The prediction tasks
to which most MOOC models aspire are prediction of future
student performance (i.e., in an ongoing course where the
true labels – such as whether a student will drop out – are
unknown at the time of prediction). As such, using cross-
validation within a MOOC session, when the outcome of
interest is accuracy on a future MOOC session, provides an
unrealistic and potentially misleading estimate of model per-
formance. Prior work has demonstrated that within-session
cross-validation in the MOOC domain can produce overly
favorable estimates of classification performance on a future
(unseen) course or future session from the same course [37,
4]. Adopting more effective model evaluation techniques by
default requires no additional work for MORF users, and
ensures that work produced on the MORF platform follows
effective model evaluation procedures. MORF’s large data
repository also prevents users from having to utilize only a
single dataset for both training and testing; with many it-
erations of many unique MOOCs available, users can have
considerable training data available while also conducting
effectively-designed experiments with ample and represen-
tative test data.

3.3 Data Reproducibility via
Execute-Against Access

Data reproducibility concerns the availability of data itself.
In many domains, making raw data available is more an issue
of convention than a true barrier to reproducibility. How-
ever, in the case of educational data mining, data are often
governed by strict privacy regulations which protect the pri-
vacy of student education records. Similar restrictions af-

5The experiment presented below can be loaded by running
docker pull themorf/morf-public:fy2015-replication
in the terminal of any computer with Docker installed.

fect many other fields, from the health sciences to computa-
tional nuclear physics [25]. As a result, researchers are often
legally prohibited from making their data available. Efforts
such as [26] and [20] have attempted to address this prob-
lem in education by only releasing non-identifiable data, but
many analyses require the original, unprocessed data for a
full replication. Indeed, restricted data sharing is one of the
main factors (in our experience) hindering generalizability
analysis in educational data mining: investigators are gen-
erally limited to one or two courses worth of data (e.g. the
courses they instruct or specific publicly available courses),
and models are often overfit to these datasets.

MORF achieves data reproducibility while also meeting data
privacy restrictions by providing strictly “execute-against”
access to underlying data [17]. Most MOOCs are generated
by a small number of platforms (e.g. Coursera, edX), and
all courses from a given platform use publicly-documented
data schemas, e.g. [11]. Thus, users can develop experi-
ments using their own data from a given platform – or even
the public documentation – and then submit these experi-
ments for MORF to execute against any other course from
that platform. This enables MORF to currently provide an
interface to over 270 unique sessions of more than 70 unique
courses offered by two different institutions on the Coursera
platform, and to execute containerized experiments against
this data in a secure, sandboxed environment by utilizing
the shared public schema of the datasets [11]. These shared
public data schemas also ensure that existing experiments in
MORF can be replicated against new data (from the same
MOOC platform) as it becomes available.

4. REPLICATION EXPERIMENT: NEURAL
MOOC DROPOUT MODELS

In the remainder of this paper, we conduct an in-depth
exploration of previously-published MOOC dropout predic-
tion models using MORF. Neural models have demonstrated
the capacity to achieve state-of-the-art performance on a
wide variety of modeling and prediction tasks, from language
modeling to computer vision. Their application to MOOC
research has also demonstrated initial promising results [13,
29] due to their ability to model complex functional relation-
ships between student behavior data and learning outcomes,
but such research has been limited. In this section, we use
MORF to replicate a comparison conducted in [13], which
compares several machine learning algorithms using a set of
seven activity features (e.g. number of lecture videos viewed,
quizzes attempted, and discussion forum posts for each stu-
dent) over each week in a MOOC in order to predict a binary
dropout label indicating whether a user showed activity in
the final week of a course.

This study is an ideal candidate for replication because it
has been highly cited in the field, but compares six models
over five weeks of a MOOC (effectively testing 6·5·5

2
= 75

pairwise hypotheses) using cross-validation on only a single
dataset. This testing of many hypotheses/comparisons, with
only a single observation for each, can lead to poor method-
ological reproducibility and provides no information about
the variability of the estimates, relative to their magnitude
[14]. Particularly because this experiment was concerned
with empirical performance (in order to inform future “early
warning”dropout prediction systems), obtaining an accurate
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estimate of models’ expected performance on future course
sessions across a large, representative dataset can provide
insight into the generalizability of these findings. The use of
within-session cross-validation to draw conclusions about fu-
ture generalization performance remains common in MOOC
prediction research [15].

We present the results of our replication in Section 4.1, which
matches the authors’ original comparisons and their exper-
imental design. The original work evaluated three different
definitions of MOOC dropout; for tractability within this pa-
per, we strictly replicate “Definition 1” of dropout from [13],
which is the most commonly-used definition of dropout in
MOOC research [16]. In Section 4.2, we present the results of
a second experiment, which compares the same models using
a different experimental setup (predicting on future course
sessions) in order to demonstrate that the original experi-
mental design overestimates the generalization performance
of these models, likely due to overfitting. Our experimen-
tal analysis quantifies this overestimation and provides evi-
dence using statistical tests. Finally, in Section 4.3, we use a
comprehensive hyperparameter tuning and model evaluation
procedure to show that we can improve the generalization
performance of the LSTM model using batch normalization,
but that the addition of two other neural network regular-
ization methods does not further improve either the LSTM
or RNN model. We also present detailed information on
a variety of parameterizations examined in order to inform
future work.

4.1 Experiment 1: Full Replication With Orig-
inal Design

In our first experiment, we replicated the original experi-
ment using the original design – estimating model perfor-
mance via cross-validation within a single course – across
45 unique MOOCs using MORF, in consultation with the
original authors. Results are shown in Figure 2.

The original work concluded that a Long Short-Term Mem-
ory (LSTM) neural network model “ beats the ... other
proposed methods by a large margin” [13], pp.1. – a result
which matches the advances that neural models have made
in other domains. Our results in Experiment 1 show, how-
ever, that (1) LSTM is actually one of the lowest-performing
models, with the lowest average performance of any model
tested in weeks 4 and 5; (2) in most cases, the 95% con-
fidence intervals for algorithm performance overlap, and so
we cannot conclude that there is a difference in performance
between any but the very best and worst models evaluated,
even without applying corrections to adjust for the use of
multiple comparisons; and (3) observed performance of all
models is lower than in [13], particularly in later weeks of
the course.

We hypothesize that the relatively poor performance of LSTM
may may be due to overfitting on the dataset used in the
original experiment in [13]. Particularly when using cross-
validation for model selection on a single dataset with a
highly flexible model such as LSTM, the experimental de-
sign of the original work was quite susceptible to overfit-
ting. Overfitting seems particularly likely because no pro-
cedure for selecting hyperparameters was reported in [13],
and some key hyperparameter settings for the LSTM model

(e.g. batch size) were not reported at all. These hyperpa-
rameters were not available even after correspondence with
the authors, who did not record them and no longer had the
original code available (which itself points to the need for
reliable long-term reproducibility solutions such as MORF).
The need for detailed hyperparameter reporting in repro-
ducible research has been noted previously [21].

(2) shows the advantage of using MORF’s large data repos-
itory, which allows us to observe variability in each algo-
rithm’s performance across many MOOCs to form confi-
dence intervals for algorithm performance. Experiment 1
suggests that while differences in average performance may
exist, these are too small to be interpreted as genuine and
not spurious – particularly in light of the results shown in
Figure 3, which shows that the differences due to cross-
validation bias are larger than the observed differences be-
tween algorithms in most comparisons. We note that the
out-of-fold prediction error in each cross-validation iteration
could have been used to provide an estimate of the variabil-
ity in model performance when applied to new data in [13];
however, this was not provided in the original work. In any
case, having more datasets available makes the estimation of
this variability more reliable than would have been possible
with only one course.

Finally, the generally lower observed performance for all
models may may also be due to overfitting, and particularly
due to the experimental design. Experiment 1 uses an identi-
cal design to [13]. However, [13] uses only a single course (in
comparison to the 45 courses used in Experiment 1), which
would have permitted tuning many of the hyperparameters
germane to neural models (e.g. learning rate, activation
functions, number of training epochs, batch size, number of
hidden layers and units) specifically to optimize performance
on this individual course. In contrast, when using the large,
diverse set of courses in MORF, over-tuning such hyperpa-
rameters to an individual course would be disadvantageous
(and extremely difficult, due to the diversity of course sizes
and learner populations represented in MORF [17]). When
fitting multiple courses at once (as in MORF), the incentive
is instead to find a set of hyperparameters which generalizes
to many different types of courses.

The results of this experiment demonstrate the importance
of using large, diverse datasets for machine learning experi-
ments, and of performing multiple experimental replications.
Additionally, these results demonstrate that simpler models
– such as RNN, radial SVM, and logistic regression – may
achieve equivalent or better performance than LSTM for
MOOC dropout prediction. Our results, which are contrary
to the findings of the original study, also suggest that fur-
ther replication is necessary to identify the most effective
algorithms for MOOC dropout prediction, as we perform no
hyperparameter tuning in Experiment 1 and only replicate
the original models and features.

4.2 Experiment 2: Replication With Improved
Experimental Design

The original aim of the dropout prediction model in [13]
was to achieve accurate prediction on future courses. Prior
work has shown considerable differences in prediction re-
sults depending on the prediction and transfer architectures
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Original Results (Fei and Yeung 2015) Experiment 2 Results (Test on Future Course Session)Experiment 1 Results (Cross-Validation Within Course)

Figure 2: Original results from [13] (left) and replication results using the MOOC Replication Framework
evaluated using a held-out future course session (center) and cross-validation (right). 95% confidence intervals
shown. IOHMM not replicated due to lack of an open-source implementation which supported prediction.

used, particularly when predicting on the same couse session
used for model training instead of a future iteration of the
same course [37, 4]. In the case of the original experiment,
the cross-validation design was due to necessity: data from
only a single MOOC was available to the original authors,
and the prediction on out-of-fold data within the same ses-
sion was used. However, MORF makes all sessions of each
course available, with 45 courses having at least two ses-
sions. Therefore, in this section, we conduct an experiment
which uses the same modeling methods as the original ex-
periment, but do so using a true holdout architecture, where
each model is trained on the first n−1 sessions of a MOOC,
and is tested on the final session. We refer to this exper-
iment as Experiment 2. Note that only the design of the
prediction experiment is changed from Experiment 1.

The results of Experiment 2 are shown in the right panel of
Figure 2. The contrast between the center (cross-validation)
and right (holdout) panels demonstrates the optimistic bias
which can be introduced by evaluating generalization per-
formance via within-session cross-validation without the use
of an independent hold-out session [36]. This matches pre-
vious results demonstrating that the bias of performance
estimates when models are optimized over cross-validation
folds can often exceed the difference between learning algo-
rithms [8]. These results are further demonstrated by Figure
3, which shows a persistent positive bias for model evalua-
tion performed by cross-validation versus the “true” perfor-
mance on a future course session. A two-sided Wilcoxon
signed-rank test of a null hypothesis of equivalence between
the holdout and cross-validated experimental results, where
each model-week combination was treated as an observation,
was rejected with p < 2.2× 10−16.

A notable result from Figure 3 is that the observed 2σ̂ upper-
bound on the bias due to cross-validation is around begins
at roughly 0.035 AUC units when predicting after a sin-
gle week, and increases to over 0.08 AUC points in later
weeks. This difference due to design is as large as the dif-
ference between the highest-performing model and the two
next-highest performing models in every week of the origi-
nal experiment (see left panel of Figure 2). This shows that
biases introduced by experimental design can entirely over-
shadow experimental effects, and should be a particularly
strong call to action for the EDM community.

The findings of Experiment 2 are threefold. First, it demon-

strates that using within-course cross-validation to estimate
generalization performance on future course sessions intro-
duces a significant positive bias. This should serve both as a
call for machine learning researchers to dedicate additional
attention to the experimental design of machine learning ex-
periments, as well as a call to practitioners to rigorously eval-
uate models prior to their deployment for prediction. Sec-
ond, we quantify this bias, showing that in practice the bias
roughly falls in the 95% CI [0, 0.05] – where the upper-bound
is larger than the difference between learning algorithms in
the original work. Third, these results provide further ev-
idence that the original results presented in [13] may have
been overfit to the data in that work, and that the gener-
alization performance of such a model may be lower than
what was suggested by the initial results from [13].

4.3 Experiment 3: Improving Model Gener-
alization Performance via Regularization

In the previous two experiments, we presented results which
called into question some findings of the initial study in
[13], that neural models can significantly improve MOOC
dropout prediction. Our observations largely centered on
the problematic potential for overfitting and optimistic bias
due to experimental design in [13]. In this section, we show
that the consequences of overfitting can be at least par-
tially ameliorated by using modern regularization methods
for neural models. This section is intended to explore (a)
whether we can provide further evidence that the original
models were overfit to the data in [13], and (b) whether we
can improve the models’ generalization performance, and
still achieve state-of-the-art dropout prediction performance
with these models, through the use of regularization to re-
duce overfitting. In particular, we explore the recurrent neu-
ral network (“vanilla RNN”) and Long Short-Term Memory
(LSTM) models from the original study, but introduce differ-
ent architectures and explore various configurations of three
regularization methods, none of which were in the original
work. We show that we can approach, but not match, the
performance reported in [13], even when predicting on future
course sessions, by applying and tuning these regularizations
to the RNN and LSTM models.

Regularization is a modification made to a learning algo-
rithm that is intended to reduce its generalization error but
not its training error [18]. We explore three types of regu-
larization in this experiment, which we describe below.
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Figure 3: Comparison of AUC estimates from identical experiments using a holdout vs. within-course
cross-validation evaluation architecture. These results show a persistent positive bias when within-course
cross-validation is used to estimate predictive performance on a future, held-out session of a MOOC.

Dropout [34] randomly drops neural network units (along
with their connections) during each training iteration with
probability p. We test models with p = {0, 0.2}

Batch normalization [22] normalizes each feature in ev-
ery minibatch of data during training, which stabilizes model
training by reducing covariate shift (large changes in param-
eter updates due to differences in the distribution across fea-
tures) and preventing small changes to the parameters from
amplifying into larger and suboptimal changes in activations
in gradients. We test models with and without batch nor-
malization for each model.

L2 Regularization perhaps the most common regulariza-
tion method in modern deep learning research [18], L2 regu-
larization adds a penalty term to the loss function based on
the L2 norm of the network weights with the parameter λ
controlling the level of penalization (higher λ yields greater
regularization). We test λ = {0, 0.01, 0.001} for each model.

The study under replication was published in 2015, and since
then, research on the regularization of neural models has ad-
vanced considerably. Dropout was only originally proposed
in 2014, and batch normalization in 2015, so these tech-
niques were still quite new at the time of publication of [13]
and implementations were not widely available as part of
standard neural network software, as they are now. As a
result, the original publication quite reasonably did not ex-
plore these novel methods, despite their potential to improve
their results in practice.

Experiment 3 evaluates dropout prediction after four weeks
of the course (this is the final time point shown in Figure
2). Evaluating the full range of all weekly prediction tasks
was beyond the scope of this experiment, as even the ex-
periment here required testing 72 different hyperparameter
configurations (36 LSTM and 36 RNN models) across 45
courses, resulting in a total of 3, 240 total models trained.
We choose the week 4 prediction task because, after four
weeks, there would be maximal data for models to learn
from – and also, potentially, for models to overfit to. Week
4 prediction therefore provides the best opportunity to sep-
arate models with strong generalization performance from

models which overfit.

Results from Experiment 3 are shown in Figure 4. We statis-
tically evaluate the model comparisons, and visualize the re-
sults, using the Bayesian method of [14]. This method uses a
hierarchical Bayesian model to evaluate all pairwise compar-
isons of a set of k models across N datasets by accounting for
the correlation in performance across models and datasets.
While the original comparison also accounts for fold-level
correlation when applying the testing procedure to the re-
sults of a cross-validation procedure, here we only have a sin-
gle estimate for each dataset, and this simply adds slightly
more uncertainty to our estimation, which will tend to make
the model more conservative (less likely to make a decision).
The procedure estimates three probabilities for each pair
of classifiers X and Y : P(X > Y ),P(ROPE),P(X < Y ),
where ROPE indicates that the difference in performance
between the models is within a “region of practical equiv-
alence”, which in this experiment is set to ROPE = 0.01.
We use a decision threshold of 0.9, which means that the
procedure makes a “decision” (indicated by a colored entry
in the windowpane plot of Figure 4) only when the posterior
probability of one of the events is greater than or equal to
0.9; otherwise, the procedure makes no decision (indicated
by a blank white entry in Figure 4).

The results in Figure 4 demonstrate that batch normaliza-
tion considerably improves the LSTM model – all LSTM
models with batch normalization performed better, on av-
erage, than any LSTM model without batch normalization.
The hierarchical Bayesian model used to compare the mod-
eling results across the 45 course in MORF indicated that al-
most all of the batch-normalized LSTM models were within
the “region of practical equivalence”, or ROPE, indicating a
high posterior probability that these models achieve practi-
cally equivalent predictive performance (in this experiment,
a ROPE of 0.01 was used, meaning that a decision of ROPE
indicates a confident decision that models’ test AUC differed
by less than 0.01). Tuning of the other hyperparameters (L2
regularization λ, and dropout probability p) had little effect
on observed model performance, with almost all hyperpa-
rameter configurations being practically equivalent within a
fixed batch normalization group. These results suggest that
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Figure 4: Windowpane plots for LSTM model tuning experiment (left) and RNN model tuning experiment
(right). Batch normalization considerably improves the LSTM model. Other regularization methods (L2 reg-
ularization, dropout) show little effect. The RNN shows stable performance with a variety of configurations.

the LSTM model, which had considerably more parameters,
was likely overfitting to the data – and that the different
distributions across the different input features (which is
countered by batch normalization) were a strong factor con-
tributing to this overfitting. The LSTM model with the
highest average performance, with p = 0.0, h = 10, λ = 0.0
and batch normalization, achieved a mean AUC of 0.726 on
the MORF dataset – only 0.002 less than the best RNN
model in Experiment 3.

Figure 4 shows a more complicated picture with respect
to the RNN model. Generally, the results show that the
RNN performance is more robust to the hyperparameters:
the RNN achieves practically equivalent performance with a
range of settings. For example, models with both 10 and 20
hidden units, and with every λ value considered, achieve per-
formance practically equivalent to the highest-performing
model. The exception to this robustness is dropout – every
RNN in the “family” of best models (those with performance
equivalent to the highest-performing model , as in [14]) had
no dropout, or p = 0.0. The RNN model with the high-
est average performance, with p = 0.0, h = 20, λ = 0.01,
achieved a mean AUC of 0.728.

Collectively, these results support the hypothesis that the
LSTM model as parameterized in the original experiment
tends to overfit on standard-sized MOOC datasets, while
providing evidence that the RNN model is less prone to over-
fitting. The results also show that the LSTM model can be
improved, with performance to match the best RNN model,
through the use of regularization. For reference, the LSTM
model in the original experiment (with a single layer and
20 hidden units) has 2,261 trainable parameters, while the
RNN model has 581 tunable parameters. Regularization is
less likely to impact a properly-parameterized model when
sufficient data is provided, while its impact can be much
more evident when a model has too many free parameters
for the available data, as we see in the contrast between the
LSTM and RNN results of Figure 4 and the lack of effect on
RNN performance (mean AUC for the original RNN show
in in Experiment 2 was 0.727 at week 5).

5. IMPLICATIONS FOR PRACTICE
5.1 Experimental Design for Predictive Mod-

eling in EDM
The current work demonstrates that experimental design
can have important implications for the conclusions gen-
erated from a machine learning experiment. Our results
show that both researchers and practitioners should clearly
identify the hypotheses to be tested by a machine learning
experiment, or the goals of a deployed model, and then uti-
lize experimental designs which allow for inference about the
types of prediction scenarios to be encountered in the task of
interest. Cross-validation can be useful in evaluating a spe-
cific dataset, e.g. by fitting an explanatory model where the
interpretation of learned parameters is used to understand
the dataset. Cross-validation may also be useful when the
available data is limited. However, in cases where prediction
on a future course or generalization to new data are of inter-
est, using data from a future course or session will provide
more reliable estimates of model performance. For further
discussion of the design of machine learning experiments, see
[1].

5.2 Hyperparameter Tuning for Neural Mod-
els in EDM

The current work provides evidence regarding the impor-
tance of effective model tuning and regularization in edu-
cational data mining. In practice, educational models need
to operate effectively in a wide variety of scenarios. Pre-
dictive models in EDM are often required to obtain reason-
able performance even as the dataset size, target population,
and even data attributes change across course populations,
institutions, or platforms, making model robustness a key
consideration.

This experiment adds to an existing body of evidence (e.g.
[14]) that selecting an appropriate statistical model can af-
fect predictive performance much more than hyperparame-
ter selection (when reasonable hyperparameters are selected).
The introduction of regularization methods can improve mod-
els which are overfit, but has little impact on those which are
not overfit. However, introducing regularization as an addi-
tional experimental factor may be particularly challenging
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as it introduces an additional dimension of model tuning and
can considerably increase the computational cost of experi-
ments.

Our finding that batch normalization, in particular, imr-
poved the generalization performance of the LSTM model
suggests that normalization of counting-based features – which
can be highly skewed and show very different distributions
for different types of actions – is an important tool for use
in educational models.

6. BEYOND VERIFICATION: ADDITIONAL
ADVANTAGES OF REPLICATION IN MA-
CHINE LEARNING

Much prior work on reproducibility has focused on verifi-
cation – ensuring that published results are true and can
be reproduced. However, end-to-end reproducible machine
learning frameworks, such as MORF, provide benefits be-
yond mere verification, including:

“Gold standard” benchmarking: open replication plat-
forms allow for the comparison of results which were pre-
viously not comparable, having been conducted on differ-
ent data. The use of such benchmarking datasets has con-
tributed to the rapid advance of fields such as computer vi-
sion (e.g. MNIST, IMAGENET), natural language process-
ing (Penn Tree Bank, Brown corpus), and computational
neuroscience (openFMRI). These datasets have been partic-
ularly impactful in fields where it is difficult or expensive to
collect, label, or share data (as is the case with MOOC data,
due to legal restrictions on sharing and access). This can
help advance the “state of the art” by providing a common
performance reference which is currently missing in MOOC
research.

Shared baseline implementations: We noted above that
variability in so-called “baseline” or reference implementa-
tions of prior work has contributed to concerns about re-
producibility in the field [21]. By providing fully-executable
versions of existing experiments, MORF ameliorates these
issues, allowing for all future work to properly compare to
the exact previous implementation of a baseline method.

Forkability: containerization produces a ready-made ex-
ecutable which fully encompasses the code and execution
environment of an experiment. These can be readily shared
and “forked” much in the same way code is “forked” from
a git repository. This allows MOOC researchers to build
off of others’ work by modifying part or all of an end-to-
end pipeline (for example, by experimenting with different
statistical algorithms but using the same feature set as a
previous experiment) within the same software ecosystem.

Generalizability analysis: Each successive replication of
an experiment provides information about its generalizabil-
ity. Evaluating the generalizability of experiments has been
a challenge in MOOC research to date, where studies con-
ducted on restricted and often homogeneous datasets are
common [15]. When containerized end-to-end implementa-
tions are available, replicating these analyses on new data
– even data which are not publicly available but share the
schema of the original data – becomes as straightforward as

running the containerized experiment against new data.

Sensitivity Analysis: This technique, used widely in Bayesian
analysis, evaluates how changes to the underlying assump-
tions or hyperparameters affect model fit and performance.
Such an evaluation can provide useful information about a
model’s robustness and potential to generalize to new data.
Without being able to fully reproduce a model on the orig-
inal data, sensitivity analyses are not possible. In MORF,
such analyses can be conducted by simply forking and mod-
ifying the containerized version of the original experiment,
then re-executing it against the same data. These analyses
can also include so-called ablation analyses, wherein indi-
vidual components are removed from a model to observe
their contribution to the results, as well as slicing analyses,
where fine-grained analysis of performance across different
subgroups (e.g. demographic groups) is explored [32].

Full Pipeline Evaluation: Each stage of an end-to-end
machine learning experiment (feature extraction, algorithm
selection, model training, model evaluation) can be done in
many different ways. Each stage also affects the others (for
example, some algorithms might perform best with large fea-
ture spaces; others might perform poorly with many corre-
lated features). However, current research usually evaluates
only one or two components of this pipeline (e.g. training
several algorithms and tuning their hyperparameters on a
fixed feature set). Not only are the remaining stages of-
ten described in poor detail or not at all [19]; such work
also leaves future researchers unable to evaluate the syn-
ergy between different aspects of the end-to-end pipeline in
a published experiment (for example, exploring whether an
algorithm’s performance improves with a different feature
set). MORF fully encapsulates this end-to-end pipeline for
a given experiment and it makes it available for modification
to any other researcher.

Meta-Analysis: While meta-analyses are common in fields
with robust empirical research bases, such analyses have
been less common in the field of machine learning, which
has an emphasis on novelty. The open availability of exe-
cutable machine learning experiments affords detailed meta-
analyses by providing complete results of all modeling stages
for meta-analysis.

7. CONCLUSION
Further attention and analysis should be dedicated to repli-
cation in the field of educational data mining, and specif-
ically to MOOC dropout prediction. This work proposes
a paradigm of end-to-end reproducibility using the MOOC
Replication Framework. Our case study in replication using
MORF demonstrates the insights that can be gained from
replication studies in EDM, and the importance of factors
related to experimental design.
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ABSTRACT
Students’ interactions with online tools can provide us with
insights into their study and work habits. Prior research has
shown that these habits, even as simple as the number of ac-
tions or the time spent on online platforms can distinguish
between the higher performing students and low-performers.
These habits are also often used to predict students’ perfor-
mance in classes. One key feature of these actions that is often
overlooked is how and when the students transition between
different online platforms. In this work, we study sequences
of student transitions between online tools in blended courses
and identify which habits make the most difference between the
higher and lower performing groups. While our results showed
that most of the time students focus on a single tool, we were
able to find patterns in their transitions to differentiate high
and low performing groups. These findings can help instructors
to provide procedural guidance to the students, as well as to
identify harmful habits and make timely interventions.

1. INTRODUCTION
Modern blended classrooms are defined by suites of educational
tools such as learning management systems, online forums, in-
telligent textbooks, video lectures, groupware tools, and even
ticketing systems for office hours. The ubiquity of such tools pro-
vides researchers with a rich amount of data on students’ study
behaviors, work habits, and their learning trajectories. This
data can help researchers to identify good and bad study habits
among students as well as to define measures for estimating
students’ performance early on in the courses. Large datasets of
this type first became available in Massive Open Online Courses
(MOOCs) that have supported informative research on students’

online study habits. While these tools have now become the
norm in many classroom settings and while there has been
substantial research on how students use the individual tools,
we have far less understanding of how students work across tools
and how different patterns of use may affect their learning. Our
goal in this research is to address this question through the use
of sequence mining. By developing a better understanding of
student activities in different online systems and their transitions
between these tools, we can provide the instructors with insight
on how their students usually behave when they are not in class.

Prior research has shown that there are several features easily
extracted from user logs that can distinguish high performing
students from the lower performing ones. Researchers have
found several informative features such as number of videos
watched per week, completing assignments [27], starting early
[28, 34], or skipping videos and assignments [12] that were as-
sociated with students’ performance and dropout in MOOCs.
Studies in blended courses showed that features such as course
attendance, web page views, number of watched videos, number
of pauses in videos, and the number of attempts before getting
each question right are correlating with student dropouts [6].

More recent work in MOOCs, Intelligent Tutoring Systems
(ITSs), and blended courses has focused on grouping the student
activities into study sessions and analyzing these sessions and
the sequence of students’ actions in them. Some researchers
have analyzed features based upon these sessions in MOOCs and
blended courses, such as the duration [2, 29]. However, those
studies overlook the patterns of student transitions between
different states or different tools. Other researchers have studied
the sequences of student actions in each session, but most of
those studies are focused on MOOCs or ITSs and not many of
them have focused on blended courses and the data collected
from the several tools that the students use for these classes.
Some of these studies have relied on Hidden Markov Models on
the sequences of student actions and compared the diagrams
between high and low performing students (e.g. [8, 10, 14]), while
others have clustered these sequences to find groups of similarly
behaving students in classes (e.g. [4, 11, 7, 17, 18, 19, 25, 30]).
These studies have often been able to identify relevant clusters
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among the students such as “confirmers” and “non-confirmers”
[11] or “behind”, “on-track”, “auditing”, and “out” [17]. Also,
other sets of studies have performed differential pattern mining
on such sequences to find the patterns that are different between
high and low performing students [16, 15, 13, 24]. And finally,
another part of this research treats the sequences of actions as
strings and uses analysis of N-grams to identify the popular
trends in student activities and transitions [22, 5, 31, 32]. These
methods are helpful in revealing many of the students’ behavioral
patterns and the differences between the different performance
groups, but are mostly focused on MOOCs or ITSs.

Despite the extensive research in this area on MOOCs and ITSs,
studies on student transactions in blended courses are limited
and most of them focus on correct/incorrect attempts on the
same platform (e.g. the assignment submission systems) [11]. In
this work, we collected activity logs from four online platforms
for two offerings of two on-campus classes at North Carolina
State University. In these classes, Piazza was used as a discus-
sion forum, Moodle as a Learning Management System (LMS)
was the means of sharing the course material and assignments,
Github was used in one class as a version control as well as a code
submission tool for the projects, and WebAssign was used for as-
signment submissions and automated grading in the other class.
We aligned the logs into a single coherent transaction record,
grouped the individual student actions into study sessions, and
extracted the sequences of student actions from them. Finally,
we labeled the students as the“Distinction”group who gained an
A- or above and the“Non-distinction”group who gained a B+ or
below in these courses and used N-gram analysis as well as Apri-
ori studies to find the answers to the following research questions:

RQ1 What are the most common transitions between different
course tools?

RQ2 Which transitions are significantly different between the
distinction and non-distinction groups?

The answers to these questions can help us understand the
trends of student activities better, to find key differences be-
tween high-performing students and the lower performing ones,
and help the instructors to provide guidance to the students as
they work or identify harmful patterns early in the semesters.

2. LITERATURE REVIEW
2.1 Students’ Online Activity Analysis
Since detailed online student logs have been available for the
MOOCs, there have been extensive studies of student behaviors
using these logs to identify their association with the students’
performance and attrition. Even simple measures such as num-
ber of videos watched are shown to be predictive of students’
attrition and performance in MOOCs. Some examples of these
features include the number of videos watched per week, whether
the student watched all of the lectures, or completed all of the
assignments [27]. They also included joining the course early [28,
34], skipping videos or assignments, assignment performance
[12], spending more time on each assignment [3], the number
of lecture views/downloads, quiz attempts, and forum views/-
posts/comments [9]. Some researchers such as Yang et al. have
gone further and constructed more complex features to represent
student confusion and shown that increased confusion is asso-
ciated with dropout in MOOCs [33]. Chen et al. has studied

blended courses and has also shown that features such as course
attendance, web page views, videos watched, video pauses, and
assignment attempts are also correlated with student dropout
[6]. All of these features, while informative, overlook an impor-
tant part of the information that online logs provide us: the
sequences of actions and transitions among different platforms.

To analyze a group of student actions as a whole, researchers
have suggested defining study sessions. Prior work has suggested
different methods for defining study sessions such as having a
“fixed duration” [5], using “browser navigations”, or having a
‘cutoff’ [2]. But as Kovanovic et al. showed, the choice of
the method or the cutoff time is not trivial and there is no
best method for everyone [20]. They suggested exploring the
data to find the cutoff or method that matches the dataset
best. Amnueypornsakul et al. defined study sessions and used
the actions and the sessions to calculate measures such as the
length of the action sequence, the number of occurrences of
each activity, and the number of Wiki page views [2]. Sheshadri
et al. also defined study sessions based on the time difference
between student actions and extracted measures such as the
average number of actions in each session, inconsistency of the
student (i.e. how different the number of the sessions started
by a student is from the class average and how infrequent they
get online), average length of sessions, and sessions including
discussion forum activity [29]. While these features can add to
the information collected directly from the online tools, they still
do not consider transitions from one type of action to the other.

2.2 Sequence Analysis
2.2.1 Markov Models

Several methods have been used for analyzing the sequences of
student actions. The first and most popular is the use of Markov
chains and Hidden Markov Models. Jeong et al. for example,
trained models based upon system logs of a learning-by-teaching
system called Betty’s Brain in which the students learn material
by teaching an artificial agent, Betty [14]. The possible student
actions in this platform are reading the material they are trying
to teach Betty; editing the material; using links and concepts in
forms of adding, removing, or changing (e.g. link add); query-
ing the agent by asking questions about the provided material;
asking Betty the agent to explain the answer she just gave;
and giving a quiz to assess how well Betty has learned. The
authors extracted sequences of student actions on the platform
and used a Hidden Markov Model to analyze their behavior.
They found that students who generated better concept maps
used balanced learning strategies that include moving between
different actions, while the students who generated low scoring
concept maps typically focused too much on getting the quiz an-
swers correct. Faucon et al. used semi-Markov chains to model
student activities in 61 MOOCs offered by EPFL university on
Coursera and EdX platforms [8]. They utilized an Expecta-
tion Maximization algorithm for fitting the model and showed
a graphical representation of their results on the transitions
between different states (e.g. submission, forum participation,
video watching, etc) for students of different behavior profiles.
Similarly, Geigle et al. used clickstream data from a UIUC
Text Retrieval MOOC on Coursera to generate a transition
diagram between the different tools [10]. While Markov models
are suitable for modeling student transactions between different
states and are easy to visualize, the differences they show are
often hard to quantify and compare between groups [14].
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2.2.2 Sequence Clustering
Another approach for analyzing sequences of student actions is
by clustering them. Desmarais et al. for example, collected the
action logs of students in a college math learning environment [7].
In that work, they defined distinct sessions where the students
paused for more than 5 minutes between them unless the action
after the pause was a submission to an exercise, which might take
longer. They then clustered the sequences using the Levenshtein
distance and identified three types of sessions. The first was
when the students showed exploratory behavior and engaged in
a mixture of browsing through exercises and notes. The second
type were the short sessions comprising a variety of behaviors
such as browsing and attempting the exercises and quizzes. The
third were exercise intensive sessions mostly consisting of exercise
logs. Kizilcec et al. used a similar approach on the student
engagements in a MOOC [17]. For each assessment period, they
labeled the students as either“behind”, “on track”, “auditing”, or
“out”based on their engagement with the course material. Then,
they applied K-means clustering on the sequences of the student
states in all assessment periods to identify the prototypical
engagement patterns and were able to observe four clusters of
students as completing, auditing, disengaging, and sampling.

A similar analysis was performed by Guerra et al. on data
collected from QuizJET, which was a voluntary practice plat-
form for students in an introduction to programming blended
course [11]. They extracted the sequence of correct and incor-
rect submissions for each student and each question. Then, by
comparing the sequences of different students to the sequences
of the same student, they observed that these sequences are
personal and can show people’s study approaches like a “study
genome”. While these genomes were shown to evolve throughout
the semester, the evolved genomes for a single user were still
more similar than the genomes across different users. They
were able to cluster the students based on their genomes and
identify two groups as the confirmers and the non-confirmers.
The confirmers kept trying examples of the same topic even
after they got one correct, while the non-confirmers moved on
to the next topic after they were able to solve one example
correctly. Finally, Boroujeni et al. clustered student activities
in a MOOC and were able to identify four user profile types:
users who watch videos before making submissions (44% of the
users), users who make submissions without watching videos
(2% of the users), users who watch videos and never submit
(7% of the users), and the users who change their habit in the
semester (47% of the users) [4]. These categories are similar
to the ones suggested by Kizilcec et al. [17]. While clustering
seems to offer much insight on similar sequences and differences
between different groups of students, it is often challenging to
interpret these clusters and get to real world groups of students.

To account for the randomness in the generation of Markov
Models, some researchers have generated Markov Models based
upon each individual sequence and then clustered them to obtain
more meaningful results. Köck et al. for example, designed an
analysis pipeline which included a pre-processor which extracted
activity sequences from the raw data, a modelling unit which
converted the sequences into Deep Markov Models, and a final
clustering unit [19]. They applied this pipeline to extract com-
mon transitions exhibited by different performance groups in a
Physics course at the US Naval Academy. Similarly, Shih et al.
applied the same clustering method on the Hidden Markov Mod-
els based on student activities in a Geometry Cognitive Tutor

[30]. Klingler et al. developed an evolutionary clustering pipeline
to improve cluster stability over multiple training sessions in the
presence of noise [18]. This pipeline extracts action sequences
from log data, transforms them into per-session Markov Chains,
computes pairwise similarities between students for every session,
then performs clustering using evolutionary clustering, and uses
the Akaike information criterion with correction (AICc) to select
the best model. They suggested that this pipeline can be used
as a black box on any ITS. While the combination of clustering
and Markov Models might overcome some disadvantages of each
individual, the results are still challenging to interpret as noted
by Shih et al. [30].

2.2.3 Sequences as N-grams
Another approach often taken when analyzing students’ sequence
data is treating the sequence of actions as a sequence of strings,
and then identifying the common N-grams in it. Li et al. and
Sinha et al. for example, extracted the sequences of actions for
users in MOOCs and used the frequency of N-grams in such
sequences as predictive features to predict students’ performance
and certification [22, 31]. Maldonado et al. also performed a
similar analysis on data extracted from an interactive tabletop
(Digital Mysteries) and were able to identify frequent sequences
of actions that distinguish between different performance groups
[23]. Wen and Rosè applied this method to extract the most
common types of sessions among students and were able to
identify 4 types of sessions as lecture and peer assessment ses-
sions, browse course sessions, assignment and forum sessions,
final quiz and survey sessions, and lecture and quiz sessions [32].
Brooks et al. defined fixed duration sessions during the semester
(i.e. 1 day, 3 days, 1 week, and 1 month) and recorded students’
activity in each frame as a binary feature [5]. They used frequent
N-grams extracted from these sequences as features to make
early and cross-class predictions of student dropout. While
N-grams are easier to process since there are many available
libraries for analyzing them, extracting information from them
can still be challenging and require expert help at times.

2.2.4 Differential Pattern Mining
A newer approach which is mostly applied to ITS data is Differen-
tial Pattern Mining. The algorithms in this approach are able to
identify patterns that are more frequent than a specific threshold
and are significantly different between the two specified groups
such as pass/fail students [1]. Kinnebrew et al. for example used
a differential sequence mining algorithm to extract the sequences
that are different between the high performers and low perform-
ers using the Betty’s Brain platform [15, 16]. They found that
the high performers more frequently engaged in reading activi-
ties in a monitoring context, while the lower performers usually
perform short reads mostly not relevant to their recent actions
[16]. Herold et al. applied the same analysis to the sequences
collected with LivescribeTMdigital pens, used to complete all of
their homework and exams [13]. These pens are able to log stu-
dents’ handwriting as time-stamped pen strokes providing the
sequence in which it was written. Using this method, they were
able to identify 98 patterns in total and use them to make pre-
dictions on the students’ performance in the closest exam after
the task with an R2 of 0.3. While this approach is able to make
the differences in performance groups bolder, it is still relatively
new, the libraries for it are limited, and it is also possible to end
up with a large number of rules that will need clustering again.
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3. DATASET
We collected data from two offerings each of two distinct courses,
a Discrete Math course (DM) in the Fall semesters of 2013 and
2015, and a Java programming course (Java) in the Fall of 2015
and 2016. The 2015 offerings of these courses occurred contempo-
raneously. Both of these courses are core undergraduate courses,
required for students majoring and minoring in Computer Sci-
ence. They both use significant online materials and support and
can be considered blended courses. The online materials include
online assignments, supplemental material, and student forums.

In all these classes, Moodle is used as an LMS for providing the
course material and the assignment descriptions to the students.
Piazza is used as the discussion forum and the main resource for
the students in these courses to ask questions and get answers
from the teaching staff as well as to have discussions with their
peers. The students were able to post completely anonymously
for a brief time in DM-2013 but it was blocked in all other courses.
Posting anonymously to other students was always allowed. Post-
ing on Piazza was not required in any of these classes, but it was
encouraged by the teaching staff as the best choice of asking for
help. In the DM classes, the instructors used multiple answer
questions on WebAssign for a large portion of the assignments.
WebAssign was configured to allow the students to attempt
each question several times to get it correctly and provides the
students with instant automatic feedback on their answers. In
the Java classes, the students use Github as a version control
for keeping track of their code and editing in teams, as well as
the means for submitting their code for grading. The students’
Github repositories were connected to Jenkins servers, which ran
several test cases on their code after each pushed commit. Some
of the tests were predefined and authored by the instructional
staff and some others were the tests designed by the students
to test their own code. This enabled students to get instant
feedback on their code and possibly revise it after each submis-
sion. Our datasets in this study consist of the Piazza discussions,
Moodle logs, and final grades for all the classes as well as Github
commit logs for Java classes and WebAssign logs for DM-2013.

While some of the tools used in these classes are different, they
play similar roles in the classes. In the DM classes students use
WebAssign to submit their assignments and to receive immediate
automated feedback. And in this class they can re-submit as
many times as they wish to get the right answer. Similarly, in
the Java classes the students use Github for making submissions
on their projects. While these submissions often take more time
than answering a simple question on WebAssign, the students are
still able to get immediate feedback from Jenkins and to try again.
Consequently, while some visible trends in these classes might
be different, we expect the trends for WebAssign and Github to
be similar, because they play a similar role. Similarly, in both
these classes, Moodle and Piazza can be considered as support
platforms since the students can use the course material, project
descriptions, and the questions on the forum to resolve their
confusions. The types of support these platforms are offering are
quite different, since asking questions on Piazza is a more direct
means of asking for help than referring to the class material.

More information on the population of these classes is shown
in Table 1. The grade distributions for these classes are shown
in Figure 1. Both these courses are C-wall courses, where the
students need a C or better in them to proceed to the next
computer science courses in the curriculum. As shown in these

Table 1: Statistics of Each Class
Class DM-2013 DM-2015 Java-2015 Java-2016
Total Students 251 255 181 206
Teaching Assistants 5 5 9 9
Instructors 2 2 4 4
Average Grade 81.2 87.6 79.7 79.9

figures, most of the students performed well in these classes.
Thus, we decided that clustering them into pass/fail groups
would be uninformative and result in a skewed dataset. Since the
median grades for all these datasets were close to 90, the cutoff
between an A- and a B+ in the courses, we decided to partition
the classes into two groups, the distinction group earning an A-
or above, and the non-distinction earning a B+ or below. This
partitioning resulted in an almost even groups of the students.
We believe that this segmentation leaves room for adjusting the
analysis for other classes with different grade distributions.

Figure 1: The Distribution of Grades in Different Classes

3.1 Discrete Math
This course covered material such as propositional logic, pred-
icate calculus, methods of proof, elementary set theory, the
analysis of algorithms, and the asymptotic growth of functions.
The total enrollments in these classes consisted of 251 students
in DM-2013 and 255 students in DM-2015. Both of these classes
were offered in two sections by two instructors with 5 shared
teaching assistants. The average final grade in DM-2013 was
81.2 and 87.6 in the 2015 class. Both sections in each year shared
the same Moodle page for assignments and class material, a
Piazza forum for discussions, and both used WebAssign as well
as hand-graded assignments. The only major difference between
these two offerings was that in 2015 the instructor consciously
delayed responding to posts on Piazza so that the TAs and
other students would be more involved. However, most of the
posts were still answered in a similar time frame to the ones in
2013 by the lead TA in that class.

3.2 Java Programming Concepts
The material of the Java class mainly consisted of software
design and testing, encapsulation, polymorphism, inheritance,
linear data structures, finite-state machines, and recursion. The
total enrollment in these classes was 181 students with an av-
erage grade of 79.7 in 2015 and 206 students with an average
grade of 79.9 in 2016.

Both of these classes were offered in two different in-person
sections by two separate instructors as well as a distance edu-
cation section by two other instructors, having a total of four
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instructors with nine shared teaching assistants. We removed
the data for the distance education students from our analysis
since they were a much smaller group and differed substantially
from the local students who could engage in face-to-face inter-
actions. These classes used Piazza for discussions, Moodle for
sharing course materials, Github for working on group projects,
and Jenkins for automated code evaluation.

While the teaching material and the methods were mostly simi-
lar across both the offerings, there was a major difference in the
lab structures for these classes. Both course offerings included
lab sessions. In each session, the students completed a short
assignment in a team of three with assistance from the teaching
staff. One key difference between the course offerings was in the
structure of the lab sessions. In 2015, the labs were conducted
in 8 class sessions, thus engaging all of the students and the
TAs simultaneously. In 2016 however, students were enrolled in
separate lab sessions (approximately 24 students each) with a
dedicated TA and participated in 12 lab sessions. Additionally,
in 2015, students continued to work with the same peers for all
lab assignments while in 2016, they rotated partners after every
four tasks, thus giving them a chance to meet and work with
a wider variety of people.

4. METHODS

4.1 Action Sequence Generation
We began by collecting the logs from Piazza, Moodle, Github,
and WebAssign for the courses. Later, we merged them into
a single class-level transaction file sorted by time. We then
generated study sessions on student activities based on their
online transactions as discussed in our prior work [29].

As Kovanovic et al. suggested, we decided to explore our data
to find the best method for generating study sessions [20]. Since
there was no specific time length for the student sessions in our
data, we decided to use a set cutoff time, m, for defining the
sessions. If two consecutive actions are less than m minutes
apart, they belong to the same study session. Otherwise, that
session ends and the second activity after m minutes is a start of
a new session. We plotted the average time differences between
sessions, the total number of sessions, and the average number
of activities per session for different cutoff times. These plots
showed us two points with major changes that were chosen as
the cutoff times for “study sessions” and “browser sessions”. We
chose 15 minutes as the cutoff time for browser sessions, which
show the times that the students have been online for the entire
session. We also chose 40 minutes as the cutoff time for study
sessions, which allows the time for the students to go offline for
coding or solving problems on paper and get back online. We
used this gap between online actions of the students considering
that they often work offline before committing their code to
Github or solve a problem on paper before submitting an answer
on WebAssign. In this work, we focused on study sessions since
they showed more transitions between different platforms. The
total number of sessions for each group in each class is shown
in Table 2. In the end, we recorded the sequence of student
actions in these sessions for further analysis.

Table 2: The Total Number of Sessions for Distinction and
Non-distinction Groups in Different Classes

Class Name Count in Distinction Count in Non-distinction
DM-2013 7,697 6,533
DM-2015 6,574 3,434
Java-2015 12,219 12,786
Java-2016 19,913 9,829

Similar to Kinnebrew et al. and Maldonado et al., we decided
to compact the action sequences [16, 15, 23]. For that purpose,
we replaced consecutive occurrences of the same actions by the
“+” notion (e.g. MMM was replaced with M+). Our prior work
showed that 90% of the student sessions consisted of access logs
to the same platforms [29]. Also, the nature of most of these
platforms requires consecutive submissions, such as multiple
commits to Github for solving issues or multiple submissions
on WebAssign until they find the right answer and there is not
much of a difference between asking a question on Piazza after
5 submissions or 6. Abstracting these repetitions helps us spot
the transitions between these platforms more easily and spot
more similar sequences among students.

4.2 Sequence Mining
In order to explain our methods, we first need to define the
common terminology in sequence mining. Based on Agrawal
et al., the “support” of a sequence is defined as the ratio of
occurrences of that sequence among all the sequences in the
data [1]. For example, if a sequence S has happened 10 times
among a student’s study sessions and the student has a total
of 100 occurred sequences, the support for S will be 0.1 for that
student. Looking at the support metric helps us to look into
what percentage of this student’s sequences are S, rather than
how many occurrences of S this student has. It also simplifies the
comparisons between high and low performing students, since
generally, the number of all actions for high performing users are
higher and this might stop us from spotting the major differences
between the students from different performance groups.

Another term often used in sequence mining is ‘confidence’.
Based on Agrawal et al., the confidence of the action B following
the action A (A→B) shows how likely it is for action B to
occur after A and is defined as:

Confidence(A→B)=
Support(A∩B)

Support(A)

To identify the most common patterns among the students, we
applied the idea of N-gram analysis as in prior work [22, 5, 31, 32,
23]. In text mining, an N-gram of length N (e.g. bigram) refers
to a specific sequence of N words. Many times, the frequency or
the count of N-grams are calculated and used as features. In this
work, we treated the sequences of student actions as lists of words
and using Scikit-learn library in Python [26], for each student, we
calculated the support for all sequences of lengths of 2 - 3 to rep-
resent the transitions between every two tools and also keep room
to count for repetitions. Then, we collected these numbers for
the distinction and non-distinction groups into two separate lists
for each sequence. We extracted the average support percentage
for each sequence in each group to find the most common pat-
terns among them. Additionally, we performed Kruskal-Wallis
(KW) ANOVA test between the two lists for all sequences to find
the patterns that occur with a different distribution among these
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two groups [21]. The Kruskal-Wallis test is a good choice in this
context because it does not assume normally-distributed data.

Also, to determine how likely the students are to transfer to
a system after using another, we used the Apriori algorithm
provided in Apyori library in Python. This algorithm is used
to mine frequent item-sets and association rules [1]. It takes
a minimum required support and performs in an incremental
order, starting with single items (i.e. 1-sequences) that meet
the support requirement (L1) and add other items to the set
as long as the support meets the criteria (Lk). In this work,
we set the minimum support to a low number (0.02) to be
able to find and compare even the rare transitions and the
1-sequences were defined as single actions on each platform.
Based on Agarwal et al. the pseudo-code for this algorithm is
as below:

L1 = frequent 1-sequences

for (k=2;Lk−1 6=∅;k++) do
Ck = New candidates generated from Lk−1

for All possible sequences c do
Increment the count of all candidates in Ck that are

contained in c
end for
Lk = Candidates in Ck with minimum support

end for
Answer = Maximal Sequences in

⋃
kLk

To find the transitions often associated together, we applied the
Apriori algorithm on the sequences from distinction students
and non-distinction students and calculated confidence for the
frequent ones.

While participation on Piazza was not mandatory, it was strongly
encouraged by the instructors as the primary venue for help
seeking in all of the courses. As a result, we would expect to
observe a large number of transitions between the submission
tools (i.e. WebAssign and Github) and Piazza. We also ex-
pect these transitions to be more frequent after students make
consecutive submission attempts since students who struggle
with assignments often make several tries before contacting the
instructors. We also expect higher-performing students to make
more of such transitions because seeking help when they are
struggling, rather than postponing it for later or going without,
will help them to perform better in the course.

5. RESULTS
Since the tools used in these systems are different, we will present
our results in each part for each class separately.

5.1 RQ1. What are the most common transi-
tions between different course tools?

5.1.1 DM-2013
Our prior study on this class had shown that 90% or more of
the student sessions are focused on a single tool and the sessions
consisting of all WebAssign actions was the most common across
them [29]. As Table 3, shows, consistent with our prior work,
the most common sequence for both performance groups is
repeated WebAssign Submissions, covering on average 70% of
action sequences. This is not surprising due to the fact that the

students had unlimited submissions on this platform and often
sought to “brute force” the answers.

The next most frequent pattern in both groups is multiple Moo-
dle actions, which is again a unsurprising as students are required
to log in on each session and must often navigate to their desired
resources through a series of actions. Interestingly, transitions
between WebAssign and Moodle are also comparatively frequent
(the most frequent kind of transition between tools), consisting
of approximately 4% of the total sequences. The more com-
mon transitions would be some submissions on WebAssign and
moving to Moodle, while this sequence sometimes gets repeated
several times as students move between these two tools and we
can observe sequences like “w+m+w” on average in 0.4% of
the students’ transitions or even more complicated ones such as
“m+w+mw+”. Such transitions show students moving between
class material like slides and the assignments and may show
them referring to slides to revise their answers on WebAssign.
We need to note that the sequences longer than 3 actions were
not counted towards the calculation of support and confidence
and thus, are not shown in the tables.

One would expect struggling students to move between We-
bAssign and Piazza to ask questions about the submissions, but
as our results show, this transition does not happen frequently.
Even among better performing students, it is more common to
go to Moodle than Piazza after a couple of submissions, but it
is even less likely for the lower-performing students. It seems
like the students prefer to find the answers to their confusion
among class material rather than asking questions or they prefer
to leave help-seeking for another session.

Table 3: The Support for the Most Frequent Sequences in
DM-2013 (W = WebAssign, M = Moodle, P = Piazza)

Avg in Distinction Avg in Non-distinction
W+ 0.7064 0.7227
M+ 0.1408 0.1615
W+M, M+W, MW, WM 0.0429 0.0380
P+ 0.0303 0.0133
P+W, W+P, PW, WP 0.0039 0.0006
P+M, M+P, PM, MP 0.0004 0.0001

To better understand the student transitions between WebAssign
and Moodle or WebAssign and Piazza, we calculated the con-
fidence score for sequences in which Moodle and Piazza actions
occur in the same session after one or more WebAssign actions.
The results of the Apriori algorithm for this class are shown in
Table 4. As we can see, there is almost a 10% chance of the stu-
dents going to Moodle after one or more WebAssign submissions,
while there is less than a 1% chance of them going to Piazza.

Table 4: Confidence for Different Transitions from WebAssign
in DM-2013 (W = WebAssign, M = Moodle, P = Piazza)

Distinction Non-Distinction
W→M 0.11 0.09
W→P 0.007 0.003
W+→M 0.11 0.09
W+→P 0.007 0.003

5.1.2 DM-2015
The most frequent sequences for this class are shown in Table
5. Unfortunately, in this class, we do not have access to the
WebAssign data. Thus, there were far fewer patterns found in
this data than the 2013 class. But as with the prior offering,
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the Piazza actions seem to be not nearly as common as Moo-
dle actions. Additionally, the transitions between Moodle and
Piazza were rare.

Table 5: The Support for the Most Frequent Sequences in
DM-2015 (M = Moodle, P = Piazza)

Avg in Distinction Avg in Non-distinction
M+ 0.913 0.966
P+ 0.081 0.034
PM, MP, M+P, P+M 0.003 0.000

5.1.3 Java-2015, Java-2016
The most frequent sequences for these classes are shown in Table
6. These classes are similar to DM-2015 in that consequent
Moodle actions is the most common sequence with an average
about 55-65% of students’ sequences in 2015 and about 70-80%
of the student sequences in 2016. While in these classes Github
commits are similar to WebAssign activities in DM-2013, the
findings show that the students tend to commit their changes
far less frequently than they submit questions on WebAssign.
Multiple commits on Github are the next most frequent and
they occur in about 20-30% of the student sequences in 2015 and
10-15% of sequences in 2016. Similar to DM-2013, where the
students often moved between the submission system and the
course material on Moodle, in these classes 4-6% of the student
sequences are moving between Github and Moodle, where only
0.1-0.5% of the sequences refer to moving between Github and
Piazza. In these classes also, moving back and forth a few times
between the platforms is observed and we can see sequences
such as “g+m+g+m” or “g+mg+m+”.

Table 6: The Support for the Most Frequent Sequences in Java
Classes (G = Github, M = Moodle, P = Piazza)

Avg in Distinction Avg in Non-distinction
Java 2015

M+ 0.566 0.655
G+ 0.294 0.204
G+M, M+G, GM, MG 0.041 0.043
P+ 0.011 0.010
P+M, M+P, MP, PM 0.004 0.003
P+G, G+P, PG, GP 0.003 0.003

Java 2016
M+ 0.698 0.782
G+ 0.134 0.089
G+M, M+G, GM, MG 0.062 0.052
P+ 0.012 0.005
P+G, G+P, PG, GP 0.005 0.001
P+M, M+P, MP, PM 0.003 0.002

As with the DM-2013 class, we calculated the confidence score
of action sequences that include Moodle and Piazza in the same
session after one or more of Github actions. The results of the
Apriori algorithm for these two classes are shown in Table 7. As
we can see, there is a 28-37% chance of the students going to
Moodle Github submissions, while there is only less than a 3%
chance of them going to Piazza.

As our results show, the students seem more likely to go to the
project descriptions or the course material after some submis-
sions on Github rather than the discussion forum.

Table 7: Confidence for Different Transitions from Github in
Java classes (G = Github, M = Moodle, P = Piazza)

Distinction Non-Distinction
Java 2015

G→M 0.31 0.36
G→P 0.03 0.03
G+→M 0.31 0.37
G+→P 0.03 0.03

Java 2016
G→M 0.28 0.31
G→P 0.02 0.007
G+→M 0.32 0.34
G+→P 0.02 0.01

5.2 RQ2. Which transitions are significantly
different between the distinction and non-
distinction groups?

5.2.1 DM-2013
The KW p-value results for the support percentages of different
sequences in DM-2013 class is shown in Table 8. The significant
values with p<0.05 are marked as bold, while edge cases with
p<0.1 are marked in italics. We only included the significant
and edge-case patterns and the transitions between platforms
in the table. As these results show, the distinction students are
significantly more likely to have a sequence of Piazza actions
than the non-distinction group, with an average of 3% of their
activities in the distinction group compared to 1% in the non-
distinction group. The distinction students are also more likely
to go to Piazza after a repetition of other activities than the
non-distinction group. While the transition between WebAssign
and Moodle (W+M, WM, M+W, MW) is high in both groups
and not significantly different, the distinction group is more
likely to move between Piazza and WebAssign (PW, WP, W+P,
P+W) on average 0.4% compared to 0.01%.

Table 8: KW p-values between distinction and non-distinction
students for different sequence supports in DM-2013 (W =
WebAssign, M = Moodle, P = Piazza)

N-gram Avg in Distinction Avg in Non distinction KW pvalue
+P 0.0018 0.0001 3.31E-03
P-W transitions 0.0039 0.0006 3.08E-03
P+ 0.0303 0.0133 1.30E-05
M-W transitions 0.0429 0.0380 0.644608

5.2.2 DM-2015
The KW p-values for the different sequences between the distinc-
tion and non-distinction group are shown in Table 9. Similar to
the previous offering, the distinction group in this class are also
more likely to have consequent Piazza activities, as well as go
to Piazza after consequent actions on another platform. They
are also more likely to move between Moodle and Piazza, while
the non-distinction group is more likely to perform consequent
actions on Moodle.

Table 9: KW p-values between distinction and non-distinction
students for different sequence supports in DM-2015 (M =
Moodle, P = Piazza)

N-gram Avg in Distinction Avg in Non distinction KW pvalue
P-M transitions 0.003 0 1.93E-03
+P 0.001 0 5.82E-02
M+ 0.913 0.966 5.80E-05
P+ 0.081 0.034 1.18E-04
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5.2.3 Java-2015
The KW p-values for the different sequences between the distinc-
tion and non-distinction groups are shown in Table 10. Similar
to the prior classes, the distinction group in this class was also
more likely to go to Piazza after consequent actions on other
platforms. Also, similar to DM-2015, the transitions between
Moodle and Piazza are significantly more likely among the dis-
tinction group. Also, the distinction group has significantly more
consequent actions on Github than the non-distinction group.
However, while on average more sequences have a repetition of
Piazza activities among distinction students, this difference is
not significant in this class. Similarly, moving between Github
and Moodle is more likely on average among the non-distinction
group, but this difference is also not significant.

Table 10: KW p-values between distinction and non-distinction
students for different sequence supports in Java-2015 (G =
Github, M = Moodle, P = Piazza)

N-gram Avg in Distinction Avg in Non distinction KW pvalue
M+ 0.566 0.655 0.046
P-M transitions 0.004 0.003 0.022
+P 0.003 0.002 0.052
P+ 0.011 0.010 0.095
G+ 0.294 0.204 0.005
G-M transitions 0.041 0.043 0.788
P-G transitions 0.003 0.003 0.336

5.2.4 Java-2016
The KW p-values for the different sequences between the distinc-
tion and non-distinction groups are shown in Table 11. Similar
to the previous classes, in this class also we observe more repeti-
tions of Piazza activities in the distinction group as well as more
Piazza activities after a repetition of activities on other platforms.
Also, similar to the 2015 Java offering and DM-2015, the non-
distinction group is more likely to have consequent actions on
Moodle. Despite the other classes, transitions between Github
and Moodle as well as Github and Piazza are significantly dif-
ferent in this class and more likely for the distinction group.
Comparing these results to the ones in Table 7, the findings seem
conflicting since the non-distinction group is more likely to have
Moodle activity in the same session after Github activities. How-
ever, we need to note that the Apriori algorithm, unlike N-grams,
calculates the possibility of Moodle actions occurring after, but
not necessarily consequently after, the Github activities. So, it
seems like that the non-distinction group are more likely to move
to Moodle at some point of the session after Github activities,
but less likely to do so consequently after the Github actions.

Table 11: KW p-values between distinction and non-distinction
students for different sequence supports in Java-2016 (G =
Github, M = Moodle, P = Piazza)

N-gram Avg in Distinction Avg in Non distinction KW pvalue
M+ 0.6976 0.7822 1.30E-05
+P 0.0021 0.0010 1.97E-02
P+ 0.0123 0.0048 1.12E-03
G-M transitions 0.0616 0.0521 3.98E-02
P-G transitions 0.0046 0.0010 3.20E-04
P-M transitions 0.0026 0.0023 0.53

6. DISCUSSION
While the classes we analyzed and the offerings within them
differ in topic, materials, structure, and instructor approach, our
analysis shows that there are common patterns across all of them.

The first visible pattern is that the students are much more likely

to complete consecutive actions on the platform they are already
using rather than switching to another platform. In all of the
classes, the most common trend is two or more actions on We-
bAssign followed by Moodle in DM-2013, and Moodle followed
by Github in the Java classes, while repetitions of Piazza actions
seem to be more rare, even compared to platform switches. This
might be due to the fact that most of the activities on Moodle,
Github, and WebAssign consist of a sequence of smaller actions.
For example, the students are much more likely to solve several
problems on WebAssign or attempt a single problem several
times, rather than only making a single attempt and leaving the
platform. Similarly, on Moodle, the students often need more
than one click to reach the material they need to access and on
Github, the students are likely to push their code, face a failing
test on Jenkins, and make a new commit to solve that issue.
However, the actions on Piazza are not as closely monitored.
On this platform, only making posts and replies are logged and
viewing the posts or replies are not. Thus, the students are much
more likely to make a single post or reply without any other
visible actions on this platform and that might be a reason why
consecutive Piazza actions are not as common as the other tools.

Another common pattern is that in contrast to our expectations,
the students in all of the classes were much more likely to go
back to the class material and the assignment descriptions on
Moodle rather than rely on the discussion forum after one or
more tries on their assignments. This was illustrated by the high
confidence for transitions from WebAssign and Github (i.e. the
submission systems) to Moodle (i.e. the indirect support plat-
form), compared to transitions from these platforms to Piazza
(i.e. the direct support platform), even in the higher performing
students. As we expected, the visible trends for WebAssign and
Github are similar in these classes due to the similarity in their
educational role. As mentioned before, since the views are not
monitored on Piazza, it is therefore possible that in some cases
the students do refer to Piazza posts, only to find their answers
in another student’s question, without making any posts or
replies. Thus, the lower amount of transitions to Piazza might
be due to this difference in recording the activities. However, the
teaching staff often found that the students did not look for their
questions in their peers’ posts and kept asking similar questions.

While both the performance groups have a large amount of
consecutive Moodle actions, the non-distinction groups have
on-average more of such sequences and this difference is often
significant in these classes. Also, having repetitive Piazza actions
and going back to Piazza after two or more actions on another
platform is, on average, more common between the distinction
students and this difference is significant in most of the classes,
while in other classes an edge case that could be significant if
we considered p<0.1. This shows that while the non-distinction
group seems to insist on finding the answer among the class
material (or possibly reading the existing posts on Piazza),
the distinction group seems to ask or answer questions on the
discussion forum more often.

7. CONCLUSIONS
While multiple researchers have applied sequence analysis to
educational data, most of this research has been focused on
ITS data or MOOC data and there is not much research on
the transitions of students between several resources in blended
courses. In this study, we gathered logs from several online
platforms that students interacted with in two offerings of two
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undergraduate courses. We extracted sessions of studies among
these activity logs and analyzed the sequences of the student
actions in these sessions to find the general patterns in student
transitions as well as the patterns that distinguish between the
higher performing students and low-performers.

Our results show that consequent actions on the same platform
are more likely for the students. Additionally, students are
more likely to refer to the class material and the assignment
descriptions rather than the discussion forum after a couple of
submissions on assignments. However, the higher performers
generally had more transitions between platforms and were often
more likely to go to the discussion forum than the non-distinction
group. We also found that even though some platforms used
in classes are different, the results can be generalized across
classes as long as the tools play similar educational roles, as
WebAssign and Github did in our case. This can help findings to
be expanded across a variety of courses using different platforms.

The results of this study can also help instructors identify helpful
and harmful patterns among students and offer suggestions for
forming more productive habits. The frequencies of these se-
quences added to the previously defined behavioral features can
also help researchers improve the performance of their prediction
models on student performances.

One limitation of this study is the differences between the length
of the activities and how they are recorded on the different tools.
Some types of activities are shorter and thus, more likely to
repeat, such as WebAssign submissions where the questions are
often multiple answers and quick to submit, while some other
activities take a longer time, such as writing a Piazza post or solv-
ing an issue with the code and making a new commit. Addition-
ally, while Moodle platform logs every action the users make on-
line, Piazza only records the posts and replies and not the views.
These differences in the tools might affect our findings. Further
analysis, such as considering the time between actions differently
for different tools might help us understand the trends in student
activities better. Also, the WebAssign action logs are not avail-
able for the DM-2015 class, which limits the findings for this class
and makes the comparisons between the two DM offerings less
significant. Adding later similar offerings of these courses to the
study in the future might help in finding more consistent trends.

In the future, we plan to expand the study to use different
sequence analysis tools, such as the differential sequence mining
tools. Those tools might be able to highlight other differences
among the performance groups that are more difficult to spot
using the current tools. Also, replicating our analysis on other
courses and more offerings of the same courses can give us a
better insight on how general some of these findings are. In the
end, we plan on extracting predictive features from the student
transitional patterns and add them to the other behavioral fea-
tures to improve the accuracy of the performance prediction
models on students, make the models fit better across classes,
or make them fit better for earlier predictions in the semester.
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ABSTRACT
Student’s academic performance prediction empowers edu-
cational technologies including academic trajectory and de-
gree planning, course recommender systems, early warning
and advising systems. Given a student’s past data (such
as grades in prior courses), the task of student’s perfor-
mance prediction is to predict a student’s grades in future
courses. Academic programs are structured in a way that
prior courses lay the foundation for future courses. The
knowledge required by courses is obtained by taking multi-
ple prior courses, which exhibits complex relationships mod-
eled by graph structures. Traditional methods for student’s
performance prediction usually neglect the underlying rela-
tionships between multiple courses; and how students ac-
quire knowledge across them. In addition, traditional meth-
ods do not provide interpretation for predictions needed for
decision making. In this work, we propose a novel attention-
based graph convolutional networks model for student’s per-
formance prediction. We conduct extensive experiments on
a real-world dataset obtained from a large public university.
The experimental results show that our proposed model out-
performs state-of-the-art approaches in terms of grade pre-
diction. The proposed model also shows strong accuracy
in identifying students who are at-risk of failing or dropping
out so that timely intervention and feedback can be provided
to the student.

Keywords
Educational data mining, graph convolutional networks, deep
learning, attention

1. INTRODUCTION
Higher educational institutions face major challenges includ-
ing timely graduation and retention of enrolled students.
The National Center for Education Statistics (NCES) re-
ports that the six-year graduation rate for first-time and
full-time undergraduates is around 60%; the retention rate
among first-time and full-time degree-seeking students is

around 80% [1]. These alarming statistics require higher
educational institutions to take actions to improve their ef-
fectiveness and efficiency at educating students. Machine
learning techniques have been increasingly developed and
applied to educational settings in the hope of improving stu-
dents’ learning and increasing students’ success [3, 26, 16].
Many systems and applications have been proposed; such as
course recommender systems [7], academic trajectory and
degree planning [20], educational early advising systems [9],
and knowledge tracing for intelligent tutoring systems [35,
22]. Developing methods for accurate modeling and predict-
ing students’ performance is the key to these systems and
applications.

Traditional performance prediction methods can be catego-
rized into two types. The first builds a static model, which
takes a feature vector as input (such as a student’s grades
in previous courses or student-related features) and outputs
the predicted grades. A common approach that belongs to
this category is linear regression methods [23]. Students
take courses sequentially, i.e., they take some courses at each
semester; and their performance in courses taken in the next
semester depends on courses taken in previous semesters.
Further, their knowledge evolves by taking a sequence of
courses. To capture the temporal dynamics of students’
knowledge evolution, sequential models have been proposed.
A set of representative approaches within this category use
recurrent neural networks (RNN) [12, 11].

Undergraduate degree programs are designed in a way that
knowledge acquired in prior courses serves as prerequisites
for future courses. The knowledge and skills required to
do well in a course are acquired in multiple prior courses.
The knowledge dependence between courses exhibit complex
graph structure as shown in Figure 1. Figure 1 shows the
prerequisite structures for computer science and civil and in-
frastructure engineering degree programs at George Mason
University. Each node represents a particular course. An
edge pointing from one course to another shows the prerequi-
site relationship. As an example, to do well in the data struc-
ture course (CS310), students need to acquire programming
skills, object-oriented programming knowledge (CS211) and
math (MATH113) which come from multiple different courses.
The graph in Figure 1 also shows hierarchical relationships
where a course can depend on another course which is at a
much lower academic level. In addition to the prerequisite
structures, degree programs are flexible, i.e., students can
choose to take elective courses based on their interests and
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Figure 2: Comparison of Three Types of Model Architectures. In this example, a student takes course C1, C2, C3 in the first
semester, course C4, C5 in the second semester, course C6, C7 in the third semester before takes the target course CT .

do not have to follow a specific ordering when taking these
courses.

The complexity and flexibility of the degree programs make
predicting students’ performance a challenge task. Prior ap-
proaches usually simplify or ignore these complex depen-
dencies. Figure 2 shows the comparison of three types of
models. Figure 2a shows a static model, where a student’s
performance is directly dependent on a set of prior courses.
Figure 2b shows a sequential model, where students’ knowl-
edge evolution is partially modeled. To overcome the con-
straints and limitations of the traditional models, we propose
a model based on graph convolutional networks to capture
the complex graph-structured knowledge evolution exhibited
by students’ data. Specifically, we propose an attention-

based graph convolutional network (ACGN) model for pre-
dicting a student’s grade in a future course. Figure 2c shows
the graph model, where each course depends on all courses
taken in the semester before it so that students’ knowledge
evolution is fully captured.

When a system is used for decision making e.g., as a support
tool for advisors to identify students who are at-risk of failing
courses they will take; it is essential for the predictions to
be interpretable. This allows the stakeholders to trust the
decision making systems and make informed decisions. We
show that our attention-based model is able to provide an
interpretable and useful explanation for the predictions. Our
model is able to analyze a student’s performance in prior
courses and identify a collection of important prior courses

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 70



to explain the student’s performance in target course.

We performed extensive experiments on real-world datasets
to evaluate our model and compare it with the other two
types of models aforementioned. The experimental results
are consistent with our observations that models with archi-
tectures more close to the degree program have better mod-
eling capability and prediction performance. One of the im-
portant applications for students’ performance prediction is
early warning and advising systems, where at-risk students
are first identified and timely support is provided to improve
their academic success. The experimental results show our
model’s effectiveness at identifying at-risk students.

The key contributions of the paper are summarized as fol-
lows:

• Flexible graph structured model for students’ academic
performance prediction. Observing the complex struc-
tures of undergraduate degree programs, we propose a
graph convolutional network model for students’ per-
formance prediction.

• Attention based model for explanation. Providing ex-
planations for a model’s predictions makes the model
useful for decision making. Our attention-based model
can explain the predictions by identifying a set of prior
courses important for the predictions.

• Identification of at-risk students. While most models
achieve good performance at predicting students’ per-
formance, they suffer from low accuracy at identifying
at-risk students. Our proposed model is able to achieve
comparable performance with state-of-the-art models.

2. RELATED WORK
The need to improve higher education services and offerings
has attracted research on developing methods for predict-
ing students’ performance [4, 27]. In this section, we review
related work on students’ performance prediction. The re-
lated work can be classified into three categories: (i) static
models, (ii) sequential models and (iii) graph models.

2.1 Static Models
Static grade prediction models learn a mapping function,
where input is student-related features and the output is
predicted grade. Polyzou et al. [23] proposed regression
models specific to courses or students for predicting a stu-
dent’s grade in a target course. They found that focusing on
a course specific subset of the data leads to more accurate
predictions. Elbadrawy et al. [8] introduced a personalized
multi-regression model for predicting students’ performance
in course activities. Compared to a single regression model,
this model is able to capture personal student differences. To
understand how students’ behavior impacts their academic
performance, Wang et al. [32] collects students’ behavioral
data using smart phone for performance prediction. Many
other classic supervised learning approaches have been used
for students’ performance prediction including decision trees
[2], support vector machines and neural networks [31].

Adapted from recommender systems domain, matrix fac-
torization [14] approaches are popular for grade prediction.

These factorization approaches make the assumption that a
student’s knowledge/skills and a course’s knowledge compo-
nents can be jointly represented with latent vectors (factors)
[30]. Polyzou et al. [23] proposed course-specific matrix
factorization models for grade prediction that decompose
a course-specific subset of students’ grade data. The stu-
dent course records also exhibit grouping structures and a
domain-aware matrix factorization model was developed for
the joint course recommendation and grade prediction [7].
Ren et al. [25] proposed matrix factorization model coupled
with temporal dynamics for grade prediction.

2.2 Sequential Models
Students take courses sequentially. Their knowledge and
skills evolve by taking a series of courses. To model the tem-
poral dynamics of students’ knowledge evolution, sequential
models have been proposed. Balakrishnan [5] proposed a
Hidden Markov Model for predicting student dropout by
modeling students’ activities over time in a Massive Open
Online Courses (MOOCs). Swamy et al. [29] models stu-
dent progress on coding assignments in large-scale computer
science courses using recurrent neural networks. Kim et
al. [12] proposed a bidirectional long short term memory
(BLSTM) model for the online educational setting. Hu et
al. proposed course-specific markovian models for students’
grade predictions [10]. Morsy et al. proposed cumulative
knowledge-based regression models for next-term grade pre-
diction, which models students’ knowledge evolution by us-
ing a sequential regression model. Hu et al. [11] proposed
long short term memory models for grade prediction in tra-
ditional higher education.

2.3 Graph Neural Networks Models
Deep learning approaches have found unprecedented success
in a myriad of applications involving regular structured data
such as images (grids) and text (sequences) [18]. Graphs
are more complex and irregular than grids or sequences and
recent research efforts involve designing deep learning mod-
els for graph data. Graph neural networks have been pro-
posed and applied to many areas such as computer vision
for point clouds classification [33], action recognition [34];
recommender systems [6] and traffic prediction [19]. To the
best of our knowledge, there is no prior work on students’
performance prediction using graph neural networks.

3. METHODS
3.1 Problem Statement
Given a student s, the set of courses taken and grades ob-
tained in term t are represented by Pt

s. For a sequence of
terms 1 . . . Ts, we denote P1∼Ts

s = P1
s,P2

s, . . . ,PTs
s to repre-

sent the sequence of courses taken and grades obtained by
student s in Ts terms. For a target course c taken in the fu-
ture (next) term, the objective of the proposed method is to
predict the grade student s will achieve in course c denoted
by ĝcs.

The proposed models are trained in a course specific man-
ner i.e., for each target course c we learn a unique model.
Due to the flexibility of academic degree programs, in each
semester different courses can be taken; and for each stu-
dent, the number of semesters studied before taking the tar-
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Figure 3: The proposed model.

get course will be different. Therefore, we index the length
of the sequence with student-specific variable Ts.

For every target course c, a subset of frequently taken prior
courses are identified from all the prior courses taken by
students who have already taken the target course c. These
prior courses are denoted as Cc of size Nc. For student s,
only the prior courses in Cc are extracted from P1∼Ts

s to
form a graph which is represented by an adjacency matrix
Ac

s ∈ {1, 0}Nc×Nc and a feature matrix Fc
s ∈ RNc×D, where

D represents the number of features. Take Figure 2c as
an example, the student takes courses c1, c2, c3 in the first
term, c4, c5 in the second term and c6, c7 in the third term;
we want to predict his/her grade in course CT . Adjacency
matrix Ac

s for this student represents his course taken pro-
cess. Courses taken in the current term are fully connected
to courses taken in the next term; 1 represents connected,
0 otherwise. A row of the feature matrix Fc

s represents the
student’s grades in corresponding prior courses.

3.2 Model Description
Figure 3 shows an overview of the proposed model. It is
composed of three parts: 1) graph convolutional network,
2) attention layer and 3) a fully connected layer.

3.2.1 Graph Convolutional Network (GCN)
Convolutional neural networks (CNNs) show superior per-
formance on several applications related to vision [15], speech
and text [17]. CNNs are powerful because of their ability to
exploit feature locality at multiple granularity. Graph Con-
volutional networks have a similar working mechanism but
on data with more complex structures, namely, graph.

The input to a GCN is an adjacency matrix Ac
s and fea-

ture matrix Fc
s, encoding student s’s course taking process

and grades in prior courses, respectively. Multiple layers of
graph convolutional layer are applied on Ac

s and Fc
s to learn

a graph level embedding Zc
s ∈ RN×D. Each row of Zc

s corre-
sponds to a node embedding vector. A graph convolutional
layer is mathematically described as follows:

H(l+1) = f(H(l),A) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W(l)) (1)

where Ã = A+IN is the adjacency matrix with self-connections,
D̃ = ΣjÃj is the normalization matrix, H(l) is the input
and W(l) is the weight matrix to be learned. H(0) = Fc

s and
H(L) = Zc

s; namely, the input into the first GCN layer is
the feature matrix Fc

s, the output from the last GCN layer
is the student-specific graph embedding Zc

s.

A filter in convolutional neural networks aggregates infor-
mation from a pixel’s neighbors. Similarly, the graph con-
volutional layer aggregates information from a node’s neigh-
boring nodes and generates a new node embedding vector
by the following equation

hi = σ(Σj
1

cij
hjW) (2)

where node j is node i’s neighbor. A higher level of the node
embeddings are generated by applying multiple GCN layers.
Multiple layers of GCN aggregate information from a node’s
further neighbors. As shown in Figure 3, the first GCN
layer aggregates information from a node’s direct neighbors,
namely, in our case the courses taken in last semester. The
second layer collects information from a node’s second de-
gree neighbors, i.e., the courses taken two semesters ago.
The final output is the graph embedding which entails in-
formation from all the courses a student has taken.

3.2.2 Attention Layer
The output from GCNs is a graph-level embedding matrix,
which encodes information about a student’s knowledge and
skills acquired in prior courses. The knowledge acquired
from different prior courses has different importance for the
target course. To capture the importance differences of the
prior courses, we integrate attention layer into our model.
Attention mechanism allows the model to focus on the rele-
vant features or information useful for prediction. It works
by computing an importance score [24], higher score means
the corresponding prior course is more important for pre-
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dicting a student’s performance; given by

ei = MLP (hi) (3)

αi =
exp(ei)

ΣN
k=1 exp(ek)

(4)

where MLP is a learnable function, i.e., multi-layer percep-
tron, αi is the attention score corresponds to hi. The output
from the attention layer is an attention score vector α.

The graph embedding matrix Zc
s is weighted by attention

scores to form a weighted graph embedding matrix Z
′c
s given

by

Z
′c
s =



α1z
c
s,1

...
αiz

c
s,i

...
αNzcs,N

 (5)

Finally, the pooling layer coarsens the weighted graph em-
bedding matrix into a latent vector vc

s. The latent vector
is passed through a multilayer perceptron; the output from
which is the predicted grade.

ĝcs = f(vc
s) (6)

where f is a multilayer perceptron network.

4. EXPERIMENTAL PROTOCOL
4.1 Dataset Description

Table 1: Dataset Statistics

Major
Fall 2017 Spring 2018

#S #C #G #S #C #G

CS 5,042 16 47,889 5,297 20 52,152
ECE 1,992 18 34,355 1,980 18 34,170
BIOL 7,065 20 52,574 6,976 20 52,672
PSYC 5,367 20 25,207 5,368 20 25,247
CEIE 2,222 17 30,956 2,181 16 30,283

Overall 21,688 91 190,981 21,802 94 194,524

#S total number of students, #C number of courses for prediction,
#G total number of grades

The data is collected at George Mason University from Fall
2009 to Spring 2018. The five largest majors are chosen in-
cluding: 1) Computer Science (CS), 2) Electrical and Com-
puter Engineering (ECE), 3) Biology (BIOL), 4) Psychology
(PSYC) 5) Civil Engineering (CEIE). The evaluation proce-
dure is designed in a way to simulate the real-world scenario
of predicting the next-term grades. Specifically, the models
are trained on the data up to term T − 2 and validated on
term T − 1 and tested on term T . The latest two terms
are chosen as testing terms, i.e. term Fall 2017 and term
Spring 2018. For example, to evaluate the performance of
the models on term Fall 2017, the model is trained on data
from term Fall 2009 to term Fall 2016, validated on term
Spring 2017 to choose the parameters associated with dif-
ferent approaches and finally tested in term Fall 2017. The
statistics of the datasets are listed in Table 1

4.2 Evaluation Metrics
We evaluate the models from two perspectives: 1) the accu-
racy of grade predictions, 2) the models’ ability at detecting
at-risk students.

To evaluate the models’ accuracy of grade prediction, two
evaluation metrics are used a) mean absolute error (MAE)
and b) percentage of tick accuracy (PTA).

MAE =

∑N
i=1 |gi − ĝi|

N
(7)

where gi is true grade and ĝi is predicted grade.

In the grading system, there are 11 letter grades (A+, A,
A-, B+, B, B-, C+, C, C-, D, F) which correspond to (4, 4,
3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0). A tick is the difference
between two consecutive letter grades. The performance of
a model is estimated by how many ticks away the predicted
grade is from the true grade. For example, the tick error
between B and B is zero, B and B+ is one, B and A- is two.
To use PTA for evaluation, we first convert the predicted
numerical grade to its closest letter grade and then compute
the percentage of errors with 0 tick, within 1 tick, and within
2 ticks denoted by PTA0, PTA1, and PTA3, respectively.

We also evaluate the models’ performance of identifying at-
risk students. At-risk students are defined as those whose
grades are lower than 2.0 (C, C-, D, F). The predicted grades
below 2.0 are treated as positives and above 2.0 are treated
as negatives. The process of detecting at-risk students is
similar to grade prediction except that the output from the
model (the predicted grade) is converted to 1 or 0 based
on whether the predicted grade is below or above 2.0. As
the number of at-risk students is low, we use F-1 score as
evaluation metric.

4.3 Comparative Methods
Bias Only (BO)
Bias only method only takes into account a student’s bias,
a course’s bias and global bias[23]. The predicted grade is
as follow

ĝcs = bc + bcs + bcc′ (8)

where bc, bcs, b
c
c′ are global bias, student bias and course bias,

respectively.

Course Specific Matrix Factorization (CSMF)
The key assumption underlying this model is that students
and courses can be jointly represented by low-dimensional
latent factors. N , M and D is the number of students,
courses and latent dimension, respectively [23]. To predict
a student’s grade in a course, we have:

ĝcs = bc + bcs + bcc′+ < uc
s,v

c
c′ > (9)

where bc is global bias, bcs is student bias term, bcc′ is course
bias term; uc

s is student s’s latent vector, vc
c′ is course c’s

latent vector.

Course Specific Regression (CSR)
Course specific regression (CSR) [23] is a linear regression
model. The input into this model is a vector xc

s representing
a student’s grades in prior courses. A course specific subset
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of prior courses included in P1∼Ts
s are flattened to form the

vector xc
s. The predicted grade is

ĝcs = wc
0 + xc

sw
c (10)

where wc
0 is bias term and wc are weight vectors to be

learned.

Multilayer Perceptron (MLP)
Multilayer Perceptron is a generalized version of CSR. CSR
model is a linear model, which is not able to capture non-
linear and complex patterns in students’ grades data. There-
fore, multilayer perceptron has been proposed by [11] for
grade prediction. Similar to CSR, the input xc

s is a stu-
dent’s grades in prior courses.

ĝcs = f(xc
s) (11)

where f is the model to be learned.

Long Short Term Memory (LSTM)

LSTM

3.6

0

0

0

0

0

2.6

0

3.3

0

0

0

4.0

0

0

!" !# !$

Course a

Course b

Course c

Course d

Course e

LSTM LSTM

3.6%&Target Course

Figure 4: LSTM for grade prediction

Long short term memory (LSTM) is an extension of recur-
rent neural networks (RNN) for modeling sequential data.
The assumption of using LSTM for students’ performance
prediction is that students knowledge and skills are evolving
by taking courses in each semester. To capture the tem-
poral dynamics of students’ knowledge evolution, LSTMs
have been proposed in [11]. The input xc

s,t at time step t
is a student’s grades in courses at semester t. Many to one
architecture is utilized and the output from the last step
of LSTM is fed into a fully connected network; the output
from which is the predicted grade. The model architecture
is shown in Figure 4, where the courses a, b, c, d, e are prior
courses, xc

s,t encodes the student’s grades in courses at time
t and the output ĝ is the predicted grade.

4.4 Implementation
Our method is implemented in Pytorch [21]. For model op-
timization we use Adam [13]. To avoid model overfitting,
we used l2 norm regularization (with coefficient 0.001) and
dropout (dropout rate 0.05) [28]. The number of dimensions
for the graph embedding is chosen from a list of (8, 12, 16,
20, 32, 64).

5. EXPERIMENTAL RESULTS
5.1 Grade Prediction
Table 2 reports the performance of ACGN and comparative
approaches for the task of next-term grade prediction for the
Fall 2017 and Spring 2018 semesters using the MAE metric.
The proposed ACGN model achieves the best performance
in most cases except the Civil Engineering (CEIE) major.
The CEIE major has relatively simpler knowledge depen-
dence structure as shown in Figure 1b. A majority of higher
level courses, such as 300 and 400 level courses for the CEIE
major have shallow knowledge dependence. While for CS
major, the higher level courses have deeper knowledge de-
pendence or longer pre-requisite chains.

Another observation is that models which are able to capture
the complex knowledge dependence more have better per-
formance. The static models (BO, CSMF, CSR, MLP) are
outperformed by sequential model (LSTM) in most cases,
on average by 9.2%; the sequential model is outperformed
by graph model (AGCN), besides CEIE major, on average
by 7.0%. The experimental results are consistent with our
assumption that the knowledge dependence in the under-
graduate degree programs is complexly networked structures
and a graph model is well-suited at capturing the underlying
dynamics.

Table 3 shows the comparative performance using the per-
centage of tick error accuracy. In contrast to MAE, the PTA
metric can provide a fine-grained view of the errors made by
different methods. From Table 3 we observe that the per-
formance gap between models at PTA0 is larger than at
PTA2. For example, for CS majors in Fall 2017, the gap
between the best performing model AGCN and the worst
performing model BO at PTA0 is 13.24%, which is larger
than 8.53% at PTA2.

5.2 Detecting At-risk Students
Detecting at-risk students early is a fundamental task for
early warning and advising systems. We evaluate the mod-
els’ performance at detecting at-risk students. Table 4 shows
the experimental results evaluated by F-1 score. The per-
centages of at-risk students in different majors are presented
at the table footnote. The PSYC major has the lowest per-
centage of at-risk students. The experimental results show
that LSTM and AGCN achieve the best performance at de-
tecting at-risk students. BO performs worst at the detection
of at-risk students. BO only captures the average perfor-
mance of a student and a course, which is biased by other
students and courses’ performance and the average perfor-
mance of other students and courses is usually higher than
2.0 (the threshold of defining at-risk students).

5.3 Interpretation with Attention
Machine learning models have achieved impressive perfor-
mance in many tasks. However, most of them remain black
boxes and there are concerns about their transparency. A
model’s capability to provide explanations for its predictions
can increase its transparency. For decision making, under-
standing the reasons behind predictions can help decision
makers make informed decisions. Grade prediction models
serve as an assistant tool for advisors to make decisions on
whether to intervene on a student or not. When the model
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Table 2: Comparative Performance of Different Models by MAE. (↓ is better)

Method
Fall 2017 Spring 2018

CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

BO 0.684 0.570 0.705 0.556 0.616 0.727 0.674 0.628 0.552 0.605
CSMF 0.594 0.476 0.550 0.517 0.479 0.647 0.539 0.499 0.492 0.491
CSR 0.607 0.444 0.551 0.440 0.441 0.628 0.493 0.463 0.439 0.444
MLP 0.585 0.390 0.515 0.407 0.413 0.590 0.436 0.417 0.413 0.369

LSTM 0.582 0.365 0.532 0.380 0.309 0.590 0.370 0.435 0.356 0.251
AGCN 0.540 0.335 0.459 0.309 0.336 0.543 0.366 0.379 0.316 0.258

Table 3: Comparative Performance of Different Models by Percentage of Tick Accuracy (↑ is better)

Fall 2017 Spring 2018
Method CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

PTA0

BO 16.76 20.75 14.40 15.52 14.90 16.07 12.11 15.42 13.65 19.79
CSMF 20.00 23.58 22.40 23.10 28.85 22.31 17.37 23.35 28.41 28.65
CSR 24.26 33.96 27.60 38.97 40.87 26.29 28.42 34.14 41.33 35.42
MLP 26.32 39.62 31.00 41.72 41.35 27.76 33.68 41.41 43.17 42.19

LSTM 27.21 42.92 37.40 48.62 49.52 30.54 54.74 42.73 49.82 57.29
AGCN 30.00 41.51 38.80 56.21 50.00 36.52 39.47 44.49 50.55 56.77

PTA1

BO 44.71 49.06 43.20 57.59 48.56 44.09 37.37 46.70 57.20 50.00
CSMF 55.15 62.26 60.00 63.10 62.98 52.72 54.74 63.66 59.04 61.98
CSR 55.29 66.04 59.40 66.21 71.63 57.37 63.68 66.30 65.31 69.27
MLP 56.91 69.81 62.80 69.66 74.52 60.03 68.42 68.28 69.37 76.04

LSTM 58.24 73.11 61.40 73.79 79.33 59.10 72.11 72.03 75.65 82.81
AGCN 62.21 75.47 70.00 77.93 79.81 63.61 77.89 74.89 77.86 84.90

PTA2

BO 72.94 81.13 72.40 84.83 81.25 73.97 74.21 77.75 87.45 79.17
CSMF 80.00 86.79 83.60 83.45 87.50 75.30 84.21 84.36 85.24 84.38
CSR 76.76 86.32 80.80 83.45 84.62 77.03 82.63 84.58 82.66 86.46
MLP 79.85 89.62 82.80 85.86 86.54 79.42 86.32 86.34 84.13 90.62

LSTM 77.35 86.79 79.20 84.83 90.87 77.69 83.16 84.58 89.67 91.67
AGCN 81.47 92.45 85.60 88.62 91.83 80.21 88.95 87.67 88.93 93.23

Table 4: Predictive Performance at Identifying At-risk Students, F-1 Score (↑ is better)

Method
Fall 2017 Spring 2018

CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

BO 0.092 0.000 0.116 0.000 0.000 0.085 0.000 0.194 0.000 0.000
CSMF 0.385 0.415 0.585 0.154 0.429 0.349 0.291 0.620 0.364 0.526
CSR 0.398 0.514 0.649 0.438 0.490 0.500 0.543 0.623 0.429 0.450
MLP 0.383 0.426 0.630 0.438 0.500 0.534 0.472 0.676 0.400 0.605

LSTM 0.492 0.533 0.553 0.276 0.702 0.584 0.650 0.638 0.400 0.681
AGCN 0.516 0.500 0.660 0.438 0.615 0.594 0.571 0.685 0.483 0.550

The percentage of at-risk students for each major in Fall 2017 is CS (23.7%), ECE (18.9%), BIOL
(25.8%), PSYC (8.3%), CEIE (15.9%); In Spring 2018, it is CS (23.7%), ECE (24.7%), BIOL (18.1%),
PSYC (6.6%), CEIE (14.1%).

predicts that a student is at-risk of failing a course, knowing
which prior courses results in the prediction can also help
advisors provide personalized feedback to students.

Attention mechanism works by letting the model focus on
important information for prediction. In our proposed model,
the design of the attention layer lets the model focus on im-
portant prior courses. The output from the attention layer
is a vector of scores representing the importance of the prior
courses computed by Equation 4. In this section, we show
by case studies how the attention scores from the attention

layer explain the model’s predictions, especially, why the
model predicts that a student is at-risk of failing a target
course.

Table 5 shows four case studies. We keep the most impor-
tant prior courses identified by attention score. For the first
case study, the target course is CS-310, the student’s true
grade in the target course is F and the predicted grade is
C-. The most important four courses identified by atten-
tion layer is MATH-212, MATH-125, CS-262, CS-211. The
reason for predicting this student as at-risk is that the stu-
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Table 5: Case Studies By Attention Score

Target Course True Grade Predicted Grade Prior Courses Grades Attention Score

CS-310 F C-

MATH-213 N 0.33
MATH-125 N 0.33

CS-262 N 0.33
CS-211 C 0.01

CS-310 D D
MATH-213 F 0.913
MATH-114 C 0.072
CS-211 N 0.015

BIOL-311 F C
BIOL-213 C+ 0.5315
BIOL-214 C+ 0.4685

BIOL-452 D C CHEM-211 C+ 0.5271
BIOL-214 B 0.2784
BIOL-213 C 0.1945

N means that the student did not take the course. Courses in bold mean they are in prerequisites chain.

dent did not take MATH-212, MATH-125, CS-262, therefore
lacks the necessary knowledge to do well in the target course.
In the second case, the student’s true grade in CS-310 is D,
the predicted grade is D. The three most important courses
are MATH-213, MATH-114, CS-211. The reason for pre-
dicting this student as failing the target course is that he
failed MATH-213 and did not do well in MATH-114 and
did not take CS-211, which is the prerequisite of the target
course. In the third case, the student’s true grade in the tar-
get course is F and the predicted grade is C. The two most
important prior courses identified are BIOL-213 and BIOL-
214, both are in prerequisite chain of the target course and
the student did not do well in them. The fourth case shows
that the student failed the target course BIOL-452 and the
predicted grade is C. The three most influential prior courses
are CHEM-211, BIOL-214, BIOL-213. Courses CHEM-211
and BIOL-213 are in prerequisite chain and the student did
not perform well in them.

From the case studies, we can see that the attention layer
identifies missing knowledge components for a target course,
arising due to two reasons: 1) the student did not take some
important prior courses, 2) the student did not do well in
the corresponding prior courses.

5.4 Sensitivity Analysis
In this section, we evaluate the sensitivity of the model’s
performance with respect to the dimension of the graph em-
bedding. In Figure 5, the x-axis is the embedding dimension
and y-axis is MAE for Fall 2017 and Spring 2018 datasets.
From Figure 5, we can see that the model’s performance
varies with the dimension size. Overall, its performance is
quite stable across the different majors.

6. CONCLUSIONS
Students’ performance prediction is a fundamental task in
educational data mining. Predicting students’ performance
in undergraduate degree programs is a challenging task due
to several reasons. First of all, undergraduate degree pro-
grams exhibit complex knowledge dependence structures.
Secondly, undergraduate degree programs are flexible which
means students can take courses without following specific
order and they can choose to take whatever electives they
are interested in. Traditional approaches like static and se-
quential models are not able to fully capture the complexity
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Figure 5: Sensitivity analysis on embedding dimension.

and flexibility of students’ data.

In this work, we proposed a novel attention-based graph
convolutional networks for students’ performance prediction.
The model is able to capture the relational structure under-
lying students’ course records data. We performed extensive
experiments to evaluate the proposed model on real-world
datasets. The model is evaluated in several aspects: 1) grade
prediction accuracy and 2) ability to detect at-risk students.
The experimental results show that our model outperformed
state-of-the-art approaches in terms of both grade prediction
accuracy and at-risk students detection. Finally, the atten-
tion layer provides explanations for the model’s prediction,
which is essential for decision making.
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ABSTRACT 
We explore generalizability and fairness across sociodemographic 
groups for predicting on-time college graduation using a national 
dataset of 41,359 college applications. Our features include socio-
demographics, institutional graduation rates, academic 
achievement, standardized test scores, engagement in 
extracurricular activities, and work experiences. We identify five 
latent classes based on available sociodemographic data and train 
Random Forest classifiers to successfully predict 4-year 
graduation. When individually trained and tested on each class 
using a split-half validation method, we achieved AUROCs 
between 0.629 and 0.694. We then evaluate how a model trained 
on the entire dataset performs on each latent class by performing a 
slicing analysis, finding a 6 to 10 percent improvement in AUROCs 
compared to the individual-class models. We explore fairness of 
our model by extending the slicing analysis to consider Absolute 
Between ROC Area (ABROCA), finding similar values for each of 
our latent classes. We contemplate how our results might be used 
to avoid perpetuating biases inherent in college application data. 

Keywords 

college success, college applications, generalizability, fairness, 
slicing analysis, National Student Clearinghouse, Common App 

1. INTRODUCTION 
In 2016, the Obama administration issued a report urging data 
scientists to explore “how technologies can deliberately or 
inadvertently perpetuate, exacerbate, or mask discrimination." [6]. 
To this point, in recent years, machine learning has come to 
influence a range of real-world activities, such as detecting credit 
fraud, financial investing, advertising, and, of course, education. 

These methods make complex, sometimes life changing, decisions 
based upon training data, often without considering if the training 
data is biased. This is a critical omission because training data takes 
advantage of past events, which may be unfairly biased against 
certain subpopulations, such as those of a particular race, gender, 
or sexual orientation. Given that the past data may be biased, 
machine learnt models further perpetuate or even exacerbate these 
biases. The resultant models can be described as ‘unfair’ because 
they treat different subpopulations differently. For example, 
Amazon recently had to decommission their recruitment AI as it 
favored male applicants for technical jobs [15], ostensibly because 
in the ten years of hiring data used to train the model, the company 
had predominantly hired more men than women in technical roles. 
This biased training data caused the model to negatively evaluate 
resumes that alluded to the applicant being female (e.g. containing 
the phrase “women’s chess club captain” or having attended a 
women’s college). 
In the context of education, there has been considerable interest in  
predicting a range of educational outcomes, such as  affect, learning 
style, likelihood of dropping out of a course, and whether a student 
will succeed on an upcoming test [18, 46]. In this paper, we 
examine generalizability and fairness in the specific case of 
predicting college success. We use the CommonApp-NSC dataset, 
a 6-year longitudinal de-identified dataset of college application 
data and graduation outcomes. We first identify five subgroups of 
applicants based on sociodemographics and then train Random 
Forest classifiers to predict on-time college graduation from 
application data. We explore how the models generalize across 
groups and how fair the models are to each of the groups. 

1.1 Background 
A college degree offers a wide variety of personal, academic, and 
economic benefits [3]. For example, 2015 median earnings for 
young U.S. adults (25-34 years of age) with a Bachelor’s degree 
were 64% higher than those who had only completed high school, 
a consistent pattern over the past 15 years [39]. In addition to 
economic gains for the student, college completion also correlates 
with economic gains for the nation as a whole [11].   
However, based on the latest data, only 40% of first-time, full-time 
U.S. students graduated with a Bachelor’s degree within four years 
[41, 52] (60% graduated within six years). Moreover, the academic 
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achievement gap separating students by race/ethnicity in K12 
persists in college. Only 21% of Black and 30% of Hispanic 
students graduated within 4 years, compared to 44% White and 
48% Asian/Pacific Islander students [52].   
These numbers suggest that there is considerable room for 
improvement overall and especially for closing the achievement 
gap. More to the point of the present focus, they introduce a 
substantial potential for bias in any machine learning model which 
uses demographics to predict 4-year college graduation outcomes 
since these models might inherently predict lower graduation for an 
underrepresented minority based on historic rates irrespective of 
their abilities.  
In addition to demographics, socioeconomic (SES) factors have 
been reliably linked to college success [16, 17, 19, 63]. An early 
1964 study showed that SES factors such as family income, 
parental occupation, and parental education levels had a significant 
effect on college retention and graduation [22]. Other work has 
reported similar links between SES and college success [1, 34, 60], 
particularly with respect to the relationship between SES and 
ethnicity [48]. This signals another potential for bias. Indeed, recent 
work in machine learning (and even in the popular press) has called 
for an examination of how SES is used in models [14, 67], 
especially when making crucial decisions about a person’s future. 
Beyond SES, academic achievement such as high school GPA and 
standardized test scores have also been shown to be predictive of 
college success. In large scale studies [53, 66], including a 
landmark study with 150,000 students, both standardized test 
scores and high school GPA predicted college success. However, 
both of these measures has also been (negatively) linked to SES 
[54, 68], suggesting potential bias in a more indirect way. 
Beyond sociodemographics and cognitive ability, Goodwin and 
Hein [28] hypothesize that the “X-Factors” such as a can-do 
attitude, self-discipline, and good study habits are also important 
for college success. This view aligns with Duckworth [16], Dweck 
[19], Walton [63], and others who argue that non-cognitive factors 
such as grit, self-control, mindset, and social belonging [16, 17, 19, 
63] are critically important for college success after accounting for 
sociodemographics and cognitive ability.  
One complicating factor is that these non-cognitive traits are 
difficult to accurately measure. Therefore, admissions  counselors 
must rely on self-reports or informer reports (such as from 
teachers), which have a number of known biases (see [17] for a 
review). To address this, there is an interest in more objective 
measurement approaches. One relevant proxy measure of non-
cognitive traits is sustained engagement in extracurriculars during 
high-school. The rationale for the predictive value of 
extracurriculars is that they provide a context for the development 
and demonstration of key non-cognitive characteristics (e.g., 
initiative [37], identity [21, 37], competence, confidence, and 
character [9]) linked to academic success. However, 
extracurriculars might also be inherently biased, in that SES 
influences the amount and types of available extracurricular 
opportunities [31, 38]. There is some evidence that work 
experiences might provide similar benefits as extracurriculars 
provided youth do not work too much (see [65]). However, low 
SES students might be the ones more likely to work [61, 64], 
suggesting that work experiences might also be a biased proxy 
measure. 
In previous work with the CommonApp-NSC data set [33], we 
trained models that could successfully predict four year graduation 
using sociodemographics, cognitive ability, and non-cognitive 
factors. However, we did not consider how our models generalized 

between subpopulations or if a population was being treated 
unfairly. We address this issue here by exploring how the models 
perform across different sociodemographic groups and evaluate the 
fairness of our classification methods. 

1.2 Related Work 
Because the field of generalization is vast [59], we focus 
specifically on generalization across sociodemographic groups in 
the context of education. We then go on to discuss fairness for a 
model – that is whether predicted outcomes for a particular group 
are consistently negative. Available techniques fall into two 
groups: (1) methods for evaluating if an existing model is fair; and 
(2) methods for developing a fair model. Both approaches are 
discussed here. 
In machine learning, cross-validation is performed to improve the 
likelihood of a model generalizing to new instances, or in 
educational data mining, to new students (i.e., students not in the 
training set). However, what about generalizability beyond the 
student to groups of students? The results might not be so 
promising. For example, a review by Blanchard [7] indicated that 
work in intelligent tutoring systems (ITS) and artificial intelligence 
in education (AIED) overwhelmingly samples from White, 
educated, industrialized, rich, and democratic (the so-called 
WEIRD) countries. Blanchard notes that cognitive factors differ 
greatly across cultural contexts and stresses the importance of 
expanding research in ITS and AIED to non-WEIRD countries. 
Baker and Gowda [4] showed that generalizability is not even 
guaranteed within communities in the United States of America. 
Using data from a diverse group of students interacting with an ITS, 
they found that behaviors that were predictive of disengagement 
significantly differed between urban, suburban, and rural students. 
This was further supported in [42], where models trained on urban 
or suburban students generalized to each other but not to rural 
students. In contrast, Samei et al, [49] reported that their models of 
effective classroom discourse generalized across urban and non-
urban classrooms. Bosch et al [8] also have had success with 
generalizability. In work on detecting affect while students 
interacted with an educational physics game, they found that video-
based affect detection generalized across ethnicity (as perceived by 
human observers) and gender. 
Each of the aforementioned approaches explore generalizability by 
training models on one group and testing on another, a simple yet 
effective method of validation.  However, this approach does not 
apply when it is infeasible to build models for each sub population, 
for example, when training data is limited. In this case, we must 
instead consider how a model trained on all the data performs to 
individual subgroups of interest. In slicing analysis [50], predictive 
models are trained on the entire data set and evaluated by “slicing” 
along subpopulations of interest (such as race, or ethnicity). This 
allows a researcher to explore if a model is only successful for a 
certain group (e.g. if a model trained on all data is only accurate for 
white students).   
Gardner et al. [26]  recently presented a metric to evaluate fairness 
within slices. They propose Absolute-Between-ROC Area 
(ABROCA) for quantifying how a predictive model’s performance 
varies across different student subgroups. This metric evaluates 
whether a model privileges (provides more accurate classification) 
or disparately impacts (provides less accurate classification) a 
subgroup by comparing the group’s ROC curve to the ROC curve 
of a baseline group. In a study analyzing MOOC dropout rate, they 
show a significant difference in privilege given to males versus 
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females in machine learnt models across a variety of feature sets 
and across a classification techniques. 
Another method for evaluating models is Individual Fairness [20], 
which states that in order for a model to be considered fair it must 
yield similar predictions to similar individuals. The success of this 
evaluation method depends upon how similarity is defined, a 
challenging task when the number of predictors is large as in any 
complex prediction problem.  
An alternative to evaluating fairness post-hoc is to design fair 
models from the ground up. Fairness through unawareness posits 
that a model is fair if it does not include any protected (potentially 
biased) variables (e.g. [25, 36]). However, this approach ignores 
the fact that protected variables such as ethnicity may be encoded 
(via correlation or similar) with variables not initially considered to 
be protected, such as participation in extracurricular activity or 
standardized test scores. [27, 32].  
Alternatively. Kusner et al. [36] have introduced the idea of 
Counterfactual Fairness, which requires an understanding of 
causality among predictors (see [36, 45]). Whereas this method has 
been successful in datasets with a limited number of variables, 
understanding causality in a complex dataset presents many 
challenges and may render this approach unfeasible. 

1.3 Contributions of Current Study 
The present study is novel in multiple respects. We build upon work 
predicting on-time Bachelor’s graduation solely from information 
contained in college applications. We derive 143 variables from 
each application and train models on 41,359 instances. Our sample 
includes students from all 50 U.S. states as well as international 
students, yielding many options for exploring generalizability and 
fairness.  
We first cluster the sociodemographic data by identifying latent 
classes of students within the dataset. From available 
sociodemographic variables (e.g., race/ethnicity, parent education, 
parents’ marital status, and English language learner status), we 
identify five distinct latent classes of applicants for further 
investigation.   Specifically, we examine the accuracy of models 
trained and tested on the same class. We then use a slicing analysis 
to investigate how a model trained on all the data performs for each 
of the classes.   
It should be noted that our complex, real-world dataset does not 
easily lend itself to current methods for designing fair models. 
Decades of research have shown that SES is a predictor of college 
success (as cited above), so a fairness through unawareness 
approach would require ignoring an important predictor. Likewise, 
counterfactual fairness requires understanding causality in the 
dataset, a challenge given that we are working with 143 variables. 
We instead evaluate the fairness of models trained with traditional 
machine learning approaches using ABROCA as the pertinent 
metric.  

2. DATASET 
2.1 CommonApp-NSC Data1 
The Common App [55] is a nonprofit organization that hosts a 
portal where high school students can complete and submit 
applications to nearly 700 colleges. The Common App streamlines 
the admissions processes by enabling students to complete one 
“common” application that can be submitted to multiple colleges 
                                                             
1 In what follows, we provide an abridged description of the dataset, 

which was originally published in [33]. 

across the country. Whilst individual colleges may have their own 
supplemental applications (e.g. additional essays), the core 
application remains the same. 
The Common App has three parts. The student section includes 
information on sociodemographics, future college plans, family 
history, academic history, standardized test scores, honors received 
(for academic, sporting, or other pursuits), extracurricular 
activities, work history, and disciplinary history. Students also 
submit a personal essay, but these are not available to us due to 
privacy concerns. A separate evaluation consists of teacher ratings 
of the student across several dimensions, ranging from “quality of 
writing” to “reaction to setbacks”. Finally, the secondary school 
report contains information on the student’s high school (e.g., 
percent of graduation class enrolling in college), the student’s 
academic performance (e.g., class rank, GPA), and evaluations 
from the student’s guidance counselor (e.g., ratings of academic 
achievements, difficulty of courses, and personal qualities).  
The National Student Clearinghouse (NSC) is a nonprofit 
organization created in connection with the financial aid lending 
industry that gathers enrollment data for student borrowers. The 
NSC data tracks the following information for each student on a 
per-semester basis: college name, college type (2/4 year; private or 
public), enrollment (none, full, part-time), major, and graduation 
status (degree, and major).   
Both organizations have merged, de-identified, and shared the data 
with us, which we prepared for statistical analyses. The Common 
App contains individual applications from 413,675 students who 
completed the 2008 application for admission in the 2009 school 
year. We successfully matched 362,205 of these applications to 
2015 NSC records. From this subset, we removed 50,894 students 
who enrolled in college prior to 2008 and an additional 3 students 
due to data integrity issues, leaving 311,308 students.  
To account for institutional effects on the probability of graduation, 
we obtained 4- and 6-year graduation rates from the National 
Center for Educational Statistics (NCES) [47] for the institution 
students first enrolled in (i.e., their first entry in the NSC). We used 
2012 graduation rates to avoid including students from our 2009 
student cohort who would be on-track to graduate with a 4-year 
degree in 2013. We obtained institution graduation data for 89% of 
the students, resulting in a reduced sample of 278,201 students. 
We also obtained information on students’ high school 
environments (e.g. demographics of the school) from the NCES 
data  [47], using the 2007-2008 school year to avoid direct overlap 
with our student cohort. 
Our data only included applications/reports that were completed 
online, as there was a paper option in 2008. Of the 278,201 
students, only 41,359 had a corresponding teacher evaluation and 
secondary school report, which contained critical GPA scores as 
entered by guidance counselors.  We presume that a majority of the 
missing cases were submitted on paper; they were therefore not 
available to us. Previous work investigated the importance of GPA 
in predicting college success [33] and found that it did not 
significantly boost prediction after accounting for the other 
features. Here, we with this subset for consistency, but do not 
consider GPA.  
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2.2 Encoding the Application 
We extracted 143 features from the application, including auxiliary 
sources (e.g., NCES data), which we grouped these into the 
following categories:  
Personal and family, 48 features. Features in this category focus 
primarily on sociodemographics (e.g., ethnicity, sex, number of 
parents who went to college, etc.).  
Academics and standardized tests, 38 features. This category 
encodes information from the ‘academics’ (e.g., did a student 
intend to graduate from high-school on time) and ‘standardized 
tests’ (e.g., SAT scores) section of the student application along 
with data about the high school environment from the NCES (e.g., 
teacher-student ratio). 
Activities and work experience, 45 features. Students enter 
information for up to seven extracurricular activities, including the 
type of the activity, the time commitment, and the school years in 
which they participated in the activity. In addition, students can 
enter up to three work experiences, from which we derived features 
such as number of jobs and hours per week at each job.  
Honors, 10 features. Students describe academic and sporting 
honors received during their high school career. For each honor, we 
encode the type of honor, the level of the honor (school, state, 
national or international), and the grade when it was received. 
Institutional graduation rates, 2 features. These are the 4- and 6- 
year graduation rate of the colleges in which students first enrolled. 
Our sample of 41,359 students represented all 50 states and 
included some international students. The students represented 
5,678 secondary schools and were enrolled in 1,238 post-secondary 
institutions. Forty-four percent (44%) graduated within four years 
of enrollment; this rate aligns with national norms [41].  

2.3 Student demographics 
Our sample was majority female (56%). Student age was 
unavailable due to data de-identification, which eliminated birth 
dates. With regard to ethnicity, 54% of students identified as 
Caucasian, 8% as African American, 8% as Hispanic, 8% as Asian 
American, 5% as Asian Indian, 4% as Mexican American, 1% as 
Native American/Alaskan, and 5% as other ethnicities (students 
could select multiple ethnicities as well as decline to answer). In 
terms of home life and education, 96% had two living parents, 77% 
of students reported living with both parents, 68% had two parents 
who attended college, and 16% had one parent who attended 
college. For secondary education, 68% of students reported 
attending a public high school, 14% a religious high school, 16% 
an independent high school, 2% a charter school, and 1% were 
home schooled. The subset of 41,359 students was representative 
of the full sample of 311,308 students, differing only with respect 
to the number of parents who attended college [33]. 

3. LATENT CLASS ANALYSIS 
We used latent class analysis (LCA) to  identify five clusters of 
students based on individual sociodemographic characteristics 
(race/ethnicity, parent education, parents’ marital status, and 
English language learner status), the race/ethnic composition of 
students’ high schools (% African American, % Latino, % White, 
and % Asian American), and whether the school was Title I  eligible 
(a school is eligible if it has high concentration of low income 
students [23]). We selected these characteristics because they not 
only paint a relatively comprehensive portrait of socioeconomic 
status, but also have demonstrated associations with college 
success (see Introduction). Specifically, White and Asian American 

students, students of college educated parents, students with 
married parents, and students who speak English as a first language 
have higher on-time graduation rates than are African American 
and Latino students  [58], first generation college students [57], 
English language learners [35], and students with single parents 
[44, 51]. Likewise, high schools with large percentages of low-
income and minority students, when compared to predominantly 
White higher-income high schools, often have lower rates of 
college matriculation and completion [29].  Although often used in 
generalizability studies (e.g., [8, 24]), we did not include gender in 
these models as it does not relate to SES and ethnicity (see 
Discussion). 
We used the entire sample size, in this case, all students who 
attended a public high school (N= 216,133) for the latent class 
analysis in order to obtain the most representative clusters. We used 
complex mixture models with a maximum likelihood estimator in 
MPlus 7 [40] to identify our latent class structure. Standard errors 
were adjusted to account for the clustering of students within high 
schools. An initial two-class solution yielded AIC and BIC values 
of 385,195.512 and 385,493.737, respectively. Subsequently, we 
tested solutions with up to six classes. Although each increase in 
the number of classes resulted in notable improvements in model 
fit (see Table 1), the magnitude of these improvements diminished 
with increasing model complexity. The selection of the final five-
class solution (see Table 2) balanced model fit against pragmatism. 
Specifically, the six-class solution fit the data somewhat better than 
the five-class solution, but two of the six classes had very similar 
profiles (i.e., profiles similar to class 3 in Table 2). Each class in 
the five-class solution, on the other hand, had a distinct profile as 
described below.  
 

Table 1. Model fit by number of latent classes 
#  

      AIC 
Incremental 
reduction in 
AIC 

         
        BIC 

Incremental 
reduction in 
BIC  

2 385195.51                   -- 385493.74                 -- 
3 196766.61 188428.90 197198.52 188295.21 
4 16127.75 180638.87 16693.35 180505.18 
5 -103474.54 119602.29 -102775.26 119468.60 
6 -180815.24 77340.70 -179982.27 77207.01 

 
Of the 41,359 students analyzed here, only 28,122 were included in 
the LCA analysis since we only focused on those who attended a 
public high school. Class 1 contains a plurality of Black students 
with a sizable white minority (20%) in their high schools. The 
majority of students are native English speakers, approximately 
half of students are first generation college students and 
approximately half of students are children of unmarried parents. 
This reflects an average SES. Class 2 contains a plurality of White 
students, but other groups are represented in their high schools 
(51% white). The majority are native English speakers with 
married, college-educated parents. Students in this class typically 
attend a non-Title I eligible, diverse high school where 
approximately half the students are white with moderate 
representation across other ethnic/race groups. Thus, this class can 
be categorized as predominantly white students, high SES students 
in diverse high schools. Class 3 is similar to Class 2, except with a 
higher majority of white students and students typically attending a 
primarily white high school. These students are also high-SES. 
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Class 3 is the largest of the classes representing 60% of the students. 
Class 4 is the smallest of the classes, containing 4% of students, the 
majority of students are Asian, and a sizable number (52%) of 
students are English language learners. The majority of students in 
class 4 have college educated; married parents and attend a non-
Title I eligible high school, which suggests high-SES. Finally, in 
class 5, there is a plurality of Latino students, many (45%) of whom 
are English language learners. The majority of students have 
married parents who did not attend college. Most students in this 
class attended majority Latino, Title I eligible high schools, 
suggesting low-SES. 

4. MACHINE LEARNING 
We used the scikit-learn library [43] for machine learning. We 
focused on Random Forests because previous work that considered 
logistic regression, naive Bayes, decision tree (using the scikit-
learn CART-like algorithm), and gradient-boosted decision trees 
[33]. found that Random Forest was consistently the best 
performing approach. 
Hyperparameters for the random forest classifier [10, 30], were 
tuned on the training set using the cross-validated grid search 
method provided by scikit-learn [43]. Specifically, the number of 
trees in the forest (n_estimators), the maximum number of features 
to consider when searching for the best split (max_features), and 
the maximum depth of the trees (max_depth) were tuned. By 
careful tuning of these hyperparameters, we negate the need for 
traditional feature selection, as this is then implicit in the Random 
Forest algorithm when hyperparameters are set to appropriate 
values. The random seed was set to a random integer generated by 
the Numpy.random library [62]. Other hyperparameters relating to 
limiting the size of the trees (other than maximum depth) were left 
at default values as resources were sufficient to compute unpruned 
trees in reasonable time. 
We validated our models using a student-level k-fold cross-
validation (k=2). For each iteration of the classifier, a random 50% 
of students were assigned to the training set, the remaining 50% to 
the test set, the process was repeated with the sets reversed, and 
results computed after pooling predictions across the folds. By 
using a low k value, we increase the size of our test set, increasing 
the likelihood that successful models will generalize to new data.  
This process was repeated for 15 iterations and the results were 
averaged across iterations.  We selected 15 iterations to balance 
computation time and reliability across multiple training/testing 
pairs. Although setting k=2 imposes a stringent test of the model by 
removing half the data for the test set, it helps to ensure that the 
models will generalize to new students.  
We note that for some of the latent classes there is a substantial data 
skew (more instances of not graduating than graduating). Class 
imbalance poses a challenge because supervised learning methods 
tend to bias predictions towards the majority class. To compensate 
for this concern, we used the SMOTE algorithm [12] to create 
synthetic instances of the minority class by interpolating feature 
values between an instance and its randomly chosen nearest 
neighbors until the classes were equated. SMOTE was only applied 
on the training sets; the original class distributions were maintained 
in the test sets in order to ensure validity of the results. 

5. RESULTS 
We report area under the receiver operating characteristic curve 
(AUROC). Whereas overall recognition rate/model accuracy is 
susceptible to data skew, AUROC presents the result relative to 
chance (0.5). 
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5.1 Generalization  
We first compared how models trained on each class individually 
compared to a model trained upon all data. The all data model was 
evaluated using a slicing analysis, where predictive model 
performance is evaluated by “slicing” along subpopulations, in this 
case, the computed LCA classes. We trained a random forest 
classifier on all of the data (41,359 instances) and then evaluated it 
by the five latent classes previously identified. The results of this 
analysis are shown in Figure 1 with the baseline reflecting chance 
performance (AUROC of 0.5).  

Each of the individual models performed above chance, suggesting 
that our methods generalized across classes. However, there was a 
disparity between the classes, the highest performing (class 3, white 
high SES) performed 10% better than the lowest performing (class 
4, Asian high SES).  The two lowest AUROC scores were for class 
1 (Black, Mid SES) and class 4 (Asian, high SES); the two classes 
with the lowest number of instances (1,745 and 1,051 respectively).  

Our model trained on all students performed better across all 
classes than individually trained models, with improvements 
ranging from 6-10%. The difference between the worst performing 
and best performing groups also decreased to 6%, implying better 
generalization across groups. One reason for this may be the 
improved power that comes with a higher number of instances; the 
all data model was trained on 41,369, instances, more than double 
that of the largest LCA class (16,959 instances). 

 
Figure 1. Accuracy of individual models compared to a slicing 
analysis of a classifier trained on all data 

5.2 Fairness 
We next examined the fairness of our model. Using the model 
trained on all data (41,359 instances) we computed five ROC 
curves, one for each of the latent classes. Recall that this was done 
for 15 iterations with k=2 cross validation. The ROC curves for a 
single iteration is shown in Figure 2, this iteration was chosen as 
the ABROCA scores are similar to the averages shown in Table 3. 
A sixth ROC curve for all students is also shown for comparison. 
In order to formally compare two curves, we use Absolute Between 
ROC Area (ABROCA) [26], defined as: 

!|𝑅𝑂𝐶&(𝑡) −	𝑅𝑂𝐶,(𝑡)|	𝑑𝑡
.

/

 

Here, 𝑅𝑂𝐶& is the baseline curve and 𝑅𝑂𝐶, is the comparison 
curve. ROC curves characterize model accuracy as the likelihood 
of correct positive predictions versus the likelihood of false positive 
predictions. ABROCA measures the absolute difference between 
two curves, allowing for the possibility that the curves may cross 
each other (see [26] for details). A higher ABROCA value between 
two groups implies a higher difference in predictions and thus more 
unfairness in the model. 

 
Figure 2. Sample ROC curves for each Latent class from model 
trained on 41,359 instances 
We used class 3 (White, high SES) as the baseline ROC curve as it 
is the highest performing group in our dataset. It is also a group 
typically overrepresented in Educational Data Mining [7]. When 
compared to this class, the other classes had low ABROCA values 
(see Table 3), perhaps unsurprising given the similarity of the 
curves in Figure 2. In general, the ABROCA values were all low 
with only small differences between classes, leading us to conclude 
that our model was providing fair predictions across our 
sociodemographic groups.  
 
Table 3. Slicing analysis by latent class from model trained on 

all data 

LCA Class AUROC ABROCA 

1 (Black, mid-SES) 0.675 0.011 

2 (White/diverse, high SES) 0.696 0.005 

3 (White, high SES) 0.706 - 

4 (Asian, high SES) 0.691 0.016 

5 (Latino, low SES) 0.668 0.008 
 

6. DISCUSSION 
On-time 4-year college graduation is something of a “holy-grail” 
for students, parents, and educators alike [58]. Although efforts to 
improve college enrollment have been paying off, graduation rates 
are still lackluster with troublesome achievement gaps stubbornly 
persisting. Big data approaches might offer a potential solution to 
improving college graduation rates by providing new insights into 
the “ingredients” of success. However, they have their own set of 
limitations and biases, which need to be addressed before we 
uncover their full potential. Accordingly, we investigated how 
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predictive models of 4-year college graduation generalized across 
sociodemographic subgroups identified through latent class 
analysis and whether they yielded fair predictions for the different 
groups of students.  

6.1 Main Findings 
Whilst much of the previous work has relied on limited datasets and 
traditional statistical techniques [53, 61, 69], we harness a large and 
diverse dataset with greater potential for generalizability. 
Specifically, using data from students’ college application, we have 
been able to predict college graduation with moderate accuracy 
across demographic subgroups.  We also show through slicing 
analysis that a model trained on all data generalizes across all of the 
subgroups and outperforms individual models (improvement 
ranging from 6-10%). Training a model on all of the data also 
reduced the disparity between the subgroups.  
By evaluating the ABROCA metric, we were also able to examine 
which of our subgroups (if any) the classifier was treating unfairly. 
An unfair model would perform generate less accurate predictions 
for a given subgroup compared to the baseline group (White High 
SES in our case). In general, the differences in ABROCA scores 
were small, suggesting that our model treats no one class 
significantly different from another. 
Whilst all of our models’ predictions were substantially more 
accurate than a chance, there were still inaccuracies. In many ways, 
this result is reassuring, as we have only considered data from high 
school. The error that exists across all of our models confirm that 
college success does not merely depend on a student’s 
environment, past achievement, and experiences. What students 
experience and do in college plays a critical role in their success. 
Simply put, there is no predetermination. This gives us hope that 
through careful data mining we can soon begin to close the 
achievement gaps that exist across different sociodemographics. 

6.2 Applications 
It is perhaps easiest to start with how these models should not be 
used. Specifically, the models should not be used to make college 
admissions decisions because their accuracy scores are insufficient 
to drive life-changing decisions for individual students and they do 
not capture several additional factors of the college years that are 
important for success (e.g. financial needs, life-altering events, 
social pressures).  
We show that it is possible to build generalizing and fair detectors 
in this domain. On a larger scale, we hope to use this research to 
provide actionable advice for educators so that they may better 
prepare students for college success. Further analysis is needed to 
derive these personalized recommendations, especially since the 
current models are correlational and thereby unsuited for causal 
inference.  
There are further applications at the college level. Many U.S. 
colleges have committed to improving 4-year graduation rates [13]. 
This has resulted in an increased reliance on educational data 
mining approaches, especially methods to identify “at-risk” 
students early on [2]. A common issue however is that early 
warnings are not early enough [5]. Our models consider college 
application data, so enable us to pre-identify students who might 
need additional support before they begin their studies. Of course, 
the models’ assessments should be privately communicated to the 
student’s themselves and perhaps to a trusted counselor so they are 
empowered to take whatever next step is in their best interests. 

6.3 Limitations and Future Work  
All studies have limitations and ours is no exception. Each of the 
latent classes had different graduation rates and varied number of 
instances (a difference of 15,909 instances between the smallest 
and the largest groups). We attempted to account for class 
imbalance via synthetic oversampling. However, further work is 
required to evaluate how the number of instances influenced our 
results. Future work will also explore the effect of increasing the 
amount of data used to train models.  
Second, our sample only included students who applied to schools 
that accepted the Common App, which would introduce selection 
bias, which we cannot account for in this work. Further study is 
required to investigate how the results generalize to other colleges 
in the U.S. and beyond.  
In addition to addressing these limitations, there are also several 
promising avenues for future work. For example, since biased 
variables seem to be predictive in this domain, we will also look 
into ways to create fair models without fully ignoring the biased 
variables, perhaps by deriving unbiased proxies.  
Our models utilized a range of features including socioeconomic 
factors, academic history, cognitive ability, the high school 
environment, and indicators of extracurricular participation that 
may reflect non-cognitive characteristics. Previous work using the 
CommonApp-NSC dataset work has shown that different feature 
groups [33] achieve different classification accuracies. In future 
work we intend to explore fairness for different feature groups and 
incorporate insights into the design of fairer models. 
When computing the LCA classes, we did not include gender as a 
variable. However, gender might be more relevant when it comes 
to specialized outcomes, such as STEM graduation where there are 
significant disparities across the genders. Relatedly, we also will 
explore other outcome metrics such as 6-year graduation and 
STEM graduation, an area with wide achievement gaps when it 
comes underrepresented groups [56].  

6.4 Concluding Remarks 
In conclusion, the age of big data brings with it big opportunity, and 
big responsibility. Although a predictive modeling approach 
applied to big data has considerable potential in providing new 
insights to illuminate persistent challenges, these methods have 
own weaknesses, particularly when it comes to making biased 
predictions. Thus, we must also consider how our models are 
perpetuating pre-existing bias and how this can be prevented. 
Taking the case of predicting on-time college graduation outcomes, 
we show that our models both generalize and are fair to various 
sociodemographics subgroups, a critical step towards using these 
models more broadly. 
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ABSTRACT
Thermal comfort (TC) – how comfortable or satisfied a per-
son is with the temperature of her/his surroundings – is
one of the key factors influencing the indoor environmental
quality of schools, libraries, and offices. We conducted an
experiment to explore how TC can impact students’ learn-
ing. University students (n = 25) were randomly assigned
to different temperature conditions in an office environment
(25◦C → 30◦C, or 30◦C → 25◦C) that were implemented
using a combination of heaters and air conditioners over a
1.25 hour session. The task of the participants was to learn
from tutorial videos on three different topics, and a test
was given after each tutorial. The results suggest that (1)
changing the room temperature by a few degrees Celsius
can stat. sig. impact students’ self-reported TC; (2) the re-
lationship between TC and learning exhibited an inverted
U-curve, i.e., should be neither too uncomfortable nor too
comfortable. We also explored different computer vision and
sensor-based approaches to measure students’ thermal com-
fort automatically. We found that (3) TC can be predicted
automatically either from the room temperature or from an
infra-red (IR) camera of the face; however, (4) TC prediction
from a normal (visible-light) web camera is highly challeng-
ing, and only limited predictive power was found in the facial
expression features to predict thermal comfort.

Keywords
thermal comfort, automated face analysis

1. INTRODUCTION
Most of the time that people learn takes place indoors. Pri-
mary and secondary school students are typically in school
buildings for most of the day and do homework in their
houses and apartments in the evenings. Adult learners may
learn as part of their job in an office or pursue lifelong-
learning opportunities at home. The indoor environment

quality (IEQ) of where people learn, study, and work can
have a significant impact on their physical well-being as well
as their cognitive performance [1, 2].

The impact of IEQ on learning in particular has a special
importance and has begun to interest architects, civil en-
gineers, and educational psychologists in recent years [13]:
Young learners in particular might be more sensitive to the
influence of the environment due to their age or other phys-
iological characteristics than adults. Students spend many
hours each day in schools; however, since students typically
have little control over their schools’ physical environment,
learners may feel great concern about their thermal comfort
[8]. Thermal comfort (TC), which is a key component of
IEQ, has been defined as “that condition of mind that ex-
presses satisfaction with the thermal environment and is as-
sessed by subjective evaluation” [3]. Prior work (see section
below) has shown that suboptimal thermal comfort condi-
tions can negatively affect students’ learning. However, to
our knowledge, no study to-date has explored the relation-
ship between the impact of TC on learning and time. Is
it possible that the effect of suboptimal TC could be mild
during brief periods of learning but become more severe as
the learning session continues? This is one of the questions
we explore in this paper.

Measuring thermal comfort: Different people can ex-
perience the same temperature and environment differently,
and just because one person has a high degree of thermal
comfort does not mean her/his friend or peer will. Since
thermal comfort is about a person’s satisfaction with the
thermal comfort, it depends not only on the environment it-
self, but also on the person’s physiological and psychological
adaptability [9, 7] to her/his environment. How adaptive a
person is depends, in turn, on how and where a person grew
up, e.g., her/his country of origin and its associated climate.

Due to the partially subjective nature of TC, most studies
that sought to measure TC used questionnaires [12, 11, 9,
7]. While these are useful, they suffer from drawbacks such
as (1) lack of temporal specificity, (2) recency/primacy ef-
fects, (3) disruption to regular activities. These can all lead
to inaccurate measurements. Therefore, many researchers
have explored alternative approaches based on various sen-
sors (e.g., skin-based temperature sensors, cameras) to mea-
sure TC automatically [34, 23, 25, 22, 15, 17].
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Automatic facial expression recognition: One of the
new forms of human observation that has been enabled by
advances in machine learning and computer vision is based
on automatic facial expression recognition. With technol-
ogy, it is possible to automatically detect pain in the human
body [18], student engagement [36], driver fatigue [33], and
many other affective and cognitive states. Inspired by these
studies, we explore in this paper whether automatic analysis
of facial expression can help to detect a person’s degree of
thermal comfort.

Contributions: In our study, we (1) conduct a random-
ized experiment to explore the relationship between thermal
comfort, the time-on-task, and learning. We also (2) explore
different sensors and algorithmic approaches to estimating a
person’s thermal comfort automatically.

2. RELATED WORK
During the past 10 years there has been substantial interest
(see [13, 26] for literature surveys) in measuring the impact
of the IEQ on students’ learning. In Table 1 we categorize
the prior work on this subject in terms of IEQ factor (light,
air, etc.) as well as the method of measuring learning (sub-
jective impression (SI), test (T) performance, school scores
(SS), and randomized experiment (RE)). In addition to stud-
ies specifically about thermal comfort (TC) [38], other fac-
tors of the IEQ such as lighting, air quality, and noise have
been considered. Within this research domain, an important
dimension of variability is how learning was measured – by
asking participants their subjective impressions, from their
school scores, or from a test conducted within the experi-
ment itself. Another dimension of variability is whether the
study was observational (i.e., compute a correlation between
historical data of the IEQ and historical data of learning) or
experimental (i.e., randomly assign participants to condi-
tions). The latter is a generally considered to be the more
powerful approach since it avoids many potential confounds
(e.g., student engagement) and is the approach we pursue in
our study.

2.1 Impact of TC on learning
[20, 8] used subjective impression as the learning perfor-
mance. They both analyzed the relationships between the
IEQ (light, air quality, thermal comfort and noise) and learn-
ing. [20] found that the learning performance was negatively
correlated with the number of student complaints about
IEQ. [8] also explored the students’ satisfaction with IEQ,
as well as the TC in particular, from survey data gathered
from 631 university students. The results showed that satis-
faction of IEQ of the classroom was related to the perceived
effect of IEQ on learning. [27] conducted a 1-month test
during May-June 2012 at a university in Romania. 18 stu-
dents’ test results of concentrated attention tests (Kraeplin
test) and distributive attention test (Prague test)[31, 30]
were recorded. The conductors used room temperature, rel-
ative humidity and CO2 concentration to predict test scores.
Their results suggested that these indoor environment fac-
tors could strongly impact students’ learning performance.
[35] conducted an experiment to explore the impact of air
temperature on students’ performance. The results indi-
cated that with the same accuracy, students would increase
their speed when performing the language-based and nu-
merical performance tasks if the room temperature was re-

duced from 25◦C to 20◦C in late summer. [24] randomly as-
signed the participants into different conditions to perform a
computer-based reading and learning task. They found that
TC had a low and non-significant relationship with the per-
formance; the participants in the extreme condition believed
that the temperature had a larger negative impact on their
performance than the participants in a normal condition.
In [16], the researchers conducted an experiment to explore
the impact of TC in 1-on-1 cognitive tasks when students
are with a tutor. All the participants experienced all tem-
perature conditions (10◦C, 14◦C, 15◦C, 16◦C, 18◦C, 20◦C).
Their experiment indicated that there was an inverted-U re-
lationship between thermal sensation and pupils’ learning
performance. A seven point scale of thermal sensation, ac-
cording to [3], was used. The meaning of the number from
-3 to 3 was “cold”, “cool”, “slightly cool”, “neutral”, “slightly
warm”, “warm” and “hot” successfully. The results showed
that students’ performance was better in the cool or slightly
cool conditions compared to the hot condition.

2.2 Measuring thermal comfort
How to measure thermal comfort has been explored for many
years. While questionnaires from each person about her/his
own TC is useful, they can be inconvenient and tedious.
Researchers have thus sought to devise alternative measures
that can be measured automatically from various sensors.

Environmental sensors: For instance, the PMV-PPD model,
proposed by [12, 11], uses air temperature, mean radiant
temperature, air velocity, humidity, and human variables to
calculate the Predicted Mean Vote (PMV) of a group of
people’s averaged thermal sensation according to [3]. The
Predicted Percentage of Dissatisfied (PPD) utilizes PMV
to calculate the percentage of people who might complain
about their thermal environment.

Body sensors: [34] used skin temperature sensors to collect
upper extremity (finger, hand, forearm) skin temperatures
and explored how these temperatures related to thermal sen-
sation. [23] explored different configurations of where to
place the temperature sensors on the body and identified
particular configurations that were most effective.

Cameras: More recently, with the development of machine
vision, researchers also explored predicting thermal comfort
through cameras. [25] showed that the averaged forehead
temperature from infrared (IR) images was correlated with
people’s thermal sensation and thermal comfort. [15, 17]
leveraged the human thermoregulation process and then ap-
plied Eulerian Video Magnification algorithm[37] to filter the
visible-light RGB images to predict thermoregulation states,
which is one indicator of thermal comfort.

3. EXPERIMENT
In order to assess the impact of thermal comfort on learn-
ing and how this effect could change over time, we con-
ducted a laboratory-based learning experiment (approved by
WPI’s IRB #18-0372) in which university students (n = 25)
watched three lecture videos, answered surveys on their ther-
mal comfort, and completed a quiz on what they learned.
During the experiment, the indoor environment conditions
were monitored and controlled according to a schedule de-
fined by each participant’s randomly assigned experimental
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Table 1: Related Work about the impact of indoor environment factors on learning. SI: subjective impression;
T: test; SS: school scores; RE: randomized experiment

Light Air Thermal comfort Noise Other
Lee, et al.[20] Kameda, et al.[19] Lee, et al.[20] Lee, et al.[20]

SI Choi, et al.[8] Lee, et al.[20] Choi, et al.[8] Choi, et al.[8]
Marchand, et al.[24] Choi, et al.[8] Marchand, et al.[24] Marchand, et al.[24]

Dorizas, et al.[10] Kameda, et al.[19] Dorizas, et al.[10] Dorizas, et al.[10]
T Dorizas, et al.[10]

Sarbu & Cristian.[27]
Haverinen-Shaughnessy, Barrett, et al.[6]

SS et al.[14] Barrett, et al.[5]
Marchand, et al.[24] Wargocki & David.[35] Wargocki & David.[35] Marchand, et al.[24]

RE Marchand, et al.[24]
Jiang, et al.[16]

condition. We also deployed a variety of sensors – camera,
environmental, and body – to measure the temperature of
the environment and of each participant. These sensor mea-
surements, along with participants’ survey responses, allow
us also to explore different automated approaches to esti-
mating a person’s thermal comfort.

3.1 Recruitment of participants
We recruited participants for the experiment through an
email list at our university. In the end, 25 students (of whom
9 were female) participated in our experiment. All of them
were either undergraduate or graduate students. Each par-
ticipant was paid for $20 gift card for his/her participation.

3.2 Procedure
This experiment was conducted on each participant individ-
ually and was divided into four sessions. Each session was
21 minutes. Therefore, every participant would sit at a desk
around 84 minutes in total. In the first session (adaptation
session), each participant gave informed consent, placed the
skin-based temperature sensors on her/his body, and lis-
tened to the experimenter’s instructions. The purpose of
the adaptation session was to neutralize the potential im-
pact of the outside weather conditions or physical activity
(e.g., running to class) before the experiment. In each of
the remaining three sessions, the participant watched a tu-
torial video (10 minutes), answered a quiz about it (<5 min-
utes), completed a thermal comfort survey (<5 minutes),
and then took a break. The length of the break (21 min −
VideoLength − QuizTime − SurveyTime) depended on how
long the participant took to complete the quiz and survey.
The order of the tutorial videos was randomized, as was the
order of the temperature conditions (warm to neutral, or
neutral to warm); see Conditions subsection below. Sensor
measurements, including video of the face, were recorded
throughout all three tutorial sessions.

After the participant finished putting on the body sensors,
the experimenter started the videorecording from the laptop-
based web camera, typed the participant’s ID into the web-
page, turned the time controller on, and then asked the par-
ticipant to press the “Start” button whenever she/he was
ready. The experimenter then left the room and stayed
in the room next-door throughout the rest of the experi-
ment. Using remote access software, the experimenter took
an IR image of the participant at the beginning of each tu-

Figure 1: Experimental setup of the desk, laptop,
and cameras.

Video:
10 mins

Quiz:
max 5 
mins

Survey:
max 5 
mins

Break:
21 mins - 

video - 
quiz - 

survey

Tutorial Session: 21 mins

Figure 2: Tutorial session procedure

torial video during the tutorial sessions. See Figure 2 for a
schematic of the procedure.

3.3 Environmental controls
We used 4 heaters (to increase the room temperature) and
1 air conditioner (to decrease temperature). In order to
maintain the temperature at a constant level, we also de-
ployed 3 thermal controllers. Moreover, in order to change
the room temperature (from either warm to neutral, or neu-
tral to warm), we also used 4 timers. To maintain the room
temperature to be at least 25◦C, 1 heater was always turned
on. 3 thermal controllers and 3 timers were connected to the
other heaters. The thermal controllers were used to keep the
room temperature around 30◦C. Timers were used to con-
trol when the heaters and air conditioners were turned on
and off. The heaters and air conditioner were oriented so
that the air did not blow directly onto the participant.

3.4 Sensors
All sensors were adjusted carefully before we started our
experiment. They are listed as follows:
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Figure 3: Positions of skin-based temperature sen-
sors on the body.

1. 4 skin temperature sensors. We followed the positions
in [23] (see Figure 3). These sensors were used to mea-
sure the participant’s body temperatures at four differ-
ent body locations and record the temperature every
1 minute. Sensors were attached using medical tape.

2. Room temperature sensors. These sensors were used to
measure the room air temperature at different heights
(0.1m, 0.6m, 1.1m and 1.7m) and recorded every 1
minute.

3. 1 web camera on the laptop pointed at the partici-
pant’s face. Note that the video was lost for 1 out of
25 participants; hence, for our experiments on using
the web camera to predict thermal comfort, n = 24.

4. 1 infrared (IR) camera pointed at the participant’s
face. The camera recorded only images, not video.
Using the camera’s temperature calibration software,
the IR images can be used to estimate the participant’s
face temperature directly.

3.5 Materials
Tutorial videos: We used three 10 min-long tutorial videos
and quizzes that were used in a prior study by [32]. The
order in which the tutorial videos were presented to each
participant was randomized; this was necessary to remove
the potential confound that the subject matter, rather than
the thermal comfort or time during the learning session, in-
fluenced the learning gains. All videos were about social,
philosophical, and ethical issues: (1) honesty, (2) language
and thought, and (3) empathy.

Thermal comfort survey: We used the same thermal
comfort questionnaire survey as in [22, 21]. The survey asks
questions such as, “Rate your whole body thermal sensa-
tion”, “Rate your thermal body comfort”, “How sleep/alert
do you feel?”, and “How easy/difficult is it to concentrate?”
The scale was from -3 to +3 with a resolution of 0.1.

Figure 4: Top: Experiment lab Photo; Bottom Left:
Top view of Lab and sensors’ position. The partic-
ipant was facing the direction with the arrow; Bot-
tom Right: Room temperature sensors in different
heights

3.6 Conditions
Each participant was randomly assigned to one of two tem-
perature conditions: neutral to warm (25°C to 30°C), and
warm to neutral (30°C to 25°C). By randomizing the thermal
conditions, we avoid the potential confound that students’
performance changed in different sessions not due to ther-
mal comfort but due to other factors related to time, e.g.,
fatigue. If the participant was in the neutral to warm con-
dition, the room temperature in the adaptation session was
maintained at 25°C until the end of the first tutorial session;
it was then increased to 30°C in the second tutorial session
and was maintained at this level until the end of the third
tutorial session. See Figure 5.

3.7 Data collection
Using the sensors, we collected several kinds of data from
each person: (1) Video from the web-camera (at 30 fps);
(2) Infrared images (1 every 21 minutes); (3) room tem-
perature, CO2, and relative humidity (1 measurement every
minute); (4) body temperature (1 every minute for each sen-
sor); (5) each participant’s start/end times of each tutorial
video, quiz, and survey; (6) each participant’s quiz scores.
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Figure 6: Histogram of thermal comfort in our ex-
periment

4. ANALYSIS
Our analysis was focused on two questions: (1) what is
the relationship between thermal comfort, temperature, and
learning? (2) How can we use the various sensors to estimate
participants’ self-reported thermal comfort automatically?

4.1 Impact of room temperature on thermal
comfort

In our experiment, the range of the room temperature was
from 25°C to 30°C. This was not a huge change in the tem-
perature. One of our goals was to assess whether this mag-
nitude of temperature change could influence body thermal
comfort. As defined in the thermal comfort survey that we
used [3], the range of thermal comfort was from -3 to 3,
where -3 means “very uncomfortable” and 3 means “very
comfortable”. Based on the histogram of body thermal com-
fort in our experiment in Figure 6, we see that the partici-
pants rarely (10 total votes) considered their thermal com-
fort to be highly uncomfortable (a rating of -3, -2). This
indicated that our setting of the experiment was relatively
comfortable for most of the participants. Did the modest
temperature changes induced during the experiment impact
participants’ thermal comfort? To investigate, we consid-
ered models including either linear or quadratic terms for
room temperature (computed as the average of the temper-
ature sensors at different heights). The quadratic model did
not give a stat. sig. better model fit, and hence we used a lin-
ear model; see Figure 7. The Pearson correlation between
the model’s predictions and self-reported thermal comfort
scores was r = −0.436, p < 0.001, i.e., within the temper-
ature range of our experiment, higher temperature resulted
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Figure 7: Thermal comfort VS Avg room tempera-
ture

in lower thermal comfort. Based on the estimated regression
coefficient, increasing the room temperature by one degree in
our temperature range results in a reduction of thermal com-
fort by 0.32. Note that we also tried modeling thermal com-
fort and temperature (linearly) with a participant-specific
offset as a random effect and obtained similar results.

4.2 Relationship between thermal comfort,
learning, and time

After showing the change of room temperature in our ex-
periment could influence the participants’ thermal comfort,
we assessed whether thermal comfort was related to partic-
ipants’ performance in the learning task. A scatter-plot of
the quiz scores versus self-reported thermal comfort scores is
shown in Figure 8. Neither the Pearson nor the Spearman
correlations between quiz score and thermal comfort were
significant. However, after visually examining the scatter-
plot, we noticed a slight ”inverted U” shape; this has also
been noted in prior work [29, 28]. This shape indicates that
when the participants felt too comfortable or too uncomfort-
able, their quiz score were lower; when the thermal comfort
state was in the middle, their quiz score was higher. We
found some support for this hypothesis in our data: the
Spearman correlation between the square of self-reported
thermal comfort and quiz score was negative (r = −0.235)
and statistically significant (p = 0.0042). Tthe quadratic
model of self-reported thermal comfort gives a stat. sig. bet-
ter fit than the linear model (likelihood ratio test, p =
0.002).

To explore this more rigorously by accounting for repeated
measures, we also used a mixed-effect model with a random
effect to model an offset for each unique participant. Due
to different tutorial videos having different difficulties, we
also considered the video id as the random effect. We stud-
ied the relationship between thermal comfort and quiz score
within each of the three tutorial session (1, 2, 3) separately.
To our surprise, in the first two tutorial session, the impact
of the square of the body thermal comfort (i.e., TC2) was
not significant (p > 0.05). However, in the last (third) ses-
sion, the impact was negative and stat. sig. (p = 0.013).
The estimated magnitude was that a change in 1 level of
thermal comfort decreases the quiz score by 0.2 points (the
maximum score was 6 points). A possible interpretation is
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Table 2: Effect size (Cohen’s f2) of TC2 in each
tutorial session

Session No. Effect size
1 0.007
2 0.044
3 0.308

that, as time went on, the participants might feel more tired
or bored. At first, they could force themselves to focus on
the tutorial videos and answer questions. However, when
they became fatigued or bored, an uncomfortable thermal
comfort might start to show its influence. See Table 2 for
the effect size(calculated based on the marginal R2) in each
tutorial session.

4.3 Relationship between thermal comfort and
sleepiness

The survey that each participant completed after every tu-
torial session contained questions not just about thermal
comfort, but also about how sleepy they felt. The values
ranged from -3 (very sleepy) to +3 (very alert). The corre-
lation between thermal comfort and sleepiness was positive
(0.32) and stat. sig. (p = 0.0084).

4.4 Relationship between engagement and
learning

To explore whether the perceived level of student engage-
ment, as judged by an external observer, was related to stu-
dents’ learning, we manually labeled video frames from each
participant’s face video. We extracted 1 frame every 20 sec-
onds for each of the 3 tutorial sessions of all the participants.
These pictures were labeled for the appearance of ’engage-
ment’ following the definitions in [36]. Level 1 is “not en-
gaged”, level 2 is “nominally engaged”, level 3 is “engaged”,
and level 4 is “very engaged”; see Figure 9 for a representa-
tive image of each label. During labeling, the images were
randomized over time and also over participants; hence, the
engagement scores were unbiased w.r.t. participants’ self-
reported thermal comfort. We averaged the engagement for
each participant per each of the three tutorial sessions, and
then used a mixed effect model to analyze the relationship
between quiz score and engagement. The participant id was
still the random effect. Since we had a prior hypothesis

1. 2.

3. 4.

Figure 9: Participants in different engagement lev-
els.

Figure 10: Manually cropped face for infrared im-
ages. Top: face when thermal comfort is -0.6. Bot-
tom: face when thermal comfort is 2.7.

that engagement was positively correlated with learning, we
used a 1-tailed t-test. The result showed that this positive
correlation was significant (p = 0.032).

5. AUTOMATIC DETECTION OF
THERMAL COMFORT

The primary method of estimating thermal comfort is via
self-report on a survey. Might there be an automated way
of obtaining this information that is less intrusive and gives
higher temporal resolution? This could be useful to advance
research on the IEQ and learning. Moreover, it could also set
the stage for smart learning environments in which localized
ventilation, heating, and cooling systems can optimize the
thermal comfort for each learner. With these goals in mind,
we explored several approaches to automatically estimating
thermal comfort using the different sensors we deployed in
our experiment.

5.1 Infrared camera
Per participant, 3 IR images were collected (one per tuto-
rial session). From each IR image, we manually cropped the
face for infrared images from IR camera and calculated the
average face temperature for each tutorial session. For each
IR image, we cropped the face between two ears for width,
and from forehead to chin for length; see Figure 10. We then
calculated the mean temperature within the face region and
used it to predict thermal comfort. Using a mixed-effect
model (with participant id as a random effect), we found
that the correlation between the face temperature, as com-
puted from the calibrated IR image, and thermal comfort
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Table 3: Skin Temp. VS Thermal comfort
Sensor Pearson Correlation p-value

D -0.273 0.018
K -0.174 0.136
O -0.186 0.11
Q -0.28 0.015

was −.34 (p = 0.0029). In other words, a hotter face was
associated with lower thermal comfort.

5.2 Skin sensors of body temperature
We averaged the skin temperature from 4 skin sensors for
each tutorial session. The correlations between thermal com-
fort and averaged skin temperature are shown in Table 3.

With statistical significance, the correlations of the skin tem-
perature at position D and Q indicated that they had a
negative correlation with body thermal comfort. These two
correlations also remained significant when we applied the
mixed-effect model and set participant id as random effect.

5.3 Web camera
Even though the results of skin sensors and infrared cameras
showed that we could use them to detect thermal comfort,
we were still interested in whether an ordinary (visible light)
web camera can be used to detect thermal comfort. In con-
trast to skin sensors, web cameras are less intrusive – they
require no skin contact or medical tape. In contrast to IR
cameras, they are less expensive and more widely available.

While one could consider a “black box” approach such as
a CNN-LSTM in which all the pixels of an entire video
segment is used to predict thermal comfort, the relatively
small size of our dataset (n = 24) makes this approach dif-
ficult. Instead, we investigated whether the much lower-
dimensional feature representation of facial expressions can
reveal a person’s thermal comfort. For example, we reported
above that sleepiness is associated with thermal comfort,
and this might be revealed in a person’s facial expression;
this approach was used in [33] to detect drowsiness when
driving a car.

After watching the videos, our subjective impression was
that predicting thermal comfort from the face was very dif-
ficult. In the temperature range of our experiment setting,
the facial expressions in different temperature condition did
not vary greatly. Nevertheless, we tried three approaches:
(1) estimate thermal comfort directly from the average facial
features values extracted from OpenFace [4] over the time
series of face images; (2) estimate thermal comfort from a
Gabor-filtered time series of facial features; and (3) train a
recurrent neural network to analyze the raw time series.

5.3.1 Individual face movements
From each frame in each 10-minute video sequence just prior
to the self-reported thermal comfort survey of each tutorial
session of each participant, we used OpenFace to extract
the facial action units (AUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 14,
15, 17, 20, 23, 25, 26, 45). In addition, we also calculated
the size of the face – this could be useful for determining

Figure 11: Landmarks from OpenFace

if the participant leaned toward or away from the camera.
Next, we extracted the head pose. Finally, we computed the
distance between the eye-lids – this could give some measure
of drowsiness.

For the left eye, we first calculated the central point of land-
mark 37 and 38, the central point of landmark 41 and 40, and
then, calculated the distance between the these two central
points. For the right eye, we calculated the distance used
landmark 43, 44, 47 and 46 as the same approach as the
left eye. The eye-lid distance was the mean of the left dis-
tance and the right distance. We also estimated the size of
the face box as an indication of whether a person was lean-
ing towards or away from the camera: we first calculated
the central of landmark 19 and 24, and then calculated the
distance between the central and landmark 8, and also the
distance between the landmark 0 and 16. The final face size
was the product of the two distance. See Figure 11.

Using the above feature set, we examined the Pearson corre-
lation between each mean feature value (averaged over each
10-minute time series) and self-reported thermal comfort.
Only two features were stat. sig. correlated: AU 6 (Pear-
son r = 0.244, p = 0.038; see Figure 12) – cheek raiser –
and the eye-lid distance, calculated by the landmarks on the
eyes, was also correlated to thermal comfort with significant
(Spearman r = −0.27, p = 0.02). The latter correlation
suggests that smaller eye opening is associated with larger
thermal comfort; this is consistent with the notion that ther-
mal comfort that is “too high” may cause people to become
sleepy.

5.3.2 Gabor filtered time series
A 1-D (temporal) Gabor filter is a complex-valued band-
pass filter, with a specifiable center frequency and band-
width, whose impulse response is local in both time and
frequency; an example of the real component of one filter is
shown in Figure 13. Gabor filters have been applied to var-
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Figure 12: Example of AU 6 (https://www.cs.cmu.
edu/~face/facs.htm
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Figure 13: One example of real gabor filter. Fre-
quency: 3.0; bandwidth: 0.9492

ious facial expression recognition tasks [33] and can capture
certain patterns of a raw time series. For instance, they can
capture wave-like patterns such as repeated blinking or eye
closure. Here, we explored whether they could be helpful for
predicting thermal comfort.

We applied Gabor filter to the AUs, face size, head pose,
and eye-lid distance features. The frequency was selected
from {8.0, 7.0, 6.0,5.0, 4.0, 3.0, 2.25, 1.6875, 1.2656, 0.9492,
0.7119, 0.5339, 0.4005, 0.3003, 0.2253, 0.1689, 0.01, 0.} and
the bandwidth was selected from the same set without 0.
Thus, 918 filters (the combination of 18 frequencies, 17 band-
widths and real, imaginary and energy Gabor filters) were
applied to each AU and head features, which was the same
filter bank as [33]. We used forward feature selection to pick
the top 5 filtered features and then used linear regression on
these top 5 features to predict thermal comfort. However,
even the best Pearson correlation was very low (r = 0.02),
suggesting that this approach had limited predictive power.

5.3.3 Recurrent neural networks
Recurrent neural networks such as LSTM and GRU, are
powerful models for dealing with time series. We explored
whether a GRU (Gated Recurrent Unit) network can ana-
lyze the facial expression series to estimate thermal comfort.
We trained a GRU model from the feaures extracted using
OpenFace described above using leave-one-person-out cross-
validation to measure accuracy of the approach. Hyper-
parameters were selected from the sets {learning rate: {0.0001,
0.0005, 0.001}, hidden units: {8, 16, 32}, epoch: 50, opti-
mizer: {Adam, SGD}. For each fold, we randomly selected
5 participants as the validation set (for hyperparameter val-
idation), and the remaining 18 participants as the training
set. Training every 5 epochs, the model would be applied to
validation set and test set.

After tuning the hyper-parameters on the validation set, the
best combination was {learning rate: 0.0005, hidden units:
32, epoch: 15, optimizer: Adam}. The average (over all
24 folds) correlation between predicted and actual thermal
comfort scores was 0.248; the result was statistically signif-
icant (p = 0.0425, Wilcoxon signed-rank test). We note,
however, that this result is no larger than the magnitude
of the correlation between the eye-lid distance and thermal
comfort reported above.

6. DISCUSSION AND CONCLUSION
We conducted an experiment in to investigate the relation-
ship between thermal comfort and students’ performance in
a computer-based learning task in the classroom. We also
explored different sensors and predictive models to measure
thermal comfort automatically.

Key results: 1) Changing the room temperature by a few
degrees Celsius could stat. sig. impact students’ self-reported
TC; (2) Our experimental data provide evidence that learn-
ing is optimal when thermal comfort is neither too high nor
too low (inverted U relationship), corroborating prior work.
However, we also found a more nuanced relationship than
had been identified in prior literature: the impact of thermal
comfort on learning was stronger during the third tutorial
session (later in time) compared to the first two sessions. (3)
Engagement, as labeled by an external observer, was corre-
lated with learning. (4) Thermal comfort can be predicted
from the face temperature using an IR camera. (5) Facial
expression, at least in the ways we analyzed it, carries only
limited information about thermal comfort.

Future work: Given a larger video dataset of face im-
ages and associated self-reported thermal comfort scores, we
could explore more powerful prediction models that directly
predict thermal comfort from the face pixels. This might
offer more powerful information than the facial expression
estimates from OpenFace.
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ABSTRACT 
Demographic information often proves useful for finding 
subpopulations in educational data. Unfortunately, it is often not 
collected in the log files of online learning systems, which serve 
as one of the primary sources of data for the Educational Data 
Mining community. Recent work has sought to address this issue 
by investigating school-level differences in demographics, which 
can be used to discover trends in data where individual-level 
variation may be difficult or impossible to acquire. In this study, 
we use this approach to investigate the effect of demographic 
patterns on hint usage in an elementary level mathematics system, 
comparing this use to performance and motivational measures. In 
doing so, we expand upon the research into help-seeking 
behaviors, which typically takes a cognitive approach. Our results 
suggest the need to better understand what social factors are most 
likely to motivate help-seeking behaviors, particularly since 
research on their effectiveness has been mixed. 

Keywords 

Help-seeking, Demographics, Math Learning, Math Identity, Self 
Concept, Self Regulated Learning 

1. INTRODUCTION 
Many studies into complex constructs like motivation, interest, 
and engagement involve either small-scale experiments or larger 
convenient samples of middle-class, undergraduate students (see 
discussion in [21]), which can make it difficult to determine the 
extent to which these findings will generalize to new populations 
of students. This is often due to the practical constraints of 
research projects involving the budget, recruitment, accessibility 
and time required to acquire the level of detail used in these 
studies. However, this trade-off sometimes means that 
conclusions are not replicated across broad demographic contexts. 
Conversely, Educational Data Mining (EDM) researchers often 
have larger sample sizes than are seen in experimental 
psychology, for example, but the source of typical EDM data (i.e., 
intelligent tutoring systems) often limits the practicality of 
obtaining demographic variables from individual students.  

Beyond practicality (e.g., the ease of acquiring log-file data on 
student interactions compared to student demographic data), there 
are sometimes other legitimate concerns, including those related 
to student privacy. For example, even when a partner school or 
university has documented the demographics of individual 
students, their release to a researcher increases the risk of 
potentially re-identifying students, particularly in rural parts of the 
country where the analysis of say, the seven children of a minority 
ethnic group in a small school narrows the potential matches for 
sensitive information considerably.  

Yet considerable research shows that demographic factors are 
often related to differences in educational outcomes more 
generally (see [14]) and to constructs related to motivation more 
specifically [50, 50, 44]. This suggests that researchers in the 
EDM community should make greater efforts to overcome the 
challenges involved in collecting demographic data in order to 
ensure population validity (e.g., [29]). As such, some researchers 
within the EDM community have sought to extend student 
learning models to include information from the broader context, 
building models at the class, school-, school-cluster level instead 
of just the student-level [47, 31]. [49] used school-level 
demographics and students’ prior performance to cluster schools 
into groups, improving model performance.  

This study uses this approach to investigate hint-usage, 
incorporating the broader demographic context into the 
investigation while also answering a call to pay greater attention 
to the social factors influencing help seeking behaviors after a 
recent review of the literature found that their effectiveness was 
highly variable [15]. We do so in the context of Reasoning 
Mind—an Intelligent Tutoring System for elementary 
mathematics—where we explore how readily-available school-
level demographics might reveal how hint usage correlates to 
measures of student performance and motivation (i.e., 
mathematics self-concept).  

2. PRIOR WORK 
Help - mostly in the form of on-demand, contextual, real-time 
hints - is a common feature in most Intelligent Tutoring Systems 
(ITSs) [46] and has long been believed to foster emerging 
concepts and principles in a student’s learning [7] and support 
struggling students during problem-solving [1]. Yet help-seeking 
behaviors are not always beneficial [1, 2, 4]. While much of the 
prior work on help-seeking in ITSs has focused strictly on its 
cognitive effects, other research suggests that social factors may 
influence these patterns. 
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2.1 Help-Seeking: A Cognitive Lens 
The literature on help-seeking behaviors in ITS now stretches 
back over twenty years (see extensive review in [4]). As it quickly 
became apparent that the availability of hints did not ensure their 
effective use, work began to identify the factors that led to a 
positive relationship between help-seeking behaviors and student 
learning.  

In one of the earliest studies, Anderson et al. [6], compared the 
use of explanatory hints and so-called bottom-out hints (which 
simply provided the student with the correct answer and found 
that neither hint type was correlated with learning. In part, this 
may have been due to selection bias. That is, hint usage is 
typically a sign of struggling students, who often do not make 
substantial learning gains (see discussion in [4]). 
After early discoveries of a negative correlation between hint 
usage on student learning in one context [1], researchers began to 
develop a taxonomy of maladaptive help-seeking behaviors—
including categories like help abuse (the overuse of help) and help 
avoidance (the underuse of help)—was also developed [13]. Most 
studies analyzed the effectiveness of hints by focusing on the 
relationship between help-seeking behavior(s) and student 
outcome(s), with some researchers emphasizing that the 
intentionality of help-seeking behavior makes it a good candidate 
for understanding students’ self-regulated learning (SRL) 
strategies [4, 16]. 
A number of studies have attempted to identify the degree of help 
needed at any given moment (e.g., Koedinger & Aleven’s [24] 
assistance dilemma), and experimental results have resulted in 
notable findings. For example, (1) on-demand hints led to greater 
learning gains than automatic hints in middle-school mathematics 
[32]; (2) hint content (goal feedback versus other kinds of 
feedback) is related to student learning in Geometry [27]; (3) hints 
about which step to try next to improve student learning in logic 
proof [36].  

In general, the review of the literature suggests that increasing 
hint usage does not always lead to better domain-level learning 
[4]. However, the EDM literature on help-seeking in ITSs has 
produced research which aggregates into a complicated and 
contradictory narrative, including: (1) a negative association 
between hint usage and learning [2]; (2) a positive association 
between hint usage and learning [11, 48]; (3) a positive 
association between hint usage and learning only when time per 
hint level is considered [25] or when adaptive versus maladaptive 
help-seeking is differentiated [3]; (4) a positive association 
between time spent in bottom-out hints and learning [35]; (5) a 
negative association between the number of bottom-out hints used 
and learning [26]; (6) positive benefits for students but only when 
they have a medium level of skill [33]; (7) a negative association 
between help avoidance and learning early within practice [5] and 
on a transfer post-test [9]. 

In addition, individual differences in self-regulation were 
observed in how students process hints and how that impacts their 
performance [16]. Vaessen et al [45] found that students’ 
achievement goals (mastery and performance goals) are closely 
related with their help-seeking and could be used to predict their 
strategies for help-seeking. Despite a considerable volume of 
research, the effectiveness of help-seeking remains an open 
question—and the clearest thing that we can say is that the 
relationship between hint usage and learning is complicated. 
 

2.2 Help-Seeking: A Social Lens 
While the role of social factors on help-seeking behaviors has not 
been the primary focus of the EDM community (see [4]), the 
social evaluation of help-seeking behaviors is well established in 
the literature. For instance, some learners may feel that asking for 
help is either a sign of incompetence or a challenge to their 
autonomy [39]. Likewise, Howley et al. [18] suggests that asking 
for help may trigger experiences of evaluation anxiety – the fear 
of being judged.  

These kinds of concerns seem ripe for socio-cultural variation, 
and a few studies have begun to explore how these differences 
may emerge. For example, Tai et al. [38] increased students’ help-
seeking behaviors by changing the way they labeled those actions 
within the system. That is, they started by referring to the ITS as 
the students’ teammate, and the designed the system so that 
students who needed help could choose to “work together” with 
the system. This adaption apparently reduced the ego-threat 
related to admitting a lack of knowledge (e.g., [39]) and improved 
student learning. 

Other studies have specifically investigated demographic 
differences in help-seeking behaviors. Ogan et al. [30] found that 
the EDM models on effective help-seeking did not transfer well 
between countries (namely Costa Rica, the Philippines, and the 
USA). Likewise, Arroyo et al. [8] found that the effectiveness of 
different hint designs varied by gender. Specifically, girls 
benefited more from highly interactive hints, while boys did better 
with less interactive hints.  

Thus, there is a need for more research to look at social factors 
while studying help-seeking. Such studies should focus on 
students’ broader context to understand under what circumstances 
lead to desired student outcome. In this paper, we study students’ 
help-seeking behavior in an online math tutor used in traditional 
classrooms during regular instruction. Given the context in which 
the students use this ITS, we focus on school as the social context 
and analyze the influence of school demographics on the 
relationship between student outcomes (math performance and 
math self-concept) and their help-seeking behavior. We aim to 
shift the focus of help-seeking research in the EDM community 
from purely cognitive factors to the contextual factors that might 
play a more prominent role than is assumed. 

2.3 The Role of Demographics in 
Predicting Student Outcomes 
This section summarizes prior work on the role of demographics 
in the student outcomes of interest in this study - math 
performance and math self concept.  

2.3.1 Demographics and Math Performance 
The literature addressing demographic differences in learning 
outcomes (at least in a U.S. context) is now so vast that it would 
be difficult to review even if it were limited to a single domain 
(e.g., mathematics). Once referred to as the achievement gap, 
more and more scholars are now discussing it in terms of an 
opportunity gap, as findings generally show that achievement 
patterns favor groups for whom the educational system was 
initially designed. 

Scholars point out that reframing this discussion in terms of 
opportunities to learn emphasizes the need to address the 
environmental inadequacies that may occur. Childs [14] analysis 
shows, for example, that minority students are just as likely to 
value mathematics, but are less likely to attend schools where 
advanced mathematics classes are offered.  
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However, less tangible differences may also play a role. For 
example, if students’ patterns of communication are different than 
those expected by educators (e.g., [19]), their attempts at help-
seeking may not receive adequate uptake. Such experiences could 
discourage students from future help-seeking behaviors, although 
one could imagine that the ability to get help from an ITS could 
also mitigate this reluctance.  

2.3.2 Demographics and Self-Concept 
Demographic variables have also been shown to correlate with 
motivational constructs, like math self-concept. Math self-concept 
(sometimes used interchangeably with self-efficacy, although see 
[12]) has been found to be a predictor of various measures of 
achievement and career choice (see [13]). It has also been linked 
to motivational constructs, including achievement goal 
orientation, anxiety, and self-concept [34].  

Early work proposed that self-efficacy was a product of a person’s 
own accomplishments and the feedback they receive on their 
work [10, 43]; however, more recent studies have indicated that 
the source of self-efficacy may vary along demographic lines like 
gender and ethnicity [50, 50, 44]. For example, Klassen [23] 
investigation of self-efficacy among seventh grade students found 
that ethnic majority students followed Bandura’s predictions, 
citing personal achievements as a source of self-efficacy, but 
ethnic minority students were more likely to cite social factors. 
Else-Quest, et al. [15] studied the intersection of gender, ethnicity, 
and achievement in 10th grade students from a large northeastern 
city and found that males reported greater math self-concept and 
expectation of success as compared females, but no gender 
differences across ethnic groups were found. 
Other research on self-efficacy suggests that it is malleable and 
can be influenced by social agents [51], and there are significant 
efforts to understand how to support underrepresented groups, 
who may struggle against implicit stereotypes on top of normal 
learning struggles as their domain knowledge matures [37]. 
Previous research shows that scores on social identity ratings (e.g. 
gender and cultural identity ratings) peak when people are 
experiencing uncertainty [17]. This could suggest that students 
could become more susceptible to negative cultural stereotypes 
(e.g., [37]), particularly those related to STEM performance, 
during periods of confusion associated with learning, making 
help-seeking an important behavior to study for its associations 
with self-concept.  

Given these findings, it seems likely that self-concept could vary 
not just by the demographics of individual students, but also based 
on how those demographics influence the cultural interactions at a 
school level. That is, in a school where larger numbers of students 
share a particular demographic characteristic, we might see help-
seeking behaviors that emerge as a reflection of the practices more 
typical of that group. 
 

3. DATA COLLECTION 
3.1 Reasoning Mind 
This study analyzes data from students using Reasoning Mind 
(RM) Foundations (Figure 1), an intelligent tutoring system for 
elementary mathematics, produced by Imagine Learning. It 
currently serves over 100,000 U.S. students annually. The 
majority of these students are in Texas, but they represent a range 
of traditionally underrepresented populations across rural, urban, 
and suburban schools. Key components of this system include 
socio-technical innovations, including those that are designed to 

directly support teachers [21] and those that are designed to mimic 
other social experiences in the classroom, including both virtual 
peers and the signature pedagogical agent, known as the Genie, 
that guides students in their learning.  
 

	
Figure 1. Reasoning Mind Foundations home screen (left) and 

an example problem (right) 

In this blended environment, students learn through self-paced 
problem solving, interactive explanations, and skill-based games. 
Problem sets are classified into three groups based on increasing 
levels of difficulty: (1) A-level problems on fundamental skills; 
(2) B-level (optional) problems on a combination of skills; and (3) 
C-level (optional) problems on higher-order thinking skills. Our 
past study [20] suggests a close relationship between 
inconsistencies in students’ math performance and their math self-
concept – the two student outcomes studied in this paper. 
Reasoning Mind Foundations is generally used in traditional 
classrooms. Teachers assign/unlock problem sets for students 
based on the topic of instruction. Past studies of Reasoning Mind 
Foundations have shown high student and teacher acceptance, 
increases in test scores, high time on task, and a positive affective 
profile [21].  

3.2 Hints in Reasoning Mind 
Hints are an integral part of Reasoning Mind Foundations. These 
are delivered only on student request and contains conceptual 
feedback intended to help students solve the problem. Figure 2 
demonstrates a hint in the system for one of the basic A-level 
problem in Reasoning Mind Foundations. They are multi-level 
and do not always contain a bottom-out hint.  

 
Figure 2. Top - Problem screen with a button to view hint 

(highlighted in green) Bottom - Hint displayed to the student 
when they request to view 

3.3 Participant Schools 
In order to ensure consistency in the type of data used to 
characterize schools, this study limits itself to Reasoning Mind 
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schools that fall under the purview of the Texas Education 
Agency’s (TEA) and further filters out schools where less than 25 
students were using the software to avoid noise in the correlations 
reported below. This resulted in data from 110 Texas schools 
across 25 school districts who used Reasoning Mind during the 
academic year 2017-2018 as part of their regular mathematics 
instruction. There are a total of 9,122 2nd through 5th grade 
students in this data (4,749 2nd graders, 1,964 3rd graders, 1,582 4th 
graders, and 827 5th graders). On average, there were 75 students 
using Reasoning Mind Foundations per school (min = 25; SD = 
70) and 364 per school district (SD = 730), with one large urban 
district in Texas constituting the majority of our data, with 3,039 
students across 62 schools.  

Comprehensive log data captured student interactions with the 
system for the entire period, resulting in data for all 9,122 
students. Surveys were administered once at the beginning and 
once at the end of the year to collect data on student math identity, 
resulting in complete surveys for 2,238 students. 

 

4. DATA EXPLORATION 
Considerable variation exists in the measures being analyzed in 
this study: help-seeking behaviors (i.e., hint usage), math 
performance, and pre- and post-year measures of math self 
concept.  

4.1 Exploring Help-Seeking  
From the interaction log data, we operationalize help-seeking 
behavior using as the number of hints used by a student in 
Reasoning Mind Foundations. As shown in Figure 3 (left), 
students in this study averaged less than 30 hint requests annually 
(mean = 27.01, SD = 55.72). 

4.2 Exploring Math Performance 
For the purposes of this paper, math performance is defined as the 
accuracy of student responses to A-level problems in Reasoning 
Mind Foundations. Accuracy on these problems, which represent 
the core curriculum within the software, is computed from the 
interaction log data. As presented in Figure 3 (right), student-level 
calculations show a mean of 0.77 (SD = 0.14).  

 
Figure 3. Distribution of the number of hints (left) and math 

performance (accuracy in A-level problems; right). The green 
line in the box indicates the median value. 

4.3 Exploring Math Self Concept 
Students’ self concept in mathematics was measured using a five-
item survey adapted from Marsh et al. [28]. This survey was 

administered twice--once at the beginning of the academic year 
(pre) and once at the end of the academic year (post). The survey 
included questions like Math just isn't my thing; Some topics in 
math are just so hard that I know from the start I'll never 
understand them. Students took the survey voluntarily, and each 
item in the survey was answered with a four-point Likert scale.  

This study analyzes survey responses from 2,238 students across 
22 Texas schools. The distribution of students’ responses is given 
in Figure 4 (self concept pre: mean = 2.64 standard deviation = 
0.77; self concept post: mean = 2.44, standard deviation = 0.80). 
The internal consistency of these items was found to be 
satisfactory with a Cronbach’s 𝛼 of 0.74. 

 
Figure 4. Distribution of number of pre and post measures of 

math self concept.  

4.4 Exploring School-Level Differences 
Next, we explored the school-level differences in student 
outcomes (math performance and self concept) and hint usage. As 
we can see in Figure 5 and Table 1, there is considerable variance 
in the variable aggregates (mean) across the schools, especially in 
hint usage and math performance. 

Table 1. Mean and standard deviation (SD) of the school-level 
aggregates of the variable and outcomes 

  Mean SD 

Hint Usage  24.5 21.3 

Math Performance 0.78 0.04 

Math Self Concept (Pre) 2.69 0.35 

Math Self Concept (Post) 2.43 0.15 
 

 
Figure 5. Distribution of school-level aggregates of the 

variable and outcomes. 
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4.5 Summarizing School-Level 
Demographics 
We characterize the schools in our sample using demographics 
from the Texas Education Agency’s (TEA) public data repository. 
These data capture the contextual factors that are likely to affect 
the school culture or climate and defines the social context in 
which students using RM Foundations.  
 
Table 2. Mean and standard deviation (SD) of the school-level 

demographics. EcD - Economically Disadvantaged; LEP - 
Limited English Proficiency; SpEd - Special Education 

  Mean SD 

Urbanicity (binary) 0.6 0.49 

% EcD 78.3 16.6 

% LEP 41.4 20.6 

% SpEd 6.9 3.1 
 

 
Figure 6. Distribution of percentages of school-level 

demographics for the 110 schools selected in this study. ED - 
Economically Disadvantaged; LEP - Limited English 

Proficiency; SE - Special Education 

Table 2 summarizes the first set of school-level demographics 
obtained from TEA sources, including the percentage of students 
at the school who are classified as (1) Economically 
Disadvantaged (EcD), as (2) Special Ed (SpEd) or as (3) Limited 
English Proficiency (LEP), as well as (4) the urbanicity of the 
school. These terms are defined by the State of Texas as follows 
[40]. Students are classified as EcD if they qualify for free or 
reduced-price meals under the National School Lunch and Child 
Nutrition Program, and it is worth noting that a large proportion 
(avg = 40%) of Texas public school students qualify for this status 
[40]. SpEd classifications are given to students who qualify for 
services for cognitive, emotional, or physical disabilities. LEP 
status is conferred for students whose primary home language is 
not English and who also fail to meet proficiency standards as 
established by either an approved testing measure or by a 
Language Proficiency Assessment Committee (LPAC). Finally, 
the TEA classifies a school district as urban (or not) [41] based on 
whether its school district (a) is located in a county with a 
population of at least 960,000; (b) has the largest enrollment in the 
county or its enrollment is greater or equal to 70% of county’s 

largest district. As seen in Table 2 and Figure 6, we have a diverse 
set of schools along these dimensions. 
 
We also considered school-level data on the percentage of 
students representing major ethnic/racial groups. As Table 3 
shows, Hispanic students are by far the largest group in these 
schools (mean = 63.5%), followed by African American students 
(mean = 17.5%), White students (mean = 13.5%) and then Asian 
students (4.5%), but as Figure 7 the schools show considerable 
variance in terms of this composition. To avoid noisy results, this 
analysis considers only groups that constitute at least 5% of the 
student population: Hispanic, African American, White and 
Asian.  
 

Table 3. Standard deviation (SD) of the school-level 
percentages of ethnicities. Categories constituting less than 

5% of the data were excluded from further analysis. 

  Mean SD 

% Hispanic 63.5 24.5 

% African American 17.5 17.8 

% White 13.1 16.2 

% Asian 4.5 7.8 

% American Indian* 0.36 0.4 

% Pacific Islander* 0.04 0.1 

% Two or More Races* 1 1 
 

 
Figure 7. Distribution of percentages of school-level ethnicities 

for the 110 schools selected in this study. H - Hispanic; AA - 
African American; W - White; A - Asian; AI - American 

Indian; PI - Pacific Islander; TR - Two or races 

 

5. ANALYSIS 
Our data exploration (Section 4) suggests that help-seeking 
behavior, math performance, math self-concept, and 
demographics each vary by school. Thus, we conduct a two-step 
data analysis to explore how help-seeking behavior might differ 
based on student demographics, while controlling for performance 
and motivational measures.  

In the first step, we determine how closely students’ math 
performance (and self concept measures) correlate to their hint 
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usage, within each school, using Spearman ρ	correlations due to 
non-normality in the data. That is, we produce three new measures 
for each student, the correlation between hint use and performance 
on A-level problems, the correlation between hint use and the pre-
year survey of self concept, and the correlation between hint 
usage and the post-year survey of self concept.  

In the next step, we determine whether the differences in these 
correlations are themselves correlated to school-level 
demographics. Note that in the first step, the unit of analysis for 
the correlations is the student, but in the second step, the unit of 
analysis is the school. We conduct two-tailed tests to report the 
significance levels.  

 

6. RESULTS 

6.1 Help-Seeking and Student Outcomes 
Figure 8 summarizes the results for our study, showing the 
distribution of correlations across schools between students’ hint 
usage and their math performance and math self-concept (taken 
once at the beginning (pre) and again at the end of the year 
(post)).  

 
Figure 8. Distribution of correlations across schools between 

students’ hint usage and outcomes. 

6.1.1 Help Seeking and Math Performance 
Clustering students by schools allows us to see that the 
relationship between hint usage and math performance differs in 
ways that might be missed if this aggregation were not used. This 
is true even when demographic descriptions are not used to 
describe the data.  

Specifically, when student measures are aggregated at the school 
level, we see that the correlation between hint usage and math 
performance ranges from -0.39 to 0.40 (SD = .18). In contrast, 
when we do not aggregate students into school-level populations 
(instead treating them all as a single population), there is not a 
significant relationship between hint usage and math performance 
(ρ = -0.008, p = 0.44).  

6.1.2 Help Seeking and Math Self Concept 
Like math performance, math self concept also shows signs of 
sub-population differences. When students are aggregated into 
school-level populations, the correlations between hint usage and 
math self-concept show a relatively wide range.  

For pre-year surveys, the correlation ranges from -0.14 (students 
with lower self-concept are most likely to use hints) to 0.19 

(students with higher self concept are most likely to use hints), 
and an even wide range is found for post-year survey correlations 
(-0.27 to 0.30). In contrast, when the students in this data were 
treated as a single population, the correlations were non-
significant (ρ = -0.008, p = 0.442) for pre and ρ =-0.007, p = 0.77 
for post). 

6.1.3 Summary of Help Seeking Variance 
There is considerable variance in the school-level correlations 
between hint usage and student outcome measures (SD = 0.18 for 
math performance, SD = .084 for pre-year self concept, SD = 
0.118 for post-year self concept). This variance indicates that 
students likely have different motivations for using hints, and they 
be more effectively used by some student populations than by 
others.  

As seen in Figure 8, the median of the correlations is centered 
close to zero. For these schools, there is no association between 
hint usage on student outcomes. Figure 8 also shows that the 
distribution of these correlations is not skewed, meaning that hint 
usage is not universally positively or negatively associated with 
student outcomes across schools.  

The schools at the tail ends of these distributions are interesting 
case studies. They represent the cases where hint usage has either 
a notably high positive correlation or a notably high negative 
correlation with our outcome measures. In schools where there is 
a high positive correlation between these variables, the use of 
hints appears to be beneficial, but the converse is true for those 
schools that have high negative correlations. As such, it becomes 
important to understand what demographics are involved in order 
to address any potential disparate impacts of the hint function in 
the system. 

6.2 The Influence of School Demographics 
School-level demographic variables help to capture some of the 
variance in the relationship between hint usage and the student 
outcomes measured in this study (math performance and math-self 
concept). These findings are summarized in Tables 4 and 5.  

Table 4. Correlations between school-level demographics and 
the correlations resulted between students’ math performance 

and interaction features. p-value in parenthesis. Significant 
correlations in bold.  

 Correlation between number of hints and 

Math 
performance 

self concept 
Pre 

self concept 
Post 

Urbanicity 0.292 
(0.002) 

0.130 
(0.564) 

0.080 
(0.729) 

%EcD 0.256 
(0.007) 

0.182 
(0.417) 

-0.288 
(0.205) 

%LEP 0.314 
(0.001) 

-0.452 
(0.035) 

-0.565 
(0.008) 

%SE -0.002 
(0.982) 

0.463 
(0.030) 

0.444 
(0.044) 

 

Table 5. Correlations between school-level ethnicity and the 
correlations resulted between students’ math performance 
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and interaction features. p-value in parenthesis. Significant 
correlations in bold.  

 Correlation between number of hints and 

Math 
performance 

Self concept 
Pre 

Self concept 
Post 

% Hispanic 0.094 
(0.329) 

0.123 
(0.587) 

-0.153 
(0.507) 

% African 
American 

0.054 
(0.579) 

-0.260 
(0.243) 

-0.174 
(0.451) 

% White -0.194 
(0.042) 

0.103 
(0.647) 

0.095 
(0.683) 

% Asian -0.037 
(0.703) 

-0.071 
(0.753) 

-0.107 
(0.644) 

 

6.2.1 School-level Demographics, Help Seeking, 
and Math Performance 
As Table 4 (above) shows, the relationships between hint usage 
and math performance differ significantly in terms of the school’s 
urbanicity (ρ = .292, p = .002) as well as differences in the 
percentage of students who are economically disadvantaged (EcD; 
ρ = .256, p = .007) and limited English proficiency (LEP; ρ = 
.314, p = .001). Specifically, the association between higher hint 
usage and math performance is positive among students from 
urban schools than students from rural or suburban schools. 
Schools with higher percentage of students who are economically 
disadvantaged (EcD) or limited English proficiency (LEP), show 
the same trends. Conversely, rural and suburban schools show an 
inverse relationship between hint usage and math performance, 
suggesting that these students may be using hints ineffectively.  

However, as Table 5 shows, other demographic categories that are 
often considered in educational research, namely ethnicity, are not 
particularly useful in this context. Schools with smaller 
populations of White students are more likely to show a positive 
relationship between hint use and math performance, whereas this 
relationship is more likely to be negative in schools with larger 
populations of White students. However, neither the percentage of 
African American students (which tends to be relatively small in 
the state of Texas and in this sample in particular) nor the 
percentage of Hispanic students (which tends to be quite large) is 
correlated with this relationship. 

6.2.2 School-level Demographics, Help Seeking, 
and Math Self Concept 
School-level demographics are less helpful in explaining the 
relationships between hint usage and math self concept. The 
relationships between hint usage and math self concept differ 
significantly in terms of the percentage of students with limited 
English proficiency (ρ = -.452, p = .035 for pre; ρ = -.565, p = 
.008 for post), and the percentage of students in special education 
(ρ = .463, p = .030 for pre; ρ = .444, p = .044 for post)). 
Specifically, in schools that serve a higher percentage of LEP 
students, there is a negative correlation with hint usage and self 
concept. Whereas, hint usage is more common among students 
with high self concept in schools that serve fewer LEP students. 
This finding is somewhat stronger for the end of year surveys than 

the start of year surveys. The opposite pattern is shown among 
schools that serve a higher percentage of SpEd students. In these 
schools, there is a positive correlation between hint usage and self 
concept, where as that relationship is negative in schools that 
serve fewer SpEd students. This relationship is consistent across 
the start of the year and end of the year surveys. 

Other demographic factors from Table 4 that were predictive of 
the relationship between help seeking and math performance, 
namely urbanicity and EcD, were not significant for the 
relationship between help seeking and math self concept. School-
level descriptions of ethnicity (Table 5) also did not help to 
explain the variance between math self concept and hint usage.  

7. DISCUSSION  

7.1 Overview of Results 
Hint-seeking behaviors have been a source of interest among 
EDM researchers since the early days of the field, yet 
understanding which hints are effective, to whom, and under what 
conditions remains a somewhat elusive task. 

A large part of answering these questions likely lies in 
understanding what motivates a student to seek help. Ideally, we 
would like students to use these functions to improve their 
understanding of the material, but as these results show, students 
who are struggling do not always make use of available resources 
(e.g., in schools where low performers are not requesting as many 
hints).  

However, within this data—which studies students in the same 
state using the same mathematics learning system—there are also 
schools where low-performing students are requesting lots of 
hints. If these students are benefiting from this hint usage, it is not 
measurable with the variables considered in this study. This 
finding suggests that the hints could be less effective at helping 
these particular students to learn the material. 

At least part of this variance seems to be related to school-level 
demographics, but interestingly, the schools where hint usage 
appears to be most advantageous are those that enroll larger 
numbers of students who would typically be thought of as 
disadvantaged by the school system. That is, schools with fewer 
LEP students are more likely to have low performers who are 
requesting lots of hints. Schools with fewer students receiving free 
or reduced price lunch are more likely to have low performers 
who are requesting lots of hints. Schools in large urban centers are 
less likely to have low performing students who are requesting 
lots of hints.  

The relationship between hint usage and self-concept is also 
complicated. Students in schools that serve more LEP students 
tend to show a negative relationship between self concept and hint 
usage. That is, those students who are unsure of themselves are 
asking for more hints (in those schools). However, in schools that 
serve more SpED students, the relationship between self concept 
and hint usage is negative. It is also possible that the smaller 
number of students sampled for self concept (compared to math 
performance) made it more difficult for these relationships to 
emerge. 

Ethnic population differences were not particularly revealing in 
this study, and it is not entirely clear why. It is possible that, say, 
the LEP findings are strong enough to warrant further divisions to 
the subpopulations included in this study, a possibility that has not 
yet been explored in this data. However, it is also possible that 
some of the linguistic differences that influence classroom 
practices different ethnic groups within the United States (e.g., 
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[19])—practices that may include figuring out how to ask for 
help—are less relevant in an online context like Reasoning Mind 
where the student is simply pressing button to request a hint. 

Gender was not investigated in the current paper, as public 
schools generally have balanced gender distributions (as was the 
case in this dataset), leading to limited power to observe any 
difference that might exist. This leads to a more general point. It 
would be beneficial to analyze the impact of demographics at the 
student level, both to replicate the relationships seen here and to 
study whether students who are outliers in their own schools have 
different patterns. However, collecting student-level data is not 
always feasible, and this study has demonstrated that school-level 
aggregates can likely improve our efforts to better capture 
variance in help-seeking behaviors.  

7.2 Implications to ITS Designers 
One of the main implications of this paper to ITS designers is that 
a universal design that focuses on improving student outcomes 
while ignoring individual or group differences might not be a fair 
design consideration. Personalization in help-design has primarily 
focused on student cognition to provide “in-context” hints based 
on the pedagogical content. We suggest expanding the definition 
of “in-context” to include broader contextual factors that impact 
student outcomes.  
To illustrate this, let’s take the example of LEP. As stated in 
Section 6.2, there is an inverse influence of help-seeking and the 
two student outcomes (performance vs. self concept). In schools 
with a higher percentage of limited English proficient students, 
higher hint usage is associated with high math performance but 
low math self-concept. On the other hand, in schools with more 
native English speakers, higher hint usage is associated with low 
math performance but high math self-concept. This is an 
interesting case of conflict for ITS designers to investigate further. 
Is the text-heavy nature of the hints contributing to this finding? Is 
it that while limited English proficient students use hints to 
improve on their math skills, the cognitive load in processing 
more verbal content is causing a negative impact on their self-
efficacy? Such investigations could open up opportunities for 
design innovations to better support students. Would it help to use 
multiple representations (visual, auditory, symbols) and give 
autonomy to the students to make the choice? In summary, 
including school-level demographics to the analysis of complex 
constructs like help-seeking is an important step in appropriately 
situating the design decisions to the student context. 

7.3 Limitations and Future Work 
We acknowledge that there are other socio-cultural aspects that 
influence a student’s engagement and learning with an ITS. In the 
case of students’ help-seeking behavior, the perceptions of help-
seeking within their classroom (peers, teachers) and outside 
(family, friends) can be influence student choices. While this 
paper focuses on broadly-defined school-level demographics, we 
believe that it would be beneficial to look at other influencers 
from the student’s social context. For instance, the pedagogical 
practices of the teacher in the math classroom could influence 
what students perceive as appropriate help-seeking.  
Within Reasoning Mind Foundations, specifically, teachers are 
able to explicitly choose to design which problem types to assign 
to their students, in line with their pedagogical goals and 
perceptions of the appropriate level of difficulty. These choices 
likely reflect the classroom culture they are hoping to foster—
including the degree to which they encourage students to attempt 
new skills and persevere in the face of challenges. There is an 

opportunity to explore this data to study the impact of teacher 
choices on the relationship between help-seeking and student 
outcomes.  

More broadly, the priorities of the school district and state might 
also impact the pedagogical choices made in schools. Teachers’ 
choices are influenced by public policy. Shortly after the 
completion of our data collection, Texas issued letter grades (A-F) 
[42] to its school districts based on a complex formula involving 
overall student performance on standardized exams, overall year-
to-year improvement, and improvement for specific sub-groups. 
These ratings were generally lower in districts with higher rates of 
economically disadvantaged students, creating different degrees 
of pressure where demographics differ. The pressure of 
performing well (as measured by standardized tests), in many 
cases with limited resources, could influence what is being 
prioritized as the goal of math learning in these schools. While 
quantifying these factors to include in an analysis is not 
straightforward, these factors no doubt drive the type of 
differences that are seen between schools with different 
demographics.  

8. CONCLUSION 
Self-regulation is an important aspect of successful learning. 
Intelligent Tutoring Systems like Reasoning Mind Foundations 
provide a unique opportunity for students to practice self-
regulation by taking control over their choices in the learning 
environment. Help-seeking is a particularly relevant SRL process 
within this type of learning system, given the prominence of hints 
in ITSs. In this paper, we demonstrate that school-level 
demographics can have a significant influence on the relationships 
between students’ help-seeking behavior and student outcomes. In 
doing so, we question the prevailing assumption that complex 
constructs like help-seeking can be considered without also 
considering student context. This calls for greater consideration 
within our field of social, cultural, and economic influencers 
outside cognition. 

Amidst the mixed results from empirical studies on the 
effectiveness of hints, Aleven and colleagues [4] continue to 
recommend the use hints in ITSs and suggest making four key 
methodological distinctions when studying interventions designed 
to promote help-seeking - (1) effects on learning in the same 
learning environment versus a new environment; (2) effects on 
current learning versus future learning; (4) effects on learning in 
the same domain versus another; (3) effects on SRL process 
versus domain-level learning. We propose to extend upon the list 
of these methodological considerations, suggesting that 
researchers also (5) explore the effects of help-seeking designs in 
one demographic context versus another. We make this proposal 
while fully understanding both the practical challenges elaborated 
in the introduction and the definitional issues elaborated in 
Section 7. However, as we can see that such demographic effects 
are present even within a single U.S. state (albeit one of the larger 
and more diverse U.S. States), it is worth considering the ways in 
which different groups of people may attach different meanings to 
the behavior of help seeking.  In particular, research should 
consider the ways in which help-seeking might be interpreted as 
an imposition or as an admission of failure, since, as we discussed 
in Section 2, these interpretations likely vary from one culture to 
another. By considering demographics in our research on help-
seeking—and on SRL in general—we increase the likelihood that 
our findings will apply to the full diversity of learners using ITSs 
and related systems today. 
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ABSTRACT
Open-ended learning environments (OELEs) allow students
to freely interact with the content and to discover impor-
tant principles and concepts of the learning domain on their
own. However, only some students possess the necessary
skills for efficient and effective exploration. Guidance in the
form of targeted interventions or feedback therefore has the
potential to improve educational outcomes. A promising
approach for adaptation in OELEs is the design of inter-
ventions based on the detection of characteristic learning
behaviors through offline clustering, followed by a real-time
classification of new students. In this paper, we explore the
possibility of using recurrent neural network (RNN) models
for this online classification task. We extensively evaluate
the predictive performance of different variants of RNNs,
namely long-short term memory models and gated recur-
rent units, and different architectures on a data set collected
from an exploration-based educational game. We also com-
pare the prediction accuracy of the different RNN models to
the performance of traditional classifiers on the same data
set. Our results demonstrate that RNNs perform similar or
better than traditional methods regarding early classifica-
tion and therefore constitute a promising alternative for the
online classification of new students.

Keywords
recurrent neural networks, online classification, exploration
environments, learning behavior

1. INTRODUCTION
Over the last years, there has been a rise in OELEs such
as educational games or simulations. These environments
allow students to freely interact with the content and (ide-
ally) infer the concepts and principles of the learning domain
through their exploration. However, previous research [20,
31, 24] has demonstrated that few students possess the prob-
lem solving and inquiry skills necessary to efficiently and ef-
fectively explore the space. Individualized guidance in the

form of adaptive interventions or feedback therefore have the
potential to improve students’ exploration strategies and at
the same time optimize the educational outcomes.
Traditionally, adaptation in computer-based learning envi-
ronments has been based on the predictions of the student
model. A large body of work has focused on developing stu-
dent models that are able to accurately represent student
knowledge. One of the most popular student modeling ap-
proaches is Bayesian Knowledge Tracing (BKT) [8], a tech-
nique that has been constantly refined and improved over
the years, e.g., [34, 35]. Other widely used approaches are
based on item response theory, such as the Additive Factors
Model [5, 6] and Performance Factors Analysis [28]. Further-
more, dynamic Bayesian networks, e.g., [13, 18] have been
used to model student knowledge. All of these approaches
are based on the assumption that the knowledge of the stu-
dent can be represented through a set of skills (knowledge
components) and that we can infer the knowledge about
a specific skill based on students’ answers to tasks associ-
ated with this skill. OELEs do not fulfill these criteria as
they (usually) do not provide specific sequences of tasks or
explicitly define knowledge components. Therefore, the in-
troduced student modeling techniques cannot be (directly)
applied to such environments.
A prominent idea in the literature is to provide adapta-
tion based on detected (and analyzed) learning behaviors.
This idea has been formalized into a user modeling frame-
work [15]: First, offline clustering is used to identify different
types of student behaviors. The adaptive components of the
environment are then designed with respect to the different
behaviors found. Second, an online classification algorithm
assigns new students to one of the clusters (and the corre-
sponding intervention) in real time. A large amount of previ-
ous research has focused on the offline clustering part of the
framework, applying clustering approaches to identify differ-
ent types of learners [25, 3, 10]. [12] have represented student
activity patterns in massive open online courses (MOOCs)
using behavior state-transition graphs and demonstrated that
the extracted patterns can be interpreted. Other work as-
sessed students’ problem solving behaviors in a game-based
learning environment [32]. The full framework has been suc-
cessfully applied to an environment for learning common ar-
tificial intelligence algorithms [15]. Other researchers [16]
have used the framework to predict the mathematical learn-
ing patterns of students. Recently, the framework has been
used to build student models for a more complex simulation
of electric circuits [11]. To summarize, the presented re-
search has mostly focused on offline clustering or the appli-
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cation of the framework to different learning domains, per-
forming online classification using standard algorithms such
as k-nearest neighbor [2].
Recurrent neural networks (RNN) have been successfully
used for a variety of sequence classification problems such
as sentiment analysis, e.g., [23] and video, e.g., [9]. RNNs
have also been used in the educational community, for exam-
ple to model student knowledge [30], to provide personalized
recommendations in MOOCs [27], or to improve sensor-free
affect detection [4]. Furthermore, RNNs have also been em-
ployed for classification problems. [26] suggested the use of
long-short term memory (LSTM) models to classify learner
behavior from touchscreen data. Other work [1] used LSTMs
for the classification of problem-solving behaviors.

In this paper, we explore the use of RNNs for online clas-
sification: we assume the offline clustering solution to be
given and train different classifiers to predict the cluster la-
bel of a new student early on during interaction with the
OELE. We hypothesize that the ability of RNNs to handle
sequences of arbitrary length, allowing them to accumulate
the relevant information over each time step, may benefit
the online classification task. We investigate different types
of RNNs, varying the models along three dimensions: the
internal node structure used (LSTMs and gated recurrent
units (GRU)), the depth of the network (number of layers),
and the number of nodes in the hidden layers. We also train
the models to either predict the whole sequence, i.e., out-
putting the cluster label at each time step, or only predict
the cluster label at the end of the sequence. The former ap-
proach has the advantage that the model is able to predict
the cluster label at any point in time. The latter approach
requires training different models to make predictions at spe-
cific time points, but enables the models to optimize predic-
tions for the given point in time. We extensively evaluate
and compare the predictive performance of all the different
RNN models on a data set collected from an OELE [17].
Our results demonstrate that RNNs trained to predict the
cluster label at each time step reach a similar predictive
performance in early classification as the RNNs trained to
predict the cluster label at the end of the sequence. Fur-
thermore, despite the smaller number of parameters, GRU
models tend to achieve a classification accuracy similar to
LSTM models. We also compare the RNN models to tra-
ditional classifiers on the same data set. Our findings show
that the RNN models perform similarly or better than the
traditional approaches regarding the prediction of cluster la-
bels early in the game. Earlier prediction of cluster labels
allows to provide targeted guidance sooner. We therefore
conclude that the use of RNNs for the online classification
of student types is promising.

2. DATASET
The data set at hand was collected from a short interactive
game aiming at assessing students’ exploration choices.

Training Environment. TugLet is an interactive game
designed to assess students’ exploration behavior. The topic
of the game revolves around a tug-of-war. Players can choose
between two modes (illustrated in Fig. 1): they can engage in
inquiry by simulating tug-of-war set-ups (Explore) or they
can try to predict the winning side of specific tug-of-war
set-ups and receive right-wrong feedback (Challenge). The

Figure 1: Snapshots of Explore (top) and Challenge modes (bot-
tom). In Explore mode, children can set-up different tug-of-war
teams and observe the outcome. In Challenge mode, children
have to determine the winning side of specific tug-of-war set-ups.

Challenge mode consists of a maximum of eight problems
ordered by increasing difficulty. The eight problems consist
of one very easy question followed by two easy questions,
two medium questions, and three difficult questions. If the
student answers a problem incorrectly, (s)he is put back into
Explore mode. The student is however free to choose to go
back to the Challenge mode at any point in time. The game
is over after players solve eight problems in a row correctly.
The learning goal of the game, which is not revealed to the
player, is to discover the mathematical principles underlying
the tug-of-war.

Data Set. The data set consists of log files of 229 students
attending the 8th grade of two different middle schools. The
total number of observations in this data set is 10′258. One
observation corresponds to either one set-up tested in Ex-
plore mode or one question answered in Challenge mode.
The length l of the observation sequences varies between
l = 12 and l = 127. All students in this data set managed
to pass the game.

Clustering Solution. Previous work [17] has shown that
the learning outcome (measured by an external posttest) is
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not only influenced by students’ exploration choices (Explore
vs. Challenge) but also by the quality of their inquiry strate-
gies. It was furthermore shown [19] that students can be
grouped into six different clusters based on these detected
strategies. These clusters can be sematically interpreted:
cluster 1 captures students who systematically explore and
try to understand the mathematical principles behind the
tug-of-war. Cluster 3 consists of students who pass the game
fast by only using Challenge mode. Students in cluster 6 also
do not explore, but take a long time to pass the game. Stu-
dents in cluster 4 on the other hand simulate many different
tug-of-war configurations in Explore mode, without success.
Cluster 2 lies in-between clusters 1 and 3, and exploration
behaviors in cluster 5 are a mix between those in cluster 3
and cluster 6. The clusters are not only correlated to per-
formance in an external posttest, but also predict academic
achievement more broadly [19].
The features serving as an input for the clustering are ex-
tracted by level: children need to answer eight Challenge
questions in a row correctly to pass the game and there-
fore the game can be divided into eight levels. Level n is
reached the first time the student answers exactly n ques-
tions in a row correctly. The features used for clustering
consist of the following cumulative counts extracted for level
n ∈ [1, 8]: the number of Challenge problems NCn needed
to reach level n, the total number of tug-of-war set-ups NEn

simulated in Explore mode before reaching level n, and the
number of tug-of-war set-ups NSEn simulated in Explore
mode which are classified as reflecting systematic inquiry
(see [17] for a definition of systematic inquiry) until reach-
ing level n. Therefore, the input features used for the clus-
tering are NC = [NC1, ..., NC8], NE = [NE1, ..., NE8],
and NSE = [NSE1, ..., NSE8]. The cluster solution is then
found by computing the pair-wise dissimilarities between all
students for each feature using the Euclidean distance as a
similarity measure and subsequently performing a pair-wise
clustering [14]. The optimal number of clusters is deter-
mined by the Bayesian Information Criterion (BIC) [29]. In
the following, we will us the presented clustering solution as
ground truth for our classification task.

3. ONLINE CLASSIFICATION OF NEW
STUDENTS

Ideally, the output of the clustering algorithm enables us to
characterize different student behaviors and to design inter-
ventions or feedback based on the detected behaviors. Ide-
ally, we are also able to characterize the performance of new
learners in real time in order to deliver a targeted interven-
tion as soon as possible. The corresponding framework is
illustrated in Fig. 2. In the case of our data set, students
assigned to cluster 4 might for example get hints on how
to explore systematically, while students from cluster 3 will
be prompted to use Explore mode in order to figure out the
principles governing the tug-of-war.
RNN models are a family of neural network models able
to handle sequences of arbitrary lengths. They are espe-
cially suited for time-series data and are able to represent
the relevant information over a sequence of time steps. We
therefore adapt different types of RNNs for the online clas-
sification task (marked in dark blue in Fig 2). RNNs map
a sequence of input features x1,x2, ...,xT to a sequence of
output features y1,y2, ...,yt. They maintain a sequence of
hidden states h1,h2, ...,ht. These hidden states capture
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Figure 2: Students are clustered offline and targeted inter-
ventions are designed based on the (semantic) cluster inter-
pretation. New students are then classified online. In this
paper, we focus on the online classification task (marked in
dark blue).
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Figure 3: Simple RNN unrolled over T time steps. x denotes
the input feature vectors, y denotes the output feature vec-
tors and the hidden states are represented by h.

relevant information from past observations which will in-
fluence future predictions. Figure 3 shows an illustration of
a simple RNN model.

3.1 Long-Short Term Memory Classification
Long-short term memory (LSTM) models are a powerful
modification of the RNN architecture.

Specification. LSTM models replace each hidden state ht

by an LSTM cell unit with additional gating parameters.
These parameters determine when to forget or retain previ-
ous information. The update equations of an LSTM are as
follows:

ft = σ(Wfxxt +Wfhht−1 + bf ) (1)

it = σ(Wixxt +Wihht−1 + bi) (2)

C′t = tanh(WCxxt +WChht−1 + bC) (3)

Ct = ft × Ct−1 + it × C′t (4)

ot = σ(Woxxt +Wohht−1 + bo) (5)

ht = ot × tanh(Ct) (6)
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Figure 4: RNN model (LSTM or GRU units) with n hidden
layers for an example student over T time steps. The input
vector xt contains the counts NCt, NEt, and NSEt at each
time step t. The output vector ŷt can be interpreted as a
probability distribution over the different cluster labels.

Here, ft, it, and ot represent the forget, input, and output
gates of the LSTM cell unit Ct. C′t denotes an intermedi-
ate candidate cell state. The different weight matrices are
described by W and the b stands for bias.

Modeling. For our task, the input vector xt encodes the
clustering features at each time step t. We input the counts
for each time step t, i.e., xt = [NCt, NEt, NSEt]. Let us
assume that a hypothetical student m tested three differ-
ent set-ups, the first two being random trials and the third
one being systematic, followed by answering two Challenge
questions. The input features for this student over the five
described time steps are as follows: xm,1 = [0, 1, 0], xm,2 =
[0, 2, 0], xm,3 = [0, 3, 1], xm,4 = [1, 3, 1], xm,5 = [2, 3, 1].
Figure 4 details T time steps of an example student.
The output vectors ŷt represent the (predicted) cluster la-
bels of the students: the output layer of the model uses
the softmax function to normalize the vectors to sum to
1 such that the values within these output vectors can be
thought of as probabilities for the different cluster labels (see
Fig. 4). When training the model, we provide the cluster la-
bels found during clustering as ground truth. Note that we
use a one-hot encoding of the cluster labels, i.e. for a stu-
dent m belonging to cluster k = 2, ym,t = [0, 0, 1, 0, 0, 0].
The chosen model predicts the cluster label of the student
at each time step t, augmenting the amount of available data
and increasing flexibility, as it allows to predict the cluster
label of a specific child at any point in time. We denote this
type of model as LSTMSeq.
Note that ym,1 = ym,2 = ... = ym,T for all students m,
because during clustering each student is assigned a fixed
cluster label based on the whole sequence. Given that the
cluster labels are fixed, we can also design the model to only
output the cluster label at the end, i.e. train the LSTM to
predict the cluster label at the end of a given input sequence.
Instead of computing the training loss over the whole se-
quence, we calculate the loss only for the last output ŷT of
the sequence (marked with red in Fig. 4). When using this
type of model, we have to train a separate model for each

prediction time point. In our case, we will train separate
models for each level. We call this model LSTMEnd.
Stacking multiple LSTM layers (see hidden layers in Fig. 4)
is another possible variation of the architecture, i.e., the vec-
tor ht of layer n− 1 serves as an input for layer n. Stacking
layers adds levels of abstraction of input observations over
time, for example enabling representation of the problem at
different time scales. We will denote LSTM models with n
hidden layers, where n > 1, as LSTMSeq,n or LSTMEnd,n.

3.2 Gated Recurrent Unit Classification
Gated recurrent unit (GRU) models are another powerful
modification of RNN models. In contrast to LSTMs, they
are less complex, making training more efficient.

Specification. Similar to LSTM models, GRU models re-
place each hidden unit ht by a GRU cell unit with additional
gating parameters. GRUs use update and reset gates, decid-
ing what information should be passed to the output. The
update equations of a GRU are as follows:

zt = σ(Wfxxt +Wfhht−1 + bz) (7)

rt = σ(Wixxt +Wihht−1 + bi) (8)

h′t = tanh(Wh′xxt + rt ×Wh′hht−1 + b′h) (9)

ht = zt × ht−1 + (1− zt)× h′t (10)

zt and rt represent the update and reset gate of the GRU
cell unit. h′t denotes an intermediate candidate hidden state.
The different weight matrices are described by W and the b
stands for bias.

Modeling. Just as for the LSTM models, the clustering
features at each time step t are represented by the input
vector xt, i.e., xt = [NCt, NEt, NSEt]. The input sequence
of an example student is given in Fig. 4. We also use the
exact same description for the output layer of the GRU:
the output layer of the model uses the softmax function to
normalize the vectors to sum to 1 such that the values within
the output vectors ŷt can be interpreted as probabilities for
the different cluster labels (see Fig. 4). We again train a
model on the whole output sequences of the students able
to predict the cluster label at each time step t. We denote
this model with GRUSeq. We also train one GRU model per
level, where we compute the loss of the model only for the
last output ŷT of the sequence (marked with red in Fig. 4).
We denote this model with GRUEnd. Finally, similar to
LSTM models, we can also stack GRU models on top of
each other. We will call models with n hidden layers, where
n > 1, GRUSeq,n or GRUEnd,n.

4. EXPERIMENTAL EVALUATION
We evaluated the predictive accuracy of the variations of
RNN models on the data set described in Section 2. We also
compared them to the following popular traditional classi-
fiers using the same data set: k-Nearest-Neighbor (kNN) and
random forests (RF). While these classifiers are well tested
and efficient to train, they require features being the same
length for each student and therefore need to be trained for
fixed points in time. RNNs on the other hand represent the
relevant information over time, possibly enabling a more ac-
curate classification of students early in the game.
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Figure 5: Accuracy (top) and AUC (bottom) of the LSTMSeq, LSTMSeq,2, and GRUSeq models by achieved level. Both
measures increase up to level 6 and stagnate or deteriorate afterward. This is probably due to the fact that the models are
trained to predict the cluster label after each time step t, i.e. training loss is optimized over the whole sequence of observations.

Experimental Setup. We applied a train-test setting, i.e.
parameters were fit on the training data set and performance
of the methods was evaluated on the test data set. Predic-
tive performance was evaluated using the accuracy as well as
the micro-averaged area under the ROC curve (AUC). The
accuracy is a measure that can be interpreted easily. The
cluster solutions for both data sets are not balanced. We
used the AUC as an additional performance measure as it is
robust to class imbalance.
For all methods, we used a student-stratified (i.e. dividing
the folds by students) 10-fold cross validation. Within each
fold f , we re-clustered the students of the training data set
of f to obtain the output features y, i.e. the cluster labels,
for training. We purposely did not use the original cluster la-
bels from the solution found on the whole data set (including
training and test data) for training, to prevent dependencies
to the cluster labels of the test data set. The average cluster
stability [22] between the 10 different training data sets and
the original cluster solution was 0.87, i.e., on average 87%
of the samples received the same label on the training data
set as on the original data set. Therefore, 0.87 constitutes
an upper bound for the accuracy of the classifiers.
All the RNN models were implemented using Keras [7] with
Theano [33] as backend. Categorical crossentropy was used
to calculate loss and ADAM was used as the optimizer. The
models were trained for e = 100 epochs. For all types of
RNN models, we used post-padding and masking to account
for the different sequence lengths.
For the traditional classifiers, we trained one model for each

level n of the game. The input vector xn of each model
therefore encodes the clustering features exactly at level n,
i.e., xn = [NCn, NEn, NSEn].
We determined the optimal number ko of nearest neighbors
for the kNN classifier as follows: within each fold f , we ran-
domly put 10% of the students from the training data set
in a validation data set and selected the number of nearest
neighbors ko,f yielding the best performance in terms of ac-
curacy on this validation data set. We then predicted the
cluster labels of the test data set using the labels of the ko,f
nearest neighbors.
For the RF method, we trained B = 100 binary decision
trees using bootstrapping with re-sampling (rf = 1.5 ·Mf ,
with Mf being the number of samples in the training data
set of fold f).

RNN Models returning a sequence of outputs. We
varied the parameters of our RNN models outputting the
whole sequence of cluster labels along three dimensions: the
structure of the hidden layer(s) (LSTM or GRU), the num-
ber of hidden layers, and the dimension of the hidden state
within a hidden layer. Specifically, we computed the predic-
tive performance for the following models: a 1-layer LSTM
(LSTMSeq) with a dh-dimensional hidden state where dh ∈
{4, 8, 16, 32}, a 2-layer LSTM (LSTMSeq,2) with a dh-dimensi-
onal hidden state per layer where dh ∈ {2, 4, 8, 16}, and a
1-layer GRU (GRUSeq) with a dh-dimensional hidden state
where dh ∈ {4, 8, 16, 32}. Figure 5 illustrates the predictive
performance in terms of accuracy and AUC for the three
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Figure 6: Categorical crossentropy of the LSTMSeq, LSTMSeq,2, and GRUSeq models by the number of dimensions of the
hidden state. The average test error begins to increase when using more than dh = 16 hidden dimensions, while the training
error still decreases.

different architectures by achieved level.
The LSTMSeq models reach a poor accuracy when dh = 4.
There is also not much difference between the accuracy at
level 1 (0.42) and at level 8 (0.49). The accuracy improves
substantially when increasing the dimension of the hidden
state to dh = 8, dh = 16, or dh = 32. We especially observe a
jump in accuracy between levels 3 (e.g., Accuracy8 = 0.45)
and 4 (e.g., Accuracy8 = 0.58). For dh = 32, there is a
second jump between levels 5 (Accuracy32 = 0.59) and 6
(Accuracy32 = 0.64). These jumps in accuracy correspond
to jumps in the difficulty of the Challenge questions: the
eight problems consist of one very easy question followed by
two easy questions, two medium questions, and three dif-
ficult questions. There is no increase in accuracy between
levels 1 and 3 as most students passed these easy levels very
quickly. We observe a similar picture for the AUC. The AUC
increases with the number of dimensions dh of the hidden
state. Note that the AUC again jumps between levels 3 (e.g.,
AUC8 = 0.72) and 4 (e.g., AUC8 = 0.81).
For the LSTMSeq,2 models, predictive performance again in-
creases with the number of dimensions of the hidden state
within a layer. For this type of models, using a 2-dimensional
hidden state or a 4-dimensional hidden state per layer leads
to a low accuracy. Increasing to an 8-dimensional hidden
state or a 16-dimensional hidden state per layer yields a
large improvement in accuracy and these models also show a
jump in accuracy between level 3 (e.g., Accuracy2x16 = 0.48)
and level 4 (e.g., Accuracy2x16 = 0.63). The AUC also in-
creases with an increasing number of dimensions dh per hid-
den layer. The LSTMSeq,2 models’ accuracy is in range with
the accuracy of the LSTMSeq models for dh = 16/dh = 2x8
hidden dimensions as well as for dh = 32/dh = 2x16 hid-
den dimensions. However, the LSTMSeq models show a
higher AUC than the LSTMSeq,2 models, e.g., for dh =
16/dh = 2x8 hidden dimensions (for example at level 5:
AUCLSTMSeq = 0.87, AUCLSTMSeq,2 = 0.79).
Performance of the GRUSeq models in terms of accuracy
shows the same trends over time as for the LSTMSeq mod-

els. Again, employing a 4-dimensional hidden state results in
a low accuracy. When increasing the number of dimensions
of the hidden state to dh = 8, dh = 16, or dh = 32, the mod-
els are able to capture the jump in difficulty between level
3 (e.g., Accuracy8 = 0.43) and level 4 (e.g., Accuracy8 =
0.54). The architecture employing a 16-dimensional hid-
den state also shows a jump in accuracy between level 4
(Accuracy16 = 0.59) and level 6 (Accuracy16 = 0.66). The
AUC again increases with an increasing number of dimen-
sions of the hidden state. Applying dh = 32 instead of
dh = 16 hidden dimensions does generally not increase the
AUC, and is even worse for some levels, e.g., for level 6
(AUC16 = 0.86, AUC32 = 0.81). Generally performance is
in range with the performance of the LSTMSeq models in
terms of accuracy for dh = 16 and dh = 32 hidden dimen-
sions. Again, the AUC for the LSTMSeq models tends to
be higher than the AUC for the GRUSeq models, for ex-
ample for dh = 16 hidden dimensions at the peak level 6
(AUCLSTMSeq = 0.90, AUCLSTMGRU = 0.86).
The performance increase of all models with a higher number
of hidden dimensions is as expected. However, the danger
of overfitting increases with a higher number of parameters.
While our training and evaluation methods have measures
for overfitting, such as the crossvalidation, in place, we in-
vestigated the relation between the average training and test
error of the different configurations and the number of di-
mensions dh of the hidden state. Figure 6 illustrates the av-
erage categorical crossentropy on the training data sets and
test data sets. We observe that the difference between train-
ing error and test error starts to get bigger with an increased
number of hidden dimensions. Specifically, there is a kink
in the test error at dh = 16/dh = 2x8 hidden dimensions for
all models. We therefore conclude that dh = 16/dh = 2x8 is
the maximum number of hidden dimensions that should be
used for this data set.

RNN Models returning the last output in the se-
quence. We also trained a range of RNN models returning
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Figure 7: Accuracy (top) and AUC (bottom) of the LSTMEnd, LSTMEnd,2, and GRUEnd models by achieved level. Both mea-
sures increase over time and all models achieve a similar predictive performance for the higher numbers of hidden dimensions.

only the last output in the sequence, i.e. predicting the
cluster label at the end of a given sequence. We varied the
parameters of these models along the same dimensions as
for the models predicting the whole sequence. Specifically,
we computed the predictive performance for the following
models: a 1-layer LSTM (LSTMEnd) with a dh-dimensional
hidden state where dh ∈ {4, 8, 16, 32}, a 2-layer LSTM
(LSTMEnd,2) with a dh-dimensional hidden state per layer
where dh ∈ {2, 4, 8, 16}, and a 1-layer GRU (GRUEnd) with
a dh-dimensional hidden state where dh ∈ {4, 8, 16, 32}. We
trained one model for each level of the game. The predictive
performance of all the models in terms of accuracy and AUC
is illustrated in Fig. 7.
Similar to the models predicting sequences, the LSTMEnd

model achieves the lowest accuracy with dh = 4. How-
ever, up to level 6, there is no big difference in accuracy
between this model and the models with dh ≥ 8 hidden di-
mensions. All the LSTMEnd models capture the jump in dif-
ficulty between level 3 and level 4. The models with higher-
dimensional hidden states also capture the second jump hap-
pening after level 5. For dh = 16, we for example see a jump
in accuracy after level 3 (level 3: Accuracy = 0.46, level
4: Accuracy = 0.62) and a second jump after level 6 (level
6: Accuracy = 0.67, level 7: Accuracy = 0.77). Regarding
the AUC, we observe superior performance of the models
with dh = 16 and dh = 32 hidden dimensions after level 4.
For these models, the AUC constantly increases until level 6
(AUC16 = 0.89, AUC32 = 0.88). As seen before, we do not
observe any improvement in performance after level 6.
For the LSTMEnd,2 model, employing dh = 2 hidden dimen-

sions per layer leads to the lowest achieved accuracy and
there is also not much improvement over time. The mod-
els with dh > 2 capture the increased difficulty after level 3
(e.g., level 3: Accuracy2x8 = 0.47, level 4: Accuracy2x8 =
0.57). Only the models using dh = 8 or dh = 16 hidden
dimensions per layer manage to capture the second jump
in difficulty (e.g., level 6: Accuracy2x16 = 0.69, level 7:
Accuracy2x16 = 0.81). We observe a similar picture for
the AUC: when using using dh = 8 or dh = 16 hidden
dimensions, there is a strong increase in AUC after level
3 (e.g., level 3: AUC2x8 = 0.74, level 4: AUC2x8 = 0.81)
and after level 6 (e.g., level 6: AUC2x16 = 0.87, level 7:
AUC2x16 = 0.95).
The accuracy plot of the GRUEnd models looks similar to
the accuracy plot of the LSTMEnd models. Up to level 4,
all models perform similarly (at level 4: Accuracy4 = 0.58,
Accuracy8 = 0.62, Accuracy16 = 0.61, Accuracy32 = 0.55).
For the higher levels, the model with dh = 4 hidden di-
mensions shows the lowest accuracy. Using a model with
an 8-dimensional hidden state nicely captures the jumps
in accuracy between level 3 (Accuracy = 0.47) and level
4 (Accuracy = 0.62) and between level 6 (Accuracy = 0.62)
and level 7 (Accuracy = 0.73). Increasing the number of hid-
den dimensions to dh = 16 improves performance only from
level 5 on (e.g., at level 6: Accuracy8 = 0.62, Accuracy16 =
0.69). This model also captures the two jumps in accuracy.
Using dh = 32 hidden dimensions does not lead to any fur-
ther improvements. The model employing a 4-dimensional
hidden state performs worst for the AUC, with exception
of level 3. When using dh = 16 or dh = 32 hidden dimen-
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sions, the AUC again models the two jumps in difficulty
(e.g., level 3: AUC32 = 0.72, level 4: AUC32 = 0.82, level 5:
AUC32 = 0.85, level 6: AUC32 = 0.92). It also seems that
using a higher number of hidden dimensions, i.e. dh > 8,
increases the stability of the AUC. With exception of the
drop at level 3, the AUC of the model with dh = 16 hidden
dimensions nicely increases over time.
We again tested for overfitting, by comparing the average
training and test loss of the different models. Just as for the
models trained to predict the cluster label at each time step,
we found that there is a kink at dh = 16 hidden dimensions:
while the training error still decreases for a higher number of
dh, the error on the test set increases. We therefore conclude
that dh = 16 is the maximum number of hidden dimensions
that can be used.

‘Sequence versus End’. When comparing the RNN mod-
els trained for sequence prediction to the models trained
to predict only the last output of the sequence, we observe
that the performance plots show the same overall trends (see
Fig. 5 and Fig. 7). For both types, predictive performance
in terms of the accuracy is similar for the 1-layer LSTM
and the 1-layer GRU models. The GRUSeq model generally
has a lower accuracy than the LSTMSeq model when using
dh < 16. The GRUEnd model exhibits a lower accuracy than
the LSTMEnd model only for dh = 4. The models with two
stacked layers, i.e. the 2-layer LSTM models, generally show
a lower accuracy when employing a low number of hidden
dimensions per layer (2x2 or 2x4).
For both the ‘sequence’ and the ‘end’ RNN models, all three
model types achieve similar accuracies for dh = 8 or dh = 16
hidden dimensions. All RNN models show no improvement
or even a drop in AUC after level 6. This effect is more pro-
nounced for the models which are trained on the sequence, as
their loss is optimized over the whole sequence. We further
hypothesize that the length of the sequences at the higher
levels might be too long for the RNN models to capture the
relevant information, because even with the LSTM architec-
ture, RNNs tend to struggle with very long data sequences.
The main difference between the ‘sequence’ and the ‘end’
model is the larger increase of the accuracy with increasing
levels. For example, for the LSTMSeq with dh = 16 the accu-
racy at level 1 is 0.42 and the accuracy at level 7 is 0.63, while
the accuracy of the LSTMEnd model with dh = 16 is 0.41 at
level 1 and 0.77 at level 7. Because the ‘end’ models are op-
timized to predict the last output of a sequence, they reach
a higher accuracy at the end of the game (e.g. at level 8:
AccuracyGRUSeq,16

= 0.61, AccuracyGRUEnd,16
= 0.77). The

‘sequence’ RNN models are optimal on average and there-
fore exhibit less variance over time and smoother accuracy
and AUC curves. For the medium levels of the game, ‘se-
quence’ and ‘end’ RNN models perform similar in terms of
accuracy and AUC.
All configurations exhibit a satisfying accuracy and a medium-
high AUC for dh ≥ 8. As a comparison, a random classi-
fier would achieve an accuracy of 0.17 and the accuracy of a
classifier always predicting the majority label would be 0.32.
The AUC of these two classifiers would be 0.5.

Comparison to traditional classifiers. We compared
the predictive performance of selected RNN models to the
predictive performance of the traditional classifiers. Because
the RNN models show an increased performance with a

Comparison of predictive performance

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

kNN
RF
LSTM

Seq
LSTM

End

1 2 3 4 5 6 7 8
Achieved Level

0.6

0.7

0.8

0.9

1

A
U

C

Figure 8: Accuracy (top) and AUC (bottom) of kNN, RF,
LSTMSeq, and LSTMEnd by achieved level. The RNNs
achieve similar or better performance than the traditional
classifiers up to level 6.

higher number of hidden dimensions, we used RNN mod-
els with the maximum number of dh = 16 not resulting in
overfitting for comparison. In case of the ‘sequence’ mod-
els, the LSTMSeq model achieved a similar accuracy, but a
higher AUC than the two other model types for dh = 16.
We therefore selected the LSTMSeq model with dh = 16 for
comparison. In case of the ‘end’ models, the 1-layer LSTM
and 1-layer GRU models achieved similar results, however,
the LSTM models were better at predicting the jumps in
difficulty. We therefore selected the LSTMEnd model with
dh = 16 for comparison. Figure 8 displays the accuracy and
the AUC of the kNN classifier, the RF method, a 1-layer
LSTM model for sequence predicting with dh = 16 hidden
dimensions (LSTMSeq), and a 1-layer LSTM model for pre-
dicting the last output of the sequence with dh = 16 hidden
dimensions (LSTMEnd).
We observe that the RNN models outperform the traditional
classifiers for the first three levels regarding the accuracy
(e.g., at level 3: AccuracykNN = 0.38, AccuracyRF = 0.43,
AccuracyLSTMSeq

= 0.45, AccuracyLSTMEnd
= 0.46). The

same holds for the middle of the game, i.e. levels 4 − 6
(e.g., at level 5: AccuracykNN = 0.57, AccuracyRF = 0.63,
AccuracyLSTMSeq

= 0.63, Accu- racyLSTMEnd
= 0.67). At

the end of the game, the accuracy of the traditional classi-
fiers is close to the stability of the clustering (AccuracykNN =
0.85, AccuracyRF = 0.83).
For the RF approach and the two RNN models, we also
computed the AUC (see Fig. 8 (bottom)). In contrast to
the other three methods outputting probabilities for each
cluster label, kNN just outputs the predicted cluster label
and we therefore did not compute the AUC for this method.
We observe that the LSTMSeq and the LSTMEnd models
clearly outperform the RF method at the beginning of the
game (e.g., at level 3: AUCRF = 0.71, AUCLSTMSeq = 0.75,
AUCLSTMEnd = 0.73). Also in the middle of the game be-
tween levels 4 and 6, the RNN models show a higher AUC
than the RF method (e.g., at level 5: AUCRF = 0.82,
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AUCLSTMSeq = 0.89, AUCLSTMEnd = 0.87) with the ex-
ception of level 4. When looking at the whole sequence, we
observe a similar picture as for the accuracy: the AUC of
the RF method is clearly higher than the AUC of the RNN
models (at level 8: AUCRF = 0.91, AUCLSTMSeq = 0.80,
AUCLSTMEnd = 0.85).
As already mentioned before we assume that the worse per-
formance of the RNN models at the end of the game (level
7 and level 8) is due to the fact that the input sequences
for the RNN models become too long. Note that while most
students manage to reach level 5 within a reasonable time
frame, the lengths of the complete sequences vary signifi-
cantly between the students. The lower accuracy and AUC
of the RNN models at the end of the game are not an is-
sue in our case because we are interested in accurate pre-
dictions early in the game. While the RNN models show
only a slightly increased accuracy in comparison to the tra-
ditional methods at the beginning and in the middle of the
game, they consistently achieve a higher AUC up to level 6,
demonstrating their robustness towards class imbalance.

5. DISCUSSION
OELEs consitute a promising approach for learning. Ideally,
the students learn the concepts and principles of a domain
more deeply through exploration than if they are simply
taught the principles and practice applying them. However,
it has been shown that only a part of the students are able
to effectively explore the space [20, 31, 24, 17]. Providing
guidance to struggling students is therefore essential for ed-
ucational success.
Because OELEs allow the user to freely interact with the
content, traditional student modeling approaches cannot di-
rectly be applied to provide adaptation to the student. Adap-
tation based on detected student behavior and strategies is
therefore a promising approach. Previous work has used of-
fline clustering to detect different student types, followed by
online classification of new students [15, 16, 11].

In this paper, we focused on the task of online classifica-
tion, i.e., predicting the student type (or behavior) early on
during interaction with the environment to provide targeted
guidance as early as possible. In contrast to previous work
applying standard classifiers such as k-nearest-neighbor [15,
16, 11], we suggested the use of RNN models for the online
classification task. While previous research has investigated
the use of RNN models to classify the students according
to their problem-solving behavior based on their whole se-
quence of interactions [1], to classify changing learner behav-
iors over time [26], or to detect affective states over time [4],
we explored the possibility of using RNN models to predict a
student’s cluster label (fixed over time) as early as possible.
We have extensively evaluated a variety of RNN models and
compared their predictive performance to the performance
of k-nearest neighbor and random forest classifiers. We have
used the different levels of the game as specific time points
for evaluation as they pose realistic time points for interven-
tions. We have trained RNN models to predict the cluster
label at each time step as well as RNN models optimized for
predicting the cluster label at each level of the game.
Not unexpectedly, the RNN models trained per level as well
as the traditional classifiers outperform the models trained
for predicting the whole sequence at the higher levels (level 7
and 8) of the game. This is due to the averaging effect of the

performance of the ‘sequence’ RNN models: during train-
ing, the loss is computed for each time step of the sequence.
Nevertheless, for level 4 and 5, which provide promising time
points of intervention both in terms of accuracy of the differ-
ent models as well as in terms of timing of intervention, the
LSTMSeq model with 16 hidden dimensions reaches similar
performance as the other approaches. While this model does
not outperform traditional approaches regarding prediction
accuracy, it provides the potential for further adapting in-
tervention. As the model is able to predict the cluster label
at each time step, it is possible to provide the intervention
at different points in time for different students depending
on how sure the model is about the cluster label of the stu-
dent. [21] have for example used a simple heuristic to at each
time step decide whether the model should continue to see
further time steps before outputting a final decision. While
exhibiting the same accuracy, classification happened on av-
erage at an earlier point in time. This earlier classification
allowed to provide targeted interventions sooner.
While the LSTMEnd model with 16 hidden dimensions is
also outperformed by the traditional classifiers at level 7
and 8 of the game, it shows a higher prediction accuracy
than the kNN and RF classifiers for the first levels. Our
results further demonstrate that the LSTMEnd model with
16 hidden nodes outperforms the RF classifier regarding the
AUC. This is especially important, because the AUC is not
biased by imbalanced data sets.
We have also investigated different architectures for the RNN
models. Our results demonstrate no large difference in the
performance of LSTM and GRU models. However, due to
their lower complexity, GRU models are more efficient and
take less time to train the LSTM models. While this was
not an issue for our small data set, it should be considered
when training on larger data sets.
Due to the relatively small number of samples, we were able
to only train shallow models with one or two hidden layers,
not fully exploiting the advantages of deep learning. Fur-
thermore, we also had to keep the number of dimensions of
the hidden state low. However, the results achieved on our
small data set are promising and we assume that the RNN
models would perform even better on larger data sets.

In the future, we plan to design and test targeted interven-
tions for the different clusters. Furthermore, we will collect
a substantially larger data set to enable the training of deep
neural networks using raw feature input only. Finally, we
also plan to design and train the classifier such that scaf-
folded interventions can be delivered.
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[13] J. P. González-Brenes and J. Mostow. Topical Hidden
Markov Models for Skill Discovery in Tutorial Data.
NIPS - Workshop on Personalizing Education With
Machine Learning, 2012.

[14] T. Hofmann and J. M. Buhmann. Pairwise data
clustering by deterministic annealing. IEEE Trans.
Pattern Anal. Mach. Intell., 19(1):1–14, 1997.

[15] S. Kardan and C. Conati. A Framework for capturing
distinguishing user interaction behaviours in novel
interfaces. In Proc. EDM, pages 159–168, 2011).
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[18] T. Käser, S. Klingler, A. G. Schwing, and M. Gross.
Beyond Knowledge Tracing: Modeling Skill Topologies
with Bayesian Networks. In Proc. ITS, pages 188–198,
2014.
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ABSTRACT
Early prediction of student difficulty during long-duration
learning activities allows a tutoring system to intervene by
providing needed support, such as a hint, or by alerting
an instructor. To be effective, these predictions must come
early and be highly accurate, but such predictions are dif-
ficult for open-ended programming problems. In this work,
Recent Temporal Patterns (RTPs) are used in conjunction
with Support Vector Machine and Logistic Regression to
build robust yet interpretable models for early predictions.
We performed two tasks: to predict student success and dif-
ficulty during one, open-ended novice programming task of
drawing a square-shaped spiral. We compared RTP against
several machine learning models ranging from the classic to
the more recent deep learning models such as Long Short
Term Memory to predict whether students would be able
to complete the programming task. Our results show that
RTP-based models outperformed all others, and could suc-
cessfully classify students after just one minute of a 20-
minute exercise (students can spend more than 1 hour on
it). To determine when a system might intervene to pre-
vent incompleteness or eventual dropout, we applied RTP at
regular intervals to predict whether a student would make
progress within the next five minutes, reflecting that they
may be having difficulty. RTP successfully classified these
students needing interventions over 85% of the time, with in-
creased accuracy using data-driven program features. These
results contribute significantly to the potential to build a
fully data-driven tutoring system for novice programming.

1. INTRODUCTION
Modeling student cognitive processes is highly complex since
it is influenced by many factors such as motivation, apti-

tude, and learning habits. This is especially challenging for
computer-based programming environments, because of the
open-ended nature of programming. In this study, we focus
on two important types of student modeling tasks to im-
prove student experience in computer-based programming
environments: 1) whether students will eventually succeed,
and 2) at any given time, whether students need interven-
tion. The interventions are more effective as we can predict
earlier. Indeed, student modeling has been studied exten-
sively for well-defined domains like algebra or physics [18,
17, 22]. For an ill-defined domain like programming, there
are no pre-defined steps that students must take to complete
a given program. Thus, it is hard to map the observations
from students step by step. This makes the step-aligned
models, like Bayesian Knowledge Tracing (BKT) [10], inap-
propriate for the programming domain.

Analyzing programming data often requires a way to rep-
resent a student’s current state on a given problem. In the
domain of programming, a student’s state is typically repre-
sented by their current code, called a code-state. However,
this representation leads to very large and poorly connected
state spaces [14, 31], which makes it difficult to compare stu-
dents and apply data-driven methods. Thus, in this study,
we transformed student click-like log files into fixed feature
sets. As shown in our prior work [38], this feature-state rep-
resentation dramatically reduces the size of an open-ended
programming state space, while creating semantically mean-
ingful states. In this study, we explore both expert feature
(EF) and data-driven feature (DDF) sets, and further com-
pare their robustness on the two prediction tasks.

In recent years, deep learning models, specifically Recurrent
Neural Networks (RNNs) and RNN-based models such as
Long Short Term Memory (LSTM) [13] and gated recurrent
unit (GRU) [9], have been shown to achieve state-of-the-art
results in many applications with multivariate time series
data including educational data. Such models enjoy sev-
eral nice properties such as strong prediction of performance
through deep hierarchical feature construction as well as the
ability to effectively capture long-term temporal dependen-
cies in time series data. Despite their extensive applications
and great success, the open-ended nature in programming
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state-space and various time intervals can pose enormous
challenges for deep learning. More importantly, these deep
learning models are often treated as “black box” models be-
cause of the lack of interpretability – they are particularly
difficult to understand because of their non-linear nature.

On the other hand, Temporal Pattern-based approaches are
designed to extract interpretable, meaningful temporal pat-
terns directly from irregularly-sampled multivariate time se-
ries data. Recently, significant efforts have been made to de-
velop and apply various pattern-based approaches to health-
care and shown to be effective. [7, 21]. However, as far as
we know, temporal Pattern-based approaches have not been
extensively investigated in the field of educational data min-
ing especially for programming. In this work, we will di-
rectly compare one Temporal Pattern-based approach, Re-
cent Temporal Patterns (RTPs) [7] against a series of base-
line models including three classic machine learning mod-
els: k-Nearest Neighbors (KNN), support vector machines
(SVM), and Logistic Regression (LR), and a state-of-the-art
deep learning model: LSTM. More specifically, we compare
these approaches on two early prediction tasks. Overall, we
show that RTPs outperform all baseline models including
LSTM on both early prediction tasks and more importantly,
RTPs can generate quite reliable predictions with only the
first one minute data. Additionally, RTPs can discover in-
terpretable, meaningful temporal patterns that would be in-
formative for domain experts or educators.

Our main contributions are summarized as follows: 1) To
the best of our knowledge, this is the first attempt to apply
RTP mining to extract student programming temporal pat-
terns and compare it with several baseline models, including
deep learning. 2) We run extensive experiments evaluating
RTP and various baseline models on both the task of early
prediction for student success and that of early prediction
for student difficulty, while most prior research mainly fo-
cused on one or the other but not both. 3) We explored
their robustness and the effectiveness of using EF vs. DDF
for the programming system on both early prediction tasks.
4) We identify interpretable, meaningful temporal patterns
that can be informative for domain experts.

2. BACKGROUND, CONTEXT, & DATA
2.1 Modeling Student Learning
Student modeling has been extensively explored as a series of
approaches have been proposed [10, 34, 8, 24] to better un-
derstand and model student learning process. Among them,
Bayesian Knowledge Tracing (BKT) [10] is one of the most
widely investigated student modeling approaches. It mod-
els a student’s performance in solving problems related to
a given concept using a binary variable (i.e., correct, incor-
rect) and continually updates its estimation of the student’s
learning state for that concept. BKT and BKT-based mod-
els have been shown to be effective in many student modeling
tasks, such as predicting students’ overall competence [22],
predicting the students’ next-step responses [37, 6, 23, 18],
and the prediction of post-test scores [16, 19]. However, in
this study, BKT-based models cannot be directly applied to
our open-ended programming tasks, because of the adversity
of mapping students’ time-various actions step by step.

In recent years, extensive research has been conducted on

deep learning models, especially Recurrent Neural Network
(RNN) or RNN-based models such as LSTM in the field of
educational data mining [25, 33, 15, 35, 36, 17]. In our prior
work, we have shown that LSTM has superior performance
on the early prediction of student learning gain compared
with classic BKT-based models [19]. For the task of pre-
dicting students’ responses to exercises, LSTM was shown
to outperform conventional BKT [25] and Performance Fac-
tors Analysis [24]. However, RNN and LSTM did not al-
ways have better performance when the simple, conventional
models incorporated other parameters [15, 35].

While most of the previous studies on student modeling fo-
cus on predicting students’ success and failure in the next-
step attempt, some research has used student-tutor interac-
tion data to predict student post-test scores [11, 30]. In this
work, we explore the early prediction of both student success
and difficulty. As far as we know, none of the previous stud-
ies have explored both prediction tasks for computer-based
programming systems.

2.2 Programming and Help-seeking in iSnap
In this work, we analyze data from iSnap, a block-based
novice programming environment [26]. iSnap is an exten-
sion of Snap! [12], which allows students to easily create
interactive, 2D applications, such as apps and games. iSnap
provides students with on-demand, next-step programming
hints, which are generated automatically from student data
with the SourceCheck algorithm [28]. In addition, iSnap
collects detailed interaction data as students work, includ-
ing complete snapshots of all student code, allowing us to
perform detailed time series analysis. iSnap’s data-driven
hints also offer a useful motivation for this work. Prior anal-
ysis of student help-seeking behavior in iSnap suggests that
few students ask for help when they need it, especially lower-
performing students [29]. This is consistent with help avoid-
ance reported in other tutoring systems [2, 4]. Prior works
suggest that a number of factors lead to this help avoidance
in iSnap, including lack of trust in the system, a desire for
independence, and a lack of awareness of their own need for
help [27]. Effective help-seeking is a metacognitive skill that
many students need additional training to develop [3]. A
system that could detect or predict student difficulty times
could offer interventions such as automated help or instruc-
tor alerts. However, prior work suggests that such proactive
intervention is most effective when systems assess the stu-
dent’s likelihood to succeed [20], rather than responding to
all errors with help messages [1]. In this work, we present a
data-driven approach capable of making early and accurate
predictions of student success, which can enable a variety of
interventions, such as iSnap hints.

2.3 Dataset
Our datasets were collected from students using iSnap in an
“introduction to computers” course for non-majors, held at
a research university, from the Spring 2016 (S16), Fall 2016
(F16), Spring 2017 (S17), and Fall 2017 (F17) semesters.
We excluded students who requested hints since hints may
alter students’ problem-solving patterns, and our remaining
data contained code traces from 65, 38, 29, and 39 students
from S16, F16, S17, and F17 respectively. Each code trace
consisted of a sequence of timestamped snapshots of stu-
dent code. We chose one “Squiral” assignment to explore
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in-depth, where students must write a procedure to draw
a spiral with square corners. Common solutions contain 7-
10 lines of code and use procedures, loops, variables, and
arithmetic operators. In our previous work, we presented
a feature-state representation that defines a student’s state
by the presence or absence of specific features of a correct
solution [38]. Each feature describes a distinct property of
correct solution code and may specify a necessary code struc-
ture or required program output. We defined feature-state
as the presence or absence of each feature in a student’s
code (e.g. the feature-state “1101000” indicates Features 1,
2 and 4 are complete, while Features 3,5,6, and 7 are miss-
ing). In the same work, we implemented an algorithm to
identify data-driven code features directly from student so-
lutions, extracting 11 data-driven features (DDF). We also
had experts systematically define 7 expert features (EF) for
the Spiral assignment. Using the expert feature definitions,
we manually tagged each student’s snapshot and had 6,339
tagged snapshots from 38 traces in F16. Our work showed
that the data-driven features and expert features had mod-
erate agreement on whether a student is in the same feature
state or different states for F16. Additionally, we imple-
mented an automated expert feature detector to detect the
7 expert features automatically. We used the detector to tag
S16, S17, and F17 student snapshots with expert feature-
states. On the F16 dataset, the expert feature detector had
an agreement of 0.861 with the manually-tagged expert fea-
tures. In all, we have 31,064 tagged snapshots from 171
traces from S16, F16, S17, and F17 semesters. Finally, we
used a smoothing function to the tagged traces in which pe-
riods of rapid feature-state changes, defined as transitioning
back and forth between two features within a 5 snapshot
window, to set the values of a subsequent period after the
variance. This process aims to reduce noise generated by
actions in Snap! that do not represent meaningful feature-
state changes (e.g. a student drags the code to a different
position in the environment).

3. TWO EARLY PREDICTION TASKS
In this work, we explore two different early prediction tasks:
the trajectory-level early prediction for student success and
the event-level early prediction for student difficulty.

3.1 Trajectory-Level: Student Success
We classify the students who finished the programming as-
signment in one hour or less and got full credit as successful,
and those who either failed to complete the assignment or
submitted it within one hour as unsuccessful. Thus, each tra-
jectory is assigned one ground truth label based on whether
the student finished the assignment successfully or unsuc-
cessfully. As a result, we refer to this task as trajectory-level
early prediction task for student success. Based on this def-
inition, 59 of 171 students are in the successful group, and
the remaining 112 are in the unsuccessful group.

To predict student success, we are given the first up to n
minutes of a student’s sequence data and our goal is to pre-
dict whether the student will successfully complete the pro-
gramming assignment at any given point in the remaining
of the sequence. To conduct this task, we left-aligned all the
students’ trajectories by their starting times and our obser-
vation window (the part of data used to train and test dif-
ferent machine learning models) includes the sequences from

the very beginning to the first n minutes. If a student’s tra-
jectory is less than n minutes, our observation window will
include his/her entire sequence except the last one.

3.2 Event-Level: Student Difficulty
We define that a student is experiencing some sort of diffi-
culty if at any given moment, a student fails to make any
progress on his/her incomplete or imperfect answer in the
next five minutes. Failure to make any progress in five min-
utes (on a supposed-to-be 20-minute programming task) re-
flects that the student may be experiencing some difficulty.
Identifying the moment that a student is experiencing dif-
ficulty would allow us to determine when a system could
intervene to address difficulty or prevent eventual dropout.

Because we predict whether a student is experiencing diffi-
culty moment by moment, we refer to this early prediction
task as event-level early prediction. More specifically, for
a given moment, n minutes after starting time, we classify
the students who failed to make any progress in the next
five minutes as the intervention group, and those who made
some progress as the non-intervention group. Note that we
are not considering students who have already completed
the training in n minutes and they are not assigned to ei-
ther group. In short, for the event-level early prediction for
student difficulty, our observation window contains the first
up to n minutes of a student’s sequence data and our goal is
to predict whether the student will experience any difficulty
and need intervention in the next five minutes.

4. RTP MINING
Our dataset can be represented as a set of trajectories, X =
{x1, x2, ..., xN} where N = 171 is the total number of tra-
jectories, one per student. It is composed of multivariate
irregular time series data in that a student i’s trajectory xi
consists of a sequence of events: xi = {x1i , ..., xTi

i }, where
xti represents the student’s code-records at time step t. We
have xti ∈ RD, where D is the number of predefined at-
tributes/features and each attribute is a binary variable in-
dicating whether a feature is present or not: R ∈ {0, 1}.
Ti is the length of the trajectory xi; for different students,
Ti varies. Each xi is associated with a trajectory-level la-
bel (e.g. student success) or a series of moment by mo-
ment event-level labels (eg. student difficulty), denoted as
Y = {y1, y2, ..., yTi}, where yi ∈ {0, 1}. It is important to
note that in the trajectory-level student success prediction,
we treat students who are unsuccessful as the task of inter-
est; thus, they are assigned to be 1 because it is more impor-
tant for our model to classify and recognize the unsuccessful
students as soon as possible. Similarly, for the event-level
student difficulty task, we treat students who need interven-
tion as the task of interest, and thus are assigned as 1.

Generally speaking, our RTP mining is conducted by fol-
lowing four steps: 1) Convert binary time-series variables
into time interval sequences using Knowledge-based Tempo-
ral Abstraction, as described in the next section. 2)Extract
frequent recent temporal patterns from different classes of
data (i.e. 0 and 1). 3) Transform each xi into a fixed-size bi-
nary feature vector vi, where the size of vector corresponds
to the number of frequent RTPs from Step 2. 4) Build the
model on the binary matrix generated in Step 3 to predict
the outcomes.
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Figure 1: An example of conversion from the original data into a Multivariate State Sequence with three
temporal features.

Typically, temporal abstraction involves defining 1) discretized
data, 2) multivariate state sequences, 3) temporal relations,
and 4) temporal patterns [32]. Our binary data are already
discretized, so we describe the remaining three steps.

4.1 Knowledge-based Temporal Abstraction
Multivariate State Sequences: The middle table in Fig.
1 demonstrates how binary data can be converted into Mul-
tivariate State Sequences (MSS), zi where each row presents
a state interval, E, extracted from the student’s trajectory.
We denote a State S as (F, V ), where F is a temporal fea-
ture and V is the value for feature F at a given time and
the State Interval E is denoted as (F, V, s, e), where s and
e refer to the start and end times of the state (F, V ). Thus,
we can convert each student’s data xi into a corresponding
MSS zi by sorting all the state intervals by their start times:

zi = 〈E1, E2, ..., En〉 : Ej .s ≤ Ej+1.s, j ∈ {1, ..., n− 1}

Note that we also define zi.end as the end of the last state
interval in the MSS, i.e. En.e. For example, the right figure
of Fig. 1 is a visualization of the MSS zi, and zi.end is 241.
Applying this method on all xi ∈ X transforms X into a set
of MSSs: Z = {z1, z2, ..., zN}.

Figure 2: Allen’s 7 basic temporal relations, grouped
as before, or co-occurs.

Temporal Relations: We define two temporal relations,
based on Allen’s 7 basic temporal relations between states[5],
grouping the last six into one co-occurs relation as shown in

Figure 3: A temporal pattern P with 5 states
〈S1 = (F1, 0), S2 = (F2, 0), S3 = (F3, 0), S4 = (F4, 1), S5 =
(F2, 1)〉 and temporal relations presented by half ma-
trix R

Fig. 2. Thus, the two temporal relations, before (b) and co-
occurs (c), between two instantaneous events Ei and Ej , are
defined as :

• Ei before (b) Ej : When Ei ends before the start of
Ej (Ei.e < Ej .s).

• Ei co-occurs (c) with Ej : When Ei and Ej have some
overlap (Ei.s ≤ Ej .s ≤ Ei.e).

Temporal Patterns: Temporal patterns are generated by
combining states and temporal relations (before (b) and co-
occurs (c)) to describe temporal dependencies in data. More
specifically, for n states 〈S1, ..., Sn〉, we define the corre-
sponding temporal pattern: P = (〈S1, ..., Sn〉, R), where R
is an upper triangular matrix of relations, with Ri,j ∈ b, c
corresponding to the relation between Si and Sj . The size of
temporal pattern P is determined by the number of states
S it contains. For example, a 5-pattern with three tem-
poral features is shown in Fig. 3, where each state is an
abstraction of a variable and the half matrix on the right
shows the temporal relations between each pair of states.
For example, since S2 = (Feature 2, 0) happens before S4 =
(Feature 2, 0), R2,4 = b. In the next step, we describe a
method to find the recent temporal patterns (RTPs) from
MSSs in Z.

RTP Mining: We selected the RTP mining algorithm pro-
posed by Batal et al. [7], because it incorporates a maximum
gap parameter to consider the recency of patterns, it is effi-
cient, and it prevents incoherent patterns. Next, we define
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Figure 4: An example of generating 3-patterns out
of a single 2-RTP, by appending a new state.

Recent Temporal Patterns (RTP) and briefly explain how
they are applied in our work.

Recent Temporal Patterns: First, we call state interval
E = (F, V, s, e) a Recent State Interval of MSS zi if: 1)
E is the last state interval for feature F ; that is, for all

E
′

= (F, V
′
, s

′
, e

′
), we have E

′
.e ≤ E.e; or 2) E is less

than g time units away from the end time of the last state
interval: zi.end; that is, zi.end− E.e ≤ g.

Given an MSS zi, a temporal pattern P = (〈S1, ..., Sn〉, R),
and a maximum gap parameter g, we say P is a recent tem-
poral pattern (RTP) in zi, denoted as Rg(P, zi), if all 3 of
the following conditions hold: 1) zi contains P , where P ∈ zi
if: (a) zi contains all k states of P , and (b) all temporal re-
lations of P are satisfied in zi; 2) Sn = (Fn, Vn) matches a
recent state interval in zi; and 3) Every consecutive pair of
states in P maps to a state interval less than g time units
apart. That is, each pair of temporal sequences should not
be g time units apart. In short, parameter g forces pat-
terns to be close to the end of the sequence zi, and forces
consecutive states to be close to each other.

Mining Algorithm: For each MSS zi, its outcome yi = 1
when the zi sequence is unsuccessful/needs intervention, and
yi = 0 otherwise. Taking student success classification as an
example, we will have two sets of labeled MSSs: Z1 = {zi :
yi = 1} for all unsuccessful sequences and Z0 = {zj : yi = 0}
for all successful ones. Given Z1, the mining algorithm ap-
plies a level-wise search to find frequent RTPs. More specif-
ically, it first starts with all frequent 1-RTPs, and then ex-
tends the patterns by adding a new state to each sequence,
one at a time, until no new patterns are discovered. That is,
at each level k, the algorithm finds frequent (k+1)-RTPs by
repeatedly extending k-RTPs through Backward candidate
generation, and the Counting phase, as described below.

Backward (k + 1)-pattern candidates are generated from a
k-pattern P = (〈S1, ..., Sk〉, R), by adding a new frequent

state, Snew, to the beginning of the sequence to create P
′

=

(〈Snew, S1, ..., Sk〉,R
′
). Then we specify the new before (b)

or co-occurs (c) relations R
′

between Snew and all original
k states, restricted by the following two criteria: 1) Two
state intervals of the same temporal feature cannot co-occur.
That is, if Snew.F = Si.F for i ∈ {1, ..., k}, then R′

new,i 6=
c. 2) Since the state sequence in pattern P is sorted by
the start time of the states, once a relation becomes before:
R′

new,i = b for any i ∈ {1, ..., k}, all the following relations
have to be before, so R′

new,j = b for j ∈ {i+ 1, ..., k}.

In the Counting phase, candidate (k + 1)-patterns are re-
moved if they do not meet the minimum support threshold
by occurring at least σ times as RTP in Z1. The same pro-
cedure is carried out for Z0. Finally, we combine all the
frequent RTPs into a final Ω set of RTPs.

Binary Matrix Transformation: We transform each MSS
zi ∈ Z into a binary vector vi of size |Ω|, such that each 0
and 1 indicates whether the pattern Pj ∈ Ω is a recent tem-
poral pattern in Zi or not. This will result in a binary matrix
of size N × |Ω|, which represents our original dataset.

Learning Models: Once the binary matrix is built, we
apply different machine learning models including KNN, lo-
gistic regression (LR), and SVM to perform each target task.

5. EXPERIMENTS
5.1 Seven models in Three Categories
To evaluate the RTP-based models for early prediction of
student success and student difficulty, we conducted a series
of experiments. For each task, we used grid search to in-
vestigate the optimum value for the maximum gap (g) and
minimum support (σ) parameters and we have g = 60 min-
utes and σ0 = 0.2 for both prediction tasks. For each task,
we compared RTP against two categories of baselines: the
three Classic ML models and LSTM. Thus in total, we ex-
plored seven classification models in three categories.

Three Classic Machine Learning Models: We explore
three classic machine learning models: KNN, LR, and SVM.
Since these models do not handle sequence data directly, we
used a “Last Value” approach to treat the last measurement
of each attribute within the given observation window as the
input to train models. Note that “Last Value” approach is
also the baseline approach in [7] and many student modeling
research. For early prediction settings, we truncated all the
sequences in the training dataset in the same fashion as the
testing dataset and then applied the Last Value approach
on the truncated training dataset. For example, when our
observation window is 1 minute, we apply the last value
before 1 minute for each sequence and treat them as inputs
for each model. For each of the three models, we explored
different parameters to obtain the best results, in that, for
KNN, we have k = 10, for LR we used L1 regularization,
and for SVM we used linear kernel.

One Deep Learning Model: LSTM LSTM is a vari-
ation of Recurrent Neural Networks (RNNs) that prevents
the vanishing gradient problem among other forms of RNNs
[13]. LSTM has a chain-like structure, which enables in-
formation to flow among different blocks at different time
points. Each block of the LSTM consists of a memory cell
state and three gates: Forget, Input, and Output. These
three gates interact with each other to control the flow of
information. More specifically, the Forget gate determines
what information from the previous memory cell state is
expired and should be removed; the Input gate selects infor-
mation from the candidate memory cell state for updating;
the Output gate filters the information from the memory
cell so that the model only considers information relevant
to the prediction task. Therefore, the memory cell plays a
crucial role in memorizing previous experiences. In our task,
the input is a multivariate temporal sequence from student
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work, and the output from the last step is used to make a
prediction. We implemented LSTM in Keras with Tensor-
flow as the back-end engine, and we used one hidden layer
with 100 hidden neurons and set the maximum length to
accommodate the longest sequence in our data. Typically
for LSTM, the whole multivariate time series from student
sequence data is used as input data. However, for early
prediction, only those events happening within our obser-
vation window from each sequence were used. We applied
5-fold cross-validation in order to tune the parameters of
the model, including the optimizer, initializer, number of
epochs, and number of batches.

Three RTP-based Models: The RTP-based models would
first generate the binary matrix through RTP mining and
then applied the classical machine learning models, KNN,
LR, and SVM, (the same parameter settings as used in clas-
sic machine learning models described above) and thus, they
are referred as RTP KNN, RTP LR, and RTP SVM, respec-
tively. Prior research on RTPs for prediction have all used
entire sequences to extract meaningful temporal patterns.
In this work, we explored the effectiveness of RTP for early
prediction, by applying the truncated training sequences in-
cluded in observation window to find RTPs. For example,
when our observation window is 1 minute, only the first 1
minute of sequences were used for pattern extraction.

5.2 Evaluation Metrics
We evaluated our models using Accuracy, and Recall, F1
Score, and AUC (Area Under ROC curve). Accuracy repre-
sents the proportion of students whose labels were correctly
identified. Recall tells us what proportion of students who
will actually be unsuccessful (or need intervention) were cor-
rectly recognized by the model. F1 Score is the harmonic
mean of Precision and Recall that sets their trade-off. AUC
measures the ability of models to discriminate groups with
different labels. Given the nature of the taks, we mainly use
Accuracy and AUC to compare different models. All models
were evaluated using 5-fold cross validation.

6. RESULTS
We present our results in three parts. First, we compare the
effectiveness of the three categories of models on trajectory-
level early prediction of student success. Second, we explore
their performance on event-level early prediction of student
difficulty. Finally, we discuss the extracted interpretable and
meaningful temporal patterns discovered by RTP mining.
For both early prediction tasks, we analyze two feature sets:
expert-based features (EF) and data-drive features (DDF).

6.1 Trajectory-Level: Student Success
[Observation Window = 1 min] Table 1 shows the per-
formance of all models using the first-1-minute training se-
quences to predict students’ success. The first row is the
baseline model using simple Majority vote; note that we
ignored the Recall and F1-measure of the simple Majority
baseline. For the three main categories of models, we re-
ported their performance on both EF and DDF. For Classic
ML, KNN with DDF generates the highest scores on Re-
call (0.955) and F1-measure (0.793), SVM with DDF has
the best AUC (0.563), and LR with EF contributes the best
Accuracy (0.678). Thus, there is no clear winner among the

Table 1: Student success classification performance
for the one-minute observation window

Model Feature Accuracy Recall F1 AUC
Majority Baseline EF/DDF 0.655 - - 0.5

Classic ML

KNN
EF 0.667 0.946 0.788 0.541

DDF 0.673 0.955 0.793 0.545

SVM
EF 0.661 0.946 0.785 0.533

DDF 0.673 0.920 0.786 0.563

LR
EF 0.678 0.938 0.792 0.562

DDF 0.520 0.464 0.559 0.546

Deep Learning LSTM
EF 0.649 0.991** 0.787 0.496

DDF 0.655 0.991** 0.790 0.504

RTP

RTP KNN
EF 0.965 0.973 0.973 0.961

DDF 0.906 0.902 0.927 0.909

RTP SVM
EF 0.971** 0.955 0.977 0.978**

DDF 0.965 0.955 0.973 0.969

RTP LR
EF 0.971** 0.973 0.978** 0.970

DDF 0.959 0.964 0.969 0.957

Note: best model for each group in bold, overall best model marked **

three models here. Between the two types of features, it
seems that DDF is slightly better or as good as EF for KNN
and SVM, but much worse than EF for LR. Between the two
LSTM models, LSTM with DDF works better than LSTM
with EF. For RTP-based models, the best Accuracy (0.971)
is from RTP SVM and RTP LR and both with EF, the
best Recall (0.973) is generated by RTP KNN and RTP LR
and both with EF, the best F1-measure (0.978) comes from
RTP LR with EF again, and the best AUC (0.978) is gener-
ated by RTP SVM with EF. So for RTP-based models, EF
generally works better than DDF. However, for RTP LR and
RTP SVM, the performance of the EF and DDF are very
close and competitive.

Finally, across the three categories, RTP-based models have
the highest score on every measure except that LSTM has
the highest Recall. While all the highest measurements come
from using EF, the performance of DDF is very close to
EF especially when using LSTM, RTP LR and RTP SVM.
More importantly, the performance of all the RTP-based
models are very high, above 95% on every measure.

[Observation Window = 1 ∼ 20 mins] Fig. 5 and Fig.
6 report Accuracy and AUC performance for all models us-
ing EF and DDF respectively. For each graph, we vary the
observation window from the first 1 minute up to the first
20 minutes. Both Fig. 5 and Fig. 6 show that RTP LR and
RTP SVM were the best models for both using EF and DDF
as they stay on the top across all sizes of the observation win-
dow. It is not surprising that for the three classic models
and LSTM, the longer the observation windows, the better
performance they achieve. This is because the training data
includes more and more information and closer to their fi-
nal state. For RTP KNN, both EF and DDF first decrease
dramatically from 1 to 5 minutes and then increase slightly
but still, the best performance comes from using only the
first one minute. For RTP LR and RTP SVM, their perfor-
mances are not only the best but also very steady. The fact
that the best prediction comes from using just the first one
minute of the sequences and using RTP-based models really
suggest that how students try to solve the problem, what
actions they take and in what order in that minute really
matters for determining their final success. However, this
is only observation from one programming task and more
research is needed for further investigation.
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(a) Accuracy performance

(b) Area under ROC performance

Figure 5: Student success early prediction on ex-
pert feature set

(a) Accuracy performance

(b) Area under ROC performance

Figure 6: Student success early prediction on
data-driven feature set

When comparing using EF and DDF, Fig. 5 and Fig. 6
shows that the general patterns of performance of differ-
ent machine learning models are very similar between using
EF and DDF with a few exceptions. In general, using EF
seems working better than using DDF and the exceptions
are: for RTP LR, and RTP SVM, the best two models, the
performance of using EF and using DDF are very close and
sometimes using DDF is even better than using EF.

6.2 Event-Level: Student Difficulty

Table 2: Student difficulty classification perfor-
mance for one-minute observation window

Model Feature Accuracy Recall F1 AUC
Majority Baseline EF/DDF 0.753 - - 0.5

Classic ML

KNN
EF 0.806 0.238 0.377 0.615

DDF 0.800 0.214 0.346 0.603

SVM
EF 0.806 0.214 0.353 0.607

DDF 0.800 0.238 0.370 0.611

LR
EF 0.765 0.238 0.333 0.588

DDF 0.771 0.238 0.339 0.592

Deep Learning LSTM
EF 0.753 0.224 0.344 0.596

DDF 0.871 0.269 0.389 0.624

RTP

RTP KNN
EF 0.994** 1** 0.988** 0.996**

DDF 0.971 0.976 0.943 0.972

RTP SVM
EF 0.988 0.976 0.976 0.984

DDF 0.971 0.952 0.941 0.964

RTP LR
EF 0.994** 1** 0.988** 0.996**

DDF 0.988 1** 0.976 0.992

Note: best model for each group in bold, overall best model marked **

[Observation Window = 1 min] Table 2 shows the per-
formance of all models using the first-1-minute-training se-
quences to predict students’ difficulty in the next five min-

utes. As with Table 1, it is not very meaningful to present
the Recall and F1-measure of the simple Majority baseline
(row 1). For Classic ML models, KNN using EF generates
the highest scores on every measure but not much better
than the other two. In fact, all three models perform very
closely regardless of using EF or DDF, and they all per-
formed pretty poorly in that their performances on recall, F1
and AUC are all below 62%. Again for this task, the LSTM
models outperform the classic models but not by much. Al-
though LSTM with DDF works better than EF, the resulted
models are still not very effective. Finally, for RTP-based
models, RTP KNN and RTP LR reach the highest scores
on every measure. Both of them have the best Accuracy
(0.994), the best Recall (1), the best F1-measure (0.988),
and the best AUC (0.996). RTP SVM can make compara-
ble predictions with over 97% on every measure.

In general, the best model among all the seven models uses
RTP, which has the highest score on every measure. Com-
paring the models on different feature sets, we can find that
the models with DDF are able to generate very similar re-
sults as those with EF. And sometimes, models with DDF
had better performance on the first 1 minute, such as LR
and LSTM.

[Observation Window = 1 ∼ 20 mins] Fig. 7 and Fig. 8
show the results from EF and DDF respectively. We mainly
reported the performance of Accuracy and AUC on the ob-
servation sets {1m, 5m, 10m, 15m, 20m}. Note that different
from trajectory-level early prediction, our majority baseline
for event-level early prediction on student difficulty is chang-
ing moment by moment and for an observation window n,
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(a) Accuracy performance

(b) Area under ROC performance

Figure 7: Student difficulty early prediction on
expert feature set

(a) Accuracy performance

(b) Area under ROC performance

Figure 8: Student difficulty early prediction for
data-driven feature set

all the students whose trajectories are shorter than n are
excluded from the evaluation. So we have different baseline
majority accuracy for different observation window (shown
in black bar). For AUC, majority vote would give us a base-
line of 0.5. Both Fig. 7 and Fig. 8 show that RTP LR is the
best one among all the models no matter which feature sets
were used, with the highest scores on both Accuracy and
AUC for all observation windows. Additionally, when com-
paring RTP LR with EF and RTP LR with DDF, we can
see that RTP LR with DDF generally perform much bet-
ter than RTP LR with EF. By comparing the results from
Fig. 7 and Fig. 8, RTP LR and RTP SVM really benefit
from using DDF instead of EF in that while RTP LR and
RTP SVM with DDF perform very closely with RTP LR
and RTP SVM with EF when the observation window =
1m, the RTP LR and RTP SVM with DDF performed much
better and more stable than RTP LR and RTP SVM with
EF on all the following observation windows and the dif-
ference are large. For the rest of machine learning mod-
els, the difference between using DDF and using EF is not
noticeable. Finally, note that Fig. 7 shows when the ob-
servation window = 5m, the best performance using EF is
65% accuracy and < 70% of AUC achieved through RTP LR
(x − axis = 5m); however, when we use the same observa-
tion window, RTP LR with DDF can achieve the accuracy
close to 95% and AUC above 90% (shown in Fig. 8). So
overall, for the task of event level early prediction for stu-
dent difficulty, RTP LR with DDF consistently achieve the
best performance and its performance is pretty steady across
different observation windows.

6.3 Knowledge Discovery
One substantial advantage of pattern-based classification over
deep learning models is the interpretability of the discovered

patterns. In RTP, the patterns need to be representative of
the original time series data while predictive of the future
outcomes. In this study, most of the patterns extracted us-
ing RTP mining are in accordance with the student classifi-
cation tasks and some of them reveal latent patterns towards
the progression of student success or difficulty. Table 3 and
4 present a number of interesting patterns and their corre-
sponding support among the training group from the first
20 minutes, where the support of pattern P is calculated as
the proportion of students in the dataset which contains P .

Table 3 shows some patterns related to student success.
P1 − P4 describe the frequent patterns found among unsuc-
cessful students, and most of them are related to the feature
MoveVariably. P1, P2 and P3 illustrate that students did not
complete feature CreateUseParameterCorrectly, RepeatCor-
rectNumberOfTimes, or MoveSquirally when feature Move-
Variably has been completed. In P1, students may start
to work on DrawAnything and MoveSquarelikeThing, which
is observable among 29.5% of unsuccessful students from
their sequences in the first 20 minutes. Different from P1,
students with pattern P2 and P3 were probably working on
CustomBlock before they finished feature MoveSquirally. P4

indicates that students had finished features MoveVariably
and MoveSquarelikeThing but failed at the end, which might
be the case that they had done some movements but did not
have pen down. And still, neither CreateUseParameterCor-
rectly nor RepeatCorrectNumberOfTimes was finished. P5−
P8 describes the frequent patterns found among successful
students, and most of them are related to the feature Repeat-
CorrectNumberOfTimes. For example, P5 shows that stu-
dents had finished feature CustomBlock, CreateUseParame-
terCorrectly and RepeatCorrectNumberOfTimes at some point,
and before that, within 20 minutes, they should be working
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Table 3: Recent temporal patterns for student success, with observation window = 20m
RTP If Then Support
P1 (CreateUseParameterCorrectly,0) c (((DrawAnything, 0) c (MoveSquarelikeThing,0)) b (MoveVariably,1)) Unsuccessful 0.295
P2 ((CustomBlock,0) b (MoveVariably,1)) c (CreateUseParameterCorrectly,0) c (RepeatCorrectNumberOfTimes,0) Unsuccessful 0.286
P3 ((CustomBlock,0) b (CreateUseParameterCorrectly,0)) c (RepeatCorrectNumberOfTimes,0) c (MoveSquirally,0) c (MoveVariably,1) Unsuccessful 0.233
P4 ((DrawAnything,0) b ((MoveSquarelikeThing,1) c (MoveVariably,1))) c (CreateUseParameterCorrectly,0) c (RepeatCorrectNumberOfTimes,0) Unsuccessful 0.205
P5 (CustomBlock,0) b (CustomBlock,1) c (CreateUseParameterCorrectly,1) c (RepeatCorrectNumberOfTimes,1) Successful 0.729
P6 (CustomBlock,0) c (MoveSquarelikeThing,0) b (MoveSquarelikeThing,1) c (RepeatCorrectNumberOfTimes,1) Successful 0.542
P7 (DrawAnything,0) b (CreateUseParameterCorrectly,0) b (CreateUseParameterCorrectly,1) c (MoveVariably,1) Successful 0.423

Table 4: Recent temporal patterns for student difficulty, with observation window = 20m

RTP If Then Support
P1 (((DrawAnything,0) c (MoveSquarelikeThing,0)) b (CustomBlock,1)) c (RepeatCorrectNumberOfTimes,0) c (MoveSquirally,0) Intervention 0.372
P2 (((CustomBlock,0) c (DrawAnything,0)) b ((CustomBlock,1) c (MoveVariably,1))) c (MoveSquirally,0) Intervention 0.302
P3 ((DrawAnything,0) c (MoveSquarelikeThing,0)) b ((CustomBlock,1) c(DrawAnything,1) ) c (MoveSquirally,0) Intervention 0.279
P4 ((MoveSquarelikeThing,0) b ((MoveSquarelikeThing,1) c (MoveSquirally,1))) c (RepeatCorrectNumberOfTimes,0) Non-intervention 0.461
P5 (((DrawAnything,0) c (MoveSquarelikeThing,0)) b (MoveSquirally,1)) c (RepeatCorrectNumberOfTimes,0) Non-intervention 0.422
P6 (DrawAnything,0) c (MoveSquarelikeThing,0) c (CreateUseParameterCorrectly,0) c (RepeatCorrectNumberOfTimes,0) c (CustomBlock,1) Non-intervention 0.320

on CustomBlock. Actually, for the students in successfully
group, they should be able to finish all the features in one
hour. Glancing over the extracted patterns among the suc-
cessful group, we can see that most of the students ended up
completing at least two important features, like patterns P6

and P7 in the Table 3, in the first 20 minutes. It is impor-
tant to note that these patterns are only discovered among
the successful group.

Table 4 shows some patterns related to student difficulty.
P1 − P3 describe the frequent patterns found among the
intervention group, and most of them are related to the
feature CustomBlock. P1 describes a pattern that discov-
ered among 37.2% of students who need intervention in the
next five minutes. In this case, students had not completed
the DrawAnything or MoveSquarelikeThing features at first,
but, within 20 minutes, they completed the CustomBlock
feature. And at the same time, they did not complete fea-
ture RepeatCorrectNumberOfTimes or MoveSquirally. P2

and P3 are quite similar, they indicate that students fin-
ished CustomBlock along with DrawAnything or MoveVari-
ably when the feature MoveSquirally had not been finished.
P4 to P6 describe the frequent patterns found among stu-
dents who do not need intervention, and most of them are
related to the feature MoveSquirally. P4 − P5 show that
students successfully completed feature MoveSquirally and
before that, they may work on MoveSquarelikeThing. As
in P1, they have ‘0’ on the feature RepeatCorrectNumberOf-
Times. Comparing P1 with P5, we can find that instead of
having incomplete DrawAnything and MoveSquarelikeThing
before completing CustomBlock, students who have incom-
plete DrawAnything, incomplete MoveSquarelikeThing, and
complete CustomBlock at the same time will not need inter-
vention in the next five minutes. Again, these patterns are
uniquely inferred among the non-intervention group.

7. CONCLUSIONS
Early prediction of trajectory-level student success and the
event-level difficulty during long-term activities are chal-
lenging tasks due to the open-ended nature of programming
tasks. In this study, we explored the EF identified by domain
experts, as well as DDF identified automatically, to build a
model that is able to predict student success/difficulty with

high accuracy, and to provide valuable insights for educators.
We employed an RTP-based classification framework and
compared it with various baselines including classic and deep
learning models, in two different tasks including trajectory-
level early diagnosis and event-level early prediction. Our
results suggest that the RTP-based models consistently out-
perform the non-temporal classic baselines as well as LSTM
in both tasks, at all observation windows from first 1 minute
to 20 minutes. Moreover, with only the first-1-minute se-
quences, RTP-based models can make strong predictions on
both tasks. Additionally, by applying the data-driven fea-
tures, RTP-based models are able to achieve comparable
performance on the task of predicting student success. For
the task of predicting event-level student difficulty, data-
driven features can even improve their predictions further.

As future work, we plan to apply progressive features with
multiple values (eg. not started, in progress, complete) to
discover more definitive patterns and obtain more advanta-
geous knowledge discovery as well as improved prediction
performance. And we are planning to employ different fea-
ture transformations other than binary, such as vertical sup-
port (i.e. the number of times a pattern occurred in a se-
quence) or recency measure (i.e. how distant a pattern oc-
curred from the prediction time). Also, this work will be
applied to larger groups of students and longer program-
ming tasks, along with integration of more informative fea-
tures such as intervention and demographic features to de-
velop more robust models. Additionally, we plan to expand
our evaluations to longer programs with more complex con-
structs from both text-based and block-based programming
languages.
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ABSTRACT
Sequencing items in adaptive learning systems typically re-
lies on a large pool of interactive question items that are
analyzed into a hierarchy of skills, also known as Knowledge
Components (KCs). Educational data mining techniques
can be used to analyze students response data in order to
optimize the mapping of items to KCs, with similarity-based
clustering as one of the two main approaches for this type of
analysis. However, current similarity-based methods make
the implicit assumption that students’ performance on items
that belong to the same KC should be similar. This assump-
tion holds if the latent trait (mastery of the underlying skill)
is relatively fixed during students’ activity, as in the con-
text of testing, which is the primary context in which these
methods were developed and applied. However, in adaptive
learning systems that aim for learning, and address subject
matters such as K-6 Math that consist of multiple sub-skills,
this assumption does not hold. In this paper we propose a
new item-similarity measure, termed Kappa Learning (KL),
which aims to address this gap. KL identifies similarity be-
tween items under the assumption of learning, namely, that
learners’ mastery of the underlying skills changes as they
progress through the items. We evaluate KL on data from
a K-6 Math Intelligent Tutoring System, with experts’ tag-
ging as ground truth, and on simulated data. Our results
show that clustering that is based on KL outperforms clus-
tering that is based on commonly used similarity measures
(Cohen’s Kappa, Yule, and Pearson), and that KL is also
superior in the task of discovering the number of KCs.

Keywords
Intelligent Tutoring Systems, Adaptive Learning, Clustering
Educational Items, Similarity Measurement

1. INTRODUCTION
Mastery learning [4] is based on the assumption that the
domain knowledge can be analyzed into a hierarchy of com-
ponent skills, with prerequisites between them [9, 10]. This

structure can be used to sequence learning in an Intelligent
Tutoring System (ITS) so that students master prerequisite
skills before moving to skills that depend upon them [10].
Cognitive model is a formal representation of this structure
that is encoded into the ITS. It is typically generated in a
process that relies on domain experts, learning scientists,
and programmers [6].

A significant part of this process is the mapping of question
items into the skills that underlie them (skills are also re-
ferred to as Knowledge Components, abbreviated KCs1; in
this paper we use the two terms interchangeably). Q-matrix
is a standard representation used in Psychometrics to spec-
ify the relationships between individual test items and tar-
get skills [28]. Generating item-to-skill mapping requires a
significant human-labor and expertise [13]. In addition, ev-
idence shows that experts’ mapping of items into skills can
be significantly inconsistent with students’ learning process
[20]. Thus, methods that identify the skills underlying each
item, or assist human experts in doing so, can optimize the
process by increasing its accuracy and reducing human labor
[14, 19].

Constructing Q-Matrix from response data is an active re-
search topic. Barnes [3] “mined” students’ data to create
concept models that can be used to direct learning paths.
Examples within the Psychometrics literature include [11,
21, 28]. A Matrix Factorization-based method for Q-matrix
construction was proposed in [12], and was later used for
enhancing expert-based Q-Matrices [14]. Learning Factor
Analysis (LFA) [6] is a combinatorial search algorithm for
optimizing the cognitive model while controlling for model
complexity. In [22] it was demonstrated that using LFA to
refine the human-generated cognitive model of an ITS im-
proves learning gains. Performance Factor Analysis (PFA)
[24] reconfigured LFA to enable predictions for individual
students with individual skills (LFA assumes all students
accumulate learning at the same rate), and also addresses
the multiple KCs problem (standard Knowledge Tracing [10]
assumes that each item requires one KC; examples of exten-
sions that address multiple skills include [15, 32]). A differ-
ent approach for ‘human-in-the-loop’ Student Model Discov-
ery (finding the item-to-skill assignment that best describes
students’ behavior) was proposed in [27].

In general, there are two approaches for mapping items into

1in the Psychometrics literature, skills are also referred to
as latent factors or constructs
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skills: Model-based, and Similarity-based [26]. Model-based
methods reduce the dimensionality of the problem and try
to infer the latent factors (=skills or KCs) that underlie the
items. The methods mentioned above fall into this category.
Similarity-based methods are based on the assumption that
students will tend to have similar performance on items that
require the same skill, thus seek to identify the similarity
between pairs of items. Examples of methods that are based
on item-similarity measures include [2, 26]. The method
that we propose in this paper falls into this category as well.

The first phase of item similarity-based methods consists of
computing a similarity measure for each pair of items. This
measure can be then used to cluster items, which is natu-
rally interpreted as associating the items of a cluster with
a single KC. In [26], different measures of item similarity
(Pearson, Cohen’s Kappa, Yule, Jaccard, and Sokal) were
evaluated on real and simulated data. A different method
for identifying the similarity between pairs of items, which
is based on Fisher‘s Exact Test of independence, was pro-
posed in [2] and was applied to data from an Introductory
Physics MOOC. In addition to correct/incorrect informa-
tion, ‘item-similarity’ can be based also on other behavioral
characteristics, such as response-times [5, 26].

The item-similarity methods used in educational data min-
ing for clustering items make the implicit assumption that
the latent trait (mastery of the specific skill) is fixed dur-
ing the learning activity that generated the responses (so
students’ responses to items that belong to the same KC
should be highly correlated). This assumption may be rea-
sonable in the context of testing (summative assessment),
which is expected to occur after the learning process. (In
[26], the authors explicitly refer to this shortcoming of the
item-similarity measures and mention that by using these
methods “we mostly ignore the issue of learning”, p. 17.)
However, this assumption does not hold in the context of
learning. In such cases, the correlation between the items
might not be a good indication of their similarity (e.g., stu-
dents will tend to fail on the first items of each KC, and
succeed on later ones).

The goal of this research is to address this gap by provid-
ing a measure that can capture similarity in the context of
learning. For that, we propose a new item-similarity mea-
sure termed Kappa Learning (KL). The main assumption
behind KL is that students’ performance on items belong-
ing to the same KC can be increasing, but not decreasing.
As we use dichotomous scoring (correct/incorrect on first
attempt), we expect that the performance of student s on
KC k would take the form of a ‘step’ function, which moves
from 0 to 1 when s masters k (guess or slip may occur, and
introduce noise). To quantify that, KL extends the notion
of ‘agreement’ in Cohen’s Kappa [8].

We first make the assumption that the items are admin-
istered to the students in the same order (defined by the
instructional designers), but we later explain how our for-
mula naturally generalizes to random or adaptive ordering.
We note that we do not assume that all items belonging
to the same KC will be presented to students one after the
other, or that all the students attempt all the items. On the
contrary, we assume that students can skip items, and that

items from different KCs may interleave (as in the data that
we analyze), which makes the clustering non-trivial. We
then compare a clustering that is based on KL to clustering
that is based on the similarity measures evaluated in [26],
and show that KL significantly outperforms them (Jaccard
and Sokal, which achieved the lowest results in [26], and also
on our data, are omitted from the analysis).

The rest of this paper is organized as follows. In Section 2,
we present Cohen’s Kappa and our new measure, Kappa
Learning. Section 3 describes the clustering method. The
details of the empirical setting and the data are provided in
Section 4. In Sections 5 and 6 we evaluate the performance
of Kappa Learning against standard similarity measures on
real and simulated data, respectively. Finally, in Section 7
we discuss the results and suggest directions for future re-
search.

2. COHEN’S KAPPA AND KAPPA LEARN-
ING

2.1 Cohen’s Kappa
Cohen’s Kappa (sometimes abbreviated as Kappa and de-
noted Sk) is a measure of inter-rater agreement for nominal
scales [8].

Sk =
Po − Pe

1− Pe
(1)

where:
Po is an observed level of agreement
Pe is an expected level of agreement

The observed level of agreement is the proportion of the
cases the raters agree upon. The expected level of agreement
is the proportion of agreement that is expected by chance.

We consider items as raters, learners as subjects to classify,
and learners’ responses as classification results. We interpret
learner’s correct/incorrect answer to an item (encoded as
1/0) as the rater’s (=item) attempt to identify if the learner
has mastered the KC underlying the item. Let us consider
a contingency table summarizing learners’ responses to two
different items: Q1 and Q2. Assume n learners answered
both items. The number of learners in each cell is defined
as follows (Table 1):

• a - number of learners answered both Q1 and Q2 cor-
rectly

• b - number of learners answered Q1 incorrectly and Q2

correctly

• c - number of learners answered Q1 correctly and Q2

incorrectly

• d - number of learners answered both Q1 and Q2 in-
correctly

• n - total number of learners (n = a+ b+ c+ d)

The number of cases the raters agree upon (the learner gave
the same answer to both items) is equivalent to a + d. In-
tuitively, if two different items belong to the same skill, and
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Table 1: A contingency table for Q1 and Q2.
Q1 correct Q1 incorrect

Q2 correct a b a + b
Q2 incorrect c d c + d

a + c b + d n

learner’s mastery of that skill is fixed during the learning
activity, the learner is expected to answer both items either
correctly or incorrectly, depending on whether the skill is
mastered or not. So, it follows that:

Po =
a+ d

n

The items are independent in the sense that each item inde-
pendently ‘rates’ if a learner belongs to a category of learners
knowing a particular KC. So we could compute the level of
agreement that is expected by chance as a sum of products
of marginal probabilities (Table 1).

Pe =
(a+ b)(a+ c) + (b+ d)(c+ d)

n2

By doing substitution of Po and Pe into Equation 1 and
some straightforward simplification we get:

Sk =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)

2.2 Kappa Learning: Adjusting Kappa to Ac-
commodate Learning

To accommodate for learning, we give a different interpreta-
tion to the notion of ‘agreement’ in Cohen’s Kappa formula,
taking into account possible improvement of learner’s skill,
or in other words, learning.

We make the following assumptions on the process:

1. The items are presented to the learners in a fixed or-
der2.

2. The items belong to k KCs (k>1); Each item belongs
to one KC; Items belonging to different KCs may in-
terleave (which makes the clustering non-trivial)

3. Learner’s success on items belonging to the same KC
behaves like a ‘step’ function: Before mastering the
skill of KC k, the student fails on items of k; once
mastering the skill underlying k, the student succeeds
on future items of k (guess and slip may occur; we
assume no ‘forgetting’).

For a pair of items Q1, Q2, where Q1 is presented to the
learners before Q2, we define the values in the contingency
table (Table 1) as follows:

• a - number of learners who got both items correct,
namely mastered the required skills before getting to
Q1. This is a case of agreement.

2We later explain how this assumption can be removed

• b - number of learners who got the first item incorrect
and the second item correct, namely, mastered the re-
quired skill after getting to Q1, but before getting to
Q2. This is a case of agreement, and is where
our measure differs from Cohen’s Kappa

• c - number of learners who got the first item correct
and the second item incorrect. This is the only case
interpreted as disagreement.

• d - number of learners answered both Q1 and Q2 in-
correctly. This is a case of agreement.

• n - total number of learners (n = a+ b+ c+ d)

Based on these, we define Po and Pe as follows:

Po =
a+ b+ d

n

Pe =
(a+ b)(b+ d) + (a+ b)(a+ c) + (b+ d)(c+ d)

n2

By doing substitution of Po and Pe into Equation 1 and
some straightforward simplification we get:

Skl =
(ad− bc)

(a+ c)(c+ d)
(2)

We call this measure Kappa Learning and denote it Skl. The
values of both Kappa and Kappa Learning range between
−1 and +1, where 0 means independence, and +1 means
perfect agreement. In Kappa it is achieved when both c and
b are equal to 0. In Kappa Learning, perfect agreement is
achieved when c equals 0.

3. METHOD
3.1 Similarity Measures
To evaluate the performance of Kappa Learning (denoted
Skl), we compare it to the following similarity measures:

• Sk: Cohen’s Kappa inter-rater agreement

• Sp: Pearson product-moment correlation coefficient

• Sy: Yule coefficient of association

Cohen’s Kappa (see also in Subsection 2.1) coefficient is de-
fined as:

Sk =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
(3)

Pearson product-moment coefficient is a measure of linear
correlation between two variables. When applied to dichoto-
mous data, the Pearson correlation coefficient returns the
phi (φ) coefficient. So, in terms of a, b, c and d (Table 1)
the value of Sp is computed as follows:

Sp =
(ad− bc)√

(a+ c)(a+ b)(b+ d)(c+ d)
(4)

Yule coefficient of association is a measure of colligation
between two binary variables and it is commonly used for
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analyzing scores in Item Response Theory (IRT). It is the
number of pairs in agreement (ad) minus the number in dis-
agreement (cb) over the total number of paired observations
and it is defined as:

Sy =
(ad− bc)
(ad+ bc)

(5)

All three measures range from minus unity to unity, where 1
indicates perfect agreement, −1 indicates perfect disagree-
ment and 0 indicates no relationship [30]. A thorough eval-
uation of these measures as means for clustering items in
an interactive learning environment was done by Řihák and
Pelánek [26] (they analyzed the most appropriate measures
among the 76 measures analyzed in [7]).

We follow a similar methodology to the one proposed in
[26], described below, and demonstrate that Kappa Learning
outperforms the other measures.

3.2 Process
Our process has two main steps: 1) Cluster the items based
on the four similarity measures (Kappa Learning, and the
three reference measures). 2) Compare the goodness-of-fit
of the clusterings computed in step 1.

Step 1. Computing the clustering includes the following
sub-steps (per similarity measure):

1. From students’ performance data, we compute user-
based item similarity matrix, denoted M1. M1[i, j]
contains the result of the relevant similarity measure
for items qi and qj .

2. Compute item-based distance matrix from the user-
based similarity matrix M1. The rationale is that for
a pair (qi, qj), if qi and qj are similar (i.e., belong to
the same KC), they should have a similar distance to
a third item qk (whether it is in the same KC or not).
This incorporates more information into the similarity
between the items, which should improve the accuracy
of the clustering [26]. We denote the item-based dis-
tance matrix with M2. Two standard metrics are used
for computing M2: Pearson and Euclidean.

3. Two clustering algorithms are applied onM2: K-Means
and Ward’s Hierarchical [17]. The number of clusters
is derived from the hierarchal Knowledge Tree defined
by content experts (see Subsection 4.2).

Step 2. Per clustering, we use Adjusted Rand Index (ARI)
[16, 25] to measure the goodness-of-fit against ground truth –
experts’ mapping of the items into Knowledge Components.

ARI is a common measure for comparing the similarity be-
tween two clusterings. In ARI, a similarity is interpreted as
the number of pairs of items on which the clusterings ‘agree’,
adjusted for the amount of agreement ‘by chance’.

To be concrete, assume C is a dataset which contains m
items, with two clusterings of C into k clusters, denoted C1

and C2. For a pair of items (i1, i2), C1 and C2 ‘agree’ on

(i1, i2) iff i1 and i2 are either assigned to the same cluster,
or to different clusters, in both C1 and C2.

To evaluate the level of agreement between C1 and C2, we
define a contingency table with the values a, b, c, and d, as
follows:

• a - number of pairs (i1, i2) where i1 and i2 are assigned
to the same cluster in C1 and in C2. This is a case of
agreement.

• b - number of pairs (i1, i2) where i1 and i2 are assigned
to the same cluster in C1 and to different clusters in
C2. This is a case of disagreement.

• c - number of pairs (i1, i2) where i1 and i2 are assigned
to different clusters in C1 and to the same cluster in
C2. This is a case of disagreement.

• d - number of pairs (i1, i2) where i1 and i2 are assigned
to different cluster in C1 and in C2. This is a case of
agreement.

• n - total number of pairs (n = a+ b+ c+d = m(m−1)
2

)

Using this definition of a, b, c, and d, we can construct
a contingency table similar to Table 1 for pairs of items,
and compute Cohen’s Kappa based on this table, which is
equivalent to Adjusted Rand Index [31].

4. EMPIRICAL SETTINGS
4.1 The Learning Environment
We use data from an ITS that teaches Fractions for 4th

grade. The students progress through the ITS on their own
pace, in a linear order defined by the content experts. The
subject matter knowledge that the ITS covers is modeled
by a Knowledge Graph, which is described in Subsection 4.2
(since it is hierarchical, hereafter we use the term Knowledge
Tree).

The content of the ITS includes 550 items, instructional ma-
terials such as videos, and on-line labs that students can use
to explore the various concepts. These are arranged in 112
learning units. Each of the learning units contains a collec-
tion of items and learning materials and is designed to take
approximately 5− 15 minutes.

The course is divided into two parts. Part A contains 57
learning units which include 337 items, and Part B contains
55 learning units which include 213 items. Concepts are
first introduced and explained and are later re-visited. This
means that items which require a certain skill can appear in
different locations.

4.2 Knowledge Tree and Content Mapping
The course was designed according to a Knowledge Tree
(KT) that models the hierarchy of skills that students should
master (under the root topic “Fractions for 4th grade”). The
KT was developed by the content experts who built the
course. The first level, termed ‘subject’, includes 8 top-
ics. Some of these topics have a second level, termed ‘sub-
subject’. On this level of the tree (sub-subject + subjects
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that do not have second level) there are 19 topics. The di-
vision of the first two levels is curricular (e.g., ‘adding frac-
tions’ as the first level, with ‘adding fractions with a common
denominator’ and ‘adding fractions with a different denom-
inator’ as its children).

In addition to these two levels, there is a third level, termed
‘goals’, which is orthogonal to the classification into subjects
and sub-subjects, and refers to the cognitive type of the task
(inspired by Bloom’s Taxonomy [1]). Since the ‘goal’ level
is orthogonal to the division into subjects/sub-subjects (see
Figure 1), it can be interpreted as refining the categories
under ‘subject’ (hereafter denoted first level + goals), or as
refining the ‘sub-subject’ (hereafter denoted second level +
goals).

8 Subjects

19 Sub-subjects

5 Cognitive goals Fractions
for4-th
gradeKnowledge

Comprehension

Application

Analysis

Synthesis

Addingand
subtracting

fractions
Comparing

fractions
Mixed

numbers

Adding
fractions

withacom-
monde-nominator

Subtracting
fractions

withacom-
monde-nominator

Adding
fractions
withadif-
ferentde-nominator

Subtracting
fractions
withadif-
ferentde-nominator

Mixednum-
berswitha
differentde-nominator

Mixednum-
berswitha

commonde-nominator
Comparing

fractions

· · ·

· · ·

×

Figure 1: Content expert’s Knowledge tree for
the topic “Fractions for 4th grade”. The re-
fining of subjects/sub-subjects into ’first level +
goal’/’second level + goal’ is computed as a Carte-
sian product of goals layer with subjects/sub-
subjects layers correspondingly.

The experts tagged each item with the ‘subject’, ‘sub-subject’,
and ‘goal’ it belongs to. In most cases, each item is mapped
into one category on each level. In the few cases were an
item was mapped into more than one category, we assume
that each unique combination of subjects/sub-subjects is ac-
tually a new knowledge component (similar to the rationale
of [15]). For example, if item i is marked as belonging to
subjects 1 and 2, we create a new artificial subject for this
combination of subjects. We removed from the data arti-
ficial combinations containing only one item, and the few
items (< 5) that belong to these combinations.

4.3 Knowledge Components
We interpret Knowledge Component (KC) as a group of
items that deal with the same concept (i.e., require the same
skill) 3. We examine classifications of items into Knowledge
Components that are based on different levels of granular-
ity with respect to the Knowledge Tree. For example, ‘first
level’ is a classification that is based only on the first split
of the tree (‘subject’). Table 2 presents the number of KCs
defined by each level of the KT.

4.4 Data
The data include the responses of 594 4th grade students,
who used the ITS for a few hours a week during regular
class hours, for a period of 2 months. (We remove the data

3We use the term KC in two ways – as skill, and as a set of
items that require a certain skill

Table 2: Number of Knowledge Components by the
level of Knowledge Tree.

Level of Number of
Knowledge Tree Knowledge Components

First 14
First with Goals 42

Second 32
Second with Goals 62

of students who attempted less than 50 items, and the few
who had less than 25% success on first attempt, as we as-
sume they were mainly ‘gaming the system’). On average,
students spent about 12 hours in the ITS.

Students’ performance is operationalized as correct on first
attempt. From the log files, we build a 0/1 student × item
response matrix, denoted RM . RM [i, j]==1 iff students i
solved item j correctly on first attempt.

5. RESULTS ON REAL DATA
5.1 Computing the Similarity Matrix
We compute the similarity matrix for each of the four mea-
sures, as described in Section 3. This yields four similarity
matrices.

To cluster the items based on these matrices, we use three
clustering algorithms:

• Ward’s Hierarchical clustering using Pearson correla-
tion Distance

• Ward’s Hierarchical clustering using Euclidean Dis-
tance

• K-means clustering using Euclidean Distance

As noted before, the number of clusters is defined according
to the number of Knowledge Components of the Knowledge
Tree (Table 2). Goodness-of-fit of clustering is evaluated by
measuring its similarity to the ground truth labeling, using
Adjusted Rand Index (ARI).

5.2 Results of Hierarchical Clustering
Table 3 demonstrates the results of the Hierarchical Cluster-
ing on the entire course, based on the four similarity mea-
sures, using Pearson Distance (which outperforms Euclidean
Distance in all combinations; thus we omit the results for Eu-
clidean Distance). As can be seen, clustering that is based
on Kappa Learning outperforms the other measures in all
the combinations.

5.3 Results of K-Means Clustering
In addition to the comparison that is based on Hierarchical
Clustering, we make a comparison that is based on K-Means
Clustering. Since K-Means is non-deterministic (depends
on random assignment of initial cluster centers), we run the
algorithm 100 times for each combination, each time com-
puting the Adjusted Rand Index against ground truth. The
distribution of the Adjusted Rand Index for each combina-
tion are presented in Figures 2 and 3. As can be seen, Kappa
Learning outperforms the other similarity measures.
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Table 3: Adjusted Rand Index for different simi-
larity measures, using Hierarchical Clustering and
Pearson Distance, for number of KCs that is based
on different levels of the Knowledge Tree.

First Second
with with

First Goals Second Goals
Kappa

Learning 0.26 0.21 0.26 0.36
Kappa 0.16 0.17 0.18 0.27
Yule 0.15 0.19 0.21 0.29

Pearson 0.16 0.18 0.21 0.30

● ●
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KL

0.10 0.15 0.20 0.25 0.30

Adjusted Rand Index Value

Similarity
Measure

Kappa 
Learning
Pearson

Kappa

Yule

Figure 2: Results of K-means clustering for the en-
tire course and number of KCs as defined by the
second level of the Knowledge Tree. The vertical
dashed line goes through the mean of the distribu-
tion of the ARI results for Kappa Learning.
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Figure 3: Results of K-means clustering for the en-
tire course and number of KCs as defined by the
second level of the Knowledge Tree + Goals. The
vertical dashed line goes through the mean of the
distribution of the ARI results for Kappa Learning.

5.4 Finding optimal number of clusters
While the clustering algorithms described above take the
number of clusters as input, in many real-life scenarios it is
unknown in advance and needs to be discovered from the
data. Finding an optimal number of clusters is a fundamen-

tal problem in clustering analysis that is typically ill-posed
[16], as there is no rigorous definition of a cluster, and the
practical considerations are domain and application-specific.
For example, in our model, we consider number of clusters
that is based on different resolution of experts’ hierarchical
Knowledge Graph (Subsection 4.2).

The ‘goodness’ of the resulting clustering is usually mea-
sured by cluster cohesion and cluster separation. One of
the measures for cluster cohesion or compactness is Within
Cluster Sum of Squares (WSS), Wk. For any clustering of
a set S into k clusters S = {S1, S2, . . . , Sk}, WSS is defined
as

Wk =

k∑
i=1

1

2|Si|
∑

x,y∈Si

[dist(x, y)]2 (6)

where dist(x, y) is a measure for distance between two items
of a set.

In our case the value of Wk depends on the method used for
evaluating the item’s similarity matrix based on student’s
performance matrix, the method for measuring the distance
between items of similarity matrix and the clustering algo-
rithm used. Within Clusters Sum of Squares is commonly
used to find an optimal number of clusters using the ‘elbow’
heuristic, however, in our case, there is no clear ‘elbow’ in the
graph. Another common method for estimating an optimal
number of clusters using WSS measure is the Gap statistic
method.

5.4.1 Gap Statistic
The main idea of Gap statistic is comparing the goodness of
clustering applied to a specific dataset with the goodness of
clustering obtained when applied on a uniformly distributed
data with no clustering structure at all (so-called 1-cluster
data) [29]. The GAPk measure used in Gap statistic is the
difference between an expected value of log(Wk) computed
for clustering of 1-cluster random data into k clusters and
log(Wk) value obtained from clustering of input dataset into
the same number of clusters k. The random data is gener-
ated from a uniform distribution over the same range as the
input dataset. The Gap statistic method receives K.max –
the maximal number of clusters to consider, a clustering al-
gorithm, a distance measure, and an input dataset. For each
k from 1 to K.max, it computes GAPk value and searches
for the value of k that maximizes the Gap value.

For the four similarity matrices obtained (Section 3) we
compute Gap statistic using Ward’s Hierarchical Cluster-
ing, Pearson distance and K.max = 70. Then we apply two
different methods for computing the optimal number of clus-
ters: First SE Max (first local maximum of Gap value within
one standard error) and First Max (first local maximum of
Gap value) [29].

Running Gap statistic on Kappa Learning dataset produces
19 as an optimal number of clusters (see Figure 4), which
is similar to the number of Knowledge Components at the
Second level of the Knowledge Tree (see Figure 1; the second
level of the Knowledge Tree is denoted ‘sub-subjects’).

The optimal number of clusters based on Yule similarity
measure is 14 (with First SE Max) or 15 (with First Max),
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Figure 4: The values of GAP statistic for k in a range
from 1 to 25 computed based on Kappa Learning
similarity matrix. The vertical dashed line indicates
the optimal number of clusters as predicted by both
firstMax and firstSEMax methods.

which is also quite close to the ground truth. For the two
other methods (Cohen’s Kappa, Pearson), Gap statistic does
not produce meaningful results (Table 4).

Table 4: Optimal number of clusters by GAP statis-
tic.

First Max First SE Max
Method Method

Kappa Learning 19 19
Kappa 1 1
Yule 15 14

Pearson 1 1

6. SIMULATION STUDY
In addition to evaluating our method on data from a real
learning environment (Subsection 4.1), we conduct a simu-
lation study.

6.1 Data Generation
Our simulation model makes the following assumptions:

1. Each item belongs to one of K knowledge components
(KCs); the items are uniformly distributed among these
KCs. Each KC has an individual difficulty level (drawn
from a probability distribution defined below).

2. The order of appearance of KCs is predefined. We as-
sume that the topic is first presented and explained to
the learners, so the majority (≈ 60%, chosen empiri-
cally based on the data) of the items that belong to
it appear one after the other. The rest of the items

that belong to the KC are presented to the learner on
a later stage and interleaved between items from other
KCs.

3. Students learn as they interact with the items; Learn-
ers have individual learning rate (drawn from a prob-
ability distribution defined below).

6.1.1 Hidden Markov Model and Bayesian Knowl-
edge Tracing

Bayesian Knowledge Tracing (BKT) [10] is a popular ap-
proach to model skill acquisition in ITSs. It models a stu-
dent knowledge as a latent binary variable of a Hidden Markov
Model. Learning is modeled as a transition from ‘not mas-
tered’ to ‘mastered’ state. The standard BKT model uses
the same four parameters for all the students and items.
Several studies extended the basic BKT model with indi-
vidualized parameters for student ability and item difficulty
(e.g., [18, 23, 33]). We use the model introduced in [33] as
the underlying model for the data generation process.

6.1.2 Individualized Bayesian Knowledge Tracing
We apply Individualized BKT approach with parameter split-
ting [33] to model a learning process. Namely, we construct
individual HMM per student and KC. All items of the same
KC are assumed to have the same difficulty. The model as-
sumes students learn as they practice more. On each oppor-
tunity to solve an item that belongs to a knowledge com-
ponent, the probability that the student masters the skill
underlying the item’s KC increases.

Let us define:

• L - number of learners

• K - number of Knowledge Components

• N - total number items (questions)

For each KC k and each student l we generate the following
parameters:

• P (L0) - the probability that a student initially knows
a particular KC. In this model we assume the students
have no initial knowledge.

• P (T )kl - the probability of learning for student l and
skill k.

• P (S) - the probability of slip, meaning making an in-
correct attempt when applying a known skill. We as-
sume P (S) = 0.1 (not individualized; determined by
an educational expert).

• P (G) - the probability of random guess, meaning mak-
ing a correct attempt when applying an unknown skill.
We assume P (G) = 0.2 (not individualized; deter-
mined by an educational expert).

As proposed in [33], the value of the parameters P (T )kl is
combined from two components: a per-skill component and
a per-student component. So, we generate for each skill and
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each student a pair of parameters (P (T )l, P (T )k). Each
of the above parameters is generated from a uniform dis-
tribution U(0, 1). Then for each student l and KC k the
parameters are combined as follows:

P (T )kl = σ(l(P (T )l) + l(P (T )k)) (7)

where:

σ(x) = 1/(1 + exp−x) (8)

and

l(x) = log (x/1− x) (9)

Where σ(x) and l(x) are the sigmoid and logit functions,
respectively.

The performance matrix for each student and knowledge
concept is generated using R’s HMM package, and the data
is combined into a L×N student’s performance matrix. For
all Knowledge Components containing more than 6 items,
the first 6 items are placed one after another, modeling the
introduction of the concept to the learners. The rest of the
items are shuffled randomly between future KCs.

6.1.3 Model Parameters
In the experiment reported below the basic setting is 1000
learners, 20 Knowledge Components, 200 items. The param-
eters are chosen in a way that approximates the multivari-
ate distribution of the real data with respect to the average
number of items per Knowledge Component and the mean
performance of students, as illustrated in Table 5.

Table 5: Comparison of simulation model to empir-
ical data.

Average Average
number of performance

Questions per KC of Students
Empirical data ≈9 67%

Simulation model 10 64%

To evaluate the clustering that is based on each of the four
measures, we follow the same process as described in Sec-
tion 3. Since the results depend on the simulated data, we
repeat the process 700 times, each time starting with gener-
ating a new performance matrix.

6.2 Results on Simulated Data
The results are presented in Table 6 (right column) and Fig-
ure 5. As can be seen, Kappa Learning outperforms all other
measures in its ability to reproduce the original clusters. Ta-
ble 6 also presents the results of each measure on the real
data (left column), for reference.

To verify the statistical significance of the results, we con-
duct a t-test for the results of Kappa Learning vs. the three
other measures (Yule, Cohen’s Kappa, and Pearson). For
all combinations, the p-value is less than 0.01.

7. DISCUSSION
The results show that Kappa Learning - the new similar-
ity measure that we propose, which is based on adjusting

Table 6: Comparison of Adjusted Rand Index values
for different similarity measures.

Real data, Simulation Model
Second level (averaged
with Goals over 700 runs)

Kappa Learning 0.36 0.40
Kappa 0.27 0.35
Yule 0.29 0.31

Pearson 0.30 0.37
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Figure 5: Distribution of Adjusted Rand Index val-
ues for different similarity measures (KL - Kappa
Learning, K - Kappa, Y - Yule, P - Pearson). The
vertical dashed line goes through the mean of the
distribution of ARI values for Kappa Learning.

Cohen’s Kappa to ‘learning’, can improve the clustering of
educational items into Knowledge Components, compared
to the state-of-the-art (the measures that are reported in
[26] as producing the best results). We ascribe this to the
fact that Kappa Learning explicitly models similarity un-
der the assumption that students’ skill can grow during the
activity (= learning), while the conventional measures are
based on the assumption that students’ skill is fixed.

On real data, with different combinations for the number of
clusters (Table 2), the improvement with Hierarchical Clus-
tering was in the range of 10− 60% (Table 3), comparing to
the conventional measures (Kappa, Yule, and Pearson). On
simulated data that follow the ‘mastery’ assumption, and al-
low items of different Knowledge Components to interleave
(which makes the task more difficult; if all the items of a
certain KC are presented together, the clustering is almost
trivial), the improvement with Hierarchical Clustering was
in the range of 10− 20% (Table 6).

In real-life scenarios, the number of clusters, which the clus-
tering algorithms that we use take as input, is typically un-
known, and it is necessary to extract it from the data. On
the task of finding an optimal number of clusters, Gap statis-
tic on clustering that is based on Kappa Learning yielded
a number of clusters (19) that is similar to the number of
clusters in the ground truth (according to the second level of
the Knowledge Graph. See Table 2). Among the other mea-
sures, Gap statistic on Yule-based clustering also produced
results that are reasonably close to the ground truth. For
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Kappa and Pearson, Gap statistic did not yield meaningful
results.

Overall, Kappa Learning was superior with respect to all
the combinations that were evaluated: Various interpreta-
tions of the ground truth (deciding on the KCs according to
different levels of Knowledge Graph); clustering algorithm
– K-Means and Hierarchical Clustering; real and simulated
data; and in reproducing the number of clusters with Gap
statistic. Thus, we conclude that in the context of learning
in structured domains (such as K-6 Math), Kappa Learning
provides a significant improvement to the task of clustering
that is based on item similarity, compared to conventional
item-similarity measures.

7.1 Generalizing to Random Order of Items
In Subsection 2.2, the definition of Kappa Learning was
based on the assumption that the items are presented to
the learners in a fixed order. We now explain how this as-
sumption can be removed. Let us assume that the items
administered to the learners in a random order, meaning
that different learners may see the items in a different or-
der. In this case, for each learner and for each pair of items
we construct the contingency table (similar to Table 1) by
computing the values of a, b, c, d as follows:

• a - number of learners who got both items correct

• b - number of learners who got the first item presented
to them (among Q1 and Q2) correct, and the second
incorrect

• c - number of learners who got the first item presented
to them (among Q1 and Q2) incorrect, and the second
correct

• d - number of learners who got both items incorrect

7.2 Future Work
This work provides a few directions for future research. On
the next step, we intend to work with the developers of the
ITS on using the results of Kappa Learning to refine and op-
timize the pedagogic design of the ITS (cognitive modeling,
but also questions such as which KCs require more content,
are too difficult, too easy, etc.).

Algorithmic directions include studying additional ways to
insert the notion of ‘learning’ into existing item-to-skill de-
tection methods, and additional sources of information such
as domain experts or analysis of the body of the items (text,
images, mathematical symbols, etc.).

In terms of use cases, it would be interesting to evaluate
Kappa Learning on data from a variety of learning environ-
ments (e.g., MOOCs) and subject matters, and in particu-
lar, on domains in which knowledge is less structured (e.g.,
reading comprehension).

7.3 Summary and Conclusions
This paper presents a new method for measuring the sim-
ilarity between educational items, termed Kappa Learning.
The novelty of this method, compared to previous measures
of similarity between educational items, lies in the fact that

it explicitly captures the notion of ‘learning’, namely, change
of the latent trait (student’s mastery of the concept). This is
done by extending the notion of ‘agreement’ within Cohen’s
Kappa basic formula.

Our results show that clustering that is based on Kappa
Learning outperforms clustering that is based on conven-
tional methods (Cohen’s Kappa, Yule, Pearson), on real
data from K-6 Math ITS that teaches multiple concepts,
and on generated data that simulates learning of multiple,
interleaved concepts. Thus, we believe that Kappa Learning
is more suitable than existing measures for computing simi-
larity between items in the context of learning in structured
domains.
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ABSTRACT
Knowledge components (KCs) define the underlying skill
model of intelligent educational software, and they are crit-
ical to understanding and improving the efficacy of learning
technology. In this research, we show how learning curve
analysis is used to fit a KC model - one that was created
after use of the learning technology - which can then be
improved by human-centered data science methods. We an-
alyzed data from 417 middle-school students who used a
digital learning game to learn decimal numbers and decimal
operations. Our initial results showed that problem types
(e.g., ordering decimals, adding decimals) capture students’
performance better than underlying decimal misconceptions
(e.g., longer decimals are larger). Through a process of KC
model refinement and domain knowledge interpretation, we
were able to identify the difficulties that students faced in
learning decimals. Based on this result, we present an in-
structional redesign proposal for our digital learning game
and outline a framework for post-hoc KC modeling in a tu-
toring system. More generally, the method we used in this
work can help guide changes to the type, content and order
of problems in educational software.

Keywords
KC Model, Decimal Number, Digital Learning Game

1. INTRODUCTION
In the view of KC modeling, student’s knowledge can be
treated as a set of inter-related KCs, where each KC is “an
acquired unit of cognitive function or structure that can be
inferred from performance on a set of related tasks” [22]. A
KC-based student model (which we refer to as KC model)
has been employed in a wide range of learning tasks, such
as supporting individualized problem selection [11], choos-

ing examples for analogical comparison [35] and transition-
ing from worked examples to problem solving [43]. A good
KC model is vital to intelligent educational software, par-
ticularly in the design of adaptive feedback, assessment of
student knowledge and prediction of learning outcomes [24].

A new area in educational technology that could potentially
benefit from KC models is digital learning game. While
there has been much enthusiasm about the potential of dig-
ital games to engage students and enhance learning, few
rigorous studies have demonstrated their benefits over more
traditional instructional approaches [32, 34]. One possible
reason is that most digital learning games have been de-
signed in a one-size-fits-all approach rather than with per-
sonalized instruction in mind [9]. Adopting KC modeling
techniques could therefore be an important first step in meet-
ing individual students’ learning needs and making digital
learning games a more effective form of instruction. A criti-
cal question in this direction is whether a KC model can be
created after the use of the learning technology, in order to
better understand the targeted learning domain and to help
in improving the technology.

In our study, we explore this question in the context of
a game that teaches decimal numbers and decimal opera-
tions to middle-school students. We started with an initial
KC model based on problem type (e.g., adding decimals,
completing sequences of decimals), then used the human-
machine discovery method [51] to derive new KCs and for-
mulate the best fitting model. From this improved model,
we first discuss findings about students’ learning of decimal
numbers and propose potential changes to the instructional
materials that address a wider range of learning difficulties -
a process known as “closing the loop” [24]. Then, we outline
a general framework for adding KC models to educational
software in a post-hoc manner and discuss its broader im-
plications in digital learning games.

2. BACKGROUND
In this section, we first present background information about
two aspects of student modeling that are relevant to our
work: (1) KC modeling, a technique that represents stu-
dents’ knowledge as latent variables, and (2) the current
state of student modeling in digital learning games. Then,
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we describe the game environment used for data analysis.

2.1 KC Modeling
Traditionally, KC models have been developed by domain
experts, using Cognitive Task Analysis methods such as
structured interviews, think aloud protocols and rational
analysis [45]. These methods result in better instructional
design but are also highly subjective and require substantial
human effort. To address this shortcoming, a wide range of
prior research has focused on creating KC models through
data-driven techniques. Some of the earliest work on iden-
tifying and improving KC models was done by Corbett and
Anderson [11] with the early LISP tutors. In this work,
plotting of learning curves showed “blips” or “peaks” in the
curves which indicated new KCs that were not accounted
for in the initial model. By using a computational model
to fit the data in learning curves, [5] showed how Learning
Factor Analysis (LFA) could automate the process of identi-
fying additional KCs in educational software. LFA takes as
input a space of hypothesized KCs, which can be discovered
through visualization and analysis tools [51]. Once there
are several human-generated KC models, they can be com-
bined by merging and splitting skills using machine learning
techniques that aim to improve the overall fit [23].

It is important to define a good model, but it is not al-
ways clear how to do so. Goodness of fit is best measured
by cross validation, but this technique is time consuming
and computationally expensive for large datasets. Further-
more, there is no consensus on how cross validation should
be performed on educational data [50]. Two related and
easy-to-compute metrics are the Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC), which
address overfit by measuring prediction accuracy while pe-
nalizing complexity. In general, a lower AIC/BIC/cross val-
idation score indicates a better model. In case they do not
agree, [50] showed that AIC correlates with cross validation
better than BIC, through an analysis of 1,943 KC models in
DataShop. However, these scores alone do not portray the
full picture; as pointed out by [3], many student modeling
techniques that aim to predict student learning achieve neg-
ligible accuracy gains, “with differences in the thousandths
place,” suggesting that they are already close to ceiling per-
formance. In response, [28] brought attention to another
important criterion - whether the model is interpretable and
actionable. As the authors argued, even slight improvement
can be meaningful if it reveals insights on student learning
that generalize to a new context and lead to better, empiri-
cally validated instructional designs. For instance, some re-
search has been successful in redesigning tutor units to help
students reach mastery more efficiently, based on analysis of
previous KC models [24,27].

Our analysis follows the established process outlined above,
in which we started with a basic human-generated KC model,
then identified potential improvements using learning curve
analysis, and evaluated the new model by AIC, BIC and
cross validation. We also derived instructional insights from
this model as the first step in closing the loop.

2.2 Student Modeling in Games
As pointed out by [2], knowledge in digital learning games
is harder to represent than knowledge in tutoring systems

because the students’ thinking process, as well as learning
objectives, may not be as explicit. The popular student
modeling techniques for learning games are those that can
represent uncertainty, such as Bayesian Networks (BN) [31]
and Dynamic Bayesian Networks (DBN) [8]. For instance,
in Use Your Brainz, by applying BN to each level of the
game to estimate the problem-solving skills of learners, re-
searchers were able to validate their measures of stealth as-
sessment [46]. [10] applied DBN in Prime Climb, a math
game for learning factorization, to build an intelligent peda-
gogical agent that results in more learning gains for students.
Follow-up work by [30] refined and evaluated the existing
DBN, yielding substantial improvement in the model’s test
performance prediction accuracy, which in turn helps bet-
ter estimate students’ learning states in future studies. As
another example, [42] employed DBN to predict responses on
post-test questions in Crystal Island, an immersive narrative-
based environment for learning microbiology.

Recent research has proposed entirely data-driven meth-
ods for discovering KC models in a tutoring system [17,
26]. However, most KC models employed in digital learning
games have been generated manually by domain experts.
For instance, in Zombie Division, the KCs were identified
by math teachers as common prime factors such as “divide
by two” and “divide by three” [2]. Similarly, the designers
of Crystal Island labeled the general categories of knowl-
edge involved in problem-solving as narrative, strategic, sce-
nario solution and content knowledge [42]. The first at-
tempt to refine a human-generated baseline KC model using
data-driven techniques in digital learning games was done
by Harpstead and Aleven [18]. Their approach, which was
applied to Beanstalk, a game that teaches the concept of
physical balance, is based on [51]’s human-machine discov-
ery method, which is very similar to ours; however, there are
notable differences in the learning environments. In particu-
lar, the domain of decimal numbers involves many more rules
and operations than Beanstalk ’s domain of beam balancing;
in turn, our digital learning game also incorporates more ac-
tivities (e.g., placing numbers on a number line, completing
sequences, assigning numbers to less-than and greater-than
buckets). Therefore, our KC modeling process takes into ac-
count not just the instructional materials but also elements
of the interface and problem types, which could be more
generalizable to other learning environments.

2.3 A Digital Learning Game for Decimals
Decimal Point is a single-player game that helps middle-
school students learn about decimal numbers and their op-
erations (e.g., adding, ordering, comparing). The game is
based on an amusement park metaphor (Figure 1), where
students travel to various areas of the park, each with a dif-
ferent theme (e.g., Haunted House, Sports World), and play
a variety of mini-games within each theme area, each target-
ing a common decimal misconception: Megz (longer decimals
are larger), Segz (shorter decimals are larger), Pegz (the two
sides of a decimal number are separate and independent)
and Negz (decimals smaller than 1 are treated as negative
numbers) [21, 47]. Each mini-game also involves one of the
following problem types:

1. NumberLine - locate the position of a given decimal
number on the number line.
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2. Addition - add two decimal numbers by entering the
carry digits and the result digits.

3. Sequence - fill in the next two numbers of a given se-
quence of decimal numbers.

4. Bucket - compare given decimal numbers to a thresh-
old number and place each decimal in a “less than” or
“greater than” bucket.

5. Sorting - sort a given list of decimal numbers in as-
cending or descending order.

Figure 1: A screenshot of the main map screen.

In each theme area, and across the different theme areas,
the problem types are interleaved to improve mathematics
learning [41] and introduce variety and interest in gameplay.
Figure 2 shows the screenshots of two mini-games - Ancient
Temple (a Sequence game) and Peg Leg Shop (an Addition

game). Each mini-game requires students to solve up to
three problems of the same type (e.g., place three numbers
on a number line, or complete three number sequences). Stu-
dents must answer correctly to move to the next mini-game;
they also receive immediate feedback about their answers.
To further support learning, after a problem has been solved,
students are prompted to self-explain their answer by select-
ing from a multiple-choice list of possible explanations [7].

A prior study by [34] showed that Decimal Point promoted
more learning and enjoyment than a conventional instruc-
tional system with identical decimal content. Follow-up
studies by [37] and [19] then tested the effect of student
agency, where students can choose the order and number
of mini-games they play. These studies revealed no differ-
ences in learning or enjoyment between low- and high-agency
conditions, but [19] found that students in a high-agency
condition had the same learning gains while playing fewer
mini-games than those in low-agency, suggesting that the
high-agency version led to more learning efficiency.

Post-hoc analyses by [52] examined the different mini-game
sequences played by high-agency students and found that,
consistent with the reports in [19], those who stopped early
learned as much as those who played all mini-games. This
result leads to important questions about the right amount
of instructional content to maximize learning efficiency. To
answer these questions, we would need a more fine-grained

measure of student learning using in-game data rather than
external test scores. The KC modeling work presented here
represents the first step in this direction.

(a) Ancient Temple (b) Peg Leg Shop

Figure 2: Screenshots of two mini-games.

2.3.1 Participants and Design
We obtained data from two prior studies of Decimal Point
involving 484 students in 5th and 6th grade, in all study
conditions [19,37], and removed those students who did not
finish all of the required materials, reducing the sample to
417 students (200 males, 216 females, 1 declined to respond).
The students played either some or all of the 24 mini-games
in Figure 1, depending on their assigned agency condition,
as described previously. When selecting a mini-game, stu-
dents would play two instances of that game, with the same
interface and game mechanics but different questions. Stu-
dents in the high-agency condition also had the choice to
play a third instance of each mini-game once. In subsequent
analyses, we use an index of 1, 2 and 3 to denote the in-
stance number, e.g., Ancient Temple 1, Ancient Temple 2
and Ancient Temple 3. For a detailed description of the
experimental design of prior studies, refer to [19, 37].

2.4 Dataset
We analyzed students’ in-game performance data, which was
archived in the DataShop repository [49] in dataset number
2906. The dataset covers a total of 613,055 individual trans-
actions, which represent actions taken in the mini-games by
417 students in solving decimal problems.

3. METHODS & RESULTS
We started with the baseline KC models derived from two
sets of features that Decimal Point was built upon. These
initial models were fit using the Additive Factors Model
(AFM) method [6], and the learning curves were visualized
in DataShop. AFM is a specific instance of logistic regres-
sion, with student-correctness (0 or 1) as the dependent vari-
able and with independent variable terms for each student,
each KC, and the KC by opportunity interaction. It is a
generalization of the log-linear test model [54] produced by
adding the KC by opportunity terms. We then chose the
model with better fit and analyzed its learning curves. Each
model was run on 42,637 observations tagged with KCs.

3.1 Baseline Models
Our first baseline model, called DecimalMisc, consists of
four KCs that are the misconceptions targeted by the mini-
games: Megz, Segz, Negz, Pegz [21]. Because each mini-
game was designed based on a single misconception (KC),
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we created a model that maps each mini-game question to its
corresponding KC. The second model, ProblemType, instead
maps each mini-game question to its problem type (one of
NumberLine, Addition, Bucket, Sorting and Sequence).
Table 1 shows the fit statistics results of these two models.

Table 1: Fit statistics results of the two baseline
models. RMSE indicates 10-fold cross-validation
root mean squared error, stratified by item. Val-
ues that indicate best fit are in bold.

Model

(# of KCs)
AIC BIC RMSE

DecimalMisc (4) 30,699.27 34,379.97 0.3292

ProblemType (5) 29,504.09 33,202.12 0.3231

As can be seen, ProblemType outperforms DecimalMisc in
all three metrics - AIC, BIC and RMSE. In other words,
the actual problem types capture students’ learning better
than the underlying misconceptions. In subsequent analyses,
we therefore focused on improving the ProblemType model.
The first step is identifying potential improvements in the
learning curve of each KC. In general, a good learning curve
is smooth and decreasing [51]. Smoothness indicates that no
step is much harder or easier than expected, and a decreasing
curve shows that students were learning well and therefore
made fewer errors at later opportunities [36].

From Figure 3, we observed that the learning curves of Num-
berLine and Bucket are reasonably good. The learning
curve of Addition stays at roughly the same low error rate
throughout (< 10%) , but there are sudden peaks, suggest-
ing that some problems were harder than others and thus
should be represented by a separate KC. The learning curve
of Sequence decreases but not smoothly; the zigzag pattern
indicates that students were alternating between easy and
hard problems. Again, having separate KCs for the lows
and highs of the curve would likely yield a better fit. The
learning curve of Sorting is neither decreasing nor smooth;
therefore, this KC needs to be further decomposed.

3.2 Improved KC Models
3.2.1 KC decomposition

To find possible decompositions, we followed the human-
machine discovery method outlined in [51] and consulted
prior literature on students’ learning of decimal numbers.
Below we present our analysis of each problem type.

NumberLine. As its learning curve is already good, we
turned to related work on the game Battleship Numberline
[29], where students have to place given fraction numbers on
a number line. The authors found that, on a number line
that runs from 0 to 1, students have better understanding
when adjusting from 0 or 1 (e.g., 1/10 or 9/10) than from
1/2 (e.g., 3/7). Since decimal numbers can be translated to
fractions and vice versa, we (tentatively) experimented with
applying the findings of [29] to our model. In particular, we
decomposed the NumberLine KC into NumberLineMid (the
number to locate lies between 0.25-0.75) and NumberLineEnd

(the number to locate lies between 0-0.25 or 0.75-1).

Figure 3: Learning curves of the KCs in ProblemType.
The x-axis denotes opportunity number for each KC
and y-axis denotes error rate (%). The red line plots
all of the actual students’ error rate at each oppor-
tunity, while the blue line is the curve fit by AFM.

Addition. There are eight items in an Addition game: four
text boxes for carry digits - carryTens, carryOnes, carry-
Tenths, carryHundredths - and four text boxes for the result
- ansTens, ansOnes, ansTenths, ansHundredths (see Figure
2b for an example). Previously, all of these items had the
same KC label of Addition, but we expected that some dig-
its would be harder to compute than others. For instance,
the carryHundredths digit is always 0, because our prob-
lems only involve numbers with two decimal places. On the
other hand, because the focus of Addition problems is to
test that students can carry from the decimal portion to the
whole number portion (i.e., probing for the Pegz miscon-
ception), the carryOnes digit is always expected to be 1. It
was indeed the case that carryOnes, along with ansOnes, ac-
counts for a large portion of the peaks in Addition’s learning
curve (Figure 3). The most common error in these peaks,
however, comes from carryTens and ansTens in the mini-
game Thirsty Vampire 1. For the majority of students in
our sample (87.5%), Thirsty Vampire 1 was the first Addi-

tion problem they encountered, and its question (7.50 +
3.90) was also the only one with a carry in the tens place;
in other words, it was both the first and hardest question.
For this reason, we decided to decompose the Addition KC
into:

• Addition_Tens_NonZero applies to the carryTens and
ansTens item in Thirsty Vampire 1.

• Addition_Ones applies to carryOnes and ansOnes in
all Addition mini-games.

• Other items (e.g., carryTenths, carryHundreds
ansTenths) retain the KC label Addition.

Sequence. In a Sequence mini-game, students have to
enter the last two numbers in an increasing arithmetic se-
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quence, based on the pattern of the first three given numbers
(e.g., Figure 2a). In the way the questions were designed,
the first number to fill in always requires an addition with
carry, whereas the second does not involve a carry. We
therefore hypothesized that the first number is more diffi-
cult than the second, which was confirmed by inspection
of the learning curve: the alternate up and down patterns
depict students’ error rates as they filled in the first and
second number in each sequence. We further distinguished
between numbers with two decimal digits and those with
one, as the former should be more difficult to work with. In
summary, we decomposed the Sequence KC into four KCs:
Sequence_First_OneDigit (first number, with one decimal
digit), Sequence_First_TwoDigits (first number, with two
decimal digits), Sequence_Second_OneDigit (second num-
ber, with one decimal digit), Sequence_Second_TwoDigits
(second number, with two decimal digits).

Bucket. As the learning curve of Bucket is already good,
we did not further decompose this KC.

Sorting. The learning curve of Sorting remains flat at
around a 25% error rate. Since there are no outstanding
blips or peaks in this curve, we instead used DataShop’s
Performance Profiler tool to plot the predicted and actual
error rates of each mini-game problem (Figure 4). We identi-
fied five mini-game problems in which the actual error rate
was larger than predicted by at least 5%; in other words,
these problems were harder than expected. Therefore, we
labeled five of them - Rocket Science 1, Rocket Science 2,
Jungle Zipline 2, Balloon Pop 2 and Whac A Gopher 1 - by
a separate KC called SortingHard, while other problems re-
mained in Sorting. We will characterize the mathematical
features of these SortingHard problems in Section 4.2.

Figure 4: Visualization of the Sorting KC’s goodness
of fit with respect to ten Sorting mini-games with
the highest error rates. The bars (shaded from left)
show the actual error rates and the blue line shows
predicted error rates.

3.2.2 New model result & comparison
Table 2 shows the fit scores of the original ProblemType

model, the models resulting from individual KC decompo-
sitions, and the final model combining all decompositions,
called Combined. Apart from ProblemType and Combined,
the name of each other model indicates which original prob-
lem type KC is decomposed. For instance, the Sorting

model has six KCs - SortingHard, Sorting, NumberLine,

Bucket, Addition, Sequence - where the last four are iden-
tical to those in ProblemType. We can therefore see that

decomposing the original Sorting KC alone results in a de-
crease of AIC by 231.91 and BIC by 214.59.

Table 2: Fit statistics results of the original and new
models, sorted by AIC in descending order. Values
that indicate best fit are in bold.

Model

(# of KCs)
AIC BIC RMSE

ProblemType (5) 29,504.09 33,202.12 0.3231

NumberLine (6) 29,492.48 33,207.83 0.3233

Sorting (6) 29,272.18 32,987.53 0.3215

Sequence (8) 29,159.27 32,909.25 0.3234

Addition (7) 29,025.77 32,758.43 0.3235

Combined (12) 28,436.07 32,255.34 0.3196

Figure 5 shows the resulting learning curves of the above
decompositions. We observed three KCs with issues: (1)
Sequence_First_TwoDigits is a flat curve which indicates
no learning, (2) SortingHard remains at high error rates,
and (3) Addition_Tens_NonZero has too little data (because
it only applies to Thirsty Vampire 1 ). Three other KCs -
Addition, Addition_Ones, Sequence_Second_Digits - have
low and flat curves, suggesting that students already mas-
tered them early on and did not need as much practice (i.e.,
they were over-practicing with these KCs). The remaining
KCs have smooth and decreasing curves. Most notably, we
were able to fix the zigzag pattern in the original Sequence
curve, reduce the peaks in the Addition curve, and capture
the Sorting problems that do reflect students’ learning.

Other than NumberLine, all of the new models resulted in
better AIC and BIC scores. The Combined model, which
incorporates all decompositions, is the best fit; when com-
pared to ProblemType, its AIC score is lower by 1068.02 and
its BIC is lower by 946.78. Using DataShop’s Performance
Profiler tool, we were also able to visualize the differences be-
tween these models in Figure 6. Here we see that for each of
the new KCs, the Combined model’s prediction, represented
by the blue line (square points), is closer to the actual error
rate than the ProblemType model’s prediction, represented
by the green line (round points). Hence, the combination of
our KC decompositions resulted in a better fit visually.

4. DISCUSSION
4.1 Comparison of Baseline Models
We found that the ProblemType model, which maps mini-
game questions to problem types, is a better fit for student
learning than the DecimalMisc model, which maps mini-
game questions to underlying misconceptions. Here we out-
line two possible interpretations.

First, while each question was designed to test one miscon-
ception, students may demonstrate other misconceptions in
their answers. For example, the mini-game Jungle Zipline 1,
labeled as Segz (shorter decimals are larger), asks students
to sort the decimals 1.333, 1.33, 1.3003, 1.3 from smallest to
largest. An answer of 1.3003, 1.333, 1.33, 1.3 would match
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Figure 5: Learning curves of the KCs in Combined. The x-axis denotes opportunity number and y-axis error
rate (%). The red line plots the actual students’ error rate at each opportunity, while the blue line is the
curve fit by AFM.

Figure 6: Visualization of the Combined and Problem-

Type models’ goodness of fit with respect to the new
KCs. The bars (shaded from left) show the actual
error rates. The blue and green line show predicted
error rates of Combined and ProblemType respectively.

the Segz misconception, but we observed that 25% of the in-
correct answers were 1.3, 1.33, 1.333, 1.3003, which instead
corresponds to Megz (longer decimals are larger). As another

example, the mini-game Capture Ghost 1, labeled as Megz,
asks students to decide if each of the following numbers -
0.5, 0.341, 0.213, 0.7, 0.123 - is smaller or larger than 0.51.
14% of the incorrect answers stated that 0.5 > 0.51 and also
0.341 > 0.51, which demonstrates both Segz and Megz, re-
spectively. In general, in a problem solving environment like
Decimal Point, measuring students’ misconceptions should
be based on their actual answers, not the questions alone.
Therefore, a KC model that maps each question to its hy-
pothesized misconception may not capture the students’ full
range of learning difficulties. Two alternative approaches
used by other research for tracking decimal misconceptions
are: (1) measuring them at a larger grain size, such as whole
number, role of zero and fraction [14], and (2) using erro-
neous examples instead of problem solving questions [21]. In
the context of KC modeling, we could apply our process to
an existing dataset of student learning of decimal numbers
from erroneous examples, such as the dataset from [33].

From a cognitive perspective, [44] pointed out that“different
kinds of knowledge and competencies only show up inter-
twined in behavior, making it hard to measure them validly
and independently of each other.” The authors conducted

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 144

Sequence_Fi raL TwoDigi ta Sorting Hard Add ition_ Tena_NonZero 

,:: I 
~ 

,:: I 
~ 

,:: I 
~ 

0 2 3 4 5 6 7 0 2 3 4 5 6 7 0 2 3 

Addition Addition_Ones Sequence_Second_ T"oDig its 

,:: I ,I 
100 ,:: I 50 

-<'It -- 0 
0 5 10 15 20 0 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 

Nu m berli neE nd NumberlineMid Seq uence_Fi r aLOneDig it 

,:: I 
---....:..-

,:: I ....-------.---i ,:: I~ ; 
0 23 4 567 8 0 2 3 4 5 6 0 5 10 15 

Sequence_Second_OneDigit Bucket Sorting 

,:: I~ I ,:: I ~ i ,::1 +----------,---~- ---.----------.· -

1. Addition 

~c 2 . sequenoe_Second_TwoDigits 

3. Addition_Ones 
0 
~ 4. sequence_Sewnd_O neDigil 

8 5. NumberlineEnd . 
01 6 . Sequenc::e_First_O neDig il 

j 7. SeQuence_First_T'M:Oigits 

~ 8. Addition_Tens_Non Zero 

"' 9. NumberlineM id 

10. Sorting 

0 

, ... 

5 10 15 0 1 23 4 56789 

Error Rate(%} 

10 20 30 40 50 60 70 80 90 100 

. ' 
I 

12.SortingHard ~---'======•==---==I =====::;----~ ID lncorrects D Hints C Corrects + Predicted Error Rate + Secondary Predicted I 

0 2 4 6 8 10 



a series of studies to test students’ conceptual knowledge of
decimal numbers and procedural knowledge of locating them
on a number line. Each study employed four common hy-
pothetical measures of each kind of knowledge, but revealed
substantial problems with the measures’ validity, suggesting
that it is difficult to reliably separate tests of conceptual
knowledge and procedural knowledge. In our context, the
decimal misconceptions reflect conceptual knowledge while
the problem types require a combination of both conceptual
and procedural knowledge. Therefore, differentiating prob-
lems by their types creates clearer KC distinctions than by
their associated misconceptions, because the former matches
more closely with students’ actual performance.

4.2 Interpretation of the New KCs
Here we discuss the insights from our earlier KC decompo-
sition results, using a combination of learning curve analy-
ses and domain-specific interpretations. While the example
questions we cite are specific to those in Decimal Point, the
findings about student learning are applicable to any other
educational technology system in decimal numbers.

NumberLine. Unlike [29], we did not observe that students
have more difficulty with numbers close to 0.5 than with
numbers close to 0 or 1. Decomposing NumberLine into Num-

berLineEnd and NumberLineMid results in increases in BIC
and RMSE, which are indicative of overfit. Furthermore, the
original learning curve of NumberLine is already smooth and
decreasing (Figure 3), so it is unlikely that any decomposi-
tion would yield significant improvements. More generally,
this result suggests that students could learn to estimate the
magnitude of a given decimal number between 0 and 1 rea-
sonably well, even though they may have difficulty with the
equivalent fraction form in the way [29] reported. To explain
this difference, we should note that students tend not to per-
ceive decimals and fractions as being equivalent [47], hence
difficulties with fractions may not translate to difficulties
with decimal numbers. As [12] pointed out, a fraction a/b

represents both the relation between a and b and the mag-
nitude of the division of a by b, whereas a decimal number,
without the relational structure, more directly expresses a
one-dimensional magnitude. Therefore, students often have
higher accuracy in estimating decimal numbers than frac-
tions on a number line [53]. The findings from our analysis
and [29] further support this distinction.

Addition and Sequence. These problem types both in-
volve computing the sum of two decimal numbers, and as
our decompositions showed, the difficulty factor lies in car-
rying digits to the next highest place value. In the case of
Addition, the first question, which also happens to be the
most challenging, is to add 7.50 and 3.90, which requires
two carries, one to the ones place and one to the tens place.
The error rate is therefore highest for this question (the first
peak in Figure 3), but decreases at later (easier) opportuni-
ties. The original learning curve of Sequence problems has
a zigzag pattern due to the students alternating between
additions with and without carry. Distinguishing between
these two types of operations, and also on the number of
decimal digits, did result in a better model fit. We also
note that the error rates in Sequence problems are generally
higher than in Addition problems. A possible interpretation
is that, while the underlying addition operations are similar,

the Sequence interface does not lay out the carry and result
digits in detail as the Addition interface does (Figure 2). As
pointed out by [25], for adding and subtracting decimals of
different lengths, incorrect alignment of decimal operands is
the most frequent source of error. Since Addition problems
already supported this alignment via the interface, students
were less likely to make mistakes in them.

Bucket and Sorting. These problem types both involve
performing comparisons in a list of five decimal numbers,
but in different manners. Bucket problems require compar-
ing each number to a given threshold value, while Sort-

ing problems require comparing the numbers among them-
selves. According to [40], ordering more than two decimals
(Sorting) could reveal latent erroneous thinking which mere
comparison of pairs (Bucket) cannot. Consistent with this
finding, our results also showed that students were able to
learn Bucket problems well but struggled with Sorting. Our
hypothesis is that a Sorting problem requires two separate
skills: (1) comparing individual pairs of number (in a list
of five numbers, students may perform up to ten compar-
isons), and (2) ordering the numbers once all the compar-
isons have been established. The current interface only asks
for the final sorted list, so it would need to be redesigned
to allow for tracking student mastery of each of these two
skills. Furthermore, by examining the five problems catego-
rized as SortingHard, we identified unique challenges that
were not present elsewhere in Decimal Point. First is the
issue of negative number - the mini-game Balloon Pop 2,
with an error rate close to 60% (Figure 4), asks students
to sort the sequence 8.5071, -8.56, 8.5, -8.517 in descending
order. Given that students may hold misconceptions about
both the length and sign of decimal numbers [21], and that
no other Sorting problems involve negative numbers, it is
clear why students faced significant difficulties in this case.
The second issue is another common misconception - that
a 0 immediately to the right of the decimal point does not
matter (e.g., 0.03 = 0.3) - which [39] referred to as role of
zero. It could be invoked in the mini-game Rocket Science 1,
which asks students to sort 0.14, 0.4, 0.0234, 0.323 in ascend-
ing order; in particular, 19% of the incorrect answers put
0.0234 between 0.14 and 0.323, implying the incorrect be-
lief that 0.0234 = 0.234. Previous studies have also reported
that 9th graders and even pre-service teachers demonstrated
this misconception in similar sorting tasks [20,38]. Further-
more, students may still have this misconception even after
abandoning others [13].

According to [24], there are four steps to redesign a tutor
based on an improved cognitive model: (1) resequencing, (2)
knowledge tracing, (3) creating new tasks, and (4) changing
instructional messages, hint and feedback. Based on this
framework and our analyses, we derived the following lessons
for designing instructional materials in our digital learning
game and other tutoring systems in decimal numbers:

1. Arrange the easy Addition problems (without or with
one carry) at the beginning. The number of these easy
problems can also be reduced, as over practice is al-
ready occurring based on the number of problems stu-
dents are attempting with low error rates.

2. Design more Addition problems with varying difficul-
ties (those with more carries are more difficult) and
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position them in increasing order of difficulty.
3. Leave the operand fields blank in Addition problems

so that students can practice aligning decimal digits.
Getting feedback on this alignment task could in turn
help them solve Sequence problems better.

4. Provide more scaffolding in Sorting problems, by first
asking students to perform pairwise comparisons of the
given numbers, then having them place the numbers
in order. The first task can be used to track miscon-
ceptions and the second to track the skill of ordering.

5. Design questions in other problem types besides Sort-
ing (e.g., NumberLine, Bucket) that address the role of
zero misconception, as it may be stronger and persist
longer than other misconceptions.

4.3 Advantages of Post-hoc KC Modeling
While, in general, KC modeling methods can be applied to
any domain, domain knowledge is still critical for the inter-
pretation of the improved models and an understanding of
the newly discovered KCs. We have shown that we can apply
methods in a post-hoc manner to a dataset in an educational
domain to both achieve a better understanding and create a
better fitting KC model. Our findings also demonstrate that
the type of KC modeling we used can help guide changes to
the types, contents and order of problems that are used in
a decimal learning game (and educational technology more
generally). From a theoretical perspective, the search space
for a KC model in a given domain will be somewhere be-
tween a Single KC model, where every step represents the
same KC, to a Unique Step model, where every step has its
own KC. If we include the option of tagging a single step
with multiple KCs, the space could get infinitely larger, but
in a practical sense multi-coded steps could be combined to
a single KC by concatenating the KCs on a given step. Sev-
eral automated processes have been applied to create KC
models by searching the possible space, such as Q-Matrix
search [48], but they have the limitation of creating models
with unlabeled skills. The methods that we used do not face
this problem because we started with a fully labeled model
and worked from there. Using visual and computational
analyses on the learning curves, we were able to make im-
provements by combining the output of fitting models with
domain knowledge. The original Addition KC is an excel-
lent example of this approach in action. While the overall
curve did show a declining error rate, every four opportu-
nities looked as if the steps were getting harder (see Figure
3). Methodologically, this was a clear opportunity for im-
provement and likely a feature where each successive step in
a problem became harder. Sure enough, this was the case as
each of four problem steps required a carry, and the hardest
problem required two carries. This is one example which
demonstrates that we were able to not only get a better fit-
ting model, but also attain a deeper domain understanding.

4.4 Future Work
In our next study, we will use the best KC model from this
work as a test of how well it performs with a new popula-
tion of students. There is also potential in connecting our
work with earlier studies of student agency in digital learn-
ing games. In particular, [37] and [19] reported that even
though students in the high-agency condition could choose
to play any mini-game in any order, they did not learn more
than those in the low-agency condition, who played a fixed

number of mini-games in a default order. [19] speculated that
the former might be focused on selecting mini-games based
on their visual themes (e.g., Haunted House, Wild West -
see Figure 1) rather than learning content. To address this
issue, we could employ an open learner model [4] that dis-
plays the estimated mastery level of each decimal skill to the
students, where the skills are the KCs in our best model. In
this scenario, we expect that students who exercise agency
would be able to make informed selections of mini-games
based on an awareness of their learning progress.

At the same time, digital learning games are intended to
engage students and promote learning. Therefore, we want
to explore the interactions between enjoyment and learning,
particularly in how best to balance them. Just as learning
can be modeled by knowledge components, can enjoyment
also be modeled by “fun components,” and how would they
be identified? We believe our digital learning game is an
excellent platform for this exploration, because each mini-
game has a separate learning factor (the decimal question)
and enjoyment factor (the visual theme and game mechan-
ics). It is also possible to track students’ enjoyment either
through in-game surveys or automated affect detectors [1].
As our next step, we will design two study conditions, one
that employs a traditional open learner model and one that
captures and reflects students’ enjoyment, using the five
problem types (worded in a more playful way, e.g., Shooting
instead of Sorting, because all Sorting mini-games involve
shooting objects such as spaceship) as the initial fun compo-
nents. Findings from this follow-up study would then allow
us to refine our enjoyment model and provide insights into
whether a learning-driven or enjoyment-driven game design
yields better outcomes.

In the direction of KC modeling, as mentioned in [19] and
[52], it is possible that the the game contains more learning
materials than required for mastery, or that some students
may have exhibited greater learning efficiency than others.
With the KC model identified in this work, we can then
apply Bayesian Knowledge Tracing [11] to assess students’
mastery of each KC and verify the presence of learning ef-
ficiency or over-practice. Another area we plan to study is
whether individual differences among the students in their
gameplay and learning could lead to further improvement
in predicting skill mastery based on the best-fit KC model,
similar to previous research done in an intelligent tutor for
genetics learning [15]. These individual differences could be
accounted for by other features in the game outside of the
identified cognitive-defined KCs [16].

5. CONCLUSION
Previous work has been done on refining KC models for ed-
ucational systems in the manner we have shown here [51],
although our research focused on the application of the re-
finement techniques to a digital learning game. We found
that modeling KCs by problem types yields a better fit than
modeling by the underlying misconceptions that were being
tested. Furthermore, the refined KC model also showed us
how to improve the original learning materials, in particular
by focusing on the more challenging and persistent miscon-
ceptions, such as those involving multiple carries, role of zero
and negative numbers. More generally, we demonstrated
how learning curve analysis can be employed to perform
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post-hoc KC modeling in a tutoring system with various
types of task. In turn, our work opens up further oppor-
tunities to explore the interaction of student models with
learning, enjoyment and agency, which would ultimately
contribute to the design of a learning game that can adap-
tively balance these aspects.
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ABSTRACT 

Collaborative problem solving in computer-supported 

environments is of critical importance to the modern workforce. 

Coworkers or collaborators must be able to co-create and navigate 

a shared problem space using discourse and non-verbal cues. 

Analyzing this discourse can give insights into how consensus is 

reached and can estimate the depth of their understanding of the 

problem. This study uses Coh-Metrix, a natural language 

processing tool that measures cohesion, to analyze participant 

discourse from a recent multi-modal learning analytics study where 

novice programmers collaborated to use a block-based 

programming language to instruct a robot on how to solve a series 

of mazes. We significantly correlated thirty-five Coh-Metrix 

indices from the transcripts of dyads' discourse with collaboration, 

learning gains, and multimodal sensor values. We then fit a variety 

of machine learning classifiers to predict collaboration using the 

indices generated by Coh-Metrix as features. This study paves the 

way for real-time detection of (un)productive interactions from 

multimodal data and could lead to real-time interventions to 

support collaborative learning.   

Keywords 

Collaboration, computer-supported collaborative work, multi-

modal learning analytics, Coh-Metrix. 

1. INTRODUCTION 
Collaborative problem solving with computer-based or computer-

supported environments has long been a focus of research on 

educational technologies [1] and is now seen as a 21st century 

learning objective of critical importance to the workforce [2]. 

Discourse of collaborators who co-create and navigate a shared 

problem space can give insights into how consensus is reached and 

the depth of their understanding. Because qualitative coding of 

transcripts or video is laborious and time-consuming, capturing and 

quantifying the quality of social interactions remains a challenge in 

the social sciences.  

Applied natural language processing can automate the analysis of 

large corpora of human language and is a foundational technique of 

educational data mining. Coh-Metrix [3], a tool originally 

developed to measure text difficulty, has been used to evaluate 

online discussion transcripts and intelligent tutoring system 

dialogue. By applying the tool to discourse from a collaborative 

problem-solving activity, we hypothesize that certain markers can 

indicate the quality of the collaboration and could be used to 

predict how well groups work together from their speech patterns. 

This paper uses Coh-Metrix to analyze participant discourse from a 

recent multi-modal learning analytics (MMLA) [7] study where 

novice programmers used a block-based programming language to 

program a robot to solve a series of mazes [4]. Preliminary results 

from this study indicate the importance of speech equity and 

talking time; however, the full transcripts of the discourse have not 

yet been analyzed. In this paper, we explore multiple indices from 

the transcripts that are correlated with collaboration, learning gains, 

and multimodal sensor values. We then explore ways of predicting 

collaboration using the indices generated by Coh-Metrix as features 

fed into a variety of machine learning classifiers. Finally, we 

discuss these results and conclude with future avenues for this 

research. 

2. LITERATURE REVIEW 
A few decades ago, computer-supported collaborative learning 

(CSCL) emerged as a statement against the over-individualization 

of educational technology, emphasizing that collaborative learning 

can be fostered by carefully designed computer-supported activities 

[5]. Collaboration analysis in computer-supported environments 

has explored what facets of collaborative processes are essential 

for successful problem-solving and learning [29] with a particular 

emphasis on what aspects of these analyses can be automated 

[30].When studying the process of collaboration, a ‘Joint Problem 

Space’ emerges that takes the form of a socially-negotiated 

knowledge structure that combines goal-setting, descriptions of the 

problem, and available actions [1]. This problem space can be 

understood through discourse analysis in conjunction with any 

other data collected on group behaviors.  

In the search for new tools to analyze and model interactions 

between collaborators [6], Multi-Modal Learning Analytics 

(MMLA) has emerged. Sensors continue to get cheaper and easier 

to use while providing rich streams of data which can be used in 

conjunction to track and assess collaboration [7]. Data from 

multiple high frequency sensors can triangulate difficult to measure 

constructs and enhance overall predictive performance [31]. 

Analyzing features engineered from sensor data as well as dyadic 
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discourse provides a deeper view of the joint problem space, which 

includes nonverbal communication, posture, eye gaze, and arousal, 

among other possible metrics. 

Coh-Metrix is an online tool that measures 106 linguistic features 

related to text easability, cohesion, lexical sophistication, syntactic 

complexity, and readability [3]. To differentiate between coherence 

and cohesion, the developers of this tool view cohesion as a quality 

of the text or discourse that can be directly measured, while 

coherence is in the mind of the reader [8]. The Coh-Metrix indices 

generally indicate the presence or absence of cohesive cues that tie 

the text together and make it easier or harder to understand. The 

tool focuses on local and overall text cohesion versus global 

cohesion [9]. 

Coh-Metrix has mainly been used in analyzing text readability and 

writing quality but has been applied successfully to other domains 

as well. Its indices have been used to detect lying in online 

discourse with one group member specified as sender and other as 

the receiver [10]. Tutor dialogue in AutoTutor was compared to 

naturalistic dialogue with a human tutor using Coh-Metrix to see 

how the dialogues differed on cohesion indices [11]. Indices for 

cohesion were also used to train affect detectors for AutoTutor 

users with the intention of developing real-time affect detectors 

based on cohesion [12]. The tool has also been used with online 

discussion transcripts to classify online discourse for levels of 

cognitive presence, and a classifier using Coh-Metrix features 

outperformed a similar algorithm using bag-of-words features [13]. 

Rarely do Coh-Metrix studies use transcripts of oral dialogue or 

assume participants are both novices (i.e. the task is not an expert-

novice tutoring scenario.) Additionally, these indices have been 

sparingly used in MMLA research. In an MMLA study on a similar 

collaborative task, verbal coherence positively correlated with 

learning gains and significantly differed by condition [14]. 

Researchers then used language metrics to predict learning gains 

via support vector machine (SVM). Initial work from this current 

study has indicated that amount of talking and equity of talk time 

may be important indicators of good collaboration [15] but this 

discourse has not been analyzed in-depth yet. 

3. RESEARCH QUESTIONS 
This study attempts to answer the following research questions 

(RQs): 

RQ1: Are Coh-Metrix indices derived from transcripts of discourse 

between co-located partners related to the quality of their 

collaboration and learning gains? 

RQ2: Are Coh-Metrix indices different across experimental 

conditions? 

RQ3: Are Coh-Metrix indices associated with MMLA measures 

(e.g., Joint visual attention, physiological synchrony, 

nonverbal behaviors) that were previously significantly 

correlated with collaboration quality? 

RQ4: What Coh-Metrix indices are most meaningful for estimating 

a group’s collaboration? 

RQ5: Can Coh-Metrix indices be used to train supervised machine 

learning algorithms to predict collaboration quality? 

4. METHODS 

4.1 The Study 
Participants with no self-reported prior programming or robotics 

knowledge (“novices”) were paired randomly with an unknown 

partner and tasked with programming a robot to solve a series of 

increasingly complex mazes in 30 minutes. During the activity, 

mobile eye-trackers recorded participant gaze data, bracelets 

captured electrodermal activity, and a motion sensor collected 

movement and position data. A 2x2 study design was employed to 

test two different collaboration interventions: an informational 

intervention that described the benefits of collaborating on tasks 

and a visualization intervention that graphically plotted relative 

verbal contributions from each participant from the previous 30 

seconds. The informational intervention is the primary on discussed 

here as the other did not result in significant differences in 

dependent measures. All participants gained knowledge of basic 

programming skills according to a pre-post survey (t = 6.18, p < 

0.001) and a 7 percentage point increase in collaboration quality 

was associated with a 2 percentage point increase in code quality 

when controlling for gender and prior education (p < 0.001). For 

more details of experimental design and overall results, see Table 1 

and [4]. Figure 1 shows a typical image of the experiment in 

progress.  

4.2 Participants 
Forty-two dyads completed the study and the first sessions each 

researcher conducted were removed to improve overall fidelity (N = 

40 groups). Participants were drawn from an existing study pool at 

a university in New England in the United States. 62% of 

participants reported being students at the university of various 

levels, with ages ranging from 19 to 51 years old with a mean age 

Table 1. Summary of measures from study. 

Independent Measures Process Data Dependent Measures 

Control Condition: no intervention 

Treatment Condition: informational 

intervention orally delivered by researcher 

prior to beginning of main portion of 

study. 

Eye-tracking: Joint visual attention by 

dyads on different areas of interest, 

amounts of time looking at areas of 

interest 

Electrodermal activity: differences 

between individuals, synchrony measures, 

rates of change 

Movement and posture: proximity, 

alignment, bimanual coordination, total 

movement, leaning, synchrony measures 

Expert ratings of collaboration 

Task performance measures 

Survey gains 
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Figure 1. Experimental setup from the study. 

of 27 years. 60% of participants identified as female. Participants 

were paid $20 per 90-minute session of the study. 

4.3 Procedure 
Prior to the main activity, participants signed informed consent 

paperwork and took a 5-minute pre-survey pertaining to simple 

programming tasks. Once the survey was complete, sensors were 

applied to the participants and calibrated while the function of each 

sensor was explained.  

Next, participants were shown a tutorial video explaining how to 

write code in Tinker, a block-based environment designed for use 

with the sensors and motors on the robot. Participants were then 

given 5 minutes to write a simple program to move the robot 

forward past a red line on the table in front of them. After the 

completion of this tutorial activity, participants were shown a 

second tutorial video that explained more advanced features of the 

programming environment like setting threshold sensor values for 

triggering commands and using conditional statements. A reference 

sheet was also provided to participants that summarized the content 

of both tutorial videos. 

At this point, groups in the Intervention condition were read a 

summary of several research findings relevant to collaboration such 

as the importance of equity of speech time in high quality 

collaboration. Dyads in the Control group were given no such 

information after completing the tutorial (N = 20 groups in each 

condition). 

Dyads then had 30 minutes to write code to guide their robot 

through a series of increasingly complex mazes. Participants did 

not know the arrangement of the mazes ahead of time and were 

prompted to write code that could solve any simple maze. Once the 

robot completed a maze twice successfully, the next one was 

provided by the researcher. During this portion of the activity, 

predetermined hints were provided to groups at 5-minute intervals 

to ensure common pitfalls identified in pilot resting were avoided. 

Following the completion of this portion, the post-survey was 

administered, demographic data was collected, sensors were 

removed, and participants were paid and debriefed. 

4.4 Dependent Measures 
Dyads’ collaboration was evaluated live by the researcher 

conducting the session. Quality of collaboration was assessed on 

nine different scales derived from Meier, Spada, and Rummel’s 

work on assessing collaboration in CSCL [16]: sustaining mutual 

understanding, dialogue management, information pooling, 

reaching consensus, task division, time management, technical 

coordination, reciprocal interaction, and individual task orientation. 

Each scale was on a -2 to 2 scale, and all scales were added 

together to generate an overall collaboration rating for dyads. 

Multiple researchers conducted sessions of the study and thus 

coded dyads’ behavior. Researchers double coded 20% of the 

sessions from videos collected during the session and achieved an 

inter-rater reliability of α = 0.65 (75% agreement). 

Learning of computational skills (identifying a bug in block-based 

code, anticipating the output of a code segment, describing how to 

do a task with pseudocode, etc.) was assessed individually via pre- 

and post-tests with four questions each. These measures were 

adapted from [17, 18]. Researchers coded a subset of the responses 

to 100% agreement based on their demonstrations of understanding 

of computational thinking principles then coded the remaining 

surveys with the developed rubric. 

4.5 Data Pre-Processing 
Data collected by the eye-trackers, wristbands, and motion sensors 

each needed to be processed individually prior to merging for 

analysis. See Reilly, Ravenell, and Schneider for details on the 

processing of the Kinect motion sensor data [15] and Dich, Reilly, 

and Schneider for use of the electrodermal activity data from the 

Empatica E4 bracelet [19]. Four different physiological synchrony 

measures were calculated for movement and electrodermal (EDA) 

data: Signal Matching (SM), Instantaneous Derivative Matching 

(IDM), Directional Agreement (DA) and Pearson’s Correlation 

(PC). SM was calculated as the differences in area between the 

plots of the team members’ EDA, IDM calculates how closely the 

slopes of the physiological signal curves match, DA identifies 

whether individuals’ signal data increase or decrease at the same 

time, and PC looks for a linear relationship between EDA data of 

both participants. For details on the calculation of these measures, 

see [19].  

For use in this study, the eye-tracking data was summarized in two 

different ways: The proportion of time both participants were 

looking at the same spot (joint visual attention, see [20]) and the 

proportion of time spent looking at various areas of interest around 

the room (the computer screen, the maze, the robot, etc.) as 

determined by the fiducial markers placed on all objects in the 

experiment. 

Audio recordings of sessions were transcribed using multiple 

iterations of assignments to Amazon Mechanical Turk workers 

until it was suitable for analysis. Transcripts were formatted via 

Python to match the requirements of Coh-Metrix and were sent to 

the Institute for Intelligent Systems at the University of Memphis 

for analysis. All analyses in this study were done in Python using 

the scikit-learn package [25]. 

5. RESULTS 

5.1 RQ1: Correlations with Collaboration 
Indices positively correlated with our rating of collaboration 

include more dialogue between partners (as measured by the 

number of sentences and words uttered), the use of adverbs, the 

CELEX word frequency (how often content words appear in 

sentences), and the familiarity of content words used. Deep 

cohesion (the use of causal connectives to signify causal 

relationships) and increased temporality (cues about temporality 

and tense) were also significantly positively correlated with 

collaboration. Additionally, the Coh-Metrix L2 readability score 

(use of simple grammar that an English language learner could 
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more easily parse) was also positively correlated. An appendix with 

definitions of all indices discussed here is provided at the end of 

this paper (also available in Appendix A of [3]). Significant 

correlations are listed in Table 2. 

Table 2. Indices correlated with collaboration (red indicates 

negative correlation). 

Index Value (p-value) Description 

DESSC 

DESWC 

DESPL   

DESWLsy 

DESWLsyd 

DESWLlt 

DESWLltd 

0.51 (0.0087) 

0.735 (<0.0001) 

0.51 (0.0087) 

-0.27 (0.023) 

-0.36 (0.019) 

-0.41 (0.0081) 

-0.17 (0.016) 

Descriptive indices that 

describe the number and 

length of paragraphs, 

sentences, and words 

PCNARz 

PCNARp 

PCDCz 

PCTEMPz 

PCTEMPp 

PCCNCz 

PCCNCp 

0.53 (0.0042) 

0.55 (0.0023) 

0.476 (0.039) 

0.53 (0.0068) 

0.52 (0.0064) 

-0.41 (0.028) 

-0.48 (0.0063) 

Text easability principal 

component scores 

LDTTRc 

LDTTRa 

LDVOCD 

-0.76 (<0.0001) 

-0.76 (>0.0001) 

-0.25 (0.047) 

Lexical diversity (unique 

words per total number of 

words) 

CNCCaus 

CNCLogic 

CNCADC 

0.45 (0.037) 

0.49 (0.042) 

0.36 (0.036) 

Incidence of connectives 

SMINTEr 0.40 (0.044) 
Ratio of intentional particles 

to intentional verbs 

SYNNP -0.43 (0.0012) 
Number of modifiers per 

noun phrase, mean 

DRPVAL -0.33 (0.020) 
Agentless passive voice 

density, incidence 

WRDNOUN 

WRDADV 

WRDPRP2 

WRDFRQc 

WRDFRQa 

WRDAOAc 

WRDFAMc 

WRDCNCc 

WRDIMGc 

WRDHYPv 

WRDHYPnv 

-0.43 (0.0016) 

0.47 (0.028) 

-0.68 (0.0005) 

0.43 (0.0004) 

0.16 (0.038) 

-0.28 (0.048) 

0.52 (0.0008) 

-0.46 (0.0063) 

-0.51 (0.007) 

-0.49 (0.0047) 

-0.44 (0.0020) 

Word information (part of 

speech category, syntactic 

categories) 

RDL2 0.36 (0.023) Coh-Metrix L2 Readability 

 

Indices negatively correlated with collaboration include the mean 

number of syllables per word, the number of nouns, the lexical 

diversity (unique number of total words), and hypernymy for nouns 

and verbs (using specific words instead of general ones.) Features 

that indicate the difficulty of understanding text are generally 

negatively correlated with collaboration, such as modifiers per 

noun phrase (complex syntax places higher demands on working 

memory), agentless passive voice, and the ratio of intentional 

particles to intentional verbs (a higher ration indicates more 

inference is needed to understand the text.) Indices for specificity of 

content words are also negatively correlated, such as concreteness 

and imageability (how easy it is to create a mental image of the 

word.) 

5.2 RQ1: Correlations with Learning Gains 
The magnitude of participant learning gains on the pre-post survey 

was also correlated significantly with several Coh-Metrix indices. 

Unlike collaboration, learning gain is positively correlated with 

lexical diversity (r = 0.41, p = 0.041) which indicates that use of 

specific language may aid learning of computer science principles. 

On the other hand, learning gain is negatively correlated with 

pronoun incidence (r = -0.44, p = 0.041) and referential cohesion (r 

= -0.34, p = 0.049) indicating that use of vague, overlapping 

language by the dyad is associated with lower gains on the survey. 

5.3 RQ3: Differences by Condition 
Differences between the Control and Intervention conditions could 

also be seen in their discourse during the activity. According to 

paired t-tests, groups in the Control condition had fewer words (t = 

-3.4, p = 0.0019), fewer adverbs (t = -2.30, p = 0.029), fewer 

sentences (t = -2.17, p = 0.038) and shorter paragraphs (t = -2.17, 

p = 0.038) than those in the Intervention condition. Additionally, 

the Control condition discourse had higher lexical diversity than the 

Intervention condition (LDTTRc: t = 2.93, p = 0.0065; LDTTRa: t 

= 3.03, p = 0.0049) which was shown above to be negatively 

correlated with collaboration. 

With respect to the differences between groups that saw a 

visualization intervention that plotted relative verbal contributions 

from each participant, only the L2 Readability score differed 

significantly between conditions (t = -2.16, p = 0.039). As this 

intervention did not result in significant differences in our outcome 

measures, it makes sense that the impact on our Coh-Metrix indices 

is also minimal. 

5.4 RQ4: Correlations with MMLA Values 
We also explored whether any dyad-level features engineered from 

our sensor data might correlate with the Coh-Metrix indices that 

were previously seen to be significantly related to collaboration. 

Out of 30 features from our Kinect, eye-tracking, and EDA data, 

four were significantly correlated with three or more indices shown 

in Table 2. Correlation coefficients for these four features are 

shown in Figure 2. 

From our eye-tracking data, the amount of time participants spent 

looking together at neither the maze nor the computer (aoi_0) was 

significantly negatively correlated with word length (r = -0.42, p = 

0.034), lexical diversity (r = -0.40, p = 0.042), and syntactic 

complexity (r = -0.39, p = 0.049). Those three indices were also 

negatively correlated with collaboration. The amount of time 

participants spent looking at the maze and robot but not the 

computer (aoi_5) was positively associated with second person 

pronouns (r = 0.65, p < 0.001) and L2 readability (r = 0.39, p = 

0.047) but negatively related to word length (r = -0.42, p = 0.034), 

word diversity (r = -0.47, p = 0.016), and use of the passive voice 

(r = -0.40, p = 0.046). This also follows a similar pattern to our 

correlations with collaboration. 

The directional agreement (DA) of the dyad is calculated as the 

proportion of time where EDA for both participants was increasing 

or decreasing at the same time (in other words, it is a measure of 
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Figure 2. Correlation coefficients (top) and p-values (bottom) 

for select MMLA features. 

physiological synchrony). Higher DA was positively associated 

with the number of words used (r = 0.44, p = 0.021), narrativity (r 

= 0.48, p = 0.012), temporality (r = 0.55, p = 0.003), word 

frequency (r = 0.46, p = 0.017), word familiarity (r = 0.45, p = 

0.017), and L2 readability (r = 0.57, p = 0.002). DA was 

significantly negatively associated with lexical diversity (r = 0.44, 

p = 0.021), syntactic complexity (r = -0.41, p = 0.033), word 

concreteness (r = -0.45, p = 0.018), imageability of content words 

(r = -0.50, p = 0.007), and hypernymy (r = -0.56, p = 0.002). The 

directions of these correlations also fit with what we observed.  

The Instantaneous Derivative Matching (IDM) of the Kinect 

movement data is calculated as the proportion of time where 

movement of both dyad members is either increasing or decreasing 

at a similar rate. IDM of movement was positively associated with 

narrativity (r = 0.50, p = 0.006), word familiarity (r = 0.45, p = 

0.015), and L2 readability (r = 0.42, p = 0.023). Movement IDM 

was negatively correlated with word length (r = -0.41, p = 0.026), 

lexical diversity (r = -0.53, p = 0.003), syntactic complexity (r = -

0.46, p = 0.012), the number of nouns used (r = -0.44, p = 0.018), 

word concreteness (r = -0.57, p = 0.001), imageability of content 

words (r = -0.57, p = 0.001), and hypernymy (r = -0.37, p = 0.049). 

Again, these correlations are of similar magnitude and direction as 

those seen in our results from collaboration. 

5.5 RQ5: Predicting Collaboration 
In order to explore how we might be able to use the Coh-Metrix 

indices to predict quality of collaboration, we classified dyads in 

terms of their collaboration ratings using a variety of typical 

machine learning classifiers. All 106 Coh-Metrix indices were used 

as features to classify the 40 groups. Missing values were imputed 

with their column means and all features were normalized prior to 

their use. 

We first separated our participants into two groups based on the 

median value of group collaboration. We trained a Naïve Bayes 

classifier, a support vector machine (SVM), and a Random Forest 

(RF) model [21] on our entire data. NB usually works well with 

text data [26], SVM excels at binary classification [27], and RF 

along with other tree-based classifiers have been used successfully 

in the EDM community with a wide variety of educational datasets 

[28]. These algorithms were also selected as they are 

computationally rapid to implement once tuned and may be used in 

a real-time nature during a future intervention. The alpha, loss, and 

penalty used by SVM as well as the number of estimators, 

maximum depth, and criterion function for RF were selected by 

grid search with 5-fold cross-validation (CV). To address issues of 

overfitting with a small sample size, we report both training 

accuracy as well as the highest average accuracy achieved by our 5-

fold cross-validation. 

As shown in Table 2, the Random Forest model outperformed both 

Naïve Bayes and SVM on the binary classification median split 

task. While the 100% train accuracy of the RF is surely due to 

overfitting, the high CV accuracy. All algorithms were able to 

outperform random assignment by large margins. We next 

separated out participants into four groups based on the quartile 

values of group collaboration. Our three models were fit with the 

same procedure and once again RF outperformed both other 

algorithms on the training data. When looking at validation results, 

however, the RF and SVM classifiers performed identically. 

Simpler models may avoid the overfitting issues leading to the 

reported 100% training accuracy. 
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Table 2. Accuracy of classifiers. 

 
Median 

Split Train 

Median 

Split CV 

Quartile 

Split Train 

Quartile 

Split CV 

Naïve 

Bayes 
0.88 0.74 0.81 0.51 

SVM 0.88 0.75 0.84 0.53 

Random 

Forest 
1.00 0.84 1.00 0.53 

 

To gain more insight into how these classifiers made their 

assignments, we investigated which features the RF model for the 

quartile split problem was ranking as most important for making 

assignments. Figure 3 plots the eleven most important features for 

our classification problem. Beyond that point, the feature 

importance rankings are too similar to derive insight. It is 

important to note that importance here is agnostic of whether these 

features correspond to good or bad collaboration; they are simply 

the most meaningful for deciding between them. Second person 

pronoun incidence (WRDPRP2) and lexical diversity (LDTTRc, as 

measured by the type-token ratio [22]) are the most important 

features. Word count (DESWC), sentence count (DESSC), 

incidence of negation expressions (DRNEG), text easability 

(PCDCp), and verb phrase density (DRVP) also rate highly. Many 

of these features were previously seen to be significantly correlated 

with collaboration, but verb phrase density and the incidence of 

negations appear here in our analyses for the first time. 

 

Figure 3. Feature importances for the quartile split Random 

Forest model. 

6. DISCUSSION 
In general, our findings indicate that our strongest collaborating 

dyads communicated more in terms of amount of words and 

sentences as well as the length of each utterance before the other 

participant would interject. In addition, these groups used more 

abstraction when referring to content words and terms and 

employed basic words and grammar to convey meaning is a direct 

fashion. They avoided using the passive voice or pronouns while 

reaching a consensus on a simple shared set of words to describe 

the task and their actions. While synonyms and extraneous 

modifiers were not used by strong collaborators, adverbs were used 

to define particular actions the robot needed to perform, and the use 

of logical, causal, and temporal connectives indicates a value to 

explicitly linking actions across space and time to meet the desired 

outcome. These indices of cohesion jointly allow collaborators to 

negotiate a shared problem space regardless of English language 

proficiency or level of education. 

To ground the above findings, here is an example of a low 

collaborating dyad’s discourse regarding programming the robot 

for a new maze: 

A: So let's, we can do, no, yeah, we can put up, if yeah and if it's 

that then it goes this.  
B: Then we add, turn right.  
A: Yeah it will go right and then it will take for, wait for 10 

seconds and then take a left. Also take a left.  
B: Yeah, go, go forward. Go forward. Left, then we go straight.  
A: Let’s go forward. Left and then right. Then left and right. 

In contrast, this is dialogue from a high collaborating group at a 

similar point in the activity: 

C: So let's try changing this value to...greater than the second "If 

Do".  
D: Okay. I just want to see if, oh, what did I do there, I just want 

to see if that what difference that makes.  
C: Perfect. All right, are you ready?  
D: Yep. Nope, all right.  
C: Okay so, we've got it going forward and turning right so at 

least the right works. That one's correct now. 
D: Now... if we change this number so let's go back to the 

widget.  
C: Okay, okay. I think I've got it, so we needed to turn so when 

we got it turn right, we need to maybe check to if it turns left or 

right needs to be "greater than". 

In the second dyad’s discourse, more complete yet simple grammar 

and explicit markers of turn-taking result in a much fuller discourse 

that is easier to track. Their use of causal language and conditionals 

and implies a greater grasp of the content of the activity. 

The importance and effects of cohesion are typically much higher 

for low-knowledge readers, with this relationship dubbed the 

“reverse cohesion effect” in discourse literature [23]. As none of 

our participants had any prior knowledge of robotics or computer 

programming, the importance of cohesion in participant discourse 

is likely to be crucial in similar educational settings. Reading skill 

and young age can also interact with this effect but these issues 

were not confounders in our study due to the use of oral dialogue 

and our population being solely adults. 

As far as how the Treatment and Control groups differed, the 

Control groups typically communicated less (fewer sentences with 

shorter exchanges), used less adverbs, and had a higher lexical 

diversity (which was shown to be negatively correlated with 

collaboration). This difference shows that even simple verbal cues 

delivered as an intervention prior to an activity can have a positive 

association with collaboration by fostering more cohesive 

communication. The effect size of an informational intervention 

such as this on collaboration might be effectively used as a baseline 

when comparing more elaborate interventions in similar activities 

in the future. It is also reassuring to see the low effect on the Coh-

Metrix indices from the visualization intervention condition that 

had no effect on collaboration. This validates our strategy of using 
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these indices without coding scheme to assess collaboration quality 

in a variety of different experimental conditions. 

Comparing average learning gains on the pre-post survey to the 

Coh-Metrix indices is difficult for several reasons. First, the survey 

was done at the individual level and by only using the mean change 

we ignore when participants unequally learned during the task. 

Second, gains may be susceptible to ceiling effects where high 

gains are not seen due to high performance on the pre-test. Third, 

the dyads were instructed to program the robot to solve mazes and 

thus their conversation revolved around that task. The activity 

certainly utilized the computer science principles that were assessed 

in the survey, but the discussion was not as specific as a tutor 

dialogue regarding programming.  

Despite these issues and challenges, several Coh-Metrix indices 

reveal what types of markers in the discourse can signal learning 

taking place. While lexical diversity was negatively associated with 

collaboration, it appears to be beneficial for learning. Knowing and 

applying more terms for phenomena or problem-solving strategies 

may aid participants transfer their knowledge from the 

experimental task to the post-survey. Additionally, too much 

referential cohesion may make ideas difficult to separate out of 

context and thus more challenging to use in isolation on test 

questions. 

It is worth noting that features engineered from all three of our 

MMLA sensors provided insight into how to assess collaboration 

using the Coh-Metrix indices identified as significantly related to 

collaboration. When joint visual attention fell outside of the 

tabletop or laptop (aoi_0), this could generally be interpreted as 

participants looking at each other (as relatively little time was spent 

with both participants simultaneously looking at the facilitator, the 

same spot on the wall, or anything unrelated to the task). The 

proportion of time spent doing this negatively correlated with word 

length, lexical diversity, and syntactic complexity (all of which are 

markers of poor collaboration). Eye contact is positively associated 

with problem solving and facilitates conceptual understanding in 

group settings [24] so this result triangulates established literature 

findings. Joint visual attention being more focused on the maze and 

robot instead of the laptop (aoi_5) correlated positively with 

second person pronoun use and readability while negatively 

correlating with word length, word diversity, and use of the passive 

voice. This can be interpreted as dyads communicating with each 

other more effectively by looking at the physical problem space and 

talking through the steps needed to solve the problem versus 

spending more time in the programming interface editing code. 

Two of our measures of synchrony (directional agreement for EDA 

and instantaneous derivative matching for motion) are positively 

associated with indices deemed good for collaboration and 

negatively correlated with indices seen to be negatively related to 

collaboration. By focusing on these four features from our 

multimodal data, we might be able to automatically assess 

collaboration during trials, which could be used to provide 

formative feedback and design new interventions based on these 

measurements. 

Finally, we used supervised machine learning algorithms in hopes 

of being able to detect and intervene while dyads are working 

together. The relative feature importances from our Random Forest 

classifier also shed light on what indices are most useful for 

assessing collaboration. Second person pronoun incidence, number 

of words, and lexical diversity appeared in our correlations with 

collaboration, while verb phrase density and the incidence of 

negations did not appear in our previous results. The emergence of 

negation in this model will need to be studied more thoroughly. 

Increased incidence of negation expressions may signal discord 

between the participants that could hinder the joint construction of 

meaning en route to problem solving. It is possible that the 

relationships between these features and collaboration are nonlinear 

and are thus not detected as readily by simple correlational 

analyses. Additionally, the overfitting of the models may be due to 

the lack of regularization of model complexity. With the range of -

2 to 2 for the collaborative scoring, it might be more appropriate to 

fit a regression model instead of classifying the scores. 

This preliminary work has several limitations that must temper the 

results. The small sample size of 40 groups leads to overfitting of 

our classifiers and may interfere with the ability of some of the 

Coh-Metrix algorithms to function. The designers recommend 

using a carpus of roughly 300 texts of 300 words each to study text 

easibility [3]. While the length of our transcripts exceeds these 

recommendations, it is unclear what effect our sample may have on 

this novel use of Coh-Metrix. We collected no reading level 

demographic data on our participants, nor did we ask for whom 

was English a first language. Additionally, this preliminary work 

does not address the important issue of how does communication 

(and thus collaboration) differ when participants have very 

different expressive language capabilities.  

The developers of Coh-Metrix intended these indices to be the 

“low-hanging fruit” of computational linguistics, choosing to use 

simple metrics instead of complex computational linguistic models 

[3]. While this will likely be valuable for developing real-time 

dynamic interventions that can’t be slowed down by 

computationally expensive operations, we need to compare these 

results to more complex models and other natural language 

processing methods. Future work will also explore “driver-

passenger” models that investigate emergent leadership behavior 

and uneven talk time in the discourse as well as the role of eye 

contact in the quality of collaboration. 

7. CONCLUSION 
This research paves the way for real-time detection of 

(un)productive interactions from multimodal data, potentially 

facilitating the development of fail-soft real-time interventions to 

support collaborative learning. While Coh-Metrix is only available 

currently as an online service, similar analytical platforms can be 

run locally [9] and could offer advice based on specific issues 

detected in the discourse rather than general distribution of talk 

time. These indices of cohesion and easibility have proven to be 

versatile and serve as effective features for estimating the rough 

quality of dyadic discourse with regard to collaboration quality. 
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10. Appendix: Coh-Metrix Indices 
 

Index Description Index Description 

DESSC Sentence count, number of sentences CNCLogic Logical connectives incidence 

DESWC Word count, number of words CNCADC Adversative and contrastive connectives incidence 

DESPL Paragraph length, number of sentences, mean SMINTEr Ratio of intentional particles to intentional verbs 

DESWLsy Word length, number of syllables, mean SYNNP Number of modifiers per noun phrase, mean 

DESWLsyd Word length, number of syllables, standard deviation DRVP Verb phrase density, incidence 

DESWLlt Word length, number of letters, mean DRNEG Negation density, incidence 

DESWLltd Word length, number of letters, standard deviation DRPVAL Agentless passive voice density, incidence 

PCNARz Text Easability PC Narrativity, z score WRDNOUN Noun incidence 

PCNARp Text Easability PC Narrativity, percentile WRDADV Adverb incidence 

PCDCz Text Easability PC Deep cohesion, z score WRDPRP2 Second person pronoun incidence 

PCTEMPz Text Easability PC Temporality, z score WRDFRQc CELEX word frequency for content words, mean 

PCTEMPp Text Easability PC Temporality, percentile WRDFRQa CELEX Log frequency for all words, mean 

PCCNCz Text Easability PC Word concreteness, z score WRDAOAc Age of acquisition for content words, mean 

PCCNCp Text Easability PC Word concreteness, percentile WRDFAMc Familiarity for content words, mean 

LDTTRc Lexical diversity, type-token ratio, content word lemmas WRDCNCc Concreteness for content words, mean 

LDTTRa Lexical diversity, type-token ratio, all words WRDHYPv Hypernymy for verbs, mean 

LDVOCD Lexical diversity, VOCD, all words WRDHYPnv Hypernymy for nouns and verbs, mean 

CNCCaus Causal connectives incidence RDL2 Coh-Metrix L2 Readability 
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ABSTRACT
Over the past decade, low graduation and retention rates have
plagued higher education institutions. To help students graduate
on time and achieve optimal learning outcomes, many institutions
provide advising services supported by educational technologies.
Accurate grade prediction is an integral part of these services such
as degree planning software, personalized advising systems and
early warning systems that can identify students at-risk of drop-
ping from their field of study. In this work, we present next-term
grade prediction models based on students’ cumulative knowledge
and co-taken courses. The proposed models are based on a ma-
trix factorization framework and incorporate a co-taken course in-
teraction function to learn the influence from the co-taken courses
on the target course. The co-taken course interaction function is
formed by a neural network, which takes the knowledge difference
between the co-taken courses and the target course as input, and
outputs an influence value that will be used to predict students’
grades on the target course. The experimental results on vari-
ous datasets from a U.S. University demonstrate that the proposed
models significantly outperform competitive baselines across dif-
ferent test sets. Furthermore, we analyze the proposed models’
performance with different numbers of co-taken courses as well
as different numbers of co-taken course subjects, and highlight
with an application case study how a student might make deci-
sions related to selection of courses. The codes are available at
https://github.com/Zhiyun0411/EDM.

Keywords
matrix factorization, next-term grade prediction, cumulative

knowledge, co-taken courses

1. INTRODUCTION
For over a decade higher education institutions in the United States
have been grappling with low graduation rates [9]. The National
Center for Education Statistics 1 reports that approximately 59%
of students who started college in 2009 were able to graduate and
obtain a 4-year college program degree within 6 years. There is
a pressing need for data-driven applications and services to guide
students through academic pathways and achieve better learning
outcomes. Many higher education institutions have implemented
programs and services supported by educational technologies to in-
crease overall graduation rates [17]. For example, Academic Ad-
vising service 2 provides effective student-centered advising at Pur-
due University. Graduation Progression Success (GPS) Advising 3

implemented at Georgia State University helps identify at-risk stu-
dents and have advisors respond alerts. Their reports show a 6%
increase of 6-year graduation rate over 4 years. Our work aims to
help students select courses for the next term by developing meth-
ods that can provide accurate grade prediction for the courses they
have not taken yet.

In the past few years, many approaches have been developed for
next-term grade prediction. One of the most popular approaches
is matrix factorization (MF), which is inspired from the Recom-
mender Systems (RS) literature [2, 3, 7, 15, 18]. Specifically, MF
decomposes the student-course grade matrix into two matrices con-
taining student and course latent factors, respectively. The pre-
dicted grade of a student on a course is given by the inner prod-
uct of the corresponding student and course latent factors [4, 10].
There are other extended MF-based models which achieve better
grade prediction results than MF. For example, Morsy et al. [8]
proposed a Cumulative Knowledge-based Regression Model (CK)
to tackle the next-term grade prediction problem. CK models each
student with cumulative knowledge acquired by the student in the

1https://nces.ed.gov
2http://www.purdue.edu/advisors/index.html
3http://giving.gsu.edu/student-success/
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(eds.) 2019, pp. 158 - 167
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Figure 1: Students’ Performance with Different Co-taken Course
Pairs. Note: BIOL311 is course “General Genetics". CHEM313
is course “Organic Chemistry". CS321 is course “Software Engi-
neering". ECE301 is course “Digital Electronics". MATH114 is
course “Analytic Geometry and Calculus". CS211 is course “Ob-
ject Oriented Programming". MATH203 is course “Linear Alge-
bra". CS262 is course “Low-level Programming".

past terms. However, among all the existing methods for next-term
grade prediction [2,13,14], very few consider the effect of co-taken
courses on students’ performance.

We conduct a statistical analysis on a dataset collected from George
Mason University in order to demonstrate the effects of co-taken
courses on students’ performance. Figure 1 shows the true grade
distribution of students’ on a specific course with and without en-
rolling in another course in the same term. The course pairs we
choose in this analysis are frequently co-occuring in our dataset.
For each target course pair, we choose the students who take more
than four courses in a term, including the corresponding course
pairs. We keep the students if the other co-taken courses only share
few topics/material as the target course pairs. Figure 1 shows that
students who take BIOL311 (Genetics) with CHEM313 (Organic
Chemistry) have fewer “F", “D" and “C" grades, and several more
“B" grades than those students who only take BIOL311 in a term.
Similar trend has been found for course pairs CS321 (Software En-
gineering) and ECE301 (Digital Electronics). Moreover, students
who take MATH114 (Calculus) with CS211 (Object Oriented Pro-
grammming) will have more “F" grades than those students who
only take MATH114 in a term. Students who co-take MATH203
(Linear Algebra) and CS262 (Low-level programming) have more
“C" grades than those students who only take MATH203 in a term.
This shows that it can be challenging for students to take some
courses together in a term (e.g., MATH114 and CS211, MATH203
and CS262), while it might not cause grade drop if taking other
course pairs together (e.g., BIOL311 and CHEM313, CS321 and
ECE301). Thus, we assume that co-taken courses can have sub-
stantial effect on student grades in different ways.

In this work, we propose grade prediction models that incorporate

both Cumulative Knowledge and Co-taken Courses (CKCC) to
predict students’ performance in the next term. Inspired by Morsy
et al. [8], the proposed methods model each student’s latent factors
by cumulating the knowledge provided by the sequence of courses
the student has taken in the past terms. Furthermore, we introduce
a co-taken course interaction function to model the influence of the
co-taken courses on students’ performance. The co-taken course
interaction function is formed by a neural network which takes the
knowledge difference between the co-taken courses and the target
course as input, and outputs an influence value from the co-taken
courses on the target course. We conduct comprehensive experi-
ments on various datasets collected from George Mason University
and thorough analysis on the effect of co-taken courses. Our ex-
perimental results show that CKCC significantly outperforms other
competitive baselines methods for the task of grade prediction. We
also provide detailed case study on how our model can help student
in course selection for the next term.

The main contributions can be summarized as follows:

1. We develop CKCC models on next-term grade prediction.
The models consider both students’ cumulative knowledge
and co-taken courses in the target term. To the best of our
knowledge, this is the first work that learns and explicitly
incorporates influences from co-taken courses for grade pre-
diction.

2. We provide a detailed case study on how our model helps
students in course selection for the next term by compar-
ing the performance of CKCC with different sets of co-taken
courses.

2. RELATED WORK
2.1 Grade Prediction Approaches
Methods originating from recommender systems research have at-
tracted increasing attention in educational data mining [2,3,13,14,
20]. Sweeney et al. [18, 19] applied several recommender systems
approaches to predict next-term grades. The authors implemented
MF-based methods including SVD, SVD-kNN and factorization
machine and simple baseline methods including global, student,
and course means. The work showed that MF-based methods con-
sistently achieve better grade prediction results over the baselines.
Elbadrawy et al. [1] developed a domain-aware grade prediction
method with student/course-group biases. This method groups stu-
dents based on majors and academic levels. Additionally, it groups
courses based on course levels and course subjects. The method as-
sumes that the students/courses in a same group tend to have simi-
lar biases. Accordingly, this method models biases for each student
and course group within a MF framework and achieved significant
improvement on grade prediction performance over baselines.

2.2 Grade Prediction based on Student His-
torical Information

Polyzou et al. [12] addressed the future course grade prediction
problem with different approaches based on sparse linear mod-
els and MF approaches. The experimental results showed that
the course-specific regression approach achieved the best perfor-
mance among all approaches. This method predict a student’s per-
formance using a sparse linear combination of the grades that the
student obtained in past courses. Morsy et al. [8] proposed a model
named Cumulative Knowledge-based Regression Model (CK) to
predict student’s grade on a certain course at the next term. CK
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models each student with the cumulative knowledge he/she ob-
tained from the sequence of courses he/she took in the past. Then
CK calculated the inner product of the cumulative knowledge vec-
tor of a student and the required knowledge vector of the target
course as the predicted grade. The experimental results showed
that CK significantly outperforms MF in grade prediction. Ren
et al. [13] proposed a matrix factorization model with temporal
course-wise influence to predict next term student grades. This
model considers two components in predicting a student’s grade
on a certain course: (i) the student’s competence with respect to
the target course’s topics, content and requirements, etc., and (ii)
student’s previous performance over other courses. The study con-
cluded that considering temporal influence can significantly im-
prove the next-term grade prediction performance.

2.3 Neural Network in Educational Data
Mining

Neural networks have been applied to solve many educational data
mining problems. For example, Sharma et al. [16] proposed a com-
posite deep neural network to predict whether the educational video
is lively or not. The proposed method first used a convolutional
neural network to extract the video features, and then used a deep
recurrent neural network to predict the human movement label in
order to detect video liveliness. Klingler et al. [6] presented a semi-
supervised classification pipeline that employed deep variational
auto-encoders to detect students who are suffering from develop-
mental dyscalculia. Piech et al. [11] introduced Deep Knowledge
Tracing (DKT) to model student learning with Recurrent Neural
Networks. The authors provided experiments on how to use DKT
to detect latent structure between the assessments in the dataset.
The models proposed in this paper tackle the challenges of next-
term grade prediction with students’ history information (the se-
quence of courses the student has taken) and the co-taken courses
in the next term. The main contribution of our model is to explicitly
incorporate the co-taken courses with in MF framework.

3. PRELIMINARIES AND PROBLEM DEF-
INITION

3.1 Problem Definition
Formally, student-course grades will be represented by G1, G2, ...,
GT for a total of T terms. Each Gt is a matrix, and contains the set
of student-course grades for all students enrolled in courses within
term t. For all the students, the set of student-course grades up to
term t can be represented by Gt =

⋃t
i=1 Gi. The set of courses that

student s has taken in term t is represented by Cs,t and the set of
grades that student s achieves in term t is represented by Gs,t . The
set of courses that student s has taken up to term t is represented by
Ct

s, and the set of grades that student s has achieved up to term t is
represented by Gt

s.

In this paper, all vectors are represented by bold lower-case letters
and all matrices are represented by upper-case letters. Row vectors
are represented by having the transpose superscriptT, otherwise by
default they are column vectors. A predicted value is denoted by
having a ˜ symbol. Table 1 summarizes the key notations used in
this paper.

Given student-course grades up to term t−1 and the set of courses
each student plans to take at term t, the objective of our work is
to predict student’s grades on a specific course given the set of co-
taken courses at term t.

3.2 Grade Prediction based on Matrix Factor-
ization

MF methods factor the student-course grade matrix into two matri-
ces containing latent factors of courses and students in a common
knowledge space, respectively [1,12]. The dimension of the knowl-
edge space is much lower than that of the original student-course
grade matrix. We use ps (ps ∈Rk) and qc (qc ∈Rk) to represent la-
tent factors of k dimensions for student s and course c, respectively.
Thus, the grade of student s on course c can be predicted as

g̃s,c = pT
s qc +bs +bc. (1)

where bs and bc are bias terms for student s and course c, respec-
tively.

3.3 Grade Prediction with Cumulative
Knowledge

Morsy et al. [8] proposed the CK model which learns each stu-
dent’s latent factors with cumulative knowledge acquired by the
student in past terms. Specifically, CK uses two vectors to model a
course: the provided knowledge by the course and the prerequisite
knowledge of the course, respectively. A student’s latent factor is
given by the knowledge accumulated from the previous course that
the student has taken and the corresponding course grades. For-
mally, the cumulative knowledge acquired by student s up to term
t is represented by pt

ck(s), and is given by:

pt
ck(s) = ∑

gs,c′∈Gt−1
s

(e−λ (t−ts,c′ )kc′ ·gs,c′), (2)

where ts,c′ is the term in which student s took course c′, e−λ (t−ts,c′ )

is an exponential time decay function with λ > 0 denoting the de-
cay rate, kc′ is the latent knowledge factor of course c′, and gs,c′

is the grade of student s on course c′. Given pt
ck(s), CK predicts

student s’s grade on course c in term t as follows:

g̃t
s,c = pt

ck(s)
Tqc. (3)

Note that in prior work, Ren et al. [14] have shown that CK can
achieve better grade prediction performance when the cumulative
knowledge pt

ck(s) is averaged in Eq 3. Therefore, g̃t
s,c is presented

as follows:

g̃t
s,c =

1
|Gt−1

s |
∑

gs,c′∈Gt−1
s

(e−λ (t−ts,c′ )kc′ ·gs,c′)
Tqc, (4)

We refer to this model as the averaged cumulative knowledge (CK)
model and will consider it as one of our baseline methods.

4. METHODS
4.1 Model Overview
In this paper, we propose grade prediction models that incorporate
Cumulative Knowledge and Co-taken Courses (CKCC). To predict
student s’s grade on course c in term t, CKCC takes into account
two factors: i) cumulative knowledge of student s up to term t−1,
and ii) the other courses that will be taken together with course c
in term t. To model the first factor, we adopt the CK model as in
Eq. 4, that is, we cumulate the provided knowledge of the courses
which student s has taken in the past, denoted as c′, to represent
his/her cumulative knowledge, and use a latent factor to represent
knowledge required by course c. To model the second factor, we
introduce an co-taken course interaction function f (·) to learn the
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Table 1: Notations

Notation Explanation
m number of courses
n number of students
k number of latent dimensions
pt

ck(s) the cumulative knowledge of student s up to term t
qc latent factor of the required knowledge components

of course c
kc latent factors of the provided knowledge components

of course c
bs student bias term
bc course bias term
gt

s,c the grade of student s on course c at term t
ts,c the academic term when student s takes course c
Gt student-course grades at term t
Gt all the student-course grades up to term t
Gs,t all the grades student s obtains at term t
Gt

s all the grades student s obtains up to term t
Cs,t the set of courses student s chooses at term t
Ct

s the set of courses student s chooses up to term t

influence from co-taken courses, denoted as c′′, on student s’s grade
on course c in term t.

Specifically, we use a latent vector qc to represent the knowledge
components that course c requires. We hypothesize that the differ-
ence of the required knowledge between two courses will cause the
influence from one course on the other, as shown in Figure 1. Based
on this hypothesis, the difference between qc of course c and qc′′ of
a co-taken course c′′ can be used in f (·) to learn the influence from
c′′ to c. We sum up the differences between each co-taken course
c′′ and c in order to aggregate the influence. Thus, the sum of the
absolute values of the differences between each qc′′ and qc, that is,
∑c′′∈Cs,t\{c} |qc′′ −qc|, is used in f (·) to learn the influence from all
co-taken courses. Note that the use of absolute values here is to
avoid the scenarios in which the influences from different co-taken
courses are canceled out. Thus, CKCC predicts student s’s grade
on course c in term t as follows:

g̃t
s,c =

1
|Gt−1

s |
∑

gs,c′∈Gt−1
s

(e−λ (t−ts,c′ )kc′ ·gs,c′)
Tqc+

f ( ∑
c′′∈Cs,t\{c}

(|qc′′ −qc|)),
(5)

where |qc′′ − qc| is the vector of absolute values of entry-wise
difference between latent vector qc′′ and latent vector qc, c′′ ∈
Cs,t \ {c} indicates that course c′′ is one of courses taken together
with c in term t. Note that in Eq. 5, the two terms share a common
latent vector qc.

4.2 Co-taken Course Interaction Function
In CKCC, the co-taken course interaction function f (·) learns the
influence on student s’s grade on course c from all the other co-
taken courses in term t. We hypothesize that such influence can be
nonlinear in general. Therefore, we use a feedforward neural net-
work (FNN) [21] as f (·) to model the influence. The FNN takes
the input as described in last section, and outputs a scalar influ-
ence value on course c. We use hyperbolic tangent (Tanh) as the
activation function in each layer of the FNN. Note that when there
are no hidden layers and no nonlinearity, the FNN model learns the
weights directly from the input layer (i.e., difference of courses) to

Algorithm 1 CKCC: Learn

1: procedure CKCC_LEARN
2: Initialize kc, qc for each c
3: η ← learning rate
4: T ← number of terms in training set
5: λ ← time decay parameter
6: α1,α2, α3← regularization weight
7: t← 2
8: iter← 0
9: while iter<maxIter do

10: for t ≤ T do
11: for all gt

s,c ∈ Gt
s do . step 1

12: ĝt
s,c← gt

s,c− f (∑c′∈Cs,t\{c}(|qc′′ −qc|))
13: pck(s)← 0
14: for all c′ ∈Ct−1

s do
15: pck(s)← pck(s)+ e−λ (ts,c−ts,c′ )kc′ ·g

ts,c′
s,c′

16: g̃t
s,c← pT

ck(s)qc

17: et
s,c = ĝt

s,c− g̃t
s,c

18: for all c′ ∈Ct−1
s do

19: kc′ ← kc′+

η(qc · e−λ (ts,c−ts,c′ ) ·gs,c′ · et
s,c−α1 ·kc′ )

20: qc← qc +η(pck(s) · et
s,c−α2 ·qc)

21: for all gt
s,c ∈ Gt

s do . step 2
22: ĝt

s,c← gt
s,c−pck(s)qc

23: g̃t
s,c← f (∑c′∈Cs,t\{c}(|qc′′ −qc|))

24: et
s,c = ĝt

s,c− g̃t
s,c

25: Update Θ f with Adam
26: iter← iter+1

return Θ = {{kc},{qc}}, Θ f

the output layer (i.e., the influence), and the function f (·) becomes
a simple inner product operation (parameterized by a vector). This
simplified model is referred to as CKCC-l. Figure 2 shows the
structure of the CKCC model.

4.3 Optimization of CKCC
Given the grade estimation as in Equation 5, we formulate the grade
prediction problem for term T as the following optimization prob-
lem:

minimize
Θ,Θ f

∑
s

T−1

∑
t=1

∑
gt

s,c∈Gt
s

(gt
s,c− g̃t

s,c)
2

+α1(|kc|+ |qc|)+α2(‖kc‖2
2 +‖qc‖2

2)

+α3‖vec(Θ f )‖2
2,

(6)

where Θ = {{kc},{qc}} represents the set of latent vectors, and
Θ f represents the parameters of f (·). α1, α2, and α3 denote the
nonnegative weights on the regularization terms to prevent overfit-
ting.

The optimization process for CKCC is presented in Algorithm 1. It
consists of two steps: The first step is to update the course param-
eters, i.e., Θ, using stochastic gradient descent. The second step
is to update f (·) parameters, i.e., Θ f , with the adaptive moment
estimation (Adam) algorithm [5].

5. EXPERIMENTS
5.1 Dataset Description
The data used in this work is obtained from George Mason Uni-
versity. Our dataset contains two student groups: first-time fresh-
men (FTF; i.e., students who begin their study initially at this Uni-
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Figure 2: CKCC Model Structure

Table 2: Dataset Statistics

Major
FTF student group TR student group

#S #C #S-C #S #C #S-C
MATH 271 693 3,325 243 597 2,031
PHYS 144 488 2,044 73 286 905

CHEM 427 673 4,942 257 473 1,937
IT 430 473 5,984 1,163 487 10,302

CS 819 714 16,955 526 435 7,840
BIOL 1,951 1,197 22,065 1,481 980 10,851

#S, #C and #S-C are the number of students, courses
and student-course pairs from Fall 2009 to Spring 2018,
respectively.

versity), and transfer students (TR; i.e., students who transfer to
this University from a different one). The dataset was extracted
in the period of Fall 2009 to Spring 2018. It includes information
of 23,435 FTF students and 28,470 TR students across 153 majors.
For simplicity, we use students from six different majors to evaluate
the proposed models. These majors have different numbers of en-
rolled students, courses, and different major syllabi. We will eval-
uate these majors on both FTF and TR student groups. The majors
in our experiment include: (i) Mathematical Sciences (MATH), (ii)
Physics (PHYS), (iii) Chemistry (CHEM), (iv) Information Tech-
nology (IT) , (v) Computer Science (CS) and (vi) Biology (BIOL).
Table 2 shows the statistics across these majors.

5.2 Experimental Protocols
To assess the performance of our next-term grade prediction mod-
els, we trained our models on data up to term T −1 and make pre-
dictions for term T . We evaluate our method for three test terms,
i.e., Spring 2018, Fall 2017 and Spring 2017. As an example, for
evaluating predictions for term Fall 2017, data from Fall 2009 to
Spring 2017 is considered as training data and data from Fall 2017
is testing data. datasets. Figure 3 shows the three different train-test
splits.

Fall 2009 to Fall 2017

Fall 2009 to Spring 2017

Fall 2009 to Fall 2016

Spring 2018

Fall 2017

Spring 2017 Training set:

Test set:

Figure 3: Different Experimental Protocols

5.3 Evaluation Metrics
In our experiments, we use Mean Absolute Error (MAE) to evaluate
the predicted results in numbers. MAE is calculated as:

MAE =
∑gt

s,c∈GT

∣∣gt
s,c− g̃t

s,c
∣∣

|GT |
(7)

where gt
s,c and g̃t

s,c are the ground-truth grade and predicted grade
for student s on course c at term T , respectively. GT is the set of
student-course grades in the T -th term, which is considered as the
test set in our experiment.

Moreover, since a student receives a letter grade for a course, i.e.,
A, A-, . . . , F, we use the Percentage of Tick Accuracy (PTA) [12]
as one of our evaluation metrics. During training, we map letter
grades “A+" and “A" to the real-valued grade point number 4.0, “A-
" to 3.67, “B+" to 3.33, etc. During testing, we map the predicted
grade point numbers back to their closest letter grades. Then, we
define tick as the difference between two consecutive letter grades
(e.g., C+ vs C or C vs C-). We then compute the percentage of
predicted grades that match the actual grades (or within 0-ticks of
them), and those that are within 1 tick and within 2 ticks of the
actual grades as PTA0, PTA1, and PTA2, respectively.
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5.4 Compared Methods
Since there is no prior research on the influence of co-taken courses
within a same term, we use the two following methods and three
other variants of CKCC as baselines in our experiments:

• MF The MF model is described as Eq. 1.

• CK The CK model is described as Eq. 4.

• MFCC We add the co-taken course influence to the MF
model, and obtain the Matrix Factorization with Co-taken
Courses (MFCC) model. Specifically, the predicted grade of
student s on course c at term t is defined as

g̃t
s,c = pT

s qc + f ( ∑
c′′∈Ct

s\c
(|qc′′ −qc|)), (8)

where ps denotes the latent factors of for student s. Similar
to the CKCC model, we optimize the MFCC model with two
steps by alternately updating the latent factors and the model
parameters in the mapping function f (·).

• MFCC-l The MFCC-l model is a special case of the MFCC
model where f (·) is simply an inner product (parameterized
by a vector) instead of an FNN.

• CKCC-l The CKCC-l model is described in Section 4.2.

5.5 Parameter Learning
The set of parameters in the optimization problem (Eq 6) includes
the number of latent dimensions (i.e., k), regularization parameters
(i.e., α1, α2, and α3) and the decay rate (i.e., λ ). We performed
a grid search over all the parameters with k ∈ {5,10, . . . ,25}, and
α1,α2,α3,λ ∈ {1e− 3,1e− 2,0.1}. Note that for the CKCC and
MFCC models, the optimal neural network structure (e.g., number
of layers, the size of each layer) depends on the value of k. Thus,
we swept different neural network structure parameters for every k
value in our grid search. The neural network structures that consis-
tently achieve good performance contain one hidden layer with 2
or 3 hidden units.

6. RESULTS AND DISCUSSION
6.1 Overall Performance
Table 3 and 4 shows the overall performance for all methods for
both FTF and TR student groups, respectively.

Table 3 shows that for FTF students, CKCC and CKCC-l outper-
form the baseline methods over most datasets. Specifically, CKCC
outperforms the other compared methods across different exper-
imental protocols by 4.39%, 7.01%, 3.50%, 3.87% in terms of
MAE, PTA0, PTA1, and PTA2, respectively. Furthermore, CK
based methods outperform MF based methods on all experimen-
tal protocols. This table also shows that co-taken course based
methods (MFCC, MFCC-l and CKCC, CKCC-l) outperform their
baseline methods (MF and CK) on all experimental protocols, re-
spectively. This illustrates that for FTF students, both cumulative
knowledge and co-taken courses have great influence on student’s
performance, and the proposed methods can capture such influence
accurately.

Table 4 shows that CK has competitive results over TR students.
Moreover, for MF based methods, MFCC and MFCC-l outperform
MF for all the experimental protocols. This illustrates that co-taken
courses are likely to have influence on student’s performance, but

the influence may not be as strong as it is of cumulative knowledge
for TR students.

6.2 Analysis on Individual Majors
In order to understand the proposed methods’ performance on each
major, we have tested all the aforementioned methods on different
majors separately. We conducted this group of experiments for both
FTF and TR students. And we use Spring 2018 as test set. We
provide detailed experimental results in Table 5 and 6.

Table 5 shows that the CKCC model outperforms other compared
methods for some majors (e.g., PHYS, CS) on all metrics, but has
weak performance on some metrics for other majors (e.g., MATH,
CHEM). Especially for MATH major, CKCC has the highest MAE
result while MFCC and MFCC-l have the best MAE result. The
reason might be that the performance of CKCC relies on the student
historical information, and it tends to have good performance on the
students with rich historical information. However, in the test set,
some students in certain majors do not have much historical infor-
mation and thus drag down the model performance. Table 6 shows
that, for TR students, there is no method that consistently outper-
forms others across different metrics. The reason might be that
the diversity in student characteristics (many TR students have dif-
ferent backgrounds) leads to diverse course selection plans among
them. Such diversity greatly influences the performance of the dif-
ferent models.

6.3 Linear versus Nonlinear Mapping Func-
tion

As aforementioned, we have two forms of co-taken course inter-
action function: FNN model and linear model (parameterized by
a vector). Specifically, we compare the results for MFCC versus
MFCC-l, and CKCC versus CKCC-l, respectively, in order to un-
derstand how different mapping functions f (·) influence grade pre-
diction performance. Table 3 shows that for FTF students, MFCC-l
has slightly better performance than MFCC, and CKCC-l has com-
petitive performance as CKCC across different experimental pro-
tocols. Same trend has shown in table 4 for TR students. Fur-
thermore, table 5 shows that MFCC and CKCC consistently out-
perform MFCC-l and CKCC-l across different majors for FTF stu-
dents. This illustrates that the influence of co-taken courses for
FTF student group can be better captured by a nonlinear model
(i.e., FNN) than a simple linear model. Table 6 shows that for TR
students, MFCC and CKCC don’t always outperform MFCC-l and
CKCC-l for different majors. The reason might be that some TR
students will have fewer co-taken courses than those of FTF stu-
dents, and the influence from co-taken courses can be well captured
by a linear model.

6.4 Performance on Different Numbers of Co-
taken Courses

In this section, we test the CKCC model on different data sub-
groups with different number of co-taken courses in a term. Specif-
ically, we take the students in the test set and divide them into five
groups: students who take {2,3,4,5,6+} courses (6+ refers to six
and more). We perform this experiment on each major for both FTF
and TR students, respectively. For the sake of page limit, we only
show the results for FTF students. Figure 4 shows the experimental
results in terms of PTA0, PTA1 and PTA2. The results show that
different majors exhibit different trends when the number of co-
taken courses varies. For example, for CHEM and BIOL majors,
the performance of the CKCC model on PTA improves with more
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Table 3: Performance Comparison for All Methods on FTF students

Method
Spring 2018 Fall 2017 Spring 2017

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.762 0.172 0.303 0.549 0.759 0.168 0.303 0.556 0.772 0.162 0.306 0.540
MFCC-l 0.756 0.180 0.320 0.565 0.745 0.186 0.331 0.574 0.757 0.181 0.331 0.564

MFCC 0.763 0.175 0.317 0.573 0.753 0.188 0.322 0.573 0.760 0.173 0.317 0.565
CK 0.726 0.190 0.330 0.575 0.724 0.184 0.336 0.575 0.727 0.186 0.333 0.575

CKCC-l 0.711 0.189 0.338 0.589 0.712 0.191 0.343 0.589 0.717 0.182 0.332 0.587
CKCC 0.716 0.187 0.332 0.593 0.709 0.195 0.334 0.588 0.710 0.196 0.339 0.594

Table 4: Performance Comparison for All Methods on TR students

Method
Spring 2018 Fall 2017 Spring 2017

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.775 0.184 0.316 0.537 0.760 0.157 0.300 0.565 0.773 0.168 0.299 0.550
MFCC-l 0.763 0.178 0.315 0.543 0.748 0.187 0.326 0.571 0.755 0.185 0.328 0.563

MFCC 0.761 0.174 0.321 0.544 0.754 0.177 0.330 0.580 0.761 0.177 0.316 0.569
CK 0.753 0.268 0.400 0.586 0.770 0.259 0.389 0.570 0.750 0.273 0.397 0.583

CKCC-l 0.733 0.182 0.324 0.560 0.743 0.180 0.313 0.558 0.739 0.172 0.310 0.563
CKCC 0.735 0.181 0.323 0.562 0.728 0.175 0.335 0.571 0.740 0.169 0.318 0.553

Table 5: Performance Comparison for All Methods on FTF students on Different Majors

Method
MATH PHYS CHEM

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.762 0.234 0.336 0.523 1.099 0.106 0.206 0.383 0.684 0.262 0.399 0.601
MFCC-l 0.758 0.195 0.333 0.568 0.960 0.113 0.213 0.447 0.678 0.221 0.374 0.589

MFCC 0.758 0.206 0.322 0.559 0.998 0.163 0.248 0.433 0.663 0.249 0.380 0.592
CK 0.782 0.267 0.378 0.569 0.910 0.135 0.270 0.468 0.680 0.249 0.393 0.595

CKCC-l 0.784 0.184 0.316 0.535 0.978 0.238 0.294 0.437 0.734 0.312 0.449 0.611
CKCC 0.842 0.309 0.413 0.562 0.842 0.254 0.373 0.508 0.697 0.290 0.411 0.620

Method
IT CS BIOL

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.655 0.201 0.36 0.623 0.723 0.190 0.346 0.595 0.687 0.253 0.411 0.626
MFCC-l 0.664 0.181 0.365 0.630 0.715 0.177 0.326 0.603 0.777 0.317 0.439 0.599

MFCC 0.627 0.231 0.381 0.659 0.704 0.209 0.362 0.605 0.676 0.274 0.429 0.638
CK 0.606 0.299 0.466 0.681 0.722 0.244 0.395 0.597 0.643 0.316 0.464 0.653

CKCC-l 0.693 0.288 0.460 0.632 0.784 0.242 0.376 0.578 0.771 0.341 0.461 0.605
CKCC 0.600 0.310 0.465 0.692 0.696 0.256 0.395 0.612 0.660 0.329 0.467 0.649

Table 6: Performance Comparison for All Methods on TR students on Different Majors

Method
MATH PHYS CHEM

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.608 0.270 0.433 0.617 0.675 0.235 0.431 0.569 0.749 0.219 0.325 0.553
MFCC-l 0.637 0.270 0.418 0.610 0.669 0.216 0.353 0.588 0.634 0.281 0.412 0.649

MFCC 0.621 0.241 0.397 0.645 0.577 0.353 0.471 0.667 0.675 0.228 0.404 0.649
CK 0.573 0.394 0.545 0.677 0.741 0.200 0.275 0.550 0.679 0.368 0.491 0.623

CKCC-l 0.641 0.384 0.515 0.677 0.694 0.325 0.450 0.625 0.651 0.377 0.500 0.667
CKCC 0.613 0.404 0.576 0.707 0.805 0.200 0.350 0.600 0.642 0.404 0.518 0.675

Method
IT CS BIOL

MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2 MAE PTA0 PTA1 PTA2

MF 0.614 0.217 0.405 0.662 0.836 0.175 0.302 0.538 0.711 0.200 0.341 0.559
MFCC-l 0.610 0.227 0.419 0.665 0.818 0.189 0.325 0.541 0.670 0.213 0.366 0.617

MFCC 0.608 0.243 0.415 0.658 0.796 0.193 0.333 0.578 0.674 0.206 0.367 0.604
CK 0.608 0.223 0.406 0.659 0.737 0.212 0.369 0.577 0.695 0.226 0.370 0.600

CKCC-l 0.598 0.235 0.426 0.659 0.756 0.184 0.343 0.599 0.679 0.228 0.384 0.600
CKCC 0.602 0.231 0.412 0.672 0.773 0.234 0.371 0.563 0.643 0.260 0.393 0.629
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Figure 4: PTA Results for Different Number of Co-taken Courses on FTF students
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Figure 5: PTA Results for Different Number of Co-taken Course Subjects on FTF students

co-taken courses. This observation suggests that CKCC is able to
leverage stronger influence of co-taken courses to improve its per-
formance. However, for PHYS and CS majors, CKCC achieves
better performance with 2, 3 or 6+ co-taken courses than with 4
or 5 co-taken courses. We postulate that this is due to the charac-
teristics of courses chosen within a term and their content. These
results also indicate that CKCC is able to model co-taken courses’
influence despite of the number of the co-taken courses.

6.5 Performance on Different Numbers of Co-
taken Course Subjects

In this section, we extract each course’s subject and test the CKCC
model on different data subgroups with different number of co-
taken course subjects in a term. The reason we conduct this ex-
periment is because we assume that courses with the same sub-
ject tend to have relevant knowledge components. Students who
have co-taken courses from many different subjects may have wide
knowledge diversity. This experiment aims to test the performance
of CKCC in terms of co-taken course subjects.

Specifically, we take the students in the test set and divide them into
five groups: students who take courses from {1,2,3,4,5} subjects
in a term. Since there are few students co-taking courses from 6+
subjects, we exclude these students in our experiment. We perform
this group of experiment on each major for both FTF and TR stu-
dents, respectively. For the sake of page limit, we only show the
results for FTF students. Figure 5 shows the experimental results
in terms of PTA0, PTA1 and PTA2. The results show that CKCC
have different prediction results regarding the number of co-taken
course subjects for different majors. For example, for CHEM, CS
and BIOL majors, the performance of the CKCC model on PTA
has the best performance with 1 co-taken course subject than other

subgroups. This observation suggests that CKCC is able to model
co-taken courses’ influence better with less knowledge diversity in
a term. However, for IT major, CKCC achieves better performance
with more co-taken course subjects. And for MATH and PHYS
majors, CKCC has better performance on 2 or 5 co-taken course
subjects than other subgroups. We assume that this is affected by
the characteristics of different majors. Moreover, for MATH and IT
major, the PTA results don’t vary much comparing to CHEM and
BIOL majors. This illustrates that for some majors, students may
take courses from several subjects at a term, and the CKCC model
can still well capture the co-taken courses’ influence.

7. SIGNIFICANCE AND IMPACT
To highlight the use-case scenario of the developed next term grade
prediction approach using co-taken courses, we ran a simulated
case study. Having demonstrated the prediction accuracy of these
proposed models, the objective of this case study is to highlight
the strengths of the proposed models in helping students to select
courses in the future term. Implicitly we want to provide students
information about their workload (or change in their overall grades)
by addition of one or more courses within the next term.

Specifically, we extract two pairs of popular co-taken courses:
BIOL311 (“General Genetics") and CHEM313 (“Organic Chem-
istry"), MATH213 (“Analytic Geometry and Calculus II") and
PHYS260 (“University Physics"), and conduct a study to illustrate
how our model can help plan students’ course selections or allo-
cate the necessary study time. Take the course pair BIOL311 and
CHEM313 as an example. We extract the students who take course
BIOL311 and CHEM313 together in a term. We predict students’
performance on course BIOL311 using the CKCC model. We then
eliminate course CHEM313 from our data set and predict the grade
on course BIOL311 again using the CKCC model. Comparing the
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Figure 6: Comparison Results on the Co-taken Course Influence

predicted grades helps determine if the two courses should be taken
together within the same term or not. The sampled students have
a total of five courses that they are enrolled in for the particular
term. The comparison results are shown in Figure 6 (a). It is a scat-
ter plot of predicted grades for a student where the x-axis shows
the performance on course BIOL311 co-taken with the CHEM313
and the y-axis is the performance on course BIOL311 with course
CHEM313 removed. We have conducted the same experiments for
other course pairs using the same protocol and shown these results
in Figure 6 (b), (c) and (d).

In general, students’ performance will get better with the other
course eliminated due to the reduction in workload. However, dif-
ferent students get affected differently by the additional course. For
students who take BIOL311 and CHEM313, some of them will
have improvement in BIOL311 grades if they do not enroll for
CHEM313 in the same semester. On the other hand, some stu-
dents will not have any change in their grades for BIOL311 based
on course CHEM313 (the plotted results along the diagonal). Sim-
ilar trends can be observed in Figure 6 (b), (c) and (d) as well. In

the Figure 6, we also highlight different cases where students grade
changes with the removal of the particular course. Using this infor-
mation, students can plan the set of courses that they might enroll
for in the next term, and allocate study time accordingly.

8. CONCLUSION AND FUTURE WORK
In this work, we propose grade prediction models that incorporate
both cumulative knowledge and co-taken courses (CKCC) to pre-
dict students’ performance in the next term. The proposed models
consider both cumulative knowledge a student has acquired after
taking a series of courses in the passing terms, and the co-taken
courses the student plans to take in the next term. Our experimental
results on a dataset from George Mason University shows that the
proposed models significantly outperform other competitive base-
lines over most the datasets for the task of next-term grade predic-
tion. Moreover, our experimental results show that the proposed
model is able to capture strong influence of co-taken courses to
improve its grade prediction performance. Furthermore, we ran a
simulated case study to illustrate how our proposed model can help
students in course selection for the future term.
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In the future, we plan to take into account additive factors, such
as instructor, student’s academic level and course’s difficulty level
along with co-taken course information, in order to achieve more
accurate grade prediction results. We hope such a grade prediction
system can not only help students select courses, finish their study
at college but also guide them in career planning in the future.
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ABSTRACT 
Deep Reinforcement Learning (DRL) has been shown to be 
a very powerful technique in recent years on a wide range 
of applications. Much of the prior DRL work took the on
line learning approach. However, given the challenges of 
building accurate simulations for modeling student learn
ing, we investigated applying DRL to induce a pedagogical 
policy through an offiine approach. In this work, we ex
plored the effectiveness of offiine DRL for pedagogical pol
icy induction in an Intelligent Tutoring System. Generally 
speaking, when applying offiine DRL, we face two major 
challenges: one is limited training data and the other is the 
credit assignment problem caused by delayed rewards. In 
this work, we used Gaussian Processes to solve the credit 
assignment problem by estimating the inferred immediate 
rewards from the final delayed rewards. We then applied 
the DQN and Double-DQN algorithms to induce adaptive 
pedagogical strategies tailored to individual students. Our 
empirical results show that without solving the credit as
signment problem, the DQN policy, although better than 
Double-DQN, was no better than a random policy. How
ever, when combining DQN with the inferred rewards, our 
best DQN policy can outperform the random yet reasonable 
policy, especially for students with high pre-test scores. 

1. INTRODUCTION 
Interactive e-Learning Environments such as Intelligent Tu
toring Systems (ITSs) and educational games have become 
increasingly prevalent in educational settings. In order to 
design effective interactive learning environments, develop
ers must form the basic core of the system and determine 
what is to be taught and how. Pedagogical strategies are 
policies that are used to decide the how part, what action 
to take next in the face of alternatives. Each of these sys
tems' decisions will affect the user's subsequent actions and 
performance. 

Reinforcement Learning (RL) is one of the best machine 
learning approaches for decision making in interactive envi-

ronments and RL algorithms are designed to induce effective 
policies that determine the best action for an agent to take 
in any given situation to maximize some predefined cumu
lative reward. In recent years, deep neural networks have 
enabled significant progress in RL research. For example, 
Deep Q-Networks (DQNs) [26] have successfully learned to 
play Atari games at or exceeding human level performance 
by combining deep convolutional neural networks and Q
learning. Since then, DRL has achieved notable successes in 
a variety of complex tasks such as robotics control [1] and 
the game of Go [44]. From DQN, various DRL methods such 
as Double DQN [51] or Actor-Critic methods [38, 39] were 
proposed and shown to be more effective than the classic 
DQN. Despite DRL's great success, there are still many chal
lenges preventing DRL from being applied more broadly in 
practice, including applying it to educational systems. One 
major problem is sample inefficiency of current DRL algo
rithms. For example, it takes DQN hundreds of millions of 
interactions with the environment to learn a good policy and 
generalize to unseen states, while we seek to learn policies 
from datasets with fewer than 800 student-tutor interaction 
logs. 

Generally speaking, there are two major categories of RL: 
online and offiine. Online RL algorithms learn policy while 
the agent interacts with the environment; offiine RL algo
rithms, by contrast, learn the policy from pre-collected train
ing data. Online RL methods are generally appropriate for 
domains where the state representation is clear and interact
ing with simulations and actual environments is relatively 
computationally cheap and feasible, so most of prior work 
on DRL mainly took an online learning approach. On the 
other hand, for domains such as e-learning, building accurate 
simulations or simulating students is especially challenging 
because human learning is a rather complex, not fully under
stood process; moreover, learning policies while interacting 
with students may not be feasible and more importantly, 
may not be ethical. Therefore, our DRL approach is offiine. 
This approach was achieved by, first, collecting a training 
corpus. One common convention, and the one used in our 
study, is to collect an exploratory corpus by training a group 
of students on an ITS that makes random yet reasonable 
decisions and then apply RL to induce pedagogical policies 
from that exploratory training corpus. An empirical study 
was then conducted from a new group of human subjects 
interacting with different versions of the system. The only 
difference among the versions was the policy employed by 
the ITS. Lastly, the students' performance was statistically 
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compared. Due to cost limitations, typically, only the best 
RL-induced policy was deployed and compared against some 
baseline policies. 

When applying offiine DRL to ITSs, we often face one major 
challenge: our rewards are often not only noisy but also de
layed. Given the nature of ITS data collection, the training 
data including our reward functions is often noisy and our 
rewards are only the incomplete or imperfect observations 
of underlying true reward mechanisms. Due to the complex 
nature of student learning, the most appropriate rewards are 
(delayed) student learning gains, which are only available af
ter the entire training is complete. For example, hints might 
improve immediate performance but negatively impact over
all learning. On the other hand, when the size of the training 
data is limited, the availability of "true" immediate rewards 
is very important for offiine RL. Immediate rewards are gen
erally more effective than delayed rewards for offiine RL be
cause it is easier to assign appropriate credit or blame when 
the feedback is tied to a single decision. The more we de
lay rewards or punishments, the harder it becomes to assign 
credit or blame properly. Therefore, the challenge is how to 
distribute the delayed rewards to observable, immediate re
wards along each student-system interactive trajectory while 
taking the noise and uncertainty in the data into account. 
To tackle this issue, we applied a Gaussian Processes based 
(GP-based) approach to infer "immediate rewards" from the 
delayed rewards and then applied DQN to induce two poli
cies: one based on delayed rewards and the other based on 
the inferred immediate rewards, referred to as DQN-Del and 
DQN-Inf respectively. 

In this work, we used a logic ITS and focused on apply
ing DRL to induce a policy on one type of tutorial deci
sion: whether to present a given problem as a problem solv
ing (PS) or a worked example (WE). The tutor presents 
a worked example (WE) by demonstrating the individual 
steps in an expert solution to a problem. During PS, stu
dents are required to complete the problem with tutor sup
port (e.g. hints). The effectiveness of DQN-Del and DQN
Inf are evaluated theoretically using Expected Cumulative 
Reward (ECR) and empirically through two randomly con
trolled experiments: one for evaluating the effectiveness of 
DQN-Del in Spring 2018 and the other for evaluating DQN
Inf in Fall 2018. In each experiment, the effectiveness of the 
corresponding RL-induced policy was compared against the 
Random policy that flips a coin to decide between WE/PS 
and the students were randomly assigned into the two con
ditions while balancing their incoming competence. Overall, 
the results from both experiments showed no significant dif
ference between the DQN-Del and Random in Spring 2018 
and between the DQN-lnf and Random in Fall 2018 on every 
measure of learning performance. 

There are two potential explanations for such findings. First, 
our random baseline policy is decently strong. While ran
dom policies are usually bad in many RL tasks, in the con
text of WE vs. PS, our random policies can be strong base
lines. Indeed, some learning literature suggests that the best 
instructional intervention is to alternate WE and PS [35, 
41, 36]. Second, there may be an aptitude-treatment in
teraction (ATI) effect [6, 47], where certain students are 
less sensitive to the induced policies, meaning they achieve a 

similar learning performance regardless of policies employed; 
whereas other students are more sensitive, meaning their 
learning is highly dependent on the effectiveness of the poli
cies. Thus, we divided the students into High vs. Low based 
on their incoming competence and investigated the ATI ef
fect. While no ATI effect was found between DQN-Del and 
Random for Spring 2018, a significant ATI effect was found 
between DQN-lnf and Random in Fall 2018. 

In short, we explored applying offiine DRL for pedagogical 
policy induction based on delayed and inferred immediate 
rewards. Our results showed that no ATI effect was found 
between DQN-Del and Random in Spring 2018, whereas 
there was an ATI effect between DQN-Inf and Random in 
Fall 2018. More specifically, the High incoming competence 
group benefited significantly more from the DQN-Inf policy 
than their peers in the Random condition. This result sug
gests that the availability of inferred immediate rewards was 
crucial for effectively applying offiine DRL for pedagogical 
policy induction. 

2. BACKGROUND 
A great deal of research has investigated the differing im
pacts of worked examples (WE) and problem solving (PS) 
on student learning [49, 22, 21, 23, 41, 27, 36]. McLaren 
and colleagues compared WE-PS pairs with PS-only [22]. 
Every student was given a total of 10 training problems. 
Students in the PS-only condition were required to solve ev
ery problem while students in the WE-PS condition were 
given 5 example-problem pairs. Each pair consisted of an 
initial worked example problem followed by tutored prob
lem solving. They found no significant difference in learning 
performance between the two conditions. However, the WE
PS group spent significantly less time than the PS group. 

McLaren and his colleagues found similar results in two sub
sequent studies [21, 23]. In the former, the authors com
pared three conditions: WE, PS and WE-PS pairs, in the 
domain of high school chemistry. All students were given 10 
identical problems. As before, the authors found no signifi
cant differences among the three groups in terms of learning 
gains but the WE group spent significantly less time than 
the other two conditions; and no significant time on task dif
ference was found between the PS and WE-PS conditions. 

In a follow-up study, conducted in the domain of high school 
stoichiometry, McLaren and colleagues compared four con
ditions: WE, tutored PS, untutored PS, and Erroneous Ex
amples (EE) [23]. Students in the EE condition were given 
incorrect worked examples containing between 1 and 4 errors 
and were tasked with correcting them. The authors found 
no significant differences among the conditions in terms of 
learning gains, and as before the WE students spent signif
icantly less time than the other groups. More specifically, 
for time on task, they found that: WE < EE < untutored 
PS< tutored PS. In fact, the WE students spent only 30% 
of the total time that the tutored PS students spent. 

The advantages of WEs were also demonstrated in another 
study in the domain of electrical circuits [50]. The authors 
of that study compared four conditions: WE, WE-PS pairs, 
PS-WE pairs (problem-solving followed by an example prob
lem), and PS only. They found that the WE and WE-PS 
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students significantly outperformed the other two groups, 
and no significant differences were found among four condi
tions in terms of time on task. 

In short, prior research has shown that WE can be similar 
or more effective than PS or alternating PS with WE, and 
the former can take significantly less time than the latter 
two [49, 22, 21, 23, 41]. However, there is no widespread 
consensus on how or when WE vs. PS should be used. This 
is why we will derive pedagogical strategies for them directly 
from empirical data. 

2.1 ATI Effect 
Previous work shows that the ATI effect commonly exists 
in many real-world studies. More formally, the ATI effect 
states that instructional treatments are more or less effective 
to individual learners depending on their abilities [6]. For 
example, Kalyuga et al. [17] empirically evaluated the effec
tiveness of worked example (WE) vs. problem solving (PS) 
on student learning in programmable logic. Their results 
show that WE is more effective for inexperienced students 
while PS is more effective for experienced learners. 

Moreover, D'Mello et al. [7] compared two versions of ITSs: 
one is an affect-sensitive tutor which selects the next prob
lem based on students' affective and cognitive states com
bined, while the other is an original tutor which selects the 
next problem based on students' cognitive states alone. An 
empirical study shows that there is no significant difference 
between the two tutors for students with high prior knowl
edge. However, there is a significant difference for students 
with low prior knowledge: those who trained on the affect
sensitive tutor had significantly higher learning gain than 
their peers using the original tutor. 

Chi and VanLehn [4] investigated the ATI effect in the do
main of probability and physics, and their results showed 
that high competence students can learn regardless of in
structional interventions, while for students with low com
petence, those who follow the effective instructional inter
ventions learned significantly more than those who did not. 
Shen and Chi [43] find that for pedagogical decisions on WE 
vs. PS, certain learners are always less sensitive in that their 
learning is not affected, while others are more sensitive to 
variations in different policies. In their study, they divided 
students into Fast and Slow groups based on time, and found 
that the Slow groups are more sensitive to the pedagogical 
decisions while the Fast groups are less sensitive. 

3. RELATED WORK 
Deep Reinforcement Learning: In recent years, many 
DRL algorithms have been developed for various applica
tions such as board games like Go [44, 46], Chess and Shogi 
[45], robotic hand dexterity [33, 1], physics simulators [19, 
29, 30], and so forth. While most DRL algorithms have 
been mainly applied online, some of them can also be ap
plied offiine. More specifically, DRL algorithms such Vanilla 
Policy Gradient (VPG) [48], Proximal Policy Optimization 
(PPO) [39], Trust Region Policy Optimization (TRPO) [38], 
or A3C [24] can only be applied for online learning by inter
acting with simulations. Some other DRL algorithms can be 
applied for offiine learning using pre-collected training data. 
These include the Q-learning based approaches such as Deep 

Q-Network (DQN) [26], Double-DQN [51], prioritized expe
rience replay [37], distributed prioritized experience replay 
(Ape-X DQN) [14], and the Actor-Critic based methods such 
as Deep Deterministic Policy Gradient (DDPG) [19], Twin 
Delayed Deep Deterministic policy gradient (TD3) [9], or 
Soft Actor-Critic (SAC) [11]. Among them, DQN and its 
variants have been much more extensively studied, however, 
it is still not clear whether they can be successfully applied 
offiine for pedagogical policy induction for ITSs. 

Reinforcement Learning in Education: Prior research 
using online RL to induce pedagogical policies has often re
lied on simulations or simulated students, and the success of 
RL is often heavily dependent on the accuracy of the simu
lations. Beck et al. [3] applied temporal difference learning, 
with off-policy E-greedy exploration, to induce pedagogical 
policies that would minimize student time on task. Igle
sias et al. applied another common online approach named 
Q-learning to induce policies for efficient learning [15, 16]. 
More recently, Rafferty et al. applied POMDP with tree 
search to induce policies for faster learning [32]. Wang et 
al. applied an online Deep-RL approach to induce a policy 
for adaptive narrative generation in educational game [52]. 
All of the models described above were evaluated by com
paring the induced policy with some baseline policies via 
simulations or classroom studies. 

Offiine RL approaches, on the other hand, "take advantage 
of previously collected samples, and generally provide ro
bust convergence guarantees" [40]. Shen et al. applied value 
iteration and least square policy iteration on a pre-collected 
training corpus to induce pedagogical policies for improv
ing students' learning performance [43, 42]. Chi et al. ap
plied policy iteration to induce a pedagogical policy aimed 
at improving students' learning gains [5]. Mandel et al. 
[20] applied an offiine POMDP approach to induce a policy 
which aims to improve student performance in an educa
tional game. In classroom studies, most models above were 
found to yield certain improved student learning relative to 
a baseline policy. 

DRL in Education is a subject of growing interest. DRL 
adds deep neural networks to RL frameworks such as POMDP 
for function approximation or state approximation [25, 26]. 
This enhancement makes the agent capable of achieving 
complicated tasks. Wang et al. [52] applied a DRL frame
work for personalizing interactive narratives in an educa
tional game called CRYSTAL ISLAND. They designed the im
mediate rewards based on normalized learning gain (NLG) 
and found that the students with the DRL policy achieved a 
higher NLG score than those following the linear RL model 
in simulation studies. Furthermore, Narasimhan et al. [28] 
implemented a Deep Q-Network (DQN) approach in text
based strategy games, constructed based on Evennia, which 
is an open-source library and toolkit for building multi-users 
online text-based games. Using simulations, they found that 
the DRL policy significantly outperformed the random pol
icy in terms of quest completion. 

In summary, compared with MDP and POMDP, relatively 
little research has been done on successfully applying DRL 
to the field of ITS. None of the prior research has success
fully applied DRL to ITSs without simulated environments, 
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in order to learn an effective pedagogical strategy that makes 
students learn in a more efficient manner. Furthermore, no 
prior work has empirically evaluated any DRL-induced pol
icy to confirm its benefits on real students. 

4. METHODS 
In RL, the agent interacts with an environment £, and the 
goal of the agent is to learn a policy that will maximize 
the sum of future discounted rewards (also known as the 
return) along the trajectories, where each trajectory is one 
run through the environment, starting in an initial state and 
ending in a final state. This is done by learning which action 
to take for each possible state. In our case, £ is the learning 
context, and the agent must learn to take the actions that 
lead to the optimal student learning, by maximizing the re
turn R = 'Ei=o "'./rt, where rt is the reward at time step t, 
T is the time step that indicates the end of the trajectory, 
and, E (0, 1] is the discount factor. 

4.1 DQN and Double-DQN 
Deep Q-Network (DQN) is, fundamentally, a version of 
Q-learning. In Q-learning, the goal is to learn the optimal 
action-value function, Q*(s, a), which is defined as the ex
pected reward obtained when taking the optimal action a in 
state s, and following the optimal policy 1r* until the end of 
the trajectory. For any state-action pair, the optimal action
value function must follow the Bellman optimality equation 
in that: 

Q*(s, a)= r + ,maxQ*(s', a') 
a' 

(1) 

Here r is the expected immediate reward for taking action 
a at state s; , is the discount factor; and Q* ( s', a') is the 
optimal action-value function for taking action a' at the sub
sequent state s' and following policy 1r* thereafter. 

Compared with the original Q-leaning, DQNs use neural net
works (NNs) to approximate action-value functions. This is 
because NNs are great universal function approximators and 
they are able to handle continuous values in both their in
puts and outputs. In order to train the DQN algorithm, 
two neural networks with equal architectures are employed. 
One is the main network and its weights are denoted 0 and 
the other is the target network, and its weights are de
noted 0-. The target value used to train the network is 
y := r + , maxa, Q( s', a'; 0-). Thus, the loss function that 
is minimized in order to train the main network is: 

Loss(0) = IE[(y - Q(s, a; 0))2
] (2) 

The main network is trained on every training iteration, 
while the target network is frozen for a number of train
ing iterations. Every m training iterations, the weights of 
the main neural network are copied into the target network. 
This is one of the techniques used in order to avoid diver
gence during the training process. Another one of these 
techniques was the use of an experience replay buffer. This 
buffer contains the p most recent (s, a, r) tuples, and the 
algorithm randomly samples from the buffer when creating 
the batch on each training iteration. We followed the same 
procedure, but as our training was performed offiine, the 
experience replay buffer consists of all the samples on our 
training corpus, and it does not get refreshed over time. 

Double-DQN or DDQN was proposed by Van Hasselt et 
al. [12] who combined it with neural networks in the Double
DQN algorithm [51]. The intuition behind it is to decouple 
the action selection from the action evaluation. To achieve 
this, the Double-DQN algorithm uses the main neural net
work to first select the action that has the highest Q-value 
for the next state ( argmaxa, Q( s', a', 0)) and then evaluates 
the Q-value of the selected action using the target network 
( Q( s', argmaxa, Q( s', a'; 0); 0-)). This simple trick has been 
proven to significantly reduce overestimations in Q-value cal
culations, resulting in better final policies. With this tech
nique, the target value used to optimize the main network 
becomes: 

y := r + ,Q(s', argmax Q(s', a', 0); 0-) (3) 
a' 

The loss function is still the same as in equation 2, but the 
target value y used in the formula is now updated to be the 
one in equation 3. 

4.2 Fully Connected vs. LSTM 
For our NN architectures, we explored two options: Fully 
connected NNs and Long Short Term Memory (LSTM). 

Fully Connected or multi-layer perceptrons are the sim
plest form of neural network units. They calculate a simple 
weighted sum of all the input units, and each unit produces 
an output value that is often passed to an activation func
tion. We used these units to parametrize our neural net
works. All the input units are connected to all the units in 
the first hidden layer, and all those units are connected to 
every unit in the next hidden layer. This process continues 
until the final output layer. 

, ....................... .... ....................... . 
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Forget Input Output 

Figure 1: A single LSTM unit containing a forget, input and 
ouput gate 

Long Short-Term Memory (LSTM) is a type of re
current neural network specifically designed to avoid the 
vanishing and exploding gradient problems [13]. LSTMs 
are particularly suitable for tasks where long-term tempo
ral dependencies must be remembered. They achieve this 
by maintaining the previous information of hidden states as 
internal memory. Figure 1 shows the architecture of a single 
LSTM unit. It consists of a memory cell state denoted by 
Ct and three gates: the forget gate ft E [O, 1], the input gate 
it E [O, 1], and the output gate Ot E [O, 1]. These three gates 
interact with each other to control the flow of information. 
During training, the network learns what to memorize and 
when to allow writing to the cell in order to minimize the 
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training error. More specifically, the forget gate determines 
what information from the previous memory cell state is 
expired and should be removed; the input gate selects infor
mation from the candidate memory cell state c; to update 
the cell state; and the output gate filters the information 
from the memory cell so that the model only considers in
formation relevant to the prediction task. The value of each 
gate is computed as follows, where W[i,f,C,o] are the weight 
matrices and b[i,f,C,o] are the bias vectors: 

it = sigmoid(Wi · [Yt-1, Xt] + bi) 

ft= sigmoid(W1 · [Yt-1,Xt] + b1) 

c; = tanh(Wc · [Yt-1,Xt] + be) 

Ot = sigmoid(Wo · [Yt-1, Xt] + bo) 

(4) 

The memory cell value Ct and output value Yt from the 
LSTM unit are computed using the following formulas: 

Ct = Ct-1 · ft + c; · it 
Yt = Ot * tanh( Ct) 

4.3 Inferring Immediate Rewards 

(5) 

A historical dataset 1i consists of m trajectories, h1 to hm 
and n unknown immediate rewards. We would like to in
fer the immediate rewards given delayed rewards. In order 
to infer the immediate rewards, we used a minimum mean 
square error (MMSE) estimator in the Bayesian setting [18, 
8, 10]. Assume R = Dr + E is a linear process where D 
is a known matrix, r is a n x 1 random vector of unknown 
immediate rewards, R is a m X 1 vector of observed delayed 
rewards and E is a vector of independent and identically dis
tributed noise with mean of zero and standard deviation of 
O"R. Assuming the discounted sum of the immediate rewards 
is equal to the delayed rewards, a linear model matrix D is 
proposed as: 

0 (6) 

where 'Y is the discount factor. Following the linear MMSE 
estimator, we assume that the immediate rewards follow a 
Gaussian Process defined as r ~ N (µr, Crr) where µr is the 
a priori mean and Crr is the a priori covariance defined by 
an appropriate kernel [2]. Using the theorem of conditional 
distribution of multivariate Gaussian distributions [34], con
ditional expectation of immediate rewards given delayed re
wards JE[rlR] or the posterior mean of immediate rewards 
is: 

JE[rlR] = µr + CrrDT CRR -l (R - D µr) (7) 

and the posterior covariance C[rlR] of inferred immediate 
rewards given delayed rewards can be calculated as: 

IC[rlR] = Crr - CrrDTCRR -lDC~r (8) 

where CRR = DCrrDT + a-itl and I is the identity matrix. 

Algorithm 1 shows the process used to infer the immediate 
rewards. Estimation of the mean and covariance of the ran-

dom column vector r in Eqs. 7 and 8 requires the inverse of 
the matrix CRR· By introducing several intermediary vari
ables, this algorithm provides an efficient solution to matrix 
inversion using the Cholesky decomposition similar to the 
Gaussian Processes algorithm implementation [34]. 

Algorithm 1 Immediate reward approximation algorithm. 

Inputs: R, µr, Crr, D, O-it 
£ = Cholesky (DCrrDT + a-itl) 
/3 = £\ (R - D µr) forward-substitution algorithm 
a= £T\/3 back-substitution algorithm 
k= DC;r 
v=£\k 

-T 
lE [rlR] = µr + k a 
IC [rlR] = Crr - VTV 
return: lE [rlR] and IC [rlR] 

5. POLICY INDUCTION 
In this section, we will describe our ITS, the training corpus, 
our policy induction procedure, and theoretical evaluation 
results. 

5.1 Logic ITS 
The logic tutor used in this study is named Deep Thought 
(DT), and it uses a graph-based environment to solve logic 
proofs. It is used in the undergraduate level Discrete Math
ematics class at North Carolina State University. To com
plete a problem, students iteratively apply rules to logic 
statement nodes in order to derive the conclusion node. DT 
automatically checks the correctness of each step and pro
vides immediate feedback on any rule that is applied incor
rectly. The tutor consists of 6 levels, with 3 to 4 problems 
per level. Each problem can be represented as Problem Solv
ing (PS) or as Worked Example (WE). Figure 2 (left) shows 
the user interface for PS, and Figure 2 (right) shows the 
interface for WE. 

I -·· " 
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Figure 2: User Interface for DT. Left: PS. Right: WE. 

5.2 Training Corpus 
Our training corpus contains 786 complete student trajecto
ries collected over five semesters. On average, each student 
spent two hours to complete the tutor. For each student, the 
tutor makes about 19 decisions. From our student-system 
interaction logs, we extracted a total of 142 state features: 

• Autonomy: 10 features describing the amount of work 
done by the student. 

• Temporal: 29 features, including average time per 
step, the total time spent on the current level, the 
time spent on PS, the time spent on WE, and so on. 
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• Problem Solving: 35 features such as the difficulty of 
the current problem, the number of easy and difficult 
problems solvoo on the current level, the number of 
PS and WE problems seen in the current level, or the 
number of nodes the student added in order to reach 
the final solution. 

• Performance: 57 features such as the number of in
correct steps, and the ratio of correct to incorrect rule 
applications for different types of rules. 

• Hints: 11 features such as the total number of hints 
requested or the number of hints the tutor provided 
without the student asking for them. 

The features contain non-negative continuous values. As 
their range varies significantly (time ca.n be a large num
ber while problem difficulty is always between land 9), we 
normalized ea.ch feature to the range (0, 1]. Input feature 
normalization has been shown to improve the stability of 
the learning process on neural networks, and often leads to 
faster convergence. 

To induce our pedagogical policy, while previous research 
mainly used learning gains or time on task as reward func
tion, our reward function here is baaed on the improvement 
of learning efficiency, which balances both learning gain im
provement and time on task improvement. In this way, if 
two students have the same amount of learning gain, the 
one who takes shorter time would get higher reward. To 
calculate their learning efficiency, we used students' scores 
obtained on ea.ch level divided by the training time on the 
level. Students must solve the last problem on each level 
without help, and we use this as a level score. The range 
of the score for ea.ch level is [-100, + 100), and the learning 
gain for level L is calculated as ScoreL - ScoreL-1, thus 
having a range of [-200, +200). 

5.3 Training Process 
For both DQN and Double DQN, we explored UBing Fully 
Connected {FC) NNs or UBing LSTM to estimate the action
value function Q. Our FC has four fully connected layers of 
128 units each, uses Rectified Linear Unit (ReLU) as the 
activation function. Our LSTM architecture consists of two 
layers of 100 LSTM units ea.ch, with a fully connected layer 
at the end. Additionally, for either FC or LSTM, for a given 
time t, we explored three input settings: to use only the 
current state observation St (k = 1), to use the last two 
state observations: Bt-l and St (k = 2), and to use the last 
three: si-2, si-1 and St (k = 3). 

In the case of the fully connected (FC) model, the observar
tions are concatenated and passed to the input layer as a 
fl.at array of values. For LSTM, the input state observations 
are passed to the network in a sequential manner. These 
past observations provide extra information about the per
formance of the student in the previous states. However, 
including previous states also add complexity to the net
work, which can slow down the learning process and can 
increase the risk of converging to a weaker final policy. As 
the number of parameters increases in the NNs, the chance 
that our NN would get stuck at a local optima increases, e&

pecially when our training data is limited. L2 regularization 
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Figure 3: Importance sampling result.a. 

was used to get a model that generalizes better. We trained 
our models for 50,000 iterations, using a batch size of 200. 

S.4 Induced Policy 
First, we induced the DQN-Del policy using delayed rewards 
only. Our training de.ta was split: 90% of the student.a for 
training data and 10% for testing data. We trained all 12 
of our models (DQN and Double-DQN with either FC lay
ers or LSTM layers, and with k = {1, 2, 3}) on the training 
data and evaluated their performance on testing data. We 
repeated this process twice with two different test sets and 
reported their average performance on a series of popular 
off-policy evaluation metrics. Among them, Expected Cu
mulative Reward (ECR) is the most widely used. However, 
Per-Decision Importance Sampling (PDIS) has shown to be 
more robust [31] . 

ECR is simply calculated by averaging over the highest Q
value for all the initial states in the validation set. The 
formula is described in Equation 9. 

1 N 

ECR= N Eni:xQ(s,.,a) 
•=l 

(9) 

s, is an initial state, and N denotes the number of trajecto
ries in the validation set. 

PDIS [31) is an alternative to regular Importance Sampling, 
to reduce variance in the estimations. The PDIS results 
of the 12 models are shown in Figure 3. The PDIS result 
of the rand.om policy is used to set y = 0 ( the red line) 
in Figure 3. Much to our surprise, while double DQN has 
shown to be much more robust in online DRL applications, 
its performance is generally worse than DQN here, especially 
when k = 1 and k = 2. Figure 3 shows that the best policy 
is induced using DQN with the LSTM architecture for k = 
3, and thus is selected as DQN-Del. We also compare the 
selected policy with the Teroaining ones UBing ECR and other 
evaluation metrics and the results showed UBing DQN with 
the LSTM architecture for k = 3 is always among the best 
policies across different evaluation metrics. 

To evaluate the impact of Inferred rewards on the DQN in-



Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 174

a: 
u 
w 40 4-+--, __ ,_,__-+---+----I--+---+---+--+----< 

20 
- DQN_lnf 

--- DQN_Del 
0 ; - +---+----+--t----+-------<T r T 

0 5000 10000 15000 20000 25000 30000 35000 40000 

Training iterations 

Figure 4: ECR evolution of DQN-Del and DQN-Inf. 

duced policies, we used the same approach to induce the 
DQN-lnfpolicy and the only major difference is that we used 
the inferred immediate rewards in the training dataset, cal
culated through Algorithm 1. During the training process, 
we calculated the ECRs of DQN with the LSTM architecture 
for k = 3 using the original delayed rewards (DQN-Del) vs. 
using the inferred immediate rewards (DQN-Inf). The evo
lution of the ECR values for each policy during the training 
process is shown in Figure 4, showing that using the inferred 
rewards we can theoretically converge faster and to a better 
policy. 

6. EMPIRICAL EXPERIMENT SETUP 
Two empirical experiments were conducted, one in the Spring 
2018 semester and one in the Fall 2018 semester. They were 
both conducted in the undergraduate Discrete Mathematics 
class at North Carolina State University. 

6.1 Experiment 1: Spring 2018 
84 students from the Spring 2018 class were randomly as
signed to the Random (control) group and the DQN-Del 
group. Because both WE and PS are considered to be rea
sonable educational interventions in the context of learn
ing, we refer to our control random policy as a random yet 
reasonable policy or Random in the following. The assign
ment was done in a balanced random manner, using the pre
test score to ensure that the two groups had similar prior 
knowledge. N = 45 and N = 39 were assigned to Random 
and DQN-Del respectively. Among them, N = 41 Ran
dom students and N = 33 DQN-Del students completed 
the training. A x2 test showed no significant differences 
between the completion rates of the two different groups: 
x2 (1, N = 84) = 0.053, p = 0.817. 

6.2 Experiment 2: Fall 2018 
98 students from the Fall 2018 Discrete Mathematics class 
were distributed into two conditions. The two conditions 
are the Random (control) group and the DQN-Inf group. 
The group sizes were as follows: N = 49 for Random, and 
N = 49 for DQN-lnf. A total of 84 students completed the 
experiment and their distribution was as follows: N = 43 
for Random, and N = 41 for DQN-lnf. A x2 test of inde-

pendence showed no significant differences between the com
pletion rates of the two different groups: x2 (1, N = 98) = 
0.025, p = 0.872. 

6.3 Performance Measure 
Our tutor is consisting of 6 strictly ordered levels of proof 
problems. All of the students received the same set of prob
lems in level 1. Their initial proficiency is calculated based 
upon the number of mistakes made on the final problem of 
level 1 and the total training time on level 1. The profi
ciency reflects how well they understand the knowledge and 
can apply the logic rules in the proof process before the tu
tor follows different pedagogical policies. In each sequential 
level, DT will follow the corresponding policies to determine 
the next problem to be WE or PS. The last problem on 
each level is used as a mini-posttest to measure students' 
performance on that level. 

When inducing both the DQN-Del and DQN-lnf, we calcu
lated our reward function based upon the improvement of 
students' learning efficiency which is defined as level scores 
divided by the training time on that level. So to measure stu
dent performance, we first calculate the learning efficiency 
on each level as: the score obtained by the student in the 
last problem of that level, divided by the total time (in min
utes). In this study, we use student learning efficiency in 
level 1 as their pretest efficiency score and their learning effi
ciency in level2-level6 as the post-test efficiency scores. Since 
our DQNs used learning efficiency improvement as their re
wards, we expect that the DRL-induced policy would cause 
students to have higher post-test efficiencies. 

7. RESULTS 
7.1 Experiment 1 Results 
No significant difference was found on the pre-test efficiency 
between the Random and DQN-Del: t(72) = 1.086, p = 
0.281. We divided the students into high pre-test efficiency 
(n = 37) and low pre-test efficiency (n = 37) groups, based 
upon their learning efficiency on the pre-test. As expected, 
there was a significant difference between the high and low 
efficiency students on their pre-test efficiency: t(72) = 9.570, 
p < 0.001. The partition mentioned above resulted in four 
groups, based upon their incoming efficiency and condition: 
DQN-Del-High (n = 16), DQN-Del-Low (n = 17), Random
High (n = 21), and Random-Low (n = 20). At-test showed 
no significant difference in the pre-test efficiencies either be
tween the two low groups, Random-Low and DQN-Del-Low, 
or between the two high efficiency groups. These results 
show that there is no significant difference in the pre-test 
efficiency across conditions. 

A two-way ANCOVA test on the post-test efficiency, using 
Condition {Random, DQN-Del} and Incoming Competency 
{ Low, High} as factors and pre-test efficiency as a covariate, 
showed that there is no significant main effect of Condition 
F(l, 69) = 2.633, p = 0.109, and no significant main effect 
of Incoming Efficiency F(l, 69) = 0.036, p = 0.849. No in
teraction (ATI) effect was found either F(l, 69) = 1.285, 
p = 0.261. Thus, we conclude there was no difference be
tween the two conditions in the Spring 2018 study. 
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Figure 5: Post-Test Learning Efficiency a.cross different 
groups for the Fall 2018 study. 

7.2 Experiment 2 Results 
In fall 2018, again no significant difference was found on 
the pre-test efficiency between the Random and DQN-Inf 
groups: t(82) = -0.333,p = 0.739. The students were also 
divided into high pre-test efficiency (n = 42) and low pre
test efficiency (n = 42) groups. At-test showed a significant 
difference between the high and low efficiency students on 
the pre-test efficiency: t(82) = 6.38,p < 0.001. The same 
four groups were formed, based upon their incoming effi
ciency and condition: DQN-Inf-High {n = 20), DQN-Inf
Low (n = 21), Random-High (n = 22), and Random-Low 
(n = 21). A t-test showed no significant difference on the 
pre-test efficiencies when comparing the Random-Low and 
DQN-lnf-Low groups: t(40) = 0.027,p = 0.978. No signifi
cant difference was found either, when performing at-test on 
the two high efficiency groups: t(40) = -0.698,p = 0.489. 
This shows that there is no significant difference on the pre
test efficiency a.cross conditions during the Fall 2018 study. 

A two-way ANOVA test using Condition {Random, DQN
Inf} and Incoming Competency { Low, High} as two factors 
showed a significant interaction effect on students' post-test 
efficiency: F(l,80) = 5.038,p = 0.027 {as shown in Fig
ure 5). To be more strict, we ran a two-way ANCOVA test 
using Condition and Incoming Competency as two factors 
and pre-test efficiency as a covariate. This analysis also 
showed a significant interaction effect on students' post-test 
efficiency: F(l, 79) = 4.687,p = 0.033. Thus, by taking the 
pre-test efficiency into consideration, there is still a signifi
cant interaction effect. No significant main effect was found 
from either Condition or Incoming Competency. A one-way 
ANCOVA test on the post-test efficiency for the Low com
petency groups, using Condition {Random-Low, DQN-Inf
Low} as a factor and pre-test competency as a covariate 
showed no significant difference on the post-test efficiency 
F(l, 39) = 0.429, p = 0.516. However, a significant dif
ference was found for the High groups F{l,39) = 5.513, 
p = 0.024, with means -0.719 for Random-High and 2.916 
for DQN-Inf-High (as shown in Figure 5). 

7.3 Log Analysis 
This section will show more details on the different types of 
tutorial decisions made a.cross the different conditions and 
studies. The features that were analyzed include the total 
number of problems ea.ch student encountered (Total Count), 
the number of problems solved (PSCount), the number of 
difficult problems solved (diffPSCount), the number ofWEs 
seen (WECount), and the number of difficult WEs seen (dif
fWECount). Table 1 shows the summary of these five fea
tures for ea.ch condition and study. Columns 3 and 4 show 
the mean and standard deviation of ea.ch condition for these 
categories. Column 5 shows the statistical results of different 
t-tests comparing the two conditions. 

No significant difference is found for the total number of 
problems seen by ea.ch group. However, we observed that 
for the features diffPSCount, WECount and diHWECount, 
a significant difference was found only during the Spring 
2018 study. Looking at the mean values, we notice that the 
DQN-Del policy assigned fewer WE and more PS problems. 
However, this did not improve the performance of the stu
dents in the DQN-Del group during this study. During the 
Fall 2018 study, we only observe a significant difference in 
the number of PS problems assigned. No significant differ
ence was found in the remaining categories. 

When we analyze the logs for the High competency students, 
table 2 shows the values of those same features, but only 
for the High competency students in ea.ch study. During 
the Spring 2018 semester, we find a statistically significant 
difference for TotalCount, PSCount, and diffWECount, and 
we find a marginal difference for WECount. This shows that 
the DQN-Del policy gave more PS problems, fewer WE, and 
fewer difficult WE problems, but no significant difference 
was found in students' post-test performance. The Fall 2018 
study results show no significant or marginal difference in 
any of the five categories. Despite this fa.ct, the DQN-Inf 
policy implemented in the Fall 2018 study outperformed the 
Random policy for the High competency students. We can 
also observe how, in Tobie 2, the standard deviation for the 
DQN groups is often larger than the standard deviation for 
the Random groups. This makes sense because we expect all 
the students in the Random group to have a similar values 
in ea.ch category. However, it looks like the DQN policy 
is assigning more PS to certain students, and more WE to 
other students, resulting in a larger standard deviation. 

In short, our log analysis results show that it is not about 
the total amount of PSs and WEs that students received 
that matters, but rather how or when they receive which. 

8. CONCLUSIONS 
We used offiine Deep Reinforcement Learning algorithms in 
conjunction with inferred immediate rewards to induce a 
pedagogical policy to improve the students' learning effi
ciency for a logic tutor. Our results showed that our DRL
induced pedagogical policy can outperform the Random pol
icy, which is a strong baseline here. More specifically, there 
was an ATI effect in the Fall 2018 study in that the high in
coming competency students were benefited more from our 
DRL-induced policy, by achieving better post-test learning 
efficiency than other groups. Our results showed t hat our 
proposed Gaussian Processes based approach to infer ''im-
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Table 1: Log analysis results for per semester and condition. 

Feature Semester Random DQN Significance 

Total Count 
Spring 22.68(5.05) 24.02(5.29) t(72) = -1.118, p = 0.267 

Fall 23.81(3.32) 25.26(5.37) t(82) = -1.489, p = 0.141 

PSCount 
Spring 14.82(5.29) 17.08(6.11) t(72) = -1.691, p = 0.095• 

Fall 14.38(2.30) 15. 73(3.68) t(82) = -2.029, p = 0.046* 

diffPSCount 
Spring 5.19(1.74) 4.85(2.06) t(72) = 0.765, p = 0.446 

Fall 7.54(1.57) 8.19(2.31) t(82) = -1.501, p = 0.137 

WECount 
Spring 7.85(1.17) 6.94(1.87) t(72) = 2.466, p = 0.016* 

Fall 9.43(1.57) 9.52(2.37) t(82) = -0.210, p = 0.833 

diffWECount 
Spring 3.85(1.33) 2.61(1.87) t(72) = 3.226, p = 0.002* 

Fall 2.15(1.42) 2.02(1.23) t(82) = 0.469, p = 0.639 

Table 2: Log analysis results for the high competency groups per semester. 

Feature Semester Random 

Total Count 
Spring 21.52(2.18) 

Fall 24.27(0. 76) 

PSCount 
Spring 13.61(2.49) 

Fall 14.59(0.66) 

diffPSCount 
Spring 5.57(1.43) 

Fall 7.68(0.83) 

WECount 
Spring 7.90(1.33) 

Fall 9.68(0.94) 

diffWECount 
Spring 4.23(1.41) 

Fall 2.18(1.46) 

mediate rewards" from the delayed rewards seems reasonable 
and works pretty well here. Thus, offiine DRL can be suc
cessfully applied to real-life environments even with a limited 
training dataset with delayed rewards. 
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ABSTRACT
In this paper, we focus on optimizing the assignment of
students to courses. The target courses are conducted by
different teachers using the same syllabus, course design,
and lecture materials. More than 1,300 students are me-
chanically assigned to one of ten courses taught by different
teachers. Therefore, mismatches often occur between stu-
dents’ learning behavior patterns and teachers’ approach to
teaching. As a result, students may be less satisfied, have
a lower level of understanding of the material, and achieve
less. To solve these problems, we propose a strategy to op-
timize the assignment of students to courses based on learn-
ing activity analytics. The contributions of this study are
1) clarifying the relationship between learning behavior pat-
tern and teaching based on learning activity analytics using
large-scale educational data, 2) optimizing the assignment of
students to courses based on learning behavior pattern ana-
lytics, and 3) demonstrating the effectiveness of assignment
optimization via simulation experiments.

Keywords
Student assignment to courses, optimization, learning activ-
ity analytics

1. INTRODUCTION
Due to the widespread use of digital learning environments
in education, collecting large-scale educational data has be-
come easier in recent years. For example, online course
educational systems such as Massive Open Online Courses
(MOOCs) generate clickstream data from users who access
the course websites. E-Learning systems such as Black-

board [5] and Moodle [9] record clickstream data when users
submit reports, access materials, complete quizzes, etc. Ed-
ucational data can also be extracted from e-Book systems
(digital textbook systems), which provide precise logs of ac-
tions such as page movement, bookmarks, highlights, text
memos, and so on. These large-scale educational data play
a crucial role in the research domains of learning analytics
and educational data mining.

Learning analytics is defined as the measurement, collec-
tion, analysis, and reporting of data about learners and their
contexts for understanding and optimizing learning and the
environments in which it occurs [1]. Various studies thus
far have focused on learning analytics, including learning
activity analysis [25], identifying at-risk students [17, 21],
understanding learning paths [7], pattern mining [15], per-
formance prediction [6, 14], and learning support [20].

In this paper, we focus on optimizing the assignment of stu-
dents to courses. The optimization of assignment is often
discussed for the purpose of timetabling problem [2, 18],
teacher assignment to courses[8, 16], student assignment to
courses [12, 19], and so on. The objective is to reduce the
time consuming cost of educational office persons and fac-
ulty members, or to maximize the satisfaction of students
and teachers. For these reasons, assignment problem is often
applied to multi-different courses with consideration of the
classroom capacities and preference of students and teach-
ers. In contrast to these existing studies, the target courses
of our study are conducted by different teachers using the
same syllabus, course design, and lecture materials. More
than 1,300 students are mechanically assigned to one of ten
courses taught by different teachers. Therefore, mismatches
often occur between students’ learning behavior patterns
and teachers’ approach to teaching. As a result, students
may be less satisfied, have a lower level of understanding of
the material, and achieve less. To solve these problems, we
propose a strategy to optimize the assignment of students
to courses based on learning activity analytics.

The research questions and contributions of this study are
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summarized as follows.

Research questions:

RQ1. Are learning activities common among courses or char-
acterized by each individual course?

RQ2. Does better matching between the learning behavior
pattern and teaching improve students’ performance?

Contributions::

C1. Clarify the relationship between learning behavior pat-
tern and teaching based on learning activity analytics
using large-scale educational data.

C2. Optimize the assignment of students to courses based
on learning behavior pattern analytics.

C3. Demonstrate the effectiveness of assignment optimiza-
tion via simulation experiments.

In this paper, we review related research in the section 2 and
then provide an overview of the proposed method including
information about courses and the dataset in the section 3
The section 4 and section 5 discuss in detail the proposed
method and strategy, and are followed by the discussion and
conclusion in the section 6.

2. RELATED WORK
Optimization of assignment problem has been applied to
several applications; such as timetabling problem [2, 18],
classroom allocation problem [22], teacher assignment to
courses [8, 16], student assignment to courses [24, 4, 12,
19], student grouping problem [11].

Elloumi et al. [2] defined the exam timetabling problem as
the scheduling of exams to time slots, and the assignment
of a set of exams to available classrooms. The objective was
addressed to minimize the total capacity of the assigned
classrooms. Phillips et al. [18] tackled the classroom as-
signment problem of university course timetabling. They
solved an exact integer programming model for room as-
signment to get a Pareto optimal solution with respect to
several solution quality measures on data from the univer-
sity. Thongsanit [22] solved the classroom allocation prob-
lem. The number of students, the period of each course,
the capacity of each classroom were used for optimization.
Excel premium solver was applied to solve the problem.

Domenech et al. [8] solved the problem of teacher assign-
ment to courses, taking teachers’ preference into considera-
tion. They developed a mixed integer linear programming
model to balance teachers’ teaching load and to maximize
teachers’ preference for courses. Ongy [16] also dealt with
the teacher assignment problem to specific sections of par-
ticular courses. The assignment was solved to maximize the
matching between teachers’ competency to a specific sub-
ject. A mathematical model of the assignment process was
formulated using mixed-integer programming.

Varone et al. [24] tackled the problem of course scheduling
and assignment of students. They addressed students’ pref-
erence for each course, a minimum number of students re-
quired to open a course, a maximum number of students for
each course. The problem was defined as a generalization of

the student project allocation problem, and was solved by an
integer programming problem. Ivo et al. [12] dealt with the
problem of assigning students to elective courses according
to their preference. They presented an integer programming
model that maximizes the total student satisfaction in line
with a number of different constraints. Shannon et al. [19]
proposed an evolutionary algorithm for assigning students
to courses. They addressed a situation where each student
specified a set of courses with preference, and capacity of
each course was given. The object was to maximize the
overall student satisfaction by assigning each student to a
course as high on his/her preference as possible.

As introduced above, optimization problems are often de-
fined as a family of integer programming problem. One of
common criteria is the capacity information such as class-
room size, the number of students required by each course.
In addition, taking preference of students or teachers into
consideration will improve the satisfaction of them. In con-
trast to these studies, our study focuses on compulsory courses
which all students have to join. The courses are conducted
by several teachers in parallel, because of the limited capac-
ity of each classroom. In compulsory courses, considering
preference of students does not make much sense. There-
fore, our method introduces a matching between learning be-
havior pattern and teaching which are objectively observed
through the analytics of learning logs, instead of using sub-
jective preference of students. To the best of our knowl-
edge, our study is the first case to introduce the learning
activity analytics results to optimizing student assignment
to courses.

3. OVERVIEW OF METHODS
3.1 Lecture Course and Dataset
The dataset used in this study was collected from e-Learning
and e-Book systems. The target courses were a series of
lectures that constitutes the “Primary Course of Cyber Se-
curity,” which commenced in Kyushu University in April
2018. Overall, 1,354 students were assigned to one of the
10 courses in advance. The lectures were conducted by six
teachers in face-to-face style over seven weeks. Teachers fol-
lowed the same syllabus and used the same lecture materials
in the courses. Table 1 provides detailed information on the
courses: teacher, course id and number of students. Note
that in each course, four teachers were assigned to give two
lectures each.

Table 1: Course Information
teacher course id students

Te01 60ab104927 114
Te01 6b1900c56c 120
Te02 9a683161f5 171
Te02 86066cba6d 143
Te03 792efa2c1b 139
Te03 34451e8c77 129
Te04 24a65f29b6 137
Te04 dbed6c966a 140
Te05 39a67f80f4 133
Te06 65bb6224af 128

All students have their own laptops and bring them to ac-
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cess the e-Learning and e-Book systems during the lecture.
We collected the learning activity logs over seven weeks.
When an e-Book is operated, its timestamp, user id, mate-
rial id, page number, and operation name are automatically
recorded as an operation event. There are many types of
operations; for example, OPEN indicates that a student has
opened the e-Book file and NEXT indicates that the student
has clicked the next button to move to the subsequent page.
Students can bookmark a specific page, highlight selected
characters, and make notes on a page. These operations cor-
respond to the events ADD BOOKMARK, ADD MARKER,
and ADD MEMO, respectively. A total of 4,087,730 e-Book
operation logs were collected.

3.2 Analytics Flow
The analytics flow of this study comprises two stages. The
first stage involves extracting the analytics of learning activ-
ities and quiz scores from each course. Statistical summaries
of e-book operations, the browsing time for each page, and
the distribution of the quiz scores for each lecture are ana-
lyzed to gather the characteristics of the courses. We then
perform further detailed analytics of learning activities over
courses to investigate the relationship between learning be-
havior patterns and quiz scores. We will show the possibility
of optimizing the assignment of students to courses based on
the results of these analytics.

At the second stage, we tackle the optimization issue, aiming
to match learning behavior patterns and teaching to improve
students’ understanding of course contents. To this end, we
use students’ quiz scores instead of their level of understand-
ing of course contents. We solve the optimization problem
as a generalized assignment problem. We define a new cost
function to realize the best assignment. We investigate the
effectiveness of our assignment of students through simula-
tion experiments.

4. LEARNING BEHAVIOR PATTERN AN-
ALYTICS

There are several existing approaches to analyze learning be-
havior patterns in Massive Open Online Courses (MOOCs)[13,
10, 3]. On the other hand, our study focuses on learning logs
collected during in-class, i.e., face-to-face lecture time, and
out-class activities. Therefore, we newly design a method-
ology to analyze learning activities of students.

4.1 Course Activity Summary
The learning logs consist of four types of datasets: e-book
operation logs, lecture material information, lecture time
information, and quiz scores. First, we divide the e-book
operation logs into in-class activity logs and out-class activ-
ity logs by referring to the lecture time information. With
ten courses in the dataset, we acquire ten sets of in-class
and out-class activity logs after the division procedure. Sec-
ond, the in-class and out-class activity logs are aggregated
page by page. The aggregation procedure is performed for
each week (for seven weeks). This allows us to analyze the
page-wise activity of each week. In addition, we calculate
students’ browsing time on each page by subtracting the
timestamps between successive page transition events. Con-
sequently, we acquire the total length of students’ browsing
time for each page.

Figure 1: In-class Learning activity, browsing time
and quiz scores of each course in the 1st week.
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Figure 1 shows the visualization result of in-class activity,
browsing time, and quiz scores for the first week (The figure
is arranged with 90-degree rotation due to the page space
limitation). The figure on the left displays page-wise e-book
operations including “BOOKMARK,” “HIGHLIGHT,” and
“MEMO.” The horizontal axis represents the page number
while the vertical axis shows the number of operations ag-
gregated by the students. Each row corresponds to a single
course. The central figure shows students’ page-wise brows-
ing time during lectures. The vertical axis of this figure is the
timed duration (seconds). The figure on the right displays
the quiz score distribution. After the lecture every week,
students answered quizzes (averagely 5 questions). The quiz
scores are normalized between 0 and 5 (full marks). The hor-
izontal axis shows the scores and the vertical axis represents
the number of students. The distributions of operations,
browsing time, and quiz score are characterized for each
course. For instance, the e-book operations are recorded
in the former pages much more than latter pages. Regard-
ing students’ browsing time, a longer time was spent on the
former pages rather than latter pages. The quiz scores are
also characterized by courses. The courses in the seventh
and eighth rows received lower scores compared with other
courses.

Next, let us focus on sets of two specific courses conducted
by the same teachers. Of six teachers, four (Te01, Te02,
Te03, and Te04) have two courses, as summarized in Ta-
ble 1. We can see that the visualized results are similar for
courses conducted by Te01, Te02, and Te03 compared with
those of other teachers. Especially in the case of Te01 and
Te02, the frequency of the e-book operation logs and brows-
ing time for e-books have common peaks. On the other
hand, in the case of Te04, the distributions are not so sim-
ilar between two courses compared with the cases of other
teachers. Even so, the similarity of the two distributions are
higher than the courses conducted by the other teachers.
Figure 2 shows the summary of e-book operation usage and
quiz scores of each course in the first week. In the case of
bookmark, highlight and memo operations, the value rep-
resents the average usage of each operation per page. The
quiz score is normalized between 0 and 1. The higher value
implies that students used the operations frequently or re-
ceived better quiz scores. This figure illustrates that the
courses conducted by the same teachers have similar values.
While we show the result of the first week only due to the
page space limitation, a similar tendency was observed in
the other weeks.

From the above results, we inferred the following points.
First, teachers have their own teaching ways, which do not
differ widely between courses. Second, students’ learning
activities are strongly affected by the teaching ways. To in-
vestigate these hypotheses, we further analyzed course char-
acteristics.

4.2 Learning Activity Features
If learning activities are affected by teachers, the activities
in each course should form a cluster, and the clusters related
to the same teacher should have more similar features than
the other clusters. For the investigation, we define a feature
vector Fu,l that represents the learning activities of student
u for a lecture material l.

Figure 2: Learning activities in the 1st week.

To simplify the mathematical formulation, the notation u is
omitted from the following explanation. Let fp be a page-
wise feature vector in page p of the lecture material. The fp
has eight elements;

fp = (bip, h
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p), (1)

where b∗p, h
∗
p, and m∗

p are the number of operation logs of
“BOOKMARK,”“HIGHLIGHT,”and“MEMO”recorded dur-
ing (∗ = i)/outside (∗ = o) the lecture time. The tip and top
are the browsing time of page i during the lecture time and
outside lecture time, respectively. A feature vector for a spe-
cific lecture material l containing lN pages is defined by the
concatenation of fp as

Fl = (f1, . . . , fp, . . . , flN ). (2)

For instance, when a lecture material l consists of 50 pages,
the feature vector has 400 (8-dim ×50 pages) dimensions.
Note that, in fact, the feature vector is calculated for each
student u defined as Fu,l.

We apply t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) [23] to investigate the similarity and dissimilarity of
feature vectors within the course and among the courses. t-
SNE is a technique for dimensionality reduction. It is often
used for the visualization of high-dimensional datasets. It
converts similarities between data points to joint probabil-
ities and tries to minimize the Kullback-Leibler divergence
between the joint probabilities of low-dimensional embed-
ding and high-dimensional data. Figure 3 shows the visual-
ization result in two-dimensional space. Courses are marked
by color. We can see that the feature vectors distribute
closely in the same course, while those of other courses make
distinguishable clusters. From these results, we can say that
learning activities are affected by teachers, as mentioned in
the previous section.

4.3 Learning Activity vs. Quiz Score
Through analyzing e-book operation logs and learning ac-
tivity features, we found that the learning activity itself is
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Figure 3: Visualization of feature vectors by t-SNE.

characterized by courses, i.e., teachers who conducted the
lectures. On the other hand, the relationship between learn-
ing activities and quiz scores was not addressed in previous
analytics. Although learning activity (i.e., feature vector
Fu,l) is similar in the same course, quiz scores are distributed
widely, as shown in the right part of Figure 1. Therefore, it
is important to perform a relation analysis between learning
activities and quiz scores.

To extract the characteristics of learning activities, we ap-
ply the k-means clustering method to the set of feature vec-
tors Fu,l acquired from all students. Then, we investigate
the quiz score of each cluster and each course. Note that
the clustering is performed for all feature vectors without
considering the course id information. In other words, the
learning activity features are purely analyzed to generate
clusters. Afterwards, we put the course id again to each
feature vector to investigate the clustering result. Figure 4
shows the result of the first week when the number of clus-
ters was set to be 5. The horizontal axis is the course id and
the vertical axis is the cluster id (from 0 to 4, totally 5 clus-
ters). The value of each cell indicates the average quiz score.
For example, in the left column and fifth row, the score is
3. This means that the students in course id “60ab104927,”
with learning activity in cluster id “4” received the score of 3
on an average. The cells with values of zero indicate that no
student belongs to the cluster or the course. The detailed
distribution of quiz scores in each cluster is shown in Fig-
ure 5. The horizontal axis is the cluster id, and the vertical
axis is the number of students over courses. We can see that
each cluster cannot be explained by quiz scores. Even in the
same cluster, that is, even in the similar learning activity,
some students received better scores while others received
worse scores.

Figure 4 displays interesting and important characteristics
of lectures. First, some clusters (e.g., cluster id 0) represent
the characteristics of learning activities observed only in lim-
ited courses (e.g., course id“9a683161f5”and“86066cba6d”).
In the case of cluster id 1, the corresponding learning activ-
ities are observed in all courses, but the average quiz scores
are different. Students in course id “86066cba6d” received
higher scores, while those in course id “24a65f29b6” received
lower scores than in the other courses. On the other hand,

Figure 4: Average quiz scores of each cluster and
each course when the number of clusters was 5 in
the 1st week.

Figure 5: Quiz score description of each cluster in
the 1st week.

each column also shows interesting characteristics of each
course. For example, students belonging to cluster id 2 re-
ceived high scores in course id “39a67f80f4,” while those in
cluster id 3 received lower scores. In the case of course ids
“60ab104927” and “792efa2c1b,” the scores of cluster id 3 are
higher than those of cluster id 2. Therefore, our findings are
summarized as follows. Even if learning activities are simi-
lar, quiz scores differ among courses. The characteristics of
each course and its method of scoring quizzes are different
for each cluster. We investigated these characteristics by
changing the number of clusters from 3 to 29 (14 patterns)
and found the same results. Due to length limitations, we
only show additional results when the number of clusters
was set to 15 in Figure 6. As the number of clusters in-
creases, course-specific clusters appear, such as cluster id 1,
2, and 3.

5. OPTIMIZATION OF STUDENT ASSIGN-
MENT TO COURSES

Based on the results of the learning activity analysis and
findings in the previous section, we optimize the process
of assigning students to courses considering learning activ-
ities and course characteristics. In this section, we define
the characteristic of courses c as the ability to give a stu-
dent group g a quiz score Ac,g,l on average for the lecture
material l. Note that the lecture material l completely cor-
responds to each week, so that we can regard the l as the
indicator of week. The c, g, and Ac,g,1(l = 1) correspond
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Figure 6: Average quiz scores of each cluster and
each course when the number of clusters was 15 in
the 1st week.

to the column, row, and element value in Figure 4, respec-
tively. Our assumption is that students will get better quiz
scores if they move to better-suited courses. For example,
students in group c =“dbed6c966a” and g = 3 received an
average quiz score of 2.0 (i.e., Ac,g,1 = 2.0). If they could
move to another course, “792efa2c1b,” their quiz score would
become 1.89 points higher (will receive 3.89 points on aver-
age). While this is an ideal situation, we suppose that a good
match between course characteristics and learning behavior
patterns will generate positive effects. Therefore, we pro-
pose an optimized strategy of assigning students to courses
based on learning activity analytics.

5.1 Assignment Problem
The optimization of assignment can be considered the gen-
eralized assignment problem (GAP). The GAP is a problem
in combinatorial optimization in which each agent in one
set is matched to a single task in another set. Each task has
a limited capacity for agents, and the goal is to minimize
the sum of the costs or maximize the sum of profits. For-
mally, the problem can be stated as an integer programming
problem.

In the case of our study, the agents and tasks can be replaced
by the courses and students. The problem is:

minimize

C∑
c=1

U∑
u=1

wc,uxc,u (3)

subject to

U∑
u=1

xc,u ≥ Sc, for c = 1, . . . , C (4)

C∑
c=1

xc,u = 1, for u = 1, . . . , U (5)

where C is the number of courses, U is the number of stu-
dents, and wc,u is the cost for the assignment of student u
to course c. The detailed definition of wc,u will be explained
later. The xc,u becomes 1 if student u is assigned to course
c; otherwise, it is zero. The Sc is the minimum of students
required in course c.

We define the cost wc,u as follows:

wc,u = (H −Ac,m(u)) + b (6)

where H is the maximum quiz score, m(u) is a map func-
tion that presents the group g (i.e., cluster id) to which the
student u belongs, and b is the bias term to penalize chang-
ing courses. The first term (H − Ac,m(u)) becomes smaller
when student u is assigned to a course c in which student
u will likely receive a higher quiz score. In other words,
student u belonging to group m(u) is likely to move to a
course that gives higher quiz scores for group m(u). Note
that m(u) indicates the student group (cluster id) that has
a similar learning activity within the group, so that we can
estimate a quiz score Ac,m(u) for every assignment situation
because Ac,m(u) corresponds to an element in Figure 4. The
bias term b gives an additional cost to constrain the course
movement (change of the assignment from one course to an-
other). If we give a large value to b, the wc,u also becomes
large, which most likely results in students remaining in the
current course. Note that the above equations are calcu-
lated in each week so that the notation l, which identifies
the lecture material, hsould be put on each term such as
wc,u,l, xc,u,l, Ac,m(u),l. In the avobe equations, we omitted
the notation l to simplify the mathematical formulation.

5.2 Assignment Results
We conducted experiments to investigate the proposed as-
signment strategy. We varied the number of clusters from
3 to 29 (14 patterns) and the bias b from 0.0 to 1.0. We
performed k-means clustering to acquire the relation matrix
of the quiz scores between student groups g and courses c as
shown in Figure 4. Next, we solved the generalized assign-
ment problem by changing the bias value to 0.0, 0.1, 0.3, 0.5,
and 1.0. Assignment optimization was conducted for each
week individually so that we acquired a total of 490 assign-
ment results (14 clustering patterns × 5 bias patterns × 7
weeks). In the following paragraph, we report how the as-
signment result changed according to the number of clusters
and the strength of the bias.

First, we investigated how many students were assigned (moved)
to the other courses. Figure 7 shows the assignment results
when the number of clusters was 5 and the bias was 0.5.
Course ids are arranged in horizontal and vertical lines. The
horizontal line indicates the course id to which students be-
longed before the assignment, that is, the original course as-
signed by the university. The vertical line shows the course
id to which students were assigned after the optimization
of the assignment problem. The value of each cell is the
number of students. For example, 137 of 139 students who
originally belonged to “86066cba6d” remained in the same
course, but 2 students moved to the course “9a683161f5.” In
the case of this result, the bias was set to be 0.5, which is a
relatively strong bias to constrain course changes, resulting
in students remaining in original courses (large value in diag-
onal element) rather than changing courses. Interestingly, a
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Figure 7: Movement matrix when the number of
clusters was 5 in the first week.

large movement occurred between course “dbed6c966a” and
“39a67f80f4.” Figure 8 shows another result when the num-
ber of clusters was 15 and the bias was 0.0 (no bias). Com-
pared with Figure 7, a larger number of students moved from
their original courses to other courses.

Next, we investigated the total number of students who
moved courses. Figure 9 shows the summarized result of
course movement. The horizontal axis shows the number
of clusters that we set when performing k-means clustering
for learning activity logs. The vertical axis displays the per-
centage of students who were assigned to the other courses.
The five lines represent the results with different values of
bias. In general, as the number of clusters increased and as
the value of bias decreased, many students were assigned to
other courses. The larger number of clusters generated small
clusters that precisely indicate the representative learning
activities, which is why the flexibility of the matching be-
tween students and courses increased. In the case of no bias
(bias b = 0.0), students moved among courses the most flex-
ibly.

The flexibility directly related to the encouragement of quiz
scores. Figure 10 shows the improved quiz scores after the
optimization of student assignments. The vertical axis is the
value of the improved quiz score. In fact, the improvement in
the quiz score q̂u,l of each student u for the lecture material
l (i.e., lth week) was calculated by:

q̂u,l = qorgu,l −Ac,m̂(u),l (7)

where qorgu,l is the original quiz score of student u in lth week

and m̂(u) is the map function that gives the group id (clus-
ter id) to which student u was assigned. The line graphs
indicate the average of score q̂u,l of all students over seven
weeks. We can see the similar tendency of the line graphs
compared with Figure 9. We further investigated the im-
provement of quiz scores in each week. We identified three
typical cases:

Figure 8: Movement matrix when the number of
clusters was 15 in the first week.

Figure 9: Course movement over 7 weeks.

2nd week: w2 the original score was higher on average
than in other weeks.

4th week: w4 the original score was lower on average than
in other weeks.

6th week: w6 the original score was at an average level
over 7 weeks.

Figure 11 shows the line graphs of three cases; the solid
line and dashed line correspond to the different settings of
bias value at 0.0 and 0.5, respectively. The lower the orig-
inal score (fourth week), the more the score was improved.
From these results, we can expect to improve the quiz scores
through the optimization of student assignments. The level
of improvement is affected by the number of clusters and the
value of bias. In addition, the number of course movements
is strongly affected by the bias.

Finally, we note again that the experiments in this section
demonstrate the success of the proposed optimization strat-
egy based on the analytics of learning activities. Although
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Figure 10: Score improvement after optimization of
student assignment to courses.

Figure 11: Three typical examples of score improve-
ment.

the improvement of quiz score q̂u,l is a simulated result, we
can expect students to get better scores if matching between
students and courses is optimized. This expectation comes
from the fact that matching optimization provided better
scores, as shown in Figure 4 and 6 of the previous section.

5.3 Simulation in a Realistic Situation
In this section, we conduct simulated experiments consider-
ing a more realistic situation. The proposed optimization
method requires students’ learning activity logs to analyze
learning behavior patterns and quiz scores. Therefore, we
assume that the optimization of student assignment is per-
formed after the lecture of the first week. Using the data
from learning activities and quiz scores collected in the first
week, we optimize the assignment of students to courses.
The assignment then remains the same after the second lec-
ture. We simulated the quiz scores of students who were
assigned to another course after the first lecture from the
second to seventh week.

This simulation is difficult because although the actual quiz
scores in the original courses are known, quiz scores after
the optimization of assignments are unknown. Therefore,
we must estimate students’ quiz scores after optimization.
We will now review the purpose of clustering learning activi-

ties. As concluded in the previous section, students received
different quiz scores even when their learning activities were
similar. After the optimization of student assignment to
courses, students who received worse scores in the original
course should be moved to another course in which they
will receive better quiz scores. Therefore, we will focus on a
student who has a similar learning activity in the course to
which the target student is assigned. More specifically, let a
target student be y and consider a situation where student
y is assigned to course c. For all students who originally
belonged to course c, we search for a student z who has the
most similar learning activity to student y. Mathematically,

z = arg min
u

|Fy,l − Fu,l| (8)

where Fu,l is a feature vector of learning activity of student u
for the lecture material l. The lecture material l corresponds
to a specific lecture, so that we can regard l as the lecture
conducted in each week. Finally, we regard the original quiz
score qorgz,l of student z as the estimated score of the target
student y. Let q̂new

y,l be the estimated quiz score of student y
after the assignment. The score improvement ratio ry,l can
be calculated by:

ry,l =
q̂new
y,l − qorgy,l

H − qorgy,l

(9)

where H is the maximum quiz score (the same with eq. 6)
and qorgy is the quiz score of student y in the original course.
Note that qorgy,l is the actual quiz score and q̂new

y,l is the esti-
mated quiz score. Figure 12 illustrates the overview of the
simulation strategy. In the Figure, student y is assigned to
course A after the 1st week. The quiz scores from the 2nd
week to 7th week have to be estimated because the student
y has the quiz scores in the original course B. Our strat-
egy explore the most similar (matched) feature vector Fu,l

from the students in course A. In the case of this figure, the
learning activities of student 1 and student 2 are the best
matched in the 2nd week and 3rd week, respectively. As
the results, the quiz score of qorg1,2 and qorg2,3 are used for the
estimated quiz scores of student y in the 2nd week and 3rd
week, respectively.

Figure 13 shows the simulation result. The horizontal axis
shows the number of clusters, and the vertical axis repre-
sents the score improvement ratio. The improvement ratio
is averaged over six weeks (from the 2nd to 7th week) and
over students who moved from the original course to the
other course. Totally, the improvement ratio of every set-
ting (any number of clusters, or any value of biases) was
higher than zero, which means that the student assignments
created positive effects for students. The scale of the effect
was the largest when we set the bias b to 1.0. In contrast to
the result in Figure 10, the largest value of bias provided the
best result. This is because the improvement ratio is summa-
rized by students who were assigned to the other course only.
In the case of a large value of bias b, the movement from one
course to another is constrained, so that a small number of
students actually changed courses, as shown in Figure 9. As
a result, the optimization of student assignment provided
higher effects (i.e., made students receive better quiz scores)
for a limited number of students. As the number of students
increases (the bias decreases), the effect becomes smaller due
to averaging calculation of improvement ratios. There was
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Figure 12: Overview of simulation experiment how
to estimate the quiz scores in the newly assigned
course

Figure 13: Average score improvement ratio over 6
weeks.

not a large difference of improvement ratios among the four
settings where the bias value was 0.0, 0.1, 0.3, or 0.5 when
the number of clusters was larger than five. In terms of the
calculation cost and ease in explaining/interpreting learning
activities, we prefer the smaller number of clusters, so that
selecting the five clusters is one of the reasonable solutions.

Finally, Figure 14 shows the weekly improvement ratio when
the number of clusters was fixed to be five. From the fourth
(w4) to the seventh week (w7), a similar tendency was ob-
served: The large value of bias b provided higher improve-
ment. On the other hand, in the second (w2) and third
weeks (w3), even the smaller value of bias b provided better
results. We guess that the factor comes from the calculation
of improvement ratio. When the original quiz scores are
close to the maximum quiz score H, the denominator eq. 9
becomes smaller, resulting in a larger improvement ratio.
In fact, the average of the original quiz scores in the second
week was quite higher than in other weeks. In terms of max-
imization of the number of students who are supposed to get
better quiz scores, the constraint bias should be relaxed as

Figure 14: Average score improvement ratio of each
week when the number of clusters was 5.

least as possible. Therefore, a reasonable guideline to set
the number of clusters and bias is to set a smaller number
of clusters (such as 5 or 7) and set a smaller value of bias
(such as 0.1, 0.3, or 0.5).

6. DISCUSSION AND CONCLUSION
We proposed a strategy to optimize the assignment of stu-
dents to courses based on learning activity analytics. This
optimization is first intended to minimize the mismatch be-
tween students’ learning behavior patterns and teachers, and
second to maximize the improvement of students’ quiz scores
by assigning them to courses that are more suited to their
learning behavior patterns. The success of these interven-
tions are supported by the learning analytics results. Ana-
lyzing e-book operation logs and quiz scores collected from
1,354 students in 10 courses based on the same syllabus
and lecture materials, we identified the following findings.
From the macro perspective, learning activities are affected
by teachers. Although teachers are not directly observed
by teaching logs, the patterns implicitly appear as course-
specific features, as shown in Figure 3. From the micro per-
spective, students’ learning activities can be grouped into
several clusters, each cluster representing a feature of such
learning activities. Regardless of courses, students have sim-
ilar learning activity features if they belong to the same clus-
ter. On the other hand, quiz scores differ among students
who belong to the same cluster. From these facts, we formu-
lated the hypothesis that good matching between learning
behavior pattern and teaching approach would provide bet-
ter effects for students.

Our proposed approach requires learning activity logs to be
acquired before students can be assigned to courses. Thus,
in our experiments, we used learning logs collected in the
first week and then optimized the assignment of students
for subsequent weeks. Another promising solution to this
matter could employ learning logs collected in other lecture
courses or in past courses. If such logs are available, learning
activities can be analyzed in advance and students can be
optimally assigned to courses before the first week’s lecture
begins. This paper showed the effectiveness of an optimiza-
tion strategy through the results of simulation experiments
in which quiz scores improved. Meanwhile, the proposed
method has another important aspect as a useful tool to
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simulate the effects of assignments in advance. In future
work, we will investigate the effectiveness of the optimiza-
tion strategy in live settings based on effect simulations.
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ABSTRACT
The evaluation of text complexity is an important topic in
education. While this objective has been addressed by ap-
proaches using lexical and syntactic analysis for decades, se-
mantic complexity is less common, and the recent research
works that tackle this question rely on machine learning al-
gorithms that are hardly explainable and are not specifically
designed to measure this variable. To address this issue, we
explore in this paper the engineering of novel features to
evaluate conceptual complexity. Through the construction
of a knowledge graph that captures the concepts present
in a text and their generalized forms, we measure different
graph-based metrics to express such a complexity. Eventu-
ally, early-stage evaluations based on a well-known public
corpus of students’ productions show that the use of these
metrics significantly improves performance compared to a
state-of-the-art binary neural network classifier.

Keywords
semantic complexity, concept complexity, knowledge graph,
features engineering, neural network, machine learning

1. INTRODUCTION
In Technology Enhanced Learning, the evaluation of the
complexity of textual material underlies several activities.
For instance, assessments in language classes are based, am-
ong other things, on the measurement of the learners’ abil-
ities to deal with different grammatical structures or to use
the most precise vocable to express their thoughts. An-
other example can be found in learning resources indexa-
tion. Merlo [4] and Openstax1 are two projects that aim at
offering fine-grain information retrieval functionalities and
automatic recommendation systems for educational objects
based on their metadata, including their level of difficulty.

Complexity is usually related to readability, a concept de-
fined as the “total sum of all those elements within a given

1https://openstax.org

piece of printed material that affect the success a group of
readers have with it” [5]. Thus, readability depends on both
the object (the text) and the subject (the reader), whereas
complexity is commonly characterized by a function whose
output does not differ from one reader to another [11, 21].

Many research works in Natural Language Processing (NLP)
sought out a way to measure the complexity of a text, and
to predict the category (e.g. the level of difficulty) it should
fall into. Most of them, nevertheless, focus on lexical and
syntactic evaluation to achieve their objectives. Alongside
the recent progress in machine learning, and more specifi-
cally in deep learning, another approach to text classifica-
tion arouse, based on semantic relationship of words within
a text [17]. While offering outstanding performance, these
predictive models are not easily explainable [28]. However,
to provide this property is of importance to increase the
confidence a user gives to these systems [1], and would allow
to improve the usability of predictive models. For instance,
a tutoring system designed for learning a foreign language
would benefit from such a model, that is able not only to
assess the complexity of a student’s writing, but also to give
suggestions on how to improve it.

Hence we propose in this paper a novel approach to measure
semantic complexity with a model based on explainable fea-
tures: we exploit the semantic web to build the conceptual
representation of a text within an ontological graph, that
we use to compute a set of metrics. In order to validate our
model, we focus here on the following research questions:

• Is a model based on our sole metrics able to outperform
a state-of-the-art model of semantic complexity?

• Does the extension of a state-of-the-art predictive mo-
del with our engineered features improves its perfor-
mance?

In this paper, we answer these questions in the context of
complexity assessment of students’ productions in English as
a foreign language. The first section is dedicated to related
work in complexity assessment, in order to select a state-of-
the-art model to compare to. We describe then the pipeline
we designed to build a conceptual graph from a text and
convert it into a vector, before going into the details of the
17 metrics that compose the vector. The fourth section is
dedicated to the analysis of our model, in order to answer
the research questions we defined previously.
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2. RELATED WORK
Complexity, as a function of the text only [29], is involved
in different tasks related to education. Classification of re-
source materials has become an important topic with the
growth of open education and MOOCs [15], in order to pro-
vide suitable recommendations to a learner [3]. Learner eval-
uation would also benefit from such a function. Checking
mistakes is not enough to assess the writing skill of a stu-
dent; one also needs to measure the ability to express more
complex thoughts, with the use of precise concepts [19]. A
last instance of a task that requires complexity assessment is
text simplification, a process that aims at providing a sim-
pler version of a text by reducing its complexity, without
removing its substantial content [25].

These objectives require computational models in order to
classify them or to measure a value of complexity according
to the needs. Different categories of metrics are involved to
build such models, and most of the current research works
rely on surface, syntactic and lexical features [8, 7, 24]. Sur-
face level features provide basic statistical measures such as
the number of characters or words. Lexical features tar-
get the structure of sentences, such as the average number
of verb phrases per sentences or the number of dependent
clauses [21]. Finally, syntactic features are based on the
recognition of terms to compute metrics such as the aver-
age number of synonyms of words. Other morphological
values (i.e., based on the structure of text) can be found.
Siddharthan [29] proposed to measure discourse complexity
to evaluate whether connections between text segments are
vague or weak. In addition, Davoodi [8] used coherence fea-
tures, that refer to the grammatical and lexical links which
connect linguistic entities together, in order to include the
influence of discourse structure on text complexity assess-
ment. Similar features can be found in [24], who evaluated
the lexical cohesion and the level of argumentation.

With these features, predictive models of complexity have
already shown good performances. For instance, a SVM
binary classifier using 117 parameters that belong to these
categories of features achieved to classify Swedish texts ac-
cording to their complexity with an accuracy of 98.9% [12].
Although widely used, surface and syntactic features work
only on the structure of the text, while lexical features, using
a base of knowledge for word recognition do not provide any
semantic to these words. Thus, a few projects proposed dif-
ferent ways to add semantic information to their model. A
good example of the different approaches to semantic com-
plexity can be found in [6], who proposed a mixed model
using a wide range of different operators, a few of them be-
ing related to semantics. Indeed, they used Latent Semantic
Analysis (LSA), Latent Dirichlet Allocation (LDA), and a
Word2Vec model to extract semantic features.

LSA [9] and LDA [2] are traditional machine learning tech-
niques well-known for their efficiency to extract the topics
of a text. Thus, a predictive model of complexity based on
either LSA or LDA will detect the main topics of a text and
use them to assess complexity. This method is then based
on the assumption that some topic are more complex than
others. There are, however, two disadvantages with this as-
sumption. First, the model will fit the distribution of topics
among the texts from the dataset used to train and test it,

which can be detrimental to its generalizability. Also, we
assume here the texts that deal with the same topics are of
the same complexity, an hypothesis that may be wrong.

In a different way, words embedding models such as Word2Vec
[23] or GloVe [27] learn geometrical encodings of words from
their co-occurence information. Both model achieve to cap-
ture the semantics of“analogy”. For instance, computing the
difference between vectors of words “king” and “queen”, then
adding the vector of “princess” would give a result whose the
closest known vector would be the one of the word “prince”.
Both models perform well on different kinds of tasks, such as
semantic relatedness (to predict the degree of semantic sim-
ilarity between two words) or concept categorization. These
models seem also to provide the best results in capturing
semantic complexity [17].

Unfortunately, these techniques project words into an ab-
stract linear space, mathematically meaningful, but hardly
understandable. If we can have insights of the vectors’ re-
lationships at the scale of words, as with the example given
previously, their interpretations regarding complexity remains
limited. At the scale of a text, where we usually compute
the average vector of words, we do not know any method to
interpret the resulting vector regarding the text complexity.

3. CONCEPTUAL GRAPH PIPELINE
Within the field of semantic analysis, the manipulation of
concepts within a text is inherent to its complexity [18].
For instance, when concepts are numerous, abstracts, or not
closely related to each other, readers may suffer from access-
ing their prior knowledge to understand the text [10]. We
propose here a concept-based approach of feature engineer-
ing to assess semantic complexity.

An ontology (or knowledge graph) is a powerful model to
represent concepts and their relationships. With the growth
of research in the semantic web, cross-domain description
of the world became available, and one of the most known
nowadays is DBpedia2. DBPedia is a crowd-sourced project
to provide an open knowledge graph based on the informa-
tion available in several Wikimedia3 projects. It provides
thus the description in a structured and linked way of var-
ious concepts (e.g.: persons, places, organizations, movies,
etc.). The English version describes more than 4 million
entities so far, and localized versions are provided in 125
languages. Also, everything described in DBPedia is an en-
tity structured through several ontologies (e.g., the DBPedia
ontology, schema.org or YAGO). Our work is based on the
exploitation of DBPedia and its ontologies to (i) capture con-
ceptual entities from a text, (ii) build a concept graph that
includes entities and their higher-order concepts, and (iii)
transform the graph into a vector of features. We designed
a pipeline to achieve these tasks, whose implementation in
Python is open source and publicly available4. The pipeline,
shown in Figure 1, is built over 5 main components: (i) a
text preprocessor, (ii) an entity extractor, (iii) a concept
enhancer, (iv) a graph builder and (v) a graph vectorizer.

2https://wiki.dbpedia.org/
3https://www.wikimedia.org/
4https://github.com/afel-project/pySemanticComplexity
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Figure 1: Text to Concept Vector Pipeline.

These software components can be launched separately, ei-
ther in a stream or batch mode, to support distributing
computing. Before we present them in the following sub-
sections, we need to clarify the vocabulary we use to deals
with concepts and concept graphs. A concept extracted from
a raw text is named entity, to follow the vocabulary of
DBpedia. An entity is related to some types, which are
its direct higher-order concepts. Types are classes defined
in the ontologies. A higher-order concept is a more ab-
stract concept (i.e., a generalization of the concept). Within
the ontologies, multiple inheritance relations exist between
classes, and allow to structure the concepts they express in
term of orders of abstraction. For instance, the “1965 ford
mustang” is an entity with a type “collection car”, whose
one of the higher-order concept is “car”, generalized itself
into “vehicle”, then finally “object”.

3.1 Text preprocessor
Given a text document in a unicode format, this component
(i) cleans it, with the deletion of forbidden characters, such
as null or backspace, then (ii) splits the text into paragraphs
(a prerequisite for the entity extractor that cannot process
long text). The text preprocessor also computes the number
of words (used for some of the metrics at the end of the
pipeline) and the offset for each paragraph (used to locate
entities within the whole text).

3.2 Entity Extractor
The entity extractor aims at extracting DBpedia entities
from a given list of paragraphs. In order to extract such
entities from a text, this component interacts with DBPedia
through the REST interface exposed by DBPedia Spotlight5,
a tool that performs named entity recognition [22]. Given a
text, and quality parameters (i.e., promience, topical perti-
nence contextual ambiguity and disambiguation confidence),
the service returns a list of DBPedia entity URIs with their
position in the text and some quality metrics. Thus, from

5https://www.dbpedia-spotlight.org/

a list of paragraphs, this pipeline stage retrieves a set of
DBPedia URI with their positions in the document.

3.3 Concept Enhancer
This stage takes a list of entities and, for each of them, re-
trieve (i) its related types (second-order concepts), (ii) the
number of entities that point to it (#linksIn) and (iii) the
number of entities it points to (#linksOut). As we explained
before, the entities in DBPedia are represented in a knowl-
edge graph, where entities are linked each other, and de-
scribed through different ontologies. #inLinks and #out-
Links are computed based on the relationship between enti-
ties in DBpedia.

In order to retrieve all these types for the list of entities, the
component interrogates a SPARQL Endpoint. SPARQL (re-
cursive acronym which means SPARQL Protocol and RDF
Query Language) is a SQL-like query language to retrieve or
manipulate data in the RDF (Resource Description Frame-
work) format, used in DBPedia. The concept enhancer
fetches in a first request all the types that are related to
each entity of the list. Two others requests are achieved to
compute #linksIn and #linksOut for each entity. Finally
this stage returns the list of entities enhanced with their
types and the two basic metrics.

3.4 Graph Builder
The role of the graph builder is twofold: (i) to retrieve the
higher-order concepts related to types given along with the
entities, and (ii) to build an acyclic graph of all concepts.

The higher order concepts are the super-classes of the types
that have been previously retrieved. Indeed, the ontologies
used in DBpedia provide a hierarchical structure of classes,
where each class may have one or several parent classes. In
other words, a concept C may have one or several parents
(higher-order concepts), that generalize C and its sibling.

In order to retrieve theses higher-order concepts, the graph
builder does not need to interact with any DBPedia end-
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Figure 2: Example of a Concept Graph.

point. This component loads directly the structure of on-
tologies, which are RDF files that can be locally processed.
In our pipeline, we exploit the three most used ontologies
in DBPedia: the DBPedia ontology, schema.org and YAGO.
For each given type that belongs to one of the three on-
tologies, the graph builder recursively retrieves its parent
concepts. As a result, the component constructs a set of
pairs <child concept, parent concept> and, with the given
list of entities, builds a concept graph of the text.

This graph is an acyclic graph composed of two kinds of
vertices: entities (that appear in the text) and higher-order
concepts (classes from the ontologies). An entity vertex has
the following attributes: (i) the DBpedia URI, (ii) the list
of positions in the text (word index) (iii) the #linksIn value
and (iv) the #linksOut value.

While an entity may appear several times in the text, it is
represented as a single vertex in the graph. However, its dif-
ferent positions are recorded in its attributes. The other ver-
tices (higher-order concepts) contain only their URI. In or-
der to ensure the graph is connected (a mathematical prop-
erty required to compute some of the features explained in
the following section), an abstract highest-order vertex is
inserted and linked to any vertex that does not have any
higher-order concept.

We illustrate in Figure 2, an example of a graph computed
from the text “This computer has a powerful graphic card
that is suitable for video games and machine learning.”. En-
tity nodes are colored in red, while higher-order concepts are
in green (the abstract highest-order concept is in blue). In
this example, the Spotlight API extracted 4 entities from the
DBpedia ontology: “video game”, “computer”, “video card”
and “machine learning”. The green nodes on the graph are
then classes of this ontology that generalize the concepts
they are connected to. Thus, a video game is a software,
which is a work, whose generalized concept is a thing.

3.5 Graph Vectorizer
Giving the graph, and the number of words computed in
the first stage of the pipeline, this last component applies
several calculus in parallel to produce 17 metrics. The values
are embedded in an vector, which is the final output of the
pipeline. This vector can be used afterwards as an input for
a predictive model on conceptual complexity.

4. CONCEPT COMPLEXITY METRICS
In this section, we explain the metrics that highlight spe-
cific information about the conceptual complexity, based
on the structure of the generated graph. The 17 metrics
computed by the pipeline are the following: (i) #concepts,
(ii) #distinctConcepts, (iii) conceptsByWords, (iv) distinct-
ConceptsByWords, (v) µTypes, (vi) σTypes, (vii) µlinksIn,
(viii) σlinksIn, (ix) µLinksOut, (x) σLinksOut, (xi) #nodes,
(xii) Radius, (xiii) Diameter, (xiv) Density, (xv) Assortativ-
ity, (xvi) µTextDensity and (xvi) σTextDensity. We details
them in the following subsections.

4.1 Basic Concept Metrics
The first four metrics are measures based on the entities
extracted from the text. #concepts is the total count of
concepts the entity extractors retrieved, while #distinct-
Concepts is the number of the different concepts extracted.
These metrics are based on the assumption that the more
concepts a text deals with, the more complex it is.

Since these features might be correlated to the size of the
text (which, as explained later, was not the case in our ex-
periments, but still might be), we also propose concepts-
ByWords and distinctConceptsByWords, the ratio be-
tween #concepts and #distinctConcepts respectively, and
the number of words.

4.2 Concept Connection Metrics
The six following indicators relate the direct properties of
the concepts that appear in the text. µTypes and σTypes
are respectively the mean and standard deviation of the
number of types per entity. As explained before, each con-
cept extracted from the text is linked to its types (i.e. its di-
rect higher-order concepts). We suppose here that the more
an entity has types, the more concepts of higher-order are
required to explain it, and thus the more complex this entity
is. We use the two basic statistic descriptors to capture that
notion at the scale of a document.

For each entity in our graph e, we also have #linksIn, the
number of links that go from entities of the global DBPedia
knowledge graph to e, and #linksOut, the number of links
that go from e to others entities of that same graph. We
compute then two statistic descriptors for each indicator at
the document level. µlinkIn, σlinkIn are respectively the
mean and standard deviation of the number of entities in
DBPedia that point to the entities of the document, while
µlinkOut and σlinkOut are about the entities in DBPedia
that are pointed by the entities of the document. We sup-
pose here that the more relations an entity has with others,
the more popular it is, and the less complex it might be.

4.3 Concept Abstraction Metrics
The next five metrics take into account the whole concept
graph: the entities, their types and the higher-order con-
cepts retrieved recursively from the ontologies.

#nodes is the total number of nodes in the graph. The
higher it is, the more concepts have been used or the more
specific they are (i.e., the more higher-order concepts there
are to specify them).
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Figure 3: Examples of radius and diameters.

For the next metrics a formalism is required. Let G = (V,E)
the definition of a graph G with V the set of vertices (the
concepts) and E the set of edges. Let ∀(u, v) ∈ V 2, d(u, v)
the distance between the nodes u and v: the number of edges
in the shortest path. Since our graph is connected (thanks
to the abstract higher-order concept node) and undirected,
we have the following properties:

∀(u, v) ∈ V 2, d(u, v) ≥ 1, d(u, v) = d(v, u) (1)

Interpreted in our context, the distance between 2 concepts
shows how close they are from each other. Since concepts
are linked by their higher-order concepts, the distance is the
length of the path from one concept c1 to another concept c2,
going through their closest common higher-order concept.
Thus, the distance measures how much we have to generalize
to find the common inherent concept to relate c1 and c2.

ε is the eccentricity of a vertex v. It is defined as the greatest
distance between v and any other vertex of the graph.

∀v ∈ V, ε(v) = max
u∈V

d(v, u) (2)

In our context, the eccentricity for a concept c1 gives a mea-
sure of how far this concept is from the others.

4.3.1 Radius and Diameter
Based on this eccentricity, the radius rG is the minimum
eccentricity of any vertex in the graph.

rG = minv∈V ε(v) = minv∈V [maxu∈V d(v, u)] (3)

At the opposite, the diameter of a graph dG is the maxi-
mum eccentricity of any vertex in the graph.

dG = maxv∈V ε(v) = maxv∈V [maxu∈V d(v, u)] (4)

On the one hand, the diameter highlights the “spreadness”
of concepts: the more unrelated and specific concepts we
have, the higher the diameter will be. On the other hand,
the radius points to the “compactness” of concepts out: the
more the concepts are closely related to each other, the lower
the radius will be. Note that the radius is not strictly the
opposite of the diameter; both metrics measure information
that are not theoretically linearly dependent. To have an
insight of their meaning, Figure 3 shows different simple
graph structures with their radius and diameter.

4.3.2 Density

The density of a graph stresses how much nodes are con-
nected to each other. A graph is dense if the number of
edges is close to the maximal possible number of edges. The
opposite is a sparse graph, that has few edges. The density
is computed by the following equation:

0 ≤ DG =
2|E|

|V |(|V | − 1)
≤ 1 (5)

Here, a concept graph with a high density implies that con-
cepts and higher-order concepts are closely related to each
other. The text may deal with many different concepts, but
many of them share parents concepts and so on. Density
may then be a factor of discrimination regarding two texts
that have similar numbers of concepts, but with one using
concepts from a unique domain while the other one deals
with varied concepts.

4.3.3 Assortativity
Following Newman [26], the assortativity measures in a
graph the similarity of connections with respect to the ver-
tice degree. The degree is the number of connections (the
number of edges) a vertex has to other vertices. Mathemat-
ically, the assortativity is the Pearson correlation coefficient
of degree between all pairs of vertices. It is computed by the
following equation:

AG =
2
∑

i jiki −
1
2
|E|−1(

∑
i ji + ki)

2∑
i (j2i + k2i )− 1

2
|E|−1(

∑
i ji + ki)2

(6)

where ji, ki are the degrees of the vertices at the ends of the
ith edge, in a graph with |E| edges.

Because AG is a correlation coefficient, it lies between −1
and 1. When it is close to 1, the graph shows a perfect
assortative mixing: the vertices in the network that have
many connections tend to be connected to the other vertices
with many connections. When AG is close to -1, the graph is
disassortative: the nodes that have many connections tend
to be linked to the nodes with few connections. When AG is
close to 0, the graph is non assortative: there is no particular
correlation between node connections and their degree.

Because in our concept graphs, concepts (vertices) are con-
nected only by their relationship of abstraction (a parent
concept being a more general concepts), a positive assorta-
tivity would signify that the more parents a concept requires
to be defined, the more grand-parents these parents have.
Under the hypothesis that the more higher-order concepts
we need to define a concept c, the more complex c is, the
assortativity may be a candidate metric to evaluate com-
plexity: a graph with a high assortativity may highlight a
text that deals with very complex and precise concepts.

Compared to the µTypes indicator, which is only computed
on the basis of entity types, this metric takes into account
the whole graph. For instance, if the text uses very narrowed
concepts, that have only few types, which are however de-
fined by many higher-order concepts, µTypes would be low,
but assortativity may be close to 1.

4.4 Concept Organization Metrics
While the previous metrics are about the graph only, they do
not take into account the positions of the different entities
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within the text. Although they provide conceptual infor-
mation about the overall document, they lack giving insight
about the evolution of complexity at a local level. For in-
stance, a paragraph that deals with closely related concepts
may be simpler than a paragraph that manipulates different
unrelated concepts. Thus two texts that handle similar con-
cepts, but with a different structure, may have a different
complexity. In order to capture such information, we have
built a metric based both on the concept graph and on the
positions of the entities within the text.

Let N ⊂ V the subset of vertices that contains the entities.
As we explained in the previous section, the entities include
the list of the positions of their occurrences. Let occ(e)i ∀e ∈
N the position of the ith occurrence of the entity e in the
text. We define the function sp of two entities that returns
the shortest path in the text between the two concepts.

∀(n,m) ∈ N2, sp(n,m) = min
i,j
|occ(n)i − occ(m)j | (7)

On the basis of sp, we define the textual density td between
two entities as the product of their graph distance d and
the opposite of their textual distance td, normalized by the
product of the graph diameter DG and the text length LT .

∀(n,m) ∈ N2, td(n,m) =
d(n,m)

DG
· 1− sp(n,m)

LT − 1
(8)

Since 0 ≤ d(n,m) ≤ DG and 0 ≤ sp(n,m) ≤ LT − 1, we
have 0 ≤ td(n,m) ≤ 1. When td is near 0, the concepts
are either semantically very close, or unrelated and far to
each other in the text. When td is close to 1, the con-
cepts are semantically far to each other but appear closely
in the text. At the document scale, we compute then the two
last metrics µTextDensity and σTextDensity that are re-
spectively the mean and standard deviation of the textual
density of all pairs of entities.

5. CONCEPTUAL COMPLEXITY ASSESS-
MENT EVALUATION

In this section, we seek to evaluate the performance of a clas-
sifier that predicts complexity, based on the concept metrics
defined above. In order to analyze the impact of our features
on such predictive models, we carried out several rounds of
evaluation. We started building a binary classifier based on
the state-of-the-art features to obtain a model of reference.
To answer our first research question, “Could a model based
on our sole metrics outperform a state-of-the-art predictive
model of semantic complexity?”, we trained another classi-
fier that uses our conceptual complexity features only and
compared it with the first one.

Afterwards, we considered the second question: “Does the
extension of a state-of-the-art predictive model with our en-
gineered features improves its performance?”. To compare
two models, one being an extension of the other, we trained
our two models on the same splits of data (within a cross-
validation procedure) and compared the two lists of mea-

sures of performance with a statistical test to assess whether
the performances of the extended model was significantly
higher than the performances of the first one.

Finally, since results were positive with respect to question 2,
we trained a last classifier based on syntactic, lexical and
semantics features, to evaluate how well it could perform
for the specific task of predicting the overall complexity of
learner’s productions.

5.1 Dataset
All models here were trained on an extract of the EF-Cam-
bridge Open Language Database [16, 13]. This database
is a text corpus of documents written by adult learners of
English as a foreign language. In this study, we use a subset
of this database, that includes 41 626 essays.

Human examiners evaluated these essays in order to assess
the learners’ level of knowledge defined in the global scale
provided in the Common European Framework of Reference
for Languages6. This scale define 6 levels of knowledge (i.e.:
A1, A2, B1, B2, C1 and C2), that describe skills in reading,
listening, speaking and writing. Regarding this last domain
of competency, A1 and A2 levels target beginners: they can
interact in a simple way, using familiar everyday expressions
and very basic phrases. Independent users belong to the B
level group. Compared to level groups A and C, this group
presents a clear difference between its two levels. While B1
users can produce simple connected texts on topics that are
familiar, B2 users are able to write clear and detailed text
on a wide range of topics and give their point of view on
a topical issue. Finally, C1 and C2 levels target proficient
users, that can handle complex subjects and produce clear,
well-structured and detailed texts.

Thus, in this dataset, examiners labeled learners’ essays with
one of these levels. Although there is no formal description
about the evaluation process, the definitions provided in the
global scale of the framework relate to the different kind of
complexity we exposed earlier (i.e.: syntactic, lexical and se-
mantic). For this study, we define two categories of writings
based on these labels. The documents evaluated with a level
between A1 to B1 are considered in the G1 group, while the
documents evaluated with a level between B2 to C2 belong
to the G2 group.

Outliers were removed from the dataset. They were defined
here as the documents where the number of words were be-
low the first centile or above the last one, or where the num-
ber of concepts were again, below the first or above the last
centile. Since the distribution of documents between G1 and
G2 was skewed, we reduce the dataset to obtain an equal
proportion of samples in each group. The baseline score of a
binary classifier is then 0.5 for accuracy, precision or recall.

Also, we detected a potential bias in the dataset, as the
samples in G2 tend to be longer (in numbers of words)
than the ones in G1. To prevent our models from repro-
ducing that bias, we filtered all conceptual features we ex-
plained previously that would present a significant correla-

6https://www.coe.int/en/web/common-european-
framework-reference-languages/level-descriptions
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tion (r ≥ 0.75, p-value < 0.003) with the length of the text
(p-value was computed using the Bonferroni correction since
we computed different statistical tests, which raise then the
risk to produce a statistical type I error). It appears that
none of the 17 features were significantly correlated to the
length of the text as much as this threshold. Finally, we ex-
amine the potential relationship between pairs of features,
to assess their independence and to avoid training our mod-
els with correlated features. We looked for strong significant
correlations: r ≥ 0.9 with p-value ≤ 0.0004 (again, p-value
was computed using the Bonferroni correction). It appears
that only #concepts and #distinctConcepts are strongly
correlated (r = 0.936). We then decided to remove the latest
feature from our models for this dataset.

5.2 Baseline Model Evaluation
In order to produce a baseline binary classifier of seman-
tic complexity, we applied the following methodology: (1)
compute a 300 dimensional average vector for each sample
based on pre-trained Glove vectors ; (2) train different types
of classifiers using 5-folds cross validation, with default hy-
perparameters for each of them; (3) select the model that
provides the best f1 score; (4) split the whole dataset into
one subset for hyper parameters tuning (90%), and one sub-
set for final testing (10%); (5) tune the hyper parameters of
this model using a grid search 10-folds cross validation and
(7) test the final model on the last subset.

Glove is an unsupervised machine learning algorithm used
to compute vector representation for words, proposed by
Stanford University [27]. Based on the word-to-word co-
occurence statistics obtained from a corpus, GloVe computes
a representation of words into a vector space. In our case,
we did not train such a model from scratch on our dataset,
but used pre-trained words vectors available online 7. These
vectors were computed from the 2014 corpus of Wikipedia
and the 5th edition of English Gigaword 8, in a 300 dimen-
sions space. For each sample from our dataset, we computed
the mean of the tokenkized words vectors, using 0 padded
vectors for unknown words. The tokenization process was
achieved using the NIST Tokenizer9.

The main scoring metric we used to evaluate our models is
the f1-score. This metric takes in account both precision
and recall through the following formula: 2 · P · R/(P +
R), given the precision P (the ratio between the number of
true positives and the sum of the number of true positives
and false positives) and the recall R (the ratio between the
number of true positives and the the sum of the number of
true positives and false negatives). This metric is a value
between 0 (the worst) and 1 (the best).

In step 2, we tested 10 different models. Each model was
a pipeline made of two stages: a pre-processing stage to
standardize features by removing the mean and scaling to
unit variance, and the classifier stage. The results for the
classifiers selection are shown in Table 1. The best classifier
was the multilayer perceptron (MLP); it achieved the best f1
score, but also the best average accuracy. MLP is a type of

7http://nlp.stanford.edu/data/glove.6B.zip
8https://catalog.ldc.upenn.edu/LDC2011T07
9http://www.nltk.org/ modules/nltk/tokenize/nist.html

Table 1: Glove-based Models Performances.

Classifier µF1 µAccuracy
MLP (1 hidden layer of size 100) 0.936 0.935

SVC with rbf kernel 0.936 0.934
K-nearest neighbors 0.917 0.910

SVC with polynomial kernel (d=2) 0.916 0.911
Quadratic discriminant 0.907 0.905
SVC with linear kernel 0.899 0.897

Random Forest (100 estimators) 0.896 0.892
AdaBoost 0.865 0.862

Gaussian Naive Bayes 0.826 0.811
Decision Tree 0.811 0.810

feedforward neural networks composed of at least one hidden
layer of nodes, where each node in the hidden and output
layers uses a nonlinear activation function [14].

In the last step, we tuned the following hyperparameters of
the MLP model, given with their set of evaluated values: (i)
the activation function (logistic, hyperbolic tangent or Rec-
tified Linear Unit), (ii) the regularization term α (0.0001,
0.001, 0.01, 0.1 or 1.0), (iii) the size of each hidden layer
(100 or 200), (iv) the number of hidden layers (1 to 5), (v)
the learning rate (constant or adaptive) and (vi) the solver
used for the weight optimization (adam or lbfgs).

We tested the different combinations of hyperparameters
with a grid search 10-folds cross validation on a stratified
subset of 90% of our dataset, using the mean test f1 value
as the scoring method. The best configuration appears to
be a MLP with one hidden layer of 200 nodes using a ReLU
(Rectified Linear Unit) activation function, an α value of
0.01 with an adaptive learning rate and an adam solver.

Table 2: Test Scores of the Baseline and Concept Based
Models.

Score Baseline M. Values Concept M. Values
F1 0.937 0.888

Accuracy 0.939 0.889
Precision 0.982 0.894

Recall 0.896 0.882

Eventually, we tested that classifier on the remaining 10%
of our dataset. The different metrics are exposed in the
column “Baseline M. Values” of Table 2. The Precision-
Recall curve is illustrated in Figure 4a. Overall, this baseline
classifier shows better precision than recall. As we can see on
Figure 4a, recall tends to drop quickly as precision goes over
0.9. Recall is defined as the ability for the classifier to avoid
false negatives. In our context, recall is thus the ability for
the model to avoid predicting a text as being simple while it
is in reality complex. In other terms, this models is better
at predicting a text as being complex, than predicting a text
as being simple.

5.3 Concept Based Model Evaluation
On the basis of the pipeline architecture elicited previously,
we trained and tested an equivalent model that works with
our 16 elicited engineered features only. The model is then
composed of a standardization stage and an MLP classifier
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(a) Baseline Model. (b) Concept Features-Only Model.

Figure 4: Precision-Recall Curves of Baseline and Concept Features-Only Models.

with the previous selected hyperparameters. This model was
trained in a stratified 10-folds cross validation on 90% of the
dataset and tested with the remaining 10%. The results are
given in the third column of Table 2. The Precision-Recall
curve is illustrated in Figure 4b.

Using only the conceptual graph-based features, we can see
that this model is worst than the baseline one to predict
complexity. The drop of score value is around 5% for F1
and accuracy, and 8% for the precision. In conclusion, to
answer to our first research question, using the features we
proposed only, we cannot outperform a model based on the
state-of-the-art semantic features to predict complexity.

5.4 Baseline and Mixed Model Comparison
Whereas the model based on conceptual features failed to
outperform the baseline classifier, these metrics might still
add information that are not present from the state-of-the-
art semantic features. Thus, we need to study whether a
classifier would do better with both sets of features.

In order to assess such a result, and because the two classi-
fiers will not be independent, we need to evaluate whether
the performance scores of these classifiers have a significant
difference of mean. We trained two classifiers, CLbase and
CLmixed with the same architecture than the one selected
previously: a standardization pre-processing stage chained
to a MLP classifier with the former chosen hyperparameters.
CLbase is the baseline classifier that uses the Glove features
only, while CLmixed uses both Glove and our conceptual
graph-based features. In order to compare the difference
of performances, we evaluated our classifiers with the same
splits of a stratified 10-fold cross validation scheme.

The results for the 4 metrics (F1, accuracy, precision and
recall) for CLbase and CLmixed on each fold are given in
Table 3. The metrics observed for CLmixed seem to be better
than CLbase. However, to assess whether this difference is
significant, we proceed a paired sample Student’s T-test,
since the measurements of each classifier were applied on
the same splits of data.

The Table 4 presents the statistical results of the paired
T-test. The null hypothesis is that the pairwise difference
between the two tests for each metrics is equal. With the
degrees of freedom df = 9 (as we achieved 10 measures),

and a p-value of 0.05, the t-table value is 1.812. For each
metrics, we can see on Table 4 than the computed t-value
has a absolute value above 1.812. We can then rejected the
null hypothesis that there is no difference between means
for each metrics. In conclusion, adding conceptual graph-
based features to Glove features improve significantly the
performance scores of our complexity classifier. We therefore
answer positively to our second research question.

5.5 Extended Complexity Classifier
Thus, conceptual graph-based complexity features can in-
crease the performances of complexity classifiers, while im-
proving the explainability of the model. In our context of
evaluating learners’ production in English to assess their
complexity, we eventually would like to test how a complete
classifier, using not only semantic features but also syntactic
and lexical ones, would perform.

In that last part, we trained and tested a supervised classi-
fier that predicts complexity based on the previous semantic
features, and syntactic and lexical features proposed in [20],
that appears to be the state-of-the-art metrics so far. We
removed the ones strongly correlated with the length of the
text, as our dataset presents a potential bias of categorical
distribution over the text length. We ended up with 30 syn-
tactic and lexical features, 300 features from Glove and 17
conceptual features. The classifier has the same architecture
as those trained before.

The results for the test are presented in table 5, while the
Precision-Recall curve is illustrated in Figure 5. With high
scores in both precision and recall, this model seems to be
suitable to assist teachers in their assessment of complexity.

6. CONCLUSION AND PERSPECTIVES
At the core of several learning related activities, the as-
sessment of complexity is a task of importance. This topic
has been broadly studied through the structural analysis of
texts, with the design and evaluation of lexical, syntactic
or morphological measures. The consideration of semantic
metrics, however, is still scarce. Recently, word embedding
techniques have demonstrated their promising potential to
design powerful predictive models of semantic complexity,
but lack explainability. In order to overcome this obsta-
cle, we proposed an approach based on the exploitation of
existing knowledge graphs to generate a graph representa-
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Table 3: Comparative Scores of Baseline and Mixed Classifiers.

CLbase scores CLmixed (Mixed) scores
F1 Acc. Prec. Rec. F1 Acc. Prec. Rec.

0.943 0.943 0.940 0.947 0.954 0.954 0.958 0.949
0.950 0.950 0.946 0.955 0.962 0.962 0.966 0.957
0.938 0.937 0.926 0.951 0.947 0.946 0.934 0.960
0.947 0.947 0.937 0.957 0.952 0.951 0.945 0.959
0.947 0.947 0.933 0.963 0.953 0.953 0.952 0.953
0.941 0.940 0.930 0.952 0.946 0.946 0.937 0.956
0.944 0.945 0.945 0.944 0.955 0.955 0.951 0.959
0.947 0.947 0.939 0.955 0.958 0.958 0.956 0.960
0.954 0.954 0.952 0.956 0.965 0.965 0.965 0.964
0.941 0.940 0.920 0.964 0.956 0.955 0.947 0.964

Table 4: Paired T-test Results between Scores of Baseline
and Mixed Classifiers.

Scores Computed t-value
F1 -9.230

Accuracy -9.271
Precision -6.303

Recall -1.922

Table 5: Test Scores of the Extended Complexity Classifier.

Score Value
F1 0.970

Accuracy 0.969
Precision 0.956

Recall 0.984

Figure 5: Precision-Recall Curve of the Extended Complex-
ity Classifier.

tion of a text, whose concepts are exposed and related each
other through their abstractions. We suggested 17 metrics
computed from this concept graph to highlight intelligible
information about the semantic complexity of the text.

We evaluated our proposition within the context of learners’
productions for a European certification of English as a for-
eign language. We observed that a word embedding based
classifier still tends to surpass a model relying solely on our
features. Nevertheless, a classifier that uses these two sets
of features together outperforms significantly the previous
ones. At last, we proposed a classifier using these seman-
tic metrics but also syntactic and lexical features. Tested in
our context of learners’ evaluation, its performances seem to
make it suitable to assist human examiners in their tasks.

Eventually, we found, at the time of writing, a similar ap-
proach to ours, based on the DBPedia knowledge graph to
measure conceptual complexity [30]. Authors used concepts
extraction in the context of text simplification. Although
not based on a concept graph as we did, the metrics they pro-
posed may be also relevant for our domains of application.
We will then integrate them to our model shortly. While first
results obtained are promising, we have to dig into the anal-
ysis of each metric we suggested, in order to evaluate their
power of discrimination regarding the conceptual complex-
ity. This work will allow us to validate the interpretation
of the features we proposed. At a longer term, it will of-
fer opportunities to consider a proactive usage on users to
assist them in their learning activities. Assessing complex-
ity is also of importance for learning resources indexing, to
provide useful recommendations. Since this domain of ap-
plication is different from the present context of study, we
will consolidate a dataset of learning objects and then re-
produce the experimentation to evaluate how our approach
generalizes to other tasks.
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de Mattos. Descriptive Analysis of Learning Object
Material Types in MERLOT. In Research Conference
on Metadata and Semantic Research, pages 331–341.
Springer, 2010.

[5] E. Dale, J. C. E. English, and 1949. The concept of
readability. Elementary English, 26(1):19–26, 1949.

[6] M. Dascalu, P. Dessus, S. Trausan-Matu, M. Bianco,
and A. Nardy. ReaderBench, an Environment for
Analyzing Text Complexity and Reading Strategies.
In International Conference on Artificial Intelligence
in Education, pages 379–388. Springer, 2013.

[7] M. Dascalu, G.-M. Gutu, S. Ruseti, I. C. Paraschiv,
P. Dessus, D. S. McNamara, S. A. Crossley, and
S. Trausan-Matu. ReaderBench - A Multi-lingual
Framework for Analyzing Text Complexity. In
European Conference on Technology Enhanced
Learning, pages 495–499. Springer, 2017.

[8] E. Davoodi and L. Kosseim. On the Contribution of
Discourse Structure on Text Complexity Assessment.
arXiv.org, Aug. 2017.

[9] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American society for
information science, 41(6):391–407, 1990.

[10] C. A. Denton, M. Enos, M. J. York, D. J. Francis,
M. A. Barnes, P. A. Kulesz, J. M. Fletcher, and
S. Carter. Text-Processing Differences in Adolescent
Adequate and Poor Comprehenders Reading
Accessible and Challenging Narrative and
Informational Text. Reading Research Quarterly,
50(4):393–416, Oct. 2015.

[11] J. Falkenjack and A. Jönsson. Classifying easy-to-read
texts without parsing. In Proceedings of the 3rd
Workshop on Predicting and Improving Text
Readability for Target Reader Populations (PITR),
pages 114–122, 2014.

[12] J. Falkenjack, K. H. Mühlenbock, A. J. P. o. t. 19th,
and 2013. Features indicating readability in Swedish
text. In Proceedings of the 19th Nordic Conference of
Computational Linguistics (NODALIDA 2013), pages
27–40, 2013.

[13] J. Geertzen, T. Alexopoulou, and A. Korhonen.
Automatic linguistic annotation of large scale l2
databases: The ef-cambridge open language database
(efcamdat). In Proceedings of the 31st Second
Language Research Forum. Somerville, MA:
Cascadilla Proceedings Project, 2013.

[14] X. Glorot and Y. Bengio. Understanding the difficulty
of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256,
2010.

[15] Q. Han and F. Gao. Towards semantic learning object
metadata: mapping standard metadata specifications
to ontologies. In Proceedings of IEEE International
Conference on Teaching, Assessment, and Learning

for Engineering (TALE) 2012, pages H1C–12. IEEE,
2012.

[16] Y. Huang, A. Murakami, T. Alexopoulou, and
A. Korhonen. Dependency parsing of learner English.
International Journal of Corpus Linguistics,
23(1):28–54, May 2018.

[17] Z. H. Kilimci and S. Akyokus. Deep Learning- and
Word Embedding-Based Heterogeneous Classifier
Ensembles for Text Classification. Complexity,
2018(7):1–10, 2018.

[18] W. Kintsch, T. A. Van Dijk Psychological review, and
1978. Toward a model of text comprehension and
production. Psychological review, 85(5):363, 1978.

[19] B. Kopainsky, P. P. Dummer, and S. M. Alessi.
Automated assessment of learners’ understanding in
complex dynamic systems. System Dynamics Review,
28(2):131–156, Apr. 2012.

[20] X. Lu. Automatic analysis of syntactic complexity in
second language writing. International journal of
corpus linguistics, 15(4):474–496, 2010.

[21] X. Lu. Automated measurement of syntactic
complexity in corpus-based l2 writing research and
implications for writing assessment. Language Testing,
34(4):493–511, 2017.

[22] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and
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ABSTRACT
The role of affective states in learning has recently attracted
considerable attention in education research. The accurate
prediction of affective states can help increase the learning
gain by incorporating targeted interventions that are capa-
ble of adjusting to changes in the individual affective states
of students. Until recently, most work on the prediction of
affective states has relied on expensive and stationary lab
devices that are not well suited for classrooms and every-
day use. Here, we present an automated pipeline capable of
accurately predicting (AUC up to 0.86) the affective states
of participants solving tablet-based math tasks using signals
from low-cost mobile bio-sensors. In addition, we show that
we can achieve a similar classification performance (AUC
up to 0.84) by only using handwriting data recorded from
a stylus while students solved the math tasks. Given the
emerging digitization of classrooms and increased reliance on
tablets as teaching tools, stylus data may be a viable alter-
native to bio-sensors for the prediction of affective states.

Keywords
Classification, Affective Computing, Stylus, Biometric Sen-
sors

1. INTRODUCTION
Affective states are psycho-physiological constructs used to
characterize the emotions (short-lived) and moods (long-
lived) that arise and are experienced while individuals are
engaged with a stimulus. Affective states play an important
role in the educational context and can directly influence a
student’s learning gain [9, 26, 10]. For example, learning
outcomes have been found to decrease if frustration is per-
sistent during problem solving, whereas overcoming a state
of frustration can have a positive effect on learning [10].

Previous research has investigated the relationship between
affective states and learning performance by attempting to
detect the diverse emotions that occur during learning. The
logic behind this approach is that, depending on the emo-
tion of a student, appropriate actions can be taken in order
to assist students during learning (e.g., adapting task ele-
ments in the case of intelligent tutoring systems (ITS) and
self-regulation by providing affective feedback).

Previously, a wide range of data sources have been used to
measure and predict affective states in the learning context
including audio and video [32], interaction data [21, 14] and
bio-sensors [8, 4]. Systems that rely on the analysis of au-
dio (e.g., speech) and video (e.g., facial expression) data [32]
cannot guarantee full anonymity and are subject to privacy
issues. Given these limitations, researchers have attempted
to derive the affective state of individuals based on inter-
action data which contain log data of the user’s interaction
with the learning system, such as input and error behavior,
timing and help calls [21, 14]. Although large and powerful
interaction data sets can be easily collected especially in on-
line environments, the features are typically dependent on
the learning domain and on the specific learning system. At-
tempts towards a cross-domain or cross-system engagement
model have been presented (e.g., for learning spelling and
math [18]), but these generalized methods typically have
a lower accuracy as domain-specific features. Data from
bio-sensors (e.g., measuring muscle activity [8] and heart
rate [4]) have also been used to predict emotions. However,
most of these devices are typically restricted to lab settings,
expensive and difficult to operate, and somewhat intrusive.
Recently, a variety of portable and low-cost bio-sensor de-
vices have become available (e.g., Shimmer GSR+ and Polar
H10). These devices have the potential to transform educa-
tion research because they can be used to monitor a learner’s
physiological state at home or in a classroom.

In this paper, we explore a low-cost mobile setup to detect
the affective state of students. Our goal is a system to de-
tect affective states that is cheap and easy to operate, can be
used outside a lab setting, is non-intrusive, and minimizes
potential issues related to privacy. We consider bio-sensor
data from skin conductance, heart measures, and skin tem-
perature. In addition, and in contrast to previous work in
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the field of learning systems, we also evaluate handwriting
data recorded by a stylus to predict the affective state of
students. Here, we use the fact that tablets bundled with a
stylus are becoming increasingly available in households and
classrooms and are inherently non-intrusive and mobile.

We propose a generic pipeline in which we process the data
from the bio-sensors and stylus in order to extract a set of
features for each of the sensors. We then use a classification
model to predict the current affective region in the valence-
arousal space of emotions [29]. Valence describes how much
an emotion is perceived as positive or negative and arousal
represents the intensity of the emotion. Our method al-
lows researchers to define arbitrary areas of interest in the
valence-arousal space, and can be applied to a wide range
of applications and questions of interest. We evaluated our
method by applying it to a math problem solving scenario in
which participants provided answers in unstructured hand-
writing on a tablet device. Best performance was reached
when data from all sensors was used for prediction (0.88
AUC). Interestingly, we reached a comparable performance
using only the data acquired by the stylus (0.84 AUC). These
results suggest that a simple tablet with a stylus can be suffi-
cient to reliably predict a student’s emotional state. Finally,
we also explored whether the affective state model could be
generalized over domains. For this purpose, we applied the
trained model to a passive setting with picture stimuli lead-
ing to a performance of 0.68 AUC.

2. RELATED WORK
Affective States and Interaction Data. Due to their in-
fluence on learning gain, affective states play an important
role in education in general and in particular during math
learning [27, 21]. Boredom was shown to negatively influ-
ence the learning gain [9, 26], while engaged concentration
can improve the learning outcome [9]. Interestingly, frustra-
tion and confusion can positively affect learning in case the
student is able to resolve these states [10]. One line of re-
search tries to predict these affective states based on logged
user interactions only. Frustration, boredom, engaged con-
centration and confusion have been successfully predicted
using interaction data for math tutoring systems [21, 14].
On the other hand, valence and arousal have been pre-
dicted using mouse and keyboard interaction data from writ-
ing compositions in free text [31]. Moreover, generalized
models have been proposed, such as an engagement model
for two different learning domains and tutors (spelling and
math) [18]. Based on such automatically predicted affective
states, different intervention strategies have been explored.
An automatic student-centered affect-aware feedback loop
was shown to increase the learning gain [14] while other
work explored how teachers can provide better interventions
based on real-time information about the evolution of stu-
dent’s affective states [11].

Biometric Sensors. Biometric sensors provide an objec-
tive measure of the physiological reactivity of users engag-
ing with a learning environment while minimizing interfer-
ence with the actual task [19, 4, 17, 30]. Indeed, educa-
tion research has investigated the effectiveness of a variety
of physiological signals used to infer affective states. Elec-
trodermal activity, skin temperature, and heart rate were
generally found to be good predictors of emotions [19, 17,

30] and mind wandering [4] across different tasks including
math learning [17, 30], scientific text reading [4] and audio,
visual and cognitive stimuli in general [19]. However, these
previous works mainly focused on expensive, high quality
sensors to provide medical grade accuracy for the measure-
ment of physiological signals. In contrast, we focus on an
affective tutor that can be used in learning systems, hence
we gather such data in a non-intrusive and easy to use way.

Stylus. Predicting affective states based on stylus data is
still a relatively new research topic. Likforman-Sulem et al.
[24] predicted anxiety, depression and stress based on figure
drawings and writing given words. Fairhurst et al. [12] con-
ducted an experiment for predicting stress and happiness by
letting participants writing down a given list of words and
describing a visual scene in own words. Instead of predict-
ing a fixed set of affective states, our approach can capture
different affective regions which can be defined according
to the researchers need. Our approach is not restricted to
copying predefined sentences and figures but works with ar-
bitrary handwriting and drawing. To our knowledge, this is
the first work to leverage stylus data in order to predict the
affective state of a student during math solving.

3. METHOD
We present a classification pipeline that automatically pre-
dicts affective states based on low-cost and mobile bio-sensor
and stylus devices. Our pipeline assumes that we have access
to reports on affective states of users based on the circum-
plex model of affects [29]. The circumplex model is a two-
dimensional model representing affective states in terms of
valence and arousal. The classification task then amounts to
classifying regions within this space using a combination of
signals from bio-sensor and stylus devices. For this purpose,
we build a generic affective predictor (Figure 1). Recorded
stylus and bio-sensor data are preprocessed and the relevant
features are extracted to train a classification model for the
specific affective regions. We design our predictor to work
unobtrusively in the background of any ITS.

3.1 Input Signals
During the task solving process bio-sensor and stylus data
are recorded.

Electrodermal activity (EDA). EDA is an indicator of
the emotional state of a person reflected by the variation
in the electrical characteristics of the skin as a result of
sweating [2]. EDA is quantified by measuring the amount
of current flowing between electrodes attached to the skin.
Changes in affective states can lead to subtle variations in
the level of sweat that can be detected as the changes in the
current. Typically, the EDA signal is decomposed into tonic
(low frequency) and phasic (high frequency) components.

Interbeat Intervals (IBIs). IBIs are the time intervals
between consecutive heartbeats in normal heart function.
This natural variation is also known as heart rate variability
(HRV). The heart rate (HR) can be easily computed as the
inverse of the IBI averaged over a certain time window.

Skin Temperature (ST). ST measures the thermal re-
sponse of human skin. Vasoconstriction (e.g., provoked by
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Figure 1: The classification pipeline. Stylus and bio-sensor data are gathered during task solving processes. After preprocessing
the signals, features are extracted and used to classify the affective regions of interest.

an affective state) can result in an increase in blood flow and
a consequent increase in ST [19].

Stylus. Tablet devices often come equipped with stylus
pens as accessories that can provide precise and pressure-
sensitive input. Stylus data consists of the applied pressure
during writing and the pixel positions of the written text.
From these measurements, handwriting characteristics re-
lated to time and ductus can be calculated.

3.2 Preprocessing of Signals
During preprocessing, the raw input signals are filtered in
order to detect artifacts from movement and muscle contrac-
tion. The signals are also corrected for differences between
individuals using baseline recordings for each individual.

Artifact detection. We follow the procedure outlined by
Greco and colleagues [15] to decompose the EDA into tonic,
phasic and an additive white Gaussian noise component with
a convex optimization approach that accounts for signal fil-
tering and detrending. For IBIs, detrending is not necessary
in the preprocessing [36], and we use the criterion beat dif-
ference for artifact detection [16].

Baseline correction. Similar to previous work [30, 17],
we collect baseline data for all sensors in order to account
for individual differences in stylus and bio-sensor signals re-
lated to writing habit, ambient temperature and dryness of
the skin. Baseline data is collected while individuals remain
in a relaxed state (e.g., watching a nature video). We search
for the minimum value of each bio-sensor signal during the
relaxation phase over a 10 seconds window using a sliding
window approach to be robust against outliers. Due to pos-
sible signal lags, we search the minimum for each signal sepa-
rately. We then normalize the bio-sensor data by subtracting
the feature values calculated over the corresponding 10 sec-
onds interval of the baseline from the actual feature values
computed during task solving. Stylus data is normalized by
subtracting a baseline for all features computed over hand-
writing of an English sentence.

3.3 Feature Extraction
In the proposed pipeline, we extract several different fea-
ture types from the stylus and bio-sensor signals. Where
appropriate, we compute basic statistics for these features
types including the mean, standard deviation (SD), mini-
mum and maximum and the linear trend (slope of a fitted
linear regression line). A summary of all extracted features
is presented in Table 1.

EDA. For EDA, we decompose the signal into phasic and
tonic components and calculate standard statistics (i.e., mean,
SD, min, max, slope). For the phasic component, we also
calculate the area under the curve (AUC) [3] and the num-
ber of peaks using zero-crossings of the smoothed gradients
of the signal [19]. Based on the extracted peaks, we further
compute amplitude statistics (i.e., mean, min, max) [38].

IBI. From the IBI recordings, we extract temporal and fre-
quency features. In the temporal domain, we calculate the
percentage of successive IBIs that differ by more than 50
milliseconds (pNN50) and 20 milliseconds (pNN20) as well
as the SD and root mean square of successive differences
between adjacent IBIs (SDSD and RMSSD) [34, 25]. For
the frequency domain, it is well known that the distribution
of spectral power gives an indication of physiological activa-
tion [3]. Therefore, we extract a feature related to the high
frequency (HF) band of 0.15-0.40 Hz by a Fast Fourier trans-
form of the cubic spline interpolated signal [34, 25]. Based
on the IBIs, we compute the heart rate for which we extract
several standard statistics (i.e., mean, SD, min, max, slope).

ST. We extract several statistics (i.e., mean, SD, min, max,
slope) from the temperature signal [38, 35].

Stylus. From the stylus data, we derive features related to
the pressure applied by the pen as well as timing and lo-
cation information. Previous research has successfully em-
ployed these features to predict affective states [24, 12].
From the pressure data, we compute standard statistics (mean,
SD, max, min) per stroke and average these over an entire
task. Additionally, over each task we compute the slope of
a linear regression fit to the pressure values and the statisti-
cal skewness of the pressure distribution. We also compute
standard statistics (i.e., mean, SD, max, min, slope) of the
speed and acceleration of the strokes. For the handwriting
data, we discriminate between the actual writing process and
the think time while completing the task [24]. During writ-
ing there are always small time gaps between strokes which
cannot be attributed to thinking but belong to the writing
process itself. Because writing patterns are different for ev-
ery user, we infer an individual threshold for each user to
distinguish if the time between two strokes belongs to think-
ing or to the actual writing process. We chose this threshold
as the 80 % cut-off value of the distribution of the time be-
tween the strokes over the stylus baseline (cropping the right
tail of the distribution). Based on this threshold, we derive
a feature measuring the percentage of writing (i.e., the time
spent in the writing process). Additionally, we compute the
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statistics (i.e., mean, SD, max, min) on the speed between
consecutive strokes having time differences below threshold
(writing process) and on the distance between strokes having
time differences above threshold (thinking).

Table 1: Extracted bio-sensor and stylus features. For each
signal, the features are sorted according to their importance
(based on our experiments). The 10 most predictive features
are highlighted in bold. SD refers to the standard deviation.

Signals Features

EDA Phasic AUC, Phasic Mean, Tonic SD,
Tonic Max, Tonic Mean, Tonic Min, Phasic
SD, # Phasic Peaks, Tonic Slope, Max Phasic
Peak Amplitude, Min Phasic Peak Amplitude,
Phasic Slope, Mean Phasic Peak Amplitude

Heart IBI SDSD, IBI RMSSD, IBI SD, IBI
pNN20, HR Mean, IBI High Frequency, IBI
pNN50, IBI Mean, HR Min, HR Max, HR SD,
HR Slope

Temperature Max, Mean, Min, Slope, SD

Stylus #Strokes/Mean Speed, MeanDistance
between Strokes, Max Distance between
Strokes, SD Distance between Strokes,
Mean Pressure, Max Pressure, Mean Stroke
Acceleration, Max Stroke Acceleration, Max
Stroke Speed, Max Speed between Strokes,
Mean Speed between Strokes, SD Speed be-
tween Strokes, SD Stroke Speed, SD Stroke
Acceleration
Excluded1: %Writing, {SD, Slope, Skew-
ness} Pressure, {Mean, Min, Slope} Stroke
Speed, {Min, Slope} Stroke Acceleration, Min
Speed between Strokes, Min Distance between
Strokes, #Strokes/Minute

1 Excluded due to our experimental setup (see Section 5.1)

3.4 Classification
To train our classification algorithms ground truth is built
by defining arbitrary non-overlapping regions of interest in
the two-dimensional valence and arousal space based on the
affective labels which can be gathered, for example, through
self-reports or expert labelers. We then use a classification
model to predict the affective region an individual is likely
to be in during task solving based on the recorded bio-
sensor and stylus data. Before applying the classification
algorithm, we standardize all features to have zero mean
and unit variance. We propose the usage of four different
classifiers (i.e., Random Forest, Support Vector Machine, k-
Nearest Neighbors and Gaussian Naive Bayes). We select
these classifiers because they are among the most widely
used in machine learning and have shown to provide good
results on bio-sensor and stylus data [37, 24, 13]. All mod-
els are evaluated using leave-one-user-out cross-validation
which ensures that data from the same user is not in the
testing and training set at the same time. Hyperparameter
optimization is performed using nested cross-validation and
randomized search.

4. EXPERIMENT
We conducted a controlled lab experiment with 88 partici-
pants in order to test our pipeline. In the experiment, we
recorded bio-sensor and stylus data while participants solved

approximately 40 math tasks chosen to trigger different af-
fective states. The math tasks were chosen because they are
an integral part of the educational curriculum. However,
instead of relying on a math based ITS, we have designed
specific math tasks to increase the probability of evoking a
wider range of affective states.

4.1 Experimental Setup
Participants. We recruited 88 participants (45 female) be-
tween ages of 18 and 29 (mean = 22.1, SD = 2.0) from 10
different engineering and natural science departments of the
second and third year of the Bachelor program of an univer-
sity. We excluded participants suffering from cardiovascular
pathologies, smokers, and participants suffering from evi-
dent mental pathologies (score > 4 in the Patient Health
Questionnaire [22]). In order to control for external factors,
we kept the humidity and room temperature at an average
of 21.7 °C (SD = 0.59 °C) and 32.6 % (SD = 5.3 %), respec-
tively. Figure 2 presents the experimental setup.

Sensors. We measured EDA and wrist acceleration using
a Shimmer GSR+ device. To test the accuracy of the de-
vice, we compared its measurements with a state of the art
ADInstruments PowerLab 8/35 device (connected through
the ADInstruments FE116 GSRAmp signal amplifier) over a
23 minute recording of an user watching a nature video and
picture stimuli. Results revealed a strong and significant
cross-correlation value of 0.96 (p-value < 10−100) between
the two signals. These results suggest that the smaller,
mobile and more affordable Shimmer GSR+ device may be
sufficient to detect changes in affective states. During the
experiment, the Shimmer GSR+ device was worn on the
non-dominant hand with the electrodes placed at the prox-
imal phalanx of the index and middle finger [7]. Data was
recorded at a sampling rate of 100 Hz. As part of the Shim-
mer GSR+ setup, we also attached an optical pulse sensor
providing a photoplethysmogram signal on the ring finger.
However, photoplethysmogram data was of poor quality and
consequently discarded from analysis. Prior to electrode at-
tachment, we asked participants to wash their hands with
lukewarm water [5]. Heart activity was measured using a
Polar H10 chest belt. The Polar H10 belt provides IBIs
and post-processed heart rate data by monitoring electrical
changes on the surface of the skin. A predecessor of this
device (Polar H7) was shown to provide accurate data when
compared to an expensive lab device (Cosmed Quark T12x
system) [28]. We recorded the skin temperature using the
infrared thermopile sensor of the Empatica E4 device (sam-
pling rate = 4 Hz; resolution = 0.02 °C). Since the sensor was
attached to the dominant hand (used for writing during the
tasks), other signals that the wristband can provide (EDA
and blood volume pulse) were heavily affected by motion
artifacts and discarded from the analyses.

During the experiment, participants interacted with a Huawei
MediaPad M2 10.0 running Android 5.1 to solve the different
math tasks. All interactions with the tablet were conducted
with a Wacom Bamboo Ink stylus at an average sampling
rate of 250 Hz (SD = 25 Hz) and with 2048 levels of pres-
sure sensitivity. The signals from the bio-sensor devices were
streamed to the tablet using the Bluetooth Low Energy pro-
tocol. We also recorded the behaviour of participants with
the front camera of the tablet and a GoPro HERO3 camera.
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Figure 2: A participant completing the math tasks. A) During each session data is recorded from different devices. (1) An
Empatica E4 recording skin temperature on the dominant hand. (2) A Shimmer GSR+ measuring skin conductance and wrist
acceleration on the non-dominant hand. Participant behaviour was recorded by (3) the tablet front cam and (4) a GoPro
HERO3. All interactions with the tablet were conducted with a stylus (5). Participants also wore a Polar H10 chest belt (not
visible in the image) for recording heart activity. B) The task interface allows participants to write solution paths directly
onto the screen (the stylus pressure is color-coded for visualization purposes only).

4.2 Experimental Procedure
For measuring the affective states of the participants we have
used the self-assessment manikin (SAM) [6]. The SAM pro-
vides valence and arousal labels on a scale from 1 (most neg-
ative, lowest arousal) to 9 (most positive, highest arousal).
For triggering the affective states we have used math tasks
and pictures from the International Affective Picture System
(IAPS) [23]. The IAPS is a database of 1182 pictures typ-
ically used in emotion research and has been standardized
in terms of valence and arousal based on SAM ratings. We
used the IAPS to investigate whether the affective model for
the math tasks generalized to passive tasks, such as watch-
ing pictures (Section 5.6). As such, the set of IAPS pictures
presented to the participants was sampled to cover similar
affective regions as those expected to be evoked by the dif-
ferent math tasks.

An overview of the study procedure is presented in Figure
3A. The experiment lasted an average of 90 minutes for each
participant. Upon arriving at the lab, participants com-
pleted a demographics questionnaire and were given an oral
overview of the procedure. This included an explanation of
the SAM questionnaire based on 4 example pictures from the
IAPS presented on paper. Next, participants started work-
ing independently on the tablet by first watching a 7 minute
nature video (bio-sensor baseline), followed by the stylus
baseline that consisted of writing an English sentence with
the stylus. Participants were then presented with 40 pictures
from the IAPS in random order. Each picture was shown for
10 seconds and was directly followed by the SAM rating (va-
lence and arousal) and a 10 second fixation cross. In total,
we collected 3400 ratings from all participants. After rating
the IAPS pictures, participants were asked to watch the na-
ture video one more time before completing the math tasks.
Before finishing the experiment, participants completed a
paper questionnaire about their overall mood, comfort level
while wearing the sensors, nervousness and sweating level.

4.3 Experimental Tasks
To trigger different affective states, we have created three
different math task conditions by varying the difficulty level,

available time for completion and monetary reward of the
task. These types of manipulations were shown to be effec-
tive at eliciting different affective states in reading compre-
hension [4] and math tasks [32].

Task design. The math tasks were taken from an ACT
data set [1] that provided difficulty ratings from 0.12 (most
difficult) to 0.96 (simplest). We conducted a pilot study
(exact same conditions, 11 participants) to get an indication
of the time needed to solve the different tasks. Based on this
timing information and the tasks from the ACT data set we
generated the following three conditions.

1) Repetitive condition. For the repetitive condition we cre-
ated random variants (by substituting the numerical values
in the task) of two easy tasks from the ACT data set (diffi-
culty = 0.76 and 0.83). The time available to solve each task
was set between 60 and 75 seconds at random. This provided
participants with more than sufficient time to come up with
a solution for each task. Correctly solving a task in the
repetitive condition granted only a minor monetary reward
(+CHF 0.2) and a minor penalty (-CHF 0.2) for incorrect
solutions. The repetitive condition was designed to trigger
emotions such as boredom and fatigue.

2) Challenge condition. For the challenge condition we se-
lected math tasks from the ACT data set with medium dif-
ficulty (difficulty ∈ [0.58, 0.69]) and provided participants
with a larger monetary reward (+CHF 2) for correct solu-
tions and the same small penalty as the repetitive condi-
tion (-CHF 0.2) for incorrect solutions. Participants were
provided with sufficient time to solve the tasks based on
data from the pilot study (min = 53 seconds, max = 93
seconds). The challenge condition was designed to provide
diversified tasks for a more engaging and interesting experi-
ence, while the larger monetary reward provided a bigger in-
centive (higher-stakes) for participants to perform well with
relatively small penalty in case of mistakes.

3) Overchallenge condition. For the overchallenge condi-
tion, we selected the math tasks with high difficulty in the

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 202

lf5U - 8) • l.thenr•'? 
0 A. 40/5 

0 H. 331:'li 

0 C. 3715 

0 D. 32/5 

()(e. 41 / ~ 



A) Study procedure

Questionnaire

Bio-sensor baseline

Stylus baseline

Pictures

Nature video

Math tasks

Questionnaire

B) Self assessment example

Repetitive block

Challenge block

Overchallenge block

incorrect

correct

1

3

5

7

9

1

3

5

7

9

A
ro

u
sa

l
V

al
en

ce
Figure 3: Overview over the different parts of the study. A) Overall experimental procedure. B) Changes in valence and
arousal for one participant in relation to task type and answer.

ACT data set (difficulty ∈ [0.25, 0.53]). Participants re-
ceived small monetary rewards for correct solutions (+CHF
0.2) and a large penalty (-CHF 2) for incorrect solutions.
The time to solve each task was set to be insufficient for
most participants based on data from the pilot study (min
= 25 seconds, max = 51 seconds). The overchallenge con-
dition was designed to provide a frustrating and annoying
experience to participants.

The math tasks were presented in six blocks (2 in each condi-
tion) each containing a different number of tasks (repetitive
condition 13 tasks, challenge condition 5 tasks, overchal-
lenge condition 6 tasks). A similar block design for math
tasks was already applied in previous work [32]. Moreover,
we believe that a sequence of tasks is necessary to trigger an
affective state. The first 3 blocks presented were randomly
sampled. However, the succeeding 3 blocks were fixed to
the same order as the first 3 blocks (but contained different
tasks). In addition, the maximum time for each block was
limited to 5 minutes to ensure that the math part of the
experiment does not go over 30 minutes. After each block, a
fixation cross was shown for 30 seconds to reduce potential
carry-over effects of affective states. At the end of each math
task, participants were asked to fill in the 9-point SAM scale
to report their current valence and arousal level (in total, we
have collected 3026 ratings from the participants). Figure
3B depicts the changes in the valence and arousal ratings for
one participant in relation to the block type and task answer
(correct vs. incorrect). We see that for the repetitive tasks,
valence and arousal are decreasing over time leading to a
shift towards boredom. Additionally, for incorrectly solved
tasks, valence drops and arousal tends to increase. After
the repetitive blocks we see a decrease in valence and an
immediate steep increase in arousal that may be attributed
to the increase in difficulty from the repetitive block to the
overchallenge block. On average participants finished with
CHF 44.3 (min = CHF 22.2, max = CHF 62.8). At the end
of the experiment, each participant was compensated with
a minimum of CHF 40.

Math task interface. Participants were asked to provide a
solution path for every task anywhere on the screen and then
to select their answers from 5 multiple-choice alternatives
(see Figure 2B). Participants received immediate feedback

on whether their answer was correct. A timer located on
the top right corner of the interface informed participants
about the time left to respond and started to blink when
less than 10 seconds remained. When the time was up and
the participant did not submit a solution, the answer was
considered wrong. The cumulative amount of money earned
was displayed on the top left of the interface.

5. RESULTS
We compared different versions of our classification pipeline
using only a subset of the sensors with a focus on the differ-
ence between stylus and bio-sensors. All results are based
on Random Forest (using 500 trees, balanced class weights
and hyperparameter optimization using randomized search
with 100 iterations) given that this was the best performing
classifier. In order to measure the performance of our clas-
sifiers, we have used accuracy (chance level = 1/# classes)
and micro-averaged area under curve (AUC) of the receiver
operating characteristic (ROC) curve (chance level = 0.5),
which aggregates the contributions of all classes to compute
the average metric. Because both metrics are affected by
class imbalance, we have also considered the macro-averaged
AUC (chance level = 0.5) which is the average of the class-
wise AUCs giving each class the same weight. To derive
the SD for each metric, we employed an additional 10-fold
cross-validation.

5.1 Study Validation
Our study was designed to trigger affective states across
the entire valence-arousal space. As a first step, we in-
vestigated if our study design worked by examining if the
different parameters acted as intended. In our task design
we varied task difficulty, monetary reward and the available
time for task completion. We have performed a per task
Kendall’s tau correlation analysis between these 3 parame-
ters and the arousal and valence ratings of the participants.
For the task difficulty and the percentage of remaining time,
we have found high correlations for both valence (−0.2; p-
value < 10−59 and 0.22; p-value < 10−80) and arousal (0.27;
p-value < 10−102 and −0.27; p-value < 10−117). Partic-
ipants shifted towards frustration (decreasing valence and
increasing arousal) with increasing task difficulty or with a
reduction in the time remaining to complete the task. In-
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Figure 4: Heat maps showing the distribution of the participants’ ratings on the math tasks. The red rectangles represent
the different regions. A) 5 regions automatically chosen using k-means clustering. B) Three regions manually selected. C)
Six regions manually selected.

terestingly, the effect size on valence and arousal is almost
identical. In contrast, monetary reward appears to have a
much larger effect on valence (0.47; p-value < 10−295) than
on arousal (−0.06; p-value < 10−4). Altogether, it appears
that our tasks worked as intended. Accounting for potential
superficial correlations (e.g., task duration) is an important
part of our study design. We found a significant Kendall’s
tau correlation between the task duration and the user rat-
ings of 0.17 (p-value < 10−48) and −0.11 (p-value < 10−22)
for arousal and valence, respectively. Because we have ex-
tracted the stylus features over the whole tasks, we have
excluded all features having a significant Spearman correla-
tion to the task duration (features greyed out in Table 1).

5.2 Data Analysis
Input Signals. Given that we detected a very low amount
of artifacts across participants (EDA = 0.015 % and IBI =
0.71 %), we refrained from removing them from the analysis.
Visual inspection of the ST recordings revealed a slow linear
increase of the temperature over the course of a participant’s
session. This change in temperature may be due to the skin
warming up under the wristband and independent of the
affective state of the participants. We removed this linear
trend from all measurements by subtracting the result of a
linear least-squares fit to the signal. We did not observe any
other artifacts for ST. The bio-sensor features listed in Table
1 have been computed using a window of 10 seconds since
the minimum task duration was 10 seconds. For the stylus
features, we have used an implicit window over the entire
task. In addition, we have excluded all data points having
at least one missing value.

Clustering of Ratings. Figure 4 presents the distribu-
tion of the participants’ ratings in the valence-arousal space
(dark and light blue refers to a high and low number of
data points, respectively). A v-shape is visible with most
ratings being made at a valence and arousal level of 7 and
5, corresponding to a positive medium intense state (e.g.,
interest). Several ratings were made at the extremes (top
left and top right) of the valence-arousal space correspond-
ing to states of distress and excitement that are associated
with very good and very poor performance. To uncover the
underlying clusters in the data, we have applied k-means

clustering in this two-dimensional valence and arousal space.
Using the Bayesian information criterion, we found an op-
timal number of 5 clusters. We defined region boundaries
(shown by the red rectangles in Figure 4A) as the arithmeti-
cally rounded value of the centroid of each cluster plus and
minus the standard deviation of the participants’ ratings in
the corresponding cluster. We observed that the regions are
all of equal size and cover the area of the v-shape. Based on
Russell’s [29] and Scherer’s [33] categorization we identify
the following regions, their sizes and corresponding affective
states: Region R1 (213 data points; frustrated, annoyed),
region R2 (284; bored, taken aback), region R3 (965; atten-
tive, serious), region R4 (861; expectant, confident), region
R5 (295; excited, triumphant). Together, it appears that the
math task covered a broad range of affective states relevant
for learning and that positive states (R3, R4, R5) dominate.

5.3 Classification Performance
Figure 5A and Table 2 present the predictive performance of
the model based on the 5 defined regions. Using all sensors,
the model achieved an accuracy of 65 % (chance level = 20
%). Here, the slightly lower value for the macro-averaged
AUC (0.83) compared to the micro-averaged AUC (0.88)
may be related to class imbalance. Figure 5C depicts the
confusion matrix based on all sensors. The matrix shows
that regions R1 and R2 are more difficult to predict than
the other regions. This may be due to the lower number
of data points collected for these regions. As expected, the
larger the distance between the regions, the easier it is for
the model to discriminate between them.

Feature Importance. Table 1 presents the 10 most im-
portant features (in bold). The features are sorted according
to their relative importance which we computed using per-
mutation feature importance (permuting each feature 100
times and measuring the mean decrease in micro-averaged
AUC). We obtained the same relative feature importance or-
dering using the Gini importance measure. EDA and heart
measures provided 3 out of the 10 most important features
and stylus features contributed with 4 of the most impor-
tant features. There were no ST features among the top
ten features. Regarding the heart measures, the features re-
lated to IBIs were more important than HR features. An
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interesting observation can be made for the stylus features.
Features related to the distance between strokes appear to
be more important than speed between stroke features indi-
cating that the spread of writing attributed to thinking (i.e.,
how the writing space is covered) provides more information
than the actual writing behaviour.

5.4 Sensor Comparison
Bio-Sensors. If we consider the individual sensors (Figure
5B), ST performs substantially worse (−0.11 AUC) com-
pared to EDA (0.80 AUC) and heart rate measures (0.81
AUC). The combination of all the bio-sensors (Figure 5A)
provides only marginal performance improvements (+0.05
AUC) compared to the individual sensors.

Stylus. Our most important finding is that the stylus per-
forms equally well as the bio-sensors (Figure 5B), rendering
the data from the bio-sensors redundant and unnecessary
for the prediction of affective states. The performance of
the stylus is only marginally inferior (−0.02 AUC) when
compared to the combination of all bio-sensors. In contrast,
the combination of the bio-sensors and the stylus achieves
a slightly higher performance (+0.02 AUC) compared with
the bio-sensors and stylus alone (Figure 5A). This might be
an indication that they may contain complementary infor-
mation, although the difference appears to be small.

5.5 Affective Region Analysis
In order to investigate the ability of our pipeline to predict
different affective regions based on the recorded bio-sensor
and stylus data we have defined two additional coverings of
the valence and arousal space (Figure 4B and 4C). Based
on Russell [29] and Scherer [33] we have manually defined
specific regions associated with frustration (annoying; re-
gion R6, 185 data points), boredom (taken aback; region
R7, 199) and interest (engaged concentration, flow; region
R8, 720) as shown in Figure 4B. Being able to distinguish
these 3 regions is important in education due to their im-
pact on learning gain [9, 26, 10]. To cover the valence and
arousal space evenly, we have manually defined the 6 regions
shown in Figure 4C, dividing arousal in two and valence in
3 components (The number of data points from region R9
to R14 are 287, 154, 134, 852, 432 and 506). The results
for both space partitionings are listed in Table 2 (note that
chance level for the accuracy is 33 % for 3 regions and 16.66
% for 6 regions). The performance of the classification of
3 regions outperforms the one for 5 and 6 regions in terms
of accuracy. On the other hand, when taking into account
the AUC, there is no substantial difference in performance
between the different coverings. This difference between ac-
curacy and AUC stems from the fact that predicting only
3 regions is a much easier task than predicting 5 or 6 re-
gions. This is in line with the finding that the accuracy
for predicting 5 regions is slightly higher than for 6 regions.
Nevertheless, we can conclude that we have seen that our
approach is able to provide good results for 3 different cov-
erings. Thus, we come to the conclusion that our pipeline is
rather flexible being able to handle different regions in the
valence-arousal space. Compared to previous work relying
on fixed affective states, our approach has the advantage
that the regions do not have to be pre-defined allowing for
much more flexible use.

Table 2: Performance of Random Forest on the math data
for different signals and regions. AUCmicro and AUCmacro

represent micro-averaged and macro-averaged AUC, respec-
tively. The chance level for accuracy is 1/# regions and for
AUC it is 0.5. The standard deviations are given in brackets.

Regions Signals AUCmicro AUCmacro Accuracy

k-means EDA 0.80 (0.02) 0.75 (0.03) 50 % (4 %)
(5 Regions) Heart 0.81 (0.01) 0.73 (0.01) 52 % (2 %)

Temperature 0.69 (0.03) 0.59 (0.03) 37 % (4 %)
Stylus 0.84 (0.01) 0.76 (0.02) 59 % (2 %)
Bio-Sensors 0.86 (0.01) 0.81 (0.02) 60 % (2 %)
Bio-Sensors & Stylus 0.88 (0.01) 0.83 (0.02) 64 % (2 %)

Manual EDA 0.81 (0.02) 0.69 (0.04) 66 % (2 %)
(3 Regions) Heart 0.79 (0.02) 0.66 (0.03) 62 % (3 %)

Temperature 0.76 (0.01) 0.60 (0.04) 60 % (3 %)
Stylus 0.83 (0.02) 0.72 (0.02) 67 % (3 %)
Bio-Sensors 0.84 (0.01) 0.76 (0.03) 67 % (1 %)
Bio-Sensors & Stylus 0.87 (0.01) 0.80 (0.02) 67 % (2 %)

Manual EDA 0.80 (0.02) 0.72 (0.03) 46 % (3 %)
(6 Regions) Heart 0.78 (0.01) 0.72 (0.02) 44 % (2 %)

Temperature 0.70 (0.02) 0.61 (0.02) 35 % (3 %)
Stylus 0.81 (0.01) 0.75 (0.02) 48 % (2 %)
Bio-Sensors 0.85 (0.02) 0.80 (0.02) 57 % (4 %)
Bio-Sensors & Stylus 0.87 (0.02) 0.83 (0.03) 61 % (3 %)

5.6 Model Transfer
In addition to the math tasks, we have also gathered bio-
sensor data as well as valence and arousal ratings from the
participants while they observed pictures from the IAPS. We
have used this data to investigate our model’s capacity to
generalize to more passive tasks, such as looking at pictures.
To predict the affective regions of interest, we applied our
model trained on the bio-sensor data recorded during math
task solving to data collected while participants viewed and
rated the set of IAPS pictures. When we consider the 5
different regions (Figure 4A), the model’s accuracy reaches
39 % (chance level = 20 %, AUCmicro = 0.68, AUCmacro =
0.64). When we train and evaluate a model directly on the
picture data, we achieve a slightly better classification per-
formance (accuracy = 42 %, AUCmicro = 0.74, AUCmacro =
0.66). There may be several reasons behind the suboptimal
performance when predicting affective states during the pic-
ture task. These include sociocultural aspects when rating
emotions based on pictures (e.g., rating how it is expected),
old and low resolution pictures from the IAPS data set, me-
dia influence desensitizing participants to the content of the
IAPS, and the fact that the math and picture domains are
very different. Together these initial results indicate that
building a general predictor of affective states might be pos-
sible, but further experiments are necessary.

6. CONCLUSION
In this paper we presented a generic pipeline for predict-
ing affective regions of interest using bio-sensor and stylus
data. We validated our pipeline for the case of math solv-
ing tasks and demonstrated that our pipeline can accurately
predict various regions in the valence-arousal space (up to
0.88 AUC). In addition, we have compared different input
signals with each other. The performance of the Shimmer
GSR+ and Polar H10 have been on the same level (up to
0.81 AUC). Moreover, we found that the classification per-
formance using only stylus data is comparable to the classifi-
cation performance based on the bio-sensors. Taking into ac-
count the emerging digitization of education and the spread
of tablets in schools and private households, these results
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B) ROC Curve for Individual SensorsA) ROC Curve for Bio-Sensors & Stylus C) Confusion Matrix

Figure 5: ROC curves and micro-averaged AUC scores for 5 regions chosen by k-means clustering for (A) the bio-sensors,
stylus and the combination of bio sensors and stylus and (B) the individual bio-sensors & stylus. (C) The confusion matrix
is computed by using the combination of bio-sensors and stylus.

make the stylus a preferred alternative to bio-sensors for
measuring affective states in classrooms. Using bio-sensors
in classroom settings can be cumbersome and costly as it re-
quires the purchase and synchronization of several devices.
In contrast, systems that depend on a stylus only are cheaper
than systems relying on bio-sensor devices, and styluses of-
ten come bundled with mobile devices, such as tablets or
smartphones. In addition to being cheaper and more ubiq-
uitous, styluses are easier to setup (e.g., no attachment of
electrodes, no motion artifacts) and less intrusive. Further-
more, stylus data is not only restricted to digital devices but
can also be recorded using digital pens. Finally, we have
demonstrated the possibility of a generalized model for pre-
dicting affective states by applying the model trained on the
data from the math tasks (active part) to pictures from the
IAPS (passive part) reaching a performance of 0.68 AUC.

There are some potential limitations to the approach pre-
sented here. First of all, the setup is restricted to a lab envi-
ronment and the population of Bachelor students may limit
generalization to students at other levels. We are optimistic
that our approach also works outside a controlled setting
and for a broader population. Participants reported that
the setup was comfortable and that they could act in a nat-
ural way. In addition, we assume that given a proper base-
line correction the signals are also predictive for a heteroge-
neous group of people. Another limitation is the restriction
to math tasks. Similar to bio-sensor data, we believe that
handwriting data carries affective information independent
of the task. Thus, we expect our approach to work also in
other domains involving handwriting, such as solving exer-
cises for different school subjects and writing essays.

Future research from our lab will test and refine our pipeline
for multiple domains. Potential refinements include using
non-linear IBI features and frequency features for skin tem-
perature. Additionally, an in depth analysis of handwriting
that takes into account the slant of the handwriting could
further improve the classification performance. Another in-
teresting direction would be to make use of large existing
bio-sensor databases for semi-supervised learning by using
auto-encoders to infer an efficient feature embedding [20].
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ABSTRACT
“Sensor-free” detectors of student affect that use only student
activity data and no physical or physiological sensors are
cost-effective and have potential to be applied at large scale
in real classrooms. These detectors are trained using student
affect labels collected from human observers as they observe
students learn within intelligent tutoring systems (ITSs) in
real classrooms. Due to the inherent diversity of student
activity and affect dynamics, observing the affective states of
some students at certain times is likely to be more informa-
tive to the affect detectors than observing others. Therefore,
a carefully-crafted observation schedule may lead to more
meaningful observations and improved affect detectors. In
this paper, we investigate whether active (machine) learning
methods, a family of methods that adaptively select the next
most informative observation, can improve the efficiency of
the affect label collection process. We study several existing
active learning methods and also propose a new method that
is ideally suited for the problem setting in affect detection.
We conduct a series of experiments using a real-world stu-
dent affect dataset collected in real classrooms deploying the
ASSISTments ITS. Results show that some active learning
methods can lead to high-quality affect detectors using only
a small number of highly informative observations. We also
discuss how to deploy active learning methods in real class-
rooms to improve the affect label collection process and thus
sensor-free affect detectors.

Keywords
Active learning, L-MMSE estimation, student affect detec-
tion

1. INTRODUCTION
Intelligent tutoring systems (ITSs) have gradually seen more
and more deployment over the years in real classrooms all
over the world. Recently, large-scale randomized controlled
trials have shown that they can lead to improved student
learning outcomes [30] and affect [19]. However, even the

state-of-the-art ITSs cannot interact with students the way
human instructors can. For example, in real classrooms,
instructors can detect a student’s knowledge and affective
states by observing their activity and behavior and then
adjust their teaching strategy by changing the difficulty of
practice questions or addressing negative affect [2, 23]. In
particular, keeping students in positive affective states (e.g.,
engaged) is crucial since their affective states are found to be
highly predictive of many metrics of academic performance
and success, including test scores [28] and college enrollment
[29]. Consequently, there exist many works on designing
interventions [1, 10] to address negative affect. Examples
of such interventions include selecting appropriate textual
dialogues to help students engage [12], using an embodied
agent to mirror and empathize with confused students [6], and
providing motivational message to frustrated students [19].

1.1 Student Affect Detection
Many existing student affect detection methods employ phys-
ical and physiological sensors that make frequent observa-
tions of students when they are learning. Despite their
effectiveness, these detectors are impractical for large-scale
deployment in real classrooms due to cost and privacy con-
straints [16,35]. On the other hand, there exists a family of
“sensor-free” detectors, which uses only student activity data
as they learn within ITSs to detect affect [4,32,37]. These
detectors use machine learning-based classifiers to predict
student affective states from a set of activity features [5].
These sensor-free detectors are more feasible for large-scale
deployment than those sensor-dependent ones for two rea-
sons. First, they are cost-effective since once constructed,
they can operate in fully-automated fashion and can easily
be integrated into ITSs and deployed at large scale. Second,
they are more privacy-aware since activity data can be more
effectively anonymized than data obtained from other sensors,
e.g., video recordings of the students’ facial expressions.

Although sensor-free affect detectors are highly automated,
the student affect state label collection process remains labor-
intensive. The process for collecting these labels typically
consists of human observers (including trained coders and/or
the teacher) making observations of students in real class-
rooms and encode their affect into a collection of states.
For example, in the Baker Rodrigo Ocumpaugh monitoring
protocol (BROMP) for affect observation and coding, there
are four affective states: boredom, confusion, engaged con-
centration, and frustration. The process typically proceeds
in round-robin fashion, i.e., the human observer alternates
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among students and observe one student in each observation
interval according to a pre-defined, ad hoc schedule.

However, this data collection process is insufficient since the
typical round-robin schedule cannot make full use of the
limited time human experts have to make observations. The
reason is that, due to the inherent diversity in student activity
and affect, the affect states of some students during some
observation intervals are more informative to the classifiers
than those in other cases; A non-adaptive, ad-hoc observation
schedule leads to a lot of missed opportunities to observe these
more informative cases. Therefore, it is desirable to develop
methods that adaptively select the most informative students
to observe in each observation interval and recommend them
to human observers. These adaptive methods can potentially
lead to the collection of higher-quality data for the affect
detector to train on without requiring additional human
effort, which will ultimately improve affect detection.

1.2 Active Learning
Active learning refers to a family of machine learning methods
that adaptively select the next most “informative” observa-
tion to a classifier [34]. These methods are designed for
applications where one has access to abundant unlabeled
data but can only selectively label a small portion of it. In
this setting, there is a need to select data instances whose
labels, once obtained, result in the largest improvement in
classification quality. There exist numerous active learn-
ing methods with different metrics of informativeness; these
methods have been found to be effective at reducing the
amount of labeled data needed when combining with many
classifiers including logistic regression [38], support vector
machines [15], and deep convolutional neural networks [33].
See Section 3.1 for a more formal introduction to active
learning.

Existing active learning methods are not always successful
in practice; in some settings, no active learning methods
can outperform the simple baseline approach of randomly
selecting data instances to label [38]. One such setting is
the “cold-start” setting, when one does not yet have access
to a sufficient amount of data to build a good classifier. In
this setting, the estimate of informativeness can be highly
inaccurate. In affect detection, since there are typically
hundreds of features used to summarize student activity in
ITSs [5], a classifier needs a significant number of labels
to reach reasonable quality. Therefore, the effectiveness
of existing active learning methods will be limited in the
initial part of the student affect label collection process.
Another such setting is when the data is highly noisy; in
this case, it is hard to identify informative observations. In
affective detection, the affective state labels provided by
human observers are highly subjective and thus noisy; the
labels provided by different human experts may differ [27]
significantly. Therefore, the effectiveness of existing active
learning methods in affect detection will be limited by the
noisiness of the data. Therefore, it is desirable to develop
new active learning methods that are robust to small and
noisy data.

1.3 Contributions
In this paper, we investigate whether active learning can be
used to improve the efficiency and effectiveness of student

affective state label collection. We conduct a preliminary
study using several classic active learning methods on an
existing real-world student affect dataset collected from AS-
SISTments1, a widely-used ITS. Motivated by the limitations
of existing active learning methods when the data is small and
noisy, we also propose a new active learning method that can
excel in this setting. Our new active learning method lever-
ages the recently proposed linear minimum mean squared
error (L-MMSE) estimation framework [21,22] to evaluate
observation informativeness. This framework provides an
exact, closed-form, and nonasymptotic analysis of the param-
eter estimation error for binary regression and is shown to be
highly effective when data is small and/or noisy. Experimen-
tal results show that some active learning methods, especially
our L-MMSE-based method, can reduce the number of labels
needed to build high-quality, sensor-free affect detectors. We
also discuss how to use active learning to improve data col-
lection efficiency in real-world affect detection and possibly
other quantitative field observation (QFO) tasks by building
an interactive system that suggests human observers to make
certain observations.

We emphasize that the purpose of the current work is not to
improve affect detectors but rather to investigate whether one
can collect better data to train them. Therefore, we resort to
a simple logistic regression-based affect detector since it can
be integrated with all existing active learning methods. More
complicated, state-of-the-art deep learning-based detectors
cannot be integrated with many active learning methods and
thus do not offer us a complete view of active learning in
affect detection.

2. RELATED WORK
ASSISTments is a free web-based platform that provides im-
mediate feedback, on-demand hints, and scaffolding support
to the many students who use it in classrooms and for daily
homework [14]. The system has been used by hundreds of
thousands of students and thousands of teachers, and has
been found to be effective in improving learning outcomes
and closing achievement gaps in a large-scale randomized
controlled trial [30].

A significant amount of research has been conducted on the
detection of student affect by aligning ASSISTments data
to student affect labels collected in real classrooms using
BROMP [27]. BROMP allows human observers to label
a student in four often-studied affective states: engaged
concentration [9], frustration [20], boredom [25], and confu-
sion [8]. Initially, sensor-free affect detectors in ASSISTments
leveraged a number of rule-based and statistics-based mod-
els; these models achieved performance substantially above
chance, for new students from rural, suburban, and urban
populations [4]. Later, the work in [36] improved upon these
initial affect detectors by incorporating additional features
on skills/knowledge components as well as statistics across
the entire class. Most recently, the work in [5] applied deep
learning methods to affect detection and produced a signif-
icant increase in detection accuracy. The key in that work
is to use recurrent neural networks (RNNs), including its
two popular variants in long short-term memory (LSTM)
networks and gated recurrent unit (GRU) networks [13], to

1https://www.assistments.org/
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capture students’ changing affect over time.

3. ACTIVE LEARNING
In this section, we will first review active learning and briefly
describe how it can be used to improve the efficiency in QFOs.
We will then review the L-MMSE estimation framework and
introduce our new, L-MMSE-based active learning method.

3.1 Background on Active Learning
Supervised learning refers to a class of machine learning
approaches where the task is to learn a function (usually, a
classifier) that captures the relation between input-output
(feature-label) pairs. The typical setup in supervised learning
is that one observes all features and labels and can use them
to train the classifier. Active learning, on the other hand,
deals with the setting where one has control of the data
label observation process; in this case, one has access to the
feature values of all feature-label pairs but can select which
one gets labeled next. Naturally, the most effective strategy
is to train the classifier on observed labels and select the next
label that is the most “informative” to the current classifier to
observe [34]. There exist numerous active learning methods
with different metrics of informativeness, e.g., entropy (or
observation uncertainty) [24], expected error reduction [31],
expected variance reduction [40], model change [7], etc. The
goal of active learning is to only observe labels that are highly
informative in order to learn the function more efficiently.

Concretely, we denote the functional relation between the
features and labels as

y ∼ fx(D),

where y ∈ AN is the vector of labels that contains a total of N
observations. A denotes the set of labels. D ∈ RN×P denotes
the matrix containing all feature values corresponding to each
label. The column vectors corresponding to the rows of D,
i.e., the feature values of each observation, are denoted as
di, i ∈ {1, . . . , N}. Correspondingly, each element in the
label vector is denoted as yi, i ∈ {1, . . . , N}. fx(·) denotes
the function that maps each input feature vector di to each
label yi; x denotes the vector containing all parameters of
the function. In regression problems, x corresponds to the
regression coefficient vector, while in neural networks, x
corresponds to the collection of all weights and biases that
characterize the connections between hidden units.

The iterative process of active learning proceeds as follows.
Suppose that one now has a set of t−1 observations, with t ∈
{1, 2, . . . , N} and wants to select the next, t-th observation.
Let Ot−1 and Ut−1 denote the sets (which contain indices)
of all feature-label pairs (referred to as datasets) where the
labels are observed and unobserved, respectively, and let
x̂t−1 denote the current estimate of the function parameters
(trained on the subset of feature values and labels DOt−1

and yOt−1). Active learning methods then select the next
observation it as

it = argmax
i∈Ut−1

I(di, x̂t−1),

where I(·, ·) denotes a metric of how informative an observa-
tion i is to the current function. As an example, the simplest
yet often most effective existing active learning method, un-
certainty sampling, simply uses the entropy [13] as the metric

of informativeness:

I(di, x̂t−1) = −
∑
a∈A

p(yi = a) log p(yi = a),

where p(yi = a) = fx̂t−1(di) denotes the probability of a
new observation with feature values di taking on label a
given the current function estimate parameterized by x̂t−1.
In other words, uncertainty sampling simply selects the next
observation whose label the current classifier is the least
certain of. After selecting the next observation, the classifier
is re-trained using an updated observed dataset Ot = Ot−1 ∪
{it}. Then, in the next iteration of the active learning
process, the next observation it+1 is selected from an updated
unobserved dataset Ut.

In typical active learning settings, since one has access to all
feature values, the unobserved dataset is simply updated by
excluding the selected observation as Ut = Ut−1 \it. However,
we emphasize that under real-world QFO settings, the set of
unobserved observations can change entirely. For example, in
the typical BROMP coding process, a human coder observes
the affective state of one student in each observation interval
(typically 20 seconds); therefore, in the next iteration, the
set of unobserved dataset (which contains feature values
that summarize student activity during the next observation
interval) might change entirely.

3.2 Background on L-MMSE Estimation
The L-MMSE estimation framework put forward in [21,22]
enables the design of new estimators for a wide range of
nonlinear classification and regression problems. It also of-
fers a closed-form, exact, and nonasymptotic analysis of
the estimation error for nonlinear problems, which is typi-
cally impossible to obtain. The key insight to the L-MMSE
estimation framework is that even for nonlinear problems,
well-crafted linear estimators that take the nonlinearity into
account can achieve comparable performance to nonlinear
estimators that are computationally extensive and hard to an-
alyze. Therefore, it is an advanced estimation technique and
shall not be confused with basic linear estimation methods
like least squares.

In [22], the L-MMSE estimation framework is applied to
binary (especially probit) regression, which is given by

y = sign(Dx + w),

where yi ∈ {−1,+1} denotes the binary-valued label for
feature-value pair i. The vector w ∈ RN denotes a noise
vector with i.i.d. standard normal random entries. Putting a
zero-mean multivariate normal prior with covariance matrix
Cx on x as x ∼ N (0,Cx), the L-MMSE estimator finds the
best estimator of x that is linear in the observation vector
y, i.e.,

x̂ = Wy,

where W is a suitably-chosen estimation matrix that achieves
the minimum mean-squared error (MSE) defined as

MSE = Ex,w

[
||x− x̂||22

]
.

For probit regression, a variant of binary regression, the
L-MMSE estimator has a closed-form expression, given by
W = ETC−1

y , with its corresponding MSE given by
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MSE = tr(Cx −ETC−1
y E), (1)

where

E =
( 2

π

)1/2
diag

(
diag(Cz)−1/2)DCx,

Cy =
2

π
sin−1

(
diag

(
diag(Cz)−1/2)Cz

× diag
(
diag(Cz)−1/2)),

Cz = DCxDT + I.

We note that the MSE (and also the matrix W) depends
only on the matrix D and not the label vector y.

3.3 L-MMSE-based Active Learning
Results in [21,22] have shown that the L-MMSE estimator
for binary regression performs on-par with state-of-the-art,
sophisticated estimators, e.g., those that require using tools
in convex optimization and Markov chain Monte Carlo tech-
niques, while having much lower computational complexity.
More importantly, the L-MMSE-based estimation error anal-
ysis is shown to be more accurate than other analyses (e.g.,
those that rely on Fisher information) when the data is noisy
and/or when the data is small, i.e., when N is not much
larger than P . This advantage is highly desirable in active
learning settings and especially in affect detection for two
reasons. First, in active learning settings, one often work
with small problem sizes: in the initial stages of the active
learning process, the classifier is highly inaccurate since it
is only trained on a small number of observed labels; there-
fore, it can lead to an unreliable metric of informativeness
which is the key to active learning methods. Second, in affect
detection and a lot of other educational applications, the
data is inherently noisy: state-of-the-art affect detectors can
only achieve area under the receiver operating characteris-
tic curve (AUC) values of around 0.7 after many empirical
tweaks [5]. This accuracy is significantly lower than that
in common classification tasks [13]. Moreover, inter-coder
disagreement on a student’s affective state can be high in
some cases [27]; this disagreement is also reported in facial
expression recognition-based affect detectors [3].

Therefore, we propose a new active learning method that
uses the closed-form expression of the MSE of the L-MMSE
estimator given in Eq. 1 to measure informativeness since it
is reliable even for small and noisy data. Note that we do
not use the L-MMSE estimator to estimate x, but only its
MSE to select the next observation. Specifically, we use the
negative MSE as our metric of informativeness as

I(di, x̂t−1) = −MSE(DOt−1∪{i}).

In other words, we select the t-th observation as the one
corresponding to the feature vector di that minimizes the
resulting MSE, i.e.,

it = argmin
i∈Ut−1

MSE(DOt−1∪{i}),

where DOt−1∪{i} = [DT
Ot−1

,di]
T .

Since the MSE is independent on the observations y, the
L-MMSE-based active learning method is likely more robust
than all existing methods that rely on y, especially during the
initial stage of the active learning process when the number
of observations is small. Therefore, it is likely to be highly

effective in real-world QFO and especially affect detection
settings. This intuition is confirmed by our experiments in
Section 4.

In practice, the MSE can be computed very efficiently since
the inverse of the matrix C−1

y only needs to be computed
once in every iteration; we do not need to invert it for every
potential observation added to the current set of observa-
tions. For simplicity of exposition, we temporarily drop the
subscripts and use D and d to denote the current feature
matrix and the feature vector for a possible new observation.
The new matrix C′z is given by

C′z =
[ D

dT

]
Cx[DT d] =

[ Cz DCxd
dTCxDT dTCxd + 1

]
.

Now, the new matrix C′y is given by

C′y =
2

π
sin−1

(
diag

(
diag(C′z)−1/2)C′zdiag

(
diag(C′z)−1/2))

=
2

π
sin−1

([
diag

(
diag(Cz)−1/2

)
0

0T (dTCxd + 1)−1/2

]
·
[ Cz DCxd

dTCxDT dTCxd + 1

]
·
[

diag
(
diag(Cz)−1/2

)
0

0T (dTCxd + 1)−1/2

])
=
[ Cy c

cT 1

]
,

where c = 2
π

sin−1
((

diag(C′z)−1/2
)
DCxd(dTCxd + 1)−1/2

)
.

Now, using the block matrix inversion rule [17], we have

C′−1
y =

[
C−1

y + hgTCyg hg
hgT h

]
,

where g = −C−1
y c and h = 1

1−cTC−1
y c

. Now, the new matrix

E′ is given by

E′ =
( 2

π

)1/2[ diag
(
diag(Cz)−1/2

)
0

0T (dTCxd + 1)−1/2

]
·
[ D

dT

]
Cx =

[ E
eT

]
,

where e = ( 2
π

)1/2(dTCxd + 1)−1/2Cxd. Therefore, plugging
all of the above into Eq. 1 and some algebra, we get an
expression for the new MSE after adding a new observation
with feature value vector di as

MSE′ = tr(Cx)− tr(E′
T
C′−1

y E′) = tr(Cx)

− tr
(

[ET e]
[

Cy + hgTC−1
y g hg

hgT h

][ E
eT

])
= tr(Cx)− tr(ETC−1

y E)− htr(ETgTC−1
y gE)

− 2htr(ETgeT )− htr(eeT )

= MSE− h(‖ETg + e‖22), (2)

where the reduction in MSE induced by making a new ob-
servation is given by the term h(‖ETg + e‖22). Therefore,
we can obtain the new MSE without having to explicitly
calculate C′−1

y for every possible new observation. In our
experiments, we found that this implementation speeds up
the L-MMSE-based active learning method by 10 to 100
times, resulting in an empirical computational complexity
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that is lower than most existing active learning methods
except uncertainty sampling.

4. EXPERIMENTAL RESULTS
We now perform a series of experiments on a real-world
student affect dataset to explore the effectiveness of active
learning methods. We start by adopting standard experi-
mental protocols for active learning under several different
settings and then present a simple example to help us under-
stand the conditions under which active learning methods
are the most effective.

4.1 Student Affect Dataset
We use an existing dataset for building sensor-free affect de-
tectors collected in real classrooms2 [5]. The dataset consists
of 3, 109 observations, each observation contains i) a student’s
affective state label during a 20-second observation interval
in real classrooms and ii) a set of 88 features that summa-
rizes their activities within ASSISTments during this time
interval. These features include the time each student spent
on practice items, the number of hints they seek, and the
correctness of their responses. We keep observations where
the student is labeled as being in one of the four affect states
under BROMP: bored, confused, engaged concentration, and
frustrated. We leave out the few observations where the
human coder indicates that either the student is not in any
of the four states or that they are not sure what state the
student is in. Engaged concentration is the most frequent
state among the four, which occurs about 82% of the time.

Since we focus on logistic regression-based affect detectors
in this paper, we need to construct a binary classification
problem by detecting the presence of one of the four affective
states. We start by building a detector of the engaged con-
centration affective state since it is the most common among
the four states.

4.2 Baseline Active Learning Methods
We test four different active learning methods in our exper-
iments: i) our L-MMSE-based active learning method, (ii)
uncertainty sampling (US) [24], as introduced in Section 3.1,
(iii) expected variance reduction (EVR) [40], which selects
the next observation as the one that results in the largest
reduction of the variance of the classifier, and (iv) model
change (MC) [7], which selects the observation that changes
the classifier’s parameters the most. We also use random
sampling (Random), which randomly selects the next obser-
vation, as the baseline method to simulate the round-robin
observation schedule followed in real classrooms when the
dataset was collected. We do not test another popular active
learning method, expected error reduction [31], since it has
very high computational complexity and does not outperform
other methods in several preliminary experiments.

4.3 Engaged Concentration Detection
We start by testing active learning methods for a detector of
engaged concentration vs. other affective states.

4.3.1 Experimental setup
2This dataset is taken from http://tiny.cc/affectdata

We use cross validation to test the performance of active
learning methods on the ASSISTments student affect dataset.
We use two different settings for cross validation: we split
the dataset at both the observation level (where each obser-
vation is regarded as a stand alone instance) and the student
level (where all observation on a student is considered as an
instance). We randomly select 20% and 10% of all instances
as the test and validation sets, respectively, and use the rest
as the training set. The test set is used to evaluate the pre-
dictive quality of the trained classifier, using the area under
the receiver operating characteristic curve (AUC) metric [18].
This metric takes value in [0, 1] and larger values indicate
higher predictive quality.

We start by randomly selecting an initial batch of M ∈
{20, 100, 500} observations (with both student activity fea-
ture vector and affective state label for each observation)
from the training set; we then use them to train a base
logistic regression classifier and use it as our initial affect
detector. This experimental setting enables us to study the
effectiveness of active learning methods when the amount
of prior data available to the detector varies. Although the
L-MMSE-based analysis is based on probit regression, we
use the more widely-adapted logistic regression to test its
robustness against model mismatch. The base classifier is
trained using accelerated gradient descent [26] implemented
in TensorFlow3 with a P × 1 zero-vector as the initializer.
We do not regularize the logistic regression classifier and in-
stead use the validation set to decide when to terminate the
training process and avoid overfitting. Specifically, after each
(accelerated) gradient descent step, we evaluate the current
detector on the validation set, and stop once its predictive
quality stops improving (as measured by AUC).

Then, in each iteration of the active learning process, we
select the next observation from the remaining ones in the
training set according to their feature values, for each active
learning method. We then add this new observation (both its
feature vector and label) to the current batch and re-train the
affect detector, using the previous estimate of the regression
coefficients as the initializer. We then calculate the AUC of
the re-trained affect detector on the test set. We repeat these
steps for a total of 50 additional observations; using more
data points is unnecessary since i) we found that using 50
additional observations is enough to summarize the behavior
of each active learning method and ii) the performance of
the affect detector will converge to the same end point for
each active learning method, after going through the entire
training set. We also repeat our experiment 100 times and
use a different random split of the full dataset and a different
initial batch of observations each time. We then report the
average results over these repetitions.

4.3.2 Results and discussion
Figure 1 plots the AUC values of the trained affect detec-
tors on the held-out test set vs. the number of additional
observations, for all active learning methods on the student
affect dataset, using observation-level cross validation. We
see that most active learning methods, except EVR, generally
outperforms random observation selection when the quality
of the affect detector is limited by the amount of data it

3https://www.tensorflow.org/
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(a) Initial batch size = 20 (b) Initial batch size = 100 (c) Initial batch size = 500

Figure 1: Comparison between different active learning methods for engaged concentration detection with
observation-level cross validation. Most active learning methods, especially our L-MMSE-based active learn-
ing method, are effective at small initial batch sizes. This advantage over random observation selection
diminishes as the quality of the detector saturates when a large number of observations is made.

(a) Initial batch size = 20 (b) Initial batch size = 100 (c) Initial batch size = 500

Figure 2: Comparison between different active learning methods for engaged concentration detection with
student-level cross validation. The behavior of active learning methods remain largely the same as observation-
level cross validation: they are most effective when the affect detector is trained on few observations.

sees (when it is trained on no more than 50 observations).
Our L-MMSE-based method significantly outperforms every
other method in this setting. As a concrete example, with 25
additional observations added to the 20 observations in the
initial batch, the L-MMSE active learning method results
in an that has an AUC of 0.685 on the test set, while no
other method result in a detector that has an AUC above
0.65. This result suggests that the L-MMSE-based active
learning method excels at picking out observations that are
crucial to the affect detector immediately, despite the de-
tector’s limited predictive quality; its performance in this
setting is impressive since the number of features is quite
large (P = 88), which is even more than the number of
observations in Figure 1(a). Moreover, to reach an AUC
value of 0.685 on the test set, the L-MMSE-based active
learning method only needs 45 total observations; no other
active learning method can achieve this predictive quality
even with 70 total observations. This result suggests that,
by directing human experts at making observations that are
more meaningful to the affect detector, active learning meth-
ods can potentially improve the quality of the data without
requiring more human effort.

We demonstrate the statistical significance of our results using
Student’s t-test. Table 1 shows the p-values for rejecting
the null hypothesis that the best performing active learning
method (L-MMSE) over random observation selection, with

No. of observations 20 30 40 70 100

p-value 3× 10−3 2× 10−7 2× 10−9 6× 10−3 4× 10−1

Table 1: Statistical significance of the advantage ac-
tive learning (the L-MMSE-based method) exhibits
over random observation selection. Active learning
methods are significantly better at the initial stage
of the affect observation process.

an initial batch size of M = 20. We see that initially, when
the affect detector is not highly accurate, active learning has
a significant advantage over random observation selection.

As the size of the initial batch increases (M = 100) and the
quality of the initial affect detector improves, the advantage
of the L-MMSE-based active learning method over random
observation selection drops and eventually diminishes when
M = 500. This result is not surprising since with 500 initial
observations, the performance of the affect detector already
saturates (the AUC on the test set after training on the
entire training set is 0.74, which is consistent with the values
reported in [5]). However, even in this case, the L-MMSE-
based active learning method still provides some improvement
compared to random observation selection (about 0.01 AUC
on the test set with 100 to 150 observations in Figure 1(b)).
We note that this advantage is not statistically significant
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(see Table 1), which is not surprising since the quality of
the affect detector improves very slowly after the first 50
observations, leaving very little room for active learning to
show its effectiveness.

Perhaps surprisingly, no active learning method except our
L-MMSE-based method consistently outperforms random
observation selection, even when the initial batch size is
small. When the initial batch size is large (M = 500), US
and MC even leads to worse affect detectors, although we
suspect that the performance degradation in that case is
due to randomness in cross validation not being sufficiently
smoothed out rather than a poor affect detector. These
results confirm our intuition that active learning methods
designed for general-purpose classification tasks are not well-
suited to affect detection, especially when the data size is
small during the initial stage of the data collection process.

Figure 2 plots the AUC values of the trained affect detectors
on the held-out test set vs. the number of additional obser-
vations for all active learning methods, using student-level
cross validation. The results largely remain the same com-
pared to observation-level cross validation. Overall, there is
a small drop of about 0.01 in test set AUC, confirming the
intuition that it is harder for affect detectors to generalize
to unseen students than to generalize to unseen observa-
tions from current students. However, the L-MMSE-based
active learning method still (perhaps even more) consistently
outperforms other active learning methods and random ob-
servation selection. As a concrete example, with only 10
additional observations in addition to an initial batch of
20 observations, the L-MMSE-based active learning method
achieves an AUC of 0.655 on the test set; the other active
learning methods and random observation selection achieve
AUC values 0.635 and 0.62, respectively. In this case, the
effectiveness of using active learning methods (especially our
L-MMSE-based method) to identify informative observations
and use them to improve affect detection is obvious.

Our experimental results also suggest that there is a lot of re-
dundancy in the ASSISTments student affect dataset. As we
discussed above, the quality of the affect detectors saturates
after training on about 500 observations. Consider that the
entire training set contains more than 2, 100 observations,
it seems that the majority of them do not significantly con-
tribute to the quality of the resulting affect detector. This
discovery further emphasizes the need of using smarter ways
to collect higher-quality data; see Section 5 on a detailed
discussion of how to use active learning methods to possibly
improve data quality in practice.

4.4 Detection of Other Affective States
We now test the effectiveness of active learning methods for
the detection of the other three affective states in BROMP:
bored, confused, and frustrated.

4.4.1 Experimental setup
Since these affective states are rare (bored occurs about
10% of the time, while confused and frustrated each occur
about 4% of the time) in the ASSISTments dataset, prior
work [5,28] uses resampling to balance among the affective
states. Specifically, these works build training datasets that
contain roughly equal numbers of observations corresponding

to each affective state by resampling from the original train-
ing set; after affect detectors are trained on the resampled
training dataset, they are then evaluated on the original,
non-resampled test set.

We do not use the resampling technique since our goal is to
simulate the actual affect observation setting in real-world
classrooms, where the four affective states are naturally
unbalanced. Therefore, we use same experimental setting as
before, except that we have to resort to larger initial batch
sizes to ensure that at least a few rare affective states occur
in the initial batch. In our experiments, we found that using
an initial batch size of M = 100 is sufficient.

4.4.2 Results and discussion
Figure 3 plots the AUC values of the trained detectors on the
held-out test set vs. the number of additional observations,
for the affective states of bored, confused, and frustrated.
We used different y-axis ranges in each of the three subplots
to enhance contrast since for the confused and frustrated
states, the improvement in the quality of the detectors as
more observations are made is small. We see that active
learning methods, especially our L-MMSE-based method,
can still generally outperform random observation selection
in most cases (especially for the bored state). However,
this advantage is much smaller for these infrequent affective
states compared to engaged concentration. For the detection
of confusion, two of the active learning methods (US and
MC) consistently underperform random observation selection,
while our L-MMSE-based method shows some improvement
only initially. The only active learning method that performs
on-par with random observation selection is the EVR method.
One possible explanation is that for harder-to-detect affective
states like the confused state, the quality of the classifier is
quite low (the final AUC on the test set is only 0.67), which
leaves little room for active learning to show its effectiveness.

We now present a simple example to give us some insights on
the conditions under which active learning methods are most
effective in affect detection. Figure 4 compares the portion
of observations selected by an active learning method (US)
that actually correspond to an infrequent affect (we used the
bored state as an example) to that of random observation
selection. We see that after using the initial batch of ob-
servations to build a (low-quality) detector, active learning
methods can quickly use it to select the observations that
actually correspond to the infrequent target affect. Specifi-
cally, within the first 50 additional observations, US selects
about 15 observations that correspond to the bored affective
state, using only student activity features, as it deems these
observations more informative; this portion (about 30%) is
much higher than the overall portion of the bored state in
the entire training set (about 10%). This behavior of US
is consistent across all affective states except the confused
state, where the portion of observations it selects that actu-
ally correspond to the confused state does not exceed the
overall portion. In that case, active learning methods also
fail to consistently outperform random observation selection,
as shown in Figure 3(b). Therefore, active learning methods
seem to be effective only if they can strike the right balance
between observing different affective states that occur at
different frequencies.
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(a) Bored (b) Confused (c) Frustrated

Figure 3: Comparison between different active learning methods for infrequent affective state detection
(bored, confused, and frustrated). Active learning methods are generally effective for the bored and frustrated
states but not the confused state. Their advantage over random observation selection for these states is smaller
than that for engaged concentration detection.

Figure 4: Portion of total infrequent affective state
observations selected by an active learning method
(US) versus random observation selection for bore-
dom detection. Active learning methods can effec-
tively select observations that actually correspond
to the infrequent affect.

5. DEPLOYMENT IN CLASSROOMS
We now outline how to deploy active learning methods in
real classrooms to improve the data collection efficiency for
affect detection. Since active learning requires training affect
detectors on-the-fly as new observations are made, there is a
need to create a system that consists of three components.
The first component is an interface to human observers mak-
ing observations in classrooms; this interface i) suggests the
human observer to observe a student at each observation
interval, ii) collects their affect label on the student, and iii)
send the label to the affect detector. The second component
is a training paradigm for affect detectors that keeps updating
the detector by re-training it after it receives each observed
affect label and its corresponding feature vector. The third
component is the active learning method that links the other
two components together: it i) uses APIs to collect student
activity data from ITSs and turn them into feature vectors,
ii) selects the next observation that is the most informative
to the current affect detector and sends its suggestion via
the human observer interface.

There are several realistic considerations in such a system
in order for it to be deployed in real classrooms. First, our

experiments (see Section 4.4) have shown that active learning
methods are not as effective for affective states that occur
infrequently (especially the confused state). Therefore, there
is a need to explore more advanced active learning methods
that take class imbalance into account [11]. Second, experi-
enced human observers may have their own understanding
of the informativeness of an observation; such understanding
can also be highly valuable to machine learning-based affect
detectors. Therefore, the human observer interface should
present an option that allows them to ignore the suggestion
by active learning methods and instead propose which stu-
dents to observe on their own. Third, fairness among different
student subgroups [39] is critical; we want to ensure that
each subgroup is well-observed in the data collection process.
Therefore, there needs to be an exploration mechanism that
checks whether a student subgroup is under-observed and
limit active learning methods to only select among those
students when that happens.

6. LIMITATIONS AND FUTURE WORK
In this paper, we have explored the problem of whether active
learning methods can be used to increase the efficiency of the
affective state label collection process for the development
of sensor-free affect detectors. Using an existing student
affect dataset collected from ASSISTments, we have shown
that active learning methods are indeed effective at making
observations that are the most informative to the affect
detector; therefore, it can reduce the number of observation
needed for the detector to reach a certain quality under most
settings. We also proposed a new active learning method that
is especially effective for small and noisy data; experimental
results show that it outperforms existing active learning
methods. At the end, we outlined how to deploy these
methods in real-world systems to improve the quality of
the data to be collected and discussed several necessary
considerations under practical constraints.

Despite the effectiveness of active learning methods, espe-
cially our L-MMSE-based method, our work has several
limitations and can be extended in many different ways.
First, our experimental setting for active learning does not
perfectly reflect the actual affective state observation process
in real classrooms. In our experimental setting, we select the
next observation from all available observations left in the
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training set, which was collected in many classroom sessions
over a long period of time. In practice, when a human ob-
server is making observations in real classrooms, we can only
select an observation among the students in class; the most
informative observation among these students is generally
less informative than the most informative observation pos-
sible. Therefore, the benefit active learning methods bring
to real-world affect label collection may not be as much as
what we have shown in our experiments.

Second, the affect detectors we have studied in this paper are
only for detecting the presence of a particular affective state,
e.g., bored vs. not bored; it cannot jointly detect all possible
affective states. The reason we did so is to test as many
active learning methods as possible since most of them are
designed only for binary classification. Unfortunately, the
most effective active learning method for affect detection in
our experiments (our L-MMSE-based method) only applies
to binary classification tasks. Therefore, for real-world affect
detection problems that are multi-class classification prob-
lems, we will extend our method so that it can be applied to
multinomial logistic regression instead of binomial logistic
regression.

Third, state-of-the-art affect detectors use neural networks
rather than logistic regression as their base classifier [5].
While some active learning methods (e.g., uncertainty sam-
pling) can be easily extended to neural networks, others (e.g.,
our L-MMSE-based method, variance reduction methods,
and methods based on model change) cannot since they are
either theoretically grounded in binary regression or becomes
computationally intractable. Fortunately, the L-MMSE esti-
mation framework encapsulates all the common nonlinearities
used in today’s state-of-the-art neural network architectures,
including the hyperbolic tangent and rectified linear nonlin-
earities [13]. Therefore, we will extend the L-MMSE-based
active learning method proposed in this paper to leverage
neural networks as the base classifier.

Fourth, the workflow we outlined for the deployment of ac-
tive learning in a real-world system in Section 5 presents a
time mismatch challenge. In order to select an observation
that the human observer should observe, we need access
to the corresponding student activity feature vector; these
feature values, however, are not available until the end of the
observation time interval since many features summarize a
student’s activity during the entire period. When the teacher
receives a suggestion to observe a certain student, this sug-
gestion will be based on the student’s activities during the
last observation interval, which may not be the most infor-
mative observation during the current observation interval.
Therefore, we will need to perform a thorough analysis of
the coherence in student activity and affect over time to vali-
date the feasibility of deploying active learning in real-world
systems for affect label collection.

Finally, the essence of using active learning for affect detec-
tion is to leverage the judgement a machine learning-based
detector makes on how sure it is about the affective state of
a student. Simultaneously, human observers who are trained
to make observations in classrooms have their own judge-
ments on how sure they are about a student’s affective state.
Therefore, comparing the two sets of judgements may lead

to deeper insights on how humans perceive affect. More-
over, there is an intrinsic mismatch between the two sets of
judgements since one is based on a set of activity features
in ITSs while the other is based on observations of activity,
gesture, and facial expressions. Therefore, comparing the
two sets of judgements may also lead to an analysis of the
extent to which the activity features can capture student
affect; these insights can potentially help us to design better
student activity features or even lead to better ITS designs.
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ABSTRACT
Viewing worked examples before problem solving has been
shown to improve learning efficiency in novice programming.
Example-based feedback seeks to present smaller, adaptive
worked example steps during problem solving. We present a
method for automatically generating and selecting adaptive,
example-based programming feedback using historical stu-
dent data. Our data-driven feature-based (DDF) example
generation method automatically learns program features
from data and selects example pairs based on when students
complete each feature. We performed an experiment to com-
pare three example generation methods: Student trace data,
Data-Driven Features (DDF), and Expert examples. Two
experts rated the quality of feedback for each generator,
and they rated both the Expert and DDF example feed-
back as significantly more relevant to students’ goals than
the Student example feedback. However, there were no sig-
nificant differences between the DDF and Expert examples.
We compared these approaches to one that combined DDF
with an Interactive Selection step (DDF-IS), where the user
(in this case, an expert) selects their preferred data-driven
feature before an example is selected. DDF-IS produced sig-
nificantly more relevant examples than all other approaches,
with significantly higher overall example quality than DDF.
This suggests that our DDF approach allows more relevant
examples to be selected than existing approaches, and that
we may be able to leverage interactivity with the student to
further improve example quality.

1. INTRODUCTION & BACKGROUND
Prior studies show that worked examples are an effective in-
structional support to help novices learn complex tasks [27,
30, 28, 8]. Sweller argues that “...for novices, learning via
worked examples should be superior to learning via problem
solving.”[27]. In the domain of programming, researchers

also suggest using worked examples to teach novices [3, 31].
Empirical studies have shown that interleaving worked ex-
amples with similar practice problems is more effective than
solving only equivalent programming problems by writing
code, as students spent less time on training tasks and per-
formed better on a posttest [30]. However, worked examples
are traditionally only offered to students in between prob-
lem solving attempts [30, 16, 7, 6], and they do little to as-
sist students when they have difficulty during problem solv-
ing. Based on the idea of worked examples, researchers have
explored example-based feedback [9, 4, 13], which shows a
correct piece of code to help students learn during problem
solving, as a form of adaptive, on-demand support [9]. Sim-
ilar to a high-level on-demand hint, example-based feedback
demonstrates one step in a correct solution to the problem
the student is working on, selected adaptively to match the
student’s code. Keuning et al. argue for the need for such
feedback in their review on automated feedback generation
for programming, saying “the very low percentage of tools
that give code examples based on the student’s actions is
unfortunate, because studying examples has proven to be
an effective way of learning” [15]. As Gross et al. argue,
showing a relevant partial solution could impose less cogni-
tive load and be easier to visually present to novices than
showing a full solution [9]. Ichinco et al. found that novices
have trouble transferring what they learned from similar
problems to their own code [14]. Example-based feedback
addresses this by providing example steps from the same
problem the student is working on. Figure 1 presents a pro-
totype of what example-based feedback might look like in a
block-based novice programming environment. The exam-
ple is presented with a “before” state, similar to the stu-
dent’s current code, and an “after” state that completes a
desired feature, helping the student easily identify the pur-
pose and outcome of a single solution step.

Existing example-based feedback systems may rely on a li-
brary of expert-authored examples [11, 14, 4], which can be
costly to maintain, as instructors are unlikely to create new
examples [12]. Additionally, the example code may show
an example solution to a related problem [11] that requires
students to transfer knowledge to solve their current prob-
lem, which may be challenging for weaker students who need
more help [13]. To address these limitations, we present a
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Figure 1: Example-based feedback prototype in iSnap.

data-driven method to create example-based feedback using
historical student data. We focus on the domain of program-
ming, where many problems have a vast space of possible
solutions [24, 19], so a static set of examples is unlikely to
be relevant to all students. To our knowledge, only Gross
et al. have previously employed a data-driven method to
derive examples adaptively to help students [9]. They found
that examples derived from expert solutions are perceived
by students as more helpful and help students make more
solution improvements than those derived from student solu-
tions. However, they simply presented the complete student
solution which was most similar to the current student’s
code (according to a distance metric), rather than trying to
systematically identify and address students’ current pro-
gramming goals. This suggests that existing evaluations of
data-driven methods for example-based feedback have not
explored the full potential of the approach. We hypothesize
that with the innovations in this work, data-driven examples
can be more adaptive than expert-authored ones, while still
presenting correct and interpretable solution steps.

In this work, we present an approach to automatically detect
students’ progress towards a solution, and suggest example-
based feedback from historical student data. Our data-
driven method first processes prior correct student solutions
to discover meaningful features, labels the parts of code that
contribute to each feature, and removes code that does not
contribute to the solution, to create simple data-driven code
examples that contain only the code needed for each feature.
We then automatically label the student’s current code with
a “feature state" representing the presence or absence of each
data-driven feature needed for a correct solution. We then
adaptively select example feedback that contains the same
features as the current student code, and adds a new feature
that is relevant to solving the current problem. In contrast,
other example feedback systems show code from a related
similar problem, requiring students to study the example
and transfer what they learn to the current context [11].

We evaluated two data-driven methods to generate and se-
lect example-based feedback for historical student hint re-
quests: Data-Driven Features (DDF), and Data-Driven Fea-
tures with Interactive Selection (DDF-IS). We compared
these methods against two baselines: (1) Expert-authored
examples (Expert) and (2) examples generated naively from
correct student solution traces, showing the code added be-
tween consecutive test runs (Student). The data-driven fea-
tures (DDF) algorithm cleans prior students solutions and
generates example pairs where the “start code” has the same
features as the student’s code, and the “end code” adds a
new feature that is not yet present in the student’s code.

The DDF with Interactive Selection (DDF-IS) approach ex-
plored the potential to improve algorithmic DDF example
feedback selection by having a user interactively select the
data-driven feature with which they want help, before the
algorithm selects an example. To simulate this experience,
we used an expert to select this feature, representing a best-
case scenario for interactive selection.

We adapted a multidimensional data-driven hint evalua-
tion rubric from previous work to evaluate the example-
based feedback quality based on Relevance, Progress, In-
terpretability, and Similarity. Our findings showed both the
Expert and DDF feedback were significantly more relevant
to students’ goals than the Student feedback, but there were
no significant differences between the DDF and Expert ex-
amples. This suggests that our DDF feedback can reason-
ably replace Expert-authored examples in situations where
they are unavailable or difficult to scale. We also found that
DDF-IS produced significantly more relevant examples than
all other approaches, with the highest overall example qual-
ity, significantly higher than DDF. This suggests that in the
best case, data-driven feedback may leverage interactivity
with the student to further improve example quality.

The contributions of this paper are: 1) a data-driven algo-
rithm capable of generating adaptive example feedback for
students during programming, and 2) an initial evaluation
showing that these adaptive examples can be more relevant
than static, expert-authored examples.

2. METHOD
This work presents and evaluates a data-driven feature-based
(DDF) method for generating and selecting example-based
feedback (explained in Section 2.2). To evaluate our DDF
approach, we generated example-based feedback for histor-
ical student help requests, and asked experts to evaluate
the quality of each type of feedback, comparing against two
baselines (explained in Section 2.3.1).

2.1 Dataset
Our dataset comes from iSnap [20], which extends the Snap!
block-based programming environment with logging and on-
demand, data-driven hint support. It logs student interac-
tions with the system, including complete code snapshots
after each edit. The data were collected during the Fall 2016
(F16), Spring 2017 (S17), and Fall 2017 (F17) semesters in
an introductory computing course for non-majors, held at
a research university1. In each semester, the students com-
pleted 3 in-lab assignments with access to help from teaching
assistants and 3 homework assignments independently. In
this paper, we selected one homework assignment Squiral
for the example code generation and evaluation. In Squiral
(shown in Figure 2), students program a “sprite” to draw a
spiraling square-like shape using loops, variables, arithmetic
operators and a custom block (function). Common solutions
for Squiral contain 7-10 lines of code. The original dataset
contains 57 (F16), 43 (S17), and 47 (F17) Squiral assignment
submissions. Since iSnap offers students on-demand, data-
driven hints which may alter students’ problem-solving pat-
terns, we exclude students who requests hints in the dataset
1All datasets are available at https://pslcdatashop.web.
cmu.edu/Project?id=321
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Figure 2: Squiral pseudocode, Snap! code and output [34].

used for the example-based feedback generation. Our re-
maining data contained 38, 29, 39 code traces for the F16,
S17, and F17 semesters, respectively. Each code trace con-
tains the set of timestamped snapshots that comprise all of
a student’s work on a problem.

2.2 Example-based Feedback Generation
We propose an algorithm to automatically generate data-
driven, example-based feedback with the following high-level
steps: 1) Extract a set of data-driven features from prior stu-
dent code traces, which each describe a property of a cor-
rect solution. 2) Use the features to clean correct student
code traces by removing extraneous code that does not con-
tribute to a correct solution. 3) Generate pairs of example
code snapshots that demonstrate how to complete a single
feature. 4) Choose an appropriate, personalized example
pair upon student request.

Our goal in this work is to perform a preliminary evaluation
of our algorithm before implementing a user interface and
evaluating its impact in practice. However, to contextual-
ize our work, Figure 1 presents one way that such feedback
could be presented to a student in iSnap when they request
help. Our DDF example pairs consist of “start code,” simi-
lar to the student’s, and “end code” that demonstrates how
to complete a single feature. Our design draws inspiration
from a variety of theoretical and empirical sources, includ-
ing cognitive load theory [29], Vygotsky’s Zone of Proximal
Development [32], worked examples [27], learning from sub-
goals [16], and compare/contrast tasks [17].

Research on worked examples suggests that seeing exam-
ples which break a problem down into sequential steps (e.g.
features) can be a more efficient way of learning than prob-
lem solving [27, 30, 28]. According to cognitive load the-
ory, worked examples are effective because they lower the
extraneous cognitive load (mental effort) imposed by the in-
structional materials. We designed our examples to present
steps as a pair of “start” and “end” code, as previous studies
have shown that comparing and contrasting examples is an
effective learning activity in many domains [17, 26]. The ex-
ample is adaptively selected to keep students in the Zone of
Proximal Development [32] by starting with code similar to
the student’s, which they can already understand, and scaf-
folding the completion of a new feature, which they cannot
yet accomplish on their own. The work of Morrison et al.
[16] suggests that programming examples that are broken
into subgoals can help improve learning for novices. When
examples are isomorphic to the problem solving task, as in
our case, they found that it is most effective for students to
label subgoals themselves, a feature we could easily incor-
porate into our example-based feedback.

2.2.1 Step 1: Data-driven Feature Generation
The goal of an example pair is to present how a meaning-
ful self-contained portion of solution code, or feature, can
be completed. An assignment may have students program
multiple features, and the final correct solution should have
all the correct features present. For example, in Squiral
(shown in Figure 2), a feature could be to move the sprite
in a square shape, draw some figure on the screen, or re-
peat the spiral the correct number of times. In our previ-
ous work [34], we manually defined expert-authored features
(shown in Table 1) in a systematic way, and we also imple-
mented a data-driven algorithm to automatically identify
code features from student solutions. Our results showed
that many of the data-driven features were easily inter-
pretable and closely matched the expert-authored features.
The two methods also had moderate agreement on whether
a given student was in the same state or different states.

The full procedure for data-driven feature extraction is given
in [34], but we outline its high-level steps as follows:
1) Preprocess student solutions: Some student solutions
may contain extraneous code or procedures that were used
for testing or resetting the environment, which we attempt
to remove before extracting features. Specifically, we used
the SourceCheck algorithm [21] to identify and remove whole
scripts and procedures that do not match any element of an
expert-authored solution in the correct student solutions.
2) Generate code shapes: To identify common code pat-
terns in correct student solutions, we extract a set of code
shapes, or syntactic structures, from the solution code by
converting students’ solution code into abstract syntax trees
(ASTs) and then identify all pq-Gram subtrees [1] in each
AST, to form our initial set of “code shapes.” This includes
all code shapes from all correct solutions.
3) Remove duplicates: The initial set of code shapes may
include very similar shapes, including some AST patterns
that are subsets of others. Therefore, we remove these du-
plicates by measuring the co-occurrence of code shapes in all
student code traces and keeping only the more specific code
shape and discard the other duplicate if two code shapes
almost always appear together in the same code.
4) Identify decision shapes: Due to varied problem solv-
ing strategies, some code shapes may not appear in every
correct solution. For example, a Squiral solution can either
use nested repeat or a single repeat block to rotate the cor-
rect number of times (as shown in Figure 2), but not both.
Therefore, we define a decision shape as a disjunction of
code shapes, where almost all solutions contain exactly one
of the component code shapes. A decision shape is present
in a solution if any one of its code shapes exist in its code.
5) Filter out uncommon code and decision shapes:
Since we are interested in using code and decision shapes to
represent features of a correct solution, we keep only those
shapes which appear in the vast majority of correct solu-
tions, and filter out the rest.
6) Form features: Our goal is to define a small set of fea-
tures that collectively represent a complete solution. How-
ever, the previous steps will generate tens to hundreds of
code and decision shapes for a relatively simple problem
like Squiral. We therefore combine these smaller shapes into
larger features using a form of hierarchical clustering. We
iteratively combine any two features that most frequently
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1, proce dure SQUIRAL(Rotations r) 
2: Put Pen Down 
3, length <---- 10 
4, Repeat (4•r) , Q 
5: Move length Steps 
6: Turn 90 Degrees 
7, length <---- length+ 10 



Table 1: Expert Features and Corresponding Data-Driven Features, as derived in [34].

Feature Name Brief Description Data-driven Analogue
E1. Procedure Primary code inside of a procedure. D1: Create a procedure OR a variable.

E2. Draw Anything Able to draw anything on screen. D8: Use a ‘repeat’ AND create a
variable OR a parameter.

E3. Move ‘Square -like’ Able to move sprite in a square-like
fashion.

D11: Have a ‘move’ AND a ‘turn’ in a
‘repeat’ AND have a ‘pen down.’

E4. Correctly Use
Parameter

Correctly uses parameter
within custom block. D4: Have a ‘repeat’ inside a procedure.

E5. Repeat Correct
# of Times

Repeats square-like movement correct
number of times.

D5: Have a ‘multiply’ block with a
variable OR two nested ‘repeats’.

E6. Move ‘Variably’ Movement is based on a variable not
literal amount.

D10: Have a ‘move’ with a variable
argument inside of a ‘repeat’.

E7. Move ‘Squirally’ Increase length to move for each side. D7: Change a variable inside a ‘repeat’.

co-occur across student data until the size of the observed
state-space defined by the features starts to decrease rapidly.
7) Represent student code by feature vectors: Once
the features are formed, we can represent a student’s current
code as a vector indicating the presence or absence of each
feature. A student starts with a feature state of all 0s, and
a correct solution should have all features present, resulting
in a vector of all 1s.

2.2.2 Step 2: Cleaning Student Code
To extract good example pairs from prior student traces, we
need to first remove excess blocks which do not contribute to
a correct solution, as these may distract students and make
examples harder to interpret. Identifying the excess blocks
can be difficult, especially for intermediate partial solutions,
since students can construct solutions in a large variety of
ways [21, 24]. We address this by leveraging the features we
defined in step 1 to exclude irrelevant code, which does not
belong to any feature. Specifically, our cleaning procedure
removes one node from the abstract syntax tree at a time
(including all its children), then checks whether removing
this node causes a currently completed feature to become
incomplete. If removing a node “breaks” a feature, we as-
sume that it is necessary and add it back; otherwise, we re-
move it. We also check to make sure removing the node does
not break any code dependencies, such as deleting a variable
declaration when the variable is used elsewhere. We iterate
over every node in a recursive, breadth-first manner, starting
from the root node. Once this iteration stops, it produces a
cleaned partial solution, where all irrelevant code has been
removed. We apply this cleaning procedure to all snapshots
in correct solution traces. With well-defined features, this
process can effectively clean a large variety of both partial
and complete solutions, ensuring that all remaining code is
useful. We use this process both for cleaning code and for
extracting example pairs, as described in the next step.

2.2.3 Step 3: Extract Example Pairs
Our goal is to create a database of correct, meaningful, and
self-contained example pairs to offer as feedback to students.
Naively, we could extract a single example pair for each fea-
ture from each correct code trace, since each student com-
pleted each feature at least once. However, we want to gen-
erate as many example pairs as possible, so that the algo-
rithm can adaptively select one that is similar to another

student’s code. We therefore developed a method to gener-
ate many “synthetic” example pairs, each consisting of a pair
of code states (c0, c1)i, from any cleaned student code trace.
Recall that each pair should cleanly demonstrate the com-
pletion of exactly one feature by contrasting a “start code”
state (c0) and an “end code” state (c1). The algorithm first
extract one example pair each time a student completes a
feature fi, with c1 defined as the snapshot right after fi was
completed, and c0 as the snapshot right after the prior fea-
ture fi−1 was completed. We generate additional example
pairs from each cleaned snapshot in a student solution trace
with the following procedure. For each snapshot, the algo-
rithm labels it as an end state, c1. It then removes exactly
one data-driven feature from c1 to create a c0, and together
these form the example pair. This feature removal is accom-
plished using the code cleaning procedure described above;
however, instead of removing irrelevant nodes, we use it to
remove whole features. The algorithm first tries to remove
one leaf node, li, at a time. Since the snapshot has already
been cleaned, removing this node will either create an in-
valid code state, or cause a feature to become incomplete.
In the later case, the cleaning procedure was run to remove
all other code associated with the removed feature. The re-
sulting cleaned code becomes the c0 for the example pair,
and our cleaning procedure guarantees that c0 will have ex-
actly one less feature than c1. The (c0, c1)i pair is added to a
list which stores our example pairs. The algorithm then re-
peats this process recursively on c0, which becomes the c1 for
new example pairs, until no new pairs can be generated. In
this case, we generate many example pairs per snapshotin a
solution trace. While some are redundant, many are unique.

2.2.4 Step 4: Select an Example Code Pair
When a student requests help, we aim to provide them with
the most appropriate example pair in our database as feed-
back. We define two ways that we can identify this example
pair: 1) a Data-Driven Features (DDF) approach, using
an algorithm to select the best example pair, or 2) an Data-
Driven Features with Interactive Selection (DDF-
IS) approach, giving the student the information needed to
select an example pair. We first consider the DDF approach,
in which we attempt to select the example pair which is most
similar to the current student’s code. Based on this selec-
tion criteria, the selected example code pair should be very
similar to the student’s code, with the goal of minimizing
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the effort needed to process the “start code” and allowing
the student to focus on the feature demonstrated by the ex-
ample pair. In this study, for the DDF feedback, we selected
an appropriate example code pair as follows:

Generate proper example pair candidates: To filter
out inappropriate pair candidates based on the student’s
completed features, we select only those example pairs whose
“start code” has the same features as the current student
code, from the example pair lists (generated in Section 2.2.3).
If we cannot find any, we sort the example pairs by the Ham-
ming distance between the feature states of “start code” and
student’s current code. Then we select the example pairs
with the closest start-state to student’s current code. If
there are multiple example pairs available (they all have the
same start state), we use the SourceCheck algorithm to sort
the example pairs based on the similarity between the “start
code” and student’s current code.

Select one example pair from candidates: We iterate
over the example pair candidates and select exactly one pair,
which accomplishes a feature that the student has not fin-
ished yet, preferring features that the majority of students
in a state similar to the current student will take next.

To generate interactive example-based feedback, we need a
way to communicate to the student which features have an
available example that they can request. By default, our fea-
tures are unlabeled (having been generated automatically
from data), but with a small amount of instructor effort
(about 3 minutes), they can be labeled. By viewing the
code shapes required by each feature, an instructor famil-
iar with the problem can generate a short, human-readable
description, such as “move the sprite using a variable", or
“make the sprite move further each time". These options
can then be shown to a student. Once the student has se-
lected a feature for an example, we select an appropriate
example pair that accomplishes that feature with start code
matching the student’s current feature state. If there are
multiple options, we use the same criteria as in DDF: select
the example pair with the most similar start state to the stu-
dent’s code, which contains a proper subset of the student’s
features. Note that unlike in DDF, a student could request
an example for a feature that they have already completed.
Students might decide to do this when they are unsure if
they have completed a feature correctly and want to see an
example for confirmation.

2.3 Expert Evaluation
To test the feasibility of our method before building the
whole system and conducting a user study, we did a prelim-
inary expert evaluation of our algorithm. We generated ex-
ample pairs to support student code snapshots from our his-
torical dataset and evaluated their quality. To simulate real
student help requests where an example might be needed, we
selected snapshots that corresponded to times when histori-
cal students requested hints from iSnap. As in prior work on
evaluating feedback [22], we sampled up to two hint requests
(and their corresponding student code snapshots) from each
student. We sampled 50 hint requests in total including 20
in F16, 20 in S17, and 10 in F17. For each hint request
we generated four example code pairs using different tech-
niques: DDF, DDF-IS, and our two baselines, Student and

Expert (explained in the next section). For the examples de-
rived from student data (DDF, DDF-IS, Student), we gener-
ated examples using semester-based 3-fold cross-validation.
For each semester, we used the other two semesters’ data as
training data to generate the examples. We derived 9, 9, and
10 data-driven features for F16, S17, and F17, respectively.

Two co-authors, who neither authored examples nor worked
on the algorithm itself, served as experts to evaluate the
generated example pairs. Both experts have extensive ex-
perience in Snap! and the Squiral assignment. We built an
interface in iSnap to present each expert with the student’s
original code and the example pair. Then we asked the ex-
perts to assess the example pair based on a detailed example
code rating rubric2, adapted from [22]. Our rubric has 4 at-
tributes, each rated 1, 2 or 3, with higher scores being better.
These 4 attributes measured: 1) Relevance: how relevant
the suggested example code pair is to the student’s current
goals, 2) Progress: how well the example code pair helps
students make progress towards the final correct solution, 3)
Appropriateness & Interpretability: how likely a tutor
will be to suggest this example pair to a student and how
easily a novice could understand the intention of the sug-
gested example pair and 4) Similarity, how similar is the
“start code” to the student’s code. The first 3 attributes are
meant to assess the quality of the example. The 4th is meant
to help us understand the relationship between example sim-
ilarity and quality, since all examples were selected based on
their similarity to student code. During evaluation, experts
had access to students’ code history, and based their ratings
on the student’s individual context.

To ensure that the two experts had a similar understanding
of the rubric, they rated 10 examples together, which were
not used in this study. They then rated the 200 examples
pairs used in this study in 2 rounds of 100 each3. In Round
1, they independently rated 40 example pairs and then dis-
cussed their ratings to resolve any conflicts and reach con-
sensus. Their inter-agreement reliability across the 40 exam-
ple pairs achieved squared-weighted Cohen’s kappas of 0.94,
0.91, 0.82, 0.90 for Relevance, Progress, Appropriateness &
Interpretability, and Similarity, respectively, indicating very
strong agreement. They then split the remaining 60 pairs
and rated them individually4. In Round 2, one expert rated
the remaining 100 pairs individually, and the other expert
rated 75 of these, which were discussed until consensus was
reached. Across the 115 example pairs that were rated by
both experts, the total squared-weighted Cohen’s kappa was
0.77.

2.3.1 Baselines
We compare both the interactive and non-interactive data-
driven example-based feedback against two baselines: Expert-
authored examples and examples generated naively from
Student data. For data-driven example-based feedback, we
use the two strategies (DDF and DDF-IS) described in sec-
tion 2.2.4. Our goal for the Expert baseline was to reflect
2Available at: http://go.ncsu.edu/edm2019-rubric
3Due to the order in which examples were generated, Round
1 included DDF and Expert examples, and Round 2 con-
tained Student and DDF-IS examples. However, raters were
blind to the condition of the example.
4The rated examples were in DDF and Expert conditions.
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a straightforward way of generating example-based feedback
using a small number of expert-authored example pairs,
which an instructor might reasonably create. This corre-
sponds to the Next Step of the Nearest Sample Solution
(NSNSS) strategy introduced by Gross et al. [9], which
they found to be optimal. This strategy selects the next
step of the nearest expert solution. To generate expert ex-
ample pairs, two experts (specifically, two co-authors who
did not rate the example pairs during evaluation) manually
authored example pairs for all steps in the most common
solution paths, which at least 10% of students took to solve
the problem. Each of the two co-authors created the ex-
ample code separately, based on the understanding that the
example code should be useful to students and no extra ex-
planations will be used to help students understand the sug-
gested example code. During this process, the experts could
review as many students’ code (including all the history) as
they needed. Afterwards, they met and discussed all the
example pairs that they authored and came to consensus on
the example pairs. In the Squiral assignment, the common
solution graph has 14 nodes and 13 edges, of which 7 were
on a primary solution path and 6 were on two alternative
paths. To select an Expert example-pair for a student, we
first used the SoureCheck algorithm to sort the Expert ex-
ample pairs based on the size of the “start code” and the
similarity between their “start code” and the student’s cur-
rent code. We select the example pair whose “start code”
accomplishes fewer features than the student’s code and is
very similar to the student’s code.

It may seem unfair to compare the Interactive Data-driven
examples to (non-interactive) Expert examples. However,
we note that it would not be reasonable to create an Inter-
active-Expert baseline. Since the Expert examples consist
of a small number of hand-authored examples, which com-
pleted features in a specific order (e.g. Feature 1 is always
completed before Feature 2), it is not reasonable to give a
student the option of selecting a desired example. If the stu-
dent has only completed 2 features, they could simply select
the example for the final feature and see a full solution. Since
the goal of example-based feedback is to show only a single,
incomplete feature, we always selected the closest Expert
example-pair to the student’s current code. By contrast, our
data-driven approach generates enough example-pairs that
we are able to provide many choices of features to complete,
without revealing any other features in the process.

Our goal for the Student baseline was to reflect a naive ap-
proach to extracting examples from student code, without
the feature-based cleaning and selection of our own algo-
rithm. Gross et al. [9] defined their baseline of student-
derived examples to show only students’ submitted solu-
tions, essentially giving away the whole answer. Instead, our
baseline extracts multiple examples from students, based on
when they ran their code. We hypothesized that students
often run their code when they have completed a mean-
ingful feature, making this a meaningful way to demarcate
examples. We extracted examples from all correct student
solution traces that did not request help. We selected stu-
dent code snapshots based on when they ran their code. We
treated consecutive run events within 15 seconds of one an-
other as a single run event, and we took the last of these
events as the boundary between example pairs. For each

consecutive pair of run events (more than 15 seconds apart),
we extract an example pair consisting of the two correspond-
ing snapshots. The code snapshot that happened earlier
serves as the “start code” of the example pair, and the one
happened later serves as the “end code”. When selecting an
example pair to show as feedback for a given student, we
used the SourceCheck algorithm to find the nearest “start
code” and present that example pair as feedback.

3. RESULTS
We structured our analysis around the following research
questions: RQ1: Can we create useful example-based feed-
back naively from student data, without a data-driven algo-
rithm? RQ2: How does the quality of data-driven example-
based feedback compare with that of expert-authored example-
based feedback? RQ3: Can the quality of data-driven example-
based feedback be improved if an example is selected inter-
actively, rather than automatically?

We address each RQ by comparing the quality of example-
based feedback generated by four feedback approaches ex-
plained above: 1) Expert-authored (Expert), 2) Naive Stu-
dent Data (Student), 3) Data-Driven Features (DDF), and
4) Data-Driven Features with Interactive Selection (DDF-
IS). We evaluated quality in terms of Relevance, Progress,
and Interpretability, as explained above. For RQ1, we hy-
pothesized that our results would be consistent with Gross
et al. [9] that naively extracted student examples would not
lead to high-quality feedback. For RQ2, we hypothesized
that data-driven example-based feedback would be more rel-
evant to the student’s code than expert feedback and just as
useful otherwise. For RQ3, we hypothesized that interactive
selection would improve the quality of data-driven example-
based feedback.

3.1 Feature Coverage
From 106 student solution traces, the DDF algorithm was
able to generate 13,927 unique data-driven examples, as
shown in Table 2. Of these, only 728 (5%) were derived
directly from a student’s trace, and the rest were generated
with the recursive algorithm explained in Section 2.2.3. It
took around 10 minutes (645 seconds) to generate all the
data-driven example pairs. Table 2 shows the number of ex-
amples generated by each algorithm. It also gives the “snap-
shot coverage” and “hint request coverage” of each algo-
rithm. The former refers to the percent of all observed snap-
shots which had an available example in the same feature-
state (meaning the example started with the same set of fea-
tures completed). For this calculation, we used the expert-
authored features defined in [34]. Hint request coverage
considers only the 50 hint request snapshots we evaluated.
These numbers are averaged across the 3 semesters.

Table 2: Total number of generated example pairs, corre-
sponding average snapshot coverage and hint coverage in
the expert-defined feature space.

Algorithm DDF &
DDF-IS

Stud. Exp.

# of examples generated 13,927 242 13
Snapshot coverage 0.843 0.670 0.709
Hint request coverage 0.821 0.709 0.687
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3.2 Expert Ratings
Our dataset consists of 50 hint requests and 200 example
pairs (one example pair per feedback approach for each hint
request). All the example pairs were rated on four attributes
on a scale of 1-3: Relevance, Progress, Appropriateness &
Interpretability, and Similarity, as described in Section 2.3.
We found the first three attribute ratings showed significant
positive pairwise Spearman correlations ranging from 0.51 to
0.81 (all p < 0.001). Similarity also had a lower, positive cor-
relation with the other attributes, ranging from 0.24 to 0.34
(all p < 0.001). Due to the high positive correlation of the
Relevance, Progress, and Appropriateness & Interpretability
attributes, we also compute a Quality attribute, which sums
all three attributes, with scores ranging from 3 to 9. Because
all 4 example-based feedback approaches selected examples
using SourceCheck’s code similarity function, we also inves-
tigated the relationship between SourceCheck’s calculated
similarity and the expert-rated Similarity. We found a sig-
nificant, positive correlation (ρ = 0.29; p < 0.001), suggest-
ing that the similarity function is reasonable but could be
improved. Table 3 reports mean values of each attribute for
each example-based feedback approach5.

Table 3: Mean attribute ratings (with standard deviation)
for example pairs in from each approach.

N = 50 Relev. Prog. A.&I. Qual. Simil.
DDF-IS 2.62

(0.73)
2.46
(0.76)

2.22
(0.82)

7.30
(2.05)

2.22
(0.86)

Expert 2.24
(0.89)

2.36
(0.80)

2.14
(0.90)

6.74
(2.24)

2.18
(0.80)

DDF 2.12
(0.92)

2.06
(0.89)

1.84
(0.82)

6.02
(2.38)

2.28
(0.88)

Student 1.72
(0.90)

2.12
(0.90)

1.80
(0.86)

5.64
(2.20)

2.24
(0.87)

To address our research questions, for each attribute we used
Kruskal-Wallis test to determine if there was a significant
difference in ratings across feedback generation approaches.
For the overall Quality attribute, we found a significant dif-
ference among conditions (χ2(3) = 16.06, p < 0.001). We
performed a post hoc Dunn’s test with Benjamini-Hochberg
correction for multiple comparisons6 [2, 5] to identify pair-
wise significant differences between approaches. This showed
a significant difference between Expert and Student exam-
ples (z = 2.48, p = 0.026, r = 0.257), DDF and DDF-
IS (z = 2.76, p = 0.017, r = 0.28), DDF-IS and Student
(z = 3.69, p = 0.0013, r = 0.37), suggesting that for overall
quality, Student < DDF < DDF-IS, and Student < Expert.

We then inspected the difference for each individual at-
tribute. A Kruskal-Wallis test showed a significant differ-
ence among approaches for the Relevance (χ2(3) = 24.45, p <
0.001). A post-hoc test using Dunn’s test with Benjamini-
Hochberg correction showed a significant difference between

5Although attribute ratings are ordinal, we report the mean
and SD, since the median values for each attribute are gen-
erally the same (2 or 3)
6We report p-values corrected with the Benjamini-Hochberg
procedure to control the false discovery rate at 0.05, keeping
the α significance threshold at 0.05.
7The effect size r is calculated as described in [25]

DDF and Student (z = 2.14, p = 0.049, r = 0.21), Expert
and Student (z = 2.79, p = 0.016, r = 0.28), DDF-IS and
DDF (z = 2.76, p = 0.011, r = 0.28), DDF-IS and Stu-
dent (z = 4.90, p < 0.001, r = 0.48), DDF-IS and Expert
(z = 2.11, p = 0.04, r = 0.21), but we did not find a sig-
nificant difference between DDF and Expert (z = 0.65, p =
0.515, r = 0.07). This suggests that for Relevance, Student
< DDF = Expert < DDF-IS.

We also found a significant difference among conditions for
the Appropriateness & Interpretability (χ2(3) = 8.98, p =
0.030). However, a post-hoc test using Dunn’s test with
Benjamini-Hochberg correction did not find any pairwise
significant differences between conditions. For the other
two attributes, similarly, we did not find any significant dif-
ference between conditions: Progress (χ2(3) = 7.14, p =
0.068); Similarity (χ2(3) = 0.62, p = 0.89). The results
suggest that DDF-IS example pairs are more relevant to
student code and are equally helpful and interpretable com-
pared with expert-authored examples.

3.3 Inspection of Examples
To better understand our quantitative results, we manually
inspected examples generated by each approach to under-
stand how they differed and how those differences impacted
the expert ratings. We investigated the following questions
and present situations that highlight possible answers:

Why does the naive Student baseline have low qual-
ity? Our quantitative results show that our naive Student
baseline does not produce useful example pairs. We manu-
ally investigated some Student example pairs to better un-
derstand why. Recall that the Student baseline extracts
examples showing the changes between consecutive run of
student code. We derived 242 of these example pairs across
3 semesters from 39 correct student submissions that did not
request hints. Upon inspection, it is clear that this segmen-
tation approach did not always produce meaningful example
pairs. For example, a Student example pair might simply
rearrange the order of some code blocks. This is a common
debugging behavior, but it does not usually yield a useful
example. We also found that even when Student example
pairs demonstrated a meaningful step, they were often se-
lected for students who had already completed that feature.
This is not surprising, since the Student baseline selected
the example with the most similar start code, but this does
not guarantee the student will not have additional features
completed. Lastly, many Student examples contained ex-
traneous code that made them harder to interpret. These
three problems – lack of meaningful steps, repeating com-
pleted steps, and extraneous code – are all addressed in our
DDF-based example selection. With good features, we can
identify meaningful example steps, ensure that all examples
complete new features, and remove extraneous code.

When were data-driven examples more adaptive than
Expert examples? Our quantitative results suggest that
the DDF-IS approach was able to generate examples that
were significantly more Relevant than those of the Expert
approach. We hypothesized that this was enabled by the
large number of unique example pairs generated by DDF
(13,927). By contrast the Expert approach used only 13
examples pairs, which covered the common solution paths
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Figure 3: DDF-IS and Expert examples for one snapshot
(red/green indicate changed code in the example).

that at least 10% of students took to solve the problem.
While some of DDF-IS’s improvement may have come from
its Interactive Selection step (explored below), our results
in Section 3.1 also show DDF examples have larger cover-
age than the expert-authored examples for both the hint
requests and student snapshots. Our manual inspection
uncovered a number of situations when a relevant expert
Example was not available, but a DDF example was. For
example, a strong minority of students solved the Squiral
problem by using a second input (parameter) to store the
side length of shape. Figure 3 shows that for the same hint
request, the DDF-IS can suggest examples not only similar
to the student code, but also relevant to what the student is
working on. However, the expert-authored example only has
one parameter in the custom block and suggests something
that the student has already done. The Expert example
becomes less helpful and irrelevant when a student has solu-
tion that deviates from the Expert examples. However, our
data-driven examples are more adaptive in this scenario and
can provide examples both similar and relevant to the stu-
dent. We note that this adaptivity was enabled in large part
by the recursive example generation algorithm outlined in
Section 2.2.3. Only 2 of the 50 examples selected by DDF-IS
were extracted directly from student code traces (the “naive
approach”); the other 48 were generated synthetically.

When did DDF-IS select better examples than DDF?
Since DDF and DDF-IS were selecting examples from the
same pool of examples, but DDF-IS has significantly higher
overall quality, we wanted to understand where the selection
algorithms differed. We investigated some pairs and focused
on when our algorithm failed to select relevant examples. In
those scenarios, we found that the DDF would suggest the
student to add a ‘pen down’, or add a custom block in the
main script area. Those features are necessary for a correct
solution, but they may have lower priority compared with
other features such as “control the sprite to draw a square”
or “repeat the spiral the correct number of times.” Addi-
tionally, we also found that the data-driven feature detector
sometimes counted a feature as complete when it still had
a bug or a missing block. Thus, it would suggest example
pairs that accomplish new features without fixing the bro-
ken one. In the opposite case, the student may have already
finished a feature, but the feature detector sometimes failed
to detect it, showing a redundant example. This occurred
frequently when students accomplished a feature in a unique
way, not captured by our data-driven feature definition. For
example, a few students attempted to use a recursive ap-
proach to solve Squiral, but since this was quite uncommon,
our data-driven features failed to generate meaningful ex-
ample pairs for this solution. The DDF-IS can help resolve
the first two cases, since students can choose whether they

need help on a feature that the DDF failed to detect.

4. DISCUSSION
RQ1: Can we create useful example-based feedback
naively from student data, without a data-driven
algorithm? Our results suggest that naively extracting
examples from student code based on when students ran
their code does not yield high-quality example-pairs. These
naive Student examples were lowest or second-lowest, rated
on every dimension, with significantly lower Relevance than
all other approaches and significantly lower overall Quality
than the DDF-IS approach and the Expert-authored exam-
ples. This is consistent with our hypothesis for RQ1. It
is also in agreement with the work of Gross et al. [9].,
who found that using student solutions as example-based
feedback were rated lower by experts and led to less im-
provement in students than other, expert-authored exam-
ples. However, rather than using a student’s submitted code
as an example as Gross et al. did, we used the changes that
students made between running their code. We believe that
this represents a more reasonable student baseline, since it
only shows a part of the answer like the other feedback ap-
proaches. It should also theoretically limit the cognitive load
needed for students to learn from the examples. Our results
show that even so, a naive approach does not create high-
quality student examples, compared to other approaches.
Our data-driven approach attempts to address this by cre-
ating examples based on when students completed features.

One of the goals of using student data to generate examples
is that they can more closely match the student’s current
code. In fact, we were able to extract 242 unique Student
examples, compared with 13 for the Experts. This did en-
able our system to identify Student examples that were more
Similar to the help-requesting student’s code than Expert
examples (though not significantly more). However, it is
also clear that Similarity alone did not translate into Rele-
vance, since the Student examples had the lowest Relevance
scores. We cannot guarantee that students make meaning-
ful changes between two consecutive snapshots, and thus the
generated example pairs may not accomplish a meaningful
chunk of code. For example, the Student example pair may
suggest something that a student has already done. In this
case, we could use the data-driven features to identify a later
snapshot with more relevant changes as the “end code.” This
suggests the need for a more deliberate, data-driven process
that can still create a large number of examples to select
from without sacrificing quality.

RQ2: How does the quality of data-driven example-
based feedback compare with that of expert-authored
example-based feedback? We hypothesized that our
Data-Driven Features (DDF) examples would be more rele-
vant to help-requesting student’s code than the expert base-
line, with similar levels of Progress and Interpretability. How-
ever, our results did not support this hypothesis. There were
no significant differences between the two approaches, with
the DDF algorithm performing similarly on Relevance and
slightly worse on Progress and Interpretability. Our original
hypothesis was based on the premise that data-driven exam-
ples would be more Relevant, since they are selected from
a much larger database of examples (4,000 to 5,000) that
represents a large variety of student code. While this was
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not confirmed, our results do suggest that our current, non-
interactive data-driven algorithm performs significantly bet-
ter than naive Student examples and only marginally worse
than Expert examples. Since it is often difficult to get in-
structors to author examples [12], this suggests our DDF
examples should be a reasonable substitution.

There are a few possible explanations for the poorer per-
formance of DDF. First, it is possible that Squiral problem
we analyzed may not have been complex enough to neces-
sitate generating a large variety of examples, which is one
of the key proposed advantages of our algorithm. If most
hint-requesting students performed the steps of the problem
in the same order as the Expert examples, these Expert ex-
amples would generally be Relevant, leaving less room for
the DDF examples to improve upon them. We have some
support for this explanation, since across semesters 53.8%
to 85.7% of the hint requests we analyzed had an expert
feature state that matched one of our Expert examples ex-
actly. However, we also note that the expert baseline was
rated less than 3 for Relevance 46% of the time, so there
was clearly room for improvement, as we discuss later.

It is also clear that the DDF approach did not perform as
well as expected, scoring between the Expert and Student
baselines for Progress and Interpretability. There are two
possible explanations for this: either the algorithm is failing
to generate good example pairs, or it is generating useful
example pairs, but failing to select the best pair to show
a given student. The higher scores of the DDF-IS algo-
rithm, which generated the same example pairs as DDF,
but allowed a human to select the best one, suggest that
the problem lies in the DDF algorithm’s selection of exam-
ple pairs. This selection process (explained in Section 2.2.4)
primarily uses the SourceCheck algorithm to identify the
example with the most similar start state to the student’s
code. While this approach did lead to DDF having the high-
est Similarity ratings, there was only a ρ = 0.238 correlation
between Relevance and Similarity. This suggests that Sim-
ilarity alone is not a good proxy for example Relevance or
overall quality. The challenge of automatically selecting an
appropriate example also reflects prior work on data-driven
feedback [23], where low-quality hints arose because the hint
generation algorithm was unable to identify the most useful
hints and filter out less useful hints.

RQ3: Can the quality of data-driven example-based
feedback be improved if an example is selected inter-
actively, rather than automatically? Our results show
that the quality of data-driven example-based feedback can
be improved if the examples are selected interactively. The
DDF-IS algorithm scored significantly higher than the DDF
algorithm on Quality and Relevance, even significantly out-
performing the expert baseline on Relevance, with the best
overall scores. Recall that for the DDF-IS examples, we
manually tagged the data-driven features with natural lan-
guage labels, which a student could reasonably select from
when making an example request. In this preliminary eval-
uation, we simulated this selection process by manually se-
lecting the best data-driven feature to show to each student.
Importantly, we only selected the feature (e.g. “move the
sprite using a variable”), not the example, and the algorithm
still selected the best possible example for a given feature

(from hundreds of possible choices). Still, it is likely that an
expert familiar with the system is more likely to choose an
appropriate feature than a student, so this represents an up-
per bound for how well an interactive, data-driven example
selection algorithm could reasonably perform. These results
show that, when this proper selection is applied, the larger
database of example pairs generated by our algorithm can
lead to more Relevant examples than a static set of expert-
authored examples. This represents a growing trend among
data-driven systems that support programming to leverage
human (i.e. student and instructor) knowledge in conjunc-
tion with data-driven algorithms [10, 18, 33]. However, from
our preliminary expert evaluation, we can not make claims
about how students would actually react to such a choice.
Our results also suggest ways that we can improve the au-
tomated example selection procedure. The majority of low-
quality DDF example pairs would select a feature that the
student needs but could be less relevant than other features.
For example, one example pair suggests adding the student’s
custom block into the main script so they can test it. How-
ever, in Snap!, students can click on the custom block to
test it directly. This feature should therefore have lower
priority than others. For the example shown in the Results
section, the data-driven feature detector failed to detect cor-
rect variations in student code, and suggested a feature that
the student had already completed. These examples suggest
that it may be more important to select the most important
feature to demonstrate, before considering the similarity of
the example to the student’s current code.

5. CONCLUSION
This study presents a method to generate data-driven exam-
ples automatically from historical student data. We eval-
uated two versions of data-driven generated examples us-
ing the student code when they need help, compared with
two baselines: examples authored by experts and exam-
ples derived naively from student solution traces. Experts
evaluated all of the example pairs based on a multidimen-
sional rubric. Our preliminary results demonstrate that
by selecting appropriate features, our data-driven exam-
ples can be more relevant than both baselines while re-
taining the usefulness and interpretability. These promis-
ing results suggest that our method can generate adaptive,
data-driven examples automatically with quality similar to
that of expert-authored examples. Even though our method
is based on a block-based programming environment, it is
language-agnostic and may also be generalized to textual
programming languages; though further studies are needed
to verify this proposed generalizability.

Limitations: This preliminary study relied on experts rat-
ings to assess example quality, yielding valuable insight, but
future work is needed to determine whether these results
translate into improved student performance and learning.
For example, even a well-rated example pair may still give
away too much of the answer and impede learning. We
also do not know how our results will generalize beyond
the single assignment evaluated here, since we only applied
this method to a short, block-based problem with a solution
that is usually 7-10 lines of code. In our DDF-IS condi-
tion, we had an expert interactively select the feature to
be presented, rather than a student. As noted earlier, this
is likely an optimistic implementation, as we do not know
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whether students can effectively select examples. Finally, all
conditions used the SourceCheck algorithm to select similar
examples to the student’s code, but other approaches may
better capture example relevance (e.g. [11]). We are cur-
rently planning a student evaluation of the DDF algorithm
to address these limitations.
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ABSTRACT
The Elo rating system has been recognised as an effective
method for modelling students and items within adaptive ed-
ucational systems. The existing Elo-based models have the
limiting assumption that items are only tagged with a single
concept and are mainly studied in the context of adaptive
testing systems. In this paper, we introduce a multivari-
ate Elo-based learner model that is suitable for the domains
where learning items can be tagged with multiple concepts,
and investigate its fit in the context of adaptive learning. To
evaluate the model, we first compare the predictive perfor-
mance of the proposed model against the standard Elo-based
model using synthetic and public data sets. Our results from
this study indicate that our proposed model has superior
predictive performance compared to the standard Elo-based
model, but the difference is rather small. We then inves-
tigate the fit of the proposed multivariate Elo-based model
by integrating it into an adaptive learning system which in-
corporates the principles of open learner models (OLMs).
The results from this study suggest that the availability of
additional parameters derived from multivariate Elo-based
models have two further advantages: guiding adaptive be-
haviour for the system and providing additional insight for
students and instructors.

1. INTRODUCTION
Adaptive educational systems make use of data about stu-
dents, learning process, and learning products to adapt the
level or type of instruction for each student. Commonly,
this adaptivity takes the form of selecting items from a
large repository of learning resources to match the current
learning ability of a student [17]. To do so, adaptive ed-
ucational systems rely on learner models that capture an
abstract representation of a student’s ability level based on
their performance and interactions with the system [6]. Two
conventional approaches have been heavily studied for mod-
elling learners. (1) Bayesian Knowledge Tracing (BKT) uses

a Hidden Markov Model for capturing students’ knowledge
state as a set of binary variables indicating whether a knowl-
edge component has been mastered [4]. (2) Item Response
Theory (IRT) [11] and its extensions such as Additive Factor
Model (AFM) [3] and Performance Factor Analysis (PFA)
[18] rely on a logistic regression model to estimate latent
traits related to students’ knowledge state and the difficulty
of learning items. Neither of these approaches, however, can
be easily integrated into online adaptive educational systems
as they generally require pre-calibration on big samples of
data and ongoing addition of new students and new learn-
ing items to the system necessitates continuous calibration
of model parameters [19].

The Elo rating system has been shown to be an effective
alternative to the above mentioned conventional approaches
for modelling students in adaptive educational systems [14].
It is simple, fast, robust and order-sensitive which makes it a
suitable model for adaptive educational systems where it is
required to update students’ proficiency level upon admin-
istration of each question [23]. In the educational context,
the Elo-based model is employed to conduct a paired com-
parison among students and learning items as competitors
[23]. This model is self-correcting, meaning that the ratings,
in the long run, should correctly reflect students’ knowledge
states and difficulty levels of questions [20].

The majority of the existing studies on Elo-based models
have the following two characteristics: They (1) use repos-
itories that contain items that are pure [9] and are tagged
with a single concept and (2) are studied in the context
of adaptive testing systems such as computerised adaptive
testing (CAT) [5]. The contribution of this paper lies in (1)
introducing a new variant of the Elo-based algorithm called
M-Elo that has the capacity to model students and items us-
ing repositories that contain items that are tagged with one
or more concepts, and (2) investigating its fit in the context
of adaptive learning systems, which in contrast to adaptive
testing systems, take a more student-centred approach with
the aim of assisting students in their learning.

To evaluate the applicability of M-Elo in the context of adap-
tive learning where learning items are explicitly tagged with
one or more concepts, we first compare the predictive per-
formance of M-Elo against the standard Elo-based model us-
ing simulated data sets. The results from these experiments
demonstrate that the behaviour of the M-Elo is consistent
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with expectations over a range of parameter settings, and
therefore this provides some evidence to suggest that it will
be robust in a real-world setting. We then compare the pre-
dictive performance of M-Elo against the standard Elo-based
model using public data sets. The results from the experi-
ments indicate that M-Elo have superior predictive perfor-
mance compared to the standard Elo-based model, but the
difference is rather small. Finally, we integrate M-Elo into
an adaptive learning system and conduct a case study by
piloting this system in a large introductory course on rela-
tional databases at The University of Queensland.

The results obtained from our case study suggests that using
M-Elo, as a multivariate Elo-based model, in adaptive learn-
ing systems have two additional advantages beyond the stan-
dard Elo-based model: The first advantage lies in the avail-
ability of additional parameters that provide insight into the
characteristics of the domain and the learning process which
in turn can be used for guiding adaptivity. The second ad-
vantage is that when M-Elo is opened based on the concepts
of open learner models (OLMs) [2], it can provide additional
insight on course level and individual level competencies and
gaps, that can be used by instructors for improving learning
item design, while also providing meta-cognitive benefits for
students, such as increased motivation and trust in the sys-
tem. The conducted case study also revealed some of the
shortcomings of using Elo-based models in the context of
adaptive learning. The main issue is that Elo-based models
consider items and students as identical rivals. This assump-
tion seems to fail to adequately model the long-term use of
an adaptive learning system in which students’ knowledge
may increase over time while the difficulty level of the items
remains constant.

2. BACKGROUND
Elo-Based Learner Models. The Elo rating system is orig-
inally developed to rate chess players and is established
based on paired comparison of data where two chess players
compete against each other [23]. In the educational set-
ting, a similar paired comparison can be conducted between
a student and a question being attempted by the student.
The standard implementation of the Elo-based model in ed-
ucation resembles the Rasch model employed in IRT that
models students and questions with a single global parame-
ter [20]. An important extension to the Elo-based model in
education is the multivariate Elo-based model proposed by
[9] in the context of psychometrics, where instead of using
a global knowledge parameter for students, it uses an over-
lay model which estimates the competency of a student in
each different concept using a separate parameter. A similar
model for adaptive practice of facts was later proposed by
[20], which had an additional global parameter compared to
the multivariate Elo-based model that was used in combi-
nation with the concept level parameters in modelling the
ability of a student on each concept. Both of these models
make the assumption that items are tagged with a single
concept, which limits their applicability in domains where
items can be tagged with multiple concepts. For example,
in a Programming domain, an arbitrary learning item might
be associated with both ”lists”and ”loops” concepts. M-Elo,
our proposed model, is an extension over the multivariate
Elo-based model that has the capacity to model students
and items in the presence of items with multiple concepts.

Adaptive Testing vs. Adaptive Learning. Adaptivity in
educational systems has been investigated broadly both in
the context of computerized adaptive testing (CAT) and
adaptive learning [17]. Generally, adaptive testing systems
conduct an exam using a sequence of questions that are suc-
cessively administered with the purpose of maximising the
precision of the system’s current estimate of the student’s
ability. The exam is usually terminated once the system has
an estimate of the student’s ability with a confidence level
that exceeds a user-specified threshold. In contrast, adap-
tive learning systems such as ALEKS1 take a more student-
centred approach with the aim of assisting students in their
learning. As such, in most adaptive learning systems, stu-
dents (1) have the opportunity to decide whether or not to
engage with the suggested learning items, (2) can spend,
theoretically, an infinite amount of time on a learning item
or on the system and (3) will receive rich feedback on their
learning after engaging with each learning item. In this pa-
per, we examine the fit of our proposed model, and more
generally multivariate Elo-based models in the context of
adaptive learning.

Open Learner Models. Open learner models (OLMs) are
learner models that are externalised and made accessible
to students or other stakeholders such as instructors, often
through visualisation, as an important means of supporting
learning [2]. They have been integrated into a variety of
learning technologies such as learning dashboards [1], intel-
ligent tutoring systems [21] and adaptive learning platforms
[8] to help students and instructors in monitoring, reflecting
and regulating learning [2]. In this paper, we investigate
the benefits of opening Elo-based models, such as M-Elo
in adaptive learning system based on the principles of the
OLMs.

3. ELO-BASED LEARNER MODELLING
In this section, we first define a mathematical notation for
describing the models. Section 3.1 then provides a review
of the standard Elo-based model in the educational context.
Finally, Section 3.2 introduces our proposed variation of the
multivariate Elo-based model, which we call M-Elo.

In what follows, let UN = {u1 . . . uN} denote a set of stu-
dents who are enrolled in a course on an adaptive educa-
tional system, where un refers to an arbitrary student. Each
course consists of a set of concepts ∆L = {δ1 . . . δL}, referred
to as the domain model, where δl presents an arbitrary con-
cept. In this work, the notion of a concept is based on
taxonomies of knowledge components described by [16]. Let
QM = {q1 . . . qM} present the content model, denoting a
repository of learning items that are available to students
in a course in the adaptive learning system, where qm refers
to an arbitrary item. These learning items can be tagged
with one or more knowledge components; ΩM×L is a two-
dimensional array, where ωml is 1/g if item qm is tagged with
g knowledge components including knowledge component δl,
and 0 otherwise. Let a two-dimensional array AN×M keep
track of students’ attempts on the items, where anm = 1
indicates that student un has answered item qm correctly,
and anm = 0 indicates that student un has answered item
qm incorrectly.

1https://www.aleks.com/
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3.1 The Standard Elo-based Learner Model
(Elo)

In the standard Elo-based learner model (Elo), both stu-
dents and items are considered as identical rivals. Elo as-
sumes one student parameter θn indicating un’s global profi-
ciency level on the entire domain and one item parameter dm
presenting the difficulty level of item qm. It uses a logistic
function to estimate the probability of a correct answer by a
student to a given item based on the difference between the
student’s global proficiency level and the item’s difficulty.
[20]:

P (anm = 1|θn, dm) = σ(θn − dm) (1)

To account for the guessing effect in the case of multiple
choice items with c possible options, Formula 1 can be easily
replaced with a shifted logistic regression using: P (anm =
1|θn, dm) = 1

c
+(1− 1

c
)∗σ(θn−dm). once un has attempted

qm, the knowledge state of un and difficulty level of qm are
simultaneously updated using the following formulas:

θn := θn +K(anm − P (anm = 1|θn, dm)) (2)

dm := dm +K(P (anm = 1|θn, dm)− anm) (3)

, where K is a constant value determining the sensitivity of
the estimations based on the student’s last attempt. The
updates to the student’s knowledge state (Formula 2) and
the difficulty of the item (Formula 3) in Elo follows the prin-
ciples of zero-sum game, in which the sum of gains (loss) to
the student’s knowledge state and the loss (gain) to the dif-
ficulty of the item after the student answers the item turns
out to be zero. In most extensions of the Elo-based mod-
els, in order to get to a stable estimations for the student’s
knowledge state and item difficulty, K is replaced with an
uncertainty function

U(n) =
γ

1 + β ∗ n (4)

, where γ and β are constant hyper-parameters determining
the starting value and slope of changes, respectively, and n
indicates the number of prior updates on student’s knowl-
edge state or item difficulty [20].

3.2 Multi-Concept Multivariate Elo-based
Learner model (M-Elo)

In contrast to Elo, where only one parameter is used to
model a student’s knowledge state on the entire domain,
M-Elo uses independent parameters to model the student’s
knowledge state on each individual concept in the domain,
and a global parameter for modelling each item. As in
Elo, for each learning item qm there is a global difficulty
dm approximating the difficulty level of the item. For stu-
dents, let a two-dimensional array ΛN×M represents a stu-
dent’s Elo-based learner model, where λnl represents student
un’s knowledge state on concept δl, approximating the pro-
ficiency level of the student on that certain concept. To es-
timate the probability that student un answers an item qm
correctly, we first compute λ̄nm =

∑L
l=1 λnl × ωml, which

estimates un’s average competency on concepts that are as-
sociated with qm. We then compute the probability of un

answering qm correctly using:

P (anm = 1|λ̄nm, dm) = σ(λ̄nm − dm) (5)

After un answers qm, the updated estimate of dm is obtained
using:

dm := dm +K(P (anm = 1|λ̄nm, dm)− anm) (6)

where K can be replaced with an uncertainty function U(n)
presented in Formula 4. To update student un’s Elo ratings
based on the given answer to item qm, we update the stu-
dent’s parameter on each concept δl the question is tagged
with separately using the following formula:

λnl := λnl + α.K(anm − P (anm = 1|λnl, dm)) (7)

where α is a normalisation factor, ensuring that the zero-sum
game principles are enforced in the model. As such, the net
change made to the parameters estimating un’s proficiency
level in the concepts that are associated with qm (computed
by Formula 7) and dm (computed by Formula 6) sum to
zero. α is computed using the following formula:

α =
|P (anm = 1|λ̄nm, dm)− anm|∑L

l=1(|anm − P (anm = 1|λnl, dm)× ωml|)
(8)

4. EVALUATION
In this section, we evaluate the suitability of M-Elo in the
context of adaptive learning systems. Section 4.1 compares
the predictive performance of M-Elo against Elo using a
suite of simulated data sets. Section 4.2 compares the pre-
dictive performance of M-Elo against Elo using publicly avail-
able data sets. As commonly used in the evaluation of
learner models, we use the area under the curve (AUC),
root mean squared error (RMSE) and accuracy (ACC) for
reporting the predictive performance of the models. For all
experiments, students’ knowledge states and item difficul-
ties in Elo and M-Elo are initialised to zero. Section 4.3
then reports the results of a case study that integrates M-
Elo into an adaptive learning system which incorporates the
principles of OLMs.

4.1 Synthetic Data Sets
Synthetic data sets were used to assess the behaviour of
the models under different settings by varying parameters
in the data generation template. The synthetic data sets
were generated using a sequence of steps proposed by [13].
At first, a set of students with predefined knowledge states
over a set of knowledge components were created. Assigning
students’ knowledge state was performed by sampling from
a normal distribution, where the mean of distribution for
each student was sampled from a uniform distribution. In
this model, the standard deviation (σ) of the normal distri-
bution determined the complexity of a student’s knowledge
state, where smaller values of σ led to having students that
had roughly the same ability across all of the knowledge
components and bigger values of σ led to having students
with a higher diversity on their abilities across all of the
knowledge components. Then, a set of learning items with
pre-defined concepts, level of difficulty and discrimination
was generated. Assigning concepts to items was performed
by sampling from a discrete uniform distribution, while dif-
ficulty and discrimination were sampled from a normal dis-
tribution. Lastly, to compute the probability that a student
un answered a learning item qm correctly, a 2PL Item Re-
sponse Theory (IRT) [10] model was used as recommended
by [7] using: 1

1+e−am(θn−bm) , where, θn represents a stu-

dent’s average competency on the concepts associated with
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the item, and bm and am were the difficulty level and the
discrimination level of the item qm, respectively. In all syn-
thetic data sets, 100 students, 1000 learning item and 70,000
answers were sampled completely at random. Each learning
item was tagged with one to three concepts. In these experi-
ments, 70% of data was used for training and the remaining
30% was reserved for the test. Each experiment was re-
peated five times and the reported values are the average
results across the five runs.

Figure 1: AUC as σ is increased. Results are re-
ported for L = 10, and L = 100

Figure 1 compares the AUC performance of Elo and M-
Elo in estimating students’ knowledge states with respect
to different values of σ under two different settings for the
number of knowledge components (L). Our results for L =
10 suggest that for smaller values of σ, Elo outperforms M-
Elo. This was predictable, as in this setting, each student
has roughly the same competency level on all of the concepts,
and since Elo relies on a global knowledge estimation for
students proportional to their overall performance, it can
outperform M-Elo in this setting. As σ is increased and
students with more diversity in their abilities across different
concepts are generated, M-Elo outperforms Elo as it is able
to discriminate between students’ abilities on each individual
concept, leading to more accurate estimations of students’
knowledge state compared to Elo. By increasing L to 100,
the same trend is observable; however, the intersection point
for σ where M-Elo outperforms Elo becomes bigger, as in
this scenario, with the same amount of data, M-Elo needs
to learn many more parameters independently. Evaluations
using RMSE and ACC led to very similar patterns as AUC.
Therefore, in the interest of space, figures reporting these
results have not been included.

4.2 Public Data Sets
Three data sets namely ’Algebra I 2005-2006’ (Alg2005), ’Al-
gebra I 2006-2007’ (Alg2006) and ’Bridge to Algebra 2006-
2007’ (BAlg2006), which were obtained from the PSLC Datashop
were used [15]. These data sets were originally obtained
from Carnegie Learning’s Cognitive Tutor and were made
available as the ”DevElopment” sets in KDD Cup 2010 [22].
Cognitive Tutor provides a fine representation of knowledge
components associated with each item. It is a formative as-
sessment tool, where each step taken by a student to answer
a problem is considered as an individual interaction. Each
learning item (referred to as ’Step’ and presented by ’Step
Name’ in the data sets) is associated with one or more con-
cept (KC) covered in the course. We used the train/test
split provided by KDD Cup 2010 and discarded interactions
with items that have not clearly been tagged with particu-
lar concepts. No students were discarded. Overall informa-

tion about these data sets are presented in Table 1. A grid
search was conducted to determine optimal values for hyper-
parameters γ and β of the uncertainty function, described
in Formula 4. As also reported by [20], the results were not
really sensitive to changes from these parameters. In all the
reported experiments on public data sets, γ was set to 1.8
and β was set to 0.05.

Table 1: Public data sets
Data Set Students KC Items multi-KC2 Interactions
Alg2005 575 112 147,914 51,171 609,979
Alg2006 1840 714 319,151 21,415 1,825,030
BAlg2006 1146 493 19,954 1,650 1,822,697

Table 2 compares the AUC, RMSE and accuracy (ACC) of
the model fit statistics related to each model for estimating
students’ knowledge state. As it is indicated, on all three
data sets M-Elo outperformed Elo in predicting student per-
formance, but the difference was rather small. Considering
the insights obtained from the experiments with synthetic
data sets, where M-Elo was outperforming Elo with a small
margin, it may be possible to hypothesise that students of-
ten have different competency levels on different concepts,
but these differences are often not too significant.

Table 2: AUC, RMSE and ACC for public data sets
Data Set AUC RMSE ACC

Elo M-Elo Elo M-Elo Elo M-Elo
Alg2005 0.726 0.750 0.392 0.385 0.787 0.79
Alge2006 0.687 0.695 0.394 0.390 0.784 0.797
BAlg2006 0.676 0.712 0.368 0.361 0.827 0.828

4.3 Case Study
To investigate the fit of M-Elo for adaptive learning in an
authentic environment, we integrate M-Elo into an adaptive
learning system called RiPPLE [12] and piloted the plat-
form in an introductory course on relational databases at
The University of Queensland. The course covers many con-
cepts that are generally included in an introductory course
on relational databases including conceptual database de-
sign using ER diagrams, relational models, functional depen-
dencies, normalisation, relational algebra, Structured Query
Language (SQL), data warehousing and database security.
The platform was used for 13 weeks; during this period, 521
of the students enrolled in this course made 91,340 attempts
on 1,632 learning items which were available in the system.
Among these items, 144 items were tagged with two or more
of the 17 concepts, which were associated with the course.
Our aim was to investigate the benefits and shortcomings of
using M-Elo in an adaptive system where the model is shared
with the students based on the principles of OLMs through
a visualisation widget, as indicated in figure 2, which allows
students to visually see their current knowledge state on all
concepts of the course. This visualisation is updated and
represented to students as soon as they answer a new item
from the item pool.

Guiding adaptivity. To guide the adaptivity of the system,
the estimated knowledge states of the students and difficul-
ties of the questions, as computed by M-Elo, are passed to
the recommendation engine of the adaptive system. For each
student, the recommendation engine recommends questions

2multi-KC in Table 1 indicates the number of items tagged with two
or more knowledge components (KCs)
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Figure 2: Overview of the OLM visualising the current knowledge state of a student.

that are on concepts where a student has the largest knowl-
edge gap at a difficulty level that reflect the current learn-
ing ability of the student. This adaptivity at a concept-level
is because of the availability of the additional parameters
learned by M-Elo, which is not possible to achieve using the
standard Elo rating.

Insights from student feedback. To capture students’ per-
spectives about the model, a survey was conducted at the
end of the semester using the following three statements: (1)
Motivation: the visualisation used by RiPPLE for showing
my knowledge state increases my motivation to study or fur-
ther use the system, (2) Rationality: having the ability to
visually see my current knowledge state, helps me to under-
stand the rationale behind suggestions made by the system,
(3) Trust: having the ability to visually see my knowledge
sate, increases my trust in recommended questions. Re-
sponses were captured using the Likert scale, where 1 rep-
resents “strongly disagree” and 5 represents “strong agree”.
The survey also had an open-ended question asking students
for feedback on the system. Overall, 55 students who had
enrolled in the course and used the system voluntarily par-
ticipated in the survey. Figure 3 represents the results of the
survey. The majority of students (63.6%) agreed or strongly

Figure 3: Student survey results

agreed that visualisation of their learner model in RiPPLE
increased their motivation to further use the system. Fur-
thermore, the majority of the students (61.8%) agreed that
having the ability to visually see their current knowledge
state helped them to understand the rationale behind rec-
ommendations made by the system and that it increased
their trust in recommendations. In their written comments
one student mentioned that “I have used a similar platform
in the past, however, the visualisation of my knowledge state
in this platform is a great improvement on those.” Inter-
estingly, two students mentioned that they lost motivation
in answering easy questions as the potentially large loss of
rating in answering the question incorrectly outweighed the
small rating gain received in answering the question cor-
rectly. Upon closer examination, we noticed that it seemed

challenging to maintain a balance between the students’ pro-
ficiency level and the learning items’ difficulty level in our
pilot. Throughout the semester, the average difficulty level
of the learning items was falling and the average rating of the
students’ proficiency was rising. This can be explained by
the student-centred design of the system that provided stu-
dents full access to the internet, textbooks and colleagues as
well as an infinite amount of time for answering a question.
This may suggest that the zero-sum game principles where
the net change in ratings after a student has answered a
question is zero might not be ideal for adaptive learning sys-
tems. We believe that this may not be an issue for adaptive
testing, where the exam-like setting of the system might bal-
ance between the students’ ratings and the learning items’
ratings.

Insights from instructor feedback. To capture the teach-
ing staff’s perspectives, we held informal discussion sessions
with members of the teaching staff. They appreciated the
additional insight on course level and individual level com-
petencies and gaps that was provided by M-Elo; similar
benefits have also been reported by [19]. For example, the
learning model presented in Figure 2 indicates that at a
class level, students have performed best on “ER-models”
and “SQL” and have performed worst on “Map-ER-Schema”
and “Map-Schema-ER” in the course presented in this pilot.
A shortcoming that the teaching team has noticed was that
students tended to get discouraged from using the system
once they had used it for a while as they were not able to
make significant changes to their knowledge state despite
answering questions correctly. Upon closer examination, we
realised that this is due to the use of the uncertainty func-
tion, as described in section 3 and Formula 4, which reduces
the sensitivity of the estimations as the number of attempts
is increased. This functionality seems to be better suited
for adaptive testing rather than adaptive learning systems
because of the following reason: Given that a student would
often take an adaptive test in one sitting with a short time-
line and receive no feedback on their work, it is common for
adaptive testing systems to assume no learning has occurred
during the exam, and as such use of an uncertainty function
can help with stabilising the ratings; however, a student
would often interact with an adaptive learning environment
over a period of time and competencies might improve via
receiving rich feedback on their learning or decline as a result
of forgetting. As a consequence, adaptive systems commonly
expect the knowledge state of the student to change signif-
icantly as they interact with the system. This means that
reducing the sensitivity of the estimations over time may
restrict the model from unwaveringly evolving to accurately
represent the current knowledge state.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 232

Your Current Results vs. Peers Chin~ V11u1llutlon D111 

_You,RKUl!I Qualwlfl,(le ·--eu,r1n1Aa11ng1 

Toplc•toVlau•liH 

n --ER_.rn -----,,,_... ~ / ,.,,,,.. .,,. .. ~ .,,.,. ... -.,,, 

Motivation 30.90% I 32.70% 21.80% 7.30% . 

Rationality 23.60% I 38.20% 29.10% 55~ 

Trust 18.20% I 43.60% 23 .60% 10.90% I 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

• Stronely Acree .. ,- Neutral Disaeree • Stronely Disaeree 



5. CONCLUSIONS AND FUTURE DIREC-
TIONS

The aim of this paper was to introduce a new multivari-
ate Elo-based learner model called multi-concept multivari-
ate Elo rating system (M-Elo) where learning items can be
tagged with one or more concepts and investigate its ben-
efits and shortcomings in the context of adaptive learning.
The results from experiments using a suite of synthetic data
sets demonstrate that the behaviour of M-Elo is consistent
with expectations and outperforms the standard Elo-based
model (Elo) in parameter settings that better reflect real-
world environments. The results from experiments on mul-
tiple benchmarking public data sets indicate that M-Elo
has slightly superior predictive performance compared to
Elo. Conducting a case study suggested that using M-Elo in
adaptive learning systems has additional advantages beyond
using Elo. The first advantage lies in the ability of the model
in estimating concept-level competencies which can be used
for guiding adaptivity. The second advantage lies in the abil-
ity of M-Elo to be opened based on the principles of OLMs.
Making M-Elo accessible to students increases their moti-
vation to use the platform and increases their trust in the
recommendations provided by the platform. It also provides
additional insight for instructors on individual student-level
or class-level gaps and competencies that can be used to im-
prove item and course design. The conducted case study
gave additional insights into the adverse effects of the zero-
sum game design of the Elo-based models as well as using
an uncertainty functions in the context of adaptive learning.
Future work aims to investigate possible extensions of Elo-
based models using these considerations and evaluate their
fit for adaptive learning systems. In addition, quantitative
comparison of M-Elo and traditional models of learner mod-
els such as AFM and BKT is required to determine its com-
petitiveness with traditional models in predicting students’
performance.
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ABSTRACT
We analyze teachers’ written feedback to students in an
online learning environment, specifically a setting in which
high school students in Uruguay are learning English as a
foreign language. How complex should teachers’ feedback
be? Should it be adapted to each student’s English profi-
ciency level? How does teacher feedback affect the proba-
bility of engaging the student in a conversation? To explore
these questions, we conducted both parametric (multilevel
modeling) and non-parametric (bootstrapping) analyses of
27,627 messages exchanged between 35 teachers and 1074
students in 2017 and 2018. Our results suggest: (1) Teach-
ers should adapt their feedback complexity to their students’
English proficiency level. Students who receive feedback
that is too complex or too basic for their level post 13-
15% fewer comments than those who receive adapted feed-
back. (2) Feedback that includes a question is associated
with higher odds-ratio (17.5-19) of engaging the student in
conversation. (3) For students with low English proficiency,
slow turnaround (feedback after 1 week) reduces this odds
ratio by 0.7. These results have potential implications for
online platforms offering foreign language learning services,
in which it is crucial to give the best possible learning expe-
rience while judiciously allocating teachers’ time.

1. INTRODUCTION
For decades, teacher feedback has been shown to be one of
the greatest drivers of student learning [9]. The research fo-
cus has shifted from assessing whether feedback is effective
to identifying the most powerful strategies [20]. Because of
the complex nature of the feedback process, the answer to
this question remains deeply tied to the particular context
in which it happens. One particular learning domain that
is growing fast in terms of number of learners and learn-
ing platforms (e.g., Duolingo, Babbel, Learning English at
Coursera) is online learning of English as a foreign language
(EFL). Despite its increasing prominence, teacher feedback

in the online EFL context has received limited research at-
tention [20, 5].

In this paper we seek to contribute to the understanding of
how teacher feedback influences students’ behavior in the
online EFL context. In particular, we focus on an EFL pro-
gram in which students learn English with the help of a
remote teacher (RT), who is a native English speaker, with
whom students communicate online using discussion forums.
Within this context, we seek to build an understanding of
how the feedback the RTs give to their students affects their
posting behavior: (1) How complex should the RT feedback
be? (2) Should it be somehow adapted to their student’s En-
glish proficiency level? (3) How does RT feedback affect the
probability of engaging the student in a conversation? This
research has potential implications for the countless online
platforms offering foreign language learning services, aiming
to enhance students’ learning experience.

Learning environment: This study is conducted in the
context of a program for EFL learning created for secondary
school students who attend the public school system in Uruguay.
Uruguayan secondary school students (native Spanish speak-
ers) often struggle with English, having very disparate pro-
ficiency levels when they enter high school. This program,
known as Tutorials for Differentiated Learning (TDL), was
conceived to help tackle this problem by providing the stu-
dents with the option to learn and practice English at their
own pace. For this purpose, a set of resources and exercises
for EFL learning are made available online through an LMS
system.The students are encouraged by their classroom En-
glish teachers (CT) to explore the material and complete the
exercises, but participation in the program is not mandatory.
Completing an exercise consists of reading the material and
posting a comment in English in a discussion forum. Ex-
ercises are organized in topics (e.g., music, sports, fashion,
national parks, travel, etc) and there is one discussion forum
per exercise. A RT, assigned to each classroom, reviews the
students’ posts and gives them individualized feedback.

RT-student interactions: The student always starts the
thread by posting a comment about a given topic in the
LMS discussion forum. The RT replies giving the students
personalized feedback on what they wrote. Then, the con-
versation may or may not continue depending on whether
the student posts a new comment on the given thread. If the
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student doesn’t, that conversation ends there, and the stu-
dent may start new threads when doing new exercises. Here
is an example of an interaction where the student engaged
in the conversation:

Student: I do not have favorite music I like to listen to everything
a little.

RT: That’s great Alicia. What’s your favourite song right now?

Student: At this moment I’ve heard a song from Michael Jackson
that I loved its name is Thriller.

RT: Ok Alicia, thank you for sharing that :)

and another example where she didn’t:

Student: I see six oceans: Atlantic, Indian, Pacific, Atlantic, Arc-
tic and Southern ocean.

RT: Very well Andrea.

Learning English: In TDL, the RTs’ feedback is intended
less as a way of correcting students’ mistakes and more as a
way to encourage students to participate. Participation in
the discussion forums is expected to be conducive to better
learning since doing the exercises requires reading the ma-
terial in English as well as writing the response in English.
Therefore, two measures of interest are: the total comments
the student posts and whether the student engages in a given
conversation with the RT.

2. PREVIOUS WORK
Even though there is no unified definition of feedback, the
seminal work by Hattie and Timperley [9] conceptualizes
feedback as information provided by an agent regarding as-
pects of a student’s performance or understanding. It can be
provided effectively, but it is dependent on several factors
such as the task, the learning context and the learners [9,
20]. It may improve learning outcomes when it has a direct
use (e.g. correct the task), or it may increase motivation
when only expressing praise for the student [20].

In the online language learning context, feedback has been
reported as a fundamental aspect in skills development [11].
Teacher feedback in online language learning environments
can also inform development of data-driven personalized feed-
back. Emerging data-driven learning systems adapt feed-
back to individual student needs, and have been shown to
improve learning outcomes [17]. Furthermore, data mining
has been used to understand the effects that polarity (posi-
tive vs. negative comments) and timing can have in different
student’s learning aspects [12, 16].

Research on feedback for EFL learning in computer-mediated
(CM) environments has widely focused on peer feedback, of-
ten on EFL writing [18]. Jiang and Ribeiro [10] present a
systematic literature review on the effect of CM peer written
feedback on adult EFL writing. They confirmed the findings
from previous research acknowledging the positive impact of
CM peer feedback in this context.

As in many other subjects in educational data mining, most
research on feedback has focused on higher education set-
tings [20], leaving the fundamental need to build under-
standing of the primary and secondary education contexts
unattended. We find previous work on secondary and pri-
mary education contexts on particular topics such as teach-
ers’ feedback strategies [3], student-generated feedback [8]
among other more general examples [15].
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Figure 1: Histogram of the total comments posted
by each student (top left). Histograms of the aver-
age complexity (top right), specificity (bottom left)
and polarity (bottom right) of the RTs’ feedback
(red) and of the students’ posts (violet).

Our work complements and enriches the previous work in
several aspects: (1) it studies asynchronous teacher feedback
in an online EFL environment, which has been seldom stud-
ied [19], (2) it considers a secondary education setting, also
fundamental and rarely analyzed [20], (3) it follows a quan-
titative analysis exploiting a large scale dataset (in terms of
number of students, teachers, classrooms, and school diver-
sity) as opposed to most case studies which often include
relatively few students or classrooms [19].

3. DATASET DESCRIPTION
The dataset under consideration was originally collected by
Aguerrebere et al. [2] and includes all the comments (i.e.,
content, posting date, user id) as well as administrative in-
formation (for each student, who are her CT and RT) for the
1st secondary school classrooms (12-year-olds) that partici-
pated in the TDL program during school year 2017. In this
work the dataset is extended to also include school year 2018.
This includes a total of 27,627 comments exchanged between
1074 students, organized in 83 classrooms (in 49 public high
schools located in 18 different states in the country), and 35
RTs. The dataset has a nested structure: students are orga-
nized into classrooms. Each classroom has a dedicated class-
room teacher; in contrast, each remote teacher may serve
multiple classrooms. Figure 1 shows the histogram of the
total comments posted by each student during their corre-
sponding school year. The dataset has been de-identified to
preserve each participant’s privacy and handled according
to Uruguayan privacy protection legislation. After talking
with the TDL stakeholders and the program leaders, a set
of features characterizing each comment was defined: com-
plexity, specificity, polarity and response delay. Each feature
represents a different aspect of how elaborate a comment is
(complexity, specificity), its tone (polarity) and how long the
student had to wait to receive feedback (response delay).

Complexity (c) measures how elaborated a comment is, by
adding its characters per word, words per sentence and total
sentences: c = 1

4
#char
#words

+ 1
5

#words
#sent

+ #sent (weights are in-
cluded to give similar relevance to all terms, 4 and 5 are the
median characters per word and words per sentence respec-
tively). Examples of low, medium and high complexity com-
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ments are: (c = 2.4) “Well done!”, (c = 3.7) “My favourite
national park is Yellowstone.”, (c = 8.9) “Hi Alberto! This is
an accurate description of the different continents, but can
you try again? The activity is asking about different volcanic
landforms! Can you please look at the encyclopedia and read
the part about volcanic landforms to find the names of the
three types of volcanic landforms? Here’s the link: [link]”.

Specificity (s) measures how specific, on average, the words
are in the comment. It combines how deep each word wi ap-
pears in the WordNet [13] structure and how frequent the

word is in the dataset: s = 1
W

∑W
i=1

depth(wi)
Z

+ 1
freq(wi)

,

where W is the total words in the comment and Z a normal-
izing factor equal to the maximum average comment com-
plexity [6]. Examples of comments with low and high speci-
ficity: (s = 0.1) “Very good! Do you have any cats?” and
(s = 1.2) “The skeleton of brontosaurus.” .

Polarity (p) measures the tone of the comment (positive,
negative) as the average of an index (-1 (negative) to +1
(positive))1 assigned to each sentence based on the adjec-
tives it contains (e.g., great, nice, awful). Examples of pos-
itive and negative comments: (p = 1.0) “Great Carla! Awe-
some spelling!!” and (p = −0.6) “I would not like because
they are dangerous.”.

Response delay (τ) is the timelapse between the student’s
post and the RT’s response in days. Median τ is 3 days.

Figure 1 shows the histograms of the the average complex-
ity, specificity and polarity of the RTs’ feedback and the
students’ posts. The average specificity tends to be larger
for students than for RTs; this is likely because students’
comments are responses to exercises that elicit very specific
words such as “skeleton of brontosaurus.”, whereas the RTs’
comments often contain basic words, e.g., “Great work!”.

4. DATA ANALYSIS
We examine the effects of various feedback characteristics
of RTs’ feedback on students’ posting behavior. We use
two complementary approaches [14]: (1) multilevel linear
regression that models the nested nature of the data; and
(2) non-parametric bootstrap analysis. The latter is more
complicated (e.g., requires a bin width parameter) but can
model non-linear relationships and makes fewer assumptions
(e.g., normality of residuals) than many parametric models.

4.1 How complex should the RT feedback be?
In this section we are interested in the question: Does RT
feedback complexity (low vs. high) affect the total num-
ber of comments posted by the student? Note that we must
consider the potential confound of the student’s English pro-
ficiency level, as the effect of RT feedback complexity may
vary for more or less proficient students.

4.1.1 Non-parametric approach
To answer this question we first follow a non-parametric
approach, using bootstrap to test the null hypothesis:

H0 : E[T |Sc] = E[T |Sc, Rc], (1)

1The sentiment function of the pattern.en Python module
was used: www.clips.uantwerpen.be/pages/pattern-en.

versus E[T |Sc] 6= E[T |Sc, Rc], where T is the total com-
ments posted by the student, Sc is the student’s English
proficiency level (low/high) and Rc is the complexity level
of the feedback the student received from his RT (low/high).
Hypothesis (1) tests whether the total comments posted by
the student depend on the complexity level of the feedback
she received from her RT, after conditioning on her English
proficiency level. If the null hypothesis is rejected, then the
complexity level of the feedback that the students receive
affects their average engagement with the program, mea-
sured by the total comments they post and conditioned on
their English proficiency level. It is important to note that
we must reject the null hypothesis if E[T |Sc] differs statisti-
cally significantly from E[T |Sc, Rc] for any values of Sc and
Rc. For this reason, in this section we examine the potential
impact of Rc on T for each possible combination of (Sc, Rc).

To estimate the student’s English proficiency level we use the
average complexity of the comments posted by the student.
Students with average complexity below (above) the median
are classified as having low (high) proficiency respectively.
Similarly, the complexity level of the RT’s feedback is low
(high) when it is below (above) the median.

Bootstrapping for equality of means: How can we test
whether P (T |Sc, Rc = low) and P (T |Sc, Rc = high) have
the same mean? If the distribution P (T |Sc, Rc) were Gaus-
sian for all values of Sc and Rc, then we could just use a
t-test to compute the p-value (or a nested ANOVA to take
into account the nested structure of the data). However, in
our case the data are not Gaussian (see [1]). Fortunately,
the bootstrap procedure proposed by Efron & Tibshirani [7]
provides a rigorous methodology. By sampling with replace-
ment from our original dataset, we can simulate multiple
data samples. We subselect the data for which Rc = low
and the data for which Rc = high and then resample each
of them to generate multiple bootstrap samples. To enforce
the null hypothesis (i.e., equal means), we set the means
of the two samples to be equal to the mean of the com-
bined sample. We then compute the normalized difference
in means between the two subsets in the bootstrapped sam-
ple. Over all B bootstrap iterations (B = 10000), we finally
compute the fraction in which the normalized difference in
means is at least as large as the observed statistic. See [1]
for a detailed description of the algorithms.

Results: For high level students, more basic feedback is
associated with more posting. Students who received high
level feedback posted on average 22% fewer comments than
those who received low level feedback (9.3 versus 12 total
comments, p = 0.006). Examples:

Student A: My favorite food is hamburguer.

RT (low level): Nice Lucia! What do you eat in your hamburger?

Student B: They are in Spain in Barcelona.

RT (high level): Hello Pablo! Yes they are in Spain. Very good.
Here is a link in case you would like to know a bit more about
Spain and their culture. In Uruguay there are a lot of people
who have Spanish origins. It is very evident in the food :) I
have never been to Spain. Would you like to go to Spain?

A possible explanation for this behavior is that even the
high-level students have weak English proficiency and might
feel overwhelmed by feedback that is too complex. No statis-
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tically significant differences are observed for low level stu-
dents (8.5 versus 7.6 total comments, p = 0.14).

4.1.2 Controlling for the RT
Another possible confound is the effect of the RT, as more
motivated RTs may give better feedback that leads to more
posts by their students. To take this into account, null Hy-
pothesis (1) is reformulated as:

H0 : E[T |Sc, RT ] = E[T |Sc, Rc, RT ], (2)

versus E[T |Sc, RT ] 6= E[T |Sc, Rc, RT ], where RT is the stu-
dent’s remote teacher. If Hypothesis (2) is rejected, the
complexity level of the feedback a given RT gives to his stu-
dents has an effect on the total comments posted by them.
A variation of the bootstrapping algorithm is used to test
Hypothesis (2) where, instead of defining the [low, high] RT
feedback complexity levels globally from all samples, inde-
pendent thresholds are defined for each RT.

Results: The result previously obtained remains valid even
when conditioning on the RT (i.e., resampling within each
RT), meaning that different feedback levels given by the RT
to his students are associated with different total posts (8.9
versus 12.5 total comments, p = 0.01). No statistically sig-
nificant differences are observed for low level students.

Even if controlling for the RT makes the result more solid
from a statistical point of view, interpreting the results be-
comes more difficult, as the meaning of low and high com-
plexity feedback changes from RT to RT. Because a funda-
mental goal is to translate these results into useful infor-
mation for the teachers, this approach has the disadvantage
that an absolute complexity level reference cannot be given
to them as reference of what low and high means, and how
to position the feedback they give with respect to that.

4.1.3 Parametric Approach
A parametric approach is conducted to complement the re-
sults obtained by the non-parametric analysis, allowing for
the inclusion of additional predictors (possible confounds)
and avoiding binning (in RT complexity). Binning is kept to
determine student level (low/high), as separate models are
computed for each case. In order to take into account the
nested structure of the data, a multilevel modeling approach
is employed where the CT and RT effects on the student’s
activity are modeled as nested random effects. Therefore,
we model student i’s total posts as a negative binomial ran-
dom variable, to account for the fact that it is count data
with overdispersion, with expected value µi given by:

log(µi) = β+ γ0ci + γ1yi + γ2pi + γ3si + γ4τi +C +R, (3)

(capital letters denote random variables and lower-case de-
note fixed values). β is the baseline total comments. ci, pi,
si and τi are the average complexity, polarity, word speci-
ficity and response delay of the feedback comments student
i received from his RT, respectively. yi is the school year.
The fixed effects γ0, . . . , γ4 represent the effects of the corre-
sponding covariates on the total comments. The nested ran-
dom effect CT-RT is represented by the random variables C
and R, assumed to follow zero-mean Gaussian distributions
with standard deviations σC and σR. All the parametric
models were fit using the R lme4 package [4].

stud. level β γ̂0 γ̂1 γ̂2 γ̂3 γ̂4

Model 3
low 1.12 ** 0.03 0.30 . -0.03 0.76 0.01
high 2.50 *** -0.11 * 0.26 -0.02 -0.02 0.04

Model 4
low 1.63 *** -0.14 ** 0.25 -0.32 0.67 -0.01
high 2.24 *** -0.16 ** 0.22 -0.06 0.12 -0.002

Table 1: Effects of RT feedback on students’ total
comments for Models 3 and 4, in log scale. Sig-
nif. codes: 0 (***) 0.001 (**) 0.01 (*) 0.05 (.) 0.1

Results: Table 1 (Model 3) shows the computed effects for
all the covariates. The parametric analysis, which includes
other possible confounds, confirms the same tendency ob-
served with the non-parametric approach: a negative statis-
tically significant effect of the RT feedback complexity level
is observed for high level students (exp(−0.11) = 0.9, i.e.,
10% less total posts per unit increase in RT average complex-
ity) and no effect is observed for low level students. To com-
pare this result to the one obtained by the non-parametric
approach, we compute the equivalent per unit decrease in
the non-parametric case (computed as the total decrease di-
vided by the difference between the average RT complexity
in the two compared levels, 3.8 and 5.9) which equals 10%.

4.2 Should RTs feedback complexity be close
to that of their students?

Rather than the absolute complexity, we can also consider
the relative complexity of the RTs’ feedback compared to
the complexity of students’ comments. Put another way:
should the feedback complexity be somehow adapted to the
student? To answer this question we propose to model the
total comments posted by the student as a function of the
distance between the average complexity of the student’s
comments and the average complexity of the feedback the
student received from his RT.

4.2.1 Parametric approach
We model each student i’s total posts as a negative binomial
random variable with expected value µi given by:

log(µi) = β+γ0|ci−csi−α|+γ1yi+γ2pi+γ3si+γ4τi+C+R,
(4)

The fixed effect γ0 represents the effect of the absolute value
of the difference between the student’s (csi) and the RT’s
(ci) average comments complexity, where α is introduced as
an offset to account for the fact that the feedback may need
to be close to that of the student but not necessarily equal.
See Model 3 for the definition of the rest of the variables.

Setting α: Model 4 is fitted for different values of α and the
one corresponding to the largest log-likelihood is selected.
For low student levels the maximum log-likelihood is ob-
tained at α = 0.25, whereas for high student level it is at
α = −0.79. Hence, this analysis suggests that even if for
both low and high level students feedback complexity should
be close to the student level, low level students benefit from
feedback slightly more complex than theirs whereas high
level students benefit from feedback slightly below theirs.
Recall that low level students post very basic comments,
whereas those of high level students tend to be more elabo-
rated but remain still simple.
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Results: Table 1 (Model 4) shows the computed fixed ef-
fects for the different covariates. The distance between the
average complexity of the student’s comments and the av-
erage complexity of the feedback the student received from
his RT has a negative stat. sig. effect on the total comments
posted by the student. There is a 13% (p = 0.008) and
15% (p = 0.003) decrease in total comments with one unit
distance increase, for the low and high level students respec-
tively. We present in the following a series of examples in
order to help the reader gain insight into what small and
large student-RT complexity distance mean in practice.

Large distance:

Student A: I would like to defile.

RT: Nice try Marcela, but I do not understand what you mean.
There are two models in the above photo, can you tell me
which model is from Brazil and which model is from the USA?
or - can you tell me, who is your favourite model? My
favourite model is Kate Moss.

Small distance:

Student A: My favorite sport is football.

RT: Very good! what is your favorite football team?

In the latter example, the interactions seem closer to an
online chat for students with basic English skills.

4.2.2 Non-parametric approach
A non-parametric approach is conducted to complement the
results obtained by the parametric analysis. For this pur-
pose, bootstrapping is used to test the null hypothesis:

H0 : E[T |Sc] = E[T |Sc, D], (5)

versus E[T |Sc] 6= E[T |Sc, D], where D is the distance be-
tween the student’s and the RT’s average comments com-
plexity as defined in Model 4. The bootstrapping algorithm
introduced in Section 4.1.1 is used, with a for loop on small
and large D (below and above the median distance) instead
of RT complexity, and α is set to the values obtained in
Section 4.2.1 (see [1] for details).

Results: A negative statistically significant effect is ob-
served for D on the total comments posted by the student,
both for low and high level students. Students who received
feedback less adapted to their level posted 15% and 34% less
comments than those who received more adapted feedback,
for low (6.6 versus 7.6 total comments, p = 0.007) and high
(9.2 versus 12.3 total comments, p < 0.001) level students
respectively. To compare these results to those obtained by
the parametric approach we compute the equivalent per unit
decrease (computed as the total decrease divided by the dif-
ference between the average D in the two compared levels)
which equals 9% both for low and high student level.

4.3 Engaging students in conversation
The program aims at motivating the students to interact
with others in English. Therefore, we are interested not only
in their total posts but also in the probability of engaging
them in a conversation. Following the same rationale as
Section 4.1.3, we use a multilevel logistic regression model to
explore this question. Let (Yj)j=1,...,N be Bernoulli variables
with P (Yj = 1|ηj) = exp(ηj)/(1 + exp(ηj)) with:

ηj =β + γ0cj + γ1 log(τj) + γ2pj + γ3sj + γ4yj+

γ5qj + γ6lj + γ7ej + S + C +R, (6)

Yj = 1 if the student posts a second comment in conversa-
tion j and 0 otherwise. β is the baseline. cj , pj and sj are
the complexity, polarity and specificity of the RT’s response
to the first comment posted by the student who initiated
conversation j. qj , ej and lj are boolean variables taking
value 1 if the RT’s response asked the student a question,
included an emoticon or shared a link respectively. τj is the
timelapse between the moment the student started conver-
sation j and the RT replied. yj is the school year. γ0, . . . , γ7
represent the fixed effects of the corresponding covariates.
The nested random effect student-CT-RT is represented by
the random variables S, C and R, assumed to follow zero-
mean Gaussian distributions with standard deviations σS ,
σC and σR. N is the total number of conversation threads
and there may be several threads per student.

Results: Table 2 shows the estimated covariate effects. By
far, and maybe not surprisingly, the fact that the RT asks
the student a question has the largest stat. sig. positive ef-
fect on the probability of getting the student to continue the
conversation. When a question is asked, assuming the rest of
the covariates remain fixed, the odds ratio for students of the
same classroom is exp(2.94) = 19.0 and exp(2.86) = 17.5,
for low and high level students respectively.

As more elaborated comments often include questions, the
positive effect of complexity suggests that more elaborated
comments increase the probability of engaging a student in
a conversation. On the contrary, the negative stat. sig. ef-
fect of polarity is likely due to the fact that very positive
comments such as “Great work!” tend to be quite basic in
terms of complexity. For high level students a larger delay
is associated with more responses, as after a one week delay
the odds ratio is 1.2 (the rest of the covariates and random
effects remaining constant). This is likely because for high
level students RT response delay is positively correlated with
complexity (Spearman 0.1) and negatively correlated with
comments polarity (Spearman -0.12): writing more elabo-
rated comments take longer. This is not observed for low
level students (Spearman 0.02 for both complexity and po-
larity), for whom it seems important to reply as soon as
possible, as after a one week delay the odds ratio is 0.7.
Finally, for both high and low level students, results sug-
gest that using less specific words is associated with higher
probability of engagement in the conversation.

5. SUMMARY AND CONCLUSIONS
We conducted an observational analysis of 27,627 comments,
exchanged between 1074 high school students and 35 RTs
over 2 years, to study the effect that different RT’s feedback
characteristics have on the students’ posting behavior in an
online EFL learning environment. The research questions,
as well as the features defined for the characterization of the
comments, were discussed and validated with the stakehold-
ers and the leaders of the program in order to take advantage
of their wide experience on the topic. Both parametric (mul-
tilevel modeling) and non-parametric (bootstrapping) anal-
yses were performed, controlling for the effect of possible
confounds such as (1) the classroom teacher, (2) the remote
teacher and (3) the students’ English proficiency level. Our
results suggest that:
(1) Teachers should observe the complexity of their students’
comments and adapt the complexity of their feedback ac-
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student level β γ̂0 γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7

low -7.11 *** 0.08 -0.15 *** 0.36 -2.20 ** 0.24 2.94 *** -0.53 0.11
high -7.46 *** 0.35 *** 0.10 ** -0.47 * -2.66 ** 0.62 2.83 *** -0.77 . -0.39

Table 2: Effects of RT feedback characteristics on the probability of engaging the student in conversation, in
logarithmic scale. Significance codes: 0 (***) 0.001 (**) 0.01 (*) 0.05 (.) 0.1

cordingly. Students who receive feedback that is too com-
plex or too basic for their level post 13% (p = 0.008) and
15% (p = 0.003) fewer comments than those who receive
adapted feedback, for low and high level students respec-
tively.
(2) According to some RTs who were consulted about the
potential causes of the observed behavior, the students may
be more motivated when the language of the RT is accessible
to them because they understand it, they learn from it and
are challenged by it, without this turning into frustration.
(3) The best way to engage the students in a conversation
is to pose a question (this increases the odds by 19 and 17.5
for low and high level students respectively). The comments
should be complex enough to include a question (i.e., “Great
work!” won’t be enough) yet remain simple in terms words
specificity. Also, for low level students, it is important to
respond as quickly as possible (after a one week delay the
odds ratio is 0.7).

Even if no causal inferences can be made, this study gener-
ated enlightening insights which have potential implications
for the countless online platforms offering foreign language
learning services, in which it is crucial to give the best possi-
ble learning experience while judiciously allocating resources
(e.g. teachers’ time).

Acknowledgments: We thank the TDL team and RTs for
their participation and helpful feedback. J. Whitehill was
supported by the National Science Foundation under Grant
No. #1822830.

6. REFERENCES
[1] Aguerrebere, C., Bulger, M., Cobo, C., Garćıa,
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ABSTRACT
Personalized education systems recommend learning con-
tents to students based on their capacity to accelerate their
learning. This paper proposes a personalized exercise rec-
ommendation system for online self-directed learning. We
first improve the performance of knowledge tracing models.
Existing deep knowledge tracing models, such as Dynamic
Key-Value Memory Network (DKVMN), ignore exercises’
concept tags, which are usually available in tutoring sys-
tems. We modify DKVMN to design its memory structure
based on the course’s concept list, and explicitly consider
the exercise-concept mapping relationship during students’
knowledge tracing. We evaluated the model on the 5th grade
students’ math exercising dataset in TAL, one of the biggest
education groups in China, and found that our model has
higher performance than existing models. We also enhance
the DKVMN model to support more input features and ob-
tain higher performance. Second, we use the model to build
a student simulator, and use it to train an exercise recom-
mendation policy with deep reinforcement learning. Exper-
imental results show that our policy achieves better perfor-
mance than existing heuristic policy in terms of maximizing
the students’ knowledge level. To the best of our knowl-
edge, this is the first time that deep reinforcement learning
has been applied to personalized mathematic exercise rec-
ommendation.

1. INTRODUCTION
Online self-directed learning systems, such as Massive Open
Online Courses (MOOCs), are prevailing. These systems,
however, assign same exercises to all students, which is in-
efficient. For comparison, personalized exercises recommen-
dation can improve the efficiency of students’ learning. In

this paper, we propose a personalized exercise recommenda-
tion system for an online self-directed learning service. The
system consists of two parts:

• A student knowledge tracing model, which traces a
student’s knowledge state and predicts whether or not
she can finish the exercise correctly.

• A personalized exercise recommendation policy which
recommends appropriate exercises to students to ac-
celerate her learning process.

Existing deep knowledge tracing models [9, 13] ignore exer-
cises’ knowledge concept properties, which are usually avail-
able in tutoring systems. For comparison, in this paper, we
propose a concept-aware deep knowledge tracing model. The
model is inspired by Dynamic Key-Value Memory Network
(DKVMN) model [13]. DKVMN model has a static matrix
called key which stores the latent knowledge concepts and
a dynamic matrix called value which stores a student’s con-
cept mastery levels. The model computes the correlation
between an exercise and the latent concepts in the key, and
then uses it to read the student’s concept mastery levels in
the value, and predict whether the student will finish the ex-
ercise correctly. We improve the DKVMN model as follows:
1) we design its memory structure based on the course’s con-
cept list and explicitly consider the exercise-concept map-
ping relationship during students’ knowledge tracing. 2) We
enhance it to support more input features, including exercise
difficulty, stages, and student practice time. We evaluated
the model on the 5th grade students’ math exercising dataset
in TAL, and found that our model has higher performance
than existing deep knowledge tracing models.

In terms of personalized exercise recommendation policy,
most of existing algorithms are heuristic, e.g., exercises which
are too easy or too hard for a student should be avoided.
These algorithms may be not optimal, as they only con-
sider the short-term reward. In this paper, we build a stu-
dent simulator with our concept-aware deep knowledge trac-
ing model, and then use it to train a flexible and scalable
personalized exercise recommendation policy with deep re-
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inforcement learning, which considers long-term reward of
recommended items.

In summary, the main contributions of this paper are two
folds:

• We propose a new exercise-level deep knowledge trac-
ing model whose structure is built based on the course’s
concept list, and the exercise-concept mapping rela-
tionships are utilized during students’ knowledge trac-
ing. The model supports more input features and ob-
tains higher performance compared with existing mod-
els.

• We propose an exercises recommendation algorithm
which uses model-free reinforcement learning with neu-
ral network function approximation to learn an exer-
cise recommendation policy. The policy directly oper-
ates on raw observations of a student’s exercise history.
Experimental results show that our policy achieves
better performance than existing heuristic policy in
terms of maximizing students’ knowledge level.

2. RELATED WORK
Knowledge Tracing : The work in [3] proposed a Bayesian-
based knowledge tracing model. It models a student’s status
of a knowledge concept as a binary variable, and updates the
probability of her mastering the concept according to her
results of doing exercises through a Hidden Markov Model.
This model is at the concept level, and ignores the relation-
ship between different concepts. The work in [9] proposed a
deep knowledge tracing (DKT) model with recurrent neural
network. It models a student’s knowledge states as latent
variables, and gets better performance than Bayesian-based
model does [6]. The work in [12] proposed to improve DKT
by considering exercises’ semantic features. The work in [13]
tried to model the correlation between different latent con-
cepts. Inspired by DKVMN, this paper proposes a model
whose structure is explicitly built based on the course’s con-
cept list, and the exercise-concept mapping relationship is
utilized in the model.

Exercise Recommendation: The work in [1] proposed that a
student is recommended by an exercise, if the probability of
her doing the exercise correctly is around 50%. The prob-
lem of this algorithm is that the threshold 50% is heuristic
and may be not optimal. The work in [2] allows experts
to specify a ZPD (Zone of Proximal Development) based
on current knowledge state of a student, and then chooses
the most profitable exercise by multi-armed bandits algo-
rithm. The algorithm can discover the characteristics of
students through exploration but it is inefficient, because ev-
ery student needs an independent exploration process. The
work in [5] leverages a DKT model towards recommenda-
tion, and frame the problem space using ZPD explicitly fa-
cilitated by the DKT model. The work in [7] first estimates
each student’s knowledge profile from their previous exer-
cise results using SPARFA framework. Then, it uses these
knowledge profiles as contexts and applies contextual ban-
dits algorithm to recommend exercises, for maximizing a
student’s immediate success, i.e., her performance on the
next exercise. The problem of this algorithm is that it only
considers the next step and thus its performance may be

not optimal. The work in [10] evaluated a review schedul-
ing algorithm for spaced repetition systems based on deep
reinforcement learning. We are inspired by this work and
evaluate the performance of deep reinforcement learning in
our math self-directed learning system.

3. BACKGROUND
In this section, we introduce our online learning system and
dataset.

3.1 Intelligent Practice System (IPS)
IPS is an online self-directed learning system developed by
TAL Education Group, Inc. of China. In IPS, each course
(e.g., the 5th grade math) has tens of units. Each unit in-
cludes 7 stages, i.e., 1) warming-up exercises before class, 2)
in-class exercises before lecture, 3) video lecture, 4) in-class
exercises after lecture, 5) homework exercises, 6) unit review
exercises, 7) multi-units review exercises. In these 7 stages,
stages 1, 2, 3, 4, 5 include contents of a single knowledge
concept, but stages 6 and 7 include exercises of other knowl-
edge concepts in order to review. As IPS is a self-directed
learning system, a student can choose any teaching unit to
study. In a unit, she can also exit current stage or the whole
unit at any time. The system records the student’s learning
duration in each stage, the exercises she practices, and her
results, i.e., whether or not the answer is correct.

In IPS, each exercise has three knowledge concept tags,
which are provided by experts. The knowledge concept tags
have a hierarchical tree structure. For instance, for one ex-
ercise, its 1st, 2nd, and 3rd level concept tags are ”Num-
ber Theory”, ”Prime Number and Composite Number”, and
”Decomposition of Prime Factor”, respectively.

3.2 Data Set and Data Pre-Processing
We use a sample of anonymized student usage interactions
from the 5th grade math curriculum in IPS. We choose exer-
cising records whose first-level knowledge concept is ”Num-
ber Theory”, which has 7 second-level knowledge concepts
and 15 third-level knowledge concepts. We further choose
students whose exercise records include at least 5 exercises.
The resulting dataset includes 44,128 exercise records of
7,124 students.

4. KNOWLEDGE TRACING MODEL
We now introduce our knowledge tracing model based on
DKVMN model, and highlight our improvement in aspects
of memory structure, knowledge concept weight, and read
and update process.

4.1 Concept-Aware Memory Structure
We modify DKVMN to design its memory structure based
on the course’s concept list. Fig. 1 plots the model’s struc-
ture, which is based on DKVMN model [13]. As shown in
Fig. 1, Mk

t is the concept embedding matrix whose size
is M × N , where N is the number of memory locations,
and M is the vector size at each location. We set N equal
to the number of the course’s knowledge concepts. As we
have 1 first-level knowledge concept, 7 second-level knowl-
edge concepts and 15 third-level knowledge concepts, we
have N = 23. Then, in each location, the student’s state for
the corresponding knowledge concept is saved. Thus, the
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Figure 1: Concept-aware DKVMN model structure.

model’s memory architecture is explicitly designed to rep-
resent knowledge concepts. For comparison, N is a model
parameter in DKVMN representing the number of latent
knowledge concepts, e.g., N = 5. As our model is in-
spired by DKVMN, we name it Concept-Aware DKVMN,
i.e., DKVMN-CA.

4.2 Knowledge Concept Weight
As a student’s state of a knowledge concept is saved in the
corresponding memory location, when a new exercise ar-
rives, only the exercise’s related concepts’ memory locations
are retrieved and updated. We now present the details of
such a procedure. In this section, we calculate the knowl-
edge concept weight (KCW) of the exercise. The weights
will be used to calculate the weighted sum of a user’s cur-
rent knowledge concept states to predict her performance
on the exercise. It will also be used to update the student’s
knowledge state after obtaining the answer result of the stu-
dent on the exercise.

We first obtain the embedding of the arrived exercise. As
shown in Fig. 1, when an exercise qt arrives at time t, it is
first transformed into an embedding vector mt through an
exercise embedding matrix A. We then calculates the KCW
through Algorithm 1. As shown in Algorithm 1, at line 2,
we initialize the weight list R. As each exercise has three
knowledge concepts, the length of R is 3. Then, for each
knowledge concept k (line 2), we calculate the dot product
of the embedding of the exercise (i.e., qt) and the concept
embedding (line 3). We then calculate the KCW by ob-

taining softmax of R, with Softmax(zi) = ezi/
∑N
j=1 e

zj

(line 6). Then, we initialize an all-zero vector Weight whose
length is the number of the knowledge concepts N(line 7).
For each knowledge concept k of the exercise (line 8), we set

its weight value in Weight.

In summary, DKVMN computes the relationship weights be-
tween the exercise and all latent knowledge concepts, but we
just compute the relationship weights between the exercise
and its knowledge concepts. For the exercise’s relationship
weights with other concepts, we set them zeros.

Algorithm 1 Knowledge Concept Weight Calculation

Input:
qt: embedding of the exercise arrived at time t
Kt: knowledge concept list of qt
Mk: the concept embedding matrix

Output:
Weight: Knowledge concept weight of the exercise arrived at
time t

/∗ Calculate KCW ∗/
1: R⇐ [ ]
2: for each n ∈ Kt do
3: corr ⇐mT

t ·Mk[n]
4: R.append(corr)
5: end for
6: Rs ⇐ Softmax(R)

/∗ Reshape the weight vector to make its length equal to the
number of concepts∗/

7: Weight⇐ [0, ..., 0]
8: i⇐ 0
9: for i < 3 do

10: Weight[Kt[i]] ⇐ Rs[i]
11: i⇐ i+ 1
12: end for
13: return Weight

4.3 Read Process
We then use the obtained KCW to calculate the weighted
sum of the user’s current knowledge concept states to predict
the student’s performance on the exercise. Denote KCW by
w, we have rt =

∑N
i=1 wiM

v
t , i.e., the knowledge state of

concepts related to the exercise qt.

We further concatenate rt with the embeddings of the exer-
cise’s difficulty and stage feature, i.e., dt and gt. The result
then passes through a fully connected layer with activation
function Tanh to get a summary vector ft, which contains
all information of the student’s knowledge state related to
qt and the exercise’s features, i.e.,:

ft = Tanh(WT
0 [rt,dt,gt,mt])

where Tanh(zi) = (ezi − e−zi)/(ezi + e−zi).

Finally, ft passes through a fully connected layer to output
the probability that the student would do the exercises qt
correctly. Denote the probability by p, we have

p = Sigmoid(WT
1 ft)

where Sigmoid(zi) = 1/(1 + e−zi).

4.4 Update Process
We then use the KCW to update the student’s knowledge
state after observing the her answer result. The update
process updates the value matrix Mv

t , which represents the
student’s current state of knowledge concept k. Our model
is different from DKVMN model in that we consider the
student’s exercising duration in the update process. For
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comparison, DKVMN ignores this student behavior feature.
Specifically, the work in [8] proposed that the a student’s
duration of solving a problem is related to her master level
of latent problem solving skills. Inspired by this work, in
our model, after a student finishes an exercise, her answer
result (i.e., correct or wrong) at and exercising duration are
used to update Mv

t . Because the exercising duration is a
continuous variable, it is firstly discretized according to its
distribution and then represented by its embedding t. We
then concatenate t with the joint embedding st of the answer
vector (qt,at), to update Mv

t , as shown in Fig. 1.

The other update process is same as that of DKVMN. It
includes erase subprocess and add subprocess. Erase vector
is computed as e = Sigmoid(ET [st, t]), where E is the erase
weights. Add vector is computed as a = Tanh(DT [st, t]),
where D is the add weights. Then the new memory matrix
Mv

t+1 is computed by

Mv
t+1(i) = Mv

t (i)[1−w(i)e][1 + w(i)a]

The parameters of the model are learned by minimizing a
standard cross entropy loss between the predicted user an-
swer result pt and her true result yt:

L = −
∑
t

((ytlogpt) + (1− yt)log(1− pt))

In summary, compared with DKVMN, we design the model
structure based on the course’s concept list, and then explic-
itly consider the exercise-concept mapping relationship and
other exercise’s features during students’ knowledge tracing.

5. REINFORCEMENT LEARNING BASED
EXERCISES RECOMMENDATION

Based on the DKVMN-CA student knowledge tracing model,
we build a student simulator which provides environment
for reinforcement learning, and train a personalized exer-
cise recommendation agent with deep reinforcement learning
method.

Similar to [10], we model the recommendation process as a
Partially Observable Markov Decision Process (POMDP),
where the model state is the student’s latent knowledge
state and the action is the recommendation of an exercise.
At time t, the reinforcement learning agent cannot observe
the student’s latent knowledge state st. Instead, it can
observe the student’s exercise and answer result (i.e., cor-
rect or wrong) ot which is conditioned on the latent knowl-
edge state p(ot|st). Thus, at time t, the agent needs to
recommend an exercise at based on the student’s exercis-
ing history before t, which is denoted by ht. We have
ht = (o1, a1, o2, a2, . . . , ot−1, at−1). After the student fin-
ishes the recommended exercise at, her latent knowledge
state will turn to st+1 by a transition function p(st+1|st, at).

We define the reward rt of an action at as

rt =
1

K

K∑
i=1

Pt+1(qi), (1)

where K is the number of exercises , and Pt+1(q) denotes
the probability of the student getting exercise q correct af-
ter finishing the recommended exercise at state st+1. It is

predicted by the student simulator. So, we name it as the
student’s Predicted Knowledge.

The purpose of optimization is to maximize the reward R of
policy π:

R = Eτ [

∞∑
t=1

γt−1r(st, at)],

where trajectories τ = (s1, o1, a1, s2, o2, a2, ...) are drawn
from the trajectory distribution induced by policy π : p(s1)
p(o1|s1)π(a1|h1)p(s2|s1, a1)p(o2|s2)π(a2|h2).... Thus, as for
the action-value functionQπ, the reward of the recommended
exercise sequence at t is:

Qπ(ht, at) = Est|ht [rt(st, at)]+Eτ>t|ht,at [
∞∑
i=1

γir(st+i, at+i)]

where τ > t = (st+1, ot+1, at+1...) is the future trajectory.
The algorithm then recommends the exercise q′ which has
the maximal reward, i.e., q′ = maxaQ

π(ht, a). Similar
to [10], we approximately solve the POMDP using Trust
Region Policy Optimization (TRPO) algorithm [11], with
an off-the-shelf implementation from rllab [4].

6. PERFORMANCE EVALUATION
In this section, we present the performance evaluation re-
sults of our system.

6.1 DKVMN-CA Knowledge Tracing Model
We evaluated our model on our IPS dataset. To evaluate
it, we conducted 50 experiments. In each experiment, we
randomly split the users into two groups: training users and
testing users. Their percentages are 70% and 30%. We then
trained the model with the training users and evaluated the
model on the testing users. Similar to [9], we use area under
the curve (AUC) as the performance metric. We report the
maximal, mean, and the standard deviation of the testing
users’ AUCs of all 50 experiments.

6.1.1 Efficiency of Concept-Aware Design
We first report the efficiency of designing the model’s archi-
tecture based on the course’s knowledge concepts. We com-
pare the performance of DKVMN and DKVMN-CA without
the help of other input features, including exercise difficulty,
stage, and duration. The results are shown in Table. 1. See
the rows ”DKVMN” and ”DKVMN-CA”. As shown in Ta-
ble. 1, our model obtains an AUC of 0.724, which is higher
than that of DKVMN model, i.e., AUC = 0.712. Such an
improvement is considerable, considering the small improve-
ment DKVMN provides over the DKT baseline (AUC =
0.711). Such a result means that the design of the model’s
architecture based on the course’s knowledge concepts is ef-
ficient.

To highlight the necessity of our design, we also evaluate
another method which also uses exercises’ knowledge con-
cept tags, i.e., represents a knowledge concept by its em-
bedding and then concatenate it with the embedding of the
exercise. Its’ performance is shown in Table. 1. See the
row ”DKVMN-KC”. As shown in Table 1, its mean AUC is
0.714, meaning a very small improvement over the DKVMN
(AUC = 0.712). Thus, it is necessary to design the model’s
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Table 1: AUC of Models with Different Features
Model Mean AUC Max AUC Variance
LSTM 0.711 0.712 1.86e-05
DKVMN 0.712 0.720 2.05e-05
DKVMN-KC 0.714 0.724 1.85e-05
DKVMN-CA 0.724 0.731 2.14e-05
DKVMN-CA +
Stage

0.728 0.736 1.48e-05

DKVMN-CA +
Duration

0.725 0.737 1.75e-05

DKVMN-CA +
Difficulty

0.726 0.736 2.44e-05

DKVMN-CA +
Stage, Duration

0.726 0.739 2.43e-05

architecture based on the course’s knowledge concepts to
fully utilize their capacity to improve the model.

6.1.2 Efficiency of Other Exercise Features
We then evaluate the efficiency of adding other features,
including exercise difficulty, stage, and duration. The re-
sults are shown in Table 1. See the rows ”DKVMN-CA +
Difficulty”, ”DKVMN-CA + Stage”, and ”DKVMN-CA +
Duration”. As shown in Table 1, these features can further
improve the model’s performance. For example, the mean
AUC of ”DKVMN-CA + Stage” is 0.728, which is higher
than that of DKVMN model (AUC = 0.712).

6.2 Exercises Recommendation
6.2.1 Evaluation of Students’ Knowledge Growth Pro-

cess
We use the Expectimax algorithm proposed in [9] as the
baseline algorithm. In the Expectimax algorithm, the sys-
tem first calculates a student’s predicted knowledge assum-
ing an exercise is recommended to the user to practice. It
then chooses the exercise with the highest predicted knowl-
edge to recommend.

To compare the two algorithms, we first randomly pick 15
students in our dataset. For each student, we conduct two
experiments, one experiment for one algorithm. In each
experiment, we first initialize the student simulator using
the student’s historical practice sequence. Then, we con-
tinuously recommend 50 exercises to the student simulator
with the recommendation algorithm. During the process,
we record the average of the 15 students’ predicted knowl-
edge as Eq.(1) at each step of recommendation. The results
are shown in Fig. 2. As shown in Fig. 2, the students
served by RL policy has a higher mean predicted knowledge
than the students served by the Expectimax policy after 50
exercises. Moreover, after about 10 exercises, the mean pre-
dicted knowledge of the students served by the Expectimax
policy stops increasing, meaning that the policy cannot find
exercises which can help the students to improve the perfor-
mance any more. For comparison, served by the RL policy
which considers long-term reward of action, the students’
mean predicted knowledge keeps increasing, meaning that
the RL policy still can find exercises which can help the
student to improve performance.
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6.2.2 Evaluation of Recommendation Process
We design another experiment to observe the recommenda-
tion behavior of the RL policy. We randomly pick a student
who has practiced five exercises, and use her exercise se-
quence to initialize the student simulator. Then, we serve
her with five more exercises using the RL recommendation
policy. Fig. 3 shows the results. The x label of Fig. 3 shows
the 10 exercises’ IDs, concepts, and results. For example,
the first record (88, 5, 0) means that the exercise ID is 88,
which is related to concept 5, and the student’s answer is
wrong. As the 10 exercises are related to 6 concepts, we
plot the student’s predicted knowledge of each concept in
Fig. 3. For instance, as the student fails in the first exercise
88, which is related to the 5th concept, the student’s knowl-
edge status on the 5th concept is relatively low. The status
of the knowledge concepts not covered by the student’s his-
tory exercises are indicated in black. We now observe the
recommended exercises. We have the following observations:

• As shown in Fig. 3, the first five exercises are related to
concepts 2,4,5, and the later five exercises are related
to concepts 1,3,6, suggesting the RL algorithm wants
to explore the student’s capacity in other concepts.
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• After the student succeeds in exercise 760, which is
related to the concept 3 (Decomposition of Prime Fac-
tor), the algorithm recommends the exercise 642, which
is related to concept 6 (Maximum common factor and
Least common multiple). As concept 6 is related to
concept 3, such a recommendation is reasonable.

• The student, however, fails to finish the exercise 642.
Thus, the algorithm recommends exercise 642 again.
This time, the student succeeds to finish it, meaning
that the model captures the phenomenon during train-
ing that a student who failed in exercise 642 may suc-
ceed if she retries. Such a result is interesting.

• After the student succeeds in exercise 642, which is
related to concept 6 (Maximum common factor and
Least common multiple), the model’s estimation of
the student’s capacity on concept 3 (Decomposition
of Prime Factor)also slightly increases. As these two
concepts are indeed related, such a result is reasonable.

• Then, the algorithm turns to another concept again,
i.e., it recommends the exercise 1278, which is related
to concept 1. While the student succeeds in the exer-
cises, the estimated student’s knowledge status on the
concept 1, however, is relatively low, suggesting that
the exercise is relative easy.

• At last, the exercise 760 is recommended again, and the
student succeeds in it. As a result, the model’s estima-
tion of the student’s capacity on concept 3 increases,
suggesting that reviewing is beneficial for study.

7. CONCLUSION
In this paper, we improve DKVMN by designing its neu-
ral network structure based on a course’s concept list, and
explicitly considering the exercise-concept mapping relation-
ship during students’ knowledge tracing. We also enhance
the DKVMN model to consider more input features. Ex-
perimental results show that our model has higher perfor-
mance than existing deep knowledge tracing models. We
also propose an exercises recommendation algorithm which
uses model-free reinforcement learning with neural network
function approximation to learn an exercise recommenda-
tion policy that directly operates on raw observations of a
student’s exercise history. Our experimental results demon-
strate that our policy achieves better performance than ex-
isting heuristic policy in terms of maximizing the students’
knowledge level. To the best of our knowledge, this is the
first time that deep reinforcement learning has been applied
to personalized mathematic exercise recommendation.
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ABSTRACT 

In this paper, we applied a number of clustering algorithms on pre-

test data collected from 264 high-school students. Students took the 

pre-test at the beginning of a 5-week experiment in which they 

interacted with an intelligent tutoring system. The primary goal of 

this work is to identify clusters of students exhibiting similar 

knowledge patterns. In particular, we show that the DP-means 

clustering algorithm yields very good results using binary response 

data. Other clustering algorithms such as k-modes have 

demonstrated better results when using categorical response data. 

Keywords 

Clustering, intelligent tutoring systems, students modelling. 

 

1. INTRODUCTION 
Assessment is a key element in education in general and in 

Intelligent Tutoring Systems (ITSs) in particular because fully 

adaptive tutoring presupposes accurate assessment [2, 12]. 

Capturing students’ knowledge state, our focus, and other learner 

characteristics that are important for learning such as their 

emotional state is critical to facilitate learning through adaptivity, 

i.e., tailoring instruction to each individual learner [11]. It should 

be noted that adaptivity can be thought of at two levels: macro-

adaptivity which means selecting appropriate instructional tasks 

and micro-adaptivity which implies offering appropriate 

scaffolding while students work on a task (also called within-task 

adaptivity). Our work presented here could inform both micro- and 

macro-adaptivity. For instance, understanding the knowledge gaps 

of students in a particular cluster could inform what instructional 

tasks to choose for these students, i.e., it informs macro-adaptivity. 

Indeed, an important preliminary step in creating an ITS that is 

sensitive to student misconceptions and individual learning 

trajectories is to first understand the various levels of mastery with 

respect to a target domain, for instance, physics. For example, 

important questions that need to be answers are: What are the 

predominant misconceptions they hold? and Are these 

misconceptions evenly distributed across topics and level of course 

taught? Using the clustering method proposed here will help  

 

 

answer such important questions. To this end, in this paper, we 

document for each group of students identified by our clustering 

algorithm, the major misconceptions exhibited by that group. 

In this study, we applied clustering on a pretest data collected at the 

beginning of an experiment in which high-school students 

interacted with a dialogue-based ITS. Our goal was to identify 

student groups and analyze them as a group in terms of 

misconceptions and mastered concepts. The identified groups could 

then be used to inform the authoring of instructional tasks and 

within-task instructional strategies and feedback for each group as 

opposed to each learner, which would be a much more expensive 

process. Learning such individualized strategies for each learner 

would be possible using automated methods, such as reinforcement 

learning, but they require substantially more experimental data 

which it is not have available. 

The main clustering algorithm used in this study is the DP-means 

algorithm [4]. Its main advantage is identifying the number of 

clusters using a Dirichlet Process Mixture Model. After briefly 

presented related work and the context of our own work, what 

follows is a description of the DP-means algorithm. We then 

present details of the experiments and results. We conducted 

experiments using two types of data: binary and categorical 

responses. In addition, other clustering algorithms were employed 

to compare the results with those obtained with DP-means. We 

evaluated the performance of the resulted clusters using intrinsic, 

e.g., based on the silhouette index which measures the compactness 

of each cluster, and extrinsic methods, e.g., based on students’ post-

test scores derived from post-test responses which were not used to 

generate the clusters. 

 

2. RELATED WORK 
Clustering has been used in the past for analyzing education data as 

indicated by the research studies presented next. Bouchet and 

colleagues [1] have applied the Expectation-Maximization 

clustering algorithm on data collected from the MetaTutor ITS. 

MetaTutor scaffolds student’s metacognitive skills while learning 

about the human circulatory system. The main objective of their 

clustering was reinforcing self-regulated learning via student 

profiling. The results consisted of three distinct clusters of students 

in terms of performance. The results have been analyzed using a 

MANOVA approach. 

Rodrigo and colleagues [8] have applied k-means clustering on data 

collected from students interacting with Aplusix, an ITS for 

Algebra. The main research goal of their work was identifying 

students’ behaviors through an analysis of interaction logs. The 

results have demonstrated the existence of two clusters of students 
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associated with differing behavior and affective states. The first 

cluster reflected more collaborative work whereas the second 

cluster reflected more solitary work. 

Reyes-Gonzalez and colleagues [7] have used the LC-Conceptual 

clustering algorithm from logical combinatorial pattern recognition 

for student modeling in an ITS. This algorithm is based on two 

phases: the first phase consists of building groups of objects based 

on their similarity and a grouping criterion. The second phase is 

called the intentional structure phase where the distinctive features 

of each resulted cluster are determined. Fang and colleagues [3] 

have used k-means clustering to capture learning patterns in over 

250 students who used AutoTutor to gain reading comprehension 

skills. The average response times per question and performance 

across lessons have been used to cluster the students’ learning 

behavior. The results showed the convergence of four types of 

learners: proficient readers, struggling readers, conscientious 

readers and disengaged readers. Classifying readers can improve 

the adaptivity of AutoTutor ITS by providing a proactive feedback 

and intervention based on the learning behaviors. 

Similar to those other approaches, our intention was to discover 

groups of students with similar knowledge states as characterized 

by their responses to the multiple-choice pre-test. Each incorrect 

choice in the pre-test is associated with a major misconception and 

therefore students that pick similar choices should be assigned to 

the same cluster. The centroid of the cluster could then be used to 

interpret the strengths and weaknesses of students in that cluster 

and appropriate interventions designed for that group. 

 

3. CONTEXT OF THIS WORK 
Our work was conducted in the context of an experiment in which 

high-school students interacted with a dialogue-based intelligent 

tutoring systems that tutors students on science topics through 

problem-solving. The system encourages students to self-explain 

solutions to complex science problems and only offers help, in the 

form of hints, when needed, e.g., when the student is floundering. 

That is, during a typical tutorial session, the system challenges 

students to solve a number of problems that are carefully selected 

by the system in order to optimize student learning (macro-

adaptivity). When working on a particular problem, students are 

first asked to provide a solution that must include a justification 

based on concepts and principles of the target domain, which was 

Newtonian Physics in the case of our study presented here. All 

other things equal, low knowledge students will most likely 

struggle to provide solid self-explanations and most likely to 

articulate misconceptions which would lead to more scaffolding 

dialogue moves in terms of hints and correcting misconceptions on 

the part of the computer tutor (micro-adaptation). High knowledge 

students would need less scaffolding and therefore the 

corresponding dialogues should be shorter. 

Before students start interacting with the system, they took a pre-

test to assess their initial knowledge state. The tool elected to assess 

students’ initial knowledge state was an enhanced version of the 

Force Concept Inventory (FCI). The Force Concept Inventory 

(FCI) is a 30-item multiple-choice "test" designed to assess student 

understanding of the most basic concepts in Newtonian mechanics 

(Halloun, Hake, and Mosca, 1995).  The FCI presents students with 

various situations and ask them to choose between Newtonian 

explanations for the phenomena, versus common-sense alternatives 

(Hestenes, Wells, & Swackhamer, 1992). The FCI has been widely 

used to measure learning in introductory physics courses. For 

example, Hake (1998) reported FCI data from 6,000 high school 

and university students. Coletta and Phillips (2005) combined their 

data with data collected by Hake (1998) and in combination used 

the FCI to measure learning in 73 university and college 

introductory physics classes. The data we have is based on an 

augmented version of the FCI consisting of 35 multiple-choice 

questions. The augmented FCI adds a number of questions for 

certain Newtonian topics which were not covered enough in the 

original FCI test. 

We administered the augmented Force Concept Inventory (aFCI) 

to students at three public and two private high schools in the mid-

south region, including six teachers and 26 classrooms.  The pretest 

was administered in classroom. Students completed the aFCI via 

provided scantron sheets, which were then collated and processed.  

The results of the scantron sheets were then compared to direct 

markings on the actual aFCI test in the case of blank or 

unidentifiable scantron responses. The data collection process was 

quite successful, resulting in 444 students with complete pretest 

data. We only used a subset of 265 students in our experiments 

because post-test data, used for extrinsic evaluation of our 

clustering, was available only for those 265 (the rest of the students 

either missed a tutoring session, or the post-test, or both). 

It should be noted that the data is very diverse in terms of student 

prior knowledge of physics because students were recruited from a 

large variety of physics-related courses including introduction to 

physics, honors physics, and AP physics. This should allow us to 

draw general conclusions 

 

4. DP-means BASED CLUSTERING 
The DP-means algorithm, as described by Kullis & Jordan [4], is a 

hard-clustering approximation of nonparametric Bayesian models. 

Under the assumption that the DP-means is derived from a Dirichlet 

Process Mixture Model, there exists a lambda value 𝛼 such that 

when used by the algorithm, the number of clusters 𝑘 is identified. 

The DP-means algorithm is similar to the k-means clustering 

algorithm except that a new cluster is generated when the distance 

from a data point to the nearest cluster is larger than the threshold 

𝛼. 

Specifically, the DP-means algorithm is derived from a Dirichlet 

Process Mixture Model (DPMM) as illustrated below:  

-  𝜇1, … , 𝜇𝑘   ~  𝐺0 

- 𝜋  ~ 𝐷𝑖𝑟 (𝑘, 𝜋0) 

- 𝑧1, … , 𝑧𝑛  ~ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (𝜋) 

- 𝑥1, … , 𝑥𝑛 ~  𝑁(𝜇𝑧𝑖
 , 𝜎 𝐼 ) 

- The Dirichlet prior of dim 𝑘 is placed using some 𝜋0 

where: 

- 𝜇  is the mean of each of the clusters, drawn from some base 

distribution 𝐺0, which is the prior distribution over the means. 

- 𝜋 = (𝜋1 , 𝜋2 … )  corresponds to the vector of probabilities of 

being in a cluster. 

- 𝑧𝑖  is an indicator of cluster assignment. 

- 𝑥𝑖  is a data point 

 

The corresponding clustering algorithm is described in Figure 1. 

The input consists of data instances 𝑥1, … , 𝑥𝑛 ,  where 𝑥𝑖  represents 

the vector of pre-test answer choices of the  𝑖𝑡ℎ student. Since the 

pre-test contains 35 questions, each such response vector 𝑥𝑖  

contains 35 entries corresponding to each answer choice picked by 
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student i. The clustering algorithm begins by initializing a single 

cluster whose mean is the global centroid. Then, it initializes a set 

of cluster indicators: 𝑧𝑖 = 1 for all 𝑖 = 1, … , 𝑛 where  𝑧𝑖 = 𝑘 means 

that the student 𝑥𝑖 belongs to the 𝑘𝑡ℎ cluster as denoted by 𝑙𝑘. 

In step 3, the algorithm computes the distances between each data 

point and the existing centroids. It then compares the minimum of 

these distances with 𝛼. If the minimum is larger than the threshold 

𝛼, a new cluster is generated, and its centroid is assigned the current 

data point 𝑥𝑖. Otherwise, the cluster indicator of the current data 

point is set to the 𝑎𝑟𝑔𝑚𝑖𝑛 of the distances. After looping over all 

data points, the number of clusters 𝑘 and the clusters indicators are 

computed. Finally, the DP-means algorithm generates the clusters 

𝑙𝑗 and their centroids 𝜇𝑗 for 𝑗 = 1, … , 𝑘.  Step 3 is repeated until the 

algorithm converges. 

 

Algorithm:  DP-means  

Input: 𝑥1, … , 𝑥𝑛 : input data, 𝛼 ∶ cluster penalty parameter 

Output:  Clustering 𝑙1, … , 𝑙𝑘 and number of clusters 𝑘 

1. Init.  𝑘 = 1, 𝑙1 = {𝑥1, … , 𝑥𝑛} and 𝜇1 the global 

mean. 

2. Init. Cluster indicators 𝑧𝑖 = 1 for all 𝑖 = 1, … , 𝑛 

3. Repeat until convergence  

• For each point 𝑥𝑖 

- Compute 𝑑𝑖𝑐 =  ‖𝑥𝑖 − 𝜇𝑐‖2 for 

          𝑐 = 1, … , 𝑘 

- If 𝑑𝑖𝑐 >  𝛼 , set 𝑘 = 𝑘 + 1, 𝑧𝑖 =
𝑘, 𝑎𝑛𝑑  𝜇𝑘 =  𝑥𝑖 

- Otherwise, set   𝑧𝑖 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑐 𝑑𝑖𝑐 

 

• Generate clusters 𝑙1, … , 𝑙𝑘 based on  𝑧1, … , 𝑧𝑘 ∶
 𝑙𝑗 = {𝑥𝑖  | 𝑧𝑖 = 𝑗 } 

• For each cluster 𝑙𝑗 , compute 𝜇
𝑗 = 

1

|𝑙𝑗|

 ∑ 𝑥𝑥 ∈𝑙𝑗
 . 

               Figure 1. DP-means algorithm 

 

4. EXPERIMENTS AND RESULTS 

4.1 Dataset 
The data used in our experiments consists of pre-test answers 

collected from 264 high-school students who took the aFCI pre-

test, went through a 5-week training period, and then took a post-

test. Furthermore, after each training sessions students took a short 

post-test (6 questions). In all our experiments, we will use this post-

test after the very first training session as the extrinsic evaluation 

criterion as it is closest in time (among all post-tests) to the pre-test 

and therefore is a good estimate of students’ early knowledge states 

as best captured by the pre-test. The pretest includes 35 multiple 

choice questions that have the same weight. Two types of data have 

been used in our experiments: 5-way response data and binary 

response data. The categorical data consists of the actual answer 

choices students picked for the 35 multiple choice questions coded 

as A, B, C, D and E. For each question, one those choices is the 

correct answer. The binary data represents the same data coded as 

binary correctness values: 0 – incorrect, i.e.., the student picked any 

of the incorrect answer choices, and 1 – correct, i.e., the student 

picked the correct answer choice. 

Tables 1 and 2 illustrate the data representation for the two tables. 

As described below, the columns represent the 35 questions and the 

rows represent individual students’ responses. 

 

Table 1.Categorial data 

 Q1 Q2  … Q35 

Dh001    A B  … C 

Dh002    C D  … C 

    …    … …  … … 

DH356    C D  ... B 

                              Table 2. Binary data 

 Q1 Q2  … Q35 

Dh001    0 0  … 0 

Dh002    1 0  … 1 

   …    … …  … … 

DH356    1 0  ... 0 

4.2 Experiments: Binary data 
A first set of experiments have been conducted using the binary 

data as input for the DP-means algorithm. Since we have binary 

data and DP-mean is based on the Euclidean distance, we have 

applied Principal Component Analysis (PCA) to convert the binary 

values to continuous ones. For this purpose, numerous values of n 

(number of components) have been tested. The value 35 led to a 

convergence state of 10 clusters in which several clusters are 

redundant, i.e., using the extrinsic criterion based on the overall 

post-test score. For example, the average of the post test score for 

clusters 6, 7 and 9 is 3.0.  Thus, we have tested randomly several 

values. The value 24 led to better clustering results in terms of 

splitting well the clusters based on the extrinsic criterion. Thus, we 

used those components to represent our data points for the rest of 

the experiments. On the binary data, a Manhattan distance could be 

used which we tried and didn’t lead to better results than the above 

method of using PCA. 

The 𝛼 distance parameter has not been defined a priori. To select a 

suitable value of this parameter, we followed first the procedure 

described by Kulis and colleagues [4] as in the following: given 

k=3 as the desired number of clusters, we first initialize a set A with 

the global mean of the data. Then iteratively we calculate the 

maximum distance to A (the distance to A is the smallest distance 

among points in A). We repeat this k (=3) times and assign to 𝛼  
the value of the maximum distance to A. In our work, we got the 

value of 3.26. Testing the DP-means with this value led to the 

convergence of two clusters of students. To reach the desired 

number of clusters which is 3, we have tried other values in a close 

interval of [3.26, 2.8] as described in Table 3. 

Thus, various values have been tested and compared.  The 

evaluation of the resulted clusters has been done using the 

following measures: 

- Silhouette index: Its value measures how similar a student 

response vector (her set of responses to the pre-test questions) 

is to its own cluster (cohesion) relative to the other clusters 

(separation). The silhouette index is a value within the [-1, +1] 

interval. A high value of the silhouette index indicates that the 

student is well matched with the other students in the same 

cluster. The following metric distances have been tested:  
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Euclidean distance, Manhattan distance and cosine similarity. 

The obtained results have shown that the Euclidean distance 

led to better results as demonstrated in Table 3. 

- Mean of post test score: The data collected from the 

interaction of the students with the ITS includes post test 

scores for the 264 students. Since the post test is taken at the 

end of the experiment, weeks after the students took the pre-

test, and since it has not been used in the cluster, it can be used 

as an extrinsic measure of cluster validity and interpretation of 

the resulting clusters. Indeed, this measure is used by us to 

assess the mastery level of each resulted cluster of students. In 

addition, it has been used as a way to check the separation of 

the clusters. The maximum and minimum values of the post 

test score in this collected data are 6.0 and 0.0 respectively. 

- Mean of pretest score: The data collected includes the pretest 

performance of each student based on of the correct answers. 

The highest value is 35 and the lowest value is 0. 

Table 3 offers a set of results of DP-means clustering using 

different types of distances.    

Table 3. clustering results with different types of distances 

Distance  𝜶 Number of clusters 

Manhattan        2.9 

       3.0 

       3.1 

          255 

          255 

          255 

 Euclidian        2.9 

       3.0 

       3.1 

              5 

              3 

              2 

  Cosine        2.9 

       3.0 

       3.1 

               1 

               1 

               1 

      

 Table 4. DP-means clustering results with different values of 𝜶      

𝜶   Clusters Mean 

pretest 

score 

Mean 

post-test 

score      

Number of 

students 

2.9 C1 

C2 

C3 

C4 

C5 

15.26 

31.28 

 6.47 

      25.0 

      14.0 

3.31 

5.66 

      1.89 

      5.0 

      2.0 

207 

36 

19 

1 

1 

3.0 C1 

C2 

C3 

17.68 

31.11 

8.83 

3.44 

5.64 

      1.62 

        195 

          37    

          32                   

3.1 C1 

C2 

      13.87 

      29.54 

      3.18 

      5.64 

277 

37 

 

 

Figure 2. Quality of the DP-means algorithm using different 

values of 𝛼 

The results in Figure 2 show that the value 3.0 of parameter  𝛼 led 

to the highest value of the Silhouette index (0.27). In addition, this 

𝛼 value resulted in three distinct clusters, well separated (Figure 3), 

in terms of students’ performance in the post test and pretest (as 

described in table 4). The first cluster contains 195 students.  The 

mean post test score is 3.44 and the mean pretest score is 17.68 

which are average scores. Students who belong to this cluster can 

be described as average performers or learners. The second cluster 

contains 37 students. The mean post test score is 5.66 and the mean 

pretest score is 31.11 which are high scores. The students in this 

cluster can be described as high performers or learners of Physics. 

The third cluster contains 32 students.  The mean post test score is 

1.625 and the mean pretest score is 8.83 which are very low scores. 

The students of this cluster can be describing as struggling ones.  

 

                  Figure 3. DP-means visualization with  𝛼 = 3 

 

                Figure 4. DP-means visualization with  𝛼 = 3.1 

 

                Figure 5. DP-means visualization with  𝛼 = 3.2 

 

To compare the results of the DP-means algorithm with other 

clustering algorithms, we have also applied the k-means and 

agglomerative clustering algorithms on the same binary data.  Since 

the best result of the DP-means was for an 𝛼 value 3.0, we ran the 

k-means algorithm using k =3 and the agglomerative clustering 

using the same number of clusters (=3). Tables 5 and 6 present the 

results for k-means and agglomerative clustering, respectively.  

 

Table 5. k-means results 

Clusters  Mean Post-

Test Score 

Mean Pretest 

Score 

Number of 

students 

 C1          2.28         9.44             97 

 C2          5.21        28.84             52 

 C3          3.83        17.22           115 
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Figure 6. Quality of the DP-means algorithm using 

different values of 𝛼. 
 

              Table 6. Agglomerative clustering results 

 

The results depicted in Table 4 show that the DP-means algorithm 

with 𝛼=3.0 outperforms the k-means and the agglomerative 

algorithms as described in tables 5 and 6 respectively. The 

difference, in the mean post test score and the mean of pretest score, 

between the clusters of DP-means is larger than the difference using 

the other clustering algorithms. This indicates the convergence of 

well separated groups of students, in terms of learning level and 

prior knowledge, when applying the DP-means. 

A detailed analysis of the top 10 students closest to the centroids of 

each of the three clusters found by DP-means, revealed that 

students in cluster 1 struggled mostly with questions related to 

Newton’s third and first laws, whereas students in cluster two 

struggled with questions related to Newton’s third law. Students in 

cluster 3 struggled the most and they showed weaknesses across all 

major topics in Newtonian Physics. Since in this experiment we 

used just correctness values for each pre-test question it is not 

possible to provide a more detailed analysis in terms of specific 

misconceptions, e.g., assuming faster velocity implies a larger force 

in an action-reaction pair, students in each clusters exhibit. 

 

4.4 Experiments: Clustering categorical data 
A second set of experiments have been conducted using categorical 

data and the DP-means and K-modes clustering algorithms. That is, 

in this case, we used the actual answer choices picked by students 

for the pre-test questions in order to find the clusters. 

To this end, first, we have converted the categorical responses to 

numerical ones using one-hot encoding. Basically, each answer 

choice becomes a dimension in a vector space representation. A 

value of 1 is assigned to that dimension for a given question in the 

pre-test if a student picked the choice corresponding to the 

dimension as their answer choice. This results in an encoding of 

categorical integer features as a one-hot numeric array. The encoder 

derives the categories based on the unique values in each 

feature.The output of the one-hot-encoding is fed into the clustering 

algorithms.  

The results presented in Table 7 reflect a decrease in quality of the 

DP-means clustering using categorical data. The silhouette index, 

as described in Figure 6, has decreased in comparison with the DP-

means based on binary data. The highest value was 0.06 when using 

the value 4.4 of 𝛼. The different values of 𝛼 didn’t lead to a good 

split of students in terms of the performance. For example, in the 

case of 𝛼 = 4.4, cluster C2 and C3 can be merged in one cluster 

since their mean post test and pretest scores are very close. For 𝛼 = 

4.3, there is redundancy in the resulted clusters. For example, C3 

and C6 can be merged in one cluster.  

 

Table 7. DP-means clustering results (categorical data) with 

different values of 𝜶 

𝜶   Clusters Mean Post 

Test Score 

Mean Pretest 

Score 

Number of 

students 

4.3 C1 

C2 

C3 

C4 

C5 

C6 

C7 

        4.17 

        1.5                                                                     

        1.0 

        2.0 

        2.0 

        1.66 

        2.16 

      20.39 

        5.5 

      10.0 

         4.5  

         6.0 

         6.0 

         9.35 

   68 

   67 

      1 

   54 

   40 

   22 

   12 

4.4 C1                    

C2 

C3 

C4 

        4.12                                        

        1.0 

        1.66 

        2.15   

        20.14 

        10.0 

          6.0 

          9.0 

 187 

     1 

     3 

   73 

4.5 C1                          

C2 

        3.55                                   

        1.0 

        16.87 

        10.0 

263 

    1 

 

In order to overcome this drawback of DP-means when applied to 

categorial data, we have applied the k-modes clustering algorithm 

[5, 6]. The k-modes algorithm is based on defining the dissimilarity 

measure between objects. This dissimilarity between two objects A 

and B can be defined by the total mismatches of the corresponding 

attribute categories of the two objects. The smaller the number of 

mismatches is, the more similar the two objects. The dissimilarity 

measure is calculated using the following equation: 

 

                      𝑑(𝑋, 𝑌) =  ∑ 𝛿(𝑥𝑗, 𝑦𝑗)𝑚
𝑗=1                              (1) 

  where:                    

                      𝛿(𝑥𝑗, 𝑦𝑗) =  {
0 (𝑥𝑗 = 𝑦𝑗 )
1(𝑥𝑗 ≠ 𝑦𝑗)

                          (2) 

      

The following are the results with k-modes when using k = 3.  

 

Table 8. Kmodes results with k = 3 

Clusters Mean Post Test Score Number of students 

C1               3.72             120 

C2               5.03               59 

C3               2.23                                                          85 

     

The results listed in Table 8 demonstrate that the k-modes 

outperforms the DP-means when using categorical data. The 

Clusters Mean Post 

Test Score 

Mean 

Pretest 

Score 

Number of 

students 

 

C1           3.55       16.46        165  

C2           5.45       30.0          42  

C3           2.07        8.28          57  
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resulted clusters reflect a good split between clusters in terms of 

performance in the post test. The C1 cluster reflects an average 

knowledge level of students. C2 reflects a high level of knowledge 

of students. And C3 reflects a low level of learning. A more detailed 

analysis indicates the same overall conclusions reached using the 

correctness data, e.g., students in cluster one struggle mostly with 

Newton’s second and third laws. However, when using the 

categorical data, we can further pinpoint which aspects of Newton’s 

third law for instance, students struggle with. For instance, many 

students in cluster C1 seem to struggle with the misconception that 

in an interaction between two objects the more massive one will act 

with a bigger force on the smaller one which is not true. According 

to Newton’s third law, to each action there is an equal and opposite 

reaction. Therefore, this analysis suggests that when a new student 

uses a Physics ITS, after they take the pre-test and their answer 

patterns place him closer to the centroid of cluster C1, i.e., in cluster 

C1, then appropriate instructional tasks that have been designed for 

students in that cluster should be activated in order to overcome 

major gaps students in that cluster exhibit. 

5. CONCLUSIONS 
In this work, DP-means clustering algorithm has been applied on 

the pretest data of 264 students collected from their interaction with 

DeepTutor ITS. Various values of 𝛼 have been tested. The results 

demonstrated that 3.0 is the best value and three distinct clusters of 

students have been converged. These clusters reflect three distinct 

levels of learning which has been assessed using post test scores. 

The first cluster of students correspond to an average level of 

learning, the second cluster represents students with a high level of 

learning and the third cluster of students those with a low level of 

learning. Results have demonstrated also that DP-means 

outperforms k-means and Agglomerative clustering in terms of 

splitting well students based on their performance in the post test. 

Another finding is that the quality of DP-means algorithm, 

measured by the silhouette index, decreases when we use the 

categorical data in comparison with the binary data. To overcome 

this drawback, we have used the k-modes clustering. 

Furthermore, such clustering could offer a good trade-off between 

adaptivity and authoring costs. For instance, macro-adaptation can 

be expensive if the number of unique student knowledge states is 

very large as it requires selecting a unique set of tasks for each such 

unique knowledge state. Concretely, if using a 5-way/choice 35 

multiple-choice question pre-test, the number of possible 

combinations of 35 answers is 535, an extremely large space. That 

is, if each student’s knowledge state is described by the 35 

responses we end up with 535 student knowledge states or student 

models which, by comparison, is much larger than the world’s 

population which is a bit over 514.  Considering each of these 

potential knowledge states and selecting for each corresponding 

learner a unique set of tasks becomes a computationally and 

authoring challenge. An alternative, for instance, would be to group 

students into clusters of similar mental models and then select and 

author tasks for each such clusters. That is, grouping students into 

similar mental model groups can offer a good trade-off between 

adaptivity and authoring costs. 

We plan to further investigate the resulting clusters for a better 

understanding of the characteristics of the students in each cluster. 

For instance, we do have information about the Physics class (intro, 

honors, AP) each student took and therefore a detailed analysis for 

students in each cluster based on their class type can be performed 

in order to understand what are the major misconceptions students 

in each class struggle with. Not only this could inform an ITS for 

Physics, but this information can be shared with teachers in order 

to help them better plan their lessons plans to address major 

misconceptions their students may have. 
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ABSTRACT
Understanding exam score distributions has implications for
item response theory (IRT), grade curving, and downstream
modeling tasks such as peer grading. Historically, grades
have been assumed to be normally distributed, and to this
day the normal is the ubiquitous choice for modeling exam
scores. While this is a good assumption for tests comprised
of equally-weighted dichotomous items, it breaks down on
the highly polytomous domain of undergraduate-level ex-
ams. The logit-normal is a natural alternative because it
is has a bounded range, can represent asymmetric distri-
butions, and lines up with IRT models that perform lo-
gistic transformations on normally distributed abilities. To
tackle this question, we analyze an anonymized dataset from
Gradescope consisting of over 4000 highly polytomous un-
dergraduate exams. We show that the logit-normal better
models this data without having more parameters than the
normal. In addition, we propose a new continuous polyto-
mous IRT model that reduces the number of item-parameters
by using a logit-normal assumption at the item level.

1. INTRODUCTION
Historically, student performance on exams has been as-
sumed to be normally distributed. Grade curving originates
from the idea that students exist on a “bell curve,” in which
most are clustered around the mean and a small number
over- or under-achieve. The field of education has many
criticisms for the bell-curve mindset. A common argument
is that we should not take the observation that student per-
formance tends to look normal and turn it into a normative
practice [4, 23]. The idea that some students will inevitably
fail and only a small number can enjoy the highest level of
success runs counter to the goals of the educator, who should
want as many students as possible to succeed. This tension
plays out in the ideological battle between those who criti-
cize grade inflation [9] and those who suggest that students
may be earning the higher grades they are receiving [11].

Figure 1: Score histograms of four assignments,
along with the PDFs of the best-fit normals (dashed
red) and best-fit logit-normals (solid blue).

The normal assumption is commonplace in modern research
into educational data. Grade distributions are usually pre-
sented to students in terms of their mean and variance, and
they are often visualized as normal distributions [17]. As ed-
ucation becomes more digitized, statistical models of grading
become more widespread. For example, peer grading models
allow MOOC’s to assign accurate grades to students based
on noisy estimates from their classmates. State of the art
peer grading models use normal priors over grades [19, 18],
which will result in normal-looking distributions. Both of
these examples can benefit from challenging the normal as-
sumption. In the first case, finding new ways to parameterize
grade distributions can help us better interpret and visualize
student behavior. In the second, a more accurate prior over
grades would help peer grading models assign more accurate
grades to students.

In this paper, we analyze over 4000 assignments graded on
the Gradescope platform [22]. These assignments are pri-
marily exams from undergraduate STEM courses, and as
a result the data is highly polytomous (many scoring cate-
gories per question). However, principal component analysis
(PCA) reveals that these exams have good low-rank approx-
imations, meaning that the data is very structured.
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First, we examine the ability of different families of distri-
butions to model the scores in our dataset. Specifically we
compare the normal to three bounded two-parameter distri-
butions. We find that the logit-normal [1, 5] is consistently
the best choice, followed by the beta, which is known to
approximate the logit-normal [8].

In the second part of this paper, we build a simple continu-
ous polytomous IRT model using a logit-normal assumption
at the item level. Our model outperforms both the Gen-
eralized Partial Credit Model [16] (a standard discrete IRT
model) and the Continuous Response Model [20] (a stan-
dard continuous IRT model) on the Gradescope data, de-
spite having fewer parameters than either. This indicates
that we can simplify and improve polytomous IRT models
using structural assumptions about assignment data.

1.1 Related Work
When analyzing student behavior, it can be difficult to dis-
tinguish between cases where data is actually normal and
cases where an assumption of normality is influencing the
distribution. For example, SAT scores are known to be nor-
mally distributed, but this is because raw SAT scores are
translated into final scores using a system that enforces a
normal distribution [3]. More subtly, probabilistic models
for determining scores based on peer grades often use nor-
mal priors over their output [18, 19]. As a result, they will
push grade distributions to be normal. The question then
remains about whether these distributions should look nor-
mal in reality or another prior needs to be found.

Of course, grade curving is the most direct way in which
student performance is influenced to be normal. Although
it remains a common practice, research has shown that most
students prefer not to be graded on a curve [6], that both
students and professors find indiscriminate grade curving
unethical [15], and that grade curving can amplify the ran-
domness of test-taking as a measure of student aptitude [12].
It has also been argued that educators should be striving to
avoid normally distributed student outcomes, rather than
enforce them [4, 23]. If this is the case, then we need to
actively seek out new distributions for describing and un-
derstanding test scores.

Polytomous IRT models generally fall into two categories.
Discrete models like Generalized Partial Credit [16] and Gra-
ded Response Models [21] model each point on each question
separately, scaling with the number of scoring categories per
question. These models make very few assumptions about
the relationship between different scores and thus do not
take advantage of any underlying structure in the data. Con-
tinuous models like the Continuous Response Model [20] are
used less frequently, but they scale only with the number
of questions in the assignment. They do this by making
assumptions about the structure of the item characteristic
curves (ICC’s). This means that if a dataset’s ICC’s follow
a consistent pattern, then a continuous model can thrive.

The Gradescope data we are working with is much more
polytomous than most IRT datasets. This is because it
comes from a wide variety of college-level courses rather
than standardized tests. Despite this heterogeneity, past
work on Gradescope data has found patterns in question

ordering and the interpretation of the first several princi-
pal components [13]. This indicates that there may be un-
derlying structure that a continuous IRT model could take
advantage of.

2. THE DATASET
Our initial dataset consists of 6,607 assignments submitted
to Gradescope, an online tool for uploading and grading stu-
dent work [22]. Typically students will do their assignments
by hand using a template provided by the instructor. After
the assignments have been scanned and uploaded to Grade-
scope, instructors can grade them using a digital rubric that
is always visible and modifiable. To ensure that the major-
ity of the data consists of college-level exams, all included
assignments:

• are instructor-uploaded1

• have a fixed template
• have at least 3 questions
• have titles that do not include terms that describe

other kinds of student work (e.g. “HW” or “Quiz”)
• have titles that do not include terms that are indicative

of non-college-level work

The assignments were graded between Spring 2013 and Spring
2018, and come from 2748 courses at 139 different higher-
education institutions2. The top three subject areas in the
dataset are Electrical Engineering & Computer Science (50%
of assignments), Math & Statistics (22%), and Chemistry
(11%). The median number of courses per school is 4, and
the median number of assignments per course is 2.

When fitting curves to exam scores, we want there to be
enough values that the distribution is interesting/nontrivial
and enough data points that the observed histogram is some-
where near the underlying distribution. For this reason, we
filter out all assignments that have fewer than 10 unique
scores or fewer than 75 students. We are then left with 4115
assignments. Figure 2(b) shows the joint distribution be-
tween student count and number of unique scores, as well as
their marginals. Observe that the vast majority of assign-
ments have 75-200 students and 20-80 unique scores.

Throughout this study we store each assignment as a matrix
A where Aij represents student j’s score on question i. We
use the term “exam score” to refer to the sum of a student’s
question scores, so to analyze exam scores, we sum the rows
of the assignment matrix A.

2.1 Visualizing the Data
One shortcoming of the normal is that it can only represent
symmetric distributions.3 We measure the symmetry of an
exam score distribution using skew (skewness), which can be

1On Gradescope, students tend to upload their own home-
work, while exams tend to be scanned and uploaded by the
instructor.
2However, UC Berkeley, UC San Diego, Stanford Univer-
sity, University of Michigan, and University of Washington
account for half of all assignments in the dataset.
3This may not be a problem on all forms of test data. For
example, if questions were equally weighted and (relatively)
independent, the Central Limit Theorem would predict a
symmetric distribution.
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(a) (b) (c)

Figure 2: (a) Normal doesn’t fit. Blue histogram: assignment skew distribution. Red histogram: skews
of assignments had they been drawn from normal distributions (as described in section 2.1). (b) Number
of students vs. number of unique exam scores for each assignment in the filtered dataset. (c) Number of
questions vs. average number of scoring categories per question for each assignment in the filtered dataset.

a good indicator of how normal a distribution is [2]. A skew
value of (or near) 0 indicates a symmetric distribution, while
negative and positive skew values indicate large tails on the
left and right respectively. The blue histogram in Figure
2(a) shows the skews of the exam score distributions in our
dataset. Note that they tend to be negative, meaning that
exams tend to have larger tails of below-mean students than
of above-mean students. To generate the red histogram in
Figure 2(a), we performed the same experiment on a sim-
ulated dataset created by redrawing the scores of each as-
signment from its best-fit normal4. The large difference in
both mean and variance of these histograms shows that our
observed skews would not be very likely were the data nor-
mally distributed. In order to quantify this intuition, we
performed a D’Agostino’s K-squared test of normality to
determine how likely it would be for each assignment’s skew
to arise from a normal distribution [2]. We found that 73%
of assignments had a p-value of 0.05 or lower, indicating that
(just on the basis of skew) the vast majority of assignments
are very unlikely to have come from a normal distribution.

When fitting IRT models to the assignments, we are inter-
ested in how polytomous each assignment is. Figure 2(c)
shows the joint distribution between the number of questions
an assignment has and the average number of scoring cate-
gories per question. The negative correlation between these
two stats is unsurprising5, but it means that we can test our
models on highly polytomous items or large question-counts
but not both at the same time.

2.2 Dimensionality
PCA [10] can give us insight into the dimensionality of our
data. A previous use of PCA on Gradescope data [13]
found that the first principal component distinguishes be-
tween high and low scoring students, while later principal
components correspond to skill at particular types of ques-
tions (e.g. multiple choice, free response).

4If an assignment had n students, sample mean x̄ and sample
variance S, our simulated version of that assignment would
consist of n draws from N(x̄, S).
5There are only so many points that a student could be
expected to earn over the course of a single exam.

We use PCA to describe the dimensionality of a given exam,
where dimensionality is defined as the number of principal
components required to account for 80% of the variance be-
tween students. Put simply, we are interested in what rank
is required to form a “pretty good” approximation for the
exam matrix. Intuitively, if exams have low dimensionality,
then they have a large amount of structure we can exploit
when modeling them.

We find that number of students and number of questions
(the two dimensions of our exam matrix) do not influence di-
mensionality in the same way. Number of students is weakly
correlated with dimensionality (0.20 Pearson correlation),
and on average it requires over 250 extra students to add a
dimension. Number of questions, on the other hand is more
strongly correlated (0.85 Pearson correlation), and one di-
mension is added every 3.3 questions. This is consistent with
the finding in [13] that principal components correspond to
specific student aptitudes. Overall, this analysis indicates
that choice of model should be based on the features of the
exam itself, not on how many students are taking it.

We also examined the first principal component in isola-
tion, and found that it generally indicated a student’s score.
Across our dataset, the average magnitude of the Pearson
correlation between exam score and the first principal com-
ponent was 0.965. In addition, the first principal compo-
nent on average accounts for 43% of the variability in an
assignment. The strength of the first principal component
indicates that IRT models might only need one-dimensional
student ability parameters to be successful on this dataset.

3. FITTING EXAM SCORES
Our first modeling task is to compare the ability of differ-
ent two-parameter distributions to fit the exam scores in our
dataset. Since tests have minimum and maximum scores, we
choose bounded distributions. In addition, due to our find-
ings in 2.1, we choose distributions that are not symmetric.

3.1 The Distributions
The truncated normal distribution is the result of bound-
ing the normal above and below. It is characterized by the
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Normal Trunc Beta Logit

Beats Normal - 100% 92% 87%
Beats Trunc 0% - 67% 75%
Beats Beta 8% 33% - 68%
Beats Logit 13% 25% 32% -

Average LL 0.272 0.333 0.336 0.353

Table 1: Win Rates and Likelihoods: How often
does each distribution outperform the others? The
logit-normal, beta and truncated normal models are
all better replacements for the normal distribution.
logit-normal has the highest likelihood.

mean and variance of its underlying normal, and when the
bounds are known, there is a closed form maximum likeli-
hood (MLE) estimate of these parameters [7]. The truncated
normal assigns a higher probability density to every value in
its domain than its underlying normal does, and as a result
it will strictly outperform the normal distribution in likeli-
hood. Although it is not symmetric around its mean, if it
includes the mean of the underlying normal, then its prob-
ability density function (PDF) will be mirrored across that
point. The truncated normal will be a good fit if test scores
are drawn not from a normal distribution but from a slice
of a normal distribution.

The beta distribution is the conjugate prior of the Bernoulli,
characterized by two parameters referred to as α and β. It
has no closed form MLE estimates, but there is a closed form
method of moments solution that can be used as a starting
point for optimization. When α = β, the beta has no skew,
but it can achieve a wide range of skew values by varying
the difference between the two parameters. The beta does
not have an intuitive interpretation in this context.

The logit-normal distribution [1, 5] is the result of ap-
plying the sigmoid (logistic) function6 to data sampled from
a normal distribution. Like the truncated normal, its pa-
rameters are the mean and variance of its underlying nor-
mal. The logit-normal and beta are known to approximate
each other [8], but the logit-normal comes with the advan-
tage of having closed form MLE estimates of its parame-
ters7. It also has a nice interpretation that comes from item
response theory. Logistic IRT models like 1PL/2PL/3PL
take normally-distributed student abilities and use a linear
transformation plus a sigmoid to transform them into prob-
abilities. If the logit-normal is a good fit for exam scores, we
can see it as performing the same kind of transformation to
go from an underlying unbounded variable to an observed
bounded one.

In addition to these, we tried a Two Gaussian Mixture Model
in case distributions were bimodal. However, it performed
worse than all three of these distributions despite having
more parameters, so we did not include it in our results.

6The sigmoid, given by σ(x) = 1
1+e−x compresses the reals

into the range (0, 1). Its inverse, the logit function given by
σ−1(p) = log p

1−p , does the opposite.
7Unsurprisingly, the MLE estimates for the mean and vari-
ance of the underlying normal are the mean and variance of
taking the logit (σ−1) of the exam scores.

Figure 3: Difference in performance between the
candidate distributions across sample sizes. Bands
show standard error. Assignments were downsam-
pled to simulate lower student counts.

3.2 Evaluating the Distributions
We fit each of the three distributions above plus the nor-
mal to each of the 4115 sets of exam scores in our filtered
dataset. In order to more easily fit our bounded distribu-
tions to the data, we compress all scores into the range
[0.05, 0.95]8. Specifically, if we have observed exam scores
x1, ..., xN , we map each xi to

x′i = 0.9 ∗ xi − xmin

xmax − xmin + 0.05

where xmin = mini xi and xmax = maxi xi. We use MLE
parameter estimation to fit the distributions and evaluate
them using log likelihood, defined as

LL(θ) =
1

N

N∑
i=1

log f(x′i|θ)

where f is a PDF parameterized by θ9. We obtain the same
semantic results when we use Earth Mover’s Distance in-
stead of Log-Likelihood as our goodness of fit metric.

3.3 Distribution Results
After performing this experiment, we find a clear hierarchy
with the logit-normal performing best, followed by the beta,
then the truncated normal, then the normal. Table 1 shows
this hierarchy in two ways. First, the average log likelihood
across assignments increases from left to right. Second, we
can see that the logit-normal is a better fit than the beta 67%
of the time, the beta is a better fit than the truncated normal
67% of the time, and the truncated normal is a better fit than
the normal 100% of the time10. It is a little bit surprising
that the beta outperforms the normal slightly more often

8[0, 1] may seem like the more natural choice, but both the
beta and the logit-normal perform poorly when values are
close to 0 or 1 (with the logit-normal unable to produce 0’s
and 1’s at all).
9Note that because the PDF’s are constrained to the range
0 to 1, our log likelihoods will come out positive.

10As mentioned above, this is because the truncated normal’s
PDF lies strictly above the PDF of its underlying normal.
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Baseline GPCM CRM LNM

Parameters/Item 0 B + 1 3 2
Average RMSE 0.307 0.258 0.278 0.255

Table 2: Loss for each IRT model measured across
4115 assignments. “B” refers to the number of scor-
ing categories for a given item.

than the truncated normal does, but this is the only result
in Table 1 that is inconsistent with our proposed hierarchy.

Figure 3 shows that our conclusion that the logit-normal is
the best choice is robust to sample size. All distributions
fit better as sample size increases, since larger numbers of
students result in smoother score histograms.

4. LOGIT-NORMAL IRT
Many of our results so far indicate that highly polytomous
exam data is also highly structured. Polytomous IRT schemes
like the Generalized Partial Credit Model (GPCM) [16] and
Graded Response [21] scale with the number of scoring cate-
gories per question and thus do not take advantage of struc-
ture in the shapes of the item characteristic curves. On
the other hand, continuous models like the Continuous Re-
sponse Model (CRM) are able to cut down on parameters by
assuming a parameterized function for each ICC. In this final
section, we will propose a continuous model that uses logit-
normals to make such simplifying assumptions and thus take
advantage of the underlying structure of our data.

We find that when it comes to fitting exam scores, the logit-
normal is just as successful when there are smaller num-
bers of unique scores available. Our model pushes that idea
to its limit by modeling each question on an exam with a
single logit-normal. The assumption is that highly poly-
tomous items will behave like mini exams and as a result
logit-normals will describe them well.

Our model fits a single ability θj ∈ R to each student j and
(as alluded to above) fits a logit-normal distribution to each
item i with parameters µi and σi. Let Si represent a random
student’s score on question i, and let Sij represent student
j’s score on question i. Our parameters are then related by
the following equations:

θ ∼ N(0, 1)

Si ∼ Logit-Normal(µi, σi)

E[Sij ] = σ(σiθj + µi)

As in section 2, we refer to our observed data as a matrix
A where Aij stores student j’s score on question i. In addi-
tion, we assume that the data has been shifted and scaled
as described in section 3.2. We fit this model in two steps:

1. Use MLE estimation to choose each µi and σi to fit
the observed distribution of Si’s. Specifically, if Ai is
the vector of observed scores on question i, we set µi
and σi to be the sample mean and sample standard
deviation of σ−1(Ai).

11

11Here we are applying the logit function σ−1 element-wise.

2. Choose each θj to minimize the total squared error of
the E[Sij ]’s. Specifically:

θj = argmin
θ

∑
i

(E[Sij ]−Aij)2

= argmin
θ

∑
i

(σ(σiθj + µi)−Aij)2

We use least squares to fit the θ’s because we have not de-
fined a probability distribution over Sij , which would be
required to perform MLE. More research is required to de-
termine what kind of probability distribution centered at
E[Sij ] will perform best.

4.1 Evaluating the IRT Models
We will evaluate our model based on how well it can use the
parameters it has learned to predict student scores on each
question. Note that in-sample evaluation is the norm for IRT
[14]. Specifically we will measure the RMSE between the
predicted E[Sij ]’s and the observed Aij ’s. If an assignment
has n students and m questions, this is calculated as:

RMSE(θ, µ, σ) =

(
1

mn

m∑
i=1

n∑
j=1

(E[Sij ]−Aij)2
)1/2

4.2 IRT Results
Table 2 shows the comparison across the whole dataset be-
tween our Logit-Normal Model (LNM) and:

• a baseline that uses each student’s normalized exam
score as a prediction for each question.
• a 2PL Generalized Partial Credit Model (GPCM) [16]

fit using EM.
• a Continuous Response Model (CRM) [20] fit using the

EM approach described in [24].

The fact that our model has the best performance despite
having the fewest parameters indicates that it is taking ad-
vantage of the structure of highly polytomous items. We can
conclude that discrete models are more complicated than
necessary on data like this. We can also conclude that the
assumptions about item characteristic curves in CRM are
not as good as the logit-normal assumption on this data.

5. CONCLUSIONS
Overall, we have shown that highly polytomous exam data
has a large amount of underlying structure that can help
us simplify our probabilistic models. Out of three bounded,
asymmetric candidates, the logit-normal came out on top
as the best prior for exam scores. In addition, the logit-
normal’s ability to model individual polytomous items al-
lowed us to develop a polytomous IRT model that is simple
and well-suited to this kind of data. We hope to have chal-
lenged the traditional assumption that the normal is the best
prior for student behavior, and we hope that more work will
be done to simplify IRT models for the highly polytomous
data produced by college-level courses.

6. FUTURE WORK
The main loose end from this paper is the fact that we did
not define full probability distributions over Sij in the logit-
normal model. Without these distributions, the model is
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Figure 4: Joint distribution of σ and µ item param-
eters from the Logit-Normal Model.

able to predict scores and abilities but unable to act as a gen-
erative model. Future research needs to be done to find out
what family of distributions best models Sij . In addition,
Figure 4 shows that there is a strong (somewhat ellipsoidal)
relationship between the item parameters of our model, in-
dicating that there may be further structure to exploit in
highly polytomous items.

While our results are convincing in the highly-polytomous
domain, more work is required to see how well they gener-
alize to less polytomous data. In addition, the logit-normal
needs to be tested on downstream tasks like peer grading in
order to verify that it is an effective prior for exam scores.

In the interest of reproducibility, and to enable further sci-
ence, the fully anonymized dataset used in this paper will be
made available to other researchers for appropriate academic
use. To gain access to the data, researchers must provide
IRB approval documentation and must sign an agreement
that ensures the anonymized data is treated appropriately.
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ABSTRACT
Automatic answer assessment systems typically apply se-
mantic similarity methods where student responses are com-
pared with some reference answers in order to access their
correctness. But student responses in dialogue based tutor-
ing systems are often grammatically and semantically in-
complete and additional information (e.g., dialogue history)
is needed to better assess their correctness. In that, we have
proposed augmenting semantic similarity based models with,
for example, knowledge level of the student and question dif-
ficulty and jointly modeled their complex interactions using
Probabilistic Soft Logic (PSL). The results of the proposed
PSL models to infer the correctness of the given answer on
DT-Grade dataset show the more than 7% improvement on
accuracy over the results obtained using a semantic similar-
ity model.

Keywords
Tutoring System, Answer Assessment, Probabilistic Soft Logic

1. INTRODUCTION
Open ended answers are responses produced by students to
questions, e.g. in a test or in the middle of a tutorial di-
alogue. Such answers are very different from answers to
multiple choice questions where students just choose one or
more options from the given choices and they are more eas-
ier to evaluate than open ended answers. In conversational
Intelligent Tutoring Systems (ITSs; [18, 14]), the systems
should be able to assess the students’ responses in order to
provide them appropriate feedback and to plan the subse-
quent part of the dialogue.

The true understanding of student answers is intractable as
it requires collecting and doing reasoning over a huge knowl-
edge, including the linguistic knowledge, domain knowledge,
and world knowledge. As a practical alternative, semantic
similarity methods are applied [5, 10, 15]. In this approach,
systems assess student responses by measuring how much

of the targeted concept is present in the student answer.
Accordingly, the subject matter experts create target (or
reference) answers to the questions that students will be
prompted to answer and the system assesses how much of
the targeted concept is present in the student answer by
measuring the semantic similarity between student’s answer
with reference answer.

The meaning of the reference answer is known because they
are created by subject matter experts. The high similarity
between student answer with reference answer indicates that
the answer is correct. Otherwise, the answer is partially cor-
rect, or incorrect. This approach has been widely used in
understanding student responses in tutoring systems and in
automatic answer assessment systems in general (see Sec-
tion 2). It is fast, does not require too much of information,
and has been often found to be effective.

However, the implied assumption in similarity based answer
assessment approach is that the student answer and the ref-
erence answer are self contained (i.e., grammatically and
semantically complete). But student responses in conversa-
tional tutoring systems vary a lot as illustrated in Table 1.
The meanings of students’ responses often depend on the di-
alogue context and problem/task description. For example,
students frequently use pronouns, such as they, he, she, and
it, in their response to tutor’s questions or other prompts.
In an analysis of tutorial conversation logs, Niraula et al.[13]
found that 68% of the pronouns used by students were refer-
ring to entities in the previous utterances or in the problem
description. In addition to anaphora, complex coreferences
are also employed by students.

Furthermore, in tutorial dialogues students react often with
very short answers which are easily interpreted by human
tutors as the dialogue context offers support to fill-in the
blanks or untold parts. Such elliptical utterances are com-
mon in conversations even when the speakers are instructed
to produce more syntactically and semantically complete ut-
terances [4]. By analyzing 790 student responses given to
DeepTutor tutoring system [14], we have found that about
25% of the times even human needed additional informa-
tion, such as the dialogue history in order to properly assess
them [2].

As illustrated in Table 1, the student answers may vary
greatly. For instance, answer A1 is elliptical. The bug in
A2 is referring to the mosquito and they in A3 is referring
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Table 1: Some student answers to the given question asked at some point during interactions with DeepTutor.

Problem description: A car windshield collides with a mosquito, squashing it.

Tutor question: How do the amounts of the force exerted on the windshield by the mosquito and the force

exerted on the mosquito by the windshield compare?

Reference answer: The force exerted by the windshield on the mosquito and the force exerted by the mosquito

on the windshield are equal and opposite.

Student answers:

A1. Equal

A2. The force of the bug hitting the window is much less than the force that the window exerts on the bug

A3. they are equal and opposite in direction

A4. equal and opposite

to the amount of forces exerted to each other. Due to such
variations in the answers, the semantic similarity methods
alone can have issues in properly assessing those answers.
For instance, the similarity between answer A1 and the ref-
erence answer will be very low.

In this paper, we present Probabilistic Soft Logic (PSL; [3])
model for improving automatic assessment of open-ended
answers in conversational ITS by augmenting the semantic
similarity model with additional information, such as ques-
tion difficulty and the knowledge level of the student. For
instance, a high knowledge student answering many of the
difficult questions correctly will probably answer the cur-
rent question correctly. The proposed method allows us to
model the complex interactions between the stochastic vari-
ables, such as student’s knowledge level, question difficulty
and the correctness of the student answer. In specific, the
proposed PSL model which works on probabilistic reasoning
framework allows us to concisely express our knowledge in
First Order Predicate Logic (FOPL) rules and to provide
the extent of our belief on such knowledge as weights. The
inference is done over Probabilistic Graphical Model (PGM).

We evaluated our models on a dataset consisting of 790
responses collected during DeepTutor experiments and an-
notated for their correctness. The results show that aug-
menting the similarity model with question difficulty and
knowledge level of the student improved the accuracy of our
answer assessment model by about 8% when compared to
results obtained using only the semantic similarity informa-
tion.

2. RELATED WORK
Our work is more focused on assessing student responses in
conversational tutoring systems. But most of the existing
work has been performed on standard test taking environ-
ment (e.g., assignment checking). In this section, we briefly
discuss approaches for constructed answer assessment where
the student answers are short (one to just few lines) and the
reference answers are available to compare with.

Martin et al. [9] proposed an assessment system OLAE using
Bayesian nets. Latent Semantic Analysis (LSA; [8]) and

machine translation evaluation methods are also applied for
answer grading. LSA method was also used in AutoTutor
system [7].

Various researches show that the similarity based methods
can be potentially used in the answer grading tasks [10, 15,
11]. In fact, a Semantic Evaluation (SemEval) shared task
called Joint Student Response Analysis and 8th Recognizing
Textual Entailment Challenge was organized in 2013 [5] to
promote and streamline research in this area and almost all
of the participating teams applied semantic similarity and
textual entailment techniques.

Although various results show that the similarity based meth-
ods can be used in answer grading tasks, their implied as-
sumption is that the text available are standard texts with
noise filtered. Our work is focused on using naturally occur-
ring texts from conversational tutoring systems where var-
ious linguistic phenomena are present, such as coreferences
and ellipsis as discussed in Section 1. We also augment the
semantic similarity based model using additional knowledge.

Furthermore, various datasets have been published over the
years [12, 10, 5, 17]. But dataset from conversational sys-
tems with additional information (e.g., previous utterance,
problem description, knowledge level of the student, ques-
tion difficulty) are very limited. We annotated 790 student
responses collected during an experiment with DeepTutor
[14]. The dataset is made available for research purpose [2].

3. DATASET
We created the DT-Grade dataset [2] by extracting stu-
dent answers from logged tutorial interactions between 36
junior level college students and the DeepTutor system [14].
During the interactions, each student solved 9 conceptual
physics problems and the interactions were in the form of
purely natural language dialogues, i.e., with no mathemat-
ical expressions and special symbols. We selected 790 an-
swers for the annotation. We chose the more difficult ones
(by observing responses from some students, the nature of
the question, and so on) such that the similarity based mod-
els alone will have difficulty judging those answers.
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Table 2: Summary of DT-Grade dataset.
Label Count

All 790
Correct 319 (40.379%)
Correct but incomplete 292 (36.962%)
Incorrect 179 (22.658%)

Each instance contains the following information: (a) prob-
lem description (describes the scenario or context), (b) tutor
question, (c) student answer in its natural form (i.e., without
correcting spelling errors and grammatical errors), (d) list
of reference answers for the question and has been assigned
one of the following labels.

1. Correct: Answer is fully correct in the context. Extra
information, if any, in the answer is not contradicting
with the answer.

2. Correct-but-incomplete: Whatever the student pro-
vided is correct but something is missing, i.e. it is not
complete. If the answer contains some incorrect part
also, the answer is treated as incorrect.

3. Incorrect: Student answer is incorrect.

The dataset and further details about the collection and
annotation of it can be found at [2].

4. PROBABILISTIC SOFT LOGIC MODELS
4.1 Background
Probabilistic Soft Logic (PSL; [3]) is an approach to com-
bining knowledge in the form of first-order logic rules and
probability in a single representation. It forms Probabilis-
tic Graphical Models (PGM) which allow us to efficiently
handle uncertainty and first-order logic allows us to com-
pactly represent the knowledge. Furthermore, it allows us
to jointly model the complex interactions among stochastic
variables. For example, voting decision of friends has some
influence on each other. Similarly, in answer assessment, a
high knowledge student giving correct answers to the diffi-
cult questions will probably answer another difficult or easy
question correctly and we can model such knowledge in a
PSL model. On the other hand, typical machine learning
algorithms assume that the data bear i.i.d. properties.

First-Order Knowledge Base. A first-order knowledge
base (KB) is a set of formulas in first order logic [6]. For-
mulas are constructed using symbols: constants, variables,
predicates, and functions. Constant represents an object
(e.g., John). Functions represent mappings from tuples of
objects to objects (e.g., FatherOf). Predicate represents re-
lations among objects (e.g., Friends) or attributes of objects
(e.g., Smokes). The formulas are typically written in clausal
form (also known as conjunctive normal form (CNF)). For
example,

Friends(x, y) ∧ Friends(y, z)→ Friends(x, z)

PSL Program. A PSL program consists of rules along
with relative weights associated with them and the data (or

observations). The weights in the following example rules
are assigned quite arbitrarily but they can be learned from
the data which we discuss later.

5.0 : Friends(x, y) ∧ Friends(y, z)→ Friends(x, z)

2.0 : Friends(x, y) ∧ Colleague(y, z)→ Friends(x, z)

The rules are grounded using observations, i.e., each variable
in the rules is assigned to all possible values in the observed
data. For example, if there are three people: Joe, Bob, and
Lili, then a grounded rule would look like,

5.0 : Friends(Joe,Bob) ∧ Friends(Bob, Lili)

→ Friends(Joe, Lili)

Predicates in PSL program can have truth values in the
range of [0 1], i.e. they are soft. For example, if it is not sure
about the friendship of Joe and Bob but there is some possi-
bility, then this uncertainty can be defined as a truth value
in the range of 0 to 1. This is different from Markov Logic
Network (MLN) where the predicates can have truth values
either true or false (i.e., constraints in MLN are harder than
PSL).

Prior Knowledge. The prior knowledge can also be en-
coded as rules in the PSL program. In our hypothetical
example, let’s assume that people who are neither friends
of friends nor friends of colleagues can still be friends but
the chances are very low. This can be expressed in the PSL
program as illustrated below. It should be noted that the
weight to our prior is very low as our belief is that any two
persons being friends to each other (given no additional in-
formation) is possible but very less likely.

0.0001 : Friends(x, z)

As mentioned, the weights to the rules can be learned from
the data itself. We discuss on this later. Next, we discuss
some of the variables, predicates and rules we used in our
PSL program (or model).

4.2 Model
Variables. Our model has two variables (s and a) and
by convention, the variables are represented by lower case
letters.

s - Student id, a - Answer id (or just id) which uniquely
identifies an instance in the dataset. It should be noted that
the question belonging to a may be same as that of some
other answer id b because the same set of problems were
attempted by multiple students.

Predicates. Following are the predicates used in our model.

• SimilarityHigh(a) ∈ {0, 1} - similarity of answer a
with corresponding reference answer is high

• SimilarityMedium(a) ∈ {0, 1} -similarity of answer a
with corresponding reference answer is medium
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• SimilarityLow(a) ∈ {0, 1} - similarity of answer a
with corresponding reference answer is low

• PriorKHigh(s) ∈ {0, 1} - prior knowledge of the stu-
dent s is high

• PriorKMedium(s) ∈ {0, 1} - prior knowledge of the
student s is medium

• PriorKLow(s) ∈ {0, 1} - prior knowledge of the stu-
dent s is low

• QDifficultyHigh(a) ∈ [0 1] - question difficulty is
high (fraction of students who answered the question
corresponding to a incorrectly)

• QDifficultyMedium(a) ∈ [0 1] - question difficulty is
medium (fraction of students who answered the ques-
tion corresponding to a correctly but incompletely)

• QDifficultyLow(a) ∈ [0 1] - question difficulty is low
(fraction of students who answered the question corre-
sponding to a correctly)

• AttemptedBySameStudent(a, b) ∈ {0, 1} - whether a
and b were attempted by the same student

• Correct(a) ∈ [0 1] - the truth value of answer a being
correct

• CorrectButIncomplete(a) ∈ [0 1] - the truth value of
answer a being correct but incomplete

• Incorrect(a) ∈ [0 1] - the truth value of answer a being
incorrect

We have created three predicates for semantic similarity and
for prior knowledge to avoid biases in assigning weights in
some rules. For example, if we have rules 3.0 : Similarity(a)→
Correct(a) and 2.0 : Similarity(a) → Incorrect(a), then
low value of similarity score will still favor the first rule.

Rules and Priors. We present few rules with quite ar-
bitrary weights. We learn the weights for those rules from
the data which we present later in this section. The priors
(starting with negation symbol ∼) specify the possibilities of
being false. It should be noted that the weights are relative
to each other and do not have to sum up to 1.

2.0 : SimilarityHigh(a) ∧ QdifficultyLow(a)→ Correct(a)

3.0 : SimilarityLow(a)→ Incorrect(a)

...

0.002 :∼ Correct(a)

0.004 :∼ CorrectButIncomplete(a)

0.003 :∼ Incorrect(a)

4.3 Data
We used DT-Grade dataset described in Table 2. It includes
responses provided by 36 students and we also had pretest
scores for them. The pretest was a multiple-choice test which
consisted of 39 questions.

Figure 1: An illustration of a grounded probabilistic
graphical network for a student. The shaded nodes
are evidence nodes and non-shaded nodes are query
nodes. CL - Correctness label, QD - Question diffi-
culty, STD - Student, KL - Knowledge level, SIM -
Similarity.

4.4 Grounding
During grounding phase, all the variables in the rules are
substituted with possible values from the observations (i.e.,
data). Figure 1 illustrates an example of a grounded graph-
ical network for a student’s data but the graph can grow
very large. For instance, the nodes corresponding to cor-
rectness labels of each answer are actually 3 (Correct, Cor-
rectButIncomplete, and Incorrect) but in the graph they are
represented by a single node CL. Similarly, the question
difficulty QD has three values (high, medium, and low) and
each one is actually represented by a separate node. Also,
each student has attempted around 20 questions in average
(counting those in the DT-Grade dataset only) which makes
the graph bigger than what is shown in the figure. We dis-
cuss on the scale of the network in Weight Learning section.

The shaded nodes in the graph are observed nodes which we
call evidence, whereas the light nodes are query nodes.
During inference, the truth values of the query nodes are
predicted jointly based on the evidence.

The similarity between student answer and the correspond-
ing reference answer was calculated using optimal word align-
ment based method which has performed very well in gen-
eral. We used the methods implemented in SEMILAR li-
brary [16]. We then grouped the similarity scores into high
(score > 0.5), medium (0.5 ≥ score > 0.35), and low (≤
0.35) using empirically chosen threshold values. Similarly,
we grouped the prior knowledge of the students into high (>
0.8), medium (0.8 ≥ score > 0.5), and low (≤ 0.5) based on
their pretest scores.

We calculated the question difficulty (high, medium, and
low) as discussed in Section 4.2 (predicate definitions re-
lated to question difficulty). However, for question diffi-
culty we have used soft values. In specific, each question
has soft value (in [0 1]) for each of the difficulty levels: high,
medium, and low. But for the difficult question, for ex-
ample, the truth value of the predicate QDifficultyHigh(a)
will have higher value than the truth value of the predicates
corresponding to other difficulty levels (medium, and low).
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Figure 2: Results of different Probabilistic Soft
Logic models on DT-Grade dataset. The models
ending with P used the prior information learned
using Logistic Regression (LR) models.

4.5 Weight Learning for PSL Rules
Laving out the internal details, the PSL rules’ weight learn-
ing process is similar to typical supervised model learning
process. We provide the ground truth (human annotated
correctness label of the given answer) for the query predi-
cate (which corresponds to a node in the grounded network
graph). For each answer, there will be three query predi-
cates one for each of the three labels. Since the labels are
mutually exclusive, only one of them is set to 1.0 while other
two will be set to 0.0. As we discussed earlier, the grounded
network can become very large depending on the set of rules
and the size of the dataset used to ground the rules.

Also, the same node cannot be a query node as well as evi-
dence node at the same time. Therefore, we have replicated
each student’s data several times and renamed their ids such
that we can make each answer in the original set (though
renamed) a query at one time while using it as an evidence
when other nodes are query nodes. This is important for
us in both training (i.e., learning rules’ weights) and eval-
uation phase because the dataset we used is comparatively
small. For instance, if we make one answer for each student
a query and keep others as evidence, then we will have only
36 records for the weight learning as well as for the evalu-
ation. But making each node a query node at least once,
we have the full dataset which is several times bigger than
the aforementioned size and we can also evaluate our model
using the full dataset (for example, by using leave-one-out
approach). In another words, this process allows us to utilize
the full set of data.

Just to get a sense of the scale of the graph, we assume
that each student’s data is replicated 5 times. Then the size
of the graph (by taking the dominant term only) will be
(5 ∗ 790) ∗ (5 ∗ 790) ∼ 15 million. Weight learning in such
a huge probabilistic graphical model is impossible at least
in our experimental settings. Therefore, we have pruned
some rules that rapidly increase the size of the graph (e.g.
the rules of the type: if answer to a is correct, then answer
to b is also correct for the given student) and the resulting
graph had about 200,000 nodes, on which we have managed

to learn the weights for the rules.

For those rules which rapidly increase the size of the network
with increasing size of the data, we have learned the weights
for each student and estimated the weights of the rules using
weights learned at student level which is the sub-optimal
solution. For each student, the average size graph had only
few thousand nodes.

5. RESULTS
Including semantic similarity and additional information, we
built several PSL models. For the experiments, we used
the PSL tool1 developed at University of Maryland, Col-
lege Park. The tool uses Hinge-Loss Markov Random Fields
(HL-MRFs) for inference and weight learning [1]. We set
the number of iterations to be performed by the optimizer
to 50,000.

By assuming that the performance of a student is inde-
pendent of others, we refactored the graph into subgraphs
one for each student and took the leave-one-student-out ap-
proach for PSL rules’ weight learning and evaluation. As
discussed in Section 4.5, we learned the weights for the rules
from 35 students at a time (except for few rules for which
weights were estimated using weights learned student-wise)
and applied to the leave out student. Performing inference in
such smaller graphs is computationally very efficient (takes
few seconds for each student when run in a normal worksta-
tion). Also, the question difficulty was calculated based on
training data only, i.e. using 35 students’ data at a time.

Once inference is complete, i.e. the truth values for Correct,
CorrectButIncomplete, and Incorrect predicates are as-
signed for each query answer. We then chose the correctness
label corresponding to the highest truth value among those
three. It should be noted that the truth value for each of
them was in the interval [0 1] but their sum does not have
to be 1.0. Then, we calculated the accuracy and F1 scores.
The results of our various models are presented in Figure 2.

The baseline system is the majority class classifier, i.e. which
labels each answer as correct. The accuracy of this baseline
model was 40.379% which is equivalent to the percentage of
correct answers in the dataset. SIM model used the similar-
ity information only. It obtained 9% improvement over the
baseline. As mentioned earlier, the DT-Grade dataset was
developed by selecting the difficult cases, particularly diffi-
cult to judge by only comparing the student answer with the
reference answer. Therefore, we consider 9% improvement
in accuracy over baseline results as a notable improvement.

We then augmented the model using knowledge level (KL)
of the student and question difficulty (QD). The KL in-
cludes the prior knowledge of the student which was assessed
using multiple choice questions. The results were improved
after adding question difficulty and knowledge level sepa-
rately. Furthermore, when combined together our model
achieved 53.417% accuracy which is above 4% improvement
over results obtained using similarity information only.

In an another experiment, we used the priors learned using

1http://psl.linqs.org/
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Logistic Regression (LR). In specific, we obtained the prob-
abilities (precisions) of any answer being Correct,
CorrectButIncomplete, and Incorrect based on correctness
predictions made by LR model when the given set of rules
were used as features and used them in our PSL models as
priors (model names ending P ). Since the priors in PSL
models needed to be in negated form, we deducted each
probabilities learned from LR from 1.0 and used the result-
ing values as priors. This has improved the results by about
5% in SIM QD model and about 3% in SIM QD KL
model. The results are above 7% when compared to SIM
model. These results are also better when compared to the
results of LR model itself. This shows that the LR model
which is very different from PSL can complement the PSL
model.

We learned priors using LR model only for SIM QD. The
SIM KL included pretest scores as well as rules of the type:
if answer to a is correct, then answer to b is also correct for
the given student. Such rules that capture the relational
dependencies are not easily modeled in Logistic Regression.
Furthermore, the results of SIM QD KL P is slightly less
than SIM QD P . It seems that the concordance between
the weights of the PSL rules and the priors learned sepa-
rately may not be perfect in some cases.

6. CONCLUSION
We presented joint learning models using Probabilistic Soft
Logic (PSL) for improving the assessment of open-ended stu-
dent responses in conversational tutoring systems where the
student responses can vary a lot. Specifically, our mod-
els augmented semantic similarity information with non-
linguistic knowledge (student’s knowledge level and ques-
tion difficulty) and improved the accuracy of the assessment
model when evaluated with DT-Grade dataset. The accu-
racy of our model using informed priors was up to 57.215%,
which is more than 7% improvement over the results of se-
mantic similarity based models. In the future, we intend
to add additional information in the model and improve on
PSL rules’ weight learning by clustering students’ data.
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ABSTRACT
Simplified categorizations have often led to college students
being labeled as full-time or part-time students. However,
at many universities student enrollment patterns can be
much more complicated, as it is not uncommon for stu-
dents to alternate between full-time and part-time enroll-
ment each semester based on finances, scheduling, or fam-
ily needs. While prior research has established that full-
time students maintain better outcomes than their part-time
counterparts, little study has examined the impact of mixed
enrollment patterns on academic outcomes. In this paper,
we apply a Hidden Markov Model to identify students’ en-
rollment strategies according to three different categories:
part-time, full-time, and mixed enrollment. According to
the enrollment classification we investigate and compare the
academic performance outcomes of each group. Analysis
of data collected from the University of Central Florida
from 2008 to 2017 indicates that mixed enrollment students
are closer in performance to full-time students, than part-
time students. More importantly, during their part-time
semesters, mixed-enrollment students significantly outper-
form part-time students. Such a finding suggests that in-
creased engagement through the occasional full-time enroll-
ment leads to better overall outcomes.

Keywords
Hidden Markov model, student enrollment mode, academic
outcomes

1. INTRODUCTION
In practice, either through choice or necessity [10, 15, 5, 11,
13], students engage in a variety of enrollment patterns over
their academic career that includes full-time and part-time
enrollment, or halting [13]. Based on a survey conducted
at 253 academic institutions, only 18% of students main-
tain full-time status during all semesters they are enrolled,
while 29% of students maintain part-time enrollment over
their whole academic career. Meanwhile, the majority of

students, 59%, change their enrollment status between part-
time and full-time at least once during their studies [1].

To date, part-time enrollment status has been indicated as
risk-factor to student success. Feldman [8] shows that on av-
erage, at the end of the first academic year, full-time college
students have higher retention rates and GPAs when com-
pared to the part-time students. In another study, Pelkey
[14] analyzed how race, age, enrollment status, GPA and
financial aid can impact a student’s persistence. Their anal-
ysis indicated that GPA and enrollment status, have the
highest impact on persistence at college. Not only is enroll-
ment status a factor but so is course-load, as demonstrated
in [6], students with more credits during their first semester
are more likely to complete their credits and degrees.

Despite it’s perceived importance to student success there is
no clear definition of what it means to be a part-time student
or full-time student outside the ephemeral academic label.
Given that the majority of students alternate between both
enrollment statuses, it appears to be overly simplistic to
group students together for analysis based on their enroll-
ment status during a single semester; there is likely value in
understanding more complex enrollment dynamics, and it’s
potential value in understanding student outcome. This as-
sertion is supported by a 2015 nation-wide study indicating
that student success can be found through mixed enrollment
strategies [16] – the authors report that non-first-time-in-
college students that attend college utilizing a combination
of part-time and full-time enrollment are less likely to drop
out and more likely to complete degrees when compared to
full-time students.

In this study, we seek to find a more comprehensive means
of identifying and clustering students with regards to their
enrollment strategy (e.g. part-time, full-time, etc). Un-
like a single-period model in which the students’ strategy is
equivalent to the observed student status (part-time or full-
time), we make use of a multi-period dynamic approach us-
ing the Hidden Markov Models. Through application of the
model we are able to provide a richer understanding of en-
rollment strategies, by extending our traditional notions to
include not only full-time and part-time enrollment strate-
gies, but also a mixed enrollment strategy. Students who
use a mixed enrollment strategy regularly alternate between
full-time and part-time status. After categorizing students
into three groups of full-time, part-time and mixed enrol-
ment strategy, we examine the student outcomes such as
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Stu. # Enroll. Status Enroll. Strategy
1 F,P,F,F,F,F F,F,F,F,F,F
2 F,P,F,P,F,P M,M,M,M,M,M
3 P,F,P,P,F,P,P P,P,P,P,P,P
4 P,F,F,P,P,P,P M,M,M,P,P,P,P

Legend FT=F, PT=P FES=F, MES=M, PES=P

Table 1: Example enrollment status’ over academic
career and corresponding enrollment strategies

GPA and graduation rate associated with each strategy.

2. PROBLEM STATEMENT
We consider the problem of classifying students according
to their enrollment strategy as opposed to their enrollment
status during any given semester. For many students the dis-
tinction between enrollment strategy and actual enrollment
is minor. At the University of Central Florida a students is
considered as full time student in a given semester if he or
she takes more than 12 credits in that semester. For approx-
imately 35% of the student-body at the University of Cen-
tral Florida, their enrollment status is consistently full-time
throughout their academic career, meaning they employ a
strategy of enrolling full-time. In contrast, the case for so-
called part-time students it is not so clear. In any given
semester, about 30% of enrollments are part-time, and yet
only 7% of students consistently enroll part-time over their
academic career. Enrolling part-time in any given semester
is not equivalent to the strategy of consistently enrolling
part-time. It follows that just because a student enrolls in
a single semester part-time, that does not mean they bear
similarity to student’s who consistently enroll part-time.

The goal of this paper is to recognize and report the dis-
tinction between a student’s enrollment strategy and enroll-
ment status, and to find a more meaningful way to classify
students over their academic career. More specifically, this
paper develops a model that takes as its input a sequence
of enrollment statuses and returns a sequence of estimated
strategies applied over the same time-frame. In recognition
that students apply a greater diversity of strategies then
just a full-time enrollment strategy (FES) or part-time en-
rollment strategy (PES), we introduce the notion of a mixed
enrollment strategy (MES). For a mixed enrollment strategy,
students alternate between part-time and full-time enroll-
ments. Table 1 provides examples of the enrollment status
of four different students over their academic career along
with the corresponding enrollment strategies. For example,
enrollment strategies for student number 1 through number
3 are FES, MES, and PES respectively.

3. METHODOLOGY
In this study, we generate and apply a Hidden Markov Model
(HMM) to identify students’ enrollment strategy, and to
characterize the impact of enrollment strategy on student
outcomes. The use of HMM is not new to educational
data mining and modeling. Previously it have been used to
investigate students’ sequential behaviors, decision-making,
and performance [2, 3, 4, 9, 12, 7]. As an example Falak-
masir et al. [7], classified students into low-performing and
high-performing groups and applied and trained two hidden
Markov models for each group separately. For each HMM,

Figure 1: Representation of a simple Hidden
Markov Model

they used forward algorithms to compute log-likelihoods for
the observation sequences. They continued by applying a
linear regression model to explain the difference between
the computed log-likelihoods so as to predict post-test scores
for the low-performing and high-performing students. Other
papers have used HMMs in order to model sequential stu-
dent behavior. Beal et al [4] colleagues modeled high school
students’ actions and behaviors using HMMs. By estimating
HMM parameters with the Baum-Welch algorithm for each
student, the authors clustered the students based on the in-
dividual transition matrices to assess differences in behavior
and achievement of different clusters.

As depicted in Figure 1, similar to ordinary Markov Mod-
els, a HMM represents the dynamics of a system as it moves
between operating states or modes (e.g. Modes 1, 2, and 3
in the figure). When operating within a state or mode, the
system generates state-related output Oi at each time-step.
Unlike Markov Models, in the case of the HMM problem
the states are not always directly observable, and as such
they can only be estimated by observing a sequence of out-
puts. For the problem under consideration here, the hidden
state corresponds to the enrollment strategy of a student
(e.g. full-time enrollment strategy, mixed enrollment strat-
egy, part-time enrollment strategy), and the observations
refer to the actualized enrollment in any given semester in
the student academic history.

To give a formal definition of Hidden Markov models, we
must begin with the following notations: Q = {q1, q2, . . . , qN}
represents the set of N possible states in the system; A =
[ai,j ] ∈ RNxN is a transition matrix, where each aij denotes
the probability of transitioning from state i to j at any given
time-step; O = o1, o2, . . . , oT represents a sequence of obser-
vations of length T , each drawn from the set of M possible
observations V = {v1, v2, . . . , vM}; and π represents the dis-
tribution of the initial state the system begins in. When a
system is operating in a specific state qi, the output ot at any
given time t is generated according to a unique probability
distribution denoted as B = bi(ot), the emission probability.

In order to generate a HMM to represent student enroll-
ment strategies, we must learn the optimal model parame-
ters λ = (A,B, π) that reproduce known observations. The
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process of learning λ is based on the Baum-Welch algorithm,
which is an iterative process that requires calculating the
likelihood of any sequence of observations given λ, and de-
coding relationships between observations and hidden vari-
ables. As the model is iteratively updated, the likelihood
calculations and the decoding is updated.

4. STUDENT DATA RECORDS
The study presented in this paper makes use of processed
undergraduate student records collected from the University
of Central Florida, a large public university in the southeast
United States, between the years of 2008 to 2017. The to-
tal data-set amounts to approximately 170000 records. The
data set contains a wide variety of information about stu-
dents at UCF, Including but not limited to: (1) demographic
Information, (2) admission information for students who
have been admitted and enrolled, (3) degrees awarded (for
bachelor level), (4) courses taken by student at UCF, and
(5) family income. Some of the demographic information
along with the fraction of students who enroll as full-time
and part-time, and admission type (FTIC and transfer) are
provided in Tables 2 through 5.

Table 2: Students gender distribution at UCF over
10 years

Females Males
Percentage 56% 44%

Table 3: Students ethnicity distribution at UCF over
10 years

White Hispanic African-Am. Other1

Percentage 55% 24% 11% 10%

Table 4: Students admission type distribution at
UCF over 10 years

First-Time-in-College Transfer
Percentage 41% 59%

The processed student data includes a unique identifier, along
with the student’s observed academic load for semester they
enrolled. Synthetic examples are shown in Table 1. For
each student their enrollment sequence is ordered from their
first observed enrollment to their last observed enrollment
without making note of the semester or year. The data set
includes both partial, halted, and graduated enrollment se-
quences within the indicated 10 years date-range. For the
purposes of this study we restrict the problem to enrollment
during Fall and Spring semesters, as such information re-
garding Summer enrollment is excluded when constructing
the HMM. It is worth noting that the data-set includes both
first-time-in-college students and transfer students.

1The other category includes American-Indian, Asian, Na-
tive Hawaiian, and Multi-racial ethnicity

Table 5: Enrollment type distribution for different
semesters at UCF over 10 years

Semester Full-time Part-time
Fall 73% 27%

Spring 71% 29%
Summer 10% 90%

5. APPLYING HMM TO STUDENT DATA
In applying the HMM model to our problem, we begin by
identifying the set of hidden states corresponding to three
different enrollment strategies: full-time enrollment strategy
(FES), part-time enrollment strategy (PES), and mixed en-
rollment strategy (MES). The probability a student changes
his or her enrollment strategy from one semester to the next
is represented using a probability transition matrix A. While
the probability of observing an enrollment status while us-
ing a specific enrollment strategy is given by the emission
matrix B. Finally, π is the probability distribution over
the students enrolment strategy during their first enrolled
semester.

Beginning with an initial guess for A, B, and π, the Baum-
Welch algorithm is applied to estimate the true model pa-
rameter set (λ). Converging after 20 iterations, the following
values for A, B, and π are generated:

A =

0.898 0.05 0.052
0.168 0.74 0.092
0.007 0.12 0.873

 (1)

B =

0.974 0.026
0.611 0.389
0.061 0.939

 (2)

π =
[
0.718 0.113 0.169

]
(3)

For any two subsequent semesters t and t + 1, the rows in
the transition matrix A correspond to states FES, MES and
PES at semester t, while the columns correspond to states
FES, MES and PES at semester t + 1. Based on the esti-
mated transition matrix A, most of the students maintain
their enrollment strategy with high probabilities from one
semester to the next. Reading the diagonal of the matrix,
with .898 probability a student employing a FES will con-
tinue employing a FES, similarly .74 for PES and .873 for
MES. This indicates that most students maintain a static
enrollment strategy, even if it is a mixed one.

For emission matrix B, each rows correspond to the proba-
bility of full-time and part-time enrollment status in a semester
for a given enrollment strategy. Result indicate that stu-
dents employing FES register full-time with probability 0.974
and as part-time with probability 0.026. While students em-
ploying a PES only register full-time with probability 0.061
versus part-time at 0.939. Most interesting are students with
MES, as their full-time and part-time enrollment is split be-
tween 0.611 and 0.389. The, initial probabilities matrix π
indicates that most of the undergraduate students start their
first semester with full-time enrollment strategy (with prob-
ability 0.718). Moreover, the probability of being at PES
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Figure 2: Distribution students’ enrollment strategy

and MES at the first semester are 0.169 and 0.113 respec-
tively.

6. ANALYSIS
After estimating model parameters, the next step is to find
the strategies (hidden states) for each student in the data
set at each semester with the Viterbi algorithm. Based
on the estimated hidden states, students are classified into
four groups, three of which corresponds to the students who
maintain a consistent strategy of FES, PES or MES dur-
ing their education. The last group corresponds to students
who employee a combination of FES, MES and PES over
their academic career. Figure 2 shows how students are dis-
tributed among these four groups.

Based on Figure 2, most of the students maintain their en-
rollment strategy during their educational career (Sum of
green, red and yellow slices, approx. 73.4%). The most
prevalent consistent enrollment strategy is FES, followed
by PES and MES groups. For those students that change
strategies at some point in the academic career, 73%, change
from FES to PES, and 15% move from PES to MES. For vir-
tually all cases of FES to PES, the majority of students ad-
just their enrollment strategy during their last two semesters.
Anecdotally, it appears this shift is due to course scheduling
inefficiencies and early entrance into the work place through
co-op placements.

Furthermore, Table 6 represents percentage of male and fe-
male students for different enrollment strategies. The per-
centage of female students in FES, MES, and PES groups
are 55%, 54%, and 55% respectively, which emphasizes that
students enrollment strategy is independent of students gen-
der. Table 7 indicating how students with different ethnicity
are distributed among the three enrollment strategy groups.
As the table shows, the ratio of students with white and His-
panic ethnicity in FES group are different to MES and PES
groups. Hypothesis t-tests are conducted to assess statistical
significance of these differences. For FES and PES groups,
the p-value is close to 0, implying the difference in the ratios
are statistically considerable. However, other complicating
factors have not been considered.

Clustering of the students based on enrollment strategy (FES,
PES, MES), a number of descriptive statistics are calculated.

Table 6: Female and male ratios for students with
different enrollment strategies

Strategy Female Male Number of students
FES 55% 45% 74571
MES 54% 46% 5321
PES 55% 45% 20466

Table 7: Ethnicity ratios for students with different
enrollment strategies

Strategy White Hispanic African-Am Other
FES 56% 22% 12% 10%
MES 50% 27% 13% 10%
PES 50% 27% 13% 10%

They include average cumulative GPA, family income, 6-
year graduation rate, and halting. The average GPA for each
strategy cluster is shown in Figure 3. Results show that the
FES group has the highest average GPA. The lowest GPA
corresponds to the PES group, while the MES group’s GPA
lies in between.

Figure 3: Average GPA for different enrollment
strategies

To assess if the average GPA for each group are statistically
different from the other groups, statistical hypothesis t-tests
are conducted. The result shows that the p-values for all the
hypothesis tests are nearly to 0, indicating that the average
GPA for each group is statistically different from others.
The results are summarized in Table 8.

Furthermore, inside each strategy cluster, the average GPA
during full-time and part-time semesters are calculated. As
indicated in Figure 4, for the FES group the average GPA for
full-time and part-time semesters are 3.1 and 2.8. This indi-
cates that students employing a full-time enrollment strat-
egy, tend not to perform as well when registering part-time.
The same conclusion is observed for students in the PES
group, that is, student utilizing a part-time enrollment strat-
egy perform better when they enroll full-time2. Of interest

2For both FES and PES, comparison of GPAs between full-
time and part-time semesters through difference of means
statistical tests rejects the null hypothesis that the means
are equal, P=.001<.05
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Table 8: Results for the GPA hypothesis tests
Pair of groups P-value
FES and PES 0

FES and MES 6.5e−84

MES and PES 1.82e−86

Table 9: Results for the family income hypothesis
tests

Pair of groups P-value
FES and PES 0.7463
FES and MES 0.6518
MES and PES 0.9603

however, is that for students employing a mixed-enrollment
strategy hypothesis tests indicate there is no statistical dif-
ference in means between the average GPAs of full-time and
part-time semesters; in other words, the semester enrollment
status for MES students does not significantly impact their
GPAs. While the GPA reductions observed for students em-
ploying a full-time enrollment strategy and part-time enroll-
ment strategy appear reasonable, the lack of GPA drop for
mix enrollment strategy students is somewhat surprising, it
suggests potential value in encouraging part-time students
to occasionally enroll full-time.

Next, the impact of the family financial status on student
enrollment strategy in each group is compared. As shown in
Figure 5 the annual family income for students in all three
groups of FES, MES, and PES are close to $75000. This
implies that at UCF, students enrollment strategy is inde-
pendent to the family income. Kolmogorov-Smirnov (K-S)
test is applied in order to assess if there is statistically sig-
nificant difference in family income distribution for students
with different enrollment strategy. As shown in Table 9, the
hypothesis test results p-values greater than 0.05 for all three
group pairs of indicating no significant difference in annual
family income between students with different enrollment
strategies.

The next criteria for comparing student performance be-

Figure 4: Average GPA for full-time and part-time
semesters based on employed strategy

Figure 5: Annually family income for different en-
rollment strategies

Figure 6: 6 year graduation rate for students utiliz-
ing different enrollment strategies

tween the three different groups is the 6-year graduation
rate, summary statistics provided in Figure 6. As the plot
shows, PES group has a lower graduation rate (37.3%) when
compared to MES and FES groups (with similar graduation
rates of approximately 75% adn 74%). While the perfor-
mance difference between PES and FES follows prior stud-
ies, it is interesting to note that employing a mix enrollment
strategy does not appear to hinder graduation rates3.

7. CONCLUSION
The long-term vision of this research is to help identifying
strategies that engender student success. Towards that end,
this paper examined different enrollment strategies students
apply over their academic career. Through application of
Hidden Markov Models on a large student data set, we noted
three dominant consistent strategies: full-time enrollment
strategy, part-time enrollment strategy, and mixed enroll-
ment strategy. The resulting HMM and its application leads
to the conclusion that most of the students have a full-time
enrollment strategy. When assessing different features of
the three different enrollment strategies, we observe that
the average GPA for FES students is the highest, followed
by MES and PES students. While graduation rates indi-
cate that students employing the PES are more at risk of

3Difference of proportions fails to find a difference between
FES and MES graduation rates, P=.112>.05
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not graduating college. Also, financial analysis shows that
there is no statistically significant difference between family
income distributions for students with different enrollment
strategies.

The major contributions of this research is twofold. Firstly,
we provide a powerful tool for identifying students enroll-
ment strategy as FES, PES or MES, based on their histor-
ical enrollment status. Secondly, our multi-aspect assess-
ments on each group of students, emphasizes the vulnerabil-
ity of the PES group, while encouraging university to policy-
makers identify such students early during their studies and
help them shift towards a mixed enrollment strategy by pro-
viding them with financial, educational, and social support.
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ABSTRACT
How to support students in programming learning has been
a great research challenge in the last years. To address this
challenge, prior works have mainly focused on proposing
solutions based on syntactic analysis to provide students
with personalized feedback about their grammatical pro-
gramming errors and misconceptions. However, syntactic
analysis falls short on informing learners how they solve the
programming problem, even if one key learning outcome of
programming relates to the development of an individual’s
ability to solve a problem. In this article, we introduce an
indicator to analyze beginners’ code based on semantic prox-
imity. This indicator adapts an edit distance algorithm (i.e.,
the Levenshtein distance) to express the proximity of the
students’ code with the expected solution provided by the
teacher, in order to express the learners’ capacity to solve
the given problem. To process our indicator, we applied ma-
chine learning techniques to a dataset from an introductory
programming course with a sample of 166 students. The
first results are encouraging. On the one hand, the semantic
indicator can be used to automatically classify source codes
as semantically correct or incorrect in 58% of the cases. On
the other hand, the indicator is correlated with teachers’
summative evaluations of students’ codes. Even if further
investigations must be conducted to improve the indicator’s
accuracy, the results of this study make it possible to use our
approach as the foundations for future research in semantic-
based intelligent and awareness programming systems.

Keywords
Programming learning, Semantic analysis, Educational data
mining, Edit distance, Levenshtein algorithm

1. INTRODUCTION
Computer literacy is currently booming. In Europe, par-
ticularly in Germany and the United Kingdom, profound
educational transformations have been initiated since 2016
to promote digital learning in schools and prepare learners

for the acquisition of 21st century skills, which include pro-
gramming learning. In France, for example, an educational
reform of High School curricula that will be operational next
year offers a Digital and Computer Science option that in-
cludes more than 350 hours of programming learning. This
interest in integration of programming learning skills early
in the curriculum requires not only prepared teachers, but
also technological solutions to support them and their stu-
dents in their daily practices.

With this purpose, the Technology-Enhanced Learning re-
search community has been interested in designing systems
dedicated to support learning of programming, as evidenced
by different efforts intended to analyze learners’ behaviour
[14, 12]. One of the most common approaches in prior
works consists in designing systems that analyze learners’
programming codes from a syntactical perspective. These
systems make a syntactic evaluation of students’ codes to
detect grammatical errors and provide appropriate and con-
structive support to learners to avoid misconception errors
[15]. However, delivering feedback about syntactical errors
falls short on providing meaningful information about how
students approach the programming problem. Yet, one of
the key learning outcomes of programming relates to the
development of an individual’s ability to solve a problem
[11]. One approach to achieve this goal is to design systems
able to analyze source codes from a semantic perspective,
i.e., able to show how the problem has been solved. Al-
though there have been some initiatives approaching code
evaluation from a semantic perspective [5], works on this
line are still scarce and very few solutions have been pro-
posed. Thus, more solutions based on semantic analysis are
needed to better understand the potential of this approach
in supporting learning of programming.

To advance on semantic analysis-based solutions, this article
introduces the design of an indicator revealing the semantic
proximity of two distinct source codes in order to express the
correctness of a learner’s code regarding a given problem,
and tackles the following research questions:
Research question 1: How to design a semantic indicator
revealing learner’s ability to solve a problem?
Research question 2: Is the semantic quality of a learner’s
production correlated with his/her academic performance?

To answer the first question, we adopt an approach based
on the comparison of abstract syntax trees. We adapt the
edit distance established by Levenshtein, an algorithm that
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has proven effective in comparing and correcting strings of
characters. Then, we propose a machine learning method to
determine some of the factors required to process the seman-
tic proximity using source codes produced by 166 students.
For the second research question, and with the objective of
evaluating the precision of the indicator in relation to hu-
man perception, we conduct a set of statistical analysis with
source codes gathered from an authentic learning context.
In particular, we analyze the correlation between the value
of our indicator automatically processed, and the teachers’
scores manually assigned to students’ source codes.

In the following section we review what current approaches
dedicated to automatic source code analysis are currently
available in the literature, and highlight a lack of semantic-
driven proposals. Then, in Section 3, we present how the
semantic indicator was designed; as stated above, the indi-
cator stands on the Levenshtein distance adapted to source
codes comparison, and depends on a set of parameters lead-
ing to its calculation. Section 4 then introduces the machine
learning method we used to assign values to these different
parameters, whereas Section 5 describes the dataset used to
actually determine the values of the parameters. Section 6
gives the results we obtained, and evaluates the quality of
the indicator at two different levels: its capacity to act as a
semantic classifier, and its correlation with human percep-
tion. Finally, we discuss the results of this study as well as
the main conclusions of the work.

2. APPROACHES FOR AUTOMATIC
SOURCE CODE ANALYSIS

In the context of programming learning, automatic source
code analysis is used to achieve different objectives such as
improving feedback provided to learners [7, 9], predicting
their performance [1, 16], or monitoring their activities [3].

These automatic analyses are performed by compiling the
code [6], by searching for typical errors within a source code
[9], or by running unit tests provided by teachers [13]. These
various works guide learners in the production of syntacti-
cally correct programs, but they do not allow the source
code to be evaluated at a semantic level: syntactic evalu-
ation is not sufficient to reflect the relevance of a learner’s
production regarding a problem given by the teacher.

In the meta-review proposed by Ihantola et al. [8] who stud-
ied no less than 118 research articles in the field of educa-
tional data mining for programming, the word semantics is
missing from the paper. Also, a search for the terms "se-
mantic analysis programming" in Google Scholar and Web
of Science returns a large number of results, but no scientific
articles really deal with semantic analysis of code.

The works we have identified that are close to a semantic
analysis are those proposed by Bey et al. [5]. In order to pro-
pose an automated assessment of learners’ code in a Massive
Open Online Course (MOOC), the authors propose to com-
pare the control flow graph matching with the code produced
by the learner, with a set of graphs stored in a database
and manually assessed by experts [2]. If the learner’s graph
is recognized among the graphs of the database, then the
matching score is returned to the learner; if it is not recog-
nized, then the learner’s production is manually assessed by

a human expert to enrich the database of graphs.

The lack of work addressing automatic analysis of source
code from a semantic perspective can be explained by the
fact that the semantics of a program can not be calculated.
Our research try to go beyond this limitation and propose
the design of an indicator that reveals the relevance of a
source code regarding a given problem.

3. SPECIFICATION OF THE SEMANTIC
INDICATOR

Our objective is to design an indicator able to evaluate the
distance between two source codes from a semantic perspec-
tive and fulfilling the following requirements: (i) teachers
should only produce a solution to the problems delivered
to students, in contrast, for example, to methods based on
unit tests which are time consuming; (ii) the distance should
decrease as the student approaches the solution, so that an
incomplete script can be evaluated even if it does not fully
address the problem posed. Therefore, if the solution of a
problem is provided by the teacher, then the distance be-
tween this source code and the learners’ productions should
give insights about their ability to solve the problem.

The field of natural language processing has for a long time
studied problems related, for example, to spelling correc-
tion where semantics is naturally taken into account [4]. To
design our semantic indicator, we studied algorithms capa-
ble of processing the edit distance between two sequences
of characters, and built our proposal upon the Levenshtein
algorithm which has been shown very useful for calculating
the distance between two strings of characters.

3.1 Levenshtein distance
The edit distance between two strings of characters, or Lev-
enshtein distance [10], is defined by a cost calculated from
the minimum number of operations (i.e., insertion and dele-
tion of a character, and substitution of one character by
another) required to move from one string to another. In
the case of character strings comparison, the costs asso-
ciated with each of these operations are all set to 1, but
the cost of the substitution of a character by itself which is
0. To apply this algorithm to source code, two challenges
must be tackled: (i) the design of a formal representation
of the source code in order to make it comparable at a high
abstraction level, and (ii) the assignment of a specific cost
to each elementary operation according to the importance
of the modifications to be made to move from one source
code to another. Indeed, substituting two instructions im-
plementing the same functionality should not have the same
cost than replacing an instruction with another one charac-
terized by a very different functionality.

3.2 Formal representation of source code
Our proposal for building a formal representation of source
code relies on two steps: transformation of the source code
as an Abstract Syntax Tree (AST), and transformation of
the AST into a string of elementary instructions.

3.2.1 Production of the abstract syntax tree
We have adopted abstract syntax trees to formally represent
a source code as they do not represent nodes and branches
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that do not affect the semantics of a program. We rely
on a parser written in JavaScript that reads a script and
returns the matching abstract syntax tree formatted as a
JSON object; an example illustrating the conversion of a
Bash source code to an AST is given in Figure 1.

With the formal representation proposed above, the mea-
surement of our indicator corresponds to the edit distance
between two abstract syntax trees. However, in order to
adapt Levenshtein distance to our context, we need to con-
vert the AST generated from the source code into a string of
characters; from a terminology point of view, we name to-
kens the characters resulting from the AST transformation
process so as not to confuse them with those contained in
the source code. Thus, we carry out an in-depth exploration
of the AST to create the string of tokens.

3.2.2 Production of the string of tokens
The Bash language, the subject of our study, proposes 17
control structures, each corresponding to a different token.
A token can be of the type Command, of the type Assignation,
or of the type While, Do or Done to indicate the begin-
ning, body or end of a loop respectively. Note that the
tokens Command keep the name of their command and argu-
ments.The transformation of the AST represented in Fig-
ure 1 into a string of tokens is illustrated in Figure 2.

The Levenshtein distance between two strings of tokens is
therefore characterized by a number of costs, or parame-
ters, matching with the different elementary operations of
insertion, deletion and substitution of each token. The 17
tokens of the Bash language lead to the definition of 308
costs: 17+17 costs to create and delete a token, 16x17 costs
to substitute one token by another, 1 cost to substitute a
token Command by another characterized by a different com-
mand name, and finally 1 cost to substitute a token Command
by another characterized by identical names and different ar-
guments. This number of parameters is too high to imple-
ment an effective machine learning method, as it decreases
the density of tests and makes more difficult the search for
"good" values of parameters.

3.3 Reduction of the number of parameters
A first operation to reduce the number of parameters to be
trained consists in ignoring the tokens Until, Subshell and
Pipeline because the matching control structures do not
appear in the dataset used for this study (see Section 5).
We also propose to symmetrisize the problem by assigning
equal costs to the insertion and deletion operations of a to-
ken; similarly, the substitution of the token A by the token
B has a cost equal to the substitution of B by A. This sym-
metrization makes the distance between the scripts S1 and
S2 equal to the distance between S2 and S1, and reduces the
number of parameters to 107.

Finally, we assume a stronger hypothesis by considering that
only certain tokens can replace others. Thus, only the fol-
lowing groups of tokens can substitute each other: {Command,
Assignation}, {If, Case}, {Then, Else, CaseItem}, and
{For, While}. Indeed, it is possible that a script contains a
Case where another script uses a If, but it is unlikely that a
substitution of a For by a If appears frequently, these two
instructions having very different objectives.

These simplifications considerably reduce the number of costs,
since 23 parameters must now be calculated. Let us note θ
the vector containing these 23 costs. Our indicator, noted
d(S,C, θ), is then defined by the edit distance, under the 23
parameters θ, between the string of tokens representing the
script S and the one matching with the script C. The next
section introduces the machine learning criterion leading to
the optimal values of θ.

4. MACHINE LEARNING METHOD
To train the correct values of the 23 costs of the θ parame-
ter, we define the machine learning criterion Score(θ) to be
minimized such that:

Score(θ) =

∑
(S,C)∈Correct

√
d(S,C, θ)∑

(S,C)∈Incorrect

√
d(S,C, θ)

(1)

where Correct (resp. Incorrect) is the set of pairs composed
of the correct (resp. incorrect) scripts of the learning dataset
(see next section) and the associated corrections.

The Score function is low when the correct scripts are as-
sociated to short distances, and the incorrect scripts to long
distances. We add the square roots of the distances to re-
duce the influence of high values.

We can notice a property of the function d:

∀λ ∈ R∗+, d(S,C, λ.θ) = λ.d(S,C, θ) (2)

Then it is obvious that Score(λθ) = Score(θ). This means
that the Score function is constant on all rays from 0, and
that exploring the different costs of the θ parameter, noted
θi such as 0.01 < θi ≤ 1, is sufficient to find the values of
θi minimizing Score. The dataset built from an authentic
learning situation and that was used to determine the θi is
described in the next section.

5. DATASET FOR CALCULATING COST
The dataset was obtained in an IT department of Higher
Education Institute of Technology (HEIT) during an intro-
ductory course on Bash programming attended by 166 first
year students. Learners discover common commands such as
echo, ls, read or cat, variable management, as well as some
control structures of the Bash language (e.g., for, while, if,
case). Students then put these concepts into practice dur-
ing hands-on sessions where they produce Bash scripts to
try to solve a series of problems.

The dataset includes the students’ scripts produced during
five practical sessions of one hour and a half. Each time a
student saves the modifications of her Bash script, a copy
of the script together with its timestamp and the identifier
of the student is saved in a directory to enrich the dataset.
Thus, our sample includes 19232 scripts. However, a number
of nomenclature errors or file numbering made 18% of these
scripts unusable: the dataset is composed of 15794 scripts.

This sample includes, for the same exercise, several scripts
produced by the same student. However, machine learning
methods are effective when they are based on independent
data. We thus only consider, per exercise and per student,
the last script produced by the learner because we assume
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Figure 1: Converting a source code into an abstract syntax tree.

Figure 2: Converting an abstract syntax tree into a string of tokens.

that it is the most complete. This choice allows to obtain an
independent dataset, but reduces the sample to 2540 scripts.

Finally, we want to be able to manually classify each script
of the dataset into two distinct categories (i.e., Correct and
Incorrect) expressing their semantic accuracy, in order to
evaluate the accuracy of our indicator as a semantic classifier
(see next section). However, some exercises suggested by the
teachers of this course do not allow for a semantic analysis
of students’ productions. For example, some problems are
related to the understanding of the execution of a script
provided in the statement, while others have instructions
that are too open to assess whether a script represents a
solution to the problem. After this classification process,
the final sample includes 733 scripts spread over 11 different
exercises; 397 scripts are semantically correct, the others
being semantically incorrect.

This dataset was randomly divided into a learning dataset
whose objective is to identify the values of the θ param-
eter that minimize the machine learning criterion, and a
test dataset that aims at evaluating the relevance of the re-
sults obtained during the machine learning phase. These
two samples contain the same number of scripts for each
exercise, and the proportion of semantically correct and in-
correct scripts is preserved. In addition, let us note that a
solution was provided by a teacher for each of the exercises.

6. RESULTS AND EVALUATION
6.1 Values of costs
The learning dataset was used to initialize the gradient de-
scent minimization algorithm. The vector minimizing the

Score function, noted θ, admits values of 0.01 (i.e., the min-
imum value we have set) almost everywhere except for three
parameters: (1) the creation or deletion of a token Command,
whose cost is 1; (2) the creation or deletion of a token If,
whose cost is 0.112; (3) the creation or deletion of a token
Function, whose cost is 0.022.

At this stage, we have the parameter θ which contains the
values of the 23 costs that were obtained by our learning
method. The objective of the tests conducted in the fol-
lowing section with the parameter θ on the test dataset is
twofold: to study the ability of our indicator to distinguish a
semantically correct script from an incorrect script ; to study
the correlation between our indicator and manual scores as-
signed to scripts by teachers.

6.2 Study of prediction
A first approach to assess the relevance of our indicator un-
der the parameter θ is to evaluate its ability to automatically
classify a script as correct or incorrect from a semantics point
of view. In a first step, we calculate the distance d(S,C, θ)
between each script S of the test dataset and the correction
C of the matching problem, in order to obtain a value of our
indicator for each correct and incorrect script.

The next step consists in evaluating the prediction model
resulting from the different values of the indicator. To do
this, we use the ROC metric, which is widely used to observe
the performance of a binary classifier. When the classifier
calculates a metric m that is compared to a σ threshold to
predict the class, the idea of the ROC curve is to vary σ from
1 to 0 and, for each σ value, plot the false positive rate on
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\#! /bin/sh 
if ( -d \$directory]; then 

echo "Directory exists" 
fi 
echo "Done !" 

[ -d \$directory] 
echo 

"Directory exists" 

( -d \$directory] 
echo 

"Directory exists" 

If 

Couunandc 
-d \$directory 

Conunandc 
echo II "Directory exists" 

Commandc 
echo II "Done !" 



Figure 3: ROC curve of our classifier (in blue) and
random bisector (in red).

the abscissa and the true positive rate on the ordinate. The
area under the curve (AUC) then indicates the probability
that the classifier will place a positive in front of a negative.
A classifier that is never wrong has an AUC equal to 1, while
a random classifier has an AUC equal to 0.5.

In our study, if d(S,C, θ) < σ, then the script is classified
in the category Correct ; otherwise it is classified in the
category Incorrect. The ROC curve in Figure 3 illustrates
the ratio of true positives (i.e., fraction of correct scripts that
are actually detected as correct by the classifier) according
to the ratio of false positives (i.e., fraction of incorrect scripts
that are detected as correct by the classifier). The curve is
moderately above the bisector, the area under this curve is
equal to 0.585. Our classifier is therefore slightly better than
a random classifier, but its performance is not very high; we
make assumptions to explain these results in Section 7.

6.3 Study of the correlation with human nota-
tion

One of the objectives of our indicator is to reflect the learner’s
progress towards the solution to the problem, which means
that its value is assumed to decrease as a script moves to-
wards the solution. We therefore study the correlation be-
tween the value of our indicator under the parameter θ for
a given script and the matching correction, and the score
assigned to this script by a human tutor.

This study is performed using a second dataset obtained af-
ter the final exam of the course described in Section 5. Of the
166 students enrolled in this course, 163 participated in the
final exam where learners had to produce a script addressing
a given problem. A teacher then assigned a score out of 10
to each of the 163 scripts. After eliminating grammatically
incorrect scripts, this second dataset comprises 105 scripts.

Figure 4 shows, for each script, the value of the indica-
tor according to the score assigned by the teacher. This
graph shows a negative correlation: the (non-linear) Kendall
correlation has a value equal to −0.319 (p value less than

Figure 4: Value of our indicator according to score
assigned by a human tutor.

2.7 · 10−6), the (linear) Pearson correlation having a value
of −0.446 (p value equal to 1.9 · 10−6). We therefore have
a correlation between the score given by a human tutor and
the value of our indicator. This correlation is not extremely
high, but it may be sufficient to automatically estimate a
student’s progress towards solving a problem.

7. DISCUSSION
Our indicator is able to distinguish a semantically correct
script from a semantically incorrect script, but its perfor-
mance is slightly better than that of a random classifier only.
A hypothesis to explain these results stems from the hetero-
geneous nature of the learning dataset, especially regarding
the size of the scripts it contains. Indeed, the distance cal-
culated by our indicator tends to increase with each token of
a script. So the longer a script is, the more likely it is that
the indicator will return a high value (even if the script ap-
proaches the solution), while a short and incorrect script is
evaluated with a low value due to the low number of tokens.

The correlation study carried out on the second set of data
gives indications about a certain capability of generalization
of our approach. Indeed, unlike the test dataset extracted
from the first dataset, the set of scripts obtained after the
terminal exam corresponds to an exercise that is missing
from the learning dataset. Therefore, our method seems to
apply to exercises that were not used during the learning
phase. However, this correlation is not extremely high, and
scripts that are very poorly evaluated by human tutors are
assigned a value of our indicator that is almost zero. This
can also be explained by the hypothesis formulated above,
since almost empty and therefore incorrect scripts are poorly
rated by the human teacher, while our indicator returns a
low value. Tests should be carried out to investigate how to
adjust the algorithm to process the indicator, in particular
according to the number of tokens comprised in the script
representing the solution to the problem.

Developments have been initiated to return this indicator to
learners during the programming activity. A first visualiza-
tion reflects, as a graphical gauge, the value of the indicator
each time a learner executes a script. A second visualiza-
tion shows the learner’s progress in solving the problem from
the successive values of the indicator for the same script; it
gives the variation of the indicator in the form of a gradient
of colors ranging from green (for a short distance) to red
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(for a long distance). The student is thus provided with a
real time and easy to interpret view of the evolution of the
accuracy of his script from a semantic point of view. These
tools to support learners will be experimented in the next
academic year with a new group of first-year students from
HEIT. This experimentation will also make it possible to re-
peat the work presented in this study using a new dataset,
and thus to improve the quality of our indicator.

8. CONCLUSION
In this paper, we conducted a study to design an indicator
whose objective is to act as a foundation for intelligent guid-
ance systems and awareness tools intended for both learners
and teachers during a practical activity dedicated to learning
programming. While a large variety of research is focused
on the syntactic quality of the code produced by learners
to support these learning activities, our originality lies in
studying the semantic quality of the code, i.e., in evaluating
the degree to which a program solves a given problem.

Thus, our main contribution relates on the design of an in-
dicator that reflects a learner’s ability to solve a problem.
To answer the first research question asked in the introduc-
tion, we adapted the Levenshtein distance: from two strings
of tokens representing the abstract syntax tree of the corre-
sponding programs, the indicator returns an estimated value
of the edit distance between the two scripts. To train and
test this indicator, we used a dataset composed of scripts
produced by students in authentic learning situations. The
tests revealed that when it comes to differentiating between
semantically correct and incorrect scripts, our indicator has
slightly better performance than a random classifier. On the
other hand, we observed an inverse correlation between the
value of the indicator and the score assigned by a human
tutor: the higher the human score of a program formulating
a solution to a problem, the smaller the distance between
that program and the solution of the problem.

These encouraging results suggest the opportunity to de-
velop new models and tools dedicated to the semantic analy-
sis of programming learning. However, many improvements
need to be explored to improve the quality of our indicator.
In addition to big amount of data required to refine the pa-
rameters of our indicator, the generalization of our approach
to different programming languages must be checked, as well
as the consideration of more complex programs.
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ABSTRACT 

A student’s ability to regulate their thoughts, emotions and 

behaviors in the face of temptation is linked to their task specific 

motivational goals and dispositions. Behavioral tasks are designed 

to strain a targeted resource to differentiate individuals through 

measures of their performance. In this paper, we explore how 

student behavior on differentially gamed learning material relates 

to estimates of student motivational goals and dispositions. We 

leverage observations of students in two different courses using an 

intelligent tutoring system over an entire academic year. We use a 

previously validated heuristic model of gaming detection to label 

instances of gaming. Each student’s tendency to game is estimated 

separately using highly gamed and non-highly gamed sections of 

the course. Each estimate of student gaming is compared to pre-

course self-reported measures of student motivations. Results 

indicate that in naturalistic settings, gaming on more challenging 

materials is less influenced by student motivations and potentially 

a result of adaptive learning behaviors. Similarly, student gaming 

estimates using only non-highly gamed material are significantly 

related to all targeted motivation measures. Implications and future 

directions are discussed. 

Keywords 

Motivation, Self-regulation, Gaming, Measurement, Intelligent 

Tutoring System 

1. INTRODUCTION 
Students in the US currently spend on average between 20-25 

hours per academic year on standardized testing [29]. The largest 

cost of formal standardized tests is the cost of lost learning 

opportunities for students. Additionally, these formalized, high-

stakes assessments also lead to a range of other systemic effects, 

such as reductions in topical coverage and cultures of teaching to 

the test, that result in negative impacts to student learning [1]. 

While the need for measurement of student performance at all 

levels is necessary for the continued improvement of educational 

institutions, there is a need to identify solutions that balance the 

need for information on institutional performance with the learning 

needs of the student. 

The increased prevalence of digital learning resources in schools 

has created an opportunity to explore an alternative solution to 

standardized testing. [26] demonstrated the viability of leveraging 

longitudinal observations of student performance in an intelligent 

tutoring system to match assessments of student mathematics 

aptitude from standardized exams. Similarly, [31], demonstrated 

how the educational design process can be extended to designing 

of educational games to produce game-based activities that 

produce valid assessments of student skill. 

Student cognitive skill is only half of the formula for student 

success; they must also have the motivation to apply those skills 

diligently over time to achieve [11]. Currently there are inadequate 

instruments available for high stakes measurement of student 

motivational constructs [13]. 

Self-regulation related learner behaviors are linked to student 

motivations. The characteristics of the context when students 

demonstrate failures to self-regulate their learning behaviors can 

be informative of their motivational goals [28], their perceived 

value of the activity [15], and their beliefs about their self-efficacy 

[32]. Drawing on design principles of psychometric behavioral 

tasks, we believe we can identify contexts that sufficiently load on 

student self-regulation to measure student motivations. In this 

paper, we seek to explore the feasibility of leveraging observations 

of students’ self-regulation as measured by gaming the system 

behaviors to measure student motivational goals and dispositions. 

2. MOTIVATION 
We define motivation as the orienting and invigorating impact on 

both behavior and cognition of prospective reward [9]. For this 

study, we focus on a set of well-defined goals and dispositions that 

have been shown to influence student motivation and achievement.  

A student’s interest in a domain will influence the subjective value 

any task from that domain. This perceived expected value from 

completing a task influences students’ self-regulation decisions 

[15]. Students vary in their beliefs about their ability to 

successfully complete a task, their self-efficacy, and this difference 

in appraisal affects motivation to apply effort to a task [4]. Effort 

regulation describes the ability of students to motivate themselves 

and persevere on a task in the face of difficulty or failure [24]. 

Growth mindset captures the beliefs students have about the nature 

of intelligence and whether or not it is malleable [14]. As with self-

efficacy, mindsets impact motivation through task appraisals. 

Student goals in academic tasks can be described using a two 

dimensional representation of mastery vs performance and 

approach versus avoidance [33]. Students with mastery approach 

goals set goals to learn any assigned knowledge and skills. 

Students with performance approach goals are motivated by a 

desire to perform better than their peers, while performance 

avoidant students are motivated by goals to avoid performing 

worse than their peers.  
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3. RELATED WORK 
A significant body of prior work has focused on assessing moment-

by-moment motivation through detectors of affect [10] and 

engagement [12,18]. However, work analyzing the link between 

fine-grained behavioral measures and motivational goals and 

dispositions is much more limited. 

[27] created a rational model of student affect that leveraged a 

range of individual attributes including Big 5 personality measures 

and achievement goals. This work established the value of 

students’ achievement goals on predicting moment by moment 

motivations as inferred by affect. 

Several researchers attempted to identify task specific behaviors 

that rationally should be linked to achievement goals. [20] 

attempted to relate help-seeking behaviors while using an ITS to 

achievement goals. Researchers expected mastery-oriented 

students to be more likely to use a glossary/index resource, while 

performance-oriented students might tend to ask for hints from the 

tutor instead. No significant relationship between self-reported 

achievement goals and help-seeking behaviors was found. 

However, task achievement goals as predicted by choice of help 

resources did relate to learning outcomes as would be predicted by 

achievement goal theory.  

[25] expanded on this work and attempted to relate task choice, 

where descriptions of each task were closely linked to 

corresponding achievement goals, to self-reported achievement 

goals and learning outcomes. In this work, task achievement goals 

as inferred by task choice predicted learning outcomes for the 

lesson but did not align with self-reported achievement goals. 

However, self-reported achievement goals were more predictive of 

course outcomes. Researchers speculated that self-reported goals 

might reflect an average tendency to be motivated by particular 

goals over a range of tasks within the domain and thus explaining 

alignment with more aggregated measures such as course 

outcomes.  

Gaming the system, a pattern of behavior where students abuse the 

design of the learning environment to answer a particular question, 

is a well-documented behavior that has been linked to poor 

learning outcomes [2]. In [3], the authors test the relationship 

between a range of student motivations and gaming the system 

behaviors across two different ITS’s. The study results supported 

a link between gaming behaviors and some motivational measures 

but not others. One of the strongest results indicated that student’s 

attitudes and interest towards the domain was related to observed 

gaming frequency.  There was also strong support for a link 

between experiences of frustration and gaming as well as a lack of 

drive to motivate themselves on tasks in general as well as in the 

face of challenge. The results demonstrated mixed or weak support 

for a relationship with growth mindset and perceptions of the 

helpfulness of the ITS help resources. Interestingly, the researchers 

failed to identify a relationship between observed gaming and 

performance goals, though the performance goal measures were 

not drawn from validated achievement goal instruments. 

Furthermore, this study used strictly observed gaming frequencies. 

Subsequent work has identified the joint role of contextual and 

student factors in explaining gaming behaviors [19,21]. 

In this paper, we seek to answer two main research questions. 

Research Question #1: How does the relationship between gaming 

and measures of motivation differ when gaming estimates are 

derived from either raw observations of gaming or using random 

effects models that account for both student-level and contextual 

variation. Research Question #2: How does student performance 

on educational content with varying degrees of gaming frequency 

relate to their different motivational goals and dispositions? 

4. THE DATASET 
For this study, we used a dataset drawn from [16] that was collected 

as part of a year-long study [6] in a suburban middle school in a 

mid-atlantic state.  

The students used the Carnegie Learning Cognitive Tutor software 

(CogTutor). The CogTutor software provides adaptive instruction 

based on a fine-grained skill representation of the domain. The 

application divides problems into steps that must be answered 

individually and each map to independent skills in the domain 

model. Student practice problems are selected according to 

whether they have demonstrated mastery of necessary skills. The 

instruction is also scaffolded, allowing students to request multiple 

levels of hints at every step of the problem, providing on-demand 

problem scaffolding that provides increasingly informative support 

to the students. The data logs generated by the software are 

transformed into the standard learning data format specified by 

[16] before being utilized in this analysis. This format specifies 

how long students spend on every interaction, whether the action 

was correct, incorrect, or a hint, and what skill is associated with a 

specific problem step. Each interaction is represented as a single 

student transaction in the dataset, which includes over 2M such 

transactions across all students analyzed. 

The dataset includes 189 students across 7 pre-algebra classes and 

5 geometry classes. The population is predominantly 

white/Caucasian with only 2% of the sample being non-white. 56% 

of the students are female and 22% received either free or reduced 

lunch. The classes used the tutor for an entire academic year with 

an average of close to two class periods per week on the tutor. 

While the original dataset included 240 students across both of 

these courses, students with incomplete grade and survey 

responses were eliminated. 

Additionally, some students and curricular sections were excluded 

due to having low observations in the data. The median student was 

observed during at least 40 sessions. However, 18 students were 

eliminated because EDA indicated these students as different from 

most others. The excluded students were observed in less than 20 

class sessions and completed on average 780 total interactions with 

the system over the course of the year. By contrast, the median 

student completed about 15k transactions over the course of 40 

sessions on average. These students were excluded from analysis 

because they appear unengaged and/or unmotivated, but there are 

so few observations of their behavior that drawing any conclusions 

from limited data is more prone to unobserved confounds. 

Similarly, transactions from 31 sections are excluded from the 

dataset because they were observed with less than 6 students 

completing any work in the section. These sections are excluded 

because such sections might be measurements of only the fastest 

working or highest achieving students, thus introducing a bias to 

observations of gaming within those sections. 

4.1 Motivational Measures 
In addition to fine-grained student log data, several survey 

measures were collected at the beginning of the course to measure 

students’ pre-course motivational goals and dispositions. Each 

scale utilized was drawn from well-validated instruments. Survey 

measures include scales for interest in math[17], self-efficacy [5], 

effort regulation [24], growth mindset[8] and achievement goals 

[33]. Questions from each scale are include in Figure 1 below. Each 

question was answered using a 5-point Likert rating, and responses 
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for each scale were summed to represent students’ motivation 

along each dimension. 

Figure 1. Motivational survey inventory 

4.2 Gaming the System Behaviors 
We used the heuristic model of gaming behaviors introduced by 

[22] as this model appeared to produce better kappa on unseen data 

from across multiple systems including the CogTutor. Using this 

model, individual transactions were labeled according to a 

taxonomy that captures a range of relevant behaviors such as 

thinking before a hint request, spending time reading hint requests, 

and variations of guessing behaviors. Transactions  are  labeled  as 

gaming if they are a member of a set of subsequent transactions 

that matches one of the thirteen identified patterns by [22] and 

shown in Figure 2. The patterns encode two primary types of 

gaming: guessing and hint abuse. Guessing patterns include 

placing the same answer incorrectly into multiple available answer 

slots and answering the same question rapidly with very small 

changes in the answer across attempts. Hint abuse patterns include 

not stopping to think about multiple subsequent errors before 

requesting help and rapidly requesting hints to seek a bottom-out 

hint, which in the CogTutor environment is simply the answer to 

the problem step given as the second or third hint. 

Transactions are rolled-up into student steps, where each student 

step encapsulates metadata about all the transactions associated 

with a problem step until a correct answer is reached. Each student 

step is labeled as gamed if any transaction associated with the step 

was also labelled gamed. The resulting student step data was 

utilized to calculate student and content gaming frequencies. 

The overall dataset included 3.5% gamed student steps. These 

numbers align reasonably well with gaming frequencies observed 

in prior work on CogTutor data. [2] found students gaming the 

system about 3% of the time based on in-classroom human 

observations. [23] found a slightly higher overall gaming 

frequency of 6.8% in their dataset utilizing the same detection 

model as used here. However, this deviation isn’t so different that 

it is due to significant unobserved differences in the populations. 

incorrect → [guess] & [same answer/diff. context] & incorrect 

incorrect → [similar answer] [same context] & incorrect → [similar 

answer] & [same context] & attempt 

incorrect → [similar answer] & incorrect → [same answer/diff. context] & 

attempt 

[guess] & incorrect → [guess] & [diff. answer AND/OR diff. context] & 

incorrect → [guess] & [diff. answer AND/OR diff. context & attempt 

incorrect → [similar answer] & incorrect → [guess] & attempt 

help & [searching for bottom-out hint] → incorrect → [similar answer] & 
incorrect 

incorrect → [same answer/diff. context] & incorrect → [switched context 
before correct] & attempt/help 

bug → [same answer/diff. context] & correct → bug 

incorrect → [similar answer] & incorrect → [switched context before 
correct] & incorrect 

incorrect → [switched context before correct] & incorrect → [similar 
answer] & incorrect 

incorrect → [similar answer] & incorrect → [did not think before help] & 
help → incorrect (with first or second answer similar to the last one) 

help → incorrect → incorrect → incorrect (with at least one similar answer 
between steps) 

incorrect → incorrect → incorrect → [did not think before help request] & 
help (at least one similar answer between steps) 

Figure 2. Patterns of Gaming 

The CogTutor content is organized hierarchically into multiple 

units. Each unit consists of several sections that themselves have 

multiple skills to be learned. Each section has problems that are 

divided into highly granular steps which each are associated with 

at least one skill. We chose to group observations at the section 

level to capture differences across the curriculum with sufficient 

resolution while having sufficient observations across students to 

make reasonable estimates of gaming frequency. The data included 

206 sections with a mean gaming frequency of 1.95% and a 

standard deviation of 1.7%. A number of sections were found to 

have 0 observed gaming, while there was one extreme outlier 

section with a frequency of 12.12%. 

Unlike in prior work, [2], no students were found to have never 

gamed throughout the year. The average student was observed 

gaming 3.66% of the time with a standard deviation of 1.16%. The 

minimum observed gaming frequency for students was 1.98% 

while the maximum observed was 11.95%. 

4.3 Comparing measures of gaming 
In this study, we generate four estimates of student gaming and 

compare these estimates of student gaming frequency to each 

motivational measure using partial correlations. In the partial 

Interest in Math 

1. Math is practical for me to know 
2. Math helps me in my daily life outside of school 
3. It is important to me to be a person who thinks mathematically 
4. Thinking mathematically is an important part of who I am 
5. I enjoy the subject of math 
6. I like math 
7. I enjoy doing math 
8. Math is exciting for me 

Self-Efficacy 

1. I am confident that I will do well in math class 
2. I expect to do well in math 
3. I am confident that I can learn future math concepts 
4. Considering the difficulty of this course, I think I will do well in 

mathematics in the future 
5. I am confident that I will do an excellent job on future math 

problems. 

Effort Regulation 

1. I often feel so lazy or bored when I do homework for math class 
that I quit before I finish what I planned to do. 

2. I work hard to do well in math class even if I don't like what we 
are doing.  

3. When class work is difficult, I give up or only study the easy parts. 
4. Even when math class assignments are dull and uninteresting, I 

manage to keep working until I finish.  

Growth Mindset 

1. You have a certain amount of intelligence and you really can’t do 
too much to change it. 

2. Your intelligence is something about you that you can’t change 
very much.  

3. You can learn new things, but you can’t really change your 
intelligence.  

4. No matter who you are, you can change your intelligence a lot.  
5. You can always greatly change how intelligent you are.  
6. No matter how much intelligence you have, you can always 

change it quite a bit.  

Achievement Goals 

1. My aim is to completely master the material presented in this 
unit. 

2. In this unit, I am striving to do well compared to other students.  
3. In this unit, my goal is to learn as much as possible. 
4. In this unit, my aim is to perform well relative to other students. 
5. In this unit, my goal is to avoid performing poorly compared to 

others. 
6. I am striving to understand the content of this unit as thoroughly 

as possible 
7. My goal is to perform better than the other students in this unit 
8. In this unit, I am striving to avoid performing worse than others. 
9. In this unit, my aim is to avoid doing worse than other students. 
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correlations, we control for gender, ethnicity, and free/reduced 

lunch status. 

(1) 𝜃𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐺𝑎𝑚𝑖𝑛𝑔 =  
𝑥𝑁𝑢𝑚𝐺𝑎𝑚𝑒𝑑

𝑁𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑒𝑝𝑠
   

(2) 𝑃(𝐺𝑎𝑚𝑒𝑑) ~ (1 |𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ) + (1|𝑆𝑒𝑐𝑡𝑖𝑜𝑛) 

(3) 𝜃𝐺𝑎𝑚𝑖𝑛𝑔 =  𝑒𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡  

To investigate RQ1, we calculate student gaming using frequencies 

calculated using only raw observations for each student as shown 

in Eq 1. We also predict gaming on each step using a random 

effects model with a random effect for student and section as 

shown in Eq 2. The model is fit over all observed student steps and 

the student gaming is found by calculating the exponential of the 

fitted random intercept, 𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡, for each student as shown in Eq 

3. To investigate RQ2, we divide the data into two subsets, hard 

sections and non-hard sections. We set an 80% quantile cutoff of 

3.06% gaming frequency for each section to identify non-highly 

gamed sections. There were 164 non-highly gamed sections and 41 

highly gamed sections. Again, the random effects model in Eq 2 

was used for each data subset to estimate student gaming.  

For RQ1, we expect student gaming estimates from the random 

effects model to better correlate with motivation because the model 

takes into account variance in gaming due to sections, which may 

not be observed for all students, as well as accounting for statistical 

noise due to sampling of a rare event. 

For RQ2, we investigate the hypothesis informed by design 

principles of psychometric behavioral tasks. Measuring a targeted 

construct requires straining the resource and identifying a metric 

upon which to differentiate subject performance. Therefore, we 

expect estimates of student gaming using only highly gamed 

sections will have a more significant relationship with motivational 

variables compared to data without highly gamed sections.  

5. RESULTS 
The results of the partial correlation analysis are shown in Tables 

1.1 and 1.2. The first row of both tables present evidence contrary 

to the results from [3]. Prior research found correlations with math 

interest, effort regulation, and growth mindset using only averages 

of observed gaming. However, in this dataset, only interest in the 

subject is related to gaming behaviors, and no other motivational 

measure has a significant correlation with student’s gaming 

frequency.  

On the other hand, the second row reflects correlations with student 

gaming estimated using a random effects model fitted with all of 

the data. In general, more motivational measures are correlated 

with these gaming estimates than those derived from the raw 

observations, which supports the hypothesis for RQ1. Comparing 

these results to [3], there are no direct measures of frustration, 

however it is possible that self-efficacy mediates whether student’s 

experience of frustration explaining the correlation. Growth 

mindset is found to be marginally significant, which further 

bolsters the previous mixed evidence for a link between mindsets 

and average student gaming.  

There are two cells where these correlations do not seem to agree 

with prior research. Effort regulation is expected to be correlated 

both as a matter of face validity as well as because prior research 

found a relationship between gaming and students’ drive to 

persevere on academic work.  

The link between achievement goals and gaming are mixed. In [3], 

the authors assessed performance goals using questions such as, “If 

you had your choice, what kind of extra-credit projects would you 

most likely do”. It is unclear how this question maps to 

achievement goals, however, performance approach goals are not 

significant as might be extrapolated from prior work. On the 

contrary, mastery approach and performance avoidance goals are 

correlated with gaming. This relationship is rationally derived from 

the theory on self-regulation and motivation, but not predicted by 

specific prior work. Overall, the random effects model yielded a 

significant relationship to more motivational constructs than 

gaming estimates from raw observations. 

Table 1.1 Correlations with Motivation Measures 

Data Subset 
Math 

Interest 

Self 

Efficacy 

Effort 

Reg. 

Growth 

Mindset 

Observed -0.22** -0.10 -0.11 0.00 

All -0.17* -0.16* -0.11 -0.14(.) 

High Gaming -0.19* -0.14(.) -0.10 -0.11 

Low Gaming -0.16* -0.19* -0.16* -0.14* 

(.) –0.10>p≥0.05, * - p<0.05, ** - p<0.01, *** - p<0.001 

 

Table 1.2 Correlations with Achievement Goals 

Data Subset 
Mastery 

Approach 

Performance 

Approach 

Performance 

Avoidance 

Observed -0.03 -0.01 -0.05 

All -0.20** -0.10 -0.15* 

High Gaming -0.14(.) -0.08 -0.11 

Low Gaming -0.25*** -0.14(.) -0.21** 

(.) –0.10>p≥0.05, * - p<0.05, ** - p<0.01, *** - p<0.001 

The results from estimating gaming using only highly gamed 

sections, row #3, are contrary to what is expected. Many of the 

correlations that appear when using all of the data, are weakened 

or not significant when using only the hardest questions. While the 

loss of significance with some constructs could be an artifact of 

random sampling from the full dataset, this does not explain the 

results seen in the bottom row. When estimating gaming using only 

non-highly gamed sections, correlations arise with every available 

motivational construct as seen in the fourth row. This is an unlikely 

consequence of sampling from the population and supports the idea 

that student gaming performance on highly gamed questions is 

introducing additional noise to the available signal in the rest of the 

data. Thus, the evidence points towards student gaming behaviors 

in the non-highly gamed sections as being more informative of 

student motivations than behaviors in the highly-gamed sections 

where self-regulation is under greater strain. 

5.1 Exploring High-gamed sections 
One possible explanation for this counterintuitive result is that 

gaming in highly gamed sections could be due to poorly designed 

content instead of cognitively challenge questions. To quantify 

average section difficulty, we calculate the ratio of the number of 

steps where student’s first transaction is either a hint request or an 

error to the total number of student steps observed for each section 

(the assistance score). The highly gamed sections do in fact appear 

to be more difficult sections. The average highly-gamed section 

has 18.3% assistance steps with a standard deviation of 5.2%. The 

easiest section in this subset was observed with 9.9% assistance. 

By contrast, the average non-highly-gamed section consisted of 

9.6% assistance steps with a standard deviation of 4.1%. Therefore, 
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students required less overall assistance on the majority of non-

highly-gamed sections than the easiest of the highly-gamed 

sections. 

If the content, was in fact challenging to students, perhaps the 

average questions were beyond the abilities of students to answer. 

If students are unmotivated to try on difficult problems, then 

students should be most likely to game on the first encounter with 

a particular skill. As experience with a skill goes up, perceived 

difficulty should go down, thus monotonically reducing the 

probability of gaming with each practice opportunity. However, if 

a skill is beyond a student’s ability and the student is sufficiently 

motivated to attempt to learn, then the student should be less likely 

to game on the first encounter of a skill than on subsequent 

encounters. In this case, after first encountering a skill, students are 

able to assess that the skill is too far beyond their abilities. On 

subsequent encounters with the skill, it is an adaptive behavior to 

abuse help resources or apply other gaming strategies to acquire 

the answer. Prior work has similarly found that not all gaming is 

harmful to learning [2], for instance students may be using hints as 

a form of worked example [30]. 

 

Figure 3. Gaming on 1st opportunity vs subsequent 

In Figure 3, the observed gaming on 1st opportunities and all 

subsequent opportunities are compared for each section. Students 

in most highly gamed sections, in blue, are more likely to game of 

subsequent opportunities than the first. 70.7% of highly gamed 

sections share this characteristic as compared to 46.9% of non-

highly gamed sections. This evidence, in additional to the lack of 

correlation between gaming on high-gamed sections and student’s 

effort regulation supports the rational that gaming is sometime a 

somewhat desirable adaptive behavior for students and 

observations of gaming and in these sections should be treated 

differently than in other sections. In fact, the ratio of gaming on 

first opportunity to gaming on subsequent opportunities might be a 

valuable measure to incorporate into future motivational 

measurement models.  

6. DISCUSSION 
In this study, we demonstrate that leveraging random effects 

models to cope with statistical noise in observations of student’s 

tendency to game on any given section better estimates student’s 

gaming as related to their motivational goals and dispositions. 

Additionally, we provide initial evidence towards a measurement 

model of student’s motivational goals and dispositions by 

leveraging observations of gaming. Results indicate a relationship 

between gaming and motivation that involves an interaction with 

the difficulty level and prior experience with a problem. 

Several correlations with gaming estimates appear contrary to prior 

research and merit further analysis. The significant correlation with 

both mastery approach and performance avoidance disagrees with 

the results found by [3]. This disagreement could be due to the 

independence of achievement goals from each other, where 

gaming may be driven by an aggregate motivation of all 

achievement goals. More analysis is necessary to bridge this 

seeming contradiction and understand how patterns of gaming 

across problems of varying difficulty and prior experience might 

support an interpretation of gaming as indicative of different 

achievement goal profiles. 

Gaming frequency was leveraged as a proxy measure for a range 

of unencoded difficulty factors. While this includes factors such as 

poor classroom instruction or a poorly designed cognitive model, 

it also encapsulates difficulty of individual problem-steps. A 

natural next step would be to investigate how more detailed student 

skill models might improve estimates of perceived difficulty and 

corresponding enrich model understanding of the nuances of why 

students are gaming and how this relates to different motivational 

goals. 

Prior work has also shown that on longer time-scales, motivational 

goals are not necessarily stable [7]. In this study, we looked for 

relationships between pre-course motivations and in-course 

gaming behaviors. For students with fluctuations in achievement 

goals or self-efficacy, the contexts in which such students tend to 

game or disengage from the lesson in other manners might 

similarly change. Further analysis is necessary to investigate 

whether variations in gaming over time are similarly reflective of 

variations in motivational goals and dispositions over time.  

Furthermore, the study included a fairly large body of students, but 

the observations were still limited to a single school in a particular 

region of the country with limited ethnic and socio-economic status 

diversity represented in the sample. Such factors are known to be 

correlated with variations in the types and frequencies of gaming 

behaviors observed in the population [21]. As such, we exercise 

caution in extrapolating these relationships beyond this 

demographic group without further validation. 

Nonetheless, the results presented in this work lay the groundwork 

for further investigation into measurement models of motivational 

goals and dispositions that leverage an understanding of the 

contexts that strain students’ self-regulation. Such unobtrusive 

measurement models hold the keys to a future where schools can 

better utilize instructional time that is currently occupied by 

standardized test and test-specific preparation while still receiving 

the student, and class-level performance measures necessary to 

support continuous improvement. 
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ABSTRACT
Knowledge tracing allows Intelligent Tutoring Systems to
infer which topics or skills a student has mastered, thus ad-
justing curriculum accordingly. Deep Knowledge Tracing
(DKT) uses recurrent neural networks (RNNs) for knowl-
edge tracing and has achieved significant improvements com-
pared with models like Bayesian Knowledge Tracing (BKT)
and Performance Factor Analysis (PFA). However, DKT is
not as interpretable as other models because the decision-
making process learned by recurrent neural networks is not
wholly understood by the research community. In this pa-
per, we critically examine the DKT model, visualizing and
analyzing the behaviors of DKT in high dimensional space.
We modify and explore the DKT model and discover that
Deep Knowledge Tracing has some critical pitfalls: 1). in-
stead of tracking each skill through time, DKT is more
likely to learn an ‘ability’ model; 2) the recurrent nature
of DKT reinforces irrelevant information that it uses dur-
ing the tracking task; 3) an untrained recurrent network can
achieve similar results to a trained DKT model, supporting a
conclusion that recurrence relations are not properly learned
and, instead, improvements are simply a benefit of projec-
tion into a high dimensional, sparse vector space. Based
on these observations, we propose improvements and future
directions for conducting knowledge tracing research using
deep models.

Keywords
knowledge tracing, recurrent neural network, visualization

1. INTRODUCTION
Knowledge tracing has been investigated for decades. It al-
lows Intelligent Tutoring Systems to infer which topics or
skills a student has mastered, thus adjusting curriculum ac-
cordingly. Two widely used models are Bayesian Knowl-
edge Tracing (BKT) [2] and Performance Factor Analysis
(PFA)[11]. These models are designed in a way that each
parameter has a semantic meaning. For example, the guess

and slip parameter in the BKT model reflect the probabil-
ity that a student could guess the correct answer and make
a mistake despite mastery of a skill, respectively. BKT at-
tempts to explicitly model these parameters and use them
to infer a binary set of skills as mastered or not mastered.
In parallel with research in knowledge tracing models, deep
neural networks have gained popularity in fields like Natu-
ral Language Processing and Computer Vision [3, 9]. Piech
et. al proposed Deep Knowledge Tracing (DKT) [12], using
recurrent neural networks for knowledge tracing. The DKT
model achieves significantly improved results compared to
BKT and PFA. However, its mechanisms are not well un-
derstood by the research community. That is, none of the
parameters are mapped to a semantically meaningful mea-
sure which diminishes our ability to understand how DKT
performs predictions. There have been some attempts to
explain why DKT works well [8, 15], but these studies treat
DKT model more like a black box, without studying the
state space that underpins the recurrent neural network. In
this work, we analyze and visualize the learned state space
of the DKT model to better understand its mechanisms.

Recurrent neural networks can learn long range dependen-
cies across many time steps. Long short term memory (LSTM)
networks, gated-recurrent unit (GRU) networks, and numer-
ous other variants enhance the vanilla RNNs in one way or
another have achieved empirical success [6, 1, 5]. However,
there are incredibly few works explaining what is happening
under the hood. Karpathy et al. [7] provide a detailed analy-
sis of the behaviors of recurrent neural network in language
processing and find that some neurons are responsible for
long range dependencies like quotes and brackets. We take
a similar approach for analyzing the DKT model.

We aim to provide a better understanding of the DKT model
and a more solid footing for using deep models for knowledge
tracing. In this paper, we “open the box” of the DKT re-
current architecture, visualizing and analyzing the behaviors
of the DKT model in a high dimensional space. We track
activation changes through time and analyze the impact of
each skill in relation to other skills. We modify and explore
the DKT model, finding that some irrelevant information
is reinforced in the recurrent architecture. Finally, we find
that an untrained DKT model (with gradient descent ap-
plied only to layers outside the recurrent architecture) can
be trained to achieve similar performance as a fully trained
DKT architecture. Based on our analyses, we propose im-
provements and future directions for conducting knowledge
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International Conference on Educational Data Mining (EDM
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tracing with deep recurrent neural network models.

2. RELATED WORK
Bayesian Knowledge Tracing (BKT) [2] was proposed by
Corbett et al. In their original work, each skill has its
own model and parameters are updated by observing the
responses (correct or incorrect) of applying a skill. Perfor-
mance Factor analysis (PFA) [11] is an alternative method to
BKT and it is believed to perform better when each response
requires multiple skills. Both BKT and PFA are designed in
a way that each parameter has its own semantic meaning.
For example, the slip parameter of BKT represents the pos-
sibility of getting a question wrong even though the student
has mastered the skill. These models are easy to interpret,
but suffer from scalability issues and often fail to capture
the dependencies between each skill because many elements
are treated as independent to facilitate optimization.

Piech et al. recently proposed the Deep Knowledge Tracing
model (DKT) [12], which exploits recurrent neural networks
for knowledge tracing and achieves significantly improved
results. Piesch et al. transformed the problem of knowledge
tracing by assuming each question can be associated with
a “skill ID”, with a total of N skills in the question bank.
The input to the recurrent neural network is a binary vector
encoding of skill ID for a presented question and the correct-
ness of the student’s response. The output of the recurrent
network is a length N vector of probabilities for answering
each skill-type question correctly. The DKT model could
achieve >80% AUC on the ASSISTmentsData dataset [4],
compared with the BKT model that achieves 67% AUC.
This is an exciting result because it demonstrates the possi-
bility of using neural networks for knowledge tracing.

Despite the effectiveness of DKT model, its mechanism is
not well understood by the research community. Khajah et
al. investigate this problem by extending BKT [8]. They ex-
tend BKT by adding forgetting, student ability, and skill dis-
covery components, comparing these extended models with
DKT. Some of these extended models could achieve close re-
sults compared with DKT. Xiong et al. discover that there
are duplicates in the original ASSISTmentsData dataset [15].
They re-evaluate the performance of DKT on different sub-
sets of the original dataset. Both Khajah and Xiong’s work
are black box oriented—that is, it is unclear how predictions
are performed within the DKT model. In our work, we try
to bridge this gap and explain some behaviors of the DKT
model.

Trying to understand how DKT works is difficult because
the mechanisms of RNNs are not totally understood even in
the machine learning community. Even though the recurrent
architecture is well understood, it is difficult to understand
how the model adapts weights for a given prediction task.
One common method used is to visualize the neuron activa-
tions. Karpathy et al. [7] provide a detailed analysis of the
behaviors of recurrent neural network using character level
models and find some cells are responsible for long range
dependencies like quotes and brackets. They break down
the errors and partially explain the improvements of using
LSTM. We use and extend their methods, providing a detail
analysis of the behaviors of LSTM in the knowledge tracing
setting.

3. EXPERIMENT
To investigate the DKT model, we perform a number of
analyses based upon the activations within the recurrent
neural network. We also explore different training proto-
cols and clustering of the activations to help elucidate what
is learned by the DKT model.

3.1 Experiment setup
In our analyses, we use the “ASSISTmentsData 2009-2010
(b) dataset” which is created by Xiong et al. after removing
duplicates [15]. Like Xiong et al., we also use LSTM units
for analysis in this paper. Because we will be visualizing
specific activations of the LSTM, it is useful to review the
mathematical elements that comprise each unit. An LSTM
unit consists of the following parts, where a sequence of in-
puts {x1, x2, ..., xT } ∈ X are ideally mapped to a labeled
output sequence {y1, y2, ..., yT } ∈ Y. The prediction goal is
to learn weights and biases (W and b) such that the model
output sequence ({h1, h2, ..., hT } ∈ H) is as close as possible
to Y:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

Here, σ refers to a logistic (sigmoid) function, · refers to
dot products, ∗ refers to element-wise vector multiplication,
and [, ] refers to vector concatenation. For visualization pur-
poses, we log the above 6 intermediate outputs for each input
during testing and concatenate these outputs into a single
“activation” vector, at = [ft, it, C̃t, Ct, ot, ht]. In the DKT
model, the output of RNN, ht is connected to an output
layer yt, which is a vector with the same number of ele-
ments as skills. We can interpret each element in yt as an

Figure 1: First two components of T-SNE of the
activation vector for first time step inputs. Numbers
are skill identifiers, blue for correct input, orange for
incorrect input
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Figure 3: Activation vector changes for 100 contin-
uous correctness of randomly picked 3 skills

Figure 4: Activation vector difference of randomly
picked 3 skills through time

other would decrease values in yt even when the response
is correct. From this observation, one potential way to im-
prove the DKT model could be adding punishment for such
unexpected behaviors (for example, in the loss function of
the recurrent network).

3.3 Simulated data
From the above analysis, we see from step 14 to step 19, the
student correctly answers question from skill #113 and the
changes in yt diminish—perhaps an indication that the vec-
tor is converging. Also, from Figure 2, we see that for each
correct input, most of the elements of yt increase by some
margin, regardless of the input skill. To have a better un-
derstanding of this convergence behavior, we simulate how
the DKT model would respond to an Oracle Student, which
will always answer each skill correctly. We simulate how
the model responds to the Oracle Student correctly answer-
ing 100 questions from one skill. We repeat this for three
randomly selected skills.

We plot the convergence of each skill using the activation
vector at reduced to a two-dimensional plot using t-SNE
(Figure 3). The randomly chosen skills were #7. #8, and
#24. As we can see, each of the three skills starts from a
different location in the 2-D space. However, they each con-
verges to near the same location in space. In other words,
it seems DKT is learning one “oracle state” and this state
can be reached by practicing any skill repeatedly, regard-
less of the skill chosen. We verified this observation with
a number of other skills (not shown) and find this behav-
ior is consistent. Therefore, we hypothesize that DKT is
learning a ‘student ability’ model, rather than a ‘per skill’
model like BKT. To make this observation more concrete, in
Figure 4 we plot the euclidean distance between the current
time step activation vector, at, and the previous activations,
at−1, we can see the difference becomes increasingly small
after 20 steps. Moreover, the euclidean distance between
each activation vector learned from each skill becomes ex-
tremely small, supporting the observation that not only is
the yt output vector converging, but all the activations in-
side the LSTM network are converging. We find this be-
havior curious because it means that the DKT model is not
remembering what skill was used to converge the network
to an ‘oracle state.’ Remembering the starting skill would
be crucial for predicting future performance of the student,
yet the DKT model would treat every skill identically. We
also analyzed a process where a student always answers re-
sponses incorrectly and found there is a similar phenomenon
with convergence in an anti-oracle state.

Figure 5 shows the skills prediction vector after answering
correctly 20 times in a row. We can see the predictions of
most skills are above 0.5, regardless of the specific practice
skill used by the Oracle Student. Now, we can safely say
that the DKT model is not really tracking the mastery level
of each skill, it is more likely learning an ‘ability model’ from
the responses. Once a student is in this oracle state, DKT
will assume that he/she will answer most of the questions
correctly from any skill. We hypothesize that this behav-
ior could be mitigated by using an “attention” vector during
the decoding of the LSTM network [13]. Self attention in
recurrent networks decodes the state vectors by taking a
weighted sum of the state vectors over a range in the se-
quence (weights are dynamic based on the state vectors).
For DKT, this attention vector could also be dynamically
allocated based upon the skills answered in the sequence,
which might help facilitate remembering long-term skill de-
pendencies.

3.4 Temporal impact
RNNs are typically well suited for tracking relations of in-
puts in a sequence, especially when the inputs occur near
one another in the sequence. However, long range depen-
dencies are more difficult for the network to track [13]. In
other words, the predictions of RNN models will be more im-
pacted by recent inputs. For knowledge tracing, this is not
a desired characteristic. Consider two scenarios as shown
below: For each scenario, the first line is the skill numbers
and the second line are responses (1 for correctness and 0 for
incorrectness). Both two scenarios have the same number of
attempts for each skill (4 attempts for skill #9, 3 attempts
for skill #6 and 2 attempts for skill #24). Also, the ordering
of correctness within each skill is the same (e.g., 1, 0, 0, 0
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Khajah et al. also alluded to this recency effect in [8]. In
this paper, we examine this phenomenon in a more quan-
titative way. We shuffle the dataset in a way that keeps
the ordering within each skill the same, but spreads out the
responses in the sequence. This change should not change
the prediction ability of models like BKT. The results are
shown in Table 1 and Table 2 using standard evaluation cri-
teria for this dataset. All results are based on a five-fold
cross validation of the dataset. When comparing DKT on
the original dataset to the “spread out” dataset ordering, we
see that the relative ordering of skills has significant nega-
tive impact on the performance of the model. From these
observations, we see the behaviors of DKT is more like PFA
which counts prior frequencies of correct and incorrect at-
tempts other than BKT and the design of the exercises could
have a huge impact on the model (For example, the arrange-
ments of easy and hard exercises).

3.5 Is the RNN representation meaningful?
Recurrent models have been successfully used in practical
tasks like natural language processing [3]. These models
can take days or even weeks to train. In a recently pub-
lished paper, Wieting et al. [14] argue that RNNs might not
be learning a meaningful state vector from the data. They
show that a randomly initialized RNN model (with only Wo

and bo trained) can achieve similar results to models where
all parameters are trained. This result is worrying because
it may indicate that the RNN performance is due mostly
to simply mapping input data to random high dimensional
space. Once projected into the random vector space linear
classification can perform well because points are more likely
to be separated in a sparse vector space. The actual vector
space may not be meaningful. We perform a similar exper-
iment in training the DKT model. We randomly initialize
the DKT model and only train the last linear layer (Wo and
bo) that maps the output of LSTM ht to the skill vector, yt.
As shown in Table 1 and Table 2, the untrained recurrent
network performs similarly to the trained network.

4. CONCLUSION AND FUTURE WORK
In this paper, we dive deep into the Deep Knowledge Trac-
ing model. We have visualized and analyzed the behaviors
of DKT through time using dimensionality reduction of the
activations vector, at. We have also analyzed the temporal
sequence behavior of DKT using qualitative and quantita-
tive analyses. We find that the DKT model is most likely
learning an ‘ability’ model, rather than tracking each indi-
vidual skill. Moreover DKT is significantly impacted by the
relative ordering of skills presented. We also discover that
a randomly initialized DKT with only the final linear layer
trained achieves similar results to the fully trained DKT
model. In other words, the DKT model performance gains
may stem from mapping input sequences into a random high
dimensional vector space where linear classification is easier
because the space is sparse. This is a worrying conclusion be-
cause it means the underlying recurrent representation may
not be reliable nor semantically meaningful. Several miti-
gating measures are suggested in this paper, including the
use of a loss function that mitigates unwanted behaviors and
the use of an attention model to better capture long term
skill dependencies. We leave evaluation of these suggestions
to future work in the educational data mining community.
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ABSTRACT
One of the essential problems, in educational data mining,
is to predict students’ performance on future learning ma-
terials, such as problems, assignments, and quizzes. Pio-
neer algorithms for predicting student performance mostly
rely on two sources of information: students’ past perfor-
mance, and learning materials’ domain knowledge model.
The domain knowledge model, traditionally curated by do-
main experts, maps learning materials to concepts, topics,
or knowledge components that are presented in them. How-
ever, creating a domain model by manually labeling the
learning material can be a difficult and time-consuming task.
In this paper, we propose a tensor factorization model for
student performance prediction that does not rely on a pre-
defined domain model. Our proposed algorithm models stu-
dent knowledge as a soft membership of latent concepts. It
also represents the knowledge acquisition process with an
added rank-based constraint in the tensor factorization ob-
jective function. Our experiments show that the proposed
model outperforms state-of-the-art algorithms in predicting
student performance in two real-world datasets, and is ro-
bust to hyper-parameters.

Keywords
student modeling, predicting student performance, tensor
factorization

1. INTRODUCTION
The popularity of online learning services and massive open
online courses has led to extensive growth in the amount
of student activity and learning data. As the number of
students and learning materials increase in these online sys-
tems, the need for automatic sense-making from this data,
educational data mining, becomes more evident. One of the
important tasks in educational data mining is accurately
predicting students’ performance (PSP). PSP can be used
in early detection of high-risk students that may fail or quit
a class, in class evaluation and course planning activities,

and in learning material recommendation to students.

Many successful PSP techniques aim to predict students’
performance in a problem by modeling their state of knowl-
edge in different concepts required by that problem. To do
this, pioneer and recent PSP techniques rely on the avail-
ability of a domain knowledge model that maps problems
to concepts [19, 5, 25]. However, given the vast scope of
learning materials in today’s online learning systems, such
domain knowledge models may not be available. Ideally, a
PSP model should be able to work without requiring such a
predefined map.

Additionally, a successful data mining model for PSP should
be capable of considering specific characteristics of student
learning process: (a) that students gain their knowledge on
concepts over time, by practicing different problems, (b)
that they may forget some of the gained knowledge, (c) that
this knowledge gain is a gradual process, and (d) that learn-
ing can happen differently for different students in different
problems and different times. Finally, to provide better in-
sight to students and teachers, such a model should also be
interpretable considering these characteristics. Previous re-
search in the literature only cover some of the limitations
above.

In this paper, we propose a student performance prediction
model, Ranked-Based Tensor Factorization (RBTF), con-
sidering all the above requirements. To model student se-
quences on problems, we represent their scores over time as a
three-dimensional tensor. To avoid the need for a predefined
domain knowledge model, we propose a tensor factorization
model for PSP, that maps problems and student knowledge
in a lower-dimensional “latent” concept space. Representing
student knowledge in this lower-dimensional space leads to a
soft-membership approach that provides more flexibility by
avoiding strict assignment of student knowledge to discrete
“knowledge states”. By learning student, problem, and time-
based biases in this model we take into account the differ-
ences between students, problems, and times in the learning
process. To capture the gradual learning requirement, we
impose a rank-based constraint on student knowledge vari-
ables, that allows for occasional forgetting of concepts, but
imposes a generally positive learning trend.

In our experiments, we study the proposed model in com-
parison with two state-of-the-art baseline PSP algorithms,
on two real-world datasets. Our experiments show that our
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model performs better than both baselines in the task of
predicting student performance. We experiment with the
performance and sensitivity of our model with various hyper-
parameters.

Paper Outline. The remaining of the paper is organized
as follows. Section 2 provides a brief literature review of the
related work.Section 3 describes our model (RBTF) and the
parameter learning steps. Section 4 evaluates extensively
RBTF and other baselines on two real datasets. Lastly,
Section 5 concludes the paper and suggests some directions
for future works.

2. RELATED WORK
Many pioneer solutions to the problem of predicting stu-
dent performance are based on either regression models [19]
or Bayesian knowledge tracing (BKT) [5]. Regression-based
models, such as performance factor analysis (PFA), try to
predict students’ performance using a pre-defined domain
model that maps learning material to knowledge compo-
nents [19]. PFA, which is based on learning factor analy-
sis [4], takes into account prior successes and failures of a
student on knowledge components associated with the cur-
rent problem.

BKT is a constrained two-state hidden Markov model that
models student knowledge in each knowledge component
(KC) as two binary states: “known” and “unknown”. It
learns the probability of transitioning between these two
states, and probabilities of students’ success and failure in
each KC, given their state of knowledge. Despite being suc-
cessful in PSP for certain datasets, this model, in its origi-
nal form, does not consider continuous states of knowledge
or soft membership to knowledge states. Moreover, BKT
does not capture the relationships between KCs, and is not
personalized for individual student. Additionally, BKT also
relies on a pre-defined domain model. Recently, new BKT-
based models aim to address some of these problems [2,
9, 29]. For example, Pardos and Heffernan has addressed
BKT’s non-personalized modeling in [18, 17]. Song et al.
proposed PSFK in [25] to address PSP when students en-
counter a knowledge component for the first time. But, these
models rely on labeled problem knowledge components or
concepts. Later, Gonzalez-Brenes and Mostow proposed a
topical hidden Markov model that jointly learns the domain
model and predicts student performance [10, 8]. However,
this model has two restricting assumptions: that at each at-
tempt, the student works on one skill of a problem, and that
the students do not forget any acquired skills.

Recently, other approaches inspired by recommender sys-
tems’ research and factorization models have been used for
PSP. Despite being successful, these approaches are not tai-
lored for the educational data mining problems specifically
since they do not explicitly model student learning as a
learning gain process. The matrix-factorization approaches
in this area do not consider student sequences and only rely
on a snapshot of student performance. For example, Thai-
Nghe and Schmidt-Thieme proposed a multi-relational fac-
torization student model that considers multiple relations
between students and tasks, but does not consider student
sequences [27]. Later, Nedungadi and Smruthy proposed
a similar multi-relational matrix factorization approach ex-

ploring the effect of modeling biases [16]. Sahebi et al. also
proposed another multi-relational learning approach that
learned student performance according to canonical corre-
lation analysis [22]. Non-negative matrix factorization has
been used to improve performance predictions [28]. Pero et
al. compared collaborative filtering techniques for the task
of PSP in a small dataset [20]. Elbadrawy et al. predict stu-
dent performance using their interactions with the learning
management system to achieve a higher accuracy [7].

Some other recommender system-based approaches consider
student sequence, but do not explicitly model knowledge
gain in students. For example, Thai-Nghe et al. explored
different factorization models, including tensor factorization,
to predict student performance [26]. Sahebi et al. [23] stud-
ied educational data mining methods, such as PFA and
BKT, with matrix and tensor factorization approaches, from
the recommender systems literature, for PSP. Almutairi et
al. have used tensor and coupled-matrix factorization to pre-
dict course-based student performance [1]. However, their
tensor decomposition models do not explicitly model stu-
dents’ knowledge gain.

Although there have been some promising research on PSP
that consider student sequence without requiring a domain
model, these approaches have been limited. For example,
SPARse Factor Analysis (SPARFA) by Lan et al. that uses
Kalman filters to jointly learn the domain model, student
knowledge, and the underlying question difficulties, can be
very expensive to learn due to having a big state space [12].
Sahebi et al. have proposed a feedback-driven tensor factor-
ization algorithm that can model student gradual knowledge
acquisition [24]. But, their model has a strict constraint
that does not allow for forgetting the concepts by students.
Lindsey et al. proposed a non-parametric Bayesian tech-
nique that can refine the expert-labeled skills. However,
they simplify the problem by finding coarse-grained skills
as they restrict each problem to have exactly one skill [14].
In this paper, we propose a tensor factorization model for
predicting student performance that does not require do-
main knowledge, models problems and student knowledge
as soft-membership of latent concepts, and can model stu-
dent sequences and gradual knowledge increase.

3. RANK-BASED TENSOR
FACTORIZATION (RBTF)

Here we present our model, rank-based tensor factorization,
by which we aim to predict students’ performance in prob-
lems, considering their performance sequence and knowledge
growth. Our proposed model is inspired by the recommender
systems domain. Our choice of a recommender systems-
based model was because of two main reasons: a) student
performance similarities, and b) problem similarities. First,
we consider that students with similar knowledge levels will
perform similarly in solving problems. Second, we assume
that a student will have similar performance on two prob-
lems with similar concepts. Recommender-based factoriza-
tion models consider these two expectations. However, as
discussed in the introduction section, a successful student
model needs to include additional considerations. One of
which is that knowledge gain is a gradual process for stu-
dents, which happens over time. As students interact with
learning materials, such as problems, they learn from them.
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To represent this time-based process, we model students’
activity sequences as a series of attempts on problems. For
the student performance data to be represented according
to these assumptions, we represent student sequences in a
three-dimensional tensor (Y), that has the student, prob-
lem, and time (attempt) dimensions. Each cell ya,s,p in this
tensor represents student s’s score in problem p, that she
has chosen to study at attempt a.

The core idea of the aforementioned assumptions is the no-
tion of “concepts”: gradual learning can be viewed as gain-
ing knowledge in course concepts; student knowledge-based
similarities are based on how much they mastered each of
the concepts; and problem similarities are defined on how
their represented concepts are shared. However, in many
online educational systems, concepts are undefined and dif-
ficult to measure. In these systems, there are no “observed”
features defined as problem concepts or knowledge compo-
nents. Hence, we propose to discover shared “latent” fea-
tures between students and problems as representatives for
the notion of concepts. We model each problem as a vector
of k latent concepts, that shows the importance of each la-
tent concept in that problem. Also, we model each student’s
knowledge at any time point as another vector of the same
latent concepts.

We assume that a student s’s performance on problem p at
time a is a result of her existent knowledge in the latent con-
cepts required by the problem. Accordingly, we model esti-
mated student score ŷa,s,p as a dot product between prob-
lem’s latent concept vector qp and student’s knowledge in
those concepts ta,s:

ŷa,s,p ≈ ta,s.qp (1)

To maintain the interpretability of our model, we enforce
latent variables in qp to be non-negative. Here, by choosing
the number of concepts (k) less than the number of problems
and students, we are representing students and problems in
a lower-dimensional latent space that can better capture stu-
dent and problem similarities (our second and third assump-
tions). However, the model in Equation 1 does not consider
differences in factors such as student ability, problem dif-
ficulty, or student cohort strength. For example, students’
average score in a more difficult problem is expected to be
less than their average score in an easier problem. To address
this issue, we add student, problem, and attempt biases (bs,
bp, and ba), in addition to an overall cohort bias (µ) to our
model:

ŷa,s,p ≈ ta,s.qp + bs + bp + ba + µ (2)

To learn the parameters of this problem (T , Q, bs, bp, ba,
and µ) we minimize the objective function in Equation 3.
The first component calculates the squared difference be-
tween observed student scores and estimated student scores.
The last three components are for regularizing biases, stu-
dent knowledge, and problem concepts for generalizability
purposes.

L1 =
∑
a,s,p

(ŷa,s,p − ya,s,p)2

+ λ(b2s + b2p + b2a) + λ1 ‖ta,s‖2 + λ2 ‖qp‖2
(3)

The model in Equation 2 does not address our gradual learn-
ing assumptions for students. To capture this gradual learn-
ing, we can assume that a student’s knowledge (ta,s) in-
creases over time. But, we should also note that this knowl-
edge increase depends on the problems that the student se-
lects to solve and the concepts presented in them. As a
result, we can translate this knowledge increase as an in-
crease in estimated student scores in problems (ta,s.qp). In
other words, we expect that student s’s predicted scores at
attempt a to be larger than her scores at attempt a− 1:

ta,s.qp − ta−1,s.qp ≥ 0

In reality, this knowledge increase can be non-monotonic.
For example, a student may forget some concepts after a
while. For this reason, we propose to use a rank-based
model for student knowledge gain, that allows knowledge
loss to happen for students, but penalizes it. Using this rank-
based model, we aim to maximize the difference between the
aggregation of all students’ scores on all questions at each
attempt versus the attempts before that. Hence, we would
like to maximize L2 in Equation 4. Here, σ(·) is the sigmoid
function, defined as σ(x) = 1/(1 + e−x). Sigmoid function
is selected because of its superiority in rank-based recom-
mendation systems [21, 6]. The term log(σ(ta,sqp − tj,sqp))
means that for attempt a of student s, the ranking of s’s
score at a is higher than the one of s at j with j < a.

L2 =

a∑
j=1

∑
s

∑
p

log(σ(ta,sqp − tj,sqp)) (4)

To capture the dynamics between all assumptions, we com-
bine the minimization of L1 in Equation 3 and maximization
of L2 in Equation 4. Our final objective is to minimize the
loss function in Equation 5. The hyper-parameter ω is to
control the relative strictness of knowledge increase versus
the importance of having a more accurate estimate of stu-
dent performance.

L =
∑
a,s,p

(ŷa,s,p − ya,s,p)2 + λ1 ‖ta,s‖2 + λ2 ‖qp‖2

+ λ(b2s + b2p + b2a)− ω
a∑

j=1

∑
s

∑
p

log(σ(ta,sqp − tj,sqp))

(5)

Learning the Parameters: By using stochastic gradient
descent algorithm to minimize L , we find student knowl-
edge of each latent concept at any point, the importance
of each latent concept in each problem, and estimation of
student score in each problem at any attempt. Recall that
the parameters the we want to infer are T , Q, bs, bp, ba,
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and µ. For the cohort bias µ, we assign the average score

of all students on all problems [11], i.e. µ =
∑

a,s,p ya,s,p∑
a,s,p I(a,s,p)

where I(a, s, p) is an indicator function returning 1 if the
tuple (a, s, p) is in our training set; otherwise 0.

4. EXPERIMENTS
In the following, we evaluate our model in comparison with
two state-of-the-art methods in the task of predicting stu-
dent performance. Further, we analyze how our solution
models students’ learning process by looking at students’
knowledge gain in course concepts. Eventually, we experi-
ment on RBTF’s sensitivity to various hyper-parameter set-
tings.

4.1 Dataset and Experiment Setup
For experiments, we use the Canvas network dataset1 which
is available online [3]. Canvas Network hosts many freely
available open online courses. In addition to learning mod-
ules, each course can have different types of assignments,
discussions, and quizzes. In this platform, participants are
not limited to a specific sequence of learning material or
assignments. The dataset is anonymized such that student
IDs, course names, discussion contents, submission contents,
or course contents are not available.

Dataset #students #problems #attempts Avg. attempts
Course 1 531 91 87 29.92
Course 2 2597 32 30 12.73

Table 1: Dataset Statistic.

We select two courses in Canvas and denote them as Course
1 and Course 2. The selected courses have the most number
of quizzes in the whole dataset. We consider each quiz as
a problem in our model. Quizzes are graded between zero
and a maximum possible score. For consistency, we normal-
ize the quiz grades between zero and one. Table 1 shows
the statistics of these two courses. As shown in the table,
Course 2 has more students but less number of problems and
attempts than Course 1.

The data of each course is represented as a list of tuples
(attempt, student id, quiz id, grade). We randomly split
80% of tuples for training and the remaining (i.e. 20%) for
testing.

Hyper-parameter Setting: In the performance predic-
tion experiments (Section 4.2), we set ω = 0.5, λ1 = λ2 =
0.1 and regularization of bias λ = 0.001. The number of
concepts is set to 3.

4.2 Student Performance Prediction
In this section, we compare the prediction performance of
RBTF with other baselines to evaluate the prediction ability
of RBTF.

Baselines: To compare the prediction performance, we em-
ploy the following two baselines:

1http://canvas.net

• Feedback-Driven Tensor Factorization (FDTF) [24]: It
is a tensor factorization model specifically tailored to
predict students’ performance. It considers students’
gradual learning process. However, the assumption of
hard constraint on knowledge increase in students lim-
its its modeling capacity. Also, it does not include
biases and does not allow for the concepts to be for-
gotten by students.

• SPARse Factor Analysis (SPARFA) [13]: SPARFA is
a probabilistic factor analysis approach that calculates
the probability of a student’s correct response to a
problem. It does not require a predefined domain
knowledge model. However, it does not consider stu-
dents’ sequences. To adapt it to our problem, we use
the probability scores instead of the predicted student
grade.

Metrics: We use two measures to evaluate the performance
prediction task. Since our main goal is to predict student
scores or grades, we would like to measure how close our
predictions are to the actual student scores. To do this, we
use the root mean squared error (RMSE). The lower the
value of RMSE, the better the model.

Since many performance prediction models focus on predict-
ing students’ success and failure as a binary value, instead of
their score [13, 5], we also employ accuracy for performance
comparison. To do this, we regard scores greater than 0.5
as success and the rest as failure. Unlike RMSE, the higher
the value of accuracy, the better the model.

Dataset RMSE Accuracy
RBTF FDTF SPARFA RBTF FDTF SPARFA

Course 1 0.12 0.27 0.59 92.5% 85.2% 81.7%
Course 2 0.2056 0.2116 0.567 95.24% 92.8% 87.41%

Table 2: Prediction Performance.

Results: Table 2 shows the prediction performance of our
model (RBTF) and the two baselines (FDTF and SPARFA)
on the two datasets. As we can see, both tensor factorization
models (RBTF and FDTF) perform better than SPARFA
in both courses. This shows the importance of considering
student sequences in predicting their performance. Also,
we can see that RBTF performs better than FDTF in both
courses. This shows that, even though modeling sequential
knowledge increase in students is important, this increase
should not be strictly monotonic and should be flexible to
allow for occasional forgetting of concepts.

4.3 Hyper-parameter Sensitivity Analysis
In this section, we study RBTF’s sensitivity to hyper pa-
rameter values. First, we experience on the balance between
training error on student performance fitting (L1 in Equa-
tion 3) versus modeling student knowledge increase (L2 in
Equation 4) on the generalizability of our model. To do this,
we measure the test error by varying hyper-parameter ω,
that controls this balance in Equation 5. Then, we capture
the effect of the number of concepts on RBTF’s performance
by varying k in Equation 5 and measuring its error on test
data.
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ω
Dataset 0.01 0.25 0.5 0.75 1.0
Course 1 0.191 0.128 0.12 0.137 0.141
Course 2 0.233 0.2064 0.2056 0.2154 0.2224

Table 3: RMSE with different value of ω and number
of concept is 3.

Sensitivity to ω: Recall that ω controls the trade-off be-
tween having an accurate estimation of student performance
and the constraint of knowledge increase. A larger value
of ω, imposes more contribution of knowledge increase con-
straint to the performance of RBTF, and a smaller value of ω
dictates a stricter fit of student performance to the training
data. We use different values of ω from 0 to 1 and measure
RBTF’s RMSE corresponding to these values. For other pa-
rameters, we use the default values mentioned in Section 4.1.
Table 3 presents the performance of RBTF with different
values of ω on the two datasets. From the table, we observe
that ω = 0.5 yields the best performance of RBTF and it is
consistent for the two datasets. However, the results from
Course 2 dataset is more sensitive to the changes in ω. One
reason for this can be the smaller number of attempts and
more sparsity of Course 2 dataset, compared to Course 1
dataset, that can lead to easier overfitting to training data.

k
Dataset 3 5 10 15
Course 1 0.12 0.122 0.127 0.128
Course 2 0.2056 0.206 0.2065 0.2065

Table 4: RMSE with different value of number of
concepts and ω = 0.5.

Sensitivity to k: Recall that, in our model, concepts are
latent lower-dimensional representations of student perfor-
mance and problems over attempts. They can be used to
model the similarity between students and problems. To
measure the effect of the number of concepts k, we tune the
value of k while using the default values for other parame-
ters (see Section 4.1). We measure the RMSE of RBTF by
changing k. Table 4 shows the results. From the table, we
observe that increasing the value of k makes RBTF perform
slightly worse. This finding is consistent in both datasets.
However, RBTF is relatively robust to k as this increase in
error is minor.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel rank-based tensor factor-
ization method (RBTF), which is able to predict the perfor-
mance score of students by considering the gradual learning
of students as a ranking problem. Our model has the flexi-
bility to present student knowledge as a soft-membership of
latent concepts, only requires activity sequences of students,
and discovers individualized student knowledge model in-
cluding biases. Our extensive evaluations show that RBTF
outperforms state-of-the-art baselines in both root mean
square error and accuracy measures. Also, we show our
models robustness to hyper-parameters by experimenting
the balance between knowledge ranking and performance
fitting parts of the model, and by varying the number of
latent concepts.

There are several directions to extend this research work

further. In this work, we experiment on performance pre-
diction within the same course. This model can be used
to experiment on between-course performance predictions.
Another application of our model is to detect knowledge
gaps in students and recommend useful learning materials to
them. Moreover, contingent on the availability of a domain
knowledge model, this work can be extended to improve
the existing domain knowledge model. Recent studies show
that order and length of students’ activities are essential for
understanding students’ performance [15]. So, integrating
these features can enhance the prediction performance of
our model.
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[26] N. Thai-Nghe, T. Horváth, and L. Schmidt-Thieme.
Factorization models for forecasting student
performance. In Educational Data Mining 2011, 2010.

[27] N. Thai-Nghe and L. Schmidt-Thieme.
Multi-relational factorization models for student
modeling in intelligent tutoring systems. In 2015
Seventh International Conference on Knowledge and
Systems Engineering (KSE), pages 61–66. IEEE, 2015.

[28] K. Xu, R. Liu, Y. Sun, K. Zou, Y. Huang, and
X. Zhang. Improve the prediction of student
performance with hint’s assistance based on an
efficient non-negative factorization. IEICE
TRANSACTIONS on Information and Systems,
100(4):768–775, 2017.

[29] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
International conference on artificial intelligence in
education, pages 171–180. Springer, 2013.

293 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



Using Latent Variable Models to Observe Academic
Pathways

Nate Gruver
Stanford University

ngruver@cs.stanford.edu

Ali Malik
Stanford University

malikali@cs.stanford.edu

Brahm Capoor
Stanford University

brahm@cs.stanford.edu
Chris Piech

Stanford University
piech@cs.stanford.edu

Mitchell L. Stevens
Stanford University

stevens4@stanford.edu

Andreas Paepcke
Stanford University

paepcke@cs.stanford.edu

ABSTRACT
Understanding large-scale patterns in student course enroll-
ment is a problem of great interest to university administra-
tors and educational researchers. Yet important decisions
are often made without a good quantitative framework of
the process underlying student choices. We propose a prob-
abilistic approach to modelling course enrollment decisions,
drawing inspiration from multilabel classification and mix-
ture models. We use ten years of anonymized student tran-
scripts from a large university to construct a Gaussian latent
variable model that learns the joint distribution over course
enrollments. The models allow for a diverse set of inference
queries and robustness to data sparsity. We demonstrate the
efficacy of this approach in comparison to others, including
deep learning architectures, and demonstrate its ability to
infer the underlying student interests that guide enrollment
decisions.

1. INTRODUCTION
Education researchers increasingly recognize the need to un-
derstand the sequential accumulation of college coursework
into academic pathways. In [2, 23], Bailey et al. call for
change in how colleges organize course offerings to enable
more efficient pathways. Rather than presenting a bewilder-
ing array of courses, cafeteria-style, they recommend“guided
pathways” through academic offerings. Baker [3] builds on
Bailey’s work, suggesting“meta-majors”for simplifying choice
without curtailment of options. Meta-majors entail com-
bining coursework supporting multiple majors into larger,
substantively coherent content domains. Baker proposes
social-network analytic techniques to discover opportuni-
ties for building meta-majors. All of these authors argue
that rather than limiting choice, such interventions can yield
more tractable programs, faster degree completion, and lower
cost for both students and schools.

Such reforms can be enabled by analysis of data corpora

describing the academic sequences of prior student enroll-
ments. For example, some courses may be de facto pre-
requisites for other courses, whether listed as ”required” or
not in formal catalogue entries. Similarly, “odd” delays in
taking particular courses, or unexplained detours in course
selection, can be symptoms of unintended scheduling con-
flicts.

In the service of such reforms, we offer a model of course en-
rollment capable of efficient inference over hundreds to thou-
sands of classes. Our generative model captures the full joint
distribution of course enrollments and can be used to sample
potential pathways for any given student. The model’s com-
plexity allows us to determine an underlying ”typography”
of students, from implicit course-taking patterns to differing
levels of novelty in their academic pathways relative to the
overall population of paths.

2. BACKGROUND & MODELS
Predicting course enrollment decisions may be viewed as a
problem of multi-label classification: the task of assigning a
subset of labels to each data point in a collection. In con-
text of academic course enrollments, each data point is a
student and the labels are courses enrolled. The problem
of modeling all possible enrollment choices scales exponen-
tially with the number classes (O(2N )), which motivates a
statistical approach. Probabilistic graphical models (PGMs)
and deep neural networks are perhaps the most prominent
methods for stochastic models of high-dimensional data. As
our motivation in this work is not simply high accuracy but
also interpretability and inference, we focus on PGMs, which
fare better on those aspects and are amenable to scaling ad-
equate for our empirical setting.

2.1 Latent Variable Models
Latent variable models are a subclass of PGMs in which
some variables are never observed in training data and are
thus “latent.” These models are more computationally de-
manding than fully observed models, but also are able to
capture complex structure in data without supervision.

2.1.1 Models of Conditional Independence
Among the simplest and most commonly used latent vari-
able models is the naive Bayes model with hidden variable
H taking discrete values hi and observations X. In the en-
rollment setting, X = [x0, ..., xN ] and xi = [xi0, ..., x

i
M ] with

1
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Figure 1: Top: A stacked area plot of enrolled courses per university sub-school per year. Bottom: A
histogram of the number of courses taken by each individual student with a Gaussian fitting.

xij ∈ {0, 1} (0 denoting no enrollment and 1 an enrollment).
The generative process of the model is described below:

hi ∼ Multinomial(θ)

xij | hi ∼ Multinomial(φj)

Given the value of the hidden variable, each individual prob-
ability of enrolling in a course is independent. This is a poor
inductive bias because enrollment decisions often influence
one another, and the number of courses taken by a student
in a given year is dependent on the courses taken. It is easier
to capture these two facets of the data if we can model en-
rollments jointly, without strong independence assumptions.

2.1.2 Gaussian Mixture Model
Any joint probability distribution over all discrete combina-
tions of xi ∈ {0, 1}m requires 2m− 1 parameters and is thus
intractable. One possible solution to is relaxation of the dis-
crete problem to a real-valued vector space with X̄i ∈ Rm

and

xij =

{
1 x̄ij > 0

0 else

By training a model over X̄, we can take advantage of real-
valued distributions with much smaller parameter spaces.

The Gaussian Mixture Model (GMM) is an archetypal latent
variable model for real-valued data [22]. We can describe a
GMM by generative process below:

hi ∼ Multinomial(θ)

x̄i | hi ∼ N (µ,Σ)

We can modify the GMM for the setting of multi-label clas-
sification by providing an unbiased estimator of the proba-
bility of each binary sample:

P (x = [1, 0, ..., 1]) = P (x̄0 > 0, x̄1 < 0, ..., x̄0 > 0)

≈ 1

K

K∑
i=1

Φ(
#»
0 ;µ(yi),Σ(yi))1[yi >

#»
0 ]

where yi are samples drawn from a multivariate normal over
a subset of the variables in x and µ(yi), Σ(yi) are the pa-
rameters of a multivariate normal conditioned on the value
of yi. More detail on this estimator is provided in the online
posting of this paper.

At face value, it might seem odd to model enrollments as
Gaussian-distributed. We choose this particular model both
because it makes our real-valued relaxation tractable and be-
cause we think it is reasonable to assume enrollments within
each cluster will be fairly unimodal and smooth, especially
as sample sizes increase.

2.1.3 Contextual Mixture Model
Hidden Markov Models (HMMs) are a common extension of
stationary mixture models to sequential data [21]. In these
models, the single latent variable is replaced with a Markov
chain of hidden states. This model is naturally recursive, a
property that is extremely useful when modeling processes
that are positive recurrent. However, as enrollments often
exhibit a strict order and returning to previous states is un-
likely, we prefer a model that is strictly time-dependent or,
as we will call it here, “contextual.” In general any Contex-
tual Mixture Model (CMM) can be expressed using a Hid-
den Markov model, but enforcing this structure allows us to
incorporate priors that significantly improve the chances of
training a plausible model.

For a CMM with Gaussian emission probabilities, we have

h0 ∼ Multinomial(θ)

ht+1 | ht ∼ Multinomial(φt)

x̄t | ht
i ∼ N (µt

i,Σ
t
i)

Note that the parameters of the transition and emission dis-
tributions are different for each timestep. Figure 2 shows a
diagram of our proposed model in plate notation.

The small, discrete latent space of our model offers highly
interpretable representations compared with the continuous
latent vector space of neural architectures (see Fig. 4) and
inference is highly efficient as the model has low tree-width.

2
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Figure 2: Graphical representation of contextual
mixture model using plate notation

Our discrete probability estimator also allows modeling of
all courses jointly, which is essential in this setting.

2.1.4 Parameter Learning
There are two primary methods of learning the parameters
of the model we propose: expectation-maximization (EM)
[8, 5] and gradient descent [6] on the log-likelihood objec-
tive. The approximate probability estimate of the model
also creates the possibility for differing levels of precision in
accordance with the amount of computation one is willing to
invest. For a highly biased learning process, one can simply
train the model on data shifted from [0, 1] to [−1, 1] using
the exact probability estimate. For a less biased learning
process, one can use the probability estimator described in
Section 2.1.2 and unbiased estimator of the gradient with
respect to the model parameters. For more details, see the
online posting of the paper.

2.2 Baseline Models
In Section 4 we present a comparison of our model with
three baseline models. The first of these is an naive Bayes
model with the strongest model assumptions. The second
is tree-augmented naive Bayes [9], which adds dependencies
between variables to better model the joint density. Both
models with trained with EM.

The last model we use for comparison is a Variational Au-
toencoder (VAE)–a deep generative model [15]. We use a
simple VAE with two fully connected layers in the encoder
and decoder, trained on binary cross-entropy loss.

It is important to note that while the VAE offers a good
comparison point, the type of conditional inference (over
sets of courses) that we describe for our Gaussian relaxation
are not tractable in a standard VAE framework. In fact,
VAE models can suffer from suboptimal inference in general
when there is overfitting of the decoder network [7]. This
issue is particularly concerning in this setting with relatively
small sample size.

3. EXPERIMENTS
In this section, we describe the data used to train the model
presented in Section 2 and how we evaluated them during
training.

3.1 Data
We use eighteen years of course enrollment data from a large
private university in the United States. The data comprise
approximately 30, 000 student enrollment records with fields
for course name and student major. We removed part-time
and summer students from the dataset, limiting the analyses
presented here to full-time academic-year enrollments only.

Figure 1 shows two basic visualizations of the data after pre-
processing. There are at least two notable takeaways from
these plots. First, the proportion of enrollments in each
academic division within the university remains relatively
stable through most of the time period represented in the
dataset. We use this fact to aggregate over time without
explicitly modeling changes in enrollment patterns. Second,
the fact that the number of courses taken is approximately
Gaussian-distributed shows that enrollment patterns are not
intensely multi-modal; thus the assumptions of probabilistic
model are plausible.

In what follows we replace full course names with abbrevi-
ated proxies to enable universal legibility. For example, CS1
corresponds to the introductory computer science class and
“Alg” or “AI” correspond to algorithms or artificial intelli-
gence classes respectively.

4. EVALUATION
4.1 Mean-Field Evaluation
Though we can compare many of the models under con-
sideration with log-likelihood alone, some only offer an ap-
proximate lower bound (VAEs). Thus we provide another
evaluation metric that can be used to compare any model
that can generate sampled enrollments.

For this loss function, we compare the empirical enrollment
distributions in samples from our model and the distribu-
tions of the hold-outs. Let ptj be the probability that class j
is taken by any given student in the hold-out data, and psj
be the corresponding probability in the samples. We take
as our error, E(pt, ps) with

E(pt, ps) =
∑
j

(ptj − psj)2

which approximates the distance between the two true mul-
tivariate distributions–the distribution of our model and the
distribution of the data–if all the variables were independent
(mean field approximation).

4.2 Sample Quality
In Figure 3 we compare the performance of our model on
hold-out data relative to baseline models described in Sec-
tion 2.2. We also include a direct comparison of the best
performance for each model in Table 1.

In Figure 3 we can see that our proposed model outperforms
the two baselines across the board. It also is evident that the
VAE baseline suffers bad generalization as the complexity of

3
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Figure 3: Plots of the error for the proposed model
and other models. The parameter K is the dimen-
sion of the latent space.

Model Sample Error Inference Acc.
Deep Generative 1.01 N / A

Naive Bayes 0.78 60%
Tree-Augment Naive Bayes 0.76 66%

Our Gaussian 0.72 86%

Table 1: A direct comparison of the best perfor-
mance from each model on hold-out data

the model increases. These models were trained adaptively,
according to performance on the validation set, and thus are
not simply underfitting due to increased training complexity.

In comparing the graphical models, increased complexity–
both in the observation model and latent space–leads to
lower error. As the error calculation itself makes an indepen-
dence assumption, it is not surprising that the performance
of all three graphical models is relatively close. The true
dominance of the model proposed here is perhaps most ev-
ident in the inference task of Table 1, described in Section
5.3.

4.3 Visualizing Hidden Variables
Beyond using the loss function defined in Section 4.1, we can
also examine the hidden states of a trained model to vali-
date the learning process. In particular, we can investigate
whether the hidden space captures semantically meaning-
ful categories. Figure 4 shows a visualization for our model
trained on CS majors. The clusters in the grid correspond
to required courses for three different concentration within
the major1, and the color shows the most likely latent state
assigned by the model to each course. As we can see, courses
within the same concentration are assigned strikingly sim-
ilar latent states by the model, suggesting that the model
captures a semantically meaningful notion of the different
concentrations in its hidden state. Therefore, if there are
unknown correlations in course enrollments—for example

1These requirements were taken from the depart-
ment website: https://exploredegrees.stanford.edu/
schoolofengineering/computerscience.

Figure 4: A visualization of the semantic meaning
captured by the latent space of the model. Color-
ing corresponds to hidden state, and translucency
indicates the confidence of the model.

many AI and biology courses taken together—this model
could bring these patterns to the fore, allowing administra-
tors an insight into possible ways to improve their degree
concentrations.

5. APPLICATIONS
In this section we present results from two different experi-
ments performed with our proposed model. These applica-
tions demonstrate only a fraction of the model’s scope, but
show its power to provide insights.

5.1 Quantifying Enrollment Likelihood
One of the useful applications made simple by our genera-
tive model is in quantifying enrollment likelihood. A model
trained on student enrollments will approximate the distri-
bution of the training data. Thus if we evaluate the likeli-
hood of a new student’s enrollments given the model, we can
get a sense of how this student differs from the training ex-
amples. Taking this principle to its extreme, we can train a
model for each student on every other student’s enrollments,
allowing us to model exactly how much each particular stu-
dent varies from the typical.

By examining the classes taken by students who are eval-
uated as high versus low likelihood, we see that the model
captures at least two meaningful axes of variance. Firstly,
it recognizes that it is rare for students to take a very di-
verse set of courses spanning many academic subjects. This
insight is demonstrated in Figure 6, which shows the aver-
age coursework for each type of student. The second insight
that the model captures is the spectrum of ambition. More
specifically, the model places very low probability on the
small subgroup of students that take up to 30 computer sci-
ence classes and places high probability on taking just the
core requirements of the degree2. Atypical students take
about 20 more courses than their counterparts on average.

2We can identify this trend by looking at the exact classes
that are most commonly taken by these students e.g. the
core requirements.
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Figure 5: Two shadings of the same Sankey diagram constructed from the CMM trained on CS undergradu-
ate enrollments. Top: A common path taken by students engaging in pre-med requirements is highlighted in
blue. Bottom: A common path for students committed to in-depth study of computer science is highlighted.

Figure 6: Pie charts representing the difference be-
tween enrollment patterns captured by the model.
Sections correspond to the average number of
courses taken in a academic subject.

5.2 Understanding Pathways
Another capability of the model presented here is the abil-
ity to analyze sequences of enrollments, from inferring likely
paths between X and Y, to uncovering unspoken student
strategies. We can display this visually using Sankey di-
agrams in which the width of the line between adjacent
segments is proportional to the transition probability be-
tween the corresponding hidden states in the model. Fig-
ure 5 shows this style of Sankey for CS students. In this
diagram, we can note the two types of paths highlighted in
the diagram. The first of these captures students who were
actively taking the pre-medical requirements freshman and
sophomore year. These same students were subsequently
much more likely to take depth courses later and were more
likely to focus on web development of information systems
in their depth courses. We can contrast these students with
the students that are highly committed to the CS major and
its core classes starting freshman year. These students are
much more likely to enroll in depth classes by their sopho-
more year and are predisposed towards the systems and AI
concentrations within the major.

5.3 Inferring Intermediate Classes
Another unique capability of our model is inferring the likeli-
hood of intermediate classes. Given the classes taken fresh-
man year and goal classes for senior year, the model can
place a likelihood on intermediate classes. One possible use
case for this ability is inference of soft or tacit prerequisites
for courses.

To test this aspect of the model, we predicted whether stu-
dents would take each of 5 common classes in their sopho-
more year given freshman and senior year enrollments. We
were able to recover the correct enrollment with around
86% probability. From this result it is clear that the model
can learn a sensible joint distribution over multi-year enroll-
ments. We can compare this performance with that of the
baseline models in Table 1, noting a substantial gain.

An even more interesting use case of this inference ability,
however, is not simply prediction of common courses, but the
potential for improving course selection tools. Only a model
that captures the temporal dependencies across all courses
is capable of offering helpful insights for goal-directed course
selection.

6. PRIOR WORK
Much of the prior work on enrollment modeling in the uni-
versity setting is dedicated purely to predictive models of
future course enrollment [13, 18, 24] and academic perfor-
mance [16, 11]. These models are largely incapable of pro-
ducing the kinds of insights shown here. Preliminary work
has also seen application of clustering algorithms to enroll-
ments in form of latent variable models like Latent Dirichlet
Allocation (LDA) [17] and recurrent neural networks [20].

Much of the state-of-the-art research in student decision
modeling is now found in the study of massive open online
courses (MOOCs). Gardner and Brooks [10] provide a thor-
ough overview of modern models for the problem setting.
Of note, Balakrishnan and Coetzee use a Hidden Markov
Model (HMM) to predict attrition in MOOCs [4]. Similarly,
Al-Shabandar et al. use Gaussian Mixture Models (GMMs)
to cluster MOOC students at each timestep, and thus iden-
tify clusters of students that are likely to withdraw from the
courses [1]. Both of these models resemble ours though their
task is prediction of simple binary outcomes.

Work in course recommender systems is also inspiring. Kho-
rasani et al. create a recommender based on a Markov model
[14]. Jiang et al. use a neural-network system [12], and add
the choice of using grade considerations to create custom
course recommendations (also see [19]). This second model
yields extremely compelling results, but is not capable of the
broad range of inference queries possible with our model.
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7. CONCLUSION & FUTURE WORK
We have presented a new probabilistic model that is capable
of capturing joint relationships between course enrollments,
while also allowing for powerful inference queries. There is,
however, at least one important drawback to our approach:
the strictly Markovian character of the model. Although
this assumption allows us to easily learn model parameters,
in practice the enrollments observed at one timestep will
impact those sampled at the next timestep. Because of this
inductive bias our approach is effective with less training
data than, for example, a recurrent neural net, and is there-
fore more easily deployed for institutions smaller in size than
our case university.

We emphasize the potential for future work that links data
of the sort investigated here with other rich information,
such as demographic information describing students, and
earned grades. Models incorporating such information could
meaningfully identify differences between course trajectories
of particular kinds of students, providing insights into how
academic policies and programs might be tuned to benefit
specific constituencies.
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ABSTRACT
Peer-grading is commonly adopted by instructors as an effec-
tive assessment method for MOOCs (Massive Open Online
Courses) and SPOCs(Small Private online course). For solv-
ing the problems brought by varied skill levels and attitudes
of online students, statistical models have been proposed to
improve the fairness and accuracy of peer-grading. How-
ever, these models fail to deliver accurate inference in the
SPOCs scenario because affinity among students may seri-
ously affect the objectivity and reliability of students in the
peer-assessment process. To address this problem, this pa-
per proposes a human-machine hybrid peer-grading frame-
work, including an automatic grader to ensure reasonable
peer grades before the Bayesian models are utilized to infer
the true scores. This framework can significantly eliminate
the severely biased grades by those undutiful students, and
thus improve the accuracy of the true-score estimation in
the Bayesian peer-grading models. Both simulated and real
peer-grading datasets in our experiments demonstrate the
effectiveness of this new framework for SPOCs.

Keywords
peer grading, human-machine hybrid algorithm, Bayesian
model, auto-grader, SPOCs

1. INTRODUCTION
SPOCs is a version of MOOCs used locally with on-campus
students. Despite the difference between SPOCs and MOOCs
that SPOCs has the relatively smaller number of students
than a MOOCs course [8], a SPOC course needs the same
peer-grading process as a MOOC course when the instructor
has to evaluate hundreds of open-ended essays and exercises

such as mathematical proofs and engineering design prob-
lems within a deadline.

Previous research efforts on peer-grading suggest that there
is a great disparity between the observed scores presented by
student graders and the true scores given by the instructor.
This is because students sometimes can’t perform grading
tasks as a professional instructor with the right skill and
dedication. In the process of peer grading of SPOCs, every
student grader needs to submit his answer to the problems
of home assignments, and evaluate other peer’s submissions
according to the rubrics provided by the course instructor.
The previous models [7][6] mainly adopt a Bayesian-based
approach by considering the major factors affecting the ag-
gregation of peer graded scores including the bias and relia-
bility of every student grader.

These peer grading algorithms mostly designed for MOOCs
courses may have poor performance in the setting of SPOC
courses because they ignore another important factor – stu-
dent attitude toward their grading tasks. Due to affinity
among students in a SPOC course, they trend to assign ran-
dom scores to other submissions without seriously evaluating
their peers’ homework. Even worse, in our real experiment,
we found that some students simply give a full score to ev-
ery submission assigned to them. Therefore, such an undu-
tiful grading behavior violates the basic assumption in those
Bayesian statistical models and unavoidably generate data
noises that severely degrade the performance of the models.
Our simulation and real experiment confirm that the models
produce inaccurate estimations for final scores in the process
of per grading [3].

To address the problem, this paper proposes a novel human-
machine hybrid framework that combines assessment effort
of both human and machine for peer-grading. The frame-
work adopts a document classifier as an auto-grader that
evaluates students’ submissions to estimates their scores,
and compares the scores with the peer-graded scores. Then,
it attempts to filter out the unreasonable peer-graded scores
that are significantly different from its estimations, and re-
tain these legitimate scores for the statistical models. In
this way, it can alleviate the negative impact of student ran-
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dom grading behavior and improve the overall performance
of peer-grading models. Experimental results on the actual
and simulation datasets demonstrate that our hybrid frame-
work outperform the original peer-grading models in terms
of the true-score estimation accuracy without placing too
much extra workload on course teaching assistants (TAs).

The rest of paper is organized as follows: Section 2 discusses
the related work of our research. Section 3 elaborates the
main problems of current models in the peer grading of our
SPOCs and explains the motivation of combining the ma-
chine and the human effort in peer grading. Section 4 de-
scribes the design of the human-machine hybrid framework
for peer-grading in detail. Section 5 presents our experimen-
tal results.

2. RELATED WORK
The focus of this paper is to combine the power of human
graders and a machine grader to improve the predictive abil-
ity of the existing peer grading models. Numerous papers
have been published on the field of peer-grading research.
Most researchers attempt to tackle with the peer-grading
problems from the two aspects: statistical methods for ac-
curately inferring true scores and incentive mechanism to
motivate and regulate student grading behaviors.

One of the major research topics in peer-grading is to build a
Bayesian statistical model that can accurately infer the true-
scores of student submissions. Such models were proposed in
[7] and [6] for peer-grading in MOOC courses with bias and
reliability of student graders as the major latent factors. In
[10], Ueno utilize Item Response Theory to model the score
estimation, difficulty of problem and a grader’s capability
as parameters in the IRT equation. The major limitation
of these models is caused by their assumption that every
student follows a statistical model in the peer-grading pro-
cess. But in practice, especially in the scenario of SPOCs,
students’ grading behavior actually are heavily affected by
their motivation and attitude towards peer-grading tasks.
Some students grade homework in a dutiful manner whilst
others simply assign scores randomly. Thus, a single statisti-
cal model cannot describe all the possible grading strategies
among these students in a SPOC course.

The problem of student grading behavior has received atten-
tion from academic researchers in the field of game theory.
Recently, peer prediction mechanism has been proposed to
incentivize truthful reports from individual students in the
process of peer-grading [3][1]. Without the ground truth
scores for every submission to verify against, designers of
peer prediction mechanism often introduce comparison algo-
rithms that compare grading results among multiple student
graders and enforce penalties on those whose evaluation out-
comes are different from their peers. But peer-prediction has
its inherent limitation because there are potentially multiple
Nash equilibria where students might be able to coordinate
to avoid penalty without revealing their informative signal
truthfully. Even when the peer-prediction mechanisms do
offer a truthfully equilibrium, they also always induce other
uninformative equilibria [2]. In the settings of SPOCs, affin-
ity among students make it highly possible for them to col-
lude in the peer-grading process to cheat the peer-prediction
mechanisms.

Our human-machine hybrid framework is complementary to
the research efforts on the statistical peer-grading models
and spot-checking mechanisms of peer-prediction. The auto-
grader in our framework can help to eliminate unreliable
assignment grades so as to ensure only quality grades are
passed onto the statistical models such as the PG family
model. In this way, the auto-grader can be adopted in spot-
checking mechanisms and work as an online supervisor to
perform checking tasks on behalf of TAs and update TAs
with its screening results.

The development of reliable auto-grader is widely regarded
as a challenging task. Many researchers such as [9][5] de-
signed neural network-based auto-graders to evaluate open
essays. The state-of-art automatic graders can’t complete
grading tasks in a full autonomous way, especially for sci-
ence essays and technical reports in domain-oriented courses.
Thus, our framework only assumes an automatic grader with
limited classification capability and regard it as an intelli-
gent assistant that can work with course instructors and TAs
in the process of peer-grading.

3. PROBLEM ANALYSIS OF PEER GRAD-
ING MODELS

In the section, we first introduce the peer grading (PG) mod-
els, then discuss the problems of the PG models when they
are applied in the SPOC settings. Through the simulation
experiment, we analyze fault tolerance of the PG models
with the increase in the number of undutiful students.

3.1 Peer Grading Models
We apply the PG models [7][6][4] in the SPOCs scenario,
which are Bayesian graph models with the latent factors in-
cluding the biases and reliabilities of the peer graders. These
models of Eq (1)(2)(3)(4) define zvu the observations grade
which is affected by the latent factors including bv, τv, and
the learner’s true grade su. The parameter ρ denotes factors
that affect the reliability, and the remaining parameters β,
η, µ, γ, λ in Eq (1)(2)(3)(4) are hyper-parameters.

τv ∼ N (ρ, 1/β0) (1)

bv ∼ N (0, 1/η0) (2)

su ∼ N (µ0, 1/γ0) (3)

zvu ∼ N (su + bv, λ/τv) (4)

3.2 Limitations of the PG models in SPOCs
There are two major factors that may prohibit SPOCs stu-
dents from performing peer-grading tasks in a fair and accu-
rate way. First, students without the right knowledge and
dedication may regard peer-grading tasks as unnecessary
burdens and decide to give the assignments random scores.
Second, affinity among SPOCs students who often interact
with each other in the same campus or even classroom may
drive them to assign higher grades to her or his peers’ sub-
missions. Both factors can result in high deviation between
the observation grades zvu and the ground-truth grade. We
run the simulation experiment to evaluate the impact of stu-
dent’s attitude of peer assessment and analyze the tolerance
of the PG models against data error generated by student
graders. Based on the configuration of the simulation, we
extend the PG models as follows: Assume that each student
becomes a dutiful or an undutiful students with a certain
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Figure 1: The correlation between the RMSE of the
PG model and the proportion of undutiful students
in the simulation.

probability each time they review. Define the number of
students with undutiful grading attitude as p ∈ [1, n]. Al-
though the value of p can also be 0, here we define the value
of p starting from 1 for the convenience of calculation, and
the n is the total number of all students. Define a grading
strategy set D where every element di ∈ D denotes a par-
ticular distribution corresponding to the strategy to follow.
The set D contains the distributions (5) and (6):

zvu ∼ N (su + bv, λ/τv) (5)

zvu = x± random(y) (6)

The Eq (5) represents the strategy distribution in which the
observed scores are presented by the good students with du-
tiful grading attitude, and the Eq (6) represents the other
strategy distribution in which the observed scores are pre-
sented by the undutiful students with high deviation. In
Eq (6), x is the set to the average grading scores based on
experiences and y is set to an random value with the range
[0, 20]. For simplicity, we assume that a student determine
his/her choice of the grading strategy before he accepts the
grading task and will not change in the middle of the grading
process.

Figure 1 shows that the RMSE of the prediction grades has
a linear correlation with the proportion of undutiful peer
graders and its value ranges in [10, 25]. This result remains
even when we change the parameters (x, y) in the Eq (6).
The expression of RMSE can be defined in Eq (7), where
Xmodel,k denotes the specific prediction grade prediction
generated by the PG models for an exercise report k, and
Xtrue,k denotes the corresponding ground truth score of the
exercise report k.

RMSE =

√∑n
k=1(Xmodel,k −Xtrue,k)2

n
(7)

We can expand the Eq (7) by separating the errors generated
by the dutiful group and undutiful group. First we define
ek = Xmodel,k − Xtrue,k(k ∈ [1, n]), then we define pē =∑p
i=1 ei(p ∈ [1, n]) denotes the sum of the set A = {ei|i ∈

[1, p]} and (n− p)f̄ =
∑n
j=p+1 ej denotes the sum of the set

B = {ej |j ∈ [p + 1, n]}. So, we transform the Eq (7) into
Eq (8) on the condition that each element in A and B are

equal,

RMSE ∼=

√
p(ē2 − f̄2)

n
+ f̄2 (8)

Because of the assumption |ē| ≥
∣∣f̄ ∣∣, the value of RMSE in-

creases with p changing from 1 to n. Thus we can summarize
that the grading attitude of the students can significantly af-
fect the performance of the PG model.

3.3 Comparison among grading error distri-
butions in the simulation and actual datasets

By comparing different inference performance of the PG
models in both simulation experiments and the real dataset,
we analyze the effect of the features of bias bv and relia-
bility τv on the precision of inferring true score su. In the
Gibbs sampling process for fitting the PG models, the Eq
(9) updates su in iterations. where the variable zvu is a con-
stant value, besides the τv and bv, the others are hyper-
parameters. From Eq (9) we can infer that the main factors
affecting the true grade su include a grader’s bias and reli-
ability.

su ∼ N (
γ0µ0 + β0τui +

∑
v:v→ui

τv(z
v
u−bv)
λ

γ0 + β0 +
∑
v:v→ui

τv
λ

,

1

γ0 + β0 +
∑
v:v→ui

τv
λ

)

(9)

In order to verify the conclusion of our analysis, we compare
the grading errors of the PG models in simulation experi-
ments and the real dataset. The real dataset was collected
in the SPOC course on Computer Network in our university.
We build an online learning system to support the session of
the course with the total enrollment of 724 students. Figure

Figure 2: The distributions of errors in three simu-
lation datasets and the actual dataset. Fig A, B and
C denote the histogram of grading errors generated
by simulation experiments. Fig D denotes the dis-
tribution of the real dataset based on the Computer
Network course.

2 shows that the simulation and actual datasets have a very
different error distribution. Fig 2A assumes that every stu-
dent’s grading behavior follows the gaussian model defined
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in Eq (5). In contrast, the real dataset in Fig 2D indi-
cates that many students’ grading behavior doesn’t satisfy
the gaussian distribution. In order to further confirm the
conclusion, we have conducted the other simulation exper-
iments, in which we configure 40% undutiful students and
60% undutiful students to follow the random grading be-
havior defined in Eq (6), respectively. The results as shown
in Fig 2B and Fig 2C demonstrates a similar error range to
Figure 2D. These observations suggest that students in the
SPOC experiment tend to exhibit random grading behavior.
Clearly, such a high deviation of the peer grades in the real
dataset from their ground truth is the reason why the PG
models cannot achieve the low RMSE as we expect.

4. THE HUMAN-MACHINE HYBRID PEER
GRADING FRAMEWORK

This section presents the design of our human-machine hy-
brid framework in detail, as shown Figure 3. The main idea
of the framework is to use the auto-grader as an anomaly de-
tector to screen the peer grades generated by undutiful stu-
dents. The framework consists of three major components
including a homework Auto-Grader, a Score-Filter and the
PG models.

Figure 3: The human and machine hybrid frame-
work of peer grading.

In the process of peer grading, the system first allocates the
tasks for each student to perform their peer-grading tasks.
After the Auto-Grader receives a score for a submission, it
estimates a score for the same submission, and passes the
estimation to the ScoreFilter. The ScoreFilter is respon-
sible for comparing the Auto-Grader’s estimation with the
original peer score, and abandoning the peer score if the de-
viation between these two scores goes beyond the predefined
threshold. With the co-ordination of the Auto-Grader and
the ScoreFilter, the framework divides the student submis-
sions into two groups: one group includes the submissions
with legitimate peer grades that can be aggregated by the
PG model for the grade inference, the other includes those
without valid peer grades that have be sent to TAs for eval-
uation.

4.1 Naive Bayesian based Classifier as Auto-
Grader Implementation

Based on Naive Bayesian method, we design a weak text
classifier as the Auto-Grader in the hybrid peer grading
framework. Each course assignment report often contains
several problems. Thus the Auto-Grader’s design consists

of several classifiers, each of which classifies one problem in
the assignment report. The grade classification results for
all the problems of the assignment are mapped into scores
based on its rubric and combined together as the total score
of the assignment report.

4.2 Score Filtering and Postprocessing
The ScoreFilter in the hybrid human-machine grading frame-
work adopts a simple filtering process. It computes the abso-
lute value of the difference between grades estimated by the
Auto-Grader and the peer-graded scores, sorts the scores in
a descending order, and filter out the top 20% with the high-
est deviation values. The design of the score filter involves
two major issues: The threshold for dropping unreasonable
scores and the post-processing strategy for supplementing
abandoned scores.

The Error Threshold of Score Filtering
Because our Auto-Grader is a weak classifier, we need to
consider the classification error of each sub-problem of a
homework report when we use the Auto-Grader to evalu-
ate each sub-problem. We define the following equation to
calculate the grading error.

Thresholderror =

√∑n
i=1(xi − ai)2

n
(10)

In the Eq (10), xi ∈ x1, x2, · · · , xn denotes the score given
by a student grader, aj ∈ a1, a2, · · · , an denotes the score
estimated by the Auto-Grader. The value of n presents the
number of the problems in an assignment. We use Eq (10)
to predict the error for each peer-graded score, and sort
the list in a descending order according to the value of the
prediction error, thus filtering out the peer grades with high
errors values.

The Post-Process Strategy of Score Fltering
This simple filter algorithm above may cause potential prob-
lems for the PG models. After the ScoreFilter drops these
unreasonable peer-graded scores, it can create extreme cases
where most peer scores for a student assignment are elim-
inated. In such a case, a post-processing step is necessary
in the ScoreFilter to supplement new scores for the down-
stream PG models. For the post-processing step, we propose

Figure 4: Three Strategy to replace filtered grades.

three strategies to handle the filtered-out scores. Dropping
only: The ScoreFilter simply drops the scores identified by
the auto-grader and does not supplement any new scores;
Replacement by Auto-Grading: The Score-Filter directly
uses the grades generated by the Auto-Grader to replace
the peer scores that are identified as biased; Mixed Replace-
ment: This strategy is only designed as a contrast strategy,
which can choose the replacement score for a filtered peer
score among the rest peer scores and the score predicted by
the auto-grader based on their absolute difference value from
the ground truth. Although it is impossible to implement
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this strategy in the real system, it gives us an upper-bound
for the strategy design when the ground-truth is available.

Figure 4 presents the example of all the strategies. In Figure
4, the leftmost graph is the relationship between the origi-
nal peer score and the real score of the submission, from left
to right, the second subgraph represents the score aggrega-
tion method using the first strategy, and the third subgraph
Represents the score aggregation method using the second
strategy, and the last subgraph represents the using of the
third strategy for score aggregation.

5. EXPERIMENTS AND RESULTS
The peer-grading experiment was conducted in the course
of Computer Network, which is offered to the senior college
students of the computer science major. After class, stu-
dents must design a networking plan and describe device
configurations in their laboratory reports. These reports
are evaluated through the peer-grading process. Our exper-
imental dataset was collected from the class sessions in Year
2015-2017, including a total of 6 peer grading assignments
and 724 students and 2354 assignment reports.

5.1 The prediction accuracy of the Auto-Grader
We choose the assignment reports on the sub-networking
chapter of the course as the training and test data to develop
the classifier of the Auto-Grader. This sub-networking as-
signment consists of six problems. For each problem in the
assignment, there is a rubric specifying the grading category
and score scheme. Table 1 displays the categories of rubric
for each problem.

Table 1: The categories of the each problem of the
assignment.

Problem ID Category 1 Category 2 Category 3 Category 4
1, 2, 3 0 5 10 —

4 0 10 20 —
5 0 10 15 20
6 0 10 — —

In the rubrics for Problem 1-3, there are three categories and
the scoring values of each category are 0, 5 and 10 points.
The rubric for Problem 4 also has three categories, includ-
ing 0, 10 and 20 points. The rubric for Problem 5 has 4
categories, including 0, 10, 15, and 20 points. The rubric
for Problem 6 only has two categories, including 0 and 10
points. Based on the above design of rubrics, the classifier of
our Auto-Grader can achieve reasonable grading accuracy.
The experimental results of the Auto-Grader are shown in
Table 2. The grading accuracy of the Auto-Grader classifier

Table 2: The prediction accuracy of Auto-Grader
based on Naive Bayes.

Problem ID ≤ 5 ≤ 10
1 66.29% 100%
2 73.6% 73.6%
3 73.03% 73.03%
4 60.11% 90.45%
5 66.85% 87.64%
6 65.73% 100%

within 5 points can achieve more than 60%, and the accu-
racy within 10 points becomes higher partly because of the
design of the rubrics. This shows that the Auto-Grader can
present reasonable score estimation as long as the threshold
of the error is set to 10 points.

5.2 Choice of Post-processing Strategies for
Score Filtering

We evaluate the performance of the ScoreFilter, especially
the post-processing strategy. In addition to the three strate-
gies described in Section 4.2, we also run the post-processing
with the ground-truth strategy, in which the filtered top 20%
peer scores are replaced by the ground-truth value. From
Table 3, one can find that the Dropping-only strategy shows
better performance than the Replacement by Auto-Grading
strategy. The reason may be caused by the limited grading
accuracy of the classifier in the Auto-Grader. Although the
Mixed-Replacement strategy and the Ground-truth strategy
achieve the lowest RMSE, their implementation is not fea-
sible in the real scenario. Therefore, we have chosen the
Dropping-Only strategy for post-processing in the Score-
Filter.

Table 3: The value of RMSE of Adopting the three
post-processing strategies.

Post-Processing
Strategy

RMSE
Post-Processing

Strategy
RMSE

Dropping only 17.29 Mixed Replacement 16.45
Replacement by
Auto-Grading

30.89 Only Ground Truth 15.96

5.3 Tuning the Threshold of the Score Filter
When the Naive Bayesian based auto-grader is used to each
problem in an assignment submission, we need to consider
the classification error of each sub-problem when we use
auto-grader to evaluate the grade of each sub-problem by
Eq (10).

Tuning the error thresholds
We investigated the impact of the error threshold by com-
paring the value of RMSE generated by the PG models and
the Auto-Grader under different threshold values. The re-
sults are shown in Table 5. In Figure 5, we set the threshold
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Figure 5: The trend of RMSE changes with thresh-
old. The online labels indicate the percentage of
submissions that do not have a peer score as a per-
centage of the total of submissions.

to filter the number of peer-graded scores with an interval
of 1. We found that when the threshold is 11, the value of
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RMSE drops to the lowest value, but the number of the sub-
missions without peer grades accounts for 12% of the total
submissions. In this case, the class TAs have to check these
submissions and give their evaluations as the input for PG
model. Therefore, when the number of assignment report is
large, it will bring extra workload to the class TAs. Through
our further experiments, we find optimal threshold should
be 14.3, where the minimum RMSE can be calculated as
16.38, and only 3% submissions have to be assessed by the
class TAs. In practice, the class instructors have to run a
few rounds of peer-grading to determine the distribution of
peer-grades scores and set the empirical value for the error
threshold.

5.4 Overall Performance of the Hybrid Peer-
Grading Framework

In order to evaluate the performance of the hybrid peer-
grading framework, we run the PG models after the peer-
graded scores are filtered by either the framework or random
filtering respectively. In this way, we can generate three
group of experimental data: the initial dataset without any
score filtering, the dataset with Naive Bayesian-based Auto-
Grader filtering, and the dataset with random filtering. The
RMSE of the PG models based on the three data sets is
shown in table 4.

After the peer-graded scores are sorted in a descending order
of the estimated error, the top 20% of the scores are filtered
out in each experiment. The filter process may eliminate all
peer-graded scores for some submissions which have be re-
evaluated by TAs. In the above experiment, when the error
threshold is set to 15, 706 submissions are left with at least
one peer-graded score. Only 18 submissions which account
for 2% of all lose all the peer-graded scores. Thus, the task
of re-evaluating these submissions does not bring too much
burden to the course TAs. It can be seen from the Table
4, no matter which PG model is used, the human-machine
hybrid framework can obtain the best performance, which
averagely reduces the RMSE by 4. This outcome confirms
that the hybrid human-machine peer-grading framework can
improve prediction accuracy of the PG models with the pres-
ence of random grading behavior.

6. CONCLUSION
In this paper, we introduce a novel human-machine hybrid
peer-grading framework to alleviate the problem of the ran-
dom grading where student graders perform their peer-grading
tasks in an undutiful manner. The most important compo-
nent of the framework is the Auto-Grader that can classify

Table 4: RMSE comparison between the human-
machine framework and the PG models.

RMSE

Models
Without Auto

grader Filtering

With Naive
Bayes-based
Auto-grader

Filtering

Generated by
filtering randomly

PG1 21.90 17.09 22.10
PG3 20.40 17.30 21.36
PG4 21.57 17.49 22.02
PG5 20.26 16.71 21.86

students’ submissions using machine learning and enable the
framework to filter out the peer-graded scores with high er-
rors. When filtering the peer grades, the framework calcu-
lates the error threshold according to the RMSE metric. Ex-
tensive experiments confirm that the hybrid framework can
effectively eliminate the noise in peer-graded scores made by
undutiful student graders and improve the prediction accu-
racy of the PG models.
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ABSTRACT
In this paper we consider the problem of modelling when stu-
dents end their session in an online mathematics educational
system. Being able to model this accurately will help us op-
timize the way content is presented and consumed. This is
done by modelling the probability of an action being the last
in a session, which we denote as the End-of-Session proba-
bility. We use log data from a system where students can
learn mathematics through various kinds of learning materi-
als, as well as multiple types of exercises, such that a student
session can consist of many different activities. We model
the End-of-Session probability by a deep recurrent neural
network in order to utilize the long term temporal aspect,
which we experimentally show is central for this task. Us-
ing a large scale dataset of more than 70 million student
actions, we obtain an AUC of 0.81 on an unseen collection
of students. Through a detailed error analysis, we observe
that our model is robust across different session structures
and across varying session lengths.

Keywords
Educational session modelling, Student behaviour, Deep learn-
ing

1. INTRODUCTION AND RELATED WORK
Digitization of education is ever increasing, where for higher
level education, massively open online course (MOOC) plat-
forms are offering an increasing amount of high quality courses
for a wide range of topics. Similarly, a wide variety of sys-
tems exist for assisting teachers in lower levels of education,
where especially mathematics has been a focus since many
types of exercises allow automatic correction, thus freeing
up teacher resources. The design of most of these systems
is that students engage with them through sessions consist-
ing of different actions, e.g. answering questions or reading
learning material, but the frequency and length of sessions
naturally vary between students.

In this paper we consider the problem of modelling when
an action is the last action in a session, which we denote as
the End-of-Session action. This is naturally a highly class
imbalanced problem, since there is only one End-of-Session
action per session, and we do not get any explicit feedback
about the student’s intent to end a session before it is over.
Additionally, a large amount of external and internal fac-
tors for ending a session exists, for example: The student
has finished an assigned task (e.g. homework), the student
is unmotivated or distracted, the student has grasped the
material, etc. If we are able to model the End-of-Session
probability for each action accurately, then it can offer real-
time insights in ongoing student sessions, and actions can
be taken to steer the student in a direction where she is less
likely to quit.

The problem of modelling when a session ends has, to the
best of our knowledge, only recently been considered by Kas-
sak et al. [8] in the educational domain, where a polynomial
classification model with handcrafted features was used, but
the work was done on a small scale using just 452,000 stu-
dent actions. Related work to this problem has also been
considered from the point of view of modelling and clustering
student sessions, in order to understand and group student
behaviour in educational systems [11, 5, 9]. Even though
the End-of-Session problem has not been investigated much
in the educational domain, the problem has been considered
in other domains, such as business [13] and media stream-
ing [14, 3], where recurrent neural networks and gradient
boosted trees have been shown to work well.

A related problem to End-of-Session modelling that has been
considered extensively in the educational domain, is drop-
out prediction. In this setting student log data is used for
modelling drop-out of students, with studies focusing on
whether a student will drop out of their studies [1], or drop
out of MOOC courses [2, 10, 15]. Drop-out prediction mod-
els can utilize both general characteristics of a student, as
well as usage behaviour changes (e.g. usage decline) to aid in
the prediction. Although End-of-Session modelling utilizes
much of the same types of data, in this setting the ”stop”-
signal needs to be found within each session, and not as a
single terminal event happening at a single point.

In this paper we model the End-of-Session problem using
a deep recurrent neural network architecture, that outputs
an End-of-Session probability for each student action, using
the actions in the current and previously completed sessions.
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We show that considering the task on a studentwise level ob-
tains significant improvements over considering the sessions
individually. We experimentally evaluate our approach us-
ing log data from more than 70 million student actions from
85,780 students, where we are able to obtain an AUC score of
0.81 on an unseen collection of students. Through a detailed
error analysis we show that the model is robust across stu-
dents with a varying number of completed sessions, across
sessions of different lengths, as well as for different session
structures.

In the remaining of the paper the data is presented in Sec-
tion 2; the End-of-Session problem is presented in Section
3, and our deep learning approach presented in Section 3.1;
experimental findings are presented and analyzed in Section
4; and a conclusion is made in Section 5.

2. DATA
In this paper we use data provided by Edulab1, the largest
Danish system for online mathematics. The system primar-
ily targets students aged 6 to 16 and supplies material span-
ning the entire mathematics curriculum. The system offers
two primary ways of engaging with the material: 1) Read-
ing text material or watching video material, and 2) answer
fill-out or multiple-choice questions. These two broad cat-
egories can be done by students on their own initiative or
by being assigned it as homework by a teacher. All ques-
tions and video/text materials are associated with a specific
lesson, which is a specific skill such as ”addition of small in-
tegers”, and each lesson is associated with a topic, which is
a broad skill such as ”addition”. The general data statistics
can be seen in Table 2.

We use log data generated when students use the system.
For each action they perform we have the timestamp, the
lesson id, the topic id, the type of action (and an answer if
the action is answering a question), and lastly whether it is
homework. The system does not track the exact time taken
to complete an action, but can derive it as the time taken
since the last action. To group the actions into sessions,
we consider a time gap of more than 15 minutes to be a
new session. The choice of 15 minutes was based on each
action rarely requiring more than a few minutes, and to
allow time for breaks within the same session. From these we
derive a set of general features associated with each action
as described in Table 1. For the temporal features we chose
to discretize the time into the time intervals 8-12, 12-15,
and 15-8 in order to represent the times as ”before noon”,
”afternoon”, and ”after school”. For content type we decided
to ignore the actual ids, and instead focus on the changing
between lessons and topics. The reason for this was the
large number of different ids, with close to 1000 different
lesson ids. This also has the benefit of being more general,
since the system will not be able to learn patterns specific
to certain ids.

There is a large variance in the number of sessions each
student has completed and the length of each of the sessions,
the histograms for each of these can be seen in Figure 1 and
2 respectively. For the histogram of session lengths, spikes
are seen at certain lengths divisible by 5, this is due to how

1The data is proprietary and not publicly available.

Category Features
Temporal 1) time of day as discrete values 8-12, 12-

15, and 15-8, 2) time since last action,
and 3) time since last session.

Action type 1) answering fill-out question, 2) an-
swering multiple-choice question, and 3)
watching or reading material.

Content type 1) the lesson id was changed compared
to the previous action, and 2) the topic
id was changed compared to the previous
action.

Miscellaneous 1) whether a potential question is an-
swered correctly, and 2) if the action was
done as homework or on the student’s
own initiative.

Table 1: Dataset features divided into categories.

Number of students 85,780
Number of sessions 2,587,876
Number of actions 71,341,770

Percentage of sessions being homework 48.3%
Percentage of sessions being partly homework 25.5%
Percentage of sessions not being homework 26.2%

Table 2: General data statistics.

some groups of questions are presented to the students, e.g.
as 5 or 10 quick related questions. Similarly, homework often
consists of a number of questions divisible by 5.

3. MODELLING END-OF-SESSION
In this section we present the problem of modelling when
a session ends, by predicting the probability of a certain
action being the last in the current session, which we denote
as the End-of-Session action. A session consists of a number
of actions being either reading or watching some material
M or answering a question Q, for example:

M →Mlesson changed →M topic changed
lesson changed → (1)

Q→ Q→ Qlesson changed →M

where the sub- and superscript denote if the lesson or topic
id was changed compared to the previous action. To each of
these actions we associate a binary label indicating whether
or not the action is the last action in the session. We consider
this binary label a probability of an End-of-Session action,
such that the last action has a probability of 100% for ending
the session and all the previous ones have 0%. Naturally,
this leads a to a very imbalanced dataset. The goal of this
task is to create a model able to assign a probability score
to each action indicating its End-of-Session probability, and
such that it is largest at the true End-of-Session action.

Usage of the Edulab system is very non-restrictive. A stu-
dent can engage in any material she wants, and can choose
to do the assigned homework at any time. Due to this it
is inherently individual how each student uses the system,
and when they end their session. It is therefore relevant to
consider the problem on a student level, as students have
their own preferences with regards to session length, and
consequently when the End-of-Session action occurs. This
kind of individual behaviour does not only define the general
length of student session, but can also influence the dynam-
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Figure 1: The distribution of sessions per student.
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Figure 2: The distribution of session lengths.

ics between sessions, since e.g. some students may prefer
to alternate between longer and shorter sessions; or take a
quick repetition session the next time they engage with the
system.

3.1 Deep Learning Approach
We propose to use a deep learning approach utilizing a recur-
rent neural network (RNN) for modelling the End-of-Session
problem. This approach has the benefit of not requiring
complex feature engineering, and is able to capture complex
temporal representations of student behaviour. Certain be-
haviour patterns may occur at a much earlier point than the
current action, so to this end we choose to use a Long Short
Term Memory (LSTM) network [7].

Our proposed network architecture is displayed in Figure 3,
and can be considered in 4 parts:

• Actions: The input to the network are the actions
associated with each student. During training each ac-
tion is labeled either 0 or 1, depending on whether the
action is the last in a session. The actions are passed as
one long sequence. Each session within this sequence
is identifiable by the network through the ”time since
last session” feature, as well as if the previous label was
equal 1, in which case the next action must be a new
session.

• Memory: The purpose of the memory layer is to let
the current interaction’s effect on the End-of-Session
probability be influenced by previous actions and learned
student characteristics. As mentioned previously, we
use a LSTM unit for this task, which is able to handle
long dependencies in the sequential data, and suffer
fewer problems related to vanishing gradients.

• Fine tuning: The output of the memory layer is
passed to the fine tuning block consisting of two fully
connected layers with ReLU activation. The purpose
of this is to refine the output of the LSTM, such that
the LSTM is able to focus on learning the general un-
derlying behaviour of a student.

• Prediction: The fine tuned output is passed to a sin-
gle neuron with a sigmoid activation. The sigmoid
function returns an output between 0 and 1, repre-
senting the End-of-Session probability.

Figure 3: Network architecture of our model.

Between all layers we use Dropout [12], which sets the acti-
vation of a neuron to zero with a certain probability, and is
used to limit the network’s ability to overfit.

3.2 Parameters and training
For the number of neurons in each layer we use a fan-in ap-
proach, where the size is halved from each adjacent layer to
the next. Due to the training time of the network, extensive
tuning of the dropout probability p and layer sizes is beyond
the scope of this paper, but initial experiments showed that
p = 0.4 performed well, which is within the typical range
of 0.2 to 0.5 [12]. For the layer sizes, initial experiments
showed that a LSTM size of 400 performed well, leading to
the fine tuning layers having size 200 and 100 respectively.

We train the network using the RMSprop optimizer with
a learning rate of 0.001, and use binary cross entropy as
the loss function. Due to the End-of-Session problem being
heavily class imbalanced, we do a studentwise re-weighting
such that if a student has 400 actions consisting of 16 ses-
sions, then each End-of-Session action is weighted by 25,
while the others have a weight of 1. This forces the network
to balance its ability to predict both normal and End-of-
Session actions. This re-weighting changes from student to
student based on each student’s average session length.

3.3 Session level model
In the previous section we presented our approach for mod-
elling the End-of-Session probability by utilizing the full his-
tory of past actions for each student. As a baseline approach
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we can use the same model architecture, but do the mod-
elling on a session level, using just the past actions in the
current session, instead of on a student level as before. This
will show the benefit of personalizing the model, instead of
just focusing on each individual session alone.

4. EXPERIMENTAL EVALUATION
In this section we will describe the experimental evaluation
and error analysis of our approach. Our experimental per-
formance comparison is between the performance of the stu-
dent level model versus the session level model, in order to
quantify to what degree a session is self-explanatory with
regards to its length, and whether learning a student repre-
sentation is beneficial. Based on this we analyze the student
level model in the following ways:

1. We investigate how the End-of-Session probabilities as-
sociated with each action increases or decreases through-
out a session.

2. We investigate how homework sessions influence the
model’s performance, since these can be considered
fixed compared to when students use the system on
their own initiative.

3. We consider how the model performs for sessions of
varied length, in order to investigate the necessary ses-
sion length for the model to perform well.

4. We consider how the model performs on students with
limited system usage, i.e. when considering students
with a varying number of sessions, in order to investi-
gate how many sessions are needed for this task.

4.1 Experimental Setup
We split the students in our dataset randomly into a training
set, validation set, and testing set. We use 90% of the stu-
dents for training and the remaining 10% for testing. For
validation 10% of the students from the training data are
used. Thus, the students validated and tested on have not
been seen previously during training. For training the net-
work we use a batch size of 64, and employ early stopping
with a patients of 3, i.e. we use the model with the best val-
idation performance, and stop after no improvements have
been seen in 3 epochs. We use the same approach for train-
ing the session level model, where the sessions are extracted
from the students in each of the sets.

For measuring the performance we use the area under the
receiver operator characteristic curve (AUC). The reason for
this is that we do not require the predicted End-of-Session
probabilities to be either 0 or 1 (as their labels), but rather
expect them to increase slightly over time, with a large in-
crease in the close proximity of the End-of-Session action.
Since the sessions are of vastly varied lengths (see Figure 2),
we argue that this measure is very useful, since it handles
the class imbalance, and most importantly provides a mea-
sure for how we are able to rank normal and End-of-Session
probabilities compared to each other across all students.

4.2 Model Performance
In section 3.1 we presented two models: The first being the
student level model where we used all previous actions when

Model AUC
Student level model 0.8103
Session level model 0.5647

Table 3: AUC scores of the student and session level
model.
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Figure 4: Average End-of-Session probability for
sessions split into 5% chunks, done for sessions with
at least 20 actions.

predicting the End-of-Session probability of an action, and
the second being the session level model where we consid-
ered each session alone. We do not expect the session level
model to perform as well as the student level model, but this
comparison will show to what extent a student’s current be-
haviour can be described by just the current session. Table
3 displays the AUC scores for each of the models. The stu-
dent level model significantly outperforms the session level
model (AUC of 0.8103 vs 0.5647 respectively), showing the
importance of modelling the student.

We will now consider how the End-of-Session probabilities
associated with each action increase or decrease throughout
a session. To do this we consider all sessions with at least
20 actions, and cut each session into intervals consisting of
5% of the actions. This means that each interval for a ses-
sion with length 20 consists of 1 action, while one of length
100 has 5 actions in each interval. For each of these inter-
vals we compute the average End-of-Session probability. We
do this for all sessions and plot the average End-of-Session
probabilities for each of the intervals in Figure 4.

Surprisingly, we observe that the End-of-Session probability
is relatively large in the beginning of a session, most notably
in the first interval, but also in the second compared to the
third. The reason for this is most likely the large amount
of short sessions in the dataset (see Figure 2), such that
the model learns that a student is likely to quit relatively
fast. These short sessions could have been removed, but we
wanted to base the model on the full history of sessions, and
not with artificial session gaps.

When the model observes that the session has not ended
very early, the End-of-Session probability drops, and a small
gradual increase is seen until the 95% interval. In the last
interval the End-of-Session probability increases relatively
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Sessions consisting of: AUC
Only homework 0.8228
Partly homework 0.8214
No homework 0.7800

Table 4: The AUC scores of actions in sessions con-
sisting of only homework, partly homework, or no
homework actions.

quickly, compared to the gradual increase observed from
10% to 95%. The true End-of-Session action has an average
probability of 65.7%. Even though the true End-of-Session
action should ideally have a probability closer to 100%, it is
still significantly larger than earlier action’s End-of-Session
probabilities, which means we are able to create a ranking
useful for measuring when a session is likely to end.

4.3 Further analysis
We conduct a further analysis of the model focusing on how
the performance varies when considering: 1) sessions with
varying degree of homework, 2) sessions with varying length,
and 3) students with varying number of sessions.

4.3.1 Homework sessions
As described in Section 2 students are assigned homework
through the Edulab system, where, as seen in Table 2, 48.3%
of all sessions consist purely of homework. Sessions consist-
ing of partly homework or no homework are at 25.5% and
26.2% respectively. We consider how the model performs in
each of the three cases, where the AUC scores can be seen
in Table 4.

Sessions consisting of pure homework can be considered fixed
in the sense that a teacher has decided their exact content.
Thus, one could imagine the general behaviour of a student
to be of lesser importance, since a student is just complet-
ing the assigned task. However, if a student is likely to quit
early, or split the homework into multiple sessions, then pre-
vious observed behaviour is still valuable. The AUC score
of all sessions in this case is 0.8228, which is marginally
larger than the global AUC score of 0.8103, and thus shows
this case to be slightly easier to predict. Sessions consisting
partly of homework obtain a similar AUC score of 0.8214.
This shows that sessions with fewer individual choices are
easier to model (unlike sessions without any constraints).

Sessions consisting of no homework, thus only of actions
decided by the student, obtain an AUC score of 0.78, thus
lower than the global AUC. This follows our intuition and
previous observations, since these should be more difficult,
as it is entirely up to the student to define their own task
and amount of time they spend using the system.

4.3.2 Sessions of varying length
In this section we consider how the model performs on ses-
sions of varying length, where AUC scores across intervals
of session lengths can be seen in Table 5. We see that the
model is less accurate when modelling very short sessions of
length 1-5 (0.6156 AUC), but from lengths 11 and upwards
an AUC of 0.80±0.02 is obtained. That the model performs
worse on very short sessions is to be expected, since a certain
amount of actions are needed to infer the student’s current
behaviour. Additionally, we observed in Section 4.2 that

Session length interval AUC
1-5 0.6156
6-10 0.7604
11-20 0.7859
21-30 0.8200
31-40 0.8060
41-50 0.8333
51-60 0.8109
61-70 0.8088
71-80 0.8157
81-90 0.8103
91-max 0.8016

Divisible by 5 0.8944
Not divisible by 5 0.7568

Table 5: The AUC scores of actions in sessions of
varying length, grouped in small intervals. E.g. 6-
10 corresponds to actions associated with sessions of
length 6 to 10.

the model had a tendency to initially predict large End-of-
Session probabilities for all actions, which also explains why
the model generally performs poorly for very short sessions.

A large part of the Edulab content is presented by groupings
of related questions, e.g. as 5 or 10 quick questions, and the
number of assigned homework questions are often divisible
by 5 as well. Due to this a large part of the sessions have
lengths divisible by 5, and the model should be able to detect
and adapt to when these kind of patterns occur. In Table 5
we see that the AUC score of those sessions are 0.8944, which
is significantly larger than the global AUC, thus showing
that the model is indeed able to detect these patterns. In
the case of less structured sessions, i.e. those of lengths not
divisible by 5, we obtain a significantly lower AUC of 0.7568.
These trends are similar to those observed when considering
the amount of homework a session consisted of, and shows
that while the model is more accurate when structure is
present, it is also able to adapt and provide reasonably high
AUC scores in the unstructured case.

4.3.3 Students with varying number of sessions
We consider how the model performs for students with vary-
ing system usage, i.e. who has completed a varying number
of sessions. In Table 6 we generally see that actions associ-
ated with students with more sessions are more accurately
predicted, since the intervals of those with more completed
sessions obtain larger AUC scores. This shows that the net-
work is able to learn student specific characteristics which
are helpful for the task of predicting End-of-Session.

5. CONCLUSION
We presented the problem of determining when a session
ends, by modelling the probability of an action being the last
in its session, which we denoted as the End-of-Session prob-
ability. This problem is difficult to model since we do not get
any explicit information about a student’s intent to end a
session soon, but only in the action it happens. Additionally,
a multitude of reasons for the session ending exist, e.g. by
a student finishing an assigned homework task, feeling un-
motivated, or when the student has mastered the material.
To model this problem we proposed a deep recurrent neural
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Student session interval AUC
1-5 0.7799
6-10 0.7866
11-20 0.7938
21-30 0.8022
31-40 0.8054
41-50 0.8123
51-60 0.8218
61-70 0.8236
71-80 0.8221
81-90 0.8256
91-max 0.8153

Table 6: The AUC scores of actions in sessions
of students with varying number of total sessions,
grouped in small intervals. E.g. 6-10 corresponds to
students with between 6 to 10 completed sessions.

network architecture, that predicts the End-of-Session prob-
ability for each student action, by incorporating information
from past actions in the current and previous sessions. We
consider this a student level model, and for comparison we
created a similar session level model, where only the actions
associated with a given session were used, and not all pre-
vious actions as in the student level model. The student
level model obtained an AUC of 0.8103 and the session level
model an AUC of 0.5647, thus showing the benefit of learn-
ing the student behaviour for this task. Through a detailed
error analysis we showed that our model is robust across ses-
sions of different lengths, except for very short sessions of 1
to 5 actions. Similarly, the model gets progressively better
for students with more completed sessions, but even with
just 1 to 5 sessions an AUC of 0.7799 was obtained. Lastly,
the model performed better in sessions with a known struc-
ture (e.g. homework), but it was still able to adapt and
perform well in sessions where the students chose the con-
tent on their own.

In the future we will apply our model, to obtain real-time
insights into how the End-of-Session probability progresses
throughout sessions and student skill evolution [6]. Addi-
tionally, we will combine this problem with Knowledge Trac-
ing, where relatively simple temporal features have already
shown to increase performance [16]. In terms of modelling,
we will explore more elaborate RNN extensions that have
been shown to work well with various sequence-based data
[3, 4].
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ABSTRACT
Students’ questions categorization is a challenging task as
the available corpora are often limited in size (particularly
with languages other than English) and require a costly pre-
liminary manual annotation to train the classifiers. Ensem-
ble learning can help improve machine learning results by
combining several models, and is particularly efficient to
leverage the strengths of very different classifiers. In this
paper, we investigate how combining a rule-based annota-
tor (based on keywords identified by an expert) with var-
ious machine learning-based approaches and TF-IDF can
improve the automated identification of questions asked by
1st year medicine students on an online platform, according
to a coding scheme using 4 dimensions. First we evaluated
the performance of several models, calculating the kappa
between the prediction and the manually labelled dataset,
according to each dimension. Then, using a stacking ap-
proach, we tried different combinations of them to design a
predictive model with a higher performance. The results re-
veal that the new ensemble models can help to increase the
performance for all dimensions of the dataset, in particu-
lar those for which the expert rule-based system showed the
lowest performance. These results are promising as they in-
dicate that some easy-to-train models can complement more
manual approaches, even with a small training set of a few
hundreds of annotated questions.

Keywords
Student’s question, ensemble learning, stacking, coding scheme,
hybrid method, question categorization

1. INTRODUCTION
Categorizing students’ questions with limited size of cor-
pora remains a challenging task. The available classification
methods require a costly preliminary manual annotation to
obtain labeled data, and it is tempting to try training many
different classifiers in the hope that combining their predic-
tions would give good performance. One of the most active

areas in machine learning has been in studying methods to
build good ensembles of classifiers [3]. The premise that en-
sembles are often much more accurate than the individual
classifiers make them more attractive. Ensemble learning
helps improve machine learning by combining several mod-
els to obtain an overall classifier which prediction accuracy
outperforms every single one of them [7, 9]. Among the ex-
isting ensemble approaches, stacking [17] is often used. It
consists in training a combining classifier (sometimes called
a meta-classifier), in addition to the set of individual classi-
fiers, which takes as input the output of the other classifiers.

In this paper, we used a pre-existing coding scheme to anno-
tate students’ questions asked by 1st year medicine students
on an online platform, and investigated different approaches
to improve the automated identification of their questions.
We used the stacking approach by combining heterogeneous
classifiers such as a rule-based annotator with various ma-
chine learning-based approaches and TF-IDF. Our goal was
to answer to two research questions: (RQ1) Can combining
different approaches improve the performance of the predic-
tive model? (RQ2) What is the best combination of families
of classifiers, and in particular, can a hybrid system (mixing
expert rules and machine learning) be relevant?

2. STATE OF THE ART
Annotating a corpus automatically requires using a coding
scheme or a taxonomy of sentences, messages or speech acts.
Many taxonomies have been used to characterize the types of
questions that students ask. Graesser and Person [4] devel-
oped a taxonomy of questions asked during tutoring sessions
according to the level of thought. Another well-known tax-
onomy widely used in education, the Bloom’s taxonomy [2]
and its revisions [1], was originally created in order to help
teachers in formulating questions and therefore tends to be
more appropriate for teachers’ questions (e.g. assessment)
than for students’ ones. The questions coding scheme used
here was defined based on the corpus at hand to match them
more accurately, even if some overlap exists with categories
of existing taxonomies.

Ensemble learning has been investigated in many studies
[11, 10] and consists in weighting several individual classi-
fiers, and combining them in order to obtain a classifier that
outperforms every single one of them considered separately.
First, different classifiers are generated by training models
on different features from the training set. The generated
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classifiers are then typically combined by some form of ma-
jority or weighted voting. In this work, we do not restrict
how the individual classifiers are trained, but we deal with
different models and not only probabilistic ones which is a
prerequisite for some of these techniques.

The stacking framework introduced by [17], consists in com-
bining multiple classifiers models created by using different
learning algorithms on a single dataset. Several variations
of this idea have been attempted. Ting and Witten stacked
base-level classifiers whose predictions are probability distri-
butions over the set of class values, rather than single class
values. The meta-level attributes are thus the probabilities
of each of the class values returned by each of the base-level
classifiers. Multi-response linear regression, an adaptation
of linear regression, is recommended for meta-level learning
to predict binary variables [15]. Merz [8] proposed a stack-
ing method called SCANN that uses correspondence analysis
to detect correlations between the predictions of base-level
classifiers. Todorovski and Dzeroski [16] introduced a new
meta-level learning method for combining classifiers with
stacking: meta decision trees have base-level classifiers in the
leaves, instead of class-value predictions. Researchers in [14]
presented a novel bayesian model that relies on combining
different models in order to improve the classifier accuracy.

In this paper, we investigated how combining heterogeneous
classifiers (derived by different learning algorithms, using
different model representations) can help to improve the
automated identification of questions using a stacking ap-
proach.

3. CONTEXT
The dataset considered in this paper is made of questions
asked in 2012 by 1st year medicine/pharmacy students from
a major public French university. The Faculty of Medicine
and Pharmacy has a specific hybrid training system (reading
of the material for the class is done at home, and classroom
time is dedicated mostly to Q&A) for their 1st year stu-
dents. The 1st year is divided into two semesters, each of
them ending with a competitive exam (in January and May)
on the content studied during the period: only a predefined
number of students is allowed to continue in the second year.
Between the reading session at home and the classroom ses-
sion, the students can connect to an online platform to either
ask a question, or see questions asked by other students and
vote for them if they also want an answer to that question.
They cannot however propose an answer to those questions.
Then, the questions asked online are sent to teachers to help
them prepare their Q&A session. The dataset contains 6457
questions overall asked by 429 students.

4. QUESTION CODING SCHEME
We chose to consider the nature of questions as defined in
the coding scheme introduced in [5], in a process involv-
ing multiple human coders and several refinement phases.
This coding scheme (summarized in Table 1) consists in tag-
ging each question according to 4 independent dimensions: a
main one (dimension 1), which is mandatory, and 3 optional
ones (dimensions 2 to 4 - cf. Table 1 for the corresponding
definition of each dimension). For instance, a question could
be a request to re-explain the way something work by pro-
viding another example (tagged as Ree (1) on dimension 1,

Table 1: Coding scheme
ID Dim1 Question type Description
1 Ree Re-explain / rede-

fine
Ask for an explanation al-
ready done in the course
material

2 Dee Deepen a concept Broaden a knowledge, clar-
ify an ambiguity or request
for a better understanding

3 Ver Validation / verifi-
cation

Verify or validate a formu-
lated hypothesis

ID Dim2 Explanation
modality /
Quest. subject

Description

1 Exa Example Example application
(course/exercise)

2 Sch Schema Schema application or an
explanation about it

3 Cor Correction Correction of an exercise in
course/exam

ID Dim3 Explanation
type

Description

1 Def Define Define a concept or term
2 Man Manner (how?) The manner how to pro-

ceed
3 Rea Reason (why?) Ask for the reason
4 Rol Roles (utility?) What’s the use/function
5 Lin Link between con-

cepts
Verify a link between two
concepts, define it

ID Dim4 Verification
type (optional)

Description

1 Mis Mistake / contra-
diction

Detect mis-
take/contradiction in
course or explanation of
teacher

2 Kno Knowledge in
course

Verify knowledge

3 Exp Expected knowl-
edge

Verify expected informa-
tion in exam or quiz (as-
sessment)

Exa (1) on dimension 2, Man (2) on dimension 3, and noth-
ing (0) on dimension 4, i.e. represented as the dimension
vector [1,1,2,0]). It could also be a request to verify (Ver
= 3) if a schema (Sch = 2) needs to be known for the final
exam (Exp = 3) (which would be tagged as [3, 2, 0, 3]). We
considered here a corpus of 923 questions manually anno-
tated according to the 4 dimensions of the coding scheme
for training and testing the automated annotators. A sub-
sample of 723 questions was used for training the classifiers,
and 200 questions were used to test their performance.

5. AUTOMATED ANNOTATORS
5.1 Approach 1: expert rule-based annotator
We used first a previously developped custom annotator re-
lying on keywords manually identified and associating them
a weight [6]. To design it, the human annotator identified
from a separate dataset of questions in the corpus the key-
words that were indicative of each dimension value (e.g. in
Dimension1, for the dimension value “Re-explain”, some of
the keywords identified were “re-explain”, “restate”, “rede-
fine”, “retry”, “repeat”, “revise”, ”get back on”, etc.). For
each question, for each dimension, the question was tagged
in the dimension according to the value that had the highest
number of keywords associated to it (e.g. for dimension 1,
a question with two keywords associated to the value ”re-
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Table 2: Kappa between the standalone expert rule-
based annotator and the reference manual annota-
tion

Dim1 Dim2 Dim3 Dim4
0.76 0.69 0.70 0.65

explain” and one keyword associated to the value ”valida-
tion” would be tagged as a ”re-explain” question).

The automatic annotator is using a set of weights associ-
ated to each keyword of each dimension (e.g. “explain”: 7,
“what/how”: 3), and defined using the set of 723 questions.
Those weights were determined in two steps: first, the hu-
man annotators empirically associated a weight between 1
and 9 to each keyword, depending on whether they thought
they were very marginally (1), significantly (5) or very sig-
nificantly (9) associated to a given dimension. Then in a
second step, the automatic annotator was used on the 723
manually annotated questions, and weights were manually
adjusted (adding or removing 1) on some keywords for ques-
tions for which the manual and automatic annotation were
different, iterating until full agreement was obtained on al-
most all segments from the 723 questions. Finally, the ques-
tion identified by the values associated to each dimension,
is represented as a dimension vector.

The Kappa values per dimension for the annotations coming
from human expert and the automatic annotator are given
in Table 2.

5.2 Statistical approaches
5.2.1 Data coding: from questions to words vectors

First, we used the French version of WordNet [12], a lexi-
cal database linking semantic concepts to each other in an
ontology according to a variety of semantic relations (e.g.
synonyms and hyperonyms). The aim was to transform dif-
ferent synonyms into the same expression in the questions
(e.g. for dimension value “Reason” in Dim3, the synonym
words“cause”, “reason”and“motif”were replaced in the text
by “why”) to reduce the lexical diversity and consolidate
a particular expression for the following treatment. Then,
the classical preprocessing steps are used on the corpus of
923 questions: punctuation removal, stemming, tokeniza-
tion, and stopwords filtering. After extracting the unigrams
and bigrams for all questions in the corpus, the weights for
the words are computed using two different methods: (1)
TF-IDF (described in the next section), (2) counting oc-
curencies (’1’ if the word is in the question, ’0’ otherwise).
Each of the 723 questions was represented by a word vector
according to (1) or (2). We finally reduced the number of
extracted keywords to keep the most important and signifi-
cant ones using a feature selection technique (removing less
frequent and correlated unigrams and bigrams).

5.2.2 Approach 2: TF-IDF
We used TF-IDF [13] to compute term weights. The goal of
TF-IDF is to estimate how the words in a given document
are representative of that document when compared to a
larger set of documents. It combines two complementary
metrics: the term frequency (TF), and the invert document

frequency (IDF). TF thus gives a higher weight to the com-
monly occurring terms and a lower weight to rare terms.
The drawback is that some words that are common in a
given document but also common in all documents could
end up with a weight that is over-representing their real im-
portance. IDF fixes this issue by adjusting the weight with
the general importance of the term. Equation 1 describes
the method to compute individual TF-IDF weight values
for each term (word). We made two different calculation
measures of TF-IDF on the corpus of 723 questions.

Wik = TFik · log

(
N

nk

)
(1)

Where:

Wik = TF-IDF weight for term k in document Qi

TFik = frequency of term k in document Qi

IDFik = inverse document frequency of term k in doc-

ument Qi = log
(

N
nk

)
N = total number of documents in the questions cor-
pus
nk = number of documents in the corpus that contain
the term k

The first version consists in calculating four separate TF-
IDF on each of the four dimensions, to extract the words that
differentiate each category on each dimension. For a given
dimension, all the questions manually annotated in each cat-
egory (e.g. “Re-explain”) were considered as documents (e.g.
on dimension 1, document1 is the union of questions anno-
tated as “Ree”). Each document (set of questions) is con-
verted into a corresponding word-weight vector, where each
word-weight represents the TF-IDF measure for the word in
the document. TF-IDF weight (Wik) was attributed for each
term k in document i (i is the number of documents in that
dimension, e.g. i varying from 1 to 3 for dimension 1). In
order to classify new questions, we used the TF-IDF weights
calculated on each dimension value from the sample of 723
questions. We attributed TF-IDF weights calculated on the
training sample for the corresponding words on the test sam-
ple of 200 questions. Then, we chose the simplest ranking
function which consists in summing the TF-IDF weights for
each question on each dimension value. Therefore, for each
question, for each dimension, we tag the question in that
dimension according to the value that has the maximum
weights. Finally, we calculated the Kappa values between
the values found by this model [TF-IDF+MAX] for that
dimension, and the corresponding values found by the man-
ual annotation (cf. first column of Table 3). Two versions
were tested: one where the questions were preprocessed us-
ing WordNet (cf. previous section) and one where they were
not. The results obtained were similar in terms of perfor-
mance, so we decided to keep the version including the pre-
processing with WordNet, as it intuitively should generalize
better to variations of existing questions.

In the second version, TF-IDF was calculated on the corpus
of 723 questions without distinguishing the different dimen-
sions. The questions were not grouped by dimension value,
but instead, each question in the corpus was considered as
a document (i.e. 723 documents overall). The document
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Table 3: Kappa between automatic annotation ob-
tained by standalone TF-IDF + different ML meth-
ods and the reference manual annotation

TFIDF +
Dim. Max GLM GBT NB KNN DT RI
Dim1 0.66 0.69 0.71 0.47 0.62 0.46 0.61
Dim2 0.39 0.73 0.69 0.12 0.56 0.49 0.36
Dim3 0.66 0.59 0.60 0.43 0.58 0.37 0.52
Dim4 0.58 0.71 0.63 0.37 0.60 0.19 0

is then converted into a corresponding word-weight vector,
where each word-weight represents the TF-IDF measure for
the word in the question. Finally, we used the word vectors
as the input for machine learning techniques to predict the
value associated to the question in that dimension (described
in section 5.2.3).

5.2.3 Approach 3: ML-based annotator
We tried 6 machine learning (ML) classification techniques
(Generalized Linear Model [GLM], Gradient Boosted Trees
[GBT], Decision Tree [DT], K Nearest Neighbors [K-NN],
Rule Induction [RI] and Näıve Bayes [NB]) for each dimen-
sion separately. The appropriate hyper-parameters (such as
k for K-NN) were chosen in each case to obtain the high-
est value and may differ from one table to another. For
each classifier, the input was the word vectors and the la-
bel to predict was the value associated to the question in
that dimension. We considered the corpus of 923 questions
as labeled data. Then, we trained the classifiers on the 723
questions and evaluated their performance on an indepen-
dent sample of 200 questions, to ensure a good estimation
of the performance on unseen data. Finally, we calculated
the Kappa values between the values found by the classi-
fication model for that dimension, and the corresponding
values found by the manual annotation. We considered two
versions for comparison here as well: the first one using the
corpus processed using WordNet, and the second one with-
out the processing with WordNet.

5.3 Results
The kappa values found with the three automated anno-
tators taken individually (expert rule-based, TF-IDF and
ML) are provided in Tables 2, 3 and 4 respectively for each
dimension. We note that the expert rule-based annotator
clearly outperforms both ML-based annotator and TF-IDF
only on dimension 1, whereas they almost have similar per-
formances on dimension 3. TF-IDF with the classifier GLM
gives the best performance on dimension 4. Furthermore,
the ML-based annotation without WordNet performs better
than the classifiers using WordNet for all dimensions and
particularly on dimension 2.

6. ENSEMBLE HYBRID APPROACH
Our next step consists in building a predictive model with
a higher performance to improve the automated identifica-
tion of questions according to the coding scheme provided
in Table 1. Using the aforementioned stacking approach, we
tried different combinations of models regardless of which
classifier is the best one. Moreover, it does not require any
of the classifiers to be probabilistic; they can even be human
experts. Our goal was not only to obtain the best classifier

Table 4: Kappa between automatic annotation ob-
tained by standalone different ML methods and the
reference manual annotation

Dim. GLM GBT NB K-NN DT RI
Processing using WordNet

Dim1 0.69 0.70 0.28 0.60 0.73 0.69
Dim2 0.10 0.74 0.10 0.50 0.79 0.37
Dim3 0.68 0.64 0.37 0.61 0.59 0.60
Dim4 0.63 0.66 0.34 0.60 0.48 0.63

Processing without WordNet
Dim1 0.73 0.69 0.33 0.56 0.74 0.66
Dim2 0.58 0.81 0.12 0.48 0.85 0.29
Dim3 0.70 0.65 0.35 0.60 0.57 0.62
Dim4 0.63 0.67 0.46 0.59 0.10 0.47

performance, but also to do so using a fairly small training
set of annotated questions and see if a good performance
could be obtained nonetheless.

6.1 Method for stacking
In the first phase, a set of 20 base-level models have been
created (1 expert rule-based annotation, 7 TF-IDF annota-
tion and 12 ML-based annotation). In this second phase, we
want to train a meta-level classifier that combines the out-
puts of the base-level models. In other words, we have 20
predictions for each dimension for each of the 200 question
segments in the testing set, as well as the 20 manual annota-
tions for these 200 segments that provide a grounded truth,
and we want to train a classification model using some sub-
sets of these 20 features. We trained the meta-level classifier
using the same aforementioned 6 classification techniques
(GBT, GLM, NB, K-NN, DT, and RI) for each dimension
separately, using a 10-fold cross validation to ensure a good
estimation of the performance (i.e. training the models on
180 segments and testing on 20). Finally, for each model we
calculated the Kappa values between the values found by
that meta-model for that dimension, and the corresponding
values found by the manual annotation. Regarding the set of
features we considered, we wanted to consider combinations
that mixed different set of approaches, and we therefore con-
sidered six meta-learning combinations described below. For
each of them, the training was performed four times (once
for each of the four dimensions - cf. Figure 1).

(1) Stacked TF-IDF models: We combined the outputs
of the methods using each individiual TF-IDF classifier to
compute keywords weights (i.e. 7 features for each classifier,
cf. Table 3).

(2) Stacking TF-IDF with expert rule-based anno-
tation: We combined the outputs of the TF-IDF models
with the output of the expert rule-based annotator (i.e. 8
features for each classifier, cf. Tables 3 and 2).

(3) Stacked ML techniques: We combined the outputs
of the machine learning-based annotation with the two com-
binations: processing using WordNet and without it (i.e. 12
features for each classifier, cf. Table 4).

(4) Stacking ML techniques with expert rule-based
annotation: We combined the outputs of the machine
learning-based annotation (with and without WordNet) with

315 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

I I I I I I I I I i-------+-----+-----+--------+ 



Figure 1: The overall stacking process

the output of the expert rule-based annotation (i.e. 13 fea-
tures for each classifier, cf. Tables 4 and 2).

(5) Stacking ML techniques with TF-IDF: We com-
bined the outputs of the machine learning-based annotation
(with and without WordNet) with the output of TF-IDF
based annotation (i.e. 19 features for each classifier, cf. Ta-
bles 4 and 3).

(6) Stacking ML, TF-IDF and expert rule-based an-
notation: We combined the outputs of all the existing clas-
sifiers: the machine learning-based annotation (with and
without WordNet) with the output of TF-IDF and expert
rule-based annotation (i.e. 20 features for each classifier, cf.
Tables 4, 3 and 2).

6.2 Results and discussion
The kappa values found with the 6 classification techniques
for each dimension are provided in Table 5. Each stacking
model was trained individually on each dimension and the
highest value obtained for each dimension among the 6 clas-
sifiers is tagged in bold, for each set of features considered.
For instance, on the first row, we see that when combining
the 7 TF-IDF classifiers that predict dimension 1, the best
stacking result is obtained with a decision tree (0.75), which
outperforms the best individual TF-IDF classifier (0.71 with
GBT, cf. Table 3). We can notice that Naive Bayes is of-
ten the best ensemble classifier among the 6 tested, giving
better performance on a small dataset. The best overall
performance between the 6 set of comparisons are marked
with a star (*): for dimension 1 and 4, it is Naive Bayes
combining the ML and the expert rule-based classifiers, for
dimension 2 it is Naive Bayes combining TF-IDF and the
expert rule-based classifiers, and for dimension 3 it is GBT
combining also TF-IDF and the expert rule-based classifiers.

When considering the combinations involving TF-IDF, we
see that the combination of several TF-IDF outperforms the

base-level TF-IDF on dimension 1 and 3. The kappa values
are overall lower on dimensions 2 and 4, which is proba-
bly due to the unbalanced training data in these dimensions
(it also explains why sometimes a classifier would obtain a
kappa of 0 on these dimensions in the various tables). More-
over, the various TF-IDF classifiers combined with expert-
rule based annotator outperforms both the TF-IDF base-
level and expert-rule based annotator, as well as the combi-
nation of several TF-IDF. Similar results were found for sev-
eral TF-IDF combined with machine learning, with a slightly
better performance than individual classifiers. Overall, if
one had to choose only one set of features, the best option is
an hybrid ensemble (TF-IDF with expert rule-based annota-
tor), which outperforms on average the model combinations
with an average kappa of 0.77 (from the classifiers giving the
best performance on each dimension, i.e. NB on dimensions
1 and 2, GBT on dimension 3 and K-NN on dimension 4).

When considering the combinations involving ML-based clas-
sifiers, the ML-based annotator combined with expert rule-
based outperforms slightly the base-level machine learning
on dimensions 1, 3 and 4 compared to the other ML com-
binations. Similarly to TF-IDF, the hybrid ensemble (ML
with expert rule-based annotator) gives an average kappa of
0.77 instead of 0.74 for the base-level ML.

The combination of the three types of approaches obtains a
performance similar or lower than the two other previously
mentioned hybrid ensembles.

7. CONCLUSION
In this paper, we have shown that even with a small train-
ing set (less than 1000 questions), it can be useful to add
ML-based approaches to complement a manually crafted an-
notator using a stacking approach to combine classifiers with
each other. Using an hybrid ensemble of machine learning-
based (or TF-IDF-based) annotators with a previously ex-
isting annotator seems to be the best approach, leveraging
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Table 5: Kappa values between the ensemble models
and the reference manual annotation

Stacked TF-IDF models
Dim. GLM GBT NB K-NN DT RI
Dim1 0.73 0.74 0.72 0.73 0.75 0.70
Dim2 0 0.35 0.67 0.49 0.51 0
Dim3 0.62 0.70 0.66 0.67 0.68 0.66
Dim4 0.55 0.67 0.68 0.69 0.69 0.67

Stacking TF-IDF + expert rule-based
Dim. GLM GBT NB K-NN DT RI
Dim1 0.73 0.72 0.76 0.72 0.68 0.71
Dim2 0 0.30 0.80* 0.66 0.48 0
Dim3 0.70 0.79* 0.76 0.77 0.75 0.67
Dim4 0.60 0.66 0.72 0.73 0.67 0.65

Stacked ML models
Dim. GLM GBT NB K-NN DT RI
Dim1 0.76 0.73 0.80 0.76 0.71 0.68
Dim2 0.30 0.48 0.77 0.59 0.62 0
Dim3 0.62 0.71 0.71 0.72 0.70 0.65
Dim4 0.58 0.65 0.72 0.67 0.68 0.57

Stacking ML + expert rule-based
Dim. GLM GBT NB K-NN DT RI
Dim1 0.77 0.77 0.80* 0.76 0.70 0.69
Dim2 0.16 0.48 0.77 0.60 0.62 0
Dim3 0.64 0.76 0.71 0.73 0.66 0.64
Dim4 0.60 0.66 0.74* 0.69 0.63 0.59

Stacking ML + TF-IDF
Dim. GLM GBT NB K-NN DT RI
Dim1 0.77 0.73 0.77 0.76 0.71 0.68
Dim2 0.30 0.52 0.78 0.61 0.62 0
Dim3 0.66 0.75 0.71 0.72 0.70 0.62
Dim4 0.60 0.64 0.71 0.71 0.64 0.61

Stacking ML + TF-IDF + expert rule-based
Dim. GLM GBT NB K-NN DT RI
Dim1 0.77 0.75 0.78 0.76 0.72 0.68
Dim2 0 0.56 0.78 0.58 0.62 0
Dim3 0.65 0.77 0.72 0.73 0.67 0.61
Dim4 0.61 0.63 0.70 0.69 0.63 0.61

the benefits of each approach. Combining TF-IDF and ML-
approaches, however, does not seem as relevant. In our case,
the hybrid ensemble models helped in increasing the perfor-
mance for almost all dimensions, thus replying positively to
our two initial research questions. It is worth noting though
that the use of WordNet to reduce the vocabulary did not
help in increasing the classifiers performance in our case.

One of the limits of this paper is that we considered only a
single coding scheme and dataset. The increase in kappas
can also be sometimes seen as modest, but this is to be put
in perspective with the fact that human coders using this
coding scheme rarely can reach a kappa superior to 0.75 on
such a task. Moreover, one should note that the dimensions
that were improved were the ones that were the furthest
from the human coder performance. To conclude, we believe
our result can open the perspective to easily improve the
performance of various speech act and message annotators
which often only rely on expert rules annotators.
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ABSTRACT 
With the advent of new data collection techniques, there has been 
a growing interest in studying co-located groups of students using 
Multimodal Learning Analytics [3] to automatically identify 
collaborative learning states. In this paper, we analyze a multimodal 
dataset (N=84) made of eye-tracking, physiological and motion 
sensing data. We leverage unsupervised machine learning 
algorithms to find (un)productive collaborative states. We found a 
three-states solution where different states (and transitions between 
them) were significantly correlated with task performance, 
collaboration quality and learning gains. We interpret these 
findings in light of collaborative learning theories and discuss their 
implications for studying groups of students using MMLA.  

Keywords 

Multimodal Learning Analytics; Eye-tracking; Physiological 
Sensing; Motion Sensing; Unsupervised Machine Learning.  

1. INTRODUCTION 
The last decade has seen educational researchers go beyond the 
study of conceptual learning to understand non-cognitive skills. 
These skills are considered central for preparing students for the 
challenges of the 21st century and turning them into resilient, 
creative, curious and collaborative individuals. Additionally, new 
learning environments are becoming popular to foster those skills, 
such as makerspace and digital fabrication labs. While there has 
been some important progress made in the study of 21st century 
skills, measuring and assessing them remains a challenge. Most 
educational researchers and practitioners still rely on traditional  
collection tools such as participant observations and in-depth 
interviewing. While research strategies provide valuable insight 
into learning and development, they are no longer the most efficient 
way of collecting data. 
With the advent of new data collection techniques, however, there 
has been a growing interest in capturing 21st century skills using 
Multimodal Learning Analytics (MMLA; [3]). MMLA is about 
using high frequency sensors, such as eye-trackers, motion sensors, 
physiological devices and brain sensors to capture students’ 
learning trajectories. Additionally, by combining multiple sensors 

it is possible to study collaborative learning groups and capture 
various aspects of productive collaborations. Traditionally, these 
sensors have been studied in isolation. The promise of MMLA is to 
combine multimodal data sources to capture a more holistic picture 
of students’ learning. Being able to capture 21st century skills [6] 
(such as collaboration) in real time opens new opportunities for 
providing feedback and designing new kinds of interventions to 
teach these skills.  
The paper is organized as follows. First, we review the literature on 
several constructs related to collaborative skills that can be captured 
using high frequency sensors (e.g., Joint Visual Attention, 
Physiological Synchrony, body postures). We then describe the 
study that generated our dataset and detail how these constructs 
were measured. Finally, we present findings where we identified 
collaborative states using unsupervised machine learning 
algorithms and discuss their implications. 

2. Literature Review 
For decades, socio-constructivist theories have emphasized the 
importance of social interactions for learning (e.g., [12]). Among 
other things, collaborative learning can help students develop 
critical thinking skills, increase their motivation, provide a support 
system and facilitate assessment by making learning visible [10]. 
Capturing collaborative processes, however, remains a challenge – 
even though researchers have argued for almost a century that we 
need more rigorous ways to capture learning processes [23]. In the 
study of collaborative learning, Dillenbourg [8] argues that 
“empirical studies have started to focus less on establishing 
parameters for effective collaboration and more on trying to 
understand the role which such variables play in mediating 
interaction. This shift to a more process-oriented account requires 
new tools for analyzing and modelling interactions”. Below we 
review how Multimodal Learning Analytics (MMLA; [3]) can help 
us make a first step in this direction. More specifically, we describe 
how dual eye-tracking, motion sensors and physiological sensors 
can provide fine-grained indicators of collaboration.  

2.1 Joint Visual Attention and Dual Eye-tracking 
Joint Visual Attention (JVA; [4]) is the most fundamental building 
block by which human beings coordinate their actions, establish a 
common ground, advance toward a common goal, solve problems, 
and learn together. It is a construct that encompasses numerous 
visual processes, and is observed as important for learning to 
socialize [4], engaging collaboratively [22], and developing social 
motivation [16] for diverse populations in varying collaborative 
conditions. The last decade has seen a small but growing number 
of researchers take advantage of synchronized eye-trackers to 
quantitatively measure gaze alignment in various collaborative 
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situations interpersonal communication [14]. With the emergence 
of MMLA, quantifying gaze synchronization in remote learning 
and problem-solving environments has similarly popularized. In 
video lectures, projecting the professor’s gaze onto the screen (as a 
substitute for the use of deictic gestures in co-located teaching 
environments) while making explicit references to information on 
slides can be useful for students and increase learning gains [20].  
In co-located collaborative problem-solving situations, students’ 
level of JVA has been found to be positively correlated to behaviors 
such as managing group dialogue, reaching consensus, and equally 
dividing work between members of the group [18]. Regardless of 
the context, JVA measurement and visualization tools are 
providing new ways to allow for objective inferences to be drawn 
about gaze synchronization as it relates to various collaborative 
states. 
2.2. Body Postures and Motion Sensing 
Students’ use of their bodies has received a great deal of attention 
from learning scientists over the last decades. Numerous studies 
have unraveled links between students’ understanding of various 
topics [1, 5] and specific gestures [15]. More generally, there has 
been a plethora of studies linking people’s intuitive representations 
of everyday situations and bodily language (e.g., embodied 
cognition [2]). Recently, researchers have started using motion 
sensors to provide more fine-grained analyses of body postures in 
collaborative learning settings. For example, [19] found that hand 
movement could distinguish between students who were more 
dominant (called “drivers”) and those who were more passive 
(called “passengers”).  

2.3 Physiological Sensors and Group Synchrony  
Researchers have recently started to use EDA sensors 
(Electrodermal Activity) to look at collaborative learning 
interactions. [13] describes four measures of physiological 
synchrony in small groups of students: Signal Matching (SM), 
Instantaneous Derivative Matching (IDM), Directional Agreement 
(DA), and Pearson’s correlation coefficient (PC). They found that 
IDM was related to collaboration quality and task performance, and 
DA with learning gains. In a separate publication, we applied the 
same methodology to the dataset described in this paper and found 
that those indices provided significant predictors for collaborative 
learning [7]. DA was significantly correlated with collaboration 
quality, IDM with task performance, and PC with learning gains. 
In a different study, [9] found that DA was the best predictor for 
task performance. It is interesting to note the discrepancy between 
the findings above, which is likely due to the nature of the task and 
the way we operationalized our constructs. But overall, researchers 
have found that physiological synchrony seems to be sensitive to 
social interactions in a variety of contexts.  
In summary, there is significant evidence that collaborative 
learning processes can be captured using multimodal sensors. This 
paper goes one step further by combining modalities together, 
instead of studying them in isolation. 

3. METHODS 
3.1. The Study 
The dataset used in this paper was collected as a part of a Multi-
Modal Learning Analytics study [21]. 84 participants (Male = 40%; 
Female = 60%) with no prior programming experiences were 
randomly assigned to dyads (Ndyad = 42) and programmed a robot 
to solve a series of mazes during 30-minute sessions (Fig. 1). Each 
dyad was randomly assigned to one, both, or neither of two 

designed interventions: 1) a verbal explanation of the benefits of 
collaboration (e.g. past research findings using equity of speech 
time as indication of collaboration quality), and 2) real-time 
visualizations showing relative verbal contributions of each 
participant. The number of dyads was evenly distributed among 
four experimental conditions. For the analyses reported below, we 
analyze the aggregated data and did not consider the four 
experimental conditions.  
During each session, we used two Empatica E4 wrist sensors to 
track participants’ physiological activities, two Tobii Pro Glasses 2 
eye-trackers to capture eye gaze, and one Kinect sensor to record 
movement as well as facial expressions. Participants were given a 
survey before and after the study for assessment of their 
computational thinking and collaboration experiences. A dyad’s 
collaboration, task performance, and learning outcomes were 
assessed by the researcher responsible for running the session; 
ratings were given on nine scales based on prior work by Meier, 
Spada, and Rummel [11] (inter-rater reliability of 0.65 – i.e., 75% 
agreement). Analyses of learning gains, coding schemes, inter-
judge reliability scores and individual sensor data have been 
reported in [21]. The current analysis aimed to combine all sensor 
data in order to identify collaborative states.  

 
Figure 1. Two participants from the study. The top images 
show the video feed from the mobile eye-trackers (with a 
participant’s gaze shown on the top right image). The bottom 
left image shows a 3rd person perspective. The bottom right 
image shows the programming environment.  

3.2. Data Collection 
3.2.1. Empatica 
The Empatica E4 wristbands collected participants’ accelerometer, 
blood volume pulse (BVP), interbeat intervals (IBI), electrodermal 
activities (EDA), and heart variability (HR). The current study 
focused on the EDA data, which is a measure of skin potential, 
resistance, conductance, admittance and impedance. Participants 
were asked to tag the wristbands before and after each step during 
the sessions (i.e. before and after completing the maze task). We 
synchronized the dyadic data according to the tags and timestamps 
of the sessions. The resulting data frame per dyad contained 
timestamp, four aggregated measures of physiological synchrony 
described in the Measures section below, and EDA values of each 
participant. Five dyads were removed from the current analysis 
because the sensor data was missing, too noisy, or identified as 
outliers (see [21]). 
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3.2.2.Tobii Pro Glasses 2 
The Tobii eye-trackers generated data at 50Hz per second and 
recorded the x and y coordinates of each participant’s eye-gaze 
relative to its point of view. The resulting data frame per dyad 
contained time indicated by second (ranging from roughly 1s to 
1800s), the x and y coordinates of each participant’s eye gaze and 
counts of joint visual attention (JVA) by pixel distance. The eye-
tracking data was synchronized with the EDA data by briefly 
presenting a fiducial marker on the computer screen between each 
step of the session; participants were asked to tag this event on their 
wristband as accurately as possible. While we were able to clean 
and synchronize most dyadic data by seconds, two groups were 
excluded from the current study due to missing data. 

3.2.3. Kinect 
The Kinect motion sensor captured around 100 variables related to 
a participant’s body joints and skeleton. The sensor generated data 
at 30 Hz per second, resulting in about 3,000 observations per 
second per participant. Noisy data (e.g. when the session facilitator 
entered the Kinect frame) were removed for each group, after which 
data were aggregated by second according to timestamps generated 
by the Kinect sensor. Researchers manually trimmed the Kinect 
data for each 30-minute session based on video records and aligned 
them with the eye-tracking and EDA data. Nine dyads were 
removed from the current study due to missing data.   

3.2.4. Synchronizing All Data 
The Empatica and Kinect data were synchronized by trimming each 
session to exactly 30 minutes and outer-joining sessions’ data on 
the timestamp column. Per-dyad eye-tracking data were 
synchronized by matching the “second” column (i.e. from 1s to 
1800s during a 30-minute session; see Fig. 2) generated based on 
timestamps of the EDA data. For analysis purpose, we 
concatenated all per-dyad data into a master data frame, with an 
additional column indicating to which session the data belonged to. 
Due to an unequal amount of data loss between sensors, two 
datasets were created for analysis: 1) Combined EDA and JVA 
(Ndyad = 35), and 2) Combined EDA, JVA and Kinect (Ndyad = 31). 
The current analysis used the second dataset, including 67,656 rows 
and 19 columns of by-second original and scaled data from all 
sessions investigated (Fig. 2).  

 
Figure 2. A snapshot of the final data frame. Note that the 
scaled column measures are excluded for legible visualization. 

3.3. Data Processing 
3.3.1. Electrodermal Activities (EDA) 
Four measures of physiological synchrony were computed based 
on participants’ electrodermal activities (refer to [7] for an 
exhaustive description of these measures and related analyses): 1) 
Pearsons’s Correlation (PC) represented the linear relationship 
between the EDA level of each participant in a dyad; a strong, 
positive correlation indicated that the dyad was physiologically 
activated at similar times. 2) Directional Agreement (DA) captured 
whether the EDA level of each participant in a dyad increased or 
decreased at the same time steps; an increase in DA value in the 
positive direction indicated higher physiological synchrony. 3) 
Signal Matching (SM) was computed as the area between data 
curves of each dyad. A greater SM value indicated lower 

physiological synchrony. 4) Instantaneous Derivative Matching 
(IDM) computes, for each dyad, the level of signal matching 
between slopes of participants’ signal curves. A higher IDM value 
indicated lower physiological synchrony between participants. 

3.3.2. Joint Visual Attention (JVA) 
JVA was qualified by looking at participants’ location of eye gaze 
after mapping these coordinates into a common plane (Fig. 3; see 
[17] for the complete procedure of computing JVA). The current 
analysis looked at the number of JVA per second where a dyad’s 
eye gazes were within 100 pixels of each other.  

 
Figure 3. The procedure used to compute Joint Visual 
Attention (the left side shows the data from the mobile eye-
trackers, and the right side shows how the participants’ gaze 
were mapped onto a common plane using a homography). 

3.3.3. Kinect 
We explored various collaborative measures based on prior work 
[18, 23]. The current analysis aggregated three measures of 
movement differences per dyad: 1) Total difference in movement 
(MoveDiff), 2) Vertical difference in head orientation (HeadDiff), 
and 3) Horizontal difference in shoulder orientation (ShoulderDiff). 
Total movement was computed by taking the Euclidean distance of 
all joint coordinates; difference in movement within dyad was the 
absolute difference in the participants’ total movements. Vertical 
difference in head orientation was the absolute difference in the y 
coordinates of participants’ heads. Horizontal difference in 
shoulder orientation was calculated by taking the absolute value of 
the difference between 1) the absolute difference in x coordinate of 
the left shoulder of the left participant and the x coordinate of the 
right shoulder of the right participant, and 2) the absolute difference 
in the x coordinate of the right shoulder of the left participant and 
the x coordinate of the left shoulder of the right participant.  

3.3.4. Outcomes Measures 
The study generated three types of outcome measures: 
collaboration quality [11] (sustaining mutual understanding, 
dialogue management, information pooling, reaching consensus, 
task division, time management, technical coordination, reciprocal 
interaction, individual task orientation, and Collaboration – the sum 
of those scores), overall task performance (task performance, task 
understanding, improvement over time) and learning gains. 
Collaboration and Task performance of each dyad was hand-coded 
by the experimenter at the end of the session. The dyad’s learning 
gain was assessed through a pre-test and post-test. For more 
information, please refer to [21]. 

3.4. Analysis Strategy 
We used K-Means Clustering with Euclidean distance to identify 
different collaborative states. In particular we attempted clustering 
using all sensor data simultaneously. All data were transformed into 
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session second DA PC IDM SM Jva100 moveOiff headDiff shoulderDiff 

1 0.233333 -0.447563 0.177397 0.208709 

2 0.232708 -0.445837 0.177548 0.207804 

3 0.233125 -0.442(X)() 0.177468 0.206289 

4 0.234583 -0.439776 0.176532 0.205172 

5 0.234375 -0.438995 0.175948 0.204015 

24.0 1.941329 0.047057 

7 .0 2.013969 0.040868 

18.0 1.825878 0.048828 

23.0 1.675585 0.037022 

6.0 1.967405 0.042931 

0.658437 

0.654975 

0.642805 

0.648898 

0.646596 



 

 

z-scores before clustering; the scaled values reported in results refer 
to the z-scores. Note that the clustering assignment was performed 
on the aggregated data with per-second data from all dyads. The 
collaborative states were identified regardless of group and time. 
We used the elbow curve to identify the optimal number of clusters 
for each clustering strategy; the current analysis used within-cluster 
sum of squared as the indication of distortion. We proceeded our 
analysis using K = 3.  
Upon assigning per-second data to clusters, we computed 1) time 
spent in each cluster, and 2) transition probabilities between 
clusters for each session. Correlations between time in cluster, 
transition probabilities, and each qualitative outcome measure were 
then investigated and visualized. The results section below 
summarizes our findings by outcome measures. 

4. RESULTS 
4.1. Correlation Check 
To check for underlying relationships between our sensor data 
aggregated at the second level and the qualitative outcomes, we first 
checked for correlations between each sensor and qualitative 
measure. Significant correlations were observed between SM and 
Learning (r = -0.4, p = 0.025), and between JVA and sustaining 
mutual understanding (r = 0.41, p = 0.027). In accordance with 
previous analysis [7], no other significant correlation was observed.  

4.2. Cluster Centroids 
Centroid 1 values were the highest in all movement variables, 
suggesting cluster 1 as a state where dyads exhibited the most total 
movement difference, vertical difference in head orientation (e.g. a 
person standing up versus the other seated), and horizontal 
difference in shoulder orientation (when dyads were far apart from 
each other). Centroid 2 values were the highest in DA, PC, JVA, 
and the lowest in IDM, and SM; cluster 2 indicated a state where 
dyads were physiologically synchronized and actively sharing eye 
gaze. In contrast, cluster 3 appeared to be a state where dyads were 
the most desynchronized. Centroid 3 had the highest SM, IDM, and 
the lowest DA, PC values. Table 1 provides a summary of the 3 
clusters identified by K-means Clustering, we will use the 
identified states to address the clusters in the following sections. 

Cluster Physiological 
Synchrony 

Joint 
Visual 

Attention 

Movement 
Difference State 

1 Average Average Highest Neutral 

2 Highest Highest Low Collaborative 

3 Lowest Lowest Low Non-
Collaborative 

Table 1. Summary of clusters by sensor data. 

4.3. Collaboration 
Figure 5 represents the scaled and unscaled sensor data values by 
cluster centroid. The overall collaboration measure (r = 0.50, p = 
0.009) was significantly correlated with time spent in the 
collaborative state. Time spent in the collaborative state was 
significantly correlated with sustaining mutual understanding (r = 
0.42, p = 0.031), dialogue management (r = 0.51, p = 0.008), 
reaching consensus (r = 0.48, p = 0.013), task division (r = 0.49, p 
= 0.012), and reciprocal interaction (r = 0.47, p = 0.015). By 
interpretation of the EDA measure, dyads were highly, 
physiologically synchronized in the collaborative state. In contrast, 
dyads were highly desynchronized in the non-collaborative state, 

as the state corresponds to the lowest DA, PC and highest SM, IDM 
values by clustering. Time spent in the non-collaborative state was 
significantly, negatively correlated with dialogue management (r = 
-0.49, p = 0.008), task division (r = -0.45, p = 0.015) and 
collaboration (r = -0.42, p = 0.030).  

 
Figure 4. Sensor data mean values by cluster. 

Correlations between state transition probabilities and qualitative 
outcomes rendered the same interpretation: the higher the 
probability that a dyad would transition into a desynchronized, or 
non-collaborative state, the lower the rating in collaboration (r = -
0.41, p = 0.027).  

 
Figure 5. Correlations (left) and p-values (right) between time 
spent in cluster and qualitative outcome variables (* p < 0.05). 

4.4. Task Performance  
As shown in Fig. 6, time spent in the non-collaborative state was 
significantly correlated with improvement over time (r = -0.47, p = 
0.018). The more likely a dyad were to transition into the 
desynchronized state, the lower the rating for task understanding (r 
= -0.47, p = 0.01, See Figure 6), and improvement over time (r = -
0.53, p = 0.005). Furthermore, there was a marginally significant 
correlation between the probability of remaining in the neutral state 
and code quality (r = -0.37, p = 0.042); the more a dyad was 
different in movement, the lower the code quality as evaluated by 
the session facilitator. 

 
Figure 6. Correlations (top) and p-values (down) between 
transition probabilities and qualitative outcome variables (* p 
< 0.05, ** p < 0.01). 
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4.5. Learning Gain 
We did not observe any significant correlations between learning 
and time spent in any of the collaborative state identified. 
However, learning was significantly and negatively correlated 
with the probability of remaining in the non-collaborative state (r 
= -0.47, p = 0.008). The more likely a dyad were to stay 
desynchronized, the lower the rating in learning gain. 

5. DISCUSSION 
Overall, our results suggest that K-Means Clustering is an effective 
method for identifying collaborative states. In accordance with 
previous findings, higher JVA in the current analysis significantly 
correlated with higher ratings of collaboration, more specifically in 
sustaining mutual understanding. This implies that sharing gaze 
facilitates collaboration by making aware the object, or the intent, 
of communication. In comparison with previous correlation 
findings [7], we were able to draw connections between the EDA 
measures and collaborative outcomes using clustering analysis. 
Specifically, physiological synchrony within dyads correlated with 
higher ratings in quality of collaboration, including sustaining 
mutual understanding, dialogue management, reaching consensus, 
and task division. This indicates, intuitively, that when participants 
in a dyad were in sync with each other, they were more likely to 
agree, understand, and coordinate in task with each other. 
Moreover, the larger the difference in movement and position 
within a dyad, the lower the code quality. One interpretation could 
be that the longer a dyad spent apart from each other, the less 
collaborative they were, or were deemed to be, and therefore, the 
lower the resulting code quality.  
In a case study that compared the most collaborative (Group 11) 
and most non-collaborative (Group 5) groups, we observed that 
desirable collaborative qualities support the narrative, and the 
disaggregated graphs (Fig. 7) we created to depict them, that 
collaborative states are closely associated with levels of JVA and 
DA value. 

 
Figure 7. Progression of collaborative states by DA and JVA 
value in group 5 and group 11. 
 

Though Groups 11 and 5 displayed collaborative (Group 11) and 
non-collaborative (Group 5) qualities rather consistently across the 
activity, each group mirrored qualities of the other. For example, 
while thinking aloud was a consistent quality exhibited by Group 
11 across the activity, the participant on the left almost always 
remained in an observational role, which could have led to low 
learning gains. However, Group 11 achieved the highest learning 
gains of all groups in the study. One reason for this outcome could 
be the intent of the observer. High learning gains and consistent 
observation seemed to be a mode of learning for the participant on 
the left. This explanation supports an interpretation of observation 
not as a culprit of poor collaboration, but an assistant to learning, 
given a particular learning context. On the other hand, Group 5 also 
showed behaviors that were contrary to main themes that arose 
from their interactions. Take for instance their dialog that occurred 
in the middle of the activity. There, they exhibited seemingly 
desirable qualities in collaborative learning such as asking for help, 
asking clarifying questions, using demonstrative actions such as re-
running code to convey conception of problem, and a continuous 
interactive dialog; however, demonstration of these qualities was 
more of an abnormality than a change in behavior. Furthermore, 
each participant steadfastly performed their roles. One 
interpretation of why this temporary change in mode of operation 
did not stick goes back to the very definition of collaboration: a 
result of continuous attempts to construct and maintain a shared 
problem space. This means that establishing a collaborative state 
two thirds of the way through the activity is perhaps too difficult of 
a cognitive shift when working modes have been established.  

Main Results Interpretation Implication 

Time spent in cluster 
2 is sig. correlated 
with collaboration 
quality 

Productive collaboration is 
characterized by increased 
levels of JVA and 
physiological synchrony 

combining JVA values with PCIs 
provide better predictors for 
collaboration quality than just 
individual JVA or PCI 

Staying in cluster 1 or 
3 is neg. correlated 
with learning 

The more participants stay 
in a state where they are 
not looking at the same 
place and are 
physiologically 
desynchronized prevents 
them from learning 

we could potentially detect when 
people are in this state in real-time and 
offer suggestions for getting 
participants back on track. 

Time spent in cluster 
3 is neg. correlated 
with task 
performance 

Non-collaborative states 
are associated with less 
task understanding and 
improvement over time. 

*we didn’t observe a positive 
significance with cluster 1, perhaps 
that while being highly synchronized 
and actively sharing eye gaze doesn’t 
necessarily leads to more task 
understanding / improvement overtime; 
there’s a reverse effect when 
participants were not at all 
collaborative by EDA/JVA measures. 

Staying in cluster 1 is 
neg. correlated with 
code quality 

The more time participants 
spent apart from one 
another, the lower the code 
quality. 

Spending time apart from one another 
may indicate individual exploration, 
which in learning settings, may imply 
that participants were in need of 
guidance in order to proceed with task. 

Table 2. Summary of results. 
Finally, we found learning gains to be significantly associated with 
EDA measures. Particularly, the more likely a dyad were to remain 
desynchronized physiologically, the less likely that they had 
learned, or were evaluated to have learned from the task. Overall, 
we found that combining multimodal measures of collaboration 
together (e.g., eye-tracking, physiological, motion data) provides 
us with richer results: we found more (and stronger) significant 
correlations with our dependent measures. Table 2 summarizes the 
main results of this paper.  
Nonetheless, it is important to note the limitations of the current 
analysis. For one, the aggregated Kinect measures utilized in the 
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current analysis might not have best captured motor differences 
between collaborative and non-collaborative dyads. The current 
analysis only examined dyad’s motor differences on single 
dimensions, future work should aggregate movement measures 
based on multiple dimensions (e.g. movement angle) in order to 
better capture (non-)collaboration in motion. As we identified the 
number of collaborative states (K = 3) using distortions computed 
with the current dataset, it is possible that this number is not 
definitive and is unique to the current study. We concluded from 
exploratory analysis that the implications differed as we increased 
the number of clusters, and/or reduced our variable dimensions. 
Moving forward, it is of our interest to find the optimal combination 
of measures, and the optimal number of states that best characterize 
the (un)productive collaboration.  

5. CONCLUSION 
The current study used unsupervised machine learning algorithms 
to effectively identify different states of collaboration. Combining 
eye-tracking and physiological-activity data better predicted 
collaboration quality than the two types of sensor data apart. The 
longer two partners were not sharing gaze, and were 
desynchronized from one another, the worse their task performance 
and the less they learned. Identification of collaborative states and 
their characteristics through sensor data potentially allows us to 
monitor collaboration in real-time, detect ineffective cooperation, 
and keep partnership intact. Future work should explore movement 
measures of various dimensions to best capture participants’ 
postures and motions. 
In summary, this paper contributes to the application of MMLA in 
open-ended learning environments for capturing 21st century skills. 
We argue that multimodal sensors can capture different aspect of 
productive collaboration, and that combining them can provide us 
with a more complete picture of productive social interactions. 
Because we tend to “teach what we can measure”, developing tools 
that can capture 21st century skills is a crucial step toward studying 
and fostering them. This paper makes a first step in this direction 
by leveraging multimodal sensor data. 
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ABSTRACT 
Recent work in predictive modeling has called for increased 
scrutiny of how models generalize between different populations 
within the training data. Using interaction data from 69,174 
students who used an online mathematics platform over an entire 
school year, we trained a sensor-free affect detection model and 
studied its generalizability to clusters of students based on typical 
platform use and demographic features. We show that models 
trained on one group perform similarly well when tested on the 
other groups, although there was a small advantage obtained by 
training individual subpopulation models compared to a general 
(all-population) model. Lastly, we perform a series of simulations 
to show how generalizability is affected by sample size. These 
results agree with our initial analysis that individual subpopulation 
models yield a small advantage over all-population models. 
Additionally, we show that training sizes smaller than 1,500 yield 
unstable models which make generalizability difficult to interpret. 
We discuss applications of this work in the context of developing 
large-scale affect detection models for diverse populations. 

Keywords 

Affect Detection, Clustering, Generalizability, Sensor-free, Online 
Learning 

1. INTRODUCTION 
Computer-enabled classrooms and online learning environments 
are becoming increasingly common methods of learning [12, 25]. 
Compared to traditional classroom settings, students must be more 
self-regulated when interacting with online platforms [15]. In [20], 
Pekrun discusses how emotion and its regulation are key factors in 
educational achievement. It is then important to consider student 
affect when developing intelligent tutors and educational platforms. 
A review of affect-sensitive instructional strategies, particularly for 
intelligent tutors [5], discusses how affect- and motivation-
sensitive strategies can promote student engagement. However, the 
authors found that a “one-size-fits-all approach, where variants of 
the same strategy are indiscriminately used for all learners and in 
all situations” limits the overall effectiveness of these tutors in 
targeting individual student needs. This observation motivates a 
more detailed analysis of how affect detectors trained on a general 
population generalize across different subpopulations. 

In this work, we extend previous research exploring the 
generalizability of sensor-free affect detectors. We trained models 

predicting positive and negative affective states using interaction 
data from an online algebra learning platform along with self-
reported affect. A novel component of our work compared to 
previous work (e.g., [2]) is the scope of our dataset, which 
encompasses 69,714 students across a nine-month period. We 
extend the previous work in [9]. This enables a more detailed 
exploration of generalizability than was previously achievable. 

1.1 Related Work 
Reviews of issues and methods of sensor-free affect detection are 
covered in other work, which we summarize here. Baker and 
Ocumpaugh review work in sensor-free affect detection in 
educational software and discuss methods for collecting ground-
truth labels [3]. Specific to this work, they note that student-
generated responses are likely more accurate than labels from 
external coders. Second, [9] reviews a representative collection of 
sensor-free affect detection models developed in authentic 
classroom environments. The authors conclude that the studies 
show the potential success for sensor-free affect detection models 
in authentic environments but are limited by small sample sizes 
(20-646 students) from mostly homogenous samples, which limits 
claims or tests of generalizability. 

Recent work in machine learning and prediction calls for increased 
awareness of how models perform for individual subpopulations in 
addition to overall accuracy. In [10], Kusner et al. introduce 
counterfactual fairness, where models should be unaware of 
protected attributes such as gender and race. Fair models should 
generalize by generating similar predictions for individuals with 
similar features, regardless of their protected attributes. In [26], 
Sculley et al. suggest slicing analysis as a method to evaluate 
fairness, where predictive model performance is evaluated by 
“slicing” along subpopulations or protected attributes. This is an 
alternative to measuring overall model accuracy, which can ignore 
disadvantaged subpopulations. In response, Gardner et al. present a 
framework for using slicing analysis in predictive modeling [7].  

Related to this discussion on generalizability, several studies have 
measured how models generalize across cultural contexts. Ogan et 
al. [18] found differences in collaboration, engagement, and student 
needs between cultural groups. In [24], San Pedro et al. trained 
models detecting student carelessness in Philippines. They showed 
generalizability by testing these models on previously collected 
data from students in the USA. In [27], Soriano et al. compared 
models of help-seeking behavior. By training models on each group 
and testing on the other groups, they showed that models for 
Philippines and USA generalize to each other but not to Costa Rica. 

Besides cross-country generalization, several studies investigated 
how predictive models generalize over demographic attributes. In 
[17], Ocumpaugh et al. trained affect detection models on rural, 
suburban, and urban students. By training models on each group 
and testing on the other groups, they found that models for urban 
and suburban students generalized to each other but not to rural 
students. In [23], Samei et al. trained models of teacher question 
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asking behavior using data from urban and non-urban classrooms. 
They showed generalizability using the methods from [17]. 

Other studies measured the generalizability of predictive models 
over time. In [1], Baker et al. trained models detecting gaming the 
system behavior in a cognitive tutor. They showed generalizability 
by training models on data from three sessions and testing on the 
remaining session. In [4], Bosch et al. trained face-based affect 
detection models. They showed generalizability by training models 
on data from one day and testing on the other day. 

Finally, some studies measured generalizability between different 
tasks or subjects. In [28], Stewart et al. compared models of mind 
wandering trained on students reading a scientific text or watching 
a narrative film. They found models trained on the narrative film 
dataset generalized to the scientific text dataset, but models trained 
on the scientific text dataset only generalized to the narrative film 
dataset after adjusting the predicted mind wandering rate. In [9], 
Hutt et al. found that models trained on data from students enrolled 
in Algebra 1 generalized to students enrolled in Geometry using 
“generic activity features” specifically designed for generalization.  

1.2 Contribution of Current Study 
This work contributes to the field of generalizability in sensor-free 
affect detection in three important ways. First, we extend beyond 
previous work by using data from a large, heterogeneous sample of 
students. Besides the noted studies that compare country-wide 
cultural differences, previous work relies on homogeneous samples 
such as individual schools, which yield sample sizes of hundreds of 
students. As discussed in [2], these sample sizes do not allow 
researchers to draw conclusions about the studied categories as a 
whole, so generalizability can only be tested in a minimal sense. In 
this study, we collected affect data from 69,174 students at 1,898 
schools in the state of Florida. Because Florida closely represents 
the demographic composition of the United States in terms of race 
and ethnicity [29, 30], this allows us to study the generalizability of 
our models to other students in the country. 

Second, we measure the generalizability of our models in terms of 
usage characteristics over an entire school year. In previous studies, 
data are collected during one or a few sessions, which overlooks 
long-term student behavior. This work uses interaction logs from 
an entire school year and measures student use over several 
sessions. We use clustering analysis to identify common usage 
patterns and show that our models generalize across these clusters.  

Lastly, we provide simulation experiments to inform the number of 
instances needed in order to construct generalizable models. 
Specifically, we estimate the advantage obtained by training 
models on individual groups across different sample sizes.  

2. DATA 
We used a previously published dataset [9] but all analyses reported 
here are new. 

2.1 Algebra Nation 
Data was collected through Algebra Nation, an online math 
learning platform developed by Study Edge. Algebra Nation 
supports over 150,000 students studying Algebra 1, Algebra 2, and 
Geometry each semester. Students can use Algebra Nation in a 
variety of contexts; some teachers integrate the platform into their 
regular classroom time while some students only use it to study or 
help with homework. Students can access Algebra Nation using a 
mobile app or on the internet (https://www.algebranation.com/). 
For this study, we used data from students enrolled in Algebra 1. 

In Algebra Nation, course material is organized according to state 
mathematics standards. Although the topics are ordered according 

to the curriculum, students are free to skip topics as necessary or 
learn the material in a different order. 

For each topic, students can watch a video lecture from one of 
several tutors. In addition to watching videos, students can use the 
Test Yourself quiz feature for each topic, which randomly selects 
10 questions aligned with state standards. After attempting a quiz, 
students can review feedback on their answers or watch solution 
videos. Lastly, students can get more help through the Discussion 
Wall where they can interact with other students and study experts 
hired by Algebra Nation. Students can earn karma points by 
answering questions posted by other students. However, students 
primarily spend time watching videos and taking quizzes rather 
than engaging in the social functions of the platform. 

2.2 Affect Surveys 
Due to the large number of students in the study and because 
students can use the platform in multiple contexts, we collected 
ground-truth affect labels using a self-report survey rather than 
through expert coders or human observers (see [16, 22]). These 
surveys were pseudo-randomly triggered based on student activity 
on the platform. Specifically, we manually assigned probabilities to 
each action so that triggered surveys were not overly intrusive and 
there was an adequate sampling of infrequent actions (e.g., wall 
posts) compared to highly frequent ones (e.g., seeking in videos).  

The survey was displayed in a pop-up window. Students had the 
option to ignore surveys. To decrease the prevalence of the surveys, 
once a survey was triggered for a student, the student was removed 
from the survey pool for two weeks. Our dataset includes surveys 
from the 2017-2018 school year (September through May). In this 
time, 69,174 students responded to at least one survey. The mean 
number of survey responses per student was 1.94 (median = 1). Of 
the students that responded, the minimum number of responses was 
1 and the maximum number of responses by any student was 14. 

Each survey targeted one affective state, randomly selected, from 
the following: Anxiety, Boredom, Confusion, Contentment, 
Curiosity, Disappointment, Engagement, Frustration, Happiness, 
Hopefulness, Interest, Pride, Relief, Sadness, Surprise, Mind 
Wandering, Pleasantness, and Wakefulness. We chose several 
states because they closely relate to learning [21] while others 
address core dimensions of affect such as valence and arousal [11]. 
Mind Wandering, Pleasantness, and Wakefulness represent bipolar 
concepts, so we used a seven-point scale with contrasting options 
and presented prompts for each polarity (e.g., sleepy/awake). The 
other states used a five-point scale ranging from “Not at all __” to 
“Very __”. In our analysis, we linearly scaled all survey responses 
to lie in a five-point range so that all states are represented equally. 

2.3 Generic Activity Features 
We recorded student activity on Algebra Nation using 22 features 
that did not depend on specific content (e.g. which video was 
watched or a particular quiz question). These activity features 
included attempting quizzes, watching videos, and interacting with 
the wall or discussion board. Based on our prior work [9], we 
counted the number of occurrences of each feature over 30-second 
chunks and summed the counts for each action across 5-minute 
window lengths preceding an affect survey. In some cases, the 
platform measured an unnaturally high amount of activity (e.g. 
playing/pausing a video 100 times within 30 seconds). We 
addressed these outliers by limiting each 30-second chunk to 10 
recorded activities.  

2.4 Usage Features 
In addition to session-specific generic activity features, which were 
used to train the models, we were interested in investigating 
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generalizability to differences in how students interact with the 
platform over an entire school year. To do this, we defined five 
usage features. First, we calculated the proportion of sessions 
students use their mobile device compared to a desktop computer 
as this may indicate the context in which students are using the 
platform (e.g., at home or while commuting). Second, we 
calculated the proportion of sessions in the spring semester 
compared to the fall semester. We were interested in this feature 
because students must pass the algebra standardized exam that is 
offered in the spring semester in order to graduate from high school. 
To model how much students use the platform, we calculated the 
number of sessions and the average length of each session. Students 
may leave an active session open for long session times in their 
browser while switching to another task or repeatedly log into the 
platform without recording any meaningful interactions. We 
replaced these outliers with the 99th percentile value for the average 
length and number of logins. Finally, we calculated the mean time 
of day that students use the platform, which can indicate whether 
students primarily use the platform during the school day or at 
home. Usage data was available for 235,756 individual students, 
including those who did not receive or respond to any surveys. 

2.5 Demographics 
We also obtained records of demographic data of 118,177 students 
from the Florida Department of Education. This dataset includes 
students from grade 6 through grade 12, from which we defined 
three groups. We defined the first group as Middle School (54%), 
which includes grades 6 through 8. These students are often 
advanced and are enrolled in the Algebra course earlier than is 
typically expected by state standards [6]. The second group is 
Grade 9 (37%). We chose to keep this grade separate because it has 
one of the largest enrollment numbers and grade 9 is when students 
are enrolled in the course during the typical mathematics sequence. 
Lastly, we defined High School (9%) as grades 10 through 12. 
These students are often behind in the typical mathematics 
sequence and struggle to pass the course before they graduate. For 
gender, the available data classifies students as Male (49%) or 
Female (51%), which we took at face value. 

This dataset records student eligibility for free or reduced-price 
(F/R) school lunch, which is one indicator of socioeconomic status 
(but see Harwell & LeBeau [8]). We defined the groups as F/R 
(53%) and Other (47%), with the latter reflecting those who did not 
qualify or did not apply. We combined free and reduced because 
there were so few students that qualified for a reduced-price lunch. 

Finally, this dataset includes data on race and ethnicity. We defined 
these groups to approximately balance group size: White (72%), 
Black (23%), Hispanic (32%), and Other (13%; Asian, Native 
American, Pacific Islander, and Mixed). 

3. CLUSTERING 
We clustered participants based on usage characteristics and 
demographics to investigate the generalizability of the affect 
models across clusters. To determine the number of clusters, we 
inspected the dendrogram generated with Ward hierarchical 
clustering [31] using the SciPy library (http://www.scipy.org/). For 
efficient clustering, we randomly sampled 1,000 instances. We then 
used the k-means algorithm [14] to construct the clusters using 
scikit-learn [19]. We chose to use all available students regardless 
of their participation in the surveys since our goal was to generalize 
over as many students as possible. 

We constructed usage clusters using the five features described in 
Section 2.4. We first scaled each of these features to [0, 1]. The 
above procedure yielded five clusters (Table 1). One group (U1) 
showed heavy usage patterns (signified by long sessions and 
numerous log-ins). Two groups were defined by primarily mobile 
sessions and were further differentiated by sessions focused in 
either the fall (U4) or spring (U5) semester. Finally, two groups 
showed particularly light usage patterns and were differentiated by 
sessions focused in either the fall (U3) or spring (U2) semester.  

Next, we constructed clusters using the demographic features 
described in Section 2.5. We dummy encoded our variables 
resulting in seven features indicating grade level, three features 
indicating lunch status, seven features indicating race/ethnicity, and 
one feature indicating gender. The above procedures yielded seven 
clusters (Table 2). Grade level largely differentiated clusters. Only 

Table 1. K-means cluster centers based on typical usage. Distinguishing features are bolded. 

ID Cluster Description 
Session 

Time (min) 
Num. 

Sessions 
Prop. 

Spring Use 
Prop. 

Desktop Use 
Time of 

Day (hour) 
Prop. of 

Users 

U1 Spring semester, heavy use 45.46 25.44 0.75 0.90 14.19 0.20 

U2 Spring semester, light use 14.26 3.53 0.96 0.99 14.86 0.35 

U3 Fall semester, light use 13.81 3.46 0.11 0.99 14.81 0.28 

U4 Fall semester, mobile use 21.38 9.54 0.19 0.30 13.25 0.07 

U5 Spring semester, mobile use 29.66 10.95 0.93 0.27 13.21 0.10 

Table 2. Demographic cluster centers. For clarity, only distinguishing features are displayed and are bolded. 

ID 
Cluster Description 

Grade 
7 

Grade 
8 

Grade 
9 

Grade 
10 

F/R 
Lunch 

White Black Asian 
Prop. of 

Users 

D1 Split grades, F/R lunch, Black 0.08 0.29 0.44 0.17 0.99 0.03 1.00 0.01 0.16 

D2 Grade 7, not F/R lunch, White/Asian 1.00 0.00 0.00 0.00 0.20 0.80 0.06 0.16 0.10 

D3 Grade 8, not F/R lunch, White 0.00 0.99 0.00 0.00 0.00 0.87 0.09 0.07 0.22 

D4 Grade 8, F/R lunch, White 0.00 1.00 0.00 0.00 1.00 0.90 0.03 0.06 0.15 

D5 Grade 9, F/R lunch, White 0.11 0.00 0.87 0.00 1.00 0.91 0.01 0.03 0.16 

D6 Grade 9, not F/R lunch, White/Black 0.00 0.00 0.99 0.00 0.04 0.81 0.16 0.04 0.16 

D7 Grade 10, split F/R lunch, White/Black 0.00 0.00 0.00 1.00 0.52 0.76 0.20 0.03 0.05 
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cluster D1 had a significant distribution of students across grade 
levels. Another differentiating feature was lunch status, where three 
clusters (D1, D4, D5) were largely comprised of students on F/R 
lunch. Four clusters were differentiated by race (D1, D2, D6, D7).  

4. AFFECT DETECTION MODELS 
4.1 Model-building Procedure 
We used scikit-learn [19] to implement a supervised learning 
pipeline. We chose to use the Bayesian Ridge Regression algorithm 
[13] since it produced good overall results in previous work on the 
same data [9] compared to several more complicated alternatives. 

We trained regression models using 10-fold student-level cross 
validation. For each fold, instances for each student were included 
in either the training or testing set. This practice reduces overfitting 
and increases the likelihood that the model will generalize to new 
students. In each fold, we trained a model using the generic activity 
features and generated predicted survey responses on the test data. 
We evaluated the performance of the model using the Spearman 
correlation as it assumes ordinal and continuous values. We then 
averaged these scores across folds to obtain a final accuracy score. 

We trained prediction models for positive and negative affective 
valence rather than the original 18 states measured in the surveys. 
We initially trained a model for each state and calculated the 
correlation between the predicted survey responses for each state. 
These predictions were strongly correlated within positive and 
negative valence. We then trained positive and negative valence 
models using the combined set of states and generated predictions 
for the individual states. The mean performance of the valence 
models was similar to training individual affective models, so we 
chose to use the valence models for parsimony. For the positive 
valence models, we included the following states: Arousal, 
Contentment, Engagement, Happiness, Hopefulness, Interest, 
Pleasantness, Pride, and Relief. For the negative valence models, 
we included the following states: Anxiety, Boredom, Confusion, 
Disappointment, Frustration, Mind Wandering, and Sadness. We 
did not include Curiosity and Surprise since their valence does not 
clearly align on either direction. 

4.2 Preliminary Models on Cluster 
Membership 
We first investigated whether our models discriminated using 
group features rather than the generic activity features. To test this, 
we trained models using cluster membership as the training data 
instead of activity features. We expected these models to perform 
poorly since they are not simply reflecting group differences. 
Indeed, we found that the average Spearman correlations were low 
(between 0.02 and 0.05) for both cluster models.  

4.3 Generalizability 
Our main analysis focused on investigating how our models, 
trained on activity features, generalize across different clusters. 
First, we considered a general model trained on the entire dataset 
using 10-fold student-level cross validation. We then built cluster-
specific models. For each cluster, we trained and tested a model on 
data from that cluster. We also tested this model on the other cluster 
data. For example, we trained a model on U1 and tested  on each of 
the other clusters (U2 – U5) as well as the entire dataset (All). We 
performed this procedure separately for the positive and negative 
valence states as well as for the usage and demographic clusters1.  

                                                                 
1 Similar results for other slices can be found using this code (link).  

4.4 Results 
We examined the generalizability of our models using the 
procedure in Section 4.3. If our models generalized well, we expect 
to see a model trained on one group perform similarly well when 
applied to other groups (Table 3). This was the case for the usage 
clusters, where the maximum difference between testing on one 
cluster and testing on another is 0.05. The demographic clusters 
were more varied. In this case, the greatest difference between 
testing on the one cluster and testing on another was 0.09.  

Recent metrics proposed in slicing analysis, such as [7], apply to 
classification problems and not the regression task considered here. 
To better quantify model generalizability, we defined an individual 
advantage metric. Using the procedure from Section 4.1, we trained 
a model using the training set X and tested the model using the 
testing set Y. We represented the performance of the model, which 
is the average Spearman correlation, as PX,Y. For a target group T, 
we defined the individual advantage metric as (PT,T – PAll,T)/PAll,T. 
This describes the proportion improvement over using a general 
model for the target group T. Therefore, a perfectly generalizable 
model would have an individual advantage of 0 since an individual 
model and general group model will have the same accuracy. 

We used this metric to quantify the generalizability of our models. 
Both positive and negative models showed small, positive 
individual advantage values (mean usage 0.04; mean demographics 
0.02), which indicates a small advantage to training cluster-specific 
models compared to a general model.  

5. SAMPLE SIZE SIMULATIONS 
We then investigated whether sample size affects the advantage for 
using individual models. Specifically, are individual advantages 
mitigated when more data is available? To address this question, 
we computed the average individual advantage metric over 10 cross 
validation folds for a range of sample sizes starting at 500. For each 
sample size, we randomly selected the appropriate number of 
instances from the training sets. We incrementally increased the 
sample size by 200 until we reached the actual group size, which 
varied between 1,500 and 7,100. We repeated this simulation 1,000 
times and calculated the 95% confidence interval of the mean 
individual advantage metric at each sample size (Figure 1). 

Table 3. Mean correlation of positive valence models 
(negative in parentheses) for usage clusters.  

 Test U1 Test U2 Test U3 Test U4 Test U5 Test All 

Train 
U1 

0.25 

(0.19) 

0.23 

(0.22) 

0.21 

(0.19) 

0.19 

(0.19) 

0.21 

(0.18) 

0.21 

(0.20) 

Train 
U2 

0.21 

(0.18) 

0.26 

(0.23) 

0.22 

(0.19) 

0.21 

(0.20) 

0.22 

(0.19) 

0.22 

(0.20) 

Train 
U3 

0.21 

(0.17) 

0.24 

(0.21) 

0.23 

(0.20) 

0.20 

(0.19) 

0.20 

(0.17) 

0.22 

(0.19) 

Train 
U4 

0.20 

(0.17) 

0.25 

(0.22) 

0.21 

(0.19) 

0.21 

(0.20) 

0.21 

(0.19) 

0.22 

(0.21) 

Train 
U5 

0.23 

(0.17) 

0.25 

(0.22) 

0.21 

(0.18) 

0.20 

(0.19) 

0.24 

(0.21) 

0.22 

(0.20) 

Train 
All 

0.22 

(0.18) 

0.25 

(0.22) 

0.22 

(0.20) 

0.21 

(0.20) 

0.22 

(0.19) 

0.22 

(0.21) 
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We first noted that the scores for models using sample sizes less 
than 1,500 varied wildly, as indicated by the width of the 
confidence intervals in this region. As such, we can only conclude 
that results obtained from small samples might not be reliable. This 
is concerning since previous work used sample sizes ranging from 
20 to 646 students [9]. As expected, for larger sample sizes, the 
models quickly stabilized and produced more reliable scores. 

For most clusters, the individual advantage scores stabilized to a 
value of 0.10 or less, which indicates a small advantage of training 
cluster-specific models. The scores for clusters D1 and U1 seemed 
to increase as the sample size increased, but we cannot make strong 
conclusions since the sample size of these clusters was small. 

6. DISCUSSION 
In an attempt to answer the call for predictive generalizability [7, 
10, 26], we used interaction data from 69,174 students over an 
entire school year to study the extent to which sensor-free affect 
detectors generalize across usage and demographic clusters.  

6.1 Main Findings 
We found that students primarily differed in their interaction rate, 
active semester, and primary device. The demographic clusters 
were primarily discriminated by grade level, F/R lunch eligibility, 
and (to a smaller extent) race. Using cluster membership as the only 
training feature resulted in near-zero results, which shows students 
in a particular cluster are not generally predisposed to certain 
affective states. We must then consider the context of a student’s 
activity when predicting their immediate affective state. 

Similar to previous work [1, 4, 9, 17, 23, 24, 27, 28], we examined 
the generalizability of our models by training cluster-specific 
models and testing them on the other clusters. We found that 
cluster-specific models perform slightly better on the target cluster, 
with a maximum difference of 0.05 for the usage clusters and 0.09 
for the demographic clusters. We expanded this analysis by 
introducing an individual advantage metric, which measures the 
advantage given to a target group compared to a general (entire 
population) model. This metric agreed with our initial analysis by 
showing a small advantage given by training a cluster-specific 
model. The maximum advantage was 0.14 for the usage clusters 
and 0.11 for the demographic clusters. Although these results 
provide evidence that cluster-specific models are better at 
predicting affective valence, it is not clear what difference is 
meaningful in practice. 

Lastly, we investigated how model generalizability changes in 
response to sample size. We performed a series of simulations that 
trained affect-detection models and systematically varied sample 
sizes. Models trained on 1,500 samples or less did not generate 
stable scores or predictions, even after 1,000 iterations. When 
considering sample sizes greater than 1,500 that yielded reliable 
scores, we found that the individual advantage scores stabilize as 
sample size increases at a value of 0.10 or less, which is consistent 
with our initial analysis. This suggests that generalizability is not 
greatly affected by sample size beyond the 1,500-sample threshold.  

6.2 Limitations and Future Work 
The greatest area of improvement is the overall model performance. 
As discussed in [9], the average performance corresponds to a 
small-sized effect. This is likely caused by the limited number and 
extreme generality of the training features. Future work can address 
this by introducing more platform-specific features, such as which 
quiz a student was attempting. We can then see if our models have 
the power to distinguish between individual affective states rather 
than simply identifying positive or negative valence. Of course, the 
use of these features will result in more platform-specific models, 
which limits their generalizability to different platforms or even to 
other domains within the sample platform. 

Our analysis of generalizability was limited to demographic 
features and overall interaction with the Algebra Nation platform. 
This analysis should be extended to include other academic 
subjects, time frames, and regional groups. For example, while 
Florida does reflect the overall demographic composition of the 
United States, other states do not. It would be interesting to see how 
our models generalize to other populations. With respect to subject 
generalizability, while [9] showed generalizability between 
Algebra and Geometry, we could  see how a model for mathematics  
generalizes to unrelated subjects such as chemistry or music. 

There are several exciting opportunities to apply these large-scale 
sensor-free affect detectors. First, we will be able to develop real-
time interventions based on predictions of a student’s affective state 
and promote more a more engaging experience with the curriculum. 
In addition, as we collect data from different regions and over 
longer time periods, we can more directly investigate the 
relationship between engagement and end-of-course scores.  

Lastly, it is important to understand the impacts of a one-size-fits-
all model on long-term student achievement. When developing 
interventions, one should consider possible effects if predictions of 
affect are incorrect. In this case, the intervention should not have 
any negative consequences for the student receiving it.  

7. CONCLUSION 
Sensor-free affect detection models provide the opportunity to 
provide personalized experience for large populations of students. 
In this work, we answered the call to investigate how these 
predictive models generalize between different subpopulations in 
the training data. We did this using a longitudinal dataset of student 
interaction with an online math learning platform with our groups 
of interest being clusters based on typical usage on the platform and 
demographic features. We showed that while models trained on one 
cluster perform similarly well when applied to the other clusters, 
there is a small advantage to use individual subpopulation models 
rather than one general population model. It is important to consider 
these models’ differential performance and impact when deploying 
large-scale platforms that adapt to sensor-free predictions of 
individual students’ affective states.  

 
Figure 1. Averaged individual advantage simulation scores for usage clusters 
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ABSTRACT
This paper addresses a key challenge in Educational Data
Mining, namely to model student behavioral trajectories in
order to provide a means for identifying students most at-
risk, with the goal of providing supportive interventions.
While many forms of data including clickstream data or data
from sensors have been used extensively in time series mod-
els for such purposes, in this paper we explore the use of
textual data, which is sometimes available in the records
of students at large, online universities. We propose a time
series model that constructs an evolving student state repre-
sentation using both clickstream data and a signal extracted
from the textual notes recorded by human mentors assigned
to each student. We explore how the addition of this textual
data improves both the predictive power of student states for
the purpose of identifying students at risk for course failure
as well as for providing interpretable insights about student
course engagement processes.

Keywords
Student State, Clickstream Data, Mentor’s Notes, LDA,
Time-series Modeling, Deep Learning

1. INTRODUCTION
In online universities, modeling the population of students
at scale is an important challenge, for example, in order to
identify students most at-risk and to provide appropriate in-
terventions to improve their chances of earning a degree in
a timely fashion. In this respect, a plethora of approaches
for clickstream analysis [11, 21, 22] have been published in

the field of Educational Data Mining, which address ques-
tions about modeling student course engagement processes
[19]. While clickstream data is the most readily available,
and while some success has been achieved using it for this
purpose, its low level indicators provide only glimpses re-
lated to student progress, challenges, and affect as we would
hope to observe and model them. In this paper, we explore
the extent to which we may achieve richer insights by adding
textual data to the foundation provided by clickstream data.

One advantage to modeling student behavior and states from
a for-pay platform is that the level of support provided to
students is greater than in freely available contexts like Mas-
sive Open Online Courses (MOOCs), and this more inten-
sive engagement provides richer data sources that can be
leveraged. In our work, we make use of a new data source
provided by the Western Governor’s University (WGU) plat-
form, where each student is assigned a human mentor, and
the notes from each biweekly encounter between student and
mentor are recorded and made part of the time series data
available for each student. Thus, even if we do not have
access to the full transcript of the interactions between stu-
dents and their mentors, we can leverage the documentation
of provided support in order to enhance the richness and ulti-
mately the interpretability of student states we may induce
from other low level behavioral indicators we can extract
from traces of learning platform interactions.

A major thrust of our work has been to develop a technique
for leveraging this form of available textual data. We refer
to this data as Mentor’s Notes. In particular, we propose a
sequence model to integrate available data traces over time,
Click2State, which serves a dual purpose. The first aim is
to induce predictive student states, which provide substan-
tial traction towards predicting whether a student is on a
path towards passing or failing a course. Another is to pro-
vide us with insights into the process of passing or failing a
course over time, and in particular leveraging the insights of
human mentors whose observations give deeper meaning to
the click level behavioral data, which is otherwise impover-
ished from an interpretability standpoint.

Byungsoo Jeon, Eyal Shafran, Luke Breitfeller, Jason Levin and
Carolyn P. Rose "Time-series Insights into the Process of Passing
or Failing Online University Courses using Neural-Induced
Interpretable Student States" In: Proceedings of The 12th
International Conference on Educational Data Mining (EDM
2019), Collin F. Lynch, Agathe Merceron, Michel Desmarais, &
Roger Nkambou (eds.) 2019, pp. 330 - 335
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In the remainder of the paper we motivate our specific work
as situated within the literature. Next we present our mod-
eling approach and a series of experiments that investigate
the following three research questions: (RQ1) How can we
extract information and meaning from mentors’ notes about
the formation of student states across time? (RQ2) To what
extent does integrating a representation of topical insights
from Mentor’s Notes improve the ability of a time series
neural model to predict whether students are on a path to-
wards passing or failing a course? (RQ3) How can we use
insights about student progress in an online course captured
using student state representations from our model to under-
stand the process of passing or failing a course? The more
comprehensive version of this paper is available at Arxiv 1.

2. RELATED WORK
One of the most important challenges in providing analytic
tools for teachers and administrators [1, 19] in online uni-
versity is to model the population of students in such a
way as to provide both predictive power for triggering in-
terventions and interpretability for ensuring validity. Some
past research has already produced models to identify at-risk
students and predict student outcomes specifically in online
universities [6, 16]. For example, Smith et el. [20] proposed
models to predict students’ course outcomes and to iden-
tify factors that led to student success in online university
courses. Eagle et al. [10] presented exploratory models to
predict outcomes like overall probability of passing a course,
and provided examples of strong indicators of student suc-
cess in the WGU platform where our work is also situated.
However, this past work has focused mainly on predictive
modeling of student outcomes, whereas our work pursues
both predictive power and interpretability.

While much work in the field of Educational Data Mining
explores time series modeling and induction of student state
representations from open online platforms such as Massive
Open Online Courses (MOOCs) or Intelligent Tutoring Sys-
tems, far less has been published from large, online univer-
sities such as WGU, which offer complementary insights to
the field. Student states are triggered by students’ interac-
tion with university resources, their progress through course
milestones, test outcomes, affect-inducing experiences, and
so on. Affect signals in particular have been utilized by
many researchers as the basis for induced student states,
as this rich source of insight into student experiences has
been proven to correlate with several indicators of student
accomplishments [18]. Researchers have investigated affect
and developed corresponding detectors using sensors, field
observation, and self-reported affect. These detectors cap-
ture students’ affective signals from vocal patterns [7, 17],
posture [9], facial expressions [3, 17], interaction with the
platform [4, 5, 12], and physiological cues [7, 15]. Although
these signals provide rich insights, the requisite data is some-
times expensive or even impractical to obtain, even on for-
pay platforms such as WGU, where we conduct our research.

The bulk of existing work using sequence modeling to induce
student states has focused on the data that is most readily
available, specifically, clickstream data. For example, Tang
et al. [21] have constructed a model to predict a set of stu-

1
http://arxiv.org/abs/1905.00422

dent actions with long short-term memory (LSTM) [13] on
student clickstream data from a BerkeleyX MOOC, though
the basic LSTM was unable to match the baseline of de-
faulting to the majority class for samples of student actions.
Fei et al. [11] proposed a sequence model to predict dropout
based on clickstream data using recurrent neural network
(RNNs) model, with more success. Wang et al. [22] also
built a neural architecture using a mix of convolutional neu-
ral network (CNN) [14] and RNN for dropout prediction
from clickstream data. Though these models have achieved
differing success at their predictive tasks, a shared short-
coming is the lack of interpretability in the induced student
state representations. Our work extends previous studies by
proposing a model that enriches temporal signals from click-
stream data using the textual mentor’s notes to provide a
means for interpreting student state representations.

3. DATA
Our study is based on data collected by Western Governor’s
University (WGU), an online educational platform 2. To
support self-paced learning, students in WGU are assigned
to a program mentor (PM). The PM is in charge of evalu-
ating a student’s progress through their degree and helping
to manage obstacles the student faces. A PM and a stu-
dent generally have bi-weekly live calls, but this may vary
depending on the student’s needs and schedule. Each PM
writes down a summary of what was discussed, which we
refer to as a mentor’s note. An example is given in Figure
1. Mentor’s notes describe the status and progress of the
student and what types of support was offered or what sug-
gestions were made during the call. This information can
provide meaningful cues to infer student states over time.

Figure 1: An example of mentor’s notes.

In this work we specifically investigate how the use of the
mentor’s note data alongside the more frequently used click-
stream data might enable that important goal. Clickstream
data in WGU also provides us with information on how ac-
tive students are and where in the WGU platform they spend
their time. We collect clickstream data from four different
types of web pages in the WGU platform: course, degree
plan, homepage, and portal. The course web pages cover
all pages related to courses in WGU. Degree plan represents
a dashboard where students check their progress toward a
degree. Homepage is the main page that shows students’
progress in each course and allows access to all provided
WGU features. Portal covers any other pages for student
support including technical and financial assistance.

An example of the clickstream data can be seen in Table 1.
Each row represents one of five different click sources: target
course page, other course page, degree plan page, portal
page, and homepage. We divide the course pages into ”target
course” and ”other course”. Each column represents one of
different six click types: click count (C1), focus state count
(C2), keypress count (C3), mousemove count (C4), scroll

2
https://www.wgu.edu/
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count (C5), and unfocused state count (C6). The values
in the table represent the weekly count of different type of
clicks from each different source.

For this paper, we have collected the mentor’s notes and
clickstream data from two courses conducted in 2017: Health
Assessment (HA) and College Algebra (CA). We choose
these two courses because they are popular among students
and represent different levels of overall difficulty. Table 2
shows the statistics for the dataset. “Average prior units” is
the average number of units students transferred to WGU
from prior education when they started the degree, and func-
tions as a proxy for the level of student’s prior knowledge.
We split the dataset for each course into a training set (80%),
a validation set (10%), and a test set (10%). For training,
to avoid a tendency for trained models to over-predict the
majority class, we have resampled the training set so that
both the pass state and the fail state are represented equally.

C1 C2 C3 C4 C5 C6

Target course 53 61 0 168 904 1732
Other courses 177 167 0 455 2301 4887
Degree plan 0 0 0 0 0 0

Portal 21 89 0 263 3862 2440
Homepage 36 69 0 122 72 1581

Table 1: Example of clickstream data.

HA CA

# of students 6,041 4,062
Length of a term 25 weeks 25 weeks
Avg prior units 62 ± 39 11 ± 23
Fail rate 0.185 0.509
Avg # of notes per student 10.9 ± 5.7 11.0 ± 5.8
Avg length of notes (chars) 198 ± 47 194 ± 55

Table 2: Data Statistics

4. PROPOSED METHOD
As we have stated above, in our modeling work, we propose a
sequence model, Click2State, with two primary purposes.
The first is to form a student state representation that will
allow us to better identify students at risk of failing a course
than a baseline model that does not make use of rich textual
data. The second is to provide us with a means to interpret
the meaning of a student state representation.

Figure 2: Architecture of Click2State Model.

Figure 2 provides a schematic overview of our proposed
model. Note that it is first and foremost a sequence model
that predicts whether a student will pass or fail a course

based on an interpretable student state that evolves from
week to week as each week’s clickstream data is input to the
recurrent neural model. A summary of the content of the
mentor’s note for a week is constructed using a popular topic
modeling technique, specifically Latent Dirichlet Allocation
(LDA) [2]. In the full model, an intermittent task to predict
the topic distribution extracted from the mentor’s notes as-
sociated with a time point is introduced. The goal is to use
this secondary task to both improve the predictive power of
the induced student states over the baseline as well as to
enhance the interpretability of the state representation.

Feature Vector Design We train our model using click-
stream feature vectors (as input) and topic distribution vec-
tors (as output for the topic prediction task). We design
the clickstream feature vector to include both an encoding
of click behavior of students from a time period as well as a
control variable that represents the prior knowledge of stu-
dents as estimated by the number of units they were able
to transfer in. The full clickstream feature vector contains
thirty weekly counts for each different type and source of
click, in addition to the single control variable just men-
tioned, which is the number of transferred units. We use
min-max normalization to scale the values between 0 and 1.
To extract a topic distribution vector for each mentor’s note,
we run Latent Dirichlet Allocation (LDA) over the whole set
of mentor’s notes from the entire training dataset.

Formal Definition of the Model Denote the student’s
clickstream features by C = (c1, c2, ..., cT ), where ct is the
clickstream feature vector of tth week, and T is the number
of weeks for the term. The clickstream feature vectors are
encoded via Gated Recurrent Units (GRU) [8], which are
variants of the Recurrent Neural Network (RNN). At each
time step t, this network constructs a hidden state of the
student for the tth week, ht ∈ RH , where H is the dimen-
sionality of the hidden state. We consider ht as the student
state representation at tth week. Based on the generated
student state representation from RNN (ht), our model is
trained to predict a topic distribution of a mentor’s note
and the probability of the student failing that course.

Topic Prediction Given the generated hidden states from
RNN (ht) for the tth week, the model estimates the true
topic distribution (θt ∈ RNt) of a mentor’s note on tth week
where Nt is the number of topics. The estimated topic dis-
tribution (θ̂t ∈ RNt) is computed by taking ht as an input of
one fully connected layer (weight matrix: Wθ) whose output
dimensionality is Nt followed by a softmax layer.

θ̂t = Softmax(Wθht)

Fail Prediction As data from a student’s participation in
a course is fed into the RNN week by week, the model es-
timates the probability of the student failing that course
(P (y = 1|C)) at the last timestep T . The estimated prob-
ability is computed by taking ht as an input of one fully
connected layer (weight matrix: Wy) whose output dimen-
sionality is one followed by a sigmoid layer.

P (y = 1|C) = Sigmoid(Wyht)

Loss The loss function is composed of KL divergence loss
for the topic prediction and binary cross-entropy loss for the
fail prediction. Assume there are a total of N students. The
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KL divergence loss of topic distribution of the mentor’s note
for nth student at time t is defined as:

KLDn,t = DKL(θn,t ‖ θ̂n,t),

where θn,t and θ̂n,t are the true and estimated topic distri-
bution of the mentor’s note at time t for nth student. The
binary cross-entropy of the nth student measures the simi-
larity between P (yn = 1|C) and the true yn as:

BCEn =− yn logP (yn = 1|C)

− (1− yn) log(1− P (yn = 1|C)),

Assume that there are a total of Nn mentor’s notes for nth
student. Combining the two losses, our final loss is

1

N

N∑
n=1

[λBCEn + (1 − λ)
1

Nn

tn,Nn∑
t=tn,1

KLDn,t ],

where tn,i is the timestep when nth student has ith mentor’s
note, and λ is the rescaling weight.

5. RESULTS
In this section, we answer our aforementioned research ques-
tions one by one with the experiment results.

RQ1. What types of information about student states
can we extract from mentor’s notes? We answer the
question of how student state information may be extracted
from mentor’s notes through application of LDA to the notes.
We set the number of topics to ten to maximize the inter-
pretability of the results. Table 3 shows the learned topics
with manually assigned labels, topical words, and text. Top-
ical words are the top ten words with the highest probability
of appearing within each learned topic, and are presented in
decreasing order of likelihood. The topical text column con-
tains an example snippet from one of top ten mentor’s notes
for each topic. We exclude the one topic that was incoherent
out of the 10 learned topics.

Note that there are four topics related to student progress
and plan, term plan (T5), course progress (T6), term progress
(T7), and goal setting (T9). Course progress and goal set-
ting (T6, T9) focus on progress towards modules in a par-
ticular course, along with past and present goals about the
course itself. Term plan and term progress (T5, T7) empha-
size discussions about plans for a term, such as courseload
within in a term, course selection, and long-term degree
planning. There is a clear utility to these topics as an inter-
pretation tool for regulation of the student’s process moving
through the curriculum–if a student hits an impasse, men-
tor’s notes are expected to focus on what challenges the
student experienced and how to address these challenges.

The remaining six topics provide insight on specific issues
and circumstances a student may be facing at a particu-
lar time, and which may end up impacting their overall
progress. In revision (T1), we discover students seeking feed-
back on revisions, suggesting significant engagement with
the platform. In question (T2), students ask for tips on us-
ing WGU platforms, course logistics, and how to succeed
in a given course. In time constraint (T8), students point
out time constraints in their daily life to explain why goals
were not met. The time constraint (T8) topic may explain

abnormal absence or dropout. Assessment (T3) contains
the result or plan of assessments and review for exam (T4)
includes progress or plans of review for exam preparation.

RQ2. Does the task of topic prediction construct
better student state representation than our base-
line, as evaluated by the ability to predict student
failure? We measure the predictive power of learned stu-
dent state representation from our model and compare with
that of our baseline, which shares the same neural architec-
ture but is not trained on the extra task of topic predic-
tion. The specific predictive task is to determine whether
a student fails a course within a given term given a se-
quence of weeks of student clickstream data. We trained
separate models to make a prediction after a set number of
weeks so that we could evaluate the difference in predictive
performance depending on how many weeks worth of data
were used in the prediction. We measure the AUC scores of
our model and baseline using data from two WGU courses:
Health Assessment (HA) and College Algebra (CA).

Figure 3(a) shows the AUC scores across time steps for the
HA course while Figure 3(b) shows the AUC scores across
time steps for the CA course. For HA, our model achieves a
statistically significant improvement (p-value < 0.05) in per-
formance over the baseline model after the 5th week. For
CA, our model achieves a statistically significant improve-
ment after the 17th week. This difference in model perfor-
mance between the HA and CA courses suggests the result
from CA-specific topic data adds limited predictive power
to the model. It is possible the clickstream data of stu-
dents taking CA already contains enough information about
whether a student is going to fail, a conclusion supported by
the fact that AUC scores of the baseline model for CA are
always better across time steps than those for HA.

Figure 3(c) exhibits the minimum KL Divergence loss of our
model across time steps to determine how well our model
is predicting the topic distribution of each mentor’s note
for each course. Though we determined that adding this
task improves the fail prediction task, results on this task
specifically are not impressive, demonstrating the relative
difficulty of predicting mentor’s notes from click data.

RQ3. What insights do we gain about the process
of passing or failing a course over time from pre-
dicted mentor’s notes topic distributions over time
from the model? We perform two different experiments
on the dataset of clickstream and mentors’ notes data of
students taking the College Algebra course. We choose this
course because our topic prediction loss was lower (and thus,
accuracy higher) for the course. First, we determine what
topics inferred from our model correlate with whether a stu-
dent will pass or fail a course. Then we find sequences of
standardized topic probabilities of each topic inferred by our
model that characterize students likely to pass or fail.

State Assessment Course progress Term progress

P -0.1486 0.6301 0.2298
F 0.1735 -0.0049 -0.1647

Table 4: Standard Score of Inferred Topic Probabil-
ities from P and F State
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Topic Topical Words Topical Text

T1. Revision
task, submit, revise, discuss,
equate, complete, need, write,
practice, paper

The ST and I discussed his Task 3 revisions after he
made some corrections. The ST still needs to revise
the task based on the evaluator’s comments. He plans
to do more revisions that align with the task rubric
and submit the task soon.

T2. Question
student, question, call, email,
send, course, discuss, appoint,
speak, assist

Student emailed for help with getting started. CM
called to offer support. Student could not talk for long.
CM emailed welcome letter and scheduling link and
encouraged for student to make an appointment

T3. Assessment
week, goal, today, schedule, pass,
take, exam, final, work, talk

C278: took and did not pass preassessment, did not
take final. NNP C713: took and did not pass the
preassessment. Passed LMC1 PA with a 65 on 02/27.
LMC1 exam scheduled for 02/27

T4. Review for exam
student, review, assess, plan,
study, attempt, discuss,
complete, take, report

Student scheduled appointment to review for first OA
attempt but had taken and not passed the attempt
by the time of the appointment.

T5. Term plan
student, discuss, course,
complete, engage, college, term,
plan, pass, progress

Discussed final term courses. Discussed starting
C229 and working through hours and then working
through C349 course.

T6. Course progress
goal, course, progress, current,
complete, previous, work, date,
pass, module

Current course: C349 Previous goal: completed
modules 1-3 and engage shadow health by next appt
date Progress toward goal: Yes New Goal: shadow
health completed and engaged in video assessment

T7. Term progress
term, course, complete, date,
goal, week, progress, current,
leave, remain

Date: 8/22/17 Term Ends: 5 weeks OTP Progress:
5/14 cu completed Engaged Course: C785 Goal
Progress: did not pass PA

T8. Time constraint
work, week, lesson, complete, go,
progress, plan, finish, time, goal

NNP stated he was not able to make forward progress
in course related to personal situation and time
constraints from an unexpected event.

T9. Goal setting
goal, week, work, complete, task,
progress, pass, accomplish, finish,
contact

Previous goal: finish shadow health, finish and submit
video by next call, start c228 next Progress/concerns:
states working on c349 SH, discussed deadlines Goal:
finish shadow health

Table 3: LDA Topics Learned From Mentor’s Notes

(a) Fail Prediction Per-
formance on HA

(b) Fail Prediction Per-
formance on CA

(c) Topic Prediction
Performance

Figure 3: Performance of Fail
and Topic Prediction

(a) ”Revision” (b) ”Question” (c) ”Assessment” (d) ”Review for exam”

(e) ”Term plan” (f) ”Course progress” (g) ”Time constraints” (h) ”Goal setting”

Figure 4: Standard Score of Each Topic Probability across Weeks for P and F Students

Experiment 1. In the first experiment, we find the two stu-
dent state representations which minimize or maximize the
probability of failing a course. We call the state representa-
tions that minimize and maximize the probability of failure
as a P state and F state. Then, we show what topic distribu-
tions are inferred from each state. We represent emphasis,
or a lack thereof, on a topic by standardizing topic probabil-
ities and observing the number of standard deviations above
and below the mean of a topic probability (standard score).

Table 4 shows the standard score for inferred topic proba-
bility from the P and F state. We only present the standard
score of topics that vary wildly between P and F state. For
example, the standard score of assessment topic (T3) for the
P state is negative and for the F state is positive. One inter-
pretation is that students likely to fail have more trouble in
passing assessments, and thus talked to their mentors more
about assessment topic (T3). The standard score of course
and term progress (T6, T7) for the P state is positive and
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negative for the F state, which shows students likely to pass
report smoother progress instead of ongoing issues.

Experiment 2. We compare the trajectory of inferred
probability of each topic by our model from students who
passed (P students) and failed (F students) a course. Figure
4 shows the average standard score of topic probability per
topic for P and F students over time.

We can see through this experiment clear, distinct patterns
for the frequency of each topic over time that make intuitive
sense given the format of online courses. For example, term
plan (T5) is high frequency for the first week and plunges
right after, since most students and mentors will naturally
discuss plans for a term at the start of each term. The
standard scores of other topics related to goal and progress
(T6,T7,T9) also decrease over time, likely for similar rea-
sons; the plot for T7 is omitted to save space, but it shows
the similar pattern as T6. The standard scores of revision
(T1), question (T2), and assessment (T3), meanwhile, in-
crease over time, which may indicate students seek help more
actively as they approach the end of a term. The standard
scores of review for exam (T4) increase dramatically until
the third week, decrease for few weeks, and finally level off.
As the only condition for students in WGU to pass a course
is to pass the final assessment, it may be that many stu-
dents take their final assessments during the earlier weeks
so they can pass a course as early as possible. The standard
scores of time constraints (T8) steeply increase until the
fourth week, and then gradually decrease over time. This
suggests that when students begin a term they do not ex-
pect to have time constraints, but accumulate unanticipated
issues in their personal lives as the course goes on.

For most topics, the P and F students exhibit distinct di-
vergences in topic patterns. For topics related to goal and
progress (T6, T7, T9), the gap between P and F students
increases over time–suggesting that as time goes on F stu-
dents will be reporting obstacles to their mentors instead of
positive progress. The gap between P and F students for
question (T2) increases over time, likely for similar reasons.
For revision (T1), P students generally have higher standard
scores than F students over time, supporting the idea that
P students actively seek opportunities for revision towards
the end of a term. For assessment (T3), standard score for
F students increases over time while score for P students de-
creases. This could suggest that F students are more likely
to procrastinate and struggle with their assessments than P
students. Finally, for time constraints (T8) F students show
higher standard score as time goes on. A likely interpreta-
tion is that students who encounter time constraints cannot
devote focus to a course and are more likely to fail.

6. CONCLUSION
In this paper, we propose and evaluate a sequence model,
Click2State, which aims to build an interpretable student
state representation by leveraging mentor’s notes to give
deeper meaning to impoverished clickstream data. We also
introduce a methodology for interpreting the learned rep-
resentation from our model that extracts time-sensitive in-
sights about the process of passing or failing a given online
course. Our experimental results demonstrate that student
state representations learned by our model have better pre-

dictive power on the task of determining student failure rate
than a baseline that only uses click stream data. We also
present how individual topic-based insights into the process
of passing or failing a course let us construct a rich charac-
terization of a student likely to fail or pass an online course.
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ABSTRACT 
Collaborative problem-solving (CPS) as a key competency 
required in the 21st century. There has been an increasing need to 
understand CPS since it involves not only cognitive but also social 
processes, and thus its process is difficult to examine. Recent 
research has highlighted that computer-based learning 
environments provide an opportunity for students to collaborate 
with others to solve scientific problems and facilitate their 
knowledge building process, which can be dynamically tracked 
within the systems. However, limited research has attempted to 
identify CPS process captured in the computer-based learning 
environments designed for supporting CPS. This study therefore 
aimed to investigate students’ CPS process in a serious game, Alien 
Rescue, by analyzing a student’s daily tool use action sequence 
generated in the game. First, we computed a daily gameplay action 
similarity among students in a group using a similarity coefficient, 
Jaccard (Jac). Each group’s Jac coefficients over the entire 
gameplay period (i.e. six days over three weeks) were considered 
as the group action similarity trajectory. The Jac coefficient of each 
day was entered as a single feature (i.e. a total of six features) to 
conduct a KmL cluster analysis that clusters longitudinal data. 
Three clusters of groups with similar behavior traits (i.e. group 
action similarity trajectories) were identified. The groups’ 
background information (e.g. solution scores, knowledge gain 
scores) further provided how the groups’ CPS traits can be related 
to their learning performance. 

Keywords 

Collaborative problem-solving, learning process, serious game, 
Jaccard coefficient, KmL cluster analysis, science learning. 

1. INTRODUCTION 
Research has highlighted a need for a comprehensive 
understanding of collaborative problem-solving (CPS), which is 

regarded as one of the critical competencies of the 21st century 
skills [10]. OECD [21] recently defined CPS competency as “the 
capacity of an individual to effectively engage in a process whereby 
two or more agents attempt to solve a problem by sharing the 
understanding and effort required to come to a solution and pooling 
their knowledge, skills and efforts to reach that solution.” 
Computer-based learning environments offer opportunities to 
monitor collaborative process in order to engage learners in 
building a shared understanding of a complex problem and support 
them in knowledge construction process by providing prompts to 
respond to their learning process or triggering real-time 
interventions to improve their CPS process [23, 25]. The captured 
log data including temporal and spatial students’ behaviors within 
the system can reveal emergent patterns that not only reflect 
individual and group behaviors during CPS activities within the 
system, but also engage groups with diverse behavior patterns in an 
effective CPS process accordingly. Despite of these benefits, scanty 
research has attempted to examine collaboration process captured 
within a computer-based learning environment designed for 
supporting CPS. In addition, research on CPS has been mostly 
conducted by investigating verbal communications (e.g. [13]). 

To address this gap, this study aims to investigate groups’ CPS 
process in a serious game, Alien Rescue, using an individual 
student’s daily tool use action sequence generated during the entire 
gameplay period (i.e. a total of six days over three weeks). We used 
a similarity coefficient, Jaccard (Jac), to calculate a daily gameplay 
action similarity among students in a group. Jac coefficients of each 
group over the entire gameplay period, serving as the group’s action 
similarity trajectory, were used to identify patterns of group action 
similarity trajectory. The findings provide empirical evidences of 
diverse patterns of CPS process emerged as students engaged in 
their CPS activities in the serious game. Further, we discuss design 
considerations of serious games and how our application of the 
methods can be applied to future studies.  

2. RELEVANT WORK 
2.1 Collaborative Problem-Solving Process    
CPS process has become a field of interest among researchers with 
the potential to get a better understanding of CPS activities. A 
review of recent research revealed that CPS phases and synchrony 
were two topics central to the research on CPS process. Researchers 
have identified several phases of CPS activities. Informed by 
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dynamical systems approaches (e.g. [1]), researchers [29] 
investigated problem-solving phase transition by identifying an 
entropy peak in transition between the phases including knowledge 
construction, group problem model, group consensus, and 
evaluation (see more details in [6]). The entropy peak corresponds 
to shifts in communication in a problem-solving process within a 
group. The results showed empirical evidences that groups exhibit 
phase transitions during their CPS. The concept of initiative has 
been considered as another way of investigating CPS phases. 
Howard, Di Eugenio, Jordan, and Katz [11] examined task 
initiative shifts during CPS, which is one type of initiatives and 
refers to the participation of people in a conversation and their 
contributions to problem-solving activities during the conversation. 
They found that group members took task initiative when 
attempting at adding new contents which help the members to 
advance problem-solving. 

Synchrony is another critical factor in understanding CPS process.  
Synchrony can be developed as group members reach out a shared 
problem space, which leads to potential transformation or 
advancement in their problem-solving process. Mercier and 
Higgins [18] elaborated on the concept of “a joint problem space” 
[20] and highlighted the importance of a joint understanding of the 
problem, which can be successfully developed when group 
members all come to understand the problem that has been worked 
on. The effectiveness of group work is related to the convergence 
of the individual members’ mental models [4]. Cukurova, Luckin, 
Millán, and Mavrikis [3] illustrated the significance of synchrony 
among group members. They provided the evidence of a positive 
relationship between CPS competence and member synchrony; that 
is, high competence CPS groups tended to have high levels of 
member synchrony.  

2.2 Similarity Coefficients in Serious Games 
Analytics 
A similarity measure is a statistical method to determine how (dis) 
similar one object is from the other ones by quantifying the 
similarity or distance between the objects. Typically, the objects 
being compared can be text strings, audios, images, videos, and 
navigation sequences, etc. Mathematically, a similarity metric is 
measured within the range of 0 to 1, indicating two objects are 
identical (1) and completely different (0). Various applications of 
similarity measures have been applied in emerging fields of 
technology, such as audio match and facial recognition. There are 
five most commonly used similarity measures, namely, Dice, 
Jaccard (Jac), Overlap, Cosine, and the Longest Common 
Substring coefficients (see details in [15]). In this paper, we used 
Jac coefficient. The use of n-gram is an indispensable step to 
calculate a similarity coefficient, when the directionality or 
contexts between objects is an important concern [15]. By using n-
gram, researchers are able to set the sequence of objects before the 
calculation of similarity coefficients. The n-grams are named by the 
size of the sliding windows used—hence, unigram (n = 1), bigram 
(n = 2), trigram (n = 3), and fourgram (n = 4) and so on.  
A serious game has shown its support to improve learners’ CPS 
performance with the chance to develop problem-solving and 
collaboration skills and with higher learning motivation (e.g. [25]). 
As players’ actions and behaviors in serious games are considered 
as the evidence in understanding CPS processes, researchers take 
serious games as the tool to observe and infer the players’ decision-
                                                                 
1 The school identified students as being at-risk of dropping out of 

a school by the state-defined criteria including low-performance 

making process (e.g. [15]). Similarity coefficients have been 
applied to investigate the players’ gaming process. Osborn and 
Mateas [22] defined a (dis) similarity metric for the comparison of 
players’ sequences of actions. They found that the tool Gamalyzer 
(an exploratory visualization of gameplay traces) with the proposed 
(dis)similarity metric is valid in visualizing the overall strategies of 
game players. Learning performance in serious games can be 
quantified with the application of similarity measures to compare 
the course of action between novice and expert players (e.g. [16]). 
Loh et al. [15] examined several commonly used similarity 
measures to determine which measure or combination of measure 
would be viable in differentiating novice from expert players in 
serious games. Their findings showed that combining different 
similarity measures showed stronger predicting abilities than using 
a single similarity.  

3. METHODS 
3.1 Participants 
The participants included sixth graders (n = 196) from a middle 
school in the Southwestern area of the United States. The 
participants played a serious game, Alien Rescue, as a part of 
science curriculum over three weeks. The teachers encouraged 
students to group between 2-4 students, but also allowed students 
to work individually during the gameplay period. There was a total 
of 70 groups. Each student in a group used their own laptop and 
solved the problems in collaboration with group members by 
collecting required information and eliminating planets or moons 
to find out the most suitable homes for each alien species. In order 
to investigate students’ collaborative problem-solving process, we 
only included students who worked in a group (n = 156). The 
students were balanced in terms of gender (77 males and 79 
females). At-risk1 students comprised 51.3% of the sample. 

3.2 Serious game 
Alien Rescue (http://alienrescue.edb.utexas.edu) is an open-ended 
serious game that allows students to discover multiple pathways to 
solve a problem [9]. In this game, students play in the role of young 
scientists who are asked to join the United Nations in the effort to 
rescue six alien species displaced from different places in a distant 
galaxy by helping them to find new homes in our solar system. 
Students are engaged in scientific investigations without explicit 
guidance in their problem-solving process. Students are able to 
develop a mastery by trying out multiple ways of solving the 
problem, such in finding evidence, matching information, and 
formulating rationales. Students develop high-level cognitive skills 
(i.e. goal setting, hypothesis generation, problem-solving, and self-
regulation) while exploring the game environment. The previous 
studies (e.g. [12, 14]) showed empirical evidences of problem-
solving stages within the game; that is, initial exploring and 
problem identification, background research including gathering 
and integrating information, hypothesis generation and testing, and 
solution generation. A set of cognitive tools are provided in the 
game to support students’ problem-solving process (see more 
details of each tool in [14]). Students are challenged to identify 
relevant information of the solar system by using in-game cognitive 
tools and match the information with each alien’s needs and 
characteristics. To solve the complex and ill-structured problem, 
students need to use the tools strategically. Students get access to 
the cognitive tools through a two-layer interface. Tools in first layer 

on an assessment instrument and limited English proficiency 
[27]. 
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can be accessed one at a time while the six tools in the second layer 
can be used anytime overlaid with other tools (see Figure 1).  

 

3.3 Data sources 
3.3.1 Performance scores 

Before and after gameplay, an individual student’s comprehension 
of factual and applied scientific knowledge introduced in the game 
was measured using a Space Science Knowledge Test (SSKT). 
SSKT consists of twenty-four multiple choice items (Cronbach’s 
alpha = 0.77), which score ranges between 0 and 24 (1 point for 
each item) logged in the system. An individual student’s SSKT gain 
score was calculated by subtracting the pretest score from the 
posttest score. Then, each group’s average gain score was 
calculated (i.e. total gain scores / a number of students in a group), 
which is considered as each group’s after-game performance. 

In addition, the game logs a student’s written recommendation(s) 
for each alien, in which they must indicate an appropriate home for 
each species and provide a rationale. Students can submit multiple 
recommendations for each alien species, which reveals the results 
of students’ problem-solving processes—that is, justifications of 
their solutions using the gathered data during the gameplay. The 
solutions were evaluated using an 8-point rubric used in previous 
studies (see more details in [2]) in terms of the correctness of the 
solution and the number of reasons to the selected home. Each 
group’s average solution score is considered as the group’s in-game 
performance. 

3.3.2 Gameplay data 

The gameplay data—that is, the user-generated data derived 
directly from students’ actions within the game—were used to 
identify students’ navigation patterns as they engaged in Alien 
Rescue. The game logs every action as each student interacts with 
the environment. The gameplay data contains a student identifier, a 
cognitive tool that the student accessed, a type of action (e.g., open, 
close, click), an additional note on student’s interactions, and a 
timestamp for each action (see an example of data in Table 1). 
“Open” indicates a student opens a tool, while “Click” indicates a 
student clicks a submenu of the tool. 

Table 1. Example of A Student’s Navigation Data 

Tool Action Notes Timestamp 

Probe Design Open  5/17 10:33:19 

Solar System  Click system Mercury 5/17 10:36:48 

Concepts Open  5/17 10:48:00 

Concepts Close  5/17 10:49:06 

3.4 Analysis 
3.4.1 Group action similarity using a Jaccard coefficient 

We computed a gameplay action similarity between students in a 
group with a Jac coefficient (see 2.2). In order to calculate the 
similarity of students’ navigation traces for each day, we cleaned 
and transformed each student’s navigation data into a ‘bag of 
words.’ For example, assuming that on Day1, one student’s 
navigation is represented by string A = “Probe Design Open, Solar 
System Click Mercury, Concepts Open, …”, and the other student’s 
data is expressed by string B = “Solar System Open, Solar System 
Click Mercury, Solar System Click Venus, …”, we can obtain the 
intersection set of A and B (𝐴 ∩ 𝐵) and union set of A and B (𝐴 ∪
𝐵). The Jac coefficient is therefore the length of intersection set 
over the length of the union set. In order to check if there is a 
directionality between students’ actions, we also applied a bigram 
setting to the navigation sequence and calculated a Jac coefficient. 
A bigram sequence was obtained using a ‘sliding window’ of size 
2. We conducted a descriptive analysis to compare the distributions 
of the unigram with bigram Jac coefficients of all groups. As shown 
in Figure 2, the groups’ unigram Jac coefficients were overall 
normally distributed, while the bigram Jac coefficients showed 
highly skewed to zero (i.e. small variance). Therefore, we decided 
to use a unigram Jac coefficient for this study. As Loh et al. [15] 
suggested using a larger n-gram, when any contextual relationship 
between actions are critical, we included a type of action (see 3.3.2) 
and split the data into each day to further consider the context and 
directionality. 

 
3.4.2 Clustering analysis for longitudinal data 

A Jac coefficient of each day was entered as a single feature (i.e. a 
total of six features) to conduct a cluster analysis to identify the 
potential clusters of collaborative groups with similar behavior 
traits (i.e. group action similarity trajectory). Six Jac coefficients of 
one group can be seen as the action similarity trajectory of the 
group over the gameplay. To handle such trajectory data, we used 
a KmL package in R, which is a new implementation of k-means 
designed to analyze longitudinal data [8]. One common problem in 
longitudinal studies is missing data (e.g. [17]). While k-means is 
unable to handle missing values and normally excludes missing 
data, KmL provides diverse imputation methods (e.g. linear 
interpolation, copyMean; see more details [7]) to deal with different 
types of missing values including intermittent missing data (data 
missing in the middle of a trajectory) and monotone missing data 
(data missing either at the beginning or end) [19]. We were unable 
to calculate a coefficient when there was only one student in a 
group logged in the game on a certain day. There were such missing 

Figure 2. Histograms of unigram and bigram Jac 
coefficients  

Note. Unigram (M = .42, SD = .24), Bigram (M = .12, SD 
= .21) 

Figure 1. Alien Database overlaid with Spectra 
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values found randomly over six gameplay days. Therefore, we used 
linear interpolation (Bisector) to handle missing values of the Jac 
dataset, since the method considers not only a local intermediate 
line (not just sensitive to first or last values), but also a bisector 
between a global and local lines.  
KmL provides methods to define starting conditions and an optimal 
number of clusters and an easy way to run several k-means. KmL 
transforms longitudinal data into an object called 
‘ClusterLongData.’ Once the object has been created, KmL runs k-
means several times and stores all the clusters that the algorithm 
finds over each iteration of finding an optimal partition in the 
object. KmL also offers a tool that can visualize partitions, in which 
researchers can make a decision on the best partition by comparing 
different criteria including Calinski & Harabatz, Ray & Turi, and 
Davies & Bouldin (e.g. [7]). In this study, 3 clusters were suggested 
as the optimal number of clusters. 
The data failed the major assumption of the one-way ANOVA (i.e. 
the non-normally distribution assumption). We thus conducted a 
non-parametric test, Kruskal-Wallis H test, to confirm a statistical 
significance of the group action similarity trajectories between 
clusters since a cluster analysis can only reveal the latent cluster 
patterns. In addition, the cluster patterns were visualized for deeper 
understanding of group action similarity trajectories in each cluster.  

4. RESULTS 
As shown in Table 2, the average values of daily Jac coefficients 
as exhibited by the three clusters of groups achieved the level of 
significance (c2), indicating the groups were well-partitioned into 
each cluster. Kruskal-Wallis H tests overall showed that there were 
statistically significant differences between the mean ranks of daily 
Jac coefficients at least in one pair of clusters. Dunn’s pairwise 
tests for each Jac coefficient were carried out for the three pairs of 
clusters (i.e. Cluster 1 & Cluster 2, Cluster 2 & Cluster 3, and 
Cluster 1 & Cluster 3). We further examined the background of the 
groups in each cluster including the average SSKT gain score and 
the number of groups who submitted at least one solution. To 
further investigate potential patterns between the clusters, line 
charts of action similarity trajectories grouped by each cluster 
including a similarity trajectory trend were derived (see Figure 3). 
As shown in Figure 3, the line charts indicated that the similarity 
trajectory trends of the groups in each cluster were distinctively 
different.  

Approximately 40% of the groups are centered in Cluster 1, and the 
mean ranks of Jac coefficients were overall lower than those of the 
other two clusters. As shown in Figure 3, this cluster’s overall 

similarity trajectory decreased slightly. This cluster showed the 
lowest solution submission rate. These groups achieved the lower 
average solution scores and SSKT gain scores than the other 
clusters. 

 

 
About 30% of the groups are in Cluster 2, and the groups exhibited 
overall the highest mean ranks of Jac coefficients except for Day 
5. Similar to Cluster 1, the groups in Cluster 2 exhibited a 
decreasing similarity trajectory trend toward the end of gameplay, 
but maintained high similarity in their group actions during the first 
few days. The groups in this cluster showed the highest solution 
submission rate. Both their average solution and SSKT gain scores 
showed that their average performance was close to the mean 
performance of all clusters. 

Lastly, the rest of the groups are centered in Cluster 3. The groups 
in Cluster 3 exhibited an increasing similarity trajectory trend with 
the peak on Day 5. It is worth noting that their Jac coefficients 
during the first two days were recorded as the lowest mean ranks 
among all clusters. The solution submission rate of Cluster 3 is 
close to the average solution submission rate across all clusters 
(31.58%). However, the groups who submitted at least one solution 
performed better at their solution submissions than other clusters. 
Additionally, the groups in this cluster performed the best at their 
SSKT gain score. 

 

 
Table 2. Cluster Membership Description 

Cluster 

Group 
SSKT Gain 

score 
(Mean) 

aNo. of groups 
with solution(s) 

Jac 
Day1 

Jac 
Day2 

Jac 
Day3 

Jac  
Day4 

Jac  
Day5 

Jac  
Day6 

Jac 
(Mean) 

C1 
(n = 29, 41.43%) 1.727 6 (20.69%,  

bMsolution = 2.00) 
0.3057 

d(30.12) 
0.3398 
(27.10) 

0.2901 
(20.26) 

0.3079 
(20.55) 

0.2503 
(23.98) 

0.2256 
(22.21) 0.2866 

C2 
(n = 22, 31.43%) 2.682 9 (40.91%,  

Msolution = 3.67) 
0.5473 
(53.84) 

0.6427 
(55.41) 

0.6420 
(52.55) 

0.5982 
(46.64) 

0.4149 
(38.02) 

0.5170 
(45.18) 0.5603 

C3 
(n = 19, 27.14%) 3.412 6 (31.58%,  

Msolution = 4.00) 
0.2218 
(22.47) 

0.3213 
(25.26) 

0.4961 
(39.03) 

0.5785 
(45.42) 

0.5609 
(50.16) 

0.4963 
(44.58) 0.4458 

cc2   27.73*** 30.80*** 32.29*** 26.77*** 19.49*** 21.18***  
Note. aThe number of groups submitted at least one solution (Percentage of the groups in each cluster); bAverage of the total solution scores 
of groups in each cluster; cKruskal-Wallis H test results, ***p <0.001; dMean ranks 
 

Figure 3. Similarity Trajectories of Groups in Each 
Cluster 

Note. The dashed line shows a polynomial trend model of 
degree 2 computed for ‘Average of Jac’ given ‘Day’ (dotted 
lines for a confidence band). 
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5. DISCUSSION 
We applied a Jac coefficient to investigate CPS process within a 
serious game, Alien Rescue: that is, (1) to compute a daily gameplay 
action similarity among students in a group and (2) to identify 
action similarity trajectory patterns across groups using each 
group’s similarity trajectory.  

Although the groups in Clusters 1 and 2 exhibited overall a 
decreasing similarity trend, Cluster 1 showed relatively lower 
action similarities over the entire gameplay, indicating the group 
members did not use the same tools. The group members seemed 
to maintain the individual tool use tendency over time. Both 
Clusters 2 and 3 showed relatively higher Jac coefficients and 
higher in-game (i.e. solution score) and after-game (i.e. knowledge 
gain score) learning performances, which, together with the chi-
square test, can be most likely seen there might be a potential 
positive relationship between a Jac coefficient and learning 
performance. However, the two clusters’ Jac coefficients followed 
a different pattern; that is, the Jac coefficients of Cluster 3 have 
risen considerably over the gameplay period, and the group in 
Cluster 3 started off with the lowest action similarity among all 
clusters. Additionally, the results of Dunn’s pairwise tests showed 
the Jac coefficients were significantly different (p < .001) between 
Cluster 2 and Cluster 3 only during the first two days. Research has 
shown the importance of the convergence of individual’s mental 
models in CPS [4] and the positive association between CPS 
competence and a level of member synchrony [3]. The findings 
therefore suggest that, during the early gameplay days, the group 
members in Cluster 3 came to successfully understand the problem 
and engaged in their collective cognitive process. This further 
supports the fact that a group action similarity trajectory can be an 
indicator of the process of developing shared problem space 
between group members [18].  

We applied n-gram to compute a Jac similarity coefficient: unigram 
and bigram. Compared with the groups’ unigram Jac coefficients, 
the bigram Jac coefficients showed a small variance (i.e. highly 
skewed to zero). In this study, a unigram Jac coefficient is therefore 
a viable way in understanding different levels of group 
collaboration in this serious game. Research on serious games 
analytics highlighted the use of n-gram would be critical to 
understand directionality and contexts between events or actions 
[15, 28]. Since a unigram can possibly ignore the context and 
directionality of actions, we included a type of action (i.e. click a 
sub-menu in each tool) to further consider the context and split the 
data into each day to preserve the directionality when computing a 
Jac coefficient. Such modification is needed when applying n-
grams to different purposes of study. In addition, we applied a 
bigram to further examine the frequent sequences of groups in each 
cluster.  

KmL, a cluster analysis for longitudinal data, has been often used 
in scientific disciplines such in medical research [7, 8]. The KmL 
clustering results in this current study showed remarkable 
differences of the groups’ action similarity trajectories among three 
clusters, which indicate different patterns of CPS process in the 
serious game. In particular, the positive action similarity growth of 
Cluster 3 demonstrated that they developed a shared understanding 
of the problem during the early gameplay days, which has been 
considered as a critical process of successful collaboration in CPS 
activities [5, 23]. It is confirmed by the fact that the learning 
performance of group members of Cluster 3 was higher than that of 
the groups in other clusters, indicating their experience throughout 
the CPS process was successfully transformed to their knowledge 

gain. The findings highlight the importance of providing guidance 
for students who tend to work independently (i.e. Cluster 1) or who 
may simply replicate actions of other students in the group (i.e. 
Cluster 2) to engage in the process of developing a shared problem 
space. The results further inform design considerations of serious 
games that support CPS: for example, providing prompts with 
explicit inquiries, in which a group can be engaged in the successful 
CPS process grounded on the group’s achievement of a shared 
understanding of a given problem. Taken together, this study 
confirms KmL as a promising method to examine features at 
different time points generated from gameplay data, which can be 
seen as an action trajectory that provides insights into CPS process 
in serious games.  

Our work has limitations that should be addressed in future studies. 
First, the dataset is small and was collected at one middle school 
with little diversity; for example, 51.3% of the sample was labeled 
as at-risk, which may not be applicable in other schools with 
different settings. Second, understanding CPS process is critical, 
but challenging particularity in an open-ended learning 
environment like Alien Rescue. This work therefore should be 
expanded to include additional data such as video or audio 
recordings to capture group conversations and actions to provide 
robust evidence for the findings of this study. Third, our method of 
clustering group action trajectory patterns using the KmL clustering 
together with a Jac coefficient showed promising evidences to 
understand students’ CPS process. However, due to the small 
sample size, this may need to be further explored at a larger scale. 
We are currently employing integrated analytical methods to better 
understand CPS process using such as mixture latent growth curve 
model to compare the cluster memberships with the results from 
KmL, and multilevel modeling to examine the relative influence of 
teacher (i.e. two teachers in the middle school) on the action 
similarity trajectories of the groups.  

6. CONCLUSION  
This study used a student’s daily tool use action sequence generated 
in a serious game, Alien Rescue, to investigate the students’ CPS 
process. We applied a similarity coefficient, Jac, to identify a group 
action similarity trajectory. The KmL clustering analysis discovered 
unique clusters of groups with similar group action trajectories, the 
membership of which further provided how CPS traits can be 
related to their learning performance. Each cluster’s characteristics 
shed light on deriving design considerations to promote students’ 
positive collaboration experience during CPS activities within 
serious games, and to engage teachers in facilitating students’ 
effective CPS process. Lastly, the advantages and limitations of the 
methods employed in this study point toward the need for continued 
research on exploring potential analytical methods and scaling up 
the sample size to include more diverse population. 
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ABSTRACT
Misconceptions have been an important area of study in
STEM education towards improving our understanding of
learners’ construction of knowledge. The advent of large-
scale tutoring systems has given rise to an abundance of
data in the form of learner question-answer logs in which
signatures of misconceptions can be mined. In this work, we
explore the extent to which collected expert misconception
diagnoses can be generalized to held-out questions to add
misconception semantics. We attempt this generalization
by way of a question-answer neural embedding trained on
chronological sequences of learner answers. As part of our
study, we collect natural language misconception diagnoses
from math educators for a sampling of student answers to
questions within four topics on Khan Academy. Drawing
inspiration from machine translation, we use a multinomial
logistic regression model to explore how well the expert mis-
conception semantics, in the form of bag-of-words vectors,
can be mapped onto the learned embedding space and inter-
polated. We evaluate the ability of the space to generalize
expert diagnoses using three levels of cross-fold validation in
which we measure the recall of predicted natural language di-
agnoses across rater, topics, and questions. We find that the
embedding provides generalization performance substantially
beyond baseline approaches.

1. INTRODUCTION
The notion of mapping out abstract spaces of student learn-
ing and development has been around for ages, with Zone of
Proximal Development [23] serving as a canonical example
of defining the area of topics a student could learn with help
from peers and the topics beyond. Work in Educational Data
Mining has explored mapping out learning spaces taking the
form of tree structures [4] or concept nodes in a directed
graph [11], often used to represent prerequisite relationships.
Other work has mapped out progress points within a course
and their relationship to classical psychometric measures of

∗At Khan Academy 2016-2017

ability [1]. In this work, we build on the idea of conceiving a
space of learning as an embedding, or set of continuous vec-
tors, with parts of the space indicative of different states of
understanding and misconception [14]. We learn this embed-
ding from sequences of millions of answers to exercises from a
popular STEM tutoring system, then recruit qualified experts
to diagnose a sampling of common wrong answers, providing
natural language semantics to associate with question an-
swers at their respective locations in the embedding. To test
if the embedding generalizes these short form diagnoses, we
use linear interpolation of the learned vector space to predict
the words used in held-out diagnoses, holding out by expert,
problem type, and question in cross-validation experiments.
Successful predictive generalization in this task has implica-
tions for surfacing automatically generated misconception
hypotheses to both teachers and computer tutors.

2. RELATED WORK
The theory of mathematical misconceptions described by
Piaget [16], and considered by Smith, diSessa, and Roschelle
[19] is one of continually developing partial understandings.
Analysis of learner responses, rather than only correctness,
may reveal aspects of their understandings. In the age of
big data and computation, several modern approaches have
brought different perspectives to the analysis of misconcep-
tions. Feldman et al. [5] generated plausible production
rules that could have produced the common wrong answers
observed in student responses to addition questions in 11
elementary schools. In the vein of KC model or Q-matrix im-
provement [22], Liu, Patel, & Koedinger [6] explored adding
KCs symbolizing buggy production rules to problem steps
whose correct answer could be arrived at in spite of applying
the buggy production. They found that the inclusion of this
item-level misconception tagging improved the overall fit of
their AFM model and the validity of the learned individual
student parameters. Most complimentary to our work is the
work of Michalenko, Lan, & Baraniuk [8], who did not study
misconceptions in common wrong answers, but rather miscon-
ceptions found in the text of long open response text, using
skip-grams and other embedding methods. Their approach is
complementary to ours in that it cannot be applied to short,
numeric answers in isolation. Inversely, our approach, which
extends the embedding context across questions, is driven
by questions that generate common wrong answers across
students, which would exclude direct applicability to long
answer response text.
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2.1 Buggy Rules
In the cognitive theories underlying the design of intelligent
tutoring systems [2], there are rules that produce correct and
consistent answers, and efforts have been made towards cat-
aloging collections of buggy rules that could instead produce
incorrect answers. These buggy rules could represent miscon-
ceptions that students often have during the learning process
[3]. This large collection of buggy rules is often referred to
as a bug catalog [20]. As a student moves through a problem
set, the bug catalog enables tutoring systems to tag, track,
and respond to a path of answers the student provides.

Past research efforts to classify these buggy rules also include
the manual labeling of misconceptions by experts [7], the ex-
ploration of cluster relationships between the wrong answers
[15], and approaches that take into account the frequency
of student misconceptions [21]. These efforts lay the foun-
dation for automated approaches which utilize these buggy
rules to generate targeted guidance messages specific to each
incorrect answer [18].

2.2 Use of Skip-grams
Skip-gram models were originally applied to the embedding
of words based on a large corpus of text (e.g. Wikipedia or
a large archive of news articles). Once trained, the represen-
tational (hidden) layer of these models was shown to encode
distributed concepts in the form of syntactic (e.g., bee is
to bees as goose is to geese) as well as semantic relation-
ships (e.g., Einstinen is to scientist as Picasso is to painter)
[10]. While conventionally applied to language in its debut,
skip-grams have been applied to non-linguistic data from
education. University courses were embedded from sequences
of enrollments [13] to find course similarities outside of what
could be inferred from catalog descriptions. Questions within
the ASSISTments tutoring platform were embedded based
on sequences in which problems were answered in order to
predict the skill of untagged questions [12]. Skip-grams and
other embedding models have been applied to standard natu-
ral language in educational contexts, such as the learning of
vector representations of open response text and correlating
vector representations with the presence or absence of hand
coded misconceptions[8].

3. TUTOR DATA SET
Our dataset of anonymized student answer logs comes from
Khan Academy, an online STEM tutoring platform. As
described in our previous work [14], Khan Academy catego-
rizes student responses by exercise, a broad skill similar to
those seen in ASSISTments Skill Builder sets; by problem
type, a problem template; and finally by seed, one of two
hundred values per problem type which uniquely identifies
a template instantiation. Each log entry also contains an
anonymous user ID and timestamp, which we use to group
and chronologically sort student answers for model training.

We used the same exercise selection process as in [14] to nar-
row our focus to exercises with sufficient data and concerning
topics that would likely surface interesting misconceptions
for educators to analyze and describe. This involved consult-
ing a subject matter expert in mathematical education [17]
and verifying the correctness of the log entries by forming a
sample set of questions and manually accessing their respec-
tive web pages on Khan Academy. At the conclusion of this

filtering process, we identified four suitable exercises to use
in our experiments:

1. “Surface Areas” (SA)

2. “Slope from an equation in slope intercept form” (SESI)

3. “Area of quadrilaterals and polygons” (AQP)

4. “Adding and subtracting fractions” (ASF)

Table 1 shows statistics for each exercise.

SA SESI AQP ASF
Problem Types 6 2 2 7
Seeds 38 20 50 40
Students 105,659 33,603 58,239 179,263
Unique Incor-
rect Answers

55,126 6,912 17,998 46,516

Total Incorrect
Answers

619,045 112,390 298,356 873,916

Table 1: Descriptive statistics of exercises used to
train the skip-gram models.

A second dataset was collected as part of this study, which
consisted of natural language diagnoses of common wrong
answers from our chosen exercises. These diagnoses were
written by mathematics educators, with each diagnosis ex-
plaining the misconception that was potentially responsible
for the incorrect answer. We collected misconception diagno-
sis labels using an online survey platform.1 We describe the
collection of these data in Section 4.2.

4. METHODOLOGY
In this section, we describe the techniques employed to com-
plete three primary methodological tasks:

1. Generate learned question answer embeddings from
student answer logs

2. Generate bag-of-words representations of the semantic
data contained in educator diagnoses of the miscon-
ceptions associated with the incorrect student answers
from (1.)

3. Compute a model that generalizes semantic diagnoses of
wrong answers based on regression from the continuous
vectors of (1.) to the semantic representations from
(2.)

Figure 1 depicts the full data processing and machine learning
pipeline that we implemented to complete these tasks, using
both the answer event logs and the misconception diagnoses
as inputs and outputting natural language diagnoses for
held-out question answers.

4.1 Embedding Student Answers
As described in Section 2, machine learning models origi-
nally intended to model natural language have recently been
applied to a number of other domains, including education.
Motivated by the success of these efforts, we used a skip-gram
neural network model to learn representations of student an-
swers. A representation in our setting, or embedding, is a
vector in a high-dimensional space that is learned by a skip-
gram model. We use the same strategy as in [14] to encode
each student answer in a token containing its seed and the

1https://qualtrics.com
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Figure 1: The pipeline used to model student an-
swers, teacher diagnoses, and their correlation.

frequency rank of the student’s response within that seed.
For example, if a student were to answer a question generated
from seed x01b with the most frequently occurring incorrect
answer to that question, their answer would be represented
by the token x01b_1.

A skip-gram model is a two-layer neural network (one hidden
layer) that analyzes a corpus of token sequences to learn
continuous vector representations for each of these tokens.
Vectors are trained with the goal of predicting the context
of each token. For example, x01b_2 would have s03c_4 in
its context if students often provide incorrect responses to
those questions in succession. The loss function (Eq. 1)
for the training process, described in [10], seeks to optimize
the log-likelihood of the tokens in context given a specific
input token. S represents the set of input sequences for
the model, each corresponding to a student’s sequence of
responses to a given exercise. c represents the window size,
a hyperparameter of the model that specifies the width of
a token’s context when learning its representation, and T
represents the number of tokens in sequence s.

C = −
∑
s∈S

1

T

T∑
t=1

∑
−c≤j≤c

j 6=0

logP (wt+j |wt) (1)

We use the negative sampling variant for training the skip-
grams as introduced in [10], which replaces the final term of
the form log P (wO|wI) in Equation 1 with

log σ
(
v′TwO

vwI

)
+

k∑
i=1

Ewi∼Pn(w)

[
log σ

(
−v′Twi

vwI

)]
(2)

Above, σ represents the sigmoid function. Roughly, this
formulation seeks to include the weights of k randomly chosen
negative samples, i.e., tokens wi that do not occur within

the context of the target token wO, in the backpropagation
process. Unlike the original hierarchical softmax formulation,
negative sampling has the advantage of only adjusting pairs
of weights in the underlying network during backpropagation.

4.2 Collecting Teacher Diagnoses
We collected expert-generated semantic misconception diag-
nosis data through a questionnaire designed and run on the
Qualtrics platform. Qualtrics recruited survey participants
and compensated them on our behalf at a rate of $30 per
participant. We had Qualtrics recruit participants who:

• Are working as a mathematics educator for students
who are in grades 5–12 or undergraduates

• Have at least two years of prior teaching experience

The number of problem types and seeds within each exercise
included in the survey is shown in Table 2. For each seed,
we formed a batch of the five most frequently submitted
incorrect answers to present to survey participants.

Exercise # Prob. Types # Seeds
Slope from an Equation
in Slope Intercept Form

2 17

Adding and Subtracting
Fractions

5 18

Surface Areas 6 36
Area of Quadrilaterals
and Polygons

2 18

Table 2: Wrong answer exercises, problem types,
and seeds for which expert diagnoses were sought

Each survey participant was provided with initial instruc-
tions, excerpted in Figure 2. Next, they were shown three
randomly selected answer batches. For each batch, the survey
respondent was presented with a screenshot of the original
question as it appeared on Khan Academy, the text of the
five incorrect student answers, and text boxes to write a brief
misconception diagnosis for each answer. An example Khan
Academy question and the associated diagnoses we collected
are shown in Figure 3.

Respond with a general label-phrase that describes the
most likely error or misconception related to the incorrect
answer.
• Avoid references to specifics of the question (e.g., do

not say “additive inverse is 4, not −4”).

• Your label or phrase should be general enough such that
it could potentially be applied to other incorrect an-
swers. Therefore, you may duplicate labels and phrases
as you see appropriate.

• Avoid abbreviations (e.g., use “y intercept” instead of
“yint”).

Example Responses

Question: Solve 3x− 4 = 20

Student Answer: 5
1

3
Example Label-Phrase: opposite of additive inverse

Figure 2: An excerpt of the instructions presented
to survey participants providing expert diagnoses

Alternatively, we could have asked experts to create miscon-
ception labels out of terms drawn from a fixed taxonomy,
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Answer Misconception Diagnosis
17/20 Added 5 + 12 instead of 5− 12.
−17/20 Added 5 + 12 instead of 5−12. And

used incorrect sign.
−7/20 Has incorrect sign. Should be +.

2/5 Did not use common denominator.

Figure 3: A sample Khan Academy question and
corresponding misconception labels

rather than to compose these labels from scratch and with-
out explicit guidance. However, the terms in this taxonomy
would inevitably reflect our own biases and assumptions and
may prevent experts from accurately describing their obser-
vations. Instead, we allowed a broad vernacular, but also
asked experts to review their labels at the end of the survey
to encourage them to be consistent in their language.

We found that the quality of survey responses varied dra-
matically within our dataset and developed a procedure to
identify and retain only misconception labels that were suit-
able for further analysis. We manually excluded all responses
where an attempt at a label was clearly not present, such
as “idk.” Next, we retained diagnoses only from experts who
wrote labels with an average length of 20 characters or more.
This process left us with 570 unique diagnoses covering 14
of the 15 problem types and 64 of the 89 seeds.

4.3 Processing Teacher Diagnoses
After collecting expert misconception diagnoses through the
survey platform, we performed data pre-processing to even-
tually represent each label in bag-of-words form. Many
diagnoses contained references to specific numbers found in
the instantiation of the question. We chose not to give every
numerical quantity its own token but rather to replace each
contiguous mathematical expression with the token numN,
representing the N th contiguous expression appearing in the
diagnoses for each seed. Numbers used to describe general
misconception rules, e.g. the factor of 1/2 used in computing
the area of a triangle, were hand-identified and allowed to
be represented in original form. This helps to prevent our
models from incorrectly identifying correlations that are co-
incidental (two question instances happen to use the same
random quantity) rather than structural.

Next, we stripped punctuation, removed stopwords, and per-
formed word stemming. Finally, we manually removed some
of the most common tokens that we deemed uninformative
and which could have resulted in trivially easy prediction
due to their frequency, such as student, tried, and used.
Each processed expert diagnosis is represented as a bag-of-
words vector, where an element of the vector indicates the
number of occurrences of a term from a global vocabulary.
Where we had multiple expert labels available for a single
incorrect student answer, we concatenated the two labels
and constructed a bag-of-words representation of the result.

Crossfold Type
Evaluator Prob Type Seed

T
ra

in
in

g

Folds 19 14 64
Data Points 302 296 314
Evaluators 18 19 19
Exercises 4 4 4

Prob Types 14 13 14
Seeds 61 59 63

T
e
st

Data Points 17 24 5
Evaluators 1 3 1
Exercises 2 1 1

Prob Types 2 1 1
Seeds 3 5 1

Table 3: Statistics for different cross validation
schemes. Entries are rounded averages across folds.

4.4 Mapping Answer Vectors to Diagnoses
With both embeddings of student responses and expert-
generated diagnoses in hand, we could explore the extent to
which the continuous vector representation of an incorrect an-
swer is related to a semantic description of the misconception
underlying that answer. We trained a multinomial logistic
regression model to calibrate this correspondence that uses a
vector embedding of an incorrect student answer to predict
the words in the expert’s diagnosis of that answer. The
regression takes as input an m-vector representing a student
answer, where m is the dimensionality of the skip-gram em-
bedding space (a hyperparameter of the model). The model
produces as output an n-vector, where n is the size of the
teacher misconception diagnosis vocabulary. Because of the
regression’s use of softmax, this n-vector forms a probability
distribution across all terms used in the teacher diagnoses.
The ith element of the vector expresses the predicted proba-
bility that the ith term of the diagnosis vocabulary applies
to the student answer.

5. RESULTS
Here, we describe our results and methodology for evaluating
the representations produced by a skip-gram model by using
logistic regression and the expert-generated misconception
diagnoses. We performed a search over the hyperparameters
of the skip-gram algorithm and then compared the predictions
generated by our machine learning pipeline to two baselines.

5.1 Skip-Gram Model Evaluation
Recall from Figure 1 that we use logistic regression to train
a model identifying correlations between embeddings of stu-
dent answers and semantic explanations of the underlying
misconceptions responsible for incorrect answers. The model
surfaces correlations by taking a vector representation as
input and producing a probability distribution over the vo-
cabulary of terms used by educators in their misconception
diagnoses as output.

Using the semantic data collected from educators as ground
truth, we evaluated the insights generated through logistic
regression when using vectors produced by different skip-
gram models as input. We performed a standard leave-
one-out cross-validation (CV) procedure on the educator
data. We then evaluated the quality of a model’s predicted
misconception tags for student answers in the remaining fold
using recall at N , where the value of N for each prediction
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is equal to the number of terms used in the original expert
label for the relevant incorrect answer. This is defined as:

R =

∣∣∣T̂N ∩ T
∣∣∣

|T | (3)

where T is the set of terms contained in an educator’s mis-
conception diagnosis for an answer, T̂N is the set of terms
corresponding to the N largest entries in the probability
distribution produced by the logistic regression when given
an embedding of the answer as input, and N = |T |.

We performed three leave-one-out cross-validations using
each of the following to determine the fold segmentation:

1. Evaluator : The ID of the educator who produced the
misconception diagnosis.

2. Problem Type: The ID of the template used to generate
a question.

3. Seed : The unique identifier of an instantiated question.

Descriptive statistics concerning the train and test splits for
each scheme are summarized in Table 3.

5.2 Results of Hyperparameter Search
We trained over 750 skip-gram models using different combi-
nations of hyperparameters and then ran each model through
the cross-validation procedure described above. The hyper-
parameters we varied were:

1. Vector Size: The number of elements in the vector
representations learned by the skip-gram model

2. Window Size: The width of each token’s context, i.e.,
the number of surrounding tokens to consider in the
loss function defined in Equation 1.

3. Min Count : The minimum number of times a token
occurs in the training set to be included in the model.

4. Training Epochs
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Figure 4: Distribution of average recall under the
different cross-validation schemes.

Figure 4 shows the distribution of recall results achieved
by all the models under each scheme. We also examined
the distribution of hyperparameters among the ten models
that achieved the highest average recall at N under each
cross-validation type. We found that this metric was not
sensitive to the hyperparameter values among the top ten
models for all CV types. Within each CV type, all models
produced scores within 0.0x of one another. Table 4 shows the

hyperparameters that produced the best performing models,
measured by average recall, for all CV types.

Evaluator Problem Type Seed
Vector Size 60 100 100

Window Size 15 40 8
Min Count 10 15 5

Training Epochs 20 20 20

Table 4: The best skip-gram hyperparameter com-
binations under each cross validation scheme.

5.3 Diagnosis Generalization by Best Models
We compared the recall achieved by predicting the words
in the diagnoses using the best skip-gram embeddings and
logistic regression to the recall achieved by two baseline
prediction schemes. For each incorrect student answer, all
of the methods predict N terms, where N is the number
of terms contained in the original expert diagnosis of the
underlying misconception for that answer. This ensures we
can fairly measure each prediction scheme by recall at N .
The two baselines were:

1. Random: Generate a random sample of N terms from
the vocabulary formed by the expert misconception
diagnoses in the training set.

2. Frequency : Predict the N terms that appear most
frequently in the diagnoses from the training set.
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Figure 5: Average recall achieved by different pre-
diction schemes for each cross-validation type.

The average recall at N achieved by the predictions generated
through each baseline scheme, as well as that of our own ap-
proach, is shown in Figure 5. As expected, a frequency-based
approach outperforms a random approach in all three cross-
validation types. In addition, the embedding-based approach
significantly outperforms the frequency-based approach in all
three cases by nearly 100%. The results show that between
18% and 27% of words in held-out diagnoses were recovered.
This improvement over baseline suggests a moderate corre-
spondence between the regularities learned in the embedding
and semantics used to describe misconceptions.

Recall increased with the size of the training set, with Seed
having the largest training set and Evaluator having the
smallest. Other factors may also contribute to these results.
First, we chose Khan Academy exercises spanning a diverse
selection of mathematical concepts, and the diagnoses for
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misconceptions that arise in one domain (e.g., fractions) may
use very different diagnosis terms than the terms used for mis-
conceptions in another domain (e.g., surface area). Therefore,
there are likely cases where the training set doesn’t contain
the proper terms to express the misconception diagnoses
in the test set. Moreover, different educators used different
taxonomies and terms when constructing their misconception
diagnoses, which means a model may not be able to accu-
rately predict the diagnoses provided by an educator that
isn’t well represented in the training data set, which appears
to be the situation that arises in Evaluator cross-validation.

6. DISCUSSION
Should the 27% recall that we achieved in predicting the
terms of held out misconception diagnoses be considered a
good score? There are not prior results in this particular
area with which to compare to a state of the art. However,
this technique of linearly translating from one space (an-
swer embedding) to another (diagnosis bag-of-words) is akin
to machine translation from one language’s embedding to
another. Looking at the accuracy reported in the original
linear machine translation paper [9], a translation accuracy
of 10% was achieved between English and Vietnamese and
24% translated the other way. Therefore, we could consider
27% a comparable score to past NLP translation benchmarks
and a performance level that may produce diagnoses that
expert teachers could consider and potentially act on.

A limitation of our approach was that, as discussed in Section
4.2, our survey allowed experts to write open-ended miscon-
ception diagnoses which resulted in low frequency of some
words and thus a more challenging downstream prediction
task. A future study could restrict the terms available for
use in expert labels or have them simultaneously negotiate
a shared taxonomy. Finally, the student response sequences
used as input for the skip-gram models were partitioned by
Khan Academy exercise due to us wanting to focus on a
limited number of topic areas. This may have lead to missing
misconception signatures that manifest or generalize across
exercises.
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ABSTRACT
Strict partial order is a mathematical structure commonly
seen in relational data. One obstacle to extracting such type
of relations at scale is the lack of large scale labels for build-
ing effective data-driven solutions. We develop an active
learning framework for mining such relations subject to a
strict order. Our approach incorporates relational reason-
ing not only in finding new unlabeled pairs whose labels can
be deduced from an existing label set, but also in devising
new query strategies that consider the relational structure
of labels. Our experiments on concept prerequisite relations
show our proposed framework can substantially improve the
classification performance with the same query budget com-
pared to other baseline approaches.

1. INTRODUCTION
Pool-based active learning is a learning framework where the
learning algorithm is allowed to access a set of unlabeled ex-
amples and ask for the labels of any of these examples [3].
Its goal is to learn a good classifier with significantly fewer
labels by actively directing the queries to the most “valu-
able” examples. In a typical setup of active learning, the la-
bel dependency among labeled or unlabeled examples is not
considered. But data and knowledge in the real world are
often embodied with prior relational structures. Taking into
consideration those structures in building machine learning
solutions can be necessary and crucial. The goal of this pa-
per is to investigate the query strategies in active learning of
a strict partial order, namely, when the ground-truth labels
of examples constitute an irreflexive and transitive relation.
In this paper, we develop efficient and effective algorithms
extending popular query strategies used in active learning
to work with such relational data. We study the following
problem in the active learning context:

Problem. Given a finite set V , a strict order on V is a
type of irreflexive and transitive (pairwise) relation. Such a
strict order is represented by a subset G ⊆ V ×V . Given an
unknown strict order G, an oracle W that returns W (u, v) =

−1 + 2 · 1[(u, v) ∈ G] ∈ {−1, 1}, and a feature extractor
F : V × V 7→ Rd, find h : Rd 7→ {−1, 1} from a hypothesis
class H that predicts whether or not (u, v) ∈ G for each pair
(u, v) ∈ V × V and u 6= v (using h(F(u, v))) by querying W
a finite number of (u, v) pairs from V × V .

Our main focus is to develop reasonable query strategies in
active learning of a strict order exploiting both the knowl-
edge from (non-consistent) classifiers trained on a limited
number of labeled examples and the deductive structures
among pairwise relations. Our work also has a particular
focus on partial orders. If the strict order is total, a large
school called “learning to rank” has studied this topic [10],
some of which are under the active learning setting [4]. Learn-
ing to rank relies on binary classifiers or probabilistic models
that are consistent with the rule of a total order. Such ap-
proaches are however limited in a sense to principally mod-
eling a partial order: a classifier consistent with a total order
will always have a non-zero lower bound of error rate, if the
ground-truth is a partial order but not a total order.

In our active learning problem, incorporating the deductive
relations of a strict order in soliciting examples to be la-
beled is non-trivial and important. The challenges moti-
vating us to pursue this direction can be explained in three
folds: First, any example whose label can be deterministi-
cally reasoned from a labeled set by using the properties of
strict orders does not need further manual labeling or sta-
tistical prediction. Second, probabilistic inference of labels
based on the independence hypothesis, as is done in the con-
ventional classifier training, is not proper any more because
the deductive relations make the labels of examples depen-
dent on each other. Third, in order to quantify how valuable
an example is for querying, one has to combine uncertainty
and logic to build proper representations. Sound and effi-
cient heuristics with empirical success are to be explored.

One related active learning work that deals with a simi-
lar setting to ours is [13], whereas equivalence relations are
considered instead. Particularly, they made several crude
approximations in order to expedite the expected error cal-
culation to a computational tractable level. We approach
the design of query strategies from a different perspective
while keeping efficiency as one of our central concerns.

To empirically study the proposed active learning algorithm,
we apply it to concept prerequisite learning problem [15, 8],
where the goal is to predict whether a concept A is a pre-
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requisite of a concept B given the pair (A,B). Although
there have been some research efforts towards learning pre-
requisites [16, 15, 8, 17], the mathematical nature of the
prerequisite relation as strict partial orders has not been
investigated. In addition, one obstacle for effective learning-
based solutions to this problem is the lack of large scale
prerequisite labels. Liang et al. [9] applied standard active
learning to this problem without utilizing relation proper-
ties of prerequisites. Active learning methods tailored for
strict partial orders provide a good opportunity to tackle
the current challenges of concept prerequisite learning.

Our main contributions are summarized as follows: Fist, we
propose a new efficient reasoning module for monotonically
calculating the deductive closure under the assumption of
a strict order. This computational module can be useful
for general AI solutions that need fast reasoning in regard
to strict orders. Second, we apply our reasoning module
to extend two popular active learning approaches to handle
relational data and empirically achieve substantial improve-
ments. This is the first attempt to design active learning
query strategies tailored for strict partial orders. Third, un-
der the proposed framework, we solve the problem of con-
cept prerequisite learning and our approach appears to be
successful on data from four educational domains, whereas
previous work have not exploited the relational structure of
prerequisites as strict partial orders in a principled way.

2. REASONING OF A STRICT ORDER
2.1 Preliminary

Definition 1 (Strict Order). Given a finite set V ,
a subset G of V × V is called a strict order if and only if it
satisfies the two conditions: (i) if (a, b) ∈ G and (b, c) ∈ G,
then (a, c) ∈ G; (ii) if (a, b) ∈ G, then (b, a) 6∈ G.

Definition 2 (G-Oracle). For two subsets G,H ⊆
V × V , a function denoted as WH(·, ·) : H 7→ {−1, 1} is
called a G-oracle on H iff for any (u, v) ∈ H, WH(u, v) =
−1 + 2 · 1[(u, v) ∈ G].

The G-oracle returns a label denoting whether a pair belongs
to G.

Definition 3 (Completeness of an Oracle). A G-
oracle of strict order WH is called complete if and only if
H satisfies: for any a, b, c ∈ V , (i) if (a, b) ∈ H ∩ G,
(b, c) ∈ H ∩ G, then (a, c) ∈ H ∩ G; (ii) if (a, b) ∈ H ∩ G,
(a, c) ∈ H ∩Gc, then (b, c) ∈ H ∩Gc; (iii) if (b, c) ∈ H ∩G,
(a, c) ∈ H ∩Gc, then (a, b) ∈ H ∩Gc; (iv) if (a, b) ∈ H ∩G,
then (b, a) ∈ H ∩Gc, where Gc is the complement of G.
WH is called complete if it is consistent under transitivity
when restricted on pairs from H.

Definition 4 (Closure). Given a strict order G, for
any H ⊆ V × V , its closure is defined to be the smallest set
H such that H ⊆ H and the G-oracle WH is complete.

Definition 5 (Descendant and Ancestor). Given a
strict order G of V and a ∈ V , its ancestor subject to G is
AG

a := {b | (b, a) ∈ G} and its descendant is DG
a := {b |

(a, b) ∈ G}.

2.2 Reasoning Module for Closure Calculation
With the definitions in the previous section, this section pro-
poses a reasoning module that is designed to monotonically
calculate the deductive closure for strict orders. Remark

that a key difference between the traditional transitive clo-
sure and our definition of closure (Definition 3&4) is that
the former only focuses on G but the latter requires calcula-
tion for both G and Gc. In the context of machine learning,
relations in G and Gc correspond to positive examples and
negative examples, respectively. Since both of these exam-
ples are crucial for training classifiers, existing algorithms
for calculating transitive closure such as the Warshall algo-
rithm are not applicable. Thus we propose the following
theorem for monotonically computing the closure. Please
refer to supplemental material for the proofs.

Theorem 1. Let G be a strict order of V and WH a com-
plete G-oracle on H ⊆ V × V . For any pair (a, b) ∈ V × V ,
define the notation C(a,b) by

(i) If (a, b) ∈ H, C(a,b) := H.

(ii) If (a, b) ∈ Gc ∩Hc, C(a,b) := H ∪N ′(a,b) where

N ′(a,b) := {(d, c)|c ∈ AG∩H
b ∪ {b}, d ∈ DG∩H

a ∪ {a}},

and particularly N ′(a,b) ⊆ Gc.

(iii) If (a, b) ∈ G∩Hc, C(a,b) := H∪N(a,b)∪R(a,b)∪S(a,b)∪
T(a,b) ∪O(a,b), where

N(a,b) := {(c, d) | c ∈ AG∩H
a ∪ {a}, d ∈ DG∩H

b ∪ {b}},
R(a,b) := {(d, c) | (c, d) ∈ N(a,b)},
S(a,b) := {(d, e) | c ∈ AG∩H

a ∪ {a}, d ∈ DG∩H
b ∪ {b},

(c, e) ∈ Gc ∩H},
T(a,b) := {(e, c) | c ∈ AG∩H

a ∪ {a}, d ∈ DG∩H
b ∪ {b},

(e, d) ∈ Gc ∩H},

O(a,b) :=
⋃

(c,d)∈S(a,b)∪T(a,b)

N ′′(c,d),

N ′′(c,d) := {(f, e) | e ∈ AG∩(H∪N(a,b))

d ∪ {d},

f ∈ DG∩(H∪N(a,b))
c ∪ {c}}.

In particular, N(a,b) ⊆ G and R(a,b) ∪ S(a,b) ∪ T(a,b) ∪
O(a,b) ⊆ Gc.

For any pair (x, y) ∈ V ×V , the closure of H ′ = H∪{(x, y)}
is C(x,y).

Figure 1 provides an informal explanation of each necessary
condition (except for R(a,b)) mentioned in the theorem. If
(a, b) is a positive example, i.e. (a, b) ∈ G, then (i) N(a,b) is
a set of inferred positive examples by transitivity; (ii) R(a,b)

is a set of inferred negative examples by irreflexivity; (iii)
S(a,b) and T(a,b) are sets of inferred negative examples by
transitivity; (iv) O(a,b) is a set of negative examples inferred
from S(a,b) and T(a,b). If (a, b) is a negative example, i.e.
(a, b) ∈ Gc, then N ′(a,b) is a set of negative examples inferred
by transitivity.

3. POOL-BASED ACTIVE LEARNING
The pool-based sampling [7] is a typical active learning sce-
nario in which one maintains a labeled set Dl and an unla-
beled set Du. In particular, we let Du∪Dl = D = {1, . . . , n}
and Du ∩ Dl = ∅. For i ∈ {1, . . . , n}, we use xi ∈ Rd to
denote a feature vector representing the i-th instance, and
yi ∈ {−1,+1} to denote its groundtruth class label. At each
round, one or more instances are selected from Du whose la-
bel(s) are then requested, and the labeled instance(s) are
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Figure 1: Following the notations in Theorem 1: (a) Black lines are pairs in H, solid lines are pairs in G, and
dashed lines are pairs in Gc. The pair (a, b) in the cyan color is the pair to be labeled or deduced. (b) If (a, b) ∈ G,
{(a, b), (e, f), (a, f), (e, b)} ⊆ N(a,b). (c) If (a, b) ∈ G, {(h, e), (h, a)} ⊆ T(a,b) and {(b, g), (f, g)} ⊆ S(a,b). (d) If (a, b) ∈ Gc,
{(a, b), (a, d), (c, b), (c, d)} ⊆ N ′(a,b). Likewise, if ∃(x, y) ∈ G, s.t.(a, b) ∈ S(x,y) ∪ T(x,y), {(a, b), (a, d), (c, b)} ⊆ O(x,y).

then moved to Dl. Typically instances are queried in a pri-
oritized way such that one can obtain good classifiers trained
with a substantially smaller set Dl. We focus on the pool-
based sampling setting where queries are selected in serial,
i.e., one at a time.

3.1 Query Strategies
The key component of active learning is the design of an
effective criterion for selecting the most “valuable” instance
to query, which is often referred to as query strategy. We
use s∗ to refer to the selected instance by the strategy. In
general, different strategies follow a greedy framework:

s∗ = argmax
s∈Du

min
y∈{−1,1}

f(s; y,Dl), (1)

where f(s; y,Dl) ∈ R is a scoring function to measure the
risks of choosing y as the label for xs ∈ Du given an existing
labeled set Dl.

We investigate two commonly used query strategies: uncer-
tainty sampling [6] and query-by-committee [14]. We show
that under the binary classification setting, they can all be
reformulated as Eq. (1).

Uncertainty Sampling selects the instance which it is
least certain how to label. We choose to study one pop-
ular uncertainty-based sampling variant, the least confident.
Subject to Eq. (1), the resulting approach is to let

f(s; y,Dl) = 1− P∆(Dl)(ys = y|xs), (2)

where P∆(Dl)(ys = y|xs) is a conditional probability which is
estimated from a probabilistic classification model ∆ trained
on {(xi, yi) | ∀i ∈ Dl}.

Query-By-Committee maintains a committee of mod-
els trained on labeled data, C(Dl) = {g(1), ..., g(C)}. It
aims to reduce the size of version space. Specifically, it se-
lects the unlabeled instance about which committee mem-
bers disagree the most based on their predictions. Subject
to Eq. (1), the resulting approach is to let

f(s; y,Dl) =
∑C

k=1
1[y 6= g(k)(xs)], (3)

where g(k)(xs) ∈ {−1, 1} is the predicted label of xs using

the classifier g(k).

Our paper will start from generalizing Eq. (1) and show that
it is possible to extend the two popular query strategies for
considering relational data as a strict order.

4. ACTIVE LEARNING OF A STRICT OR-
DER

GivenG a strict order of V , consider a set of dataD ⊆ V ×V ,
where (a, a) 6∈ D,∀a ∈ V . Similar to the pool-based active
learning, one needs to maintain a labeled set Dl and an
unlabeled set Du. We require that D ⊆ Dl ∪ Duand Dl ∩
Du = ∅. Given a feature extractor F : V ×V 7→ Rd, we can
build a vector dataset {x(a,b) = F(a, b) ∈ Rd | (a, b) ∈ D}.
Let y(a,b) = −1 + 2 · 1[(a, b) ∈ G] ∈ {−1, 1} be the ground-
truth label for each (a, b) ∈ V × V . Active learning aims to
query Q a subset from D under limited budget and construct
a label set Dl from Q, in order to train a good classifier h
on Dl∩D such that it predicts accurately whether or not an
unlabeled pair (a, b) ∈ G by h(F(a, b)) ∈ {−1, 1}.

Active learning of strict orders differs from the traditional
active learning in two unique aspects: (i) By querying the
label of a single unlabeled instance, one may obtain a set
of labeled examples, with the help of strict orders’ prop-
erties; (ii) The relational information of strict orders could
also be utilized by query strategies. We will present our ef-
forts towards incorporating the above two aspects into active
learning of a strict order.

4.1 Basic Relational Reasoning in Active Learn-
ing

A basic extension from standard active learning to one under
the strict order setting is to apply relational reasoning when
both updating Dl and predicting labels. Algorithm 1 shows
the pseudocode for the pool-based active learning of a strict
order. When updating Dl with a new instance (a, b) ∈ Du

whose label y(a,b) is acquired from querying, one first cal-

culates D′l, i.e., the closure of Dl ∪ {(a, b)}, using Theo-

rem 1, and then sets Dl := D′l and Du := D\D′l respectively.
Therefore, it is possible to augment the labeled set Dl with
more than one pair at each stage even though only a sin-
gle instance is queried. Furthermore, the following corollary
shows that given a fixed set of samples to be queried, their
querying order does not affect the final labeled set Dl con-
structed.

Corollary 1.1. Given a list of pairs Q of size m whose
elements are from V ×V , let i1, . . . , im and j1, . . . , jm be two
different permutations of 1, . . . ,m. Let I0 = ∅ and J0 = ∅,
and Ik = Ik−1 ∪ {qik}, Jk = Jk−1 ∪ {qjk} for k = 1, . . . ,m,
where · is defined as the closure set under G. We have Im =
Jm, which is the closure of {qi ∈ V × V | i = 1, . . . ,m}.

Corollary 1.1 is a straightforward result from the uniqueness
of closure, which is also verified by our experiments. The la-
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Algorithm 1 Pseudocode for pool-based active learning of
a strict order.

Input:
D ⊆ V × V % a data set

Initialize:
Dl ← {(as1 , bs1), (as2 , bs2), ..., (ask , bsk )} % initial la-

beled set with k seeds
Dl ← Dl % initial closure
Du ← D\Dl % initial unlabeled set

while Du 6= ∅ do
Select (a∗, b∗) from Du % according to a query strat-

egy
Query the label y(a∗,b∗) for the selected instance

(a∗, b∗)

Dl ← Dl ∪ {(a∗, b∗)}
Du ← D\Dl

end while

beled set Dl contains two kinds of pairs based on where their
labels come from: The first kind of labels comes directly
from queries, and the second kind comes from the relational
reasoning as explained by Theorem 1. Such an approach has
a clear advantage over standard active learning at the same
budget of queries, because labels of part of the test pairs
can be inferred deterministically and as a result there will
be more labeled data for supervised training. In our setup of
active learning, we train classifiers on D ∩ Dl and use them
for predicting the labels of remaining pairs that are not in
Dl.

4.2 Query Strategies with Relational Reason-
ing

The relational active learning framework as explained in the
previous section however does not consider incorporating re-
lational reasoning in its query strategy. We further develop
a systematic approach on how to achieve this.

We start from the following formulation: at each stage, one
chooses a pair (a∗, b∗) to query based on

(a∗, b∗) = argmax
(a,b)∈Du

min
y∈{−1,1}

F (S(y(a,b) = y),Dl), (4)

S(y(a,b) = y) = (Dl ∪ {(a, b)}\Dl) ∩ D. (5)

Again, F is the scoring function. S(y(a,b) = y) is the set
of pairs in D whose labels, originally unknown (6∈ Dl), can
now be inferred by assuming y(a,b) = y using Theorem 1.
For each (u, v) ∈ S(y(a,b) = y), its inferred label is denoted
as ŷ(u,v) in the sequel. One can see that this formulation
is a generalization of Eq. (1). We now proceed to develop
extensions for the two query strategies to model the depen-
dencies between pairs imposed by the rule of a strict order.
Following the same notations as previously described with
the only difference that the numbering index is replaced by
the pairwise index, we propose two query strategies tailored
to strict orders.

Uncertainty Sampling with Reasoning. With relational rea-
soning, one not only can reduce the uncertainty of the queried
pair (a, b) but also may reduce that of other pairs deduced

Table 1: Dataset statistics.
Domain # Concepts # Pairs # Prerequisites

Data Mining 120 826 292
Geometry 89 1681 524
Physics 153 1962 487
Precalculus 224 2060 699

by assuming y(a,b)=y. The modified scoring function reads:

F (S(y(a,b) = y),Dl) =∑
(u,v)∈S(y(a,b)=y)

1− P∆(Dl∩D)(y(u,v) = ŷ(u,v)|x(u,v)). (6)

Query-by-Committee with Reasoning. Likewise, one also has
the extension for QBC, where {g(k)}Ck=1 is a committee of
classifiers trained on bagging samples of Dl ∩ D,

F (S(y(a,b) = y),Dl) =∑
(u,v)∈S(y(a,b)=y)

∑C

k=1
1(ŷ(u,v) 6= g(k)(x(u,v))). (7)

5. EXPERIMENTS
For evaluation, we apply the proposed active learning algo-
rithms to concept prerequisite learning problem [8]. Given a
pair of concepts (A, B), we predict whether or not A is a
prerequisite of B, which is a binary classification problem.
Here, cases where B is a prerequisite of A and where no
prerequisite relation exists are both considered negative.

5.1 Dataset
We use the Wiki concept map dataset from [17] which is
collected from textbooks on different educational domains.
Each concept corresponds to an English Wiki article. For
each domain, the dataset consists of prerequisite pairs in the
concept map. Table 1 summarizes the statistics of the our
final processed dataset.

5.2 Features
For each concept pair (A,B), we calculate two types of fea-
tures following the popular practice of information retrieval
and natural language processing: graph-based features and
text-based features. Please refer to Table 2 for detailed de-
scription. Note we trained a topic model [1] on the Wiki
corpus. We also trained a Word2Vec [12] model on the same
corpus with each concept treated as an individual token.

5.3 Experiment Settings
We follow the typical evaluation protocol of pool-based ac-
tive learning. We first randomly split a dataset into a train-
ing set D and a test set Dtest with a ratio of 2:1. Then
we randomly select 20 samples from the training set as the
initial query set Q and compute its closure Dl. Meanwhile,
we set Du = D\Dl. In each iteration, we pick an unlabeled
instance from Du to query for its label, update the label
set Dl, and re-train a classification model on the updated
Dl ∩ D. The re-trained classification model is then evalu-
ated on Dtest. In all experiments, we use a random forests
classifier [2] with 200 trees as the classification model. We
use Area under the ROC curve (AUC) as the evaluation
metric. Taking into account the effects of randomness sub-
ject to different initializations, we continue the above exper-
imental process for each method repeatedly with 300 pre-
selected distinct random seeds. Their average scores and
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Table 2: Feature description. Top: graph-based fea-
tures. Bottom: text-based features.

Feature Description

In/Out Degree The in/out degree of A/B.
Common Neighbors # common neighbors of A and B.
# Links # times A/B links to B/A.
Link Proportion The proportion of pages that link to A/B also link to

B/A.
NGD The Normalized Google Distance between A and

B [18].
PMI The Pointwise Mutual Information relatedness be-

tween the incoming links of A and B.
RefD A metric to measure how differently A and B’s related

concepts refer to each other [8].
HITS The difference between A and B’s hub/authority

scores. [5]

1st Sent Whether A/B is in the first sentence of B/A.
In Title Whether A appears in B’s title.
Title Jaccard The Jaccard similarity between A and B’s titles.
Length # words of A/B’s content.
Mention # times A/B are mentioned in the content of B/A.
NP # noun phrases in A/B’s content; # common noun

phrases.
Tf-idf Sim The cosine similarity between Tf-idf vectors for A and

B’s first paragraphs.
Word2Vec Sim The cosine similarity between vectors of A and B

trained by Word2Vec.
LDA Entropy The Shannon entropy of the LDA vector of A/B.
LDA Cross Entropy The cross entropy between the LDA vector of A/B

and B/A.

Table 3: Summary of compared query strategies.
Method Use reason-

ing when
updating Dl

Use reason-
ing to select
the instance
to query

Use learn-
ing to select
the instance
to query

Random 7 7 7
LC, QBC 7 7 3
Random-R 3 7 7
LC-R, QBC-R 3 7 3
CNT 3 3 7
LC-R+, QBC-R+ 3 3 3

confidence intervals (α = 0.05) are reported. We compare
four query strategies: (i) Random: randomly select an in-
stance to query; (ii) LC: least confident sampling, a widely
used uncertainty sampling variant. We use logistic regres-
sion to estimate posterior probabilities; (iii) QBC: query-
by-committee algorithm. We apply query-by-bagging [11]
and use a committee of three decision trees; (iv) CNT: a
simple baseline query strategy designed to greedily select an
instance whose label can potentially infer the most num-
ber of unlabeled instances. Following the previous nota-
tions, the scoring function for CNT is F (S(y(a,b) = y),Dl) =
|S(y(a,b) = y)| , which is solely based on logical reasoning.

For experiments, we test each query strategy under three
settings: (i) Traditional active learning where no relational
information is considered. Query strategies under this set-
ting are denoted as Random, LC, and QBC. (ii) Relational
active learning where relation reasoning is applied to updat-
ing Dl and predicting labels of Dtest. Query strategies under
this setting are denoted as Random-R, LC-R, and QBC-R.
(iii) Besides being applied to updating Dl, relational rea-
soning is also incorporated in the query strategies. Query
strategies under this setting are the baseline method CNT
and our proposed extensions of LC and QBC for strict par-
tial orders, denoted as LC-R+ and QBC-R+, respectively.
Table 3 summarizes the query strategies studied in the ex-
periments.

5.4 Experiment Results
Figure 2 shows the AUC results of different query strate-
gies. For each case, we present the average values and 95%
C.I. of repeated 300 trials with different train/test splits. In
addition, Figure 3 compares the relations between the num-
ber of queries and the number of labeled instances across
different query strategies. Note that in the relational ac-
tive learning setting querying a single unlabeled instance
will result in one or more labeled instances. According to
Figure 2 and Figure 3, we have the following observations:
First, by comparing query strategies under the settings (ii)
and (iii) with setting (i), we observe that incorporating rela-
tional reasoning into active learning substantially improves
the AUC performance of each query strategy. In addition,
we find the query order, which is supposed to be different for
each strategy, does not affect Dl at the end when D ⊆ Dl.
Thus, it partly verifies Corollary 1.1. Second, our proposed
LC-R+ and QBC-R+ significantly outperform other com-
pared query strategies. Specifically, when comparing them
with LC-R and QBC-R, we see that incorporating relational
reasoning into directing the queries helps to train a better
classifier. Figure 3 shows that LC-R+ and QBC-R+ lead
to more labeled instances when using the same amount of
queries than that of LC-R and QBC-R. This partly con-
tributes to the performance gain. Third, LC-R+ and QBC-
R+ are more effective at both collecting a larger labeled
set and training better classifiers than the CNT baseline.
In addition, by comparing CNT with LC-R, QBC-R, and
Random-R, we observe that a larger size of the labeled set
does not always lead to a better performance. Such observa-
tions demonstrate the necessity of combining deterministic
relational reasoning and probabilistic machine learning in
designing query strategies.

In addition to effectiveness, we also conduct empirical stud-
ies on the runtime of the reasoning module and include the
results in the supplemental material.

6. CONCLUSION
We propose an active learning framework tailored to rela-
tional data in the form of strict partial orders. An effi-
cient reasoning module is proposed to extend two commonly
used query strategies – uncertainty sampling and query by
committee. Experiments on concept prerequisite learning
show that incorporating relational reasoning in both select-
ing valuable examples to label and expanding the train-
ing set significantly improves standard active learning ap-
proaches. Future work could be to explore the following: (i)
apply the reasoning module to extend other query strate-
gies; (ii) active learning of strict partial orders from a noisy
oracle.
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ABSTRACT 

This work aims to characterize students’ writing processes using 
keystroke logs and understand how the extracted characteristics 
influence the text quality at specific moments of writing. Earlier 
works have proposed predictive models characterizing students’ 
writing processes and mainly rely on distribution-based measures 
of pauses obtained from the overall keystroke logs. However, the 
effect of isolated phases of writing has not been evaluated in these 

models. Moreover, current theories on writing suggest that the 
quality of writing depends on when specific writing behaviours are 
performed. This view is not examined in the keystroke logging 
analysis literature. Addressing the mentioned challenges, the two 
contributions of this work are: a) characterizing students’ writing 
processes connected to isolated writing phases and examining their 
influence on writing quality; and b) temporal analysis of keystrokes 
and investigating whether the significance of writing characteristics 

varies as students progress in their writing task. Our results suggest 
that characterizing students’ writing based on isolated writing 
phases is slightly more predictive of writing quality. Additionally, 
the effect of several writing characteristics on writing quality 
changes when considering the time dimension. 

Keywords 

Writing process, Keystroke log, XGBoost, SHAP feature 
importance, Temporal analysis 

1. INTRODUCTION  
The recognized significance of the writing process has led to the 

emergence of a wide variety of research exploring the process of 
students’ academic writing. The writing process, broadly including 
planning, writing and revising phases, is a non-linear process [10]. 
These phases often occur simultaneously, making it challenging for 
researchers to examine features related to specific writing phases.  

One stream of writing research has focused on analyzing pauses in 
keystroke logs and associating them with different phases of the 
writing process [9]. This is often accomplished by exploring the 

distribution of pauses and then mapping the related parameters to 
specific writing processes. Although some keystroke log features 
can be a marker of a high writing quality, there is not always 
sufficient evidence for their relationship. This may be due to 
decisions made during data processing and analysis.  

Additionally, statistics and features collected by most studies 
examining the relationship between keystroke logs and the writing 
process mainly rely on aggregated or distribution-based 
representations of the overall keystroke logs [9]. Even when the 
data has been summarized to a high standard, neglecting the time 
dimension may hide the effect of specific behaviors at particular 
moments of the writing process. Temporal analysis has been 
suggested as a better way uncover the writing process and its related 

stages [3]. However, there are a few studies that combine writing 
process and temporal analysis, which mostly focused on think 
aloud procedures and offline measurements. These have been 
criticized as being inaccurate representations of the underlying 
writing process [16]. 

Therefore, our main aim is to examine students’ writing processes 
and their relationship to writing quality using keystroke logs and 
temporal analysis. We use an innovative writing technology 

platform that assists in discriminating between writing phases, 
mainly planning and writing, by providing separate writing sections 
to students [17]. The temporal analysis provides insight about how 
the effect of each of those phases and keystroke log features on 
students’ writing quality may change over time. This can support 
educators to make judgments regarding students’ writing processes 
and change the ways they teach writing skills.  

2. LITERATURE REVIEW 

2.1 Writing Research 
A common approach of writing research is to consider three phases 

to describe the writing process: pre-writing, writing, and post-
writing [4]. Pre-writing is composed by planning the content of the 
text to be written. Writing is composing the ideas and transcribing 
them. Post-writing is revising or reviewing the written text or plan.  
For simplicity purposes, in our study these phases are referred to as 
planning, transcribing, and revising, respectively. Efforts in writing 
research have been made to identify behavioral features that could 
be an indication of these phases. Early writing research has heavily 
relied on self-report methods, such as think aloud protocols [3], to 

examine students’ writing process. Over the recent decades, 
purpose-built software for writing research were developed which 
collected all information possible during the writing process. 
Initially these initiatives were restricted to laboratories, but recent 
advances in software development has now released such software 
naturalistic settings, allowing for researchers to examine the 
writing process in real educational environments [17]. 

2.2 Keystroke Logs in Writing Research 
A key research area uses keystroke logging to characterize the 
writing process. Efforts here have focused on investigating the 
distributions of various kinds of pauses (e.g., inter-key, intra-word) 
and their relationship with writing quality. Among the existing 
studies, [7] found the exponentially modified Gaussian distribution 

a good fit for inter-key pauses and mapped specific pauses to 
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planning process in case they were identified to be long enough. In 
other work by [1], a mixture of lognormal distribution was used to 
describe pause pattern in students’ inter-key and intra-word pauses. 
The parameters of the distribution were found to be correlated with 
writing score. Finally, [9] estimated the distribution of the inter-key 

and intra-word pause durations for each student and found the best 
fit to be a heavy-tailed probability distribution called a stable 
distribution. Because of nearly identical estimates for intra-word 
and inter-key pauses, they focused on only analyzing intra-word 
pauses. They found the estimated parameters for each student to be 
a strong predictor of final score utilizing a linear regression model. 

Although these studies provide informative (predictive) models 
characterizing students’ writing process, the effect of isolated 

phases of writing process have not been evaluated in these models. 
In addition, even though the use of simple models of regression and 
correlation analysis makes the interpretation of results easier, the 
use of more complex models may capture further information about 
the interrelationships between the extracted characteristics. 

Another direction of research focused on using keystroke logs to 
more comprehensively characterize the phases comprising the 
writing process [9, 18]. In a study by [2] on modelling students’ 

writing process, some measures were defined to model pauses, 
bursts and revisions. A burst is defined as the sequence of fast text 
production and can be identified based on the production of text 
between two pauses [2]. They suggest that long pauses may reflect 
planning, as the writers are more likely to have short but well-
formed bursts of writing afterward.  

Overall, extracted characteristics from keystroke logs in terms of 
burst, revision summaries and the pattern of pauses, provide 

important information regarding the underlying writing process. 
Association of each extracted characteristic with writing quality has 
been mainly considered as the metric for evaluating the usefulness 
of the feature [9, 18]. A major challenge is defining meaningful 
summaries from the writing keystrokes that represent a specific 
phase of students’ writing process as much as possible. To address 
this problem, we use an innovative writing technology that more 
explicitly discriminates between the planning and writing phases, 
by providing separate writing sections to students [17]. 

Additionally, it is important to know not only which writing phases 
are relevant to successful writers, but when and in what order they 
engage with these phases. An approach to temporal data processing 
has been the aggregation of data in multiple consecutive episodes, 
so all participants have a similar number of observations [3]. They 
suggested that the relation between specific aspects of the process 
with writing quality varies as students’ progress in their writing. 
For instance, the correlation of structuring activities and writing 

quality is highest at the start of the writing and is lower toward the 
end [3]. The importance of the temporal analysis of the writing 
process has been emphasized by several studies [16], however the 
data representation mostly relies on think aloud procedures and 
offline measurements that have been criticized as being inaccurate 
representation of the underlying writing process [16].  

Although the importance of taking the moment(s) at which specific 
aspects of the writing process occur has been emphasized, this is 

not a dominant view in keystroke logging analysis. 

2.3 Current Study 
Our first aim is to characterize students’ writing processes in terms 
of a set of features demonstrating the isolated phases. For this 
purpose, we focus on students’ keystrokes characteristics while 

taking notes, writing the main body of the essay, and organizing 

references (each separately). Utilizing a machine learning model, 
we examine whether section specific characteristics are more 
predictive of writing quality compared to the characteristics 
extracted from the overall keystrokes. We also consider adding 
more features that estimate burst and revision behavior, as well as 

features representing the extent to which specific aspects of writing 
process were used during the writing. To evaluate how influential 
each feature is for each student’s writing quality, we adopt a 
method called SHAP [13] that describes the importance of each 
feature on the model’s prediction for each student. The second aim 
of the paper is to provide a temporal analysis which helps us to 
understand whether the importance of features varies over time or 
remains stable. We address this problem by breaking down 

students’ keystrokes into several writing episodes and comparing 
the influence of each feature on writing quality across them.  

Overall, in this study the following research questions are explored: 

1. Do models that characterize the overall writing process miss 
informative features associating with particular phases of 
writing? Can we define new characteristics (features) from 
students’ keystrokes to improve these models?  

2. How predictive of writing quality are the extracted features at 

different times? Do we see evidence that the importance of 
features varies with time? 

Our results highlight that characterizing students’ keystrokes 
separately while writing, taking notes and organizing references is 
more predictive of their writing quality. Additionally, based on our 
findings, the importance of several features on writing quality 
changes over time. Investigation of the influential features for 
individual students clarified the non-linear relationship between 

some features and writing quality that confirms there exists 
considerable overlap and interaction between writing phases [4].  

3. METHODS 

3.1 Participants and Context 
The study involves 107 students from the University of Melbourne 
who enrolled in a business undergraduate course. Students were 
asked to use a specific online word processing software called 
Cadmus to write a 1000-word essay as a part of their course, worth 
10% of their final mark. Students had to choose between two topics 
and had 19 days to complete the essay. The performance was 
marked by teaching staff using a score between 0 to 100. 

Cadmus has similar features to other word processing software 
tools such as body section for writing (body section), editing, 
highlighting, and additional features such as dedicated sections to 
take notes (note taking section), and to organize the reference 
materials (reference section) as well as a single paste restriction of 
90 words. Cadmus records every keystroke in each section via the 
keyboard while students work on their assignment. A more detailed 
description of this software can be found in [17]. 

3.2 Data Processing 
We next describe the procedure undertaken to characterize 
students’ writing processes by engineering a set of features from 
keystroke logs. We also processed two concepts of writing quality 
and writing episode to assist on answering the research questions.  

(A preliminary analysis revealed 4 students had less than 600 words 
in their essay. They were removed from further analysis.) 

3.2.1 Pauses  
In this study our focus is on inter-key pauses (the duration between 
successive keystrokes) that are more likely to be associated with 
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such processes as deliberation, text planning, reviewing the written 
text [9]. As [9] suggested, there is a tendency for inter-key pause 
durations to follow a stable distribution. They fitted this distribution 
to pause duration data to obtain an informative estimation of the 
related parameters for each student. We follow a similar procedure 

as [9]; however, we summarize pauses in each writing section of 
our dataset separately. This section-specific summarisation could 
reveal more explicit information regarding which processes were 
more likely to be engaged during the pause.  

We aim to represent students’ writing process while they are 
working on their essay, thus we decided to ignore the pauses more 
than 2 hours that meant the student had left the session. 

In our dataset, the exploration of the distribution of pause durations 

for each student in each writing section reveals that there is a 
tendency for pause duration in each section to follow a heavy tail 
distribution, that means the majority of the pauses are short but 
there exist a few long pauses. Believing a stable distribution to be 
a plausible hypothesis, we fitted this distribution to each student’s 
pause data to obtain an estimate of the related parameters in each 
section. This distribution needs four parameters (α, β, γ, δ) for the 
complete description. 

• The parameter alpha α ∈ (0, 2], called the tail index. This 
parameter gives information about the height of the tails.  

• The parameter beta β ∈ [−1, 1], called the skewness parameter. 
The distribution is symmetric if β = 0. It is skewed to the right 

if β > 0, and to the left if β < 0. 

• The parameter delta δ ∈ R, is equal to median. Depending on 
how heavy the tail is, some extreme part of the data may need 
to be discarded to have a good estimate of this value.  

• The parameter gamma γ > 0, called scale parameter is a 
measure of dispersion.  

Parameters alpha and beta determine the distribution’s shape, while 
parameters gamma and delta define the scale and location of it. For 
each student, in each section of our dataset we obtain these four 
estimated parameters. We also estimate these parameters for the 
overall keystrokes of each student (irrespective of the specific 
section) as suggested by [9] and consider them as a baseline for the 

purpose of evaluation. 

3.2.2 Bursts 
Burst summaries (i.e. mean length of the bursts) can reveal 

students’ fluency in the transcribing phase of the writing process 
[18]. In keeping with the majority of the literature [14], we identify 
bursts by breaking up keystrokes at every pause that have longer 
than 2 seconds of inactivity. We apply this procedure in the body 
section of our dataset, where students write the main part of their 
essay. Considering the bursts in which at least one word is typed, 
we summarize burst length by two features based on the number of 
words in a burst: The mean and the standard deviation of burst 
length for each student. Additionally, we summarize burst duration 

by two features of mean and standard deviation of burst duration. 

3.2.3 Revision  
In this step, our aim is to isolate the revision phase of the writing 

process from the transcribing phase. Authors of [5] associated 
single backspaces to spelling correction which reflect self-
monitoring, and multiple backspaces to editing in which longer 
revision occurred. Similarly, we summarize revision at small and 
large scale with a slight change in the definition; we identify 
revisions based on the number of word deletions in a writing burst 
rather than in isolation. We label a burst with single deletion as 

small, whereas bursts with multiple deletion as large-scale revision. 
Two features were extracted to provide measurements related to the 
revision phase of writing process: The frequency of both small 
scale and large-scale revision bursts. 

3.2.4 Time percentage on each writing aspect 
To summarize the extent of each specific aspect of writing that was 
used by each student, we introduce a new set of features, including  
the percentage of the total writing time dedicated to: note taking 

(total time in note taking section), small- and large-scale revisions 
(bursts of writing with small or large deletion), transcribing (total 
time of bursts), and reference organization (total time in reference 
section).  

3.2.5 Writing quality 
Writing quality corresponds to the students’ final grades on the 
essay [9, 18]. Previous research has found that students’ final grade 
may not be a reliable measure of success, due to variations in 
grading essay writing by raters [11]. To account for this variability, 
we map the students’ writing quality to two categories - high and 
low level instead of the exact grade. In our dataset, the distribution 
of students’ grades lies within the range 60 to 95. We adopt the 

median value as a threshold for this mapping which is 80. Based on 
this value we have 40 and 67 students having high quality and low 
quality writing respectively. 

3.2.6 Writing episode definition 
One approach to temporal data processing is the analysis of data in 
multiple episodes to ensure all participants have a similar number 
of observations [3]. In our study, students were asked to write a 
1000-word essay, which provides a good criterion for defining the 
fixed observations. We define the episodes based on the keystrokes 
used to complete the fixed number of words in the essay. This way, 
we have meaningful episodes recording a specific draft of writing. 

We split students’ writing data into n writing episodes, {E1 + E2 + 
… + En}, each of which records students’ keystrokes used from the 
start of writing to the completion of n*k words of the essay. We 
define 5 writing episodes, each of which involves all the keystrokes 
from the start of writing to the completion of n*200 words. There 
is no theory for defining the number of episodes and the results may 
differ based on the choice of this number.  

4. Data Analysis 
We conducted two sets of analyses: one for each research question.  

4.1.1 Research Question 1. 
To answer whether models that characterize the overall writing 
process miss informative features associated with certain phases of 
writing, we compare the performance of a machine learning model 
trained on the pause related features extracted from overall 
keystrokes (baseline feature set) to the performance of a model 
trained on pause features of each writing section separately 
(section-specific feature set). Work in [9] also identified the total 

time on task, along with the pause related features as a strong 
predictor of writing quality. Thus, we include this feature in the 
baseline and section-specific feature sets. Our evaluation is based 
on the prediction performance of writing quality.  

Then, we examine whether we can define new characteristics from 
students’ keystrokes to improve our model. For this purpose, we 
evaluate our model by adding further features of burst and revision 
summaries (explained in section 3.2.2 and 3.2.3), as well as the 
features representing the extent to which specific aspects of the 

writing process were used (section 3.2.4). We refer to them as 
combination feature set. We utilised XGboost classifier [6] for the 
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prediction models. Even though this classifier generally provides a 
good prediction power compared to simple models of regression, 
understanding what the contribution of each feature were seems to 
be hard due to the complexity of the model. To evaluate and derive 
the influence of each feature on writing quality, we use SHAP 

(SHapley Additive exPlanations) algorithm which can be used to 
explain the output of any machine learning model [13]. In this 
algorithm the contribution of a feature is calculated by comparing 
what a model predicts with and without that feature. Every 
individual is assigned a SHAP value for each feature that 
determines the feature’s contribution for a change in the model’s 
prediction.  

4.1.2 Research Question 2.  
To examine how predictive of writing quality are the extracted 
features at different times, and how their contribution may vary, we 
broke down students’ keystrokes into n episodes from each of 

which the predictive features (combination feature set) were 
extracted. Then for each episode the predictive power of the 
features on writing quality was evaluated using the XGBoost 
model. To identify and compare the contributing features to the 
models’ prediction in each episode, SHAP algorithm was utilised. 

5.   RESULTS 

5.1 Results for Research Question 1 
First, we report and compare the prediction power of the introduced 
feature sets on writing quality. Then we derive and discuss the 
contribution of each feature on prediction. 

5.1.1 Examining the prediction power of feature sets 

on writing quality 
For each set of features a model was trained using leave one out 
cross validation (with 5-fold nested cross-validation for parameter 
optimization). The performance of each model on the prediction of 
writing quality is reported in Table 1 based on the metrics of 
accuracy and the area under the ROC curve (AUC) [12]. The 
accuracy and AUC were slightly higher for the section-specific 

feature set compared to the baseline set. This could indicate that 
characterizing the overall process irrespective of the isolated phases 
may miss specific moments where the features associated to certain 
writing phase become more important. Adding burst and revision 
summaries, as well as the time dedication features (combination 
feature set), to the model, improved the performance of the 
prediction significantly. The combination feature set obtained the 
highest prediction power implying that the introduced features were 

a better representation of the students’ writing quality. 

Table 1: Prediction power of each feature set on writing 

quality based on accuracy and AUC 

Features set Accuracy AUC 

Baseline 70.09 70.63 

Section-specific 71.03 71.75 

Combination 81.31 82.72 

5.1.2 Examining the contribution of features on 
prediction 
The next step was to evaluate the influence of each feature on 

predictions. For this purpose, we built an XGBoost model on the 
combination feature set (using 5-fold cross validation for parameter 
optimization). The model was then passed to the SHAP algorithm 
to explain the influence of each of features on the model’s 
prediction for each student. Since we get individualized 
explanations of every feature for every student (based on the SHAP 
values), we can plot the distribution of the importance of each 

feature on the model’s prediction, as is presented in Figure 1. The 
features are sorted by the mean of absolute SHAP values over all 
students to gain a global insight into the most influential features 
across all students. We observe the most influential features 
(globally) were total time on task (TT), frequency of small revisions 

(B-FSRev), and estimated gamma parameter from pauses in body 
section (B-Pγ) respectively, while some of the pause parameters 
estimated in the note taking and reference sections (i.e. N-Pα, R-
Pβ) had the lowest contribution. For convenience of viewing, only 
the top-20 features that were globally influential are presented in 
the figure. In this figure, each row corresponds to a feature and 
every student has one dot on each row. The x position of the dot is 
the impact of that feature on the model’s prediction for the student 

(SHAP value), and the color represents the value of that feature for 
the student (red high, blue low). This reveal, for example, that a 
high percentage of time on the reference section (R-T) increases the 
chance of having high quality writing for a subset of students (red 
dots in the R-T row, and on the right side of the plot).  

Below is our interpretation of some of the features detected as 
important by the prediction model. It is worth mentioning that this 
interpretation is intended for high-level model interpretation, and 
the model’s decision making was more complex and took the 
interaction between features into account. 

Total time on task (TT) was found to be the strongest predictor of 
writing quality. A subset of students (red dots on the related row of 
figure) who spent a lot more time than others on the essay are more 
likely to produce a high-quality writing. This supports previous 

research [9] and could be an indication of student’s motivation in 
completing the writing task [10]. However, there are also students 
with lower time spent on task, but a higher chance of producing 
high-quality writing (blue dots on the right side of the plot in the 

 
Figure 1: SHAP values for each feature indicating the 

influence of that feature on writing quality of each student. 
TT refers to the total time on writing. R, B, N before each feature 

name refer to Reference, Body and Note sections respectively.  

Pα, Pβ, Pδ, Pγ refers to pause parameters. TSRev, TLRev refers 

to the total time on large- and small- scale revisions respectively. 

FSRev, FLRev refers to the frequency of small- and large- scale 

revisions. T refers to the total time on specific section. MBrstT, 

SBrstT are mean and standard deviation of burst time. MBrsL, 

SBrsL refer to mean and standard deviation of burst length.  

357 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

.... 
TT ....... .. .. . ... 

8-FSRev ....... ... . . ..._.. ........ 
B-Py ··- ·-· ... 

B-TSRev • • -J...,_ ... 
8-MBrsT ................ ......... 

R-T ~ -
8 -FLRev •-l• •lttl I 

8-SBrsL ............ 
B-T ....... ...... . 

B-P6 ...... 
8-SBrsT I ..... ... . 

R-P6 .. ·-- + 
8-MBrsl ·-•• ·" 

N-Py .......... 
B-TLRev ....... .... 

N-P6 • -· 
8-Pa •tt+• · 
R-Py ....... 
N-Pa I 
R-Pp I 

Low 

--0' 00 o., 10 " SHAP value (impact on model output) 



related
 ro

w
). T

h
is co

u
ld

 in
d
icate o

th
er featu

res are im
p

actin
g
 th

e 
co

n
trib

u
tio

n
 o

f th
is featu

re. 

T
h

e 
co

lo
rin

g
 

o
f 

th
e 

seco
n
d
 

m
o
st 

im
p
o
rtan

t 
p
red

icto
r 

- 
th

e 
p

ercen
tag

e o
f tim

e o
n
 sm

all rev
isio

n
 (B

-F
S
R

ev) sh
o
w

s u
s h

o
w

 a 
h

ig
h
er freq

u
en

cy o
f sm

all rev
isio

n
 m

ean
s a h

ig
h
er th

e ch
an

ce o
f 

p
ro

d
u
cin

g
 h

ig
h

 q
u
ality w

ritin
g
 fo

r m
o
st stu

d
en

ts. It co
u
ld

 im
p
ly th

at 
th

e 
w

ritin
g
 

q
u
ality 

im
p
ro

v
es 

if 
rev

isio
n
s 

are 
p
erfo

rm
ed

 
m

o
re 

freq
u
en

tly. 
T

h
is 

is 
in

 
ag

reem
en

t 
w

ith
 

p
rev

io
u
s 

research
 

[1
5
] 

su
g
g
estin

g
 

th
at 

g
o
o
d
 

w
riters 

sto
p
 

th
eir 

w
ritin

g
 

m
o
re 

o
ften

 
to 

p
erfo

rm
 
rev

isio
n

 
an

d
 
to

 
co

rrect th
eir 

sp
ellin

g
 
an

d
 
g
ram

m
atical 

erro
rs as th

ey w
rite co

m
p
ared

 to
 w

eak
 w

riters. 

T
h

e estim
ated

 g
am

m
a an

d
 alp

h
a p

aram
eters fro

m
 p

au
ses in

sid
e th

e 
b

o
d

y sectio
n
 (B

-P
γ, B

-P
α

) sh
o
w

s a (n
eg

ativ
e, p

o
sitiv

e) asso
ciatio

n
 

w
ith

 th
e ch

an
ce o

f p
ro

d
u
cin

g
 a h

ig
h

-q
u
ality

 w
ritin

g
 fo

r m
o
st o

f th
e 

stu
d
en

ts. T
o
g
eth

er th
ese p

aram
eters m

ean
 lo

w
er v

ariatio
n
 o

f p
au

se 
d

u
ratio

n
s 

w
ith

o
u
t 

h
av

in
g
 

v
ery

 
larg

e 
p
au

ses. 
T

h
is 

co
u
ld

 
b
e 

an
 

in
d
icatio

n
 o

f stead
in

ess an
d
 flu

en
cy in

 w
ritin

g
 an

d
 its d

irect relatio
n
 

w
ith

 w
ritin

g
 q

u
ality w

h
ich

 is in
 ag

reem
en

t w
ith

 p
rev

io
u
s research

 

[9
]. P

ercen
tag

e o
f tim

e o
n
 referen

ce sectio
n
 (R

-T
) also

 sh
o
w

s a 
p

o
sitiv

e effect o
n
 w

ritin
g
 q

u
ality fo

r sev
eral stu

d
en

ts. A
g
ain

, w
e 

o
b

serv
e th

at th
is arg

u
m

en
t d

o
es n

o
t h

o
ld

 tru
e fo

r sev
eral stu

d
en

ts.  

T
h

e h
ig

h
er p

ercen
tag

e o
f tim

e o
n
 tran

scrib
in

g
 (B

-T
) in

crease th
e 

ch
an

ce o
f h

av
in

g
 h

ig
h

-q
u
ality w

ritin
g
. O

n
e altern

ativ
e ju

stificatio
n
 

co
u
ld

 b
e fo

u
n
d
 in

 a stu
d
y b

y [8
]. T

h
ey fo

u
n
d
 th

at w
riters w

h
o
 sp

en
d
 

m
o
st tim

e o
n
 o

th
er asp

ects o
f w

ritin
g
 su

ch
 as p

lan
n
in

g
 ten

d
 to 

d
islik

e w
ritin

g
 an

d
 th

is m
ay lessen

 th
e tex

t q
u
ality. 

E
stim

ated
 d

elta an
d
 g

am
m

a p
aram

eters fro
m

 p
au

ses in
 th

e n
o
te 

tak
in

g
 

sectio
n
 

(N
-P

δ
, 

N
-P

γ) 
sh

o
w

s 
a 

(p
o
sitiv

e, 
n
eg

ativ
e) 

asso
ciatio

n
 w

ith
 th

e ch
an

ce o
f p

ro
d
u
cin

g
 a h

ig
h

-q
u
ality w

ritin
g
 fo

r 
m

o
st stu

d
en

ts. T
o
g
eth

er th
ese p

aram
eters m

ean
 m

o
re larg

e p
au

ses 
an

d
 lo

w
er v

ariatio
n
 in

 p
au

se d
u
ratio

n
. T

h
is m

ean
s th

at stead
ily

 
tak

in
g
 larg

e p
au

ses w
h
ile tak

in
g
 n

o
tes lead

s to a h
ig

h
er ch

an
ce o

f 

h
ig

h
-q

u
ality w

ritin
g
. B

ased
 o

n
 a w

o
rk

 b
y [2

], larg
e p

au
ses m

ay 
reflect p

lan
n
in

g
 p

ro
cess. S

in
ce th

is p
attern

 is o
b
serv

ed
 in

 th
e n

o
te 

tak
in

g
 sectio

n
 o

f o
u
r d

ataset, w
e co

u
ld

 m
o
re certain

ty co
n

n
ect th

ese 
stead

y lo
n
g
 p

au
ses to

 th
in

k
in

g
 p

erio
d
s o

n
 p

lan
n
in

g
. 

E
v
en

 th
o
u
g
h
 th

ere are sev
eral featu

res su
ch

 as p
ercen

tag
e o

f tim
e 

o
n

 
sm

all 
rev

isio
n
 

(B
-T

S
R

ev), 
m

ean
 

b
u
rst 

len
g
th

 
(B

_
M

B
rsL

), 
estim

ated
 g

am
m

a fro
m

 referen
ce an

d
 b

o
d
y sectio

n
 (R

-P
δ
, B

-P
δ
), 

th
at are d

etected
 as in

flu
en

tial, w
e can

n
o
t o

b
serv

e th
eir clear lin

ear 

asso
ciatio

n
 w

ith
 w

ritin
g
 q

u
ality. F

o
r a su

b
set o

f stu
d
en

ts, th
e h

ig
h
er 

v
alu

e is 
asso

ciated
 
w

ith
 
h
ig

h
er 

q
u
ality 

an
d
 
fo

r 
o
th

ers it is 
th

e 
o
p

p
o
site. A

g
ain

, th
is in

d
icates th

at th
e im

p
o
rtan

ce o
f th

ese
 featu

res 
is im

p
acted

 b
y o

th
er featu

res.  

5
.2

 
R

esu
lts fo

r R
esea

rch
 Q

u
estio

n
 2

 
In

 th
is sectio

n
 w

e an
sw

er th
e seco

n
d
 research

 q
u
estio

n
 in

 tw
o
 step

s.  

5
.2

.1
 

E
xa

m
in

in
g
 th

e p
red

ictive p
o

w
er o

f fea
tu

res o
n
 

w
ritin

g
 q

u
a
lity o

ver tim
e 

U
sin

g
 

th
e 

X
G

B
o
o
st 

classificatio
n
 

alg
o
rith

m
, 

w
e 

ex
am

in
ed

 
th

e 
p

red
ictiv

e p
o
w

er o
f th

e ex
tracted

 featu
re

 in
 o

u
r stu

d
y (co

m
b
in

a
tio

n
 

featu
re set) o

n
 w

ritin
g
 q

u
ality at each

 w
ritin

g
 ep

iso
d

e. W
e rep

o
rt 

o
u
r resu

lt u
sin

g
 th

e m
etrics o

f accu
racy an

d
 area u

n
d
er th

e R
O

C
 

cu
rv

e (A
U

C
), b

ased
 o

n
 leav

e o
n
e o

u
t cro

ss-v
alid

atio
n
 (w

ith
 5

-fo
ld

 

h
yp

er p
aram

eter o
p
tim

isatio
n
). T

h
e o

u
tco

m
e is sh

o
w

n
 in

 T
ab

le 2
 

d
em

o
n
stratin

g
 a h

ig
h
 an

d
, in

 so
m

e ep
iso

d
es, m

o
d
erate su

ccess rate 
in

 p
red

ictin
g
 stu

d
en

ts’ w
ritin

g
 q

u
ality

 (b
etter th

an
 ran

d
o
m

 ch
an

ce).  

T
a
b

le 2
: P

red
ictio

n
 p

o
w

er o
f ex

tra
cted

 fea
tu

res in
 ea

ch
 

w
ritin

g
 ep

iso
d

e b
a
sed

 o
n

 th
e a

ccu
ra

cy
 a

n
d

 A
U

C
 

E
p

iso
d

e#
 

A
ccu

ra
cy

 
A

U
C

 

1
 

6
9

.1
6
 

7
0

.2
6
 

2
 

6
7

.2
9
 

6
7

.1
2
 

3
 

6
9

.1
6
 

6
6

.0
1
 

4
 

7
9

.4
3
 

7
9

.2
2
 

5
 

8
1

.3
1
 

8
2

.7
2
 

5
.2

.2
 

E
xa

m
in

in
g

 
th

e 
co

n
trib

u
tio

n
 

o
f 

fea
tu

res 
o

n
 

p
red

ictio
n
 o

ver w
ritin

g
 ep

iso
d
es 

O
u
r n

ex
t step

 w
as to

 ex
am

in
e th

e co
n
trib

u
tio

n
 o

f each
 featu

re o
n
 

th
e 

p
red

ictio
n
 

o
f 

w
ritin

g
 

q
u
ality 

at 
each

 
w

ritin
g
 

ep
iso

d
e 

an
d
 

ex
am

in
e 

w
h
eth

er 
th

e 
co

n
trib

u
tio

n
 
v
aried

. 
F

o
r 

th
is 

p
u
rp

o
se, 

an
 

X
G

B
o
o
st m

o
d
el w

as train
ed

 b
ased

 o
n
 th

e co
m

b
in

a
tio

n
 featu

re set 
in

 
each

 
ep

iso
d
e 

(u
sin

g
 

5
-fo

ld
 

cro
ss 

v
alid

atio
n
 

fo
r 

p
aram

eter 
o
p
tim

izatio
n
). E

ach
 m

o
d
el w

as th
en

 p
assed

 to
 th

e S
H

A
P

 alg
o
rith

m
 

to
 ex

p
lain

 th
e im

p
o
rtan

ce o
f each

 o
f featu

re o
n
 th

e p
red

ictio
n
. T

h
e 

resu
lt is rep

o
rted

 in
 F

ig
u
re 2

, in
 w

h
ich

 th
e g

lo
b
al co

n
trib

u
tio

n
 o

f 
each

 featu
re in

 each
 w

ritin
g
 ep

iso
d
e is v

isu
alized

 b
ased

 o
n
 th

e m
ean

 
o
f ab

so
lu

te S
H

A
P

 v
alu

es fo
r th

at featu
re o

v
er all stu

d
en

ts. 

A
 d

ark
er co

lo
r in

d
icates a h

ig
h
er co

n
trib

u
tio

n
 o

f th
at featu

re o
n
 th

e 
p
red

ictio
n
 

m
o
d
el 

in
 

th
at 

ep
iso

d
e. 

W
e 

see 
th

e 
co

n
trib

u
tio

n
 

o
f 

featu
res o

n
 w

ritin
g
 q

u
ality are q

u
ite d

ifferen
t acro

ss th
e w

ritin
g 

ep
iso

d
es. A

lth
o
u
g
h
 th

e im
p
o
rtan

ce o
f to

tal tim
e o

n
 task

 (T
T

) is 
relativ

ely stab
le o

v
er all th

e ep
iso

d
es, th

e im
p
o
rtan

ce o
f th

e n
o
te 

tak
in

g
 related

 featu
res su

ch
 as p

ercen
tag

e o
f tim

e o
n
 n

o
te tak

in
g 

sectio
n

 (N
-T

), an
d
 estim

ated
 p

au
se p

aram
eters (N

-P
δ
, N

-P
β) w

ere 
fo

u
n
d
 to

 b
e m

o
re in

flu
en

tial in
 th

e 2
n

d w
ritin

g
 ep

iso
d

e. T
h
e p

attern
s 

o
f p

au
ses in

 th
e referen

ce sectio
n
 (i.e. p

ercen
tag

e o
f tim

e o
n
 th

e 
referen

ce sectio
n

 (R
-T

), as w
ell as th

e estim
ated

 g
am

m
a an

d
 d

elta 
p
aram

eters 
(R

-P
γ, 

R
-P

δ) 
also

 
sh

o
w

 
stro

n
g
er 

in
flu

en
ce 

o
n
 

th
e 

p
red

ictio
n
 o

f w
ritin

g
 q

u
ality at th

e b
eg

in
n
in

g
 o

f w
ritin

g
. 

O
u
r 

tem
p
o
ral 

an
alysis 

rev
eals 

th
at 

th
e 

im
p
o
rtan

ce 
o
f 

w
ritin

g 

b
eh

av
io

u
r 

o
n
 

w
ritin

g
 

q
u
ality 

m
a
y 

ch
an

g
e 

o
v
er 

tim
e. 

T
h
u
s, 

ch
aracterizin

g
 stu

d
en

ts’ w
ritin

g
 p

ro
cess irresp

ectiv
e o

f tim
e m

ay 
h
id

e th
e 

effect 
o
f 

m
ean

in
g
fu

l 
an

d
 
p
red

ictiv
e 

w
ritin

g
 
b
eh

av
io

rs. 
M

o
reo

v
er, th

is an
alysis co

u
ld

 b
e u

sed
 to

 p
red

ict stu
d
en

ts w
ritin

g 
q
u
ality o

v
er tim

e an
d
 act as a filter fo

r early targ
etin

g
 o

f stu
d
en

ts 
w

ith
 d

ifferen
t w

ritin
g
 q

u
alities o

p
en

in
g
 u

p
 feed

b
ack

 o
p
p
o
rtu

n
ities. 

6
. 

D
IS

C
U

S
S

IO
N

 
T

h
is stu

d
y w

as b
ased

 o
n
 a fu

lly o
n
lin

e w
eb

 au
th

o
rin

g
 to

o
l called

 
C

ad
m

u
s. T

h
e av

ailab
ility o

f sep
arate sectio

n
s fo

r b
o
d
y
 tex

t, n
o
te 

tak
in

g
 

an
d
 

referen
cin

g
 

allo
w

ed
 

u
s 

to
 

sep
arately 

ex
tract 

th
e
 

 
F

ig
u

re 2
: V

isu
a
liza

tio
n

 o
f th

e g
lo

b
a
l im

p
o
rta

n
ce o

f ea
ch

 fea
tu

re o
n

 th
e p

red
ictio

n
 in

 ea
ch

 w
ritin

g
 ep

iso
d

e b
a
sed

 o
n

 th
e S

H
A

P
 

v
a

lu
es. D

a
rk

er co
lo

rs in
d

ica
te h

ig
h

er co
n

trib
u

tio
n

 o
f th

a
t fea

tu
re o

n
 p

red
ictio

n
 in

 th
a
t ep

iso
d

e
.  

 

P
roceedings of T

he 12th International C
onference on E

ducational D
ata M

ining (E
D

M
 2019)

358

Writing Episode 
1 2 3 4 5 

B-Pa 

B-Pp 

B-Py I 
B-P6 I 
R-Pa 

R-PP 

R-Py I 
R-PO I 
N-Pa 

N-PP 

N-Py 

N-P6 I 
TT II I 

B-TSRev I 
B-TLRev 

B-T LJ , 

N-T 

RT I 
B-FSRev I I 
B-FLRev 

1 1 

B-MBrsT I 
B-SBrsT II 
8-MBrsl I 
8-SBrsL IJ LJ 

.~ 
PPPPPP 
0-"' r,.) W-"' CJl 



keystroke logs of different sections. From these logs we were able 
to engineer multiple sets of features capturing different aspects of 
students’ writing processes ranging from patterns of pauses, burst 
and revision summaries as well as the time dedicated to specific 
aspects of the writing process. We compared the performance of a 

model trained on the pause pattern related features extracted from 
overall keystrokes (baseline), to the performance of a model trained 
on pause pattern related features of each writing section separately. 
The section-specific model performed slightly better. This indicates 
that the baseline model may miss or “overlook” on specific 
moments where the features associated with certain writing phases 
become more important. The performance of the section-specific 
model was further improved by adding more features including 

burst and revision summaries and percentage of time on specific 
activities.  

The feature importance of the resultant model is visualized for 
every student showing how specific behaviour that have positive 
effect on writing quality for one student may have negative effect 
for another because of the impact of other features. This is 
consistent with a theory of writing which suggests there exists 
considerable interaction and overlap between writing phases [4]. 

This also emphasises the necessity of using models that capture the 
interrelationship between features rather than simple correlation 
and regression analysis. 

The current study also examined whether the influence of extracted 
features on writing quality varies during specific moments of 
writing. Based on our results, the influence of several features 
varied across writing episodes indicating the importance of taking 
the temporal aspects of writing process into account. Through this 

study, we hope to develop a better understanding of students’ 
writing process in authentic educational settings. 

More detailed results, discussions, and additional figures that could 
not be included in this version of the paper for the reason of space, 
is available in the longer version of the paper on this link. 

6.1 Limitations and Future Work 
The first limitation of this study is the generalizability of the 
interpretations regarding the influential features. This study was 

based on the essay writing of undergraduate students with diverse 
writing and language backgrounds. The influential features might 
differ for data from a more diverse set of students and across 
variations in topic, genre and prompts. The next limitation arises 
from considering all the activities in the note taking and reference 
sections to be associated with the related phase of writing. This 
association is irrespective of the actual written text. For the next 
study we aim to consider the actual text entered in each section. 

This may help to distinguish between weak and strong planning 
behaviour and the related impact on writing quality.  
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ABSTRACT
Educational systems use models of student skill to inform
decision-making processes. Defining such models manually
is challenging due to the large number of relevant factors.
We propose learning multidimensional representations (em-
beddings) from student activity data – these are fixed-length
real vectors with three desirable characteristics: co-location
of similar students and items in a vector space; magnitude
increases with skill, and that absence of a skill can be rep-
resented. Based on the Multicomponent Latent Trait Model,
we use a neural network with complementary trainable weights
to learn these embeddings by backpropagation. We evaluate
using synthetic student activity data that provides a ground-
truth of student skills in order to understand the impact of
number of students, question items and knowledge compo-
nents in the domain. We find that our data-mined parameter
values can recreate the synthetic datasets up to the accuracy
of the model that generated them, for domains with up to
10 simultaneously active knowledge components, which can
be effectively mined using relatively small quantities of data
(1000 students, 100 items). We describe a procedure to es-
timate the number of components in a domain, and propose
a component-masking logic mechanism that improves per-
formance on high-dimensional datasets.

Keywords
knowledge representation, skills embeddings, multicompo-
nent latent trait model

1. INTRODUCTION
Intelligent tutoring systems (ITS) are required to make deci-
sions about which tasks to present to which students. Thus
they should be equipped with objective, accurate models
of student skillsets, to inform these choices. Student activ-
ity logs are a source of information for such models, which
could be built by hand-crafted feature extraction, or us-
ing data mining methods. We explore the latter, using
machine-learning of fixed-width multidimensional represen-

tations. We call these skills embeddings, after word em-
beddings – vector representations of words and language con-
structs that have allowed dramatic advances in the natural
language processing field [6, 8].

With word embeddings, semantically similar words are po-
sitioned near each other in a latent vector space: e.g, ‘boat’
should be nearer to ‘car’ than ‘politics’, based on natural
language data. We transfer the vector space idea to skills.
For the ITS scenario, we seek specific desirable traits:

• Skills embeddings are co-proximal in the vector space
if they represent entities comprising similar skills.

• Embedding magnitude grows with skill – specifically,
a higher skill level should entail a larger value within
the embedding. This lets us track skill gain intuitively.

• It should be possible to represent the special case where
a skill is absent. We will refer to this characteristic as
skill masking.

We would also ideally like to be able to detect dimension-
ality: the number and dependency structure of skills within
the domain should not need to be specified in advance.

In this work, we propose an artificial neural network – based
on the Multicomponent Latent Trait Model [12] – to learn
skills embeddings. We train it using synthetic student activ-
ity datasets, with a varying number of skills in the domain.
We show that the embeddings exhibit our three desired char-
acteristics, and present a procedure to cater to the fourth.

2. BACKGROUND
Our work relies on some core principles about the nature of
knowledge domains, the way that student ability and item
difficulty interact, and the idea that knowledge acquisition
can be traced in student activity logs [5].

2.1 Knowledge components
For any given educational domain, such as physics, mathe-
matics or language learning, we can break domain-specific
knowledge down into atomistic units known as knowledge
components (KCs), as described by Koedinger et al. [4].
We treat these as synonymous with ‘skill’ where the skill is
irreducible – if skill C comprises irreducible subskills A and
B, we do not represent C, but treat co-occurrence of A and
B as the pattern for C. We think of a subject domain as a
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set K of KCs to be acquired. In our datasets, domain size
|K| ∈ [1, 100].

2.2 Rasch model
The Rasch item response model [11] is a well-known formula-
tion for the success probability of student s attempting item
(question) i, derived by transforming the difference between
student ability θs and item difficulty βi through a sigmoid
function. That is, the probability of success is given by:

Pr(Xsi = 1 | θs, βi) = σ(θs, βi) (1)

where σ is the standard logistic sigmoid function:

σ(θs, βi) =
1

1 + exp (−(θs − βi))
(2)

Note that an evenly-matched student-item pair has θ = β
and a pass-rate of 0.5. The Rasch model assumes a single
dimension of proficiency and embodies invariant comparison
– this means the student parameter θ can be eliminated
algebraically during estimation of the item parameters β,
and vice versa [9, 14]. This principle allows Rasch items (and
by extension our embeddings) to stand alone as objective
representations, independent of the conditions in which they
were measured.

2.3 Multicomponent Latent Trait Model
The Rasch model can be extended to the multicomponent
latent trait model (MLTM) of Whitely [12]. Here, the
scalars θ and β are replaced by vectors, and the result is a
product of sigmoids. The formulation is as follows:

Pr(Xsi = 1 | θs,βi) =
∏

k∈skills(i)

σ(θsk, βik) (3)

Hence the act of student s successfully passing item i is
modelled as the conjunction of successes at each of the item’s
problem-solving steps (denoted k). The probability is given
by the product of the probabilities of completing the steps
and each step behaves as a Rasch model whose parameters
are the corresponding elements of θs and βi.

2.4 Item calibration
Traditionally, item calibration with Rasch-type models is
carried out using the Birnbaum iteration [2]. However, the
Birnbaum algorithm is one-dimensional and to the best of
our knowledge has not been extended to multiple dimen-
sions. Moreover, the Rasch approach does not readily allow
for the absence of skills: parameters would have to be set
to -∞, which is impractical for data mining, particularly
in cases where the skill is absent both from a question and
student’s representations1

2.5 Q-Matrix
The q-matrix [10, 1] is a binary- or probability-valued ma-
trix that describes which skills are required for particular
tasks. This has been used previously, for instance, in the
Linear Logic Test Model [13]. Each column of Q represents
a task/item i, and each row a component k ∈ K.

1Even assuming infinite arithmetic is allowable, if θ and β
are both -∞ then (θ− β) = 0 and the probability of success
is calculated as 0.5; in fact, for an unrequired skill, it should
always be 1, since an unrequired step is always ‘passed’.

Figure 1: Neural network architecture

The (binary) Q-matrix for a curriculum of items is as follows:

qik =

{
1 if k ∈ skills(i),
0 else;

(4)

The Q-matrix for students is similar, with element qsk rep-
resenting the ability of student s at skill k.

3. DATA
Our datasets follow a summative assessment scenario: the
item bank is a static test, to be attempted by many students.
Each student attempts all items only once. Each response
is dichotomous: either right (X=1) or wrong (X=0).

Student activity data is synthesised using a statistical model
whose probability mass function (pmf) is just equation (3).
The response xsi (of student s on item i) is determined by
ground-truth values of the MLTM parameters, θ∗s and β∗

i .
These are the targets we hope to recover from the dichoto-
mous outcome data: we want our embeddings to converge
on these values.

The elements of θ∗s and β∗
i themselves are generated uni-

formly randomly for each student and item – their minimum
and maximum values are chosen by an earlier randomised
search process, that looks for suitable bounds to generate a
balanced dataset given a specific dimensionality |K|.

We generated datasets with dimensionalities |K| ∈ {1, 2, 5,
10, 100}. We also created datasets where only a subset of
components are active – for these datasets, the active com-
ponents are chosen at random. We use |I|=100 items and
|S|=1000 students.

4. IMPLEMENTATION
In this section we describe the neural network, including its
design features, software used, and training approach.
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4.1 Neural network architecture
The neural network in this work is a binary classifier. In a
normal supervised learning task, a classifier takes an input
set of features Φ(x) and class label C and learns the probabil-
ity that a datapoint x is in a given class: Pr(x ∈ C | Φ(x)).

In the embedding generation task there is no feature map-
ping Φ. Instead we have datapoints of form (s, i, pass ∈
{T, F}), describing whether student s passed item i. Inputs
to the neural network are s and i, and class label pass.

The ‘features’ themselves are learned internally, with two
distinct sets of trainable weights. One set of weights (Θ ∈
IR|S|×|K|) represents the students, the other (B ∈ IR|I|×|K|)
the items. Whenever s occurs in a datapoint, the weights
for s (synonymous with θs) are selected from the table, and
the same happens for βi when i occurs.

The weights are fed into a locally connected layer that rep-
resents the components of the MLTM. Each unit in the
layer applies a sigmoid function to generate a per-component
probability. The component probabilities are then multi-
plied to get the overall output probability. This is scored
against the true pass value using a loss function, and the er-
ror is backpropagated to the weights tables. The weights are
re-used whenever s or i appear in a datapoint, so they are
forced towards values which best fit all observations. The
trained rows of weights serve as our fixed-width embeddings.

The architecture is illustrated in Figure 1. For clarity, the
connections are shown only for a single component, but all
components function in parallel in the same way. The di-
amonds on the diagram represent Q-gates, trainable logic
components which we will now describe.

4.2 Q-gates – logic for absent components
In high-dimensional domains, items usually do not exercise
all skill components simultaneously. For instance, in both
assessment and instruction, questions are usually designed
to focus on a subset of skills. Rather than model the subset
of skills explicitly, we iterate across the whole domain K and
let a logic layer selectively deactivate components:

Pr(Xsi = 1 | θs,βi) =
∏
k∈K

Gq(qsk, qik, σ(θsk, βik)) (5)

Gq is a Q-gate, a ternary logic gate related to logical impli-
cation, with the following truth table for each component
per student, qsk, and per item, qik:

qik qsk Gq

1 1 σ(θsk, βik)
1 0 0
0 1 1
0 0 1

Q-gates are implemented as part of the neural network, and
modify the component-level sigmoid outputs:

Gq(qsk, qik, σ(θsk, βik)) = σ(θsk, βik)qikqsk + (1− qik) (6)

The correct values for qik and qsk are learned during train-
ing. These q-values can either be stored in their own set of
weights, or represented by special values in θ and β. We use
the latter technique with weight clipping, explained next.

4.3 Weight clipping
We employ weight clipping for two reasons: to ensure com-
ponent positivity (so that vector magnitude must grow with
skill), and to implement Q-gates. To ensure components
take only positive values, weights are clipped to [1,W ], with
large W to allow for changes in value during training. The
range [0, 1) is reserved to switch the component’s Q-gate.

4.4 Training
The network was trained with a categorical cross-entropy
loss function and the Adam optimiser [3]. Generally, train-
ing is fast, and a learning rate α ∈ [0.01, 0.1] is stable.
Weight initialisation is significant for convergence speed and
fit: a uniform random initialisation over [θmin, θmax] for stu-
dents and [βmin, βmax] for items was found to work well.
From all instances in the training set, 10% were randomly
chosen for validation and to trigger early-stopping on lossval
with patience = 10 (i.e. we wait for a better value for ten
more epochs before quitting, keeping our best weights). This
work was implemented in Python 3.6 using Keras with a
TensorFlow back-end, and scikit-learn.

5. EVALUATION
In this section we describe how the embeddings were evalu-
ated vis-à-vis our desired characteristics.

5.1 Prediction agreement
We attempt to recreate the original datasets by using our
embeddings θ̂ and β̂ to seed our statistical MLTM model.
We then score correlation and agreement between the out-
puts of the original process (seeded with targets θ∗ and β∗)
and the embedding-seeded process.

Since our dataset is synthetic, we can directly access the
probabilities that determine the outcomes, and thus can
measure the Pearson’s correlation between these and the
predicted probabilities from the embeddings. This is:

ρX,Y =
cov(P ∗, P̂ )

sd(P ∗), sd(P̂ )
(7)

where P ∗ and P̂ are the true and predicted probabilities of
a pass, cov(·, ·) is covariance and sd(·) is standard deviation.

Because the generator process is stochastic, there will al-
ways be some element of chance in the observed outcomes.
Cohen’s Kappa gives a measure of the agreement beyond
chance. For N datapoints, where nagreed is the observed
agreement between both runs, and n(k;seed) is the number
classed as category k by the model seeded with seed:

κ =
po − pe
1− pe

where

po = nagreed/N

pe = 1
N2

∑
k={T,F}

n(k;θ∗β∗)n(k;θ̂β̂)

(8)

5.2 Co-proximity & Magnitude
To assess our co-proximity requirement, we measure Eu-
clidean distance from the aligned embedding θ̂ (or β̂) to its
target, θ∗ (or β∗). We compare this to the mean distance
from other vectors in the space, and test for significance to
show that co-proximity to target is not merely by chance.
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Figure 2: t-SNE visualisation of embeddings in a
10-dimensional space, all active, with 1000 students
and 100 items (orange=embedding, blue=target).

To assess magnitude growth with skill, we use Pearson cor-
relation (equation 7) at the component level between the

elements of θ̂ (or β̂) and of target θ∗ (or β∗). A strong cor-
relation shows that these values grow together as desired.

5.3 Aligning the components
Embeddings are identifiable only up to the ordering of the
components due to conjunctive commutivity: columns in the
Θ-Table will be aligned with the B-Table, since they were
trained together, but they may be permutated differently to
the columns in the original target vectors. To visualise the
data, or calculate deviations from the true parameters, we
must first align the predicted components. A hill-climbing
algorithm can find the order needed to minimise the per-
column squared error between the predicted and true val-
ues. While not guaranteed to find the global optimum, it is
nonetheless reliable. Once the components are aligned, the
embeddings can be plotted (after dimensionality reduction
such as PCA or t-SNE for |K| > 2). The mean absolute pa-
rameter errors are given as θMAE and βMAE in Table 1(b).

Figure 3 shows the mined values for a 2 KC domain, with
1-2 active components: Q-gates allow components to be
switched on/off. Dotted lines show the thresholds below
which the Q-gate treats a component as inactive. Figure 4
shows the mined values for a 10 KC domain, with 1-3 active
components. Here the clustering of target points (blue) are
more pronounced than in the all-active data (Figure 2). The
embeddings (orange) cluster close to their targets due to the
Q-gate mechanism.

Figure 3: Direct plot of Q-gated embeddings in a
2-dimensional space, 1000 students and 100 mixed
items (50×2-components, 50×1-component). Dot-
ted lines show the Q-gate activation regions.

6. RESULTS & DISCUSSION
Table 1 gives summary statistics for all-active (upper sec-
tion) and Q-gated (lower section) datasets.

Tabke 1(a) gives raw accuracy and Cohen’s κ measure agree-
ment between true and predicted outcomes, and Pearson’s
ρ measures correlation between the underlying probabilities.
The reproduction (repro) scores for Acc and κ show how well
the original model can reproduce its own data – this indi-
cates the level of stochastic noise in the target dataset.

Reproduction accuracy drops from 0.844 to 0.651 as domain
size increases, but this is more pronounced (0.684 to 0.310)
for κ, implying that much of the accuracy score is down to
chance, and κ is a more useful measure. At low to moderate
dimensions (1a to 10a), mined κ values approach the model’s
own agreement, but for the high dimension (100a) they do
not even achieve half of this limit, although still better than
chance (κ = 0). For Q-gated data (2q2, 10q3, 10q5, 100q5)
the embeddings produce higher accuracy and κ throughout
than their non-Q-gated counterparts.

Pearson’s correlation on the underlying probabilities (unaf-
fected by stochastic noise) is very good (>0.9) for all lower
|K| data (with or without Q-gates), but for (100a) this drops
to 0.442 - the Q-gated version (100q5) scores 0.754, an im-
provement of over 70%.

6.1 Co-proximity & Magnitude
Table 1(c) gives mean Euclidean distances of embedding to
target, alongside the mean distance to other points in the
dataset. Mean and standard deviations are given along with
Welch’s t-test results. In all cases the mined vectors have sig-
nificantly (p<0.01) smaller mean distances to target than to
other vectors in the space, indicating co-proximity between
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Table 1: (a) Accuracy, Cohen’s κ agreement, Pearson’s correlation (ρ). The repro scores show how well the
original dataset generator agrees with itself between runs, giving an upper limit to the score. (b) Parameter
level error scores for students and items. (c) Mean Euclidean distance to target (Dtarget) and to other vectors
(Dothers), with t-test scores.

Model (a) Model fit (b) Param. fit. (c) Co-proximity in vector space
Name Dims Acc (repro) κ (repro) ρ∗ θMAE βMAE Dtarget Dothers t∗∗

1a 1 0.844 (0.844) 0.680 (0.684) 0.994 0.29 0.11 0.11 (0.09) 3.66 (0.65) -36.9
2a 2 0.776 (0.777) 0.550 (0.556) 0.986 0.55 0.46 0.79 (0.38) 3.74 (0.80) -33.1
5a 5 0.732 (0.742) 0.429 (0.439) 0.961 0.94 0.79 2.51 (1.36) 8.63 (1.24) -33.0
10a 10 0.721 (0.733) 0.425 (0.463) 0.930 4.61 3.42 13.56 (3.32) 16.47 (1.06) -8.26
100a 100 0.572 (0.651) 0.151 (0.310) 0.442 7.25 6.36 79.31 (5.40) 88.30 (2.18) -15.0
2q2 2 (1-2) 0.801 (0.806) 0.576 (0.587) 0.987 0.58 0.41 0.24 (0.17) 4.76 (0.71) -61.2
10q3 10 (1-3) 0.771 (0.802) 0.561 (0.588) 0.943 1.30 0.13 0.85 (0.63) 9.18 (1.49) -51.2
10q5 10 (1-5) 0.822 (0.832) 0.503 (0.522) 0.942 1.33 0.19 1.12 (0.84) 10.53 (1.48) -54.9
100q5 100 (1-5) 0.732 (0.821) 0.509 (0.555) 0.754 3.09 0.27 1.13 (0.84) 10.53 (1.48) -54.0

*(p<0.01) **(Welch’s t-test, df=98, p<0.01)

Figure 4: t-SNE visualisation showing 100 items,
calibrated from 1000 students. Here, only 1-3 di-
mensions (from 10) are active for any item. The
other dimensions are masked using Q-gates.

mined and true vectors as desired. Again Q-gates have a
notable effect: for instance, the quotient (Dothers/Dtarget)
increases from 1.11 for 100a to 9.30 for 100q5.

Component-level correlations for true and mined parameter
values (not tabled) are strongly correlated (ρ ≥ 0.90, p =
0.01) for low to moderate |K| ∈ [1, 10] showing our sec-
ond desired characteristic of magnitude growth with skill.
As with other results, a weaker positive correlation (ρ =
0.21, p = 0.01) was measured for |K| = 100.

6.2 Skill masking
Our embeddings achieve a high correlation with target out-
come probabilities for all but |K| = 100. Similar patterns
can be seen with other scores. Overall, larger error in the

vector space (100a in Table 1(b)) seems to contribute to
markedly reduced model fit (100a in Table 1(a)).

There are at least two factors at play here: firstly, for large
|K|, the ‘curse of dimensionality’ makes distance metrics less
meaningful, and it becomes difficult to determine distance
(or similarity) between vectors. The second factor is infor-
mational: if an item has 100 active components, a student
must achieve a pass-rate of 99.3% on each component to get
50% pass-rate on the item. Very easy components carry lit-
tle information: our expectation that a student would pass
them is almost always met. This manifests as a shallow
gradient on the sigmoid in this region (x = 4.95), making
parameter values very sensitive to stochastic noise in train-
ing data. Furthermore, dichotomous results tell us nothing
about which component caused a failed attempt. These fac-
tors make for a difficult machine-learning task.

Fortunately, the Q-gated datasets show a different pattern.
They behave more like low-dimensionality data: for instance,
100 (1-5 active) dimensions – versus 100 (all active) – shows
both better probability correlation (0.75 > 0.44), and com-
ponent level error (3.09 < 7.52 for θ and 0.27 < 6.36 for β).
A similar effect is seen in the 10-dimensional data.

The ability to mask off certain components is useful. For
instance, |K| = 100 may be a reasonable domain size, but
items will often have far fewer active skills, e.g. Pardos
et al. [7] used a question-set for high-school mathematics
with |K| = 105, but a maximum of three skills per ques-
tion. Masking is vital to represent such a domain as fixed-
width vectors. Moreover, with Q-gates, the exact number
and composition of skills per question need not be known:
it can be learned during training. Hence the width of our
embeddings need not exactly match the domain: if they are
too wide, the Q-gates will trim excess components. We give
a procedure to estimate |K| next.

6.3 Dimensionality estimation
Although it is not possible to directly detect the dimension-
ality |K| of a domain, there is a simple procedure to estimate
it. Embeddings are trained across a span of candidate values
|K|cand and the mean maximum accuracy for each |K|cand
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Figure 5: Dimensionality detection – candidate di-
mensions on x-axis, maximum accuracy for each fit
on y-axis; ten runs per candidate, line plot shows
mean maximum accuracy.

is calculated. Figure 5 shows the result of this process for a
dataset with |K| = 5, |S| = 1000, |I| = 100. We plot candi-
dates |K|cand ∈ {1, 3, 5, 7, 10} against the mean maximum
accuracy (over 10 repetitions) of fit to the dataset. The peak
at |K|cand = 5 reveals the true value of |K|.

7. FUTURE WORK
We are in the process of mining skills embeddings from a
major online physics-teaching platform. We believe the em-
beddings discovered will reveal more about realistic dimen-
sionality and skill composition, and help us to study changes
in student ability over time. We also intend to report on the
interpretability of embeddings by human experts.

8. CONCLUSION
This work introduces a new technique to mine skills em-
beddings – student and item vector representations based
on the Multicomponent Latent Trait Model – using a neural
network with complementary weights. This was applied to
synthesised student activity datasets, to recover the original
seed parameters. We were able to extract these parameters
in moderately high-dimension data (|K|=10) even for small
datasets (100 items, 1000 students).

We gave four desired characteristics for our embeddings: co-
proximity of similar objects in vector space, growth of mag-
nitude with skill, ability to model missing skills, and appli-
cability in domains of unknown dimension. We showed our
embeddings support all but the fourth, and gave a procedure
to mitigate this. We introduced Q-gates, a skill masking
mechanism that boosts model fit for high dimensional do-
mains with realistic contraints.
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ABSTRACT
Grade prediction for future courses not yet taken by stu-
dents is important as it can help them and their advisers
during the process of course selection as well as for design-
ing personalized degree plans and modifying them based on
their performance. One of the successful approaches for ac-
curately predicting a student’s grades in future courses is
Cumulative Knowledge-based Regression Models (CKRM).
CKRM learns shallow linear models that predict a student’s
grades as the similarity between his/her knowledge state and
the target course. A student’s knowledge state is built by
linearly accumulating the learned provided knowledge com-
ponents of the courses he/she has taken in the past, weighted
by his/her grades in them. However, not all the prior courses
contribute equally to the target course. In this paper, we
propose a novel Neural Attentive Knowledge-based model
(NAK) that learns the importance of each historical course
in predicting the grade of a target course. Compared to
CKRM and other competing approaches, our experiments
on a large real-world dataset consisting of ∼1.5 grades show
the effectiveness of the proposed NAK model in accurately
predicting the students’ grades. Moreover, the attention
weights learned by the model can be helpful in better de-
signing their degree plans.

Keywords
grade prediction, knowledge-based models, neural networks,
attention networks, undergraduate education

1. INTRODUCTION
The average six-year graduation rate across four-year higher-
education institutions has been around 59% over the past
15 years [9, 2], while less than half of college graduates fin-
ish within four years [2]. These statistics pose challenges
in terms of workforce development, economic activity and
national productivity. This has resulted in a critical need
for analyzing the available data about past students in or-
der to provide actionable insights to improve college student

graduation and retention rates.

One approach for improving graduation and retention rates
is to help students make more informed decisions about se-
lecting the courses they register for in each term, such that
the knowledge they have acquired in the past would prepare
them to succeed in the next-term enrolled courses. Poly-
zou et al. [15] proposed course-specific linear models that
learn the importance (or weight) or each previously-taken
term towards accurately predicting the grade in a future
course. One limitation of this approach is that in order
to make accurate predictions, the model needs to have suf-
ficient training data for each (prior, target) pair. Morsy
et al. [13] developed Cumulative Knowledge-based Regres-
sion Models (CKRM) that also build on the idea of accu-
mulating knowledge over time. CKRM predicts a student’s
grades as the similarity between his/her knowledge state
and the target course. Both a student’s knowledge state
and a target course are represented as low-dimensional em-
bedding vectors and the similarity between them is modeled
by their inner product. A student’s knowledge state is im-
plicitly computed as a linear combination of the so-called
provided knowledge component vectors of the previously-
taken courses, weighted by his/her grades in them. Though
CKRM was shown to provide state-of-the-art grade predic-
tion accuracy, it is limited in that it assumes that all histor-
ical courses contribute equally in estimating the student’s
grade in a future course. Intuitively, students take courses
from different departments, and each course would require
an acquisition of knowledge from a few other courses, with
different weights.

Motivated by the success of neural attentive networks in dif-
ferent fields [7, 12, 6, 1, 20], in this paper, we improve upon
CKRM by learning the different importance of previously-
taken courses in estimating the grade of a future course. We
leverage the recent advances in neural attentive networks to
learn these different weights, by employing both softmax and
sparsemax activation functions that output posterior prob-
abilities, i.e., attention weights, for the prior courses. The
sparsemax function has an additional benefit of truncating
the small probability values to zero, assigning zero effect to
the irrelevant prior courses when predicting a target course’s
grade.

The main contributions of this work are as follows:

1. We propose a Neural Attentive Knowledge-based model

Sara Morsy and George Karypis "Sparse Neural Attentive
Knowledge-based Model for Grade Prediction" In: Proceedings
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(NAK) for grade prediction that improves upon CKRM
by employing the attention mechanism in neural net-
works to learn the different importance of the prior
courses towards predicting the grades of target courses.
To our knowledge, this is the first work to apply at-
tentive neural networks to grade prediction.

2. We leverage the recent sparsemax activation function
for the attention mechanism that produces sparse at-
tention weights instead of soft attention weights.

3. We performed an extensive experimental evaluation
on a real world dataset obtained from a large uni-
versity that spans a period of 16 years and consists
of ∼1.5 grades. The results show that our proposed
NAK model significantly improves the prediction ac-
curacy compared to the competing models. In addi-
tion, the results show the effectiveness of the attention
mechanism in learning the different importance of the
previously-taken courses towards each target course,
which can help in designing better degree plans and
more informed course selection decisions.

2. DEFINITIONS AND NOTATIONS
Boldface uppercase and lowercase letters will be used to rep-
resent matrices and vectors, respectively, e.g., G and p. The
ith row of matrix P is represented as pT

i , and its jth col-
umn is represented as pj . The entry in the ith row and jth
column of matrix G is denoted as gi,j . A predicted value is
denoted by having a hat over it (e.g., ĝ).

Matrix G will represent them×n student-course grades ma-
trix, where gs,c denotes the grade that student s obtained in
course c, relative to his/her average previous grade. Follow-
ing the row-centering technique that was first proposed by
Polyzou et al. [15], we subtract each student’s grade from
his/her average previous grade, since this was shown to sig-
nificantly improve the prediction accuracy of different mod-
els. As there can be some students who achieved the same
grades in all their prior courses, and hence their relative
grades will be zero, in this case, we assigned a small value
instead, i.e., 0.01. This is to prevent a prior course from
not being considered in the model computation. A student
s enrolls in sets of courses in consecutive terms, numbered
relative to s from 1 to the number of terms in he/she has
enrolled in the dataset. A set T s,w will denote the set of
courses taken by student s in term w.

3. RELATED WORK
3.1 Grade Prediction Methods
Grade prediction approaches for courses not yet taken by
students have been extensively explored in the literature [16,
17, 8, 18, 15, 13, 5]. In this section, we review some research
in grade prediction that is most relevant to our work.

3.1.1 Course-Specific Regression Models (CSR)
A more recent and natural way to model the grade pre-
diction problem is to model the way the academic degree
programs are structured. Each degree program would re-
quire the student to take courses in a specific sequencing
such that the knowledge acquired in previous courses are
required for the student to perform well in future courses.
Polyzou et al. [15] developed course-specific linear regression

models (CSR) that build on this idea. A student’s grade in a
course is estimated as a linear combination of his/her grades
in previously-taken courses, with different weights learned
for each (prior, target) course pair. For a student s and a
target course j, the predicted grade is estimated as:

ĝs,j = cbj +
∑
i∈P

wi,j gs,i, (1)

where cbj is the bias terms for course j, wi,j is the weight
of course i towards predicting the grade of course j, gs,i

is the grade of student s in course i, and P is the set of
courses taken by s prior to taking course j. To achieve high
prediction accuracy, CSR requires sufficient training data
for each (prior, target) pair, which can hinder these models
from good generalization.

3.1.2 Cumulative Knowledge-based Regression Mod-
els (CKRM)

Morsy et al. [13] developed Cumulative Knowledge-based
Regression Models (CKRM), which is also based on the fact
that the student’s performance in a future course is based
on his/her performance in the previously-taken courses. It
assumes that a space of knowledge components exists such
that each course provides a subset of these components as
well as requires the knowledge of some of these components
from the student in order to perform well in it. The student
by taking a course thus acquires its knowledge components
in a way that depends on his/her grade in that course. The
overall knowledge acquired by the student after taking a set
of courses is then represented by a knowledge state vector
that is computed as the sum of the knowledge component
vectors of those courses, weighted by his/her grades in them.
Let pi denote the provided knowledge component vector for
course i. The knowledge state vector for student s at term
t can be expressed as follows:

ks,t =
t−1∑
w=1

ξ(s, w, t)
∑

i∈T s,w

(
gs,i pi

)
, (2)

where gs,i is the grade that student s obtained on course i,
and ξ(s, w, t) is a time-based exponential decaying function
designed to de-emphasize courses that were taken a long
time ago.

Given the student’s knowledge state vector prior to taking
a course and that course’s required knowledge component
vector, denoted as rj , CKRM estimates the student’s ex-
pected grade in that course as the inner product of these
two vectors, i.e.,

ĝs,j = cbj + kT
s,t rj , (3)

where cbj is as defined in Eq. 1, and ks,t is the corresponding
knowledge state vector. These course-specific linear models
are estimated from the historical grade data and can be
considered as capturing and weighting the knowledge com-
ponents that a student needs to have accumulated in order
to perform well in a course.

3.2 Neural Attentive Models
Our work relies on the attention mechanism, which has been
recently introduced in neural networks and was shown to
improve the performance of different models and give better
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explanations to the importance of different objects towards
a target object [6, 20, 7, 3]. Our work leverages several
advances in this area. The most commonly-used activation
function for the attention mechanism is the softmax func-
tion, which is easily differentiable and gives soft posterior
probabilities that normalize to 1. A major disadvantage of
the softmax function is that it assumes that each object
contributes to the compressed representation, which may
not always hold in some domains. To solve this, we need to
output sparse posterior probabilities and assign zero to the
irrelevant objects. Martins et al. [11] proposed the sparse-
max activation function, which has the benefit of assigning
zero probabilities to some output variables that may not be
relevant for making a decision. This is done by defining a
threshold, below which small probability values are trun-
cated to zero. We also leverage the controllable sparsemax
activation function recently proposed by Laha et al. [10] that
controls the desired degree of sparsity in the output proba-
bilities. This is done by adding an L2 regularization term
that is to be maximized in the loss function. This will poten-
tially encourage larger probability values for some objects,
moving the rest to zero.

4. PROPOSED MODEL
4.1 Motivation
Consider a sample student who is declared in a Computer
Science major and is in his/her second or third year in col-
lege. Table 1 shows the set of prior courses that this student
has already take and the set of courses that this student
is planning on taking the next term. With CKRM (Sec-
tion 3.1.2), all these prior courses would contribute equally
to predicting the grade of each target course. However, we
can see that, intuitively, from the courses’ names, there are
courses that are strongly related to each target course and
other courses that are irrelevant to it. For instance, it is rea-
sonable to expect that the Intermediate German II course
is more related to the Intermediate German I course than
any of the other courses that the student has already taken.
Along the same lines, we expect that the Algorithms and
Data Structures course is more related to other Computer
Science courses, such as the Advanced Programming Prin-
ciples and the Program Design and Development courses.
Assuming equal contribution among these prior courses can
hinder the grade prediction model from accurately learning
the course representations, and hence lead to poor predic-
tions.

4.2 Overview
In this work, we present our Neural Attentive Knowledge-
based model, NAK, which predicts a students’ grades in
future courses by employing an attention mechanism on the
prior courses. We use CKRM as the underlying model (see
Section 3.1.2).

4.3 Attention-based Pooling Layer for Prior
Courses

In order to learn the different contributions of the prior
courses in estimating the student’s grade in a future course,
we can employ the CSR technique (see Section 3.1.1) that
learns the importance of each prior course in estimating the
grade of each future course. Thus, we would estimate a

knowledge state vector for each target course j, using the
following equation:

ks,t,j =
t−1∑
w=1

∑
i∈T w

(
ai,j gs,i pi

)
, (4)

where ai,j is a learnable parameter that denotes the atten-
tion weight of course i in contributing to student s’s knowl-
edge state when predicting s’s grade in course j. Note that
we have removed the time-decaying function ξ(s, w, t) that
was used in CKRM (see Eq. 2), since it would be implicitly
included in the attention weights. However, this solution
requires sufficient training data for each (i, j) pair in order
to be considered an accurate estimation.

In order to be able to have accurate attention weights be-
tween all pairs of prior and target courses, even the ones
that do not appear together in the training data, we pro-
pose to use the attention mechanism that was recently used
in neural networks [1, 19]. The main idea is to estimate the
attention weight ai,j from the embedding vectors for courses
i and j.

In order to compute the similarity between the embeddings
of prior course i and target course j, we use a single-layer
perceptron as follows:

zi,j = hTRELU(W(qi � rj) + b), (5)

where qi = gs,ipi denotes the embedding of the prior course
i, weighted by the student’s grade in it, � denotes the
Hadamard product, and W ∈ Rl×d and b ∈ Rl denote
the weight matrix and bias vector that project the input
into a hidden layer, respectively, and h ∈ Rl is a vector that
projects the hidden layer into an output attention weight,
where d and l denote the number of dimensions of the em-
bedding vectors and attention network, respectively. RELU
denotes the Rectified Linear Unit activation function that is
usually used in neural attentive networks.

4.3.1 Softmax Activation Function
The most common activation function used for computing
these attention weights is the softmax function [19]. Given
a vector of real weights z, the softmax activation function
converts it to a probability distribution, which is computed
component-wise as follows:

softmaxi(z) = exp(zi)∑
j

exp(zj)
. (6)

We will refer to the NAK model that uses the softmax acti-
vation function as NAK(soft).

4.3.2 Sparsemax Activation Function
Although the softmax activation function has been used
to design attention mechanisms in many domains [14, 1,
6, 12, 7], we believe that using it for grade prediction is
not optimal. Since a student enrolls in several courses, and
each course requires knowledge from one or a few other
courses, we hypothesize that some of the prior courses should
have no effect, i.e., zero attention, towards predicting a
target course’s grade. We thus leverage a recent advance,
the sparsemax activation function [11], to learn sparse at-
tention weights. The idea is to define a threshold, below
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Table 1: Sample of prior and target courses for a Computer Science student at University X.
Prior Courses Target Course

Calculus I, Beginning German, Operating Systems, Intermediate German I, University Writing, Intro-
ductory Physics, Peotics in Film, Program Design & Development, Philosophy, Linear Algebra, Internet
Programming, Stone Tools to Steam Engines, Advanced Programming Principles, Computer Networks

Intermediate German II

Probability & Statistics

Algorithms & Data Structures

which small probability values are truncated to zero. Let
4K−1 := {x ∈ RK |1T x = 1,x ≥ 0} be the (K − 1)-
dimensional simplex. The sparsemax activation function
tries to solve the following equation:

sparsemax(z) = argmin
x∈4K−1

‖x− z‖2, (7)

which, in other words, returns the Euclidean projection of
the input vector z onto the probability simplex.

In order to obtain different degrees of sparsity in the atten-
tion weights, Laha et al. [10] developed a generic probabil-
ity mapping function for the sparsemax activation function,
which they called sparsegen, and is computed as follows:

sparsegen(z; γ) = argmin ‖x− z‖2 − γ‖x‖2, (8)

where γ < 1 controls the L2 regularization strength of x.
An equivalent formulation for sparsegen was formed as:

sparsegen(z; γ) = sparsemax
( z

1− γ
)
, (9)

which, in other words, applies a temperature parameter to
the original sparsemax function. Varying this temperature
parameter can change the degree of sparsity in the output
variables. By setting γ = 0, sparsegen becomes equivalent
to sparsemax. We will refer to the NAK model that uses
the sparsegen activation function as NAK(sparse).

4.4 Prediction
NAK then predicts the grade for student s in course j that
he/she takes at term t as:

ĝs,j = cbj + kT
s,t,j rj . (10)

4.5 Optimization
We use the mean squared error (MSE) loss function to es-
timate the parameters of NAK. We minimize the following
regularized RMSE loss:

L = − 1
2N

∑
s,c∈G

(gs,c − ĝs,c)2 + α||Θ||2, (11)

whereN is the number of grades in G. The hyper-parameter
α controls the strength of L2 regularization to prevent over-
fitting, and Θ = {{cb}, {pi}, {ri},W,b,h} denotes all train-
able parameters of NAK.

The optimization problem is solved using AdaGrad algo-
rithm [4], which applies an adaptive learning rate for each
parameter. It randomly draws mini-batches of a given size
from the training data and updates the related model pa-
rameters. The source code can be found here: https://
urlzs.com/iH8G.

5. EVALUATION METHODOLOGY
5.1 Dataset
The data used in our experiments was obtained from the
University of Minnesota (UMN), which includes 96 majors
from 10 different colleges, and spans the years 2002 to 2017.
At the University, the letter grading system used is A–F,
which is converted to the 4–0 scale using the standard let-
ter grade to GPA conversion. We removed any grades that
were taken as pass/fail. The final dataset includes ∼ 54, 000
students, 5, 800 courses, and 1, 450, 000 grades in total.

5.2 Generating Training, Validation and Test
Sets

At UMN, there are three terms, Fall, Summer and Spring.
We used the data from 2002 to Spring 2015 (inclusive) as
the training set, the data from Spring 2016 to Fall 2016
(inclusive) as the validation set, and the data from Summer
2016 to Summer 2017 (inclusive) as the test set. For a target
course taken by a student to be predicted, that student must
have taken at least four courses prior to the target course,
in order to have sufficient data to compute the student’s
knowledge state vector. We excluded any courses that do
not appear in the training set from the validation and test
sets.

5.3 Comparison Methods
We compared the performance of our NAK model against
the following grade prediction approaches:

1. Matrix Factorization (MF): This approach pre-
dicts the grade for student s in course i as:

ĝs,i = µ+ sbs + cbi + uT
s vi, (12)

where µ, sbs and cbi are the global, student and course
bias terms, respectively, and us and vi are the student
and course latent vectors, respectively. We used the
squared loss function with L2 regularization to esti-
mate this model.

2. KRM(sum): This is CKRM the method described
in Section 3.1.2.

3. KRM(avg): This is similar to the KRM(sum) method,
except that the prior courses’ embeddings are aggre-
gated with mean pooling instead of summation. It was
shown in later studies, e.g. [17], that it performs better
than KRM(sum).

We implemented KRM(sum) and KRM(avg) with a neu-
ral network architecture and optimization similar to that of
NAK.

369 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



Table 2: Comparison between the baseline and proposed models.
Model Parameters RMSE PTA0 PTA1 PTA2

MF 16 1E-04 1E-02 – – 0.724 25.7 58.6 79.5
KRM(sum) 32 1E-07 7E-04 0.3 – 0.584 32.6 70.1 87.7
KRM(avg) 32 1E-07 7E-04 0.0 – 0.584 34.9 70.6 87.7
NAK(soft) 32 1E-07 7E-04 3 – 0.589 (-0.9%) 35.3† (1.1%) 71.8 (1.7%) 88.0† (0.3%)
NAK(sparse) 32 1E-07 7E-04 4 0.5 0.574†‡ (1.7%) 35.3† (1.1%) 72.1 (2.1%) 88.7† (1.1%)

The Parameters columns denote the following model parameters that were selected: for MF, the parameters are: the number of latent
dimensions, the L2 regularization parameter, and the learning rate; for KRM(sum) and KRM(avg), the parameters are: the embedding size for
courses, the L2 regularization parameter, the learning rate, and the time-decaying parameter λ; for NAK, the parameters are: the embedding
size for courses, the L2 regularization parameter, the learning rate, and the number of latent dimensions for the MLP attention mechanism;
and for NAK(sparse), the last parameter denotes the L2 regularization parameter γ for the sparsegen activation function. Underlined entries
represent the best performance in each metric. The † and ‡ symbols are used to denote results that are statistically significant over the
best performing baseline metric, and NAK(soft), respectively, using the Student’s paired t-test with a p-level < 0.1. Numbers in parentheses
denote the percentage of improvement over the best baseline value in each metric.

5.4 Model Selection
We performed an extensive search on the parameters of the
proposed and baseline models to find the set of parameters
that gives us the best performance for each model.

For all proposed and competing models, the following pa-
rameters were used. The number of latent dimensions for
course embeddings was chosen from the set of values: {8,
16, 32}. The L2 regularization parameter was chosen from
the values: {1e-5, 1e-7, 1e-3}. Finally, the learning rate was
chosen from the values: {0.0007, 0.001, 0.003, 0.005, 0.007}.
For the proposed NAK models, the number of latent di-
mensions for the MLP attention mechanism was selected in
the range [1, 4]. For KRM(sum) and KRM(avg), the time-
decaying parameter λ was chosen from the set of values: {0,
0.3, 0.5, 0.7, 1.0}.

The training set was used for estimating the models, whereas
the validation set was used to select the best performing
parameters in terms of the overall MSE of the validation
set.

5.5 Evaluation Methodology and Metrics
The grading system used by the University uses a 12 letter
grade system (i.e., A, A-, B+, . . . F). We will refer to the
difference between two successive letter grades (e.g., B+ vs
B) as a tick. We converted the predicted grades into their
closest letter grades. We assessed the performance of the
different approaches based on the Root Mean Squared Error
(RMSE) as well as how many ticks away the predicted grade
is from the actual grade, which is referred to as Percentage
of Tick Accuracy, or PTA. We computed the percentage of
grades predicted with no error (zero tick), within one tick,
and within two ticks, which will be referred to as PTA0,
PTA1, and PTA2, respectively.

6. EXPERIMENTAL RESULTS
6.1 Performance of the Proposed Models
Table 2 shows the performance of our proposed models. Us-
ing the sparsegen activation function instead of the softmax
activation function improves the prediction accuracy, with a
statistically significant improvement. This shows that using
the sparsegen activation function to output sparse attention
weights for the prior courses achieves better prediction accu-
racy than producing soft probabilities for all of them. This
is expected, since the student’s prior courses may not be all
relevant to the target course, as illustrated in Table 1.

6.2 Performance against Competing Methods
Table 2 also shows the performance of the competing mod-
els. Among the baseline methods, both KRM(sum) and
KRM(avg) outperformMF. KRM(avg) outperforms KRM(sum)
in PTA0 and PTA1. Both NAK(soft) and NAK(sparse) out-
perform all baseline methods. Even though the RMSE re-
sults of NAK(soft) is worse than these of the KRM variants,
it achieved ∼1%, ∼2% and 0.5% more accurate predictions
within no, one, and two tick errors, respectively. Among
all baseline and proposed methods, our NAK(sparse) model
outperforms all baseline methods significantly, with achiev-
ing ∼2% lower RMSE, and ∼1% more accurate predictions
within two ticks than KRM(avg). This shows that using
the attention-based pooling layer on the prior courses to ac-
cumulate them can better predict the grades of students in
their future courses.

6.3 Qualitative Analysis on the Prior Courses
Attention Weights

Recall the motivational example for the Computer Science
student, discussed in Section 4.1. This student had a set of
prior courses and three target courses that we would like to
predict his/her grades in (See Table 1). Using KRM(sum)
or KRM(avg), all the prior courses would contribute equally
to the prediction of each target course. Using our pro-
posed NAK(sparse) model, the attention weights for the
prior courses with each target course are shown in Table 31.

We can see that, using the sparsegen activation function,
only a few prior courses are selected with non-zero attention
weights, which are the most relevant to each target course.

For the Intermediate German II course, we can see that the
student’s grade in it is most affected by two courses: the
Intermediate German I course, and the University Writing
course. The Intermediate German I course is listed as a
pre-requisite course for the Intermediate German II course.
Though the University Writing course is not listed as a pre-
requisite course, after further analysis, we found out that the
Intermediate German II course requires process-writing es-
says and are considered part of the grading system. Though
the German courses are not part of the student’s degree
program, and are taken by a small percentage of Computer
1These results were obtained by learning NAK models to
estimate the actual grades and not the row-centered grades.
Also, we used qi = pi in Eq. 5. This allowed us to get more
interpretable results.
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Table 3: The attention weights of the prior courses with each target course learned by NAK(sparse) for the
sample student from Table 1.

Prior Courses Target Course

Intermediate German I: 0.6980, University Writing: 0.3020 Intermediate German II

Calculus I: 0.4737, Physics: 0.3794, Program Design & Development: 0.0717, Operating Systems: 0.0497,
Computer Networks: 0.0255

Probability & Statistics

Operating Systems: 0.2927, Advanced Programming Principles: 0.2582, Linear Algebra: 0.2313, Physics:
0.2178

Algorithms & Data Structures

Prior courses are sorted in non-increasing order w.r.t. to their attention weights with each target courses for clarity purposes.

Science students, our NAK model was able to learn accurate
attention weights for them.

The other two target courses, Probability and Statistics, and
Algorithms and Data Structures, have totally different prior
courses with the largest attention weights, which are more
related to them.

These results illustrate that our proposed NAK model was
able to uncover the listed as well as the hidden/informal
pre-requisite courses without any supervision given to the
model.

7. CONCLUSION
In this work, we presented a method to improve the grade
prediction accuracy, by learning the weights of the prior
courses towards predicting the grade of each target course.
To this end, we employed the attention mechanism on the
prior courses that learns the different contributions of these
courses towards each target course. We employed both a
softmax and a sparsemax activation function that produce
soft and sparse attention weights, respectively. The pro-
posed models are able to capture the listed as well as the
hidden pre-requisite courses for the target courses, which can
be better used to design better degree plans. Our experi-
ments showed that our models significantly outperformed
the competing methods, indicating the value of the atten-
tion mechanism on the prior courses.
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ABSTRACT
In this study, we fitted a mixed-effects nonlinear continuous-
time mutualism model of skill development proposed by van
der Maas et al. (2006) to naturally collected irregularly
spaced time series data from an online adaptive practice sys-
tem for mathematics called Math Garden. Results showed
that the mutualism model provided a better fit to the data
than a g-factor model. The paper illustrates continuous-time
modeling of irregularly-spaced multivariate time series data
that are increasingly prevalent in modern learning systems.

Keywords
mutualism model, continuous-time model, mixed-effects model

1. INTRODUCTION
For the past century, generations of researchers have contin-
ued to pursue explanations for the consistent positive corre-
lations between diverse sets of cognitive ability tests, known
as the positive manifold [25, 29]. Heated debates went on
about whether there is a potential biologically based g-factor
that causes the development of general intelligence as well
as the positive manifold [26, 7, 27, 11, 9]. Although re-
searchers have not reached consensus, there is a shift from
conceptualizing cognitive development as merely reflective,
as in factor analysis, to thinking of it as formative [2, 14,
27]. In a formative model, the positive manifold is an emer-
gent property that results from within-person changes and
connections over time. This ontological stance implies that
research needs to focus on understanding the causal relation-
ships that underlie cognitive development to guide effective
efforts to predict and intervene in students’ learning.

Various mathematical representations encompassing contin-
uous and discrete variables have been proposed to describe
the mechanistic changes and sources of individual differences
in cognition [28, 9, 32, 21]. From a developmental perspec-
tive, cognitive abilities develop as a dynamic system with
reciprocal interactions between the elements of the system
causing the developmental pathways of each of the elements
[29]. In the Mutualism model of intelligence, elements of a
system interact with each other in a collaborative way to
achieve mutual benefits. This provides an alternative ex-
planation for the positive manifold, other than the g-factor
approach, and only requires sparse, weak, and even some
negative interactions to produce positive correlations [28].

In the current study, we take advantage of massive time se-
ries data collected with an online learning environment for
mathematics [12] and propose a method to fit the mutualism
model to this dataset. We aim to examine potential recip-
rocal interactions of mathematical skills in two domains —
counting and addition — in children’s learning and practic-
ing mathematics online. We build a model that takes into
account individual differences in the learning processes by
allowing individuals to start in different positions and by
including random effects in key parameters of an otherwise
group-based mutualism model. Note that this is the first
application of the nonlinear mutualism differential equation
model to empirical data, providing an evaluation of how
well the theoretical account proposed by van der Maas et
al. [29] can capture changes in children’s mathematical skill
development over time. In addition, we pioneer the use of
continuous-time models to analyze irregularly-spaced data
that arise when students use educational technology in real-
istic settings, and show that the estimation framework im-
plemented in the dynr R package [19, 20] can handle nonlin-
ear equations and mixed effects that explain both between-
person and within-person differences.

In summary, the contribution of the work is three-fold: 1)
providing new evidence of reciprocal interactions in mathe-
matics skill development as a pioneer in fitting the nonlinear
mutualism model to empirical data; 2) presenting a way to
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analyze the irregularly spaced multivariate time series data
commonly seen in learning systems; and 3) demonstrating
the use of state-space approaches in estimating parameters
of mixed-effects dynamic models.

In the following sections, we first explain the mathematical
model we use to characterize the learning processes, and the
estimation procedure. We then present how the empirical
data in the current study were collected, and the sample
characteristics. The paper ends with a discussion of the re-
sults and their implications for education.

2. THE MUTUALISM MODEL
In biology, the term Mutualism is used for a relation be-
tween species populations where different species organically
interact with each other to maintain sustainable growth [1].
Biologists routinely use the Lotka-Volterra model [16, 30]
to study the dynamics of such relations, which inspired van
der Maas and colleagues [29] to propose the same model, re-
ferred to as the mutualism model, to study the dynamics of
cognitive development, where elements of a cognitive system
interact with each other to achieve mutual benefit.

2.1 The Lotka-Volterra Model
Mathematically, the mutualism model can be expressed us-
ing generalized N-subject Lotka-Volterra equations as

dx(t) = F (x1(t), x2(t), · · · , xN (t))dt (1)

=

ρixi(t)
1−

xi(t) +
∑
i6=j

aijxj(t)

Ki


 dt, (2)

where i, j = 1, 2, · · · , N indicates different elements of a dy-
namic system, and t is continuous time. Here, the elements
are the counting and addition skills. The differential of vec-
tor x(t) with respect to t denotes the change in x(t) within
an infinitely small time interval.

The model assumes logistic growth. The ρi are growth pa-
rameters that determine the steepness of the logistic growth
function associated with each xi(t), and the Ki are the carry-
ing capacity parameters that represent the limited resources
in the system, such as limited attention and working memory
one can allocate in learning. The aij are interaction parame-
ters that specify the relations between each pair of xi and xj
in development. With all aij = 0, the change of the latent
variable xi(t) follows a simple logistic curve that converges
to an equilibrium state of Ki, regardless of its starting posi-
tion. The system is collaborative if the Jacobian matrix ∂F

∂x
is positive definite, and is competitive otherwise. If, for all i,
xi(t) and ρi only take positive values, then it is possible to
show that as long as the combined consumption of resources
xi(t)+

∑
i6=j

aij does not exceed the carrying capacity Ki, xi(t)

will continue to increase to its equilibrium. Further, when
the interaction parameters aij are negative (or −aij are pos-
itive) for all j 6= i, xi(t) can develop even beyond the original
carrying capacity Ki, as a benefit of the collaboration with
the other processes. On the other hand, when the param-
eters aij , j 6= i are positive, xi(t) can never reach the full
potential Ki, as a loss due to competition. van der Maas
and colleagues [29] showed that when −ai,j is positive and

less than 1, the mutualism model can result in the positive
manifold.

2.2 State-space Representation
If we take into account individual differences in the mutual-
ism model, as well as process noise and measurement errors1

that may occur alongside the manifestation of the mutual-
ism process, we obtain a state-space representation of the
mutualism model:

dxs(t) = F s(xs(t))dt+ dws(t) (3)

F s(xs(t)) =

ρ1x1,s(t)(1− x1,s(t)+a12x2,s(t)

K1+b1,s

)
ρ2x2,s(t)

(
1− x2,s(t)+a21x1,s(t)

K2+b2,s

) (4)

ys(ts,k) = xs(ts,k) + εs(ts,k), (5)

εs(ts,k) ∼ N
(

0,Σε =

[
σ2
ε,1 0
0 σ2

ε,2

])
, (6)

where the subscript s indexes individuals, and k = 1, 2, · · · , Ts
indexes the kth discrete person-specific measurement occa-
sions ts,k. The vector xs(t) contains the latent counting
and addition skills x1,s(t) and x2,s(t) for an individual s,
manifested as ys(ts,k) in a measurement model with serially
independent Gaussian measurement errors εs(ts,k). The dif-
ferential of xs(t) is determined by the systematic dynamic
functions F s(·) and the differential of process noise ws(t)
that follows a Wiener process (i.e., a continuous-time ver-
sion of random walk, [10]), with a diffusion matrix Q =[
σ2
w,1 0
0 σ2

w,2

]
. Person-specific random effects

[
b1,s
b2,s

]
are added

to the carrying capacity parameters, and are assumed to fol-
low a normal distribution with mean 0 and a covariance

matrix of Σb =

[
σ2
b,11 σ2

b,12

σ2
b,12 σ2

b,22

]
.

The initial condition, or the distribution of the variables at
the first available time point, of the dynamic process xs(ts,1)
is assumed to follow a multivariate normal distribution with

mean

[
µ1,1

µ1,2

]
and variance

[
σ2
1,11 σ2

1,12

σ2
1,12 σ2

1,22

]
.

2.3 An Alternative G-factor Model
In order to explore the fit of the mutualism model to empiri-
cal data compared to the g-theory, a comparable state-space

1Process noise is distinct from measurement error in that the
former is associated with random behavior in the underly-
ing process, whereas the latter depends on the measurement
process, device, and other environmental influences that may
affect the accuracy of the measurements. In an educational
context, a correct guess without knowing an item can be seen
as a measurement error, while a child having a good or bad
day could contribute to the process noise. Whereas mea-
surement error does not influence growth at the next time
point, the process noise does steer the dynamical system.
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one-factor model without interactions can be developed as

dxs(t) = ρ1xs(t)

(
1− xs(t)

K1 + b1,s

)
+ dws(t) (7)

xs(ts,1) ∼ N(µ1,1, σ
2
1,11),Q =

[
σ2
w,1

]
,Σb =

[
σ2
b,11

]
ys(ts,k) =

[
1
λ

]
xs(ts,k) + εs(ts,k), (8)

εs(ts,k) ∼ N
(

0,Σε =

[
σ2
ε,1 0
0 σ2

ε,2

])
,

where the observed variables are linearly linked with the

single latent variable through a loading matrix of
[
1 λ

]>
.

3. ESTIMATION
To estimate the random effects in the models, we augmented
the latent variables xs(t) with random effects bs to yield a

new latent variable vector, x∗s(t) =
[
xs(t) bs

]>
. We then

modified the differential equations, the measurement model,
and the initial condition to incorporate this change of x∗s(t).

We used the dynr R package [19, 20] to estimate the param-
eters in the mixed-effects mutualism model, as well as the
baseline g-factor model, by numerically optimizing an ap-
proximate log-likelihood function obtained as a by-product
of the continuous-discrete extended Kalman filter [15]. Akaike
Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC) were constructed to compare models. Details
of the estimation algorithms can be found in [4, 20].

Figure 1: Screen shots of the counting and addition
games in the Math Garden. Children give responses
by clicking an option. The coins at the bottom dis-
appear one per second, and reflect the scoring rule
based on accuracy and response time.

4. EMPIRICAL STUDY
Here, we describe an application of the mutualism model.

4.1 Math Garden
We sampled data using a popular Dutch online adaptive
practice and monitoring system called Math Garden [13].
The system consists of games that measure different math-
ematical skills, including counting and addition, as players
practice their arithmetic skills through answering items. Fig-
ure 1 shows screen shots of two example items.

The system applies an explicit scoring rule for both speed
and accuracy [17], visible to players as the number of coins
they collect. For each item, a limit number of coins can be
collected, and the number decreases by one at each addi-
tional second used to come up with the answer. In case of

a correct answer, the score equals the remaining time. If
the answer is incorrect, the score is the negative remaining
time. The scoring rule takes speed-accuracy trade-off into
account, penalizes quick but incorrect answers, and encour-
ages thoughtful responses.

Skill rating and item difficulty are estimated on-the-fly us-
ing the Elo-algorithm [6] which was originally developed for
chess competitions between two players, and now has been
adapted for pairing a player with an item [13]. The skill
and difficulty estimates for a player and an item are up-
dated at each “match” they are involved in, depending on
the weighted difference between observed and expected cor-
rectness, the latter of which is entailed by the measurement
model [17]. Evidence has shown high validity and reliability
of the skill and difficulty estimates [13].

In the current study, our observed data are the continuous
end-of-day skill ratings in different domains, rather than bi-
nary correctness for each item. Comparisons of Math Gar-
den’s underlying measurement model [17] and the adapted
Elo-algorithm [13] to other common models for binary re-
sponses in educational data mining — the Rasch model [23],
additive factor models [3], performance factor analysis [22],
and Bayesian knowledge tracing models [5] — are worth ex-
ploration, but beyond the scope of this paper.

4.2 Data Description
We selected a sample of children in grades 3–6, between the
ages of 6 and 10 years old, who practiced counting and ad-
dition skills during at least 4 different months in the school
year from September, 2016 to July, 2017, and had played at
least 20 different days in each domain, with a minimum of 10
items per day. We excluded children whose parents indicated
unwillingness to participate in Math Garden-related scien-
tific research that was approved by the Ethics Committee of
the psychology department of University of Amsterdam.

The resulting sample included a total of 2485 children, 51.07%
male. The average age at which a child started to use Math
Garden for practicing counting and addition during the school
year was 7.23 years old (SD = 1.03). The original skill rat-
ings could be negative, so we shifted them to the positive
range by respectively adding 20 and 25 to the counting and
addition scales. The over-time ebb-and-flow and variability
of the skill ratings remain the same. From the second-by-
second time stamps of the data points, we constructed con-
tinuous measures of time where each unit represents a week.
Figure 2 shows the shifted skill ratings for three randomly
selected individuals over time.

Distributions of the initial and ending skill ratings are plot-
ted in Figure 3. At the first available time point for each
individual, the counting skill ratings for all sampled children
had a mean of 13.84 and a variance of 1.51, whereas the ad-
dition skill ratings had mean 12.94 and a larger variance of
10.56. At the last available time point for each individual,
the ending counting estimates had a mean of 14.83 and vari-
ance of 1.49, while the ending addition estimates had a mean
of 15.92 and variance of 9.05. Generally speaking, during the
school year, more development is observed in the addition
skill compared to the counting skill. There was more vari-
ability in children’s initial and ending addition skill ratings
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Figure 2: Individual time series data of counting and
addition skill ratings for three children.

than in the counting domain.

Figure 3: Histograms of the initial and ending skill
ratings

The correlation between the initial addition and counting
skill ratings was .73, and the correlation between the ending
ratings was .79, confirming the positive manifold. Figure 4
shows the boxplot of within-person correlations between the
skill ratings in the two domains. The mean of the within-
person correlations was .55 (SD = 0.38). However, some neg-
ative values were observed at the significance level of 0.05 of
the asymptotic p-values computed by the Hmisc R package
[8]. For example, in Figure 2 the child with identification
number 1344 had upward growth in the addition skill rat-
ings and downward decline in the counting skill ratings. The
downward decline may be due to an unexpected bump in
the skill ratings that was higher than the child’s equilibrium
and hence resulted in a return to the equilibrium. Another
possible explanation would be that, the child learned and
practiced counting at school before addition, but forgetting
took place as the child started to learn addition and prac-
ticed counting less. In such a case, there was a competition
for attention and learning time between the skills in differ-
ent domains, instead of a collaboration. Either case can be
captured by the mutualism model.

The length of the individual time series of the counting skill
ratings ranged from 20 to 177 days with a median of 29
days, and that of the addition skill ratings ranged from 20
to 192 days with a median of 42 days. The length of the
interval between two time points represents the inactivity
gap between two practice days of an individual for a math-
ematical skill, and ranged from 1 day to 18.29 weeks. The
minimal gap length of a single time series had a median of 1
day across the sample in both domains, whereas the median
maximum gap length was 4.86 weeks in the counting domain
and 4 weeks in the addition domain. In Figure 5, the data of

Figure 4: A boxplot of the within-person correla-
tions of the addition and counting skill ratings.

ten randomly selected individuals illustrate the irregularly-
spaced measurement occasions, as well as the unbalanced
practices in each domain on a single day and across time.
The mutualism model assumes a continuous integrative pro-
cess of change even though we do not have measurements of
each skill at all times.

Figure 5: An illustration of the irregularly spaced
time intervals of ten randomly selected individuals.
Different colors represent the domains that an indi-
vidual practiced during a specific day.

4.3 Empirical Results
The parameter estimates and model fit indices of both the
mutualism model and the g-factor model were summarized
in Table 1. All parameters were estimated to be significantly
different from zero (p < .05). The estimates of the initial
condition parameters (µ1,1, µ1,2, σ2

1,11, σ2
1,12, and σ2

1,22) in
both models were consistent with the sample mean and vari-
ance of the initial states. With lower AIC and BIC values,
the mutualism model provided a better fit to the data com-
pared to the g-factor model. Figure 6 shows the fit of the
mutualism model to the observed data of four randomly se-
lected individuals. The fitted trajectories were able to cap-
ture the changes of the observed paths for the individuals
in both domains, suggesting a decent fit of the model to the
data. In the mutualism model, the steepness parameters ρ1
and ρ2 were estimated to be close to zero, indicating that
the overall development in skills was small and slow. The
group-level equilibrium states K1 and K2, for when there
was no interaction between the processes, were estimated to
about 10, but individual differences captured by the random
effects b1 and b2 contribute to an estimated co-variance of[
1.04 0.09
0.09 1.06

]
. Estimates of the interaction parameters a12

and a21 were found to be significantly negative, so the inter-
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Table 1: Parameter estimates (standard errors) and
model fit indices

Mutualism Model g-factor Model
ρ1 0.08 (0.002) 0.02 (0.001)
ρ2 0.09 (0.001)
a12 -0.48 (0.005)
a21 -0.58 (0.004)
K1 10.04 (0.005) 15.98 (0.124)
K2 10.05 (0.004)

σ2
w,1 0.34 (0.002) 0.10 (0.001)

σ2
w,2 0.42 (0.001)

σ2
ε,1 0.29 (0.001) 4.92 (0.025)

σ2
ε,2 0.34 (0.002) 0.08 (0.001)
µ1,1 13.85 (0.006) 13.87 (0.013)
µ1,2 12.92 (0.001)

σ2
1,11 1.67 (0.014) 1.74 (0.068)

σ2
1,12 1.34 (0.045)

σ2
1,22 10.55 (0.056)

σ2
b,11 1.04 (0.005) 1.71 (0.310)

σ2
b,12 0.09 (0.004)

σ2
b,22 1.06 (0.005)
λ 1.02 (0.001)

AIC 388981.81 472908.58
BIC 389155.46 472995.41

Figure 6: Observed and fitted skill ratings from the
mutualism model.

actions between counting and addition ratings had a positive
effect on their level changes. These results indicated that
counting and addition skills collaborate, instead of compet-
ing, to form a positive manifold in the long run.

In summary, we have found beneficial interactions between
children’s addition and counting skill ratings as being better
at one skill helps being better at the other. The mutualism
model was a better fit to the data than the g-factor model.
Individual differences are present in the data in both starting
positions of the change trajectories and key model parame-
ters that represent limited resources in the system, providing
potential evidence for both the g-theory and the mutualism
model of general intelligence, according to [29]. We concur
with van de Maas and colleagues (2006) that individual dif-

ferences cannot be ignored in educational applications.

5. CONCLUSIONS
In this paper, we presented a state-space expression of the
continuous-time mutualism model proposed by [29] where
individual differences, process noise, and measurement er-
rors were taken into account. The mutualism model allowed
us to tackle the underlying mechanism of the skill devel-
opment from a micro perspective. We fitted the theoretical
model to empirical data naturally collected online in authen-
tic educational settings. Results showed that improvement
in addition skill could positively influence the development
in the counting domain, and vice versa. The better fit of
the mutualism model to the data compared to the g-factor
model suggested that the collaboration between the count-
ing and addition skills in their co-development served as a
better interpretation of the observed positive manifold.

The characteristics of the time series data in the current
study are not uncommon in education as digital technology
has transformed our way of collecting data about learning.
The paper illustrates one way to fit dynamic models to the
multivariate noisy irregularly spaced data that are rich in
our real life. We appreciate the potential to apply the cur-
rent method to different learning data to improve our un-
derstanding of cognitive and non-cognitive developments.

Nevertheless, this work has limitations that future work should
aim to overcome. First, only two variables were considered
in the current sample, while the mutualism model could be
extended to multiple dimensions. The estimation algorithm
is well suited for multivariate time series data, but the in-
terpretation of the multivariate model can become compli-
cated. Second, the estimation framework permits only a lim-
ited number of random effects in the current study [18]. In
addition to the two carrying capacity parameters, one may
be interested in adding random effects in the interaction pa-
rameters because of the potential competition between skills
under time and attention constraints as we discussed above.
The limitation of the estimation framework may be circum-
vented by utilizing sampling-based algorithms although they
may be computationally heavy.

The fitting of the model to the data does not exclude other
probable ways of interpreting cognitive development. In-
tervention studies with deliberate experimental designs are
needed to establish causal relations in a dynamic system.
These interventions may take the form of randomized as-
signment of skills to practice, for example, with groups of
students assigned to practice only counting or only addition,
but with progress measured on both skills after some period
of practice. The cross-skill influence of practice can then be
evaluated relative to practiced skill improvement.

Future work should also aim to evaluate how the mutual-
ism account of skill development relates to other findings in
education. For example, evidence suggests that interleaving
practice on different problem types produces more robust
learning and generalization than does blocking practice by
problem type [31, 24]. It is possible that some of the benefit
from interleaving relates to mutualism, with practice from
different problem types influencing the development of the
other skills.
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ABSTRACT 

Games in service of learning are uniquely positioned to offer 

immersive, interactive educational experiences. Well-designed 

games build challenge through a series of well-ordered problems 

or activities, in which perseverance is key for working through in-

game failure and increasing game difficulty. Indeed, persistence 

through challenges during learning is beneficial not just in games 

but in other contexts as well, with grit and perseverance positively 

associated with academic performance and learning outcomes. 

However, recent studies suggest that not all persistence is 

positive, suggesting that many students end up “wheel-spinning”, 

spending considerable time on a topic without achieving mastery. 

Thus, it is vital to differentiate productive and unproductive 

persistence in order to understand emergent student progress, 

particularly in the context of learning games and personalized 

learning systems, in which individual pathways differ greatly 

based on student needs. Leveraging Educational Data Mining 

methods, this study builds a detector of wheel-spinning behavior 

(differentiated from productive persistence) in an adaptive, game-

based learning system. With the ability to predict unproductive 

persistence early, this detection model can be used to intelligently 

adapt to students needing further support in-system, as well as 

informing in-person intervention in a classroom setting—thus 

supporting a personalized, engaging learning experience in both 

formal and informal learning environments.  

Keywords 

Behavior detection, predictive modeling, productive persistence, 

wheel-spinning, educational games, personalized learning 

1. INTRODUCTION 
Games as learning vehicles can offer engaging, interactive 

experiences in which the player has agency in exploring and 

solving well-ordered problems or challenges in a learner-

responsive environment [1, 2]. Well-designed games seamlessly 

embed meaningful instruction in authentic, narrative-driven 

learning contexts (with the potential to assess learning in the 

natural progression of play [3]). As such, they have the ability to 

optimize learner motivation and learning trajectories without 

removing the experience of personal discovery [4]. By nature, 

games encourage discovery of an underlying rule system through 

boundary testing, making experimentation and failure a core part 

of play progression [5]. In this sense, moving through in-game 

failure and challenge with perseverance can be fundamental to the 

experience of learning in games (e.g. [6, 7]). Hence, games offer a 

particularly relevant context for productive persistence or grit—

the ability to steadily maintain an action or complete a task 

despite failure or adversity (cf. [8]). Indeed, keeping players in a 

“flow” state of persistence [9] through a series of challenges of 

increasing difficulty is key to the design of “good” games, 

particularly in educational contexts [10]. Recent research suggests 

these qualities in games support student growth in areas such as 

academic learning, socio-emotional skills, and creative problem 

solving (e.g. [11, 12, 13, 14]). 

Indeed, persevering through challenges during learning is 

beneficial not just in games but in other contexts as well. From 

undergraduates to military cadets to Spelling Bee competitors, 

findings suggest that persistence forecasts strong performance in 

rigorous, achievement-based learning contexts [15]. In many 

cases, persistence is also associated with academic achievement 

[16], creativity [17], and long-term outcomes like earnings and 

later schooling [18].  

However, recent research suggests that not all persistence is 

positive. “Wheel-spinning” is a form of unproductive effort, 

where students spend too much time struggling to learn a topic 

without achieving mastery [19]. Wheel-spinning behaviors have 

been associated with reduced motivation [20] and avoiding asking 

for help when needed [21]. In fact, recent empirical investigation 

has demonstrated that wheel-spinning can be differentiated from 

productive persistence in an intelligent tutoring system, in real-

time, determining during problem-solving whether a student’s 

persistence will be productive [22]. Making this type of 

differentiation could also be valuable in learning games contexts. 

Persistence is important in games just as in other settings [23], 
with evidence suggesting that persisting unproductively in games 

can be a highly frustrating experience (e.g. [24]). Since challenge 

and problem solving are often core components of learning 

experiences, particularly in game-based environments, it becomes 

increasingly important to differentiate productive persistence (e.g. 

grit) from unproductive persistence (e.g. wheel-spinning) in the 

context of play. This differentiation could be used to offer 

different pathways to students based on real-time performance. 
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There is evidence that this type of modeling is feasible; related 

game-based research has shown that the same surface behavior in 

games can have different meanings, with distinction of productive 

vs unproductive failure in a games context (cf. [25]). 

In this study, we empirically investigate wheel-spinning vs 

productive persistence in an adaptive, game-based learning system 

for early childhood math skills called Mastering Math. 

Specifically, we use predictive analytics to infer whether a student 

is engaging in wheel-spinning or productive persistence in 

Mastering Math. This detection model can be used to intelligently 

adapt to students needing further support in-system, as well as 

informing in-person intervention in a classroom setting—thus 

supporting a personalized learning experience in both formal and 

informal learning environments. 

2. METHODS AND DATA COLLECTION 

2.1 Game-based Learning Content  
Mastering Math (MM) is a game-based adaptive learning system 

designed to help elementary age children build a strong 

understanding of fundamental number sense and operations, 

ranging from counting to 10 to adding and subtracting three-digit 

numbers using the standard algorithm. The app constitutes 

approximately 130 games, covering number sense and operations 

concepts and skills for pre-kindergarten through second 

grade. Each individual game maps to a learning objective, and is 

supported by an interactive instruction level, as well as several 

layers of scaffolding and feedback. In addition, the game system 

as a whole uses cohesive narrative and interactive characters 

(embedded at the level of individual games) to support student 

engagement with the learning world. Adaptivity functions within 

individual games to provide scaffolding with each level of skill 

difficulty, between games to adjust to students’ difficulty needs, 

and across the system to give players a customized pathway 

between skills based on performance. Assessment is embedded 

throughout the play experience, including game-based pretests 

and final assessment tasks at a granular skill level. 

2.2 Experimental Design 
In the fall of 2018, two research studies were conducted to 

evaluate the effectiveness of MM in preschool (Study 1) and 

kindergarten (Study 2) students. Students in both studies came 

from ethnically diverse, low-income, public school districts in 

Southern California.  

Both studies employed a cluster-randomized trial design, in which 

half of the participating classrooms in each study were randomly 

assigned to use the MM app as part of their classroom instruction 

(treatment group), while the other half used business-as-usual 

mathematics instruction and materials (control group). The 

treatment group students (394 students in total, 146 from Study 1, 

248 from Study 2) were asked to use MM in small group settings 

for 15 minutes per day for three days per week, over a total of 12 

weeks. After classroom implementation, overall usage averaged 

5.6 hours in Study 1, and 5.22 hours in Study 2. Both treatment 

and control groups received a paper-and-pencil standardized 

assessment of early mathematics performance before and after the 

implementation of MM. 

2.3 Event-stream Data Collection 
Event stream data were collected using a learning game data 

framework based on ADAGE (Assessment Data Aggregator for 

Game Environments; [26]), focusing on key learning mechanic 

milestones as context for performance information and results, as 

well as comprehensive coverage of player interaction and system 

feedback (e.g. [27]). These milestones are called units, and 

represent repeating progress mechanics through the learning 

game. Generally, students can play many games in the system 

(each of which corresponds with a mathematics skill), and each 

game contains multiple levels of difficulty. Thus, a larger unit of 

play is a game, and within a game a student can play one level (or 

activity) at a time. Each activity is built to support and assess 

knowledge of an individual math skill. All unit starts and ends are 

marked in the data, and all player interactions, system feedback, 

and results are recorded in the context of the active units at the 

time of the event. For example: if a student taps on the screen, we 

capture the basic x,y coordinate, the object being tapped (if 

applicable), and the units that were active during the tap (e.g. 

which game, activity and round the player was in when the event 

fired). In-game performance information (e.g. result or score) is 

embedded at the unit level, recorded at the end of applicable 

rounds and activities. In terms of raw player interaction, data 

collected consists of taps and drags. System feedback, also called 

system events, consists mainly of the game communicating with 

the player in giving formative feedback. This includes tutorial 

prompts, instructional input, and inactivity prompts (given if 

students have not interacted with the screen in 30 seconds). 

Additionally, every log file event is seeded with metadata such as 

student ID, timestamp, and session ID. Data structured in this 

fashion (Figure 1) allows for a comprehensive event-stream 

record that is labeled consistently across the system—which 

currently contains over 130 activities—all aligned with learning 

design for interpretability, a key element of viable data use for 

feature engineering and analysis. 

 

Figure 1. A simplified view of MM’s log file data schema. 

2.4 Behavior Detection 
To investigate player patterns of wheel-spinning in Mastering 

Math, prediction modeling was used to build a behavior detector 

(i.e. model of student behavior), an automated model that can 

infer from log files whether a student is behaving in a certain way 

(e.g. [28]). These models can be employed to detect a variety of 

important aspects of the learner and his/her performance, 

including student learning, strategy, and engagement (e.g. [29, 12, 

30, 31]). To train the predictive model, detectors often leverage 

human judgment of student behavior, in a process where behavior 

labels derived from human judgement are used to train and 

validate models, which can then automatically detect the target 

behavior in the larger event-stream. In this case, once the initial 

student interaction with a digital learning environment is 

captured, the analysis process includes: 1) distilling data features 

potentially relevant to the behavior construct; 2) identifying 
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instances of the behavior through human evaluation; and 3) 

predictive modeling with the synchronized log file data.  

Throughout these phases of analysis, a critical element of the data 

mining approach is emphasis on the event-stream trajectories that 

emerge in relationship to the behavior. With this detector study, 

each student's event-stream play patterns were observed and 

coded individually for emergent wheel-spinning behavior. 

Specific actions and click-stream interactions then emerged as 

evidence of wheel-spinning through the prediction algorithm’s 

variable selection processes. Thus, player choices and interactions 

characteristic of wheel-spinning were derived from the larger 

event-stream data flow in the analysis process detailed below. 

2.4.1 Feature Distillation 
In this analysis, data features were distilled from MM event-

stream data based on play across the entire system, then refined 

along themes of progression and performance. These organizing 

themes help capture student trajectories across the system for 

behavior detection, particularly since student progress and 

failure/success are central to the target constructs of wheel-

spinning and productive persistence. 

Using the learning progress mechanics, or units (i.e. games or 

activities) from the event-stream data schema, data features were 

organized based on performance within each unit, as well as 

measures of progression (e.g. time elapsed, number of activities 

completed, number of games activated, etc.). (For reference, when 

a game is activated, it means that a student failed the associated 

pretest and that gameplay for that skill is now open.) Summary 

features were also created in parallel to the unit features, giving a 

sense of the overall trajectory of the player through the learning 

space. Since PreK and K students are in developing stages of 

cognition, additional features were engineered to represent age 

and elements of motor skill (e.g. miss rate, or how often a student 

drags an object towards a target and misses). One view of selected 

event-stream features is given below (Table 1). 

Table 1. Overview of selected event-stream features 

 Progression Performance 
Overall • total duration in system 

(active play) 
• total activities completed  
• total activities started 
• total games started 
• miss rate 
• student age 

• % of skills mastered  
• ratio of “boss” activities 

successfully passed*  
• total # of skills (games) 

activated  
• total skills mastered 

(games completed) 

Game • game completion rate  
• avg duration to game 

completion 
• # of answers submitted 

per player per game 
• # of activities completed 

within each game 
• avg time elapsed between 

activities in the same 
game 

• individual game status: 
- in-progress 
- passed game (skill 

completed) 
- struggling (fail states for 3 

of the last 5 activities) 
- not started 
- pretest passed** 
- pretest failed 
• % of started games 

successfully completed  
Activity • activity completion rate 

• avg activity duration 
• # of hints given 
• # of inactivity prompts 
• # of tutorials accessed 

• score 
• progression to next level 

(pass/fail) 
• # of rounds passed 
• # of rounds failed 
• # of rounds completed 

*The “boss” activity is the most difficult assessment in a game 

**Pretests are embedded at the game level to test prior knowledge 

2.4.2 Behavior Coding of Wheel-spinning 
For behavior detection, we focused on the construct of wheel-

spinning, since the ability to flag this particular behavior held 

strong utility for enabling automated scaffolding in-system as well 

as in-person teacher intervention. Wheel-spinning is also an 

especially relevant focus for a game context—a medium in which 

boundary testing is an implicit norm [25], and differentiating real 

struggle from more productive forms of exploration and self-

paced discovery can be valuable. Mastering Math games are 

sufficiently different from the intelligent tutoring systems, where 

wheel-spinning was initially studied, to require a different 

operationalization of wheel-spinning. In this context, we view 

wheel-spinning as connected to lower gameplay efficiency in the 

system, since wheel-spinning occurs when a great deal of effort 

yields very little progress [19]. To capture efficiency in an 

adaptive games context, in which every student has a different 

learning pathway, we designed a metric allowing efficiency to be 

standardized across players. This measure of learning efficiency 

was called rate of mastery, designed to measure the rate at which 

students were mastering math skills. This was calculated as the 

number of boss activities (the hardest assessment level in each 

math skill game) a student passed, divided by his/her total number 

of activities. This measure made sense as a progress-based metric, 

since performance on boss-level skill assessments is central to 

learning game progression. This ratio was ultimately calculated 

using data from both school studies. In the main behavior 

analysis, in accordance with the focus on wheel-spinning students 

and those persevering through difficulty, we concentrated on 

students in the lower two quartiles of rate of mastery. 

As noted in Kai et al., 2018, we cannot assume that all lower 

efficiency students in the system are hopelessly struggling—on 

the contrary. Students who take their time to learn material, use 

self-paced progression, and achieve eventual success are likely to 

be demonstrating productive persistence. Determining whether a 

low-efficiency student is spinning their wheels or persisting 

productively is challenging. To differentiate these two groups, we 

started by leveraging human judgement on a per-student level to 

capture emergent patterns in the data. In particular, we chose to 

utilize the human capacity for pattern recognition and behavior 

evaluation (rather than an a priori rule-based approach), since the 

system is adaptive and no two students are likely to have the same 

path through the learning space. 

Thus, the next step was to have human researchers observe a 

stream of student actions and identify the student’s behavior (e.g. 

[32]). The human evaluation of student behavior establishes when 

the behavior occurred (which serves as the predicted variable). 

For coding of wheel-spinning behavior in this study, play 

visualization based on text replays were adopted for their 

efficiency and accuracy [33]. Text replays, based on recorded log 

file data, are a text-based representation of student action during a 

given period of time. Text replays have shown to be highly time-

efficient and scalable [50], and almost as accurate for detecting 

student behavior as other methods such as live observation [34]. 

The variation on the text replay that we used—called a visual 

progress replay (VPR)—includes color coding of performance 

levels (in addition to text summaries) for greater ease of 

information processing (cf. [35]). This approach represents the 

same information as a text replay, but in a form that encodes 

information with color consistent with canonical visualization 
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techniques [36], and has previously been used to create detection 

models in related game-based learning research (e.g. [25]). Key 

features of the VPR included a visual display of game status, per 

student, across the system. This color-coded visual map showed 

whether each game was in-progress, completed (passed), in a 

struggle state (i.e. at least 3 non-passing scores within the last 5 

activities), or not started. In addition, summary statistics per 

student were shown, such as number of activities completed in the 

system and time spent in total (Figure 2). 

 

Figure 2. A sample portion of a VPR used for coding wheel-

spinning, shown for a single student across the system. 

 

We designed the replay’s clip size to show one student’s full 

system playthrough at a time, since we wanted to be able to detect 

a system-wide wheel-spinning state for each child. To capture the 

full trajectory of play, coding was done at the student level, 

labeling each student at the end of the study (week 12), in terms 

of whether a student was WS (wheel-spinning), P (productive 

persistence), and NA (not enough information). Within the lower 

efficiency group of students, WS captured a state of high effort 

but little progress, P fit with steady student progress, and NA was 

applied when there wasn’t enough information (e.g. not enough 

time or activities in game to make a judgement). We included NA 

in this schema so that we could derive time and activity 

minimums for WS vs P differentiation through the predictor itself, 

rather than picking an arbitrary cutoff in excluding student data 

(such as, for instance, dropping all students who played for under 

30 minutes). This third code also allowed for more nuanced 

coding—rather than forcing all students to fit under WS or P, thus 

risking miscategorization, the NA code could be used instead. 

Using this tri-code schema, inter-rater reliability analysis yielded a 

Cohen's ᴋ [37] of .78, indicating acceptable agreement between 

raters was achieved. 

2.4.3 Modeling Early Detection of Wheel-spinning 
The final predictive model merged the initial feature engineering 

of event-stream features with the behavioral codes generated in 

the analysis above. To support early intervention for in-system 

personalization as well as teacher interventions, the final model 

was built to predict wheel-spinning (WS) at the end of week 12 

(the last week of the study) using predictors from week 4 data. 

(Week 4 predictors were selected after subsequent weeks 5 and 6 

were tested for model performance, but resulted in only marginal 

improvement.) Since each classroom was assigned exactly 12 

weeks of play relative to start date, weeks as a time marker helped 

consistently align student progress across classrooms in 

relationship to the study design. It also allowed for 

implementation-focused behavior detection for the highest utility 

to teachers. With earlier detection of students getting stuck in the 

system, intervention can have greater impact on student progress 

in building core math skills. 

Ultimately, the log file features (Table 1) were used as predictors 

in the model, while the behavior of wheel-spinning became the 

predicted variable. Using this full feature list, the WS detector was 

then built at the student level using RStudio, using the RWeka 

package for data mining [38]. An appropriate set of algorithms 

were selected based on the categorical dependent variable, 

informed by related behavior modeling research in education (e.g. 

[39, 40]), including J48, CART, Random Forest, and Naïve 

Bayes. Models were evaluated using ten-fold cross validation, 

with a final selection based on the goodness metric of AUC ROC.  

To achieve higher accuracy in correctly detecting and classifying 

the target class of students, the wheel-spinning students, we used 

rebalanced classes for all three methods tested. This approach is in 

alignment with similar detector-based analyses in digital learning 

contexts (e.g. [41, 42]). Specifically, the original classes P, WS 

and NA had a respective number of instances of 79, 39 and 14. 

We set the target number of instances for each rebalanced class to 

n=100. To obtain that number of observations per class, for a total 

of n=300, sampling with replacement was performed on each 

class. This resampling procedure was only performed on the 

training set for tree building purposes and all testing was 

performed on the original data distribution. 

3. RESULTS AND DISCUSSION 

3.1 Results 
Ultimately, the CART algorithm produced the best model 

performance, achieving a cross-validated AUC of .676 in 

predicting wheel-spinning in week 12 with week 4 predictors, 

comparable to metrics in other game-based learning detector 

models (e.g. [39, 12]). 

 
Figure 3. Final CART wheel-spinning predictor model. 

 

Interestingly, in Figure 3 the first decision on the tree is the 

number of activities completed, with many students having less 

than 21 activities categorized as NA (insufficient information). 

Under this parent node, three core pathways emerge for wheel-

spinners, covered from left to right on the tree: 1) low prior 

knowledge and low motor skill (via count all game, a low-level 

skill, and miss rate); 2) higher % of skills mastered but with very 

low efficiency (rate of mastery); and 3) younger students with low 

prior knowledge and very low efficiency in the system (with few 

games activated, higher time per activity and high number of 

activities per game). The first path suggests a group of students 

that may be in an earlier stage of development, both in terms of 

motor skill and prior knowledge (but not necessarily age). The 

second group, with the ability to master more skills with 

seemingly fewer motor skill issues, may represent students that 
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have more advanced development and prior knowledge but may 

need a bit more scaffolding and just-in-time support to learn the 

material. The last group may consist of younger students with low 

prior knowledge who need support more directly related to age-

based maturity levels. These groups, implying differing levels of 

development and age, reflect clinical research which suggests 

wide variation in the relationship between age and developmental 

level in young children [43]. This suggests that developmental 

stage (rather than age alone) is a helpful differentiator in 

personalizing learning experiences for young students. To 

investigate implications of age and development for better 

learning design, these emergent groups suggest value in deeper 

exploration of student profiles in future work (discussed below). 

Overall, these model-derived groups offer insight into potential 

types of wheel-spinning that occur within the system, with the tree 

model allowing for early detection of unproductive persistence. 

3.2 Discussion and Conclusion 
Overall, the model of wheel-spinning yields insight into the 

important differentiation between unproductive and productive 

persistence, revealing multiple ways that student wheel-spinning 

manifests in data and enabling event-stream detection of this 

behavior in the event stream data. In turn, this real-time prediction 

can allow for very early intervention—both in-system and in 

classroom—for students displaying wheel-spinning behavior. For 

the system, this means it may be possible to offer more intelligent 

adaption to student needs, while for teachers (with limited time 

and resources) it may become possible to offer just-in-time 

information about which students most need help. This emergent 

behavior detection is especially important in games, which can 

have unexpected player pathways due to complex elements of 

narrative, agency, and failure-driven exploration—all of which 

converge to support the medium’s power of engagement in well-

designed playful learning experiences. 

Along this line of research in future work, there is an opportunity 

to generalize this detector to children using the game-based 

learning system outside of a study-specific context. The week-

level data used in this study was centered around implementation, 

designed to flag to a teacher which students might be wheel-

spinning after a certain amount of prescribed weekly dosage; 

however, converting this progress marker to an activity/elapsed 

time-based unit to build a model based on data in the wild can 

make this model applicable to an even broader base of learners. In 

addition, comparison between the classroom-based and broader 

event-stream based models may yield interesting insights. There is 

also an opportunity in this rich data stream (currently thousands of 

students) to hone the model for even higher AUC and predictive 

power. This includes iteration in feature engineering based on 

patterns that may arise in the larger data stream of students, using 

predictive modeling of wheel-spinning in a broader context of 

students (in formal and informal learning environments). 

Investigating player profiles based on detection results may also 

help determine groups of students struggling with the system 

based on motor skill, prior knowledge, and age/grade. Relatedly, 

better understanding how motor skill indicators in the data 

connected to more traditional measures of visual-motor skill (e.g. 

[44]) may also be valuable. Finally, dashboards highlighting 

detector-based insights to both parents and students for 

interpersonal support represent a key area for future work, with 

potential for student-level flagging for intervention, specific skills 

needing support (see Figure 2), recommendations for in-person 

follow-up, and possible grouping of students in the same class for 

differentiated instruction.  

Future work in expanding the scope of wheel-spinning research in 

the MM system can support the ability to generalize findings 

across broader age ranges and geographic areas, increasing the 

potential for impact on data-driven design, intelligent 

personalization, and interpersonal intervention. With information 

on behaviors like wheel-spinning and productive persistence, in 

combination with other evidence such as student prior knowledge, 

this work can inform designers about which instructional design 

in games needs revisiting, as well as providing adaptive logic and 

system overlays for just-in-time detection and intervention. Both 

in the system and beyond, this research can further the application 

of educational data mining to principled learning design, 

potentially expanding the field of intelligent game-based learning 

and supporting young learners in developing foundational 

academic skills at scale. 
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ABSTRACT
Knowledge tracing is the task of modeling each student’s
mastery of knowledge concepts (KCs) as (s)he engages with
a sequence of learning activities. Each student’s knowledge
is modeled by estimating the performance of the student
on the learning activities. It is an important research area
for providing a personalized learning platform to students.
In recent years, methods based on Recurrent Neural Net-
works (RNN) such as Deep Knowledge Tracing (DKT) and
Dynamic Key-Value Memory Network (DKVMN) outper-
formed all the traditional methods because of their ability to
capture a complex representation of human learning. How-
ever, these methods face the issue of not generalizing well
while dealing with sparse data which is the case with real-
world data as students interact with few KCs. In order to
address this issue, we develop an approach that identifies
the KCs from the student’s past activities that are rele-
vant to the given KC and predicts his/her mastery based
on the relatively few KCs that it picked. Since predictions
are made based on relatively few past activities, it handles
the data sparsity problem better than the methods based
on RNN. For identifying the relevance between the KCs,
we propose a self-attention based approach, Self Attentive
Knowledge Tracing (SAKT). Extensive experimentation on
a variety of real-world dataset shows that our model out-
performs the state-of-the-art models for knowledge tracing,
improving AUC by 4.43% on average.

Keywords
Knowledge Tracing, Massive Open Online Courses, Self-
attention, sequential recommendation

1. INTRODUCTION
The availability of massive dataset of students’ learning tra-
jectories about their knowledge concepts (KCs), where a KC
can be an exercise, a skill or a concept, has attracted data
miners to develop tools for predicting students’ performance
and giving proper feedback [8]. For developing such person-

Figure 1: Left subfigure shows the sequence of exercises that the
student attempts and the right subfigure shows the knowledge
concepts to which each of the exercises belong.

alized learning platforms, knowledge tracing (KT) is consid-
ered to be an important task and is defined as the task of
tracing a student’s knowledge state, which represents his/her
mastery level of KCs, based on his/her past learning ac-
tivities. The KT task can be formalized as a supervised
sequence learning task - given student’s past exercise inter-
actions X = (x1,x2, . . . ,xt), predict some aspect of his/her
next interaction xt+1. On the question-answering platform,
the interactions are represented as xt = (et, rt), where et is
the exercise that the student attempts at timestamp t and
rt is the correctness of the student’s answer. KT aims to
predict whether the student will be able to answer the next
exercise correctly, i.e., predict p(rt+1 = 1|et+1,X).

Recently deep learning models such as Deep Knowledge Trac-
ing (DKT) [6] and its variant [10] used Recurrent Neural
Network (RNN) to model a student’s knowledge state in
one summarized hidden vector. Dynamic Key-value mem-
ory network (DKVMN) [11] exploited Memory Augmented
Neural Network [7] for KT. Using two matrices, key and
value, it learns the correlation between the exercises and
the underlying KC and student’s knowledge state, respec-
tively. The DKT model faces the issue of its parameters
being non-interpretable [4]. DKVMN is more interpretable
than DKT as it explicitly maintains a KC representation
matrix (key) and a knowledge state representation matrix
(value). However, since all these deep learning models are
based on RNNs, they face the issue of not generalizing while
dealing with sparse data [3].

In this paper, we propose to use a purely attention mech-
anism based method, transformer [9]. In the KT task, the
skills that a student builds while going through the sequence
of learning activities, are related to each other and the per-
formance on a particular exercise is dependent on his per-
formance on the past exercises related to that exercise. For
example, in figure 1, for a student to solve an exercise on
“Quadratic equation”(exercise 5) which belongs to the knowl-
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edge concept “Equations”, he needs to know how to find
“square roots” (exercise 3) and “linear equations” (exercise
4). SAKT, proposed in this paper first identifies relevant
KCs from the past interactions and then predicts student’s
performance based on his/her performance on those KCs.
For predicting student’s performance on an exercise, we used
exercises as KCs. As we show later, SAKT assigns weights
to the previously answered exercises, while predicting the
performance of the student on a particular exercise. The
proposed SAKT method significantly outperforms the state-
of-the-art KT methods gaining a performance improvement
of 4.43% on the AUC, on an average across all datasets.
Furthermore, the main component (self-attention) of SAKT
is suitable for parallelism; thus, making our model order of
magnitude faster than RNN based models.

(a) Network of SAKT. At each timestamp the attention
weights are estimated for each of the previous element
only. Keys, Values and Queries are extracted from the
embedding layer shown below. When jth element is query
and ith element is key, attention weight is ai,j .

(b) Embedding layer embeds the current exercise that the
student is attempting and his past interactions. At every
time stamp t+1, the current question et+1 is embedded in
the query space using Exercise embedding and elements
of past interactions xt is embedded in the key and value
space using the Interaction embedding.

Figure 2: Diagram showing the architecture of SAKT.

2. PROPOSED METHOD
Our model predicts whether a student will be able to an-
swer the next exercise et+1 based on his previous interac-
tion sequence X = x1,x2, . . . ,xt. As shown in figure 2,
we can transform the problem into a sequential modeling

Table 1: Notations

Notations Description
N total number of students
E total number of exercises
X Interaction sequence of a student: (x1, x2, . . . , xt)
xi ith exercise-answer pair of a student
n maximum length of sequence
d latent vector dimensionality
e Sequence of exercises solved by the student
M Interaction embedding matrix
P Positional embedding matrix
E Exercise lookup matrix

M̂ Past interactions embedding

Ê Exercise embedding

problem. It is convenient to consider the model with inputs
x1,x2, . . . ,xt−1 and the exercise sequence with one position
ahead, e2, e3, . . . , et and the output being the correctness
of the response to exercises r2, r3, . . . , rt. The interaction
tuple xt = (et, rt) is presented to the model as a number
yt = et + rt × E, where E is the total number of exercises.
Thus, the total values that an element in the interaction
sequence can take is 2E, while elements in the exercise se-
quence can take E possible values.

We now describe the different layers of our architecture.

Embedding layer: We transform the obtained input se-
quence y = (y1, y2, . . . , yt) into s = (s1, s2, . . . , sn), where
n is the maximum length that the model can handle. Since
the model can work with inputs of fixed length sequence, if
the sequence length, t is less than n, we repetitively add a
padding of question-answer pair to the left of the sequence.
However, if t is greater than n, we partition the sequence
into subsequences of length n. Specifically, when t is greater
than n, yt is partitioned into t/n subsequences each of length
n. All these subsequences serve as input to the model.
We train an Interaction embedding matrix, M ∈ R2E×d,
where d is the latent dimension. This matrix is used to ob-
tain an embedding, Msi for each element, si in the sequence.
Similarly, we train exercise embedding matrix, E ∈ RE×d

such that each exercise in the set ei is embedded in the eith
row.
Position Encoding: Position Encoding is the layer in the
self-attention neural network which is used for encoding the
position so that like convolution network and recurrent neu-
ral network, we can encode the order of the sequence. This
layer is particularly important in knowledge tracing problem
because a student’s knowledge state evolves gradually and
steadily with time. The knowledge state at a particular time
instance should not show wavy transitions [10]. In order to
incorporate this we use a parameter, position embedding,
P ∈ Rn×d which is learned while training. The ith row of
position embedding matrix, Pi is then added to the interac-
tion embedding vector of the ith element of the interaction
sequence.

The output from the embedding layer is embedded interac-
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tion input matrix, M̂ and embedded exercise matrix, Ê:

M̂ =


Ms1 + P1

Ms2 + P2

. . .

Msn + Pn

 , Ê =


Es1

Es2

. . .

Esn

 . (1)

Self-attention layer: In our model, we use the scaled dot-
product attention mechanism [9]. This layer finds the rel-
ative weight corresponding to each of the previously solved
exercise for predicting the correctness of the current exercise.

We obtain query and key-value pairs using the following
equations:

Q = ÊWQ,K = M̂WK ,V = M̂WV , (2)

where WQ, WK , WV ∈ Rd×d are the query, key and value
projection matrices, respectively, which linearly project the
respective vectors to different space [9]. The relevance of
each of the previous interactions with the current exercise
is determined using the attention weights. For finding the
attention weights we use the scaled dot product [9], defined
as:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V. (3)

Mutiple heads: In order to jointly attend to information from
different representative subspaces, we linearly project the
queries, keys and values h times using different projection
matrices.

Multihead(M̂, Ê) = Concat(head1, . . . , headh)WO, (4)

where headi = Attention(ÊWQ
i , M̂WK

i , M̂WV
i ) and WO ∈

Rhd×d.
Causality:
In our model, we should consider only first t interactions
when predicting the result of the (t + 1)st exercise. There-
fore, for a query Qi, the keys Kj such that j > i should not
be considered. We use, causality layer to mask the weights
learned from a future interaction key,

Feed Forward layer:
The self-attention layer described above results in weighted
sum of values, Vi of the previous interactions. However
the rows of the matrix obtained from the multihead layer,
S = Multihead(M̂, Ê) is still a linear combination of the
values, Vi of the previous interactions. To incorporate non-
linearity in the model and consider the interactions between
different latent dimensions, we use a feed forward network.

F = FFN(S) = ReLU(SW(1) + b(1))W(2) + b(2), (5)

where W(1) ∈ Rd×d, W(2) ∈ Rd×d, b(1) ∈ Rd, b(2) ∈ Rd are
parameters learned during training.

Residual Connections: The residual connection [2] are
used to propagate the lower layer features to the higher lay-
ers. Hence, if low layer features are important for predic-
tion, the residual connection will help in propagating them
to the final layers where the predictions are performed. In
the context of KT, students attempt exercises belonging to

a specific concept to strengthen that concept. Hence, resid-
ual connection can help propagating the embeddings of the
recently solved exercises to the final layer making it easier
for model to leverage the low layer information. A residual
connection is applied after both self-attention and feed for-
ward layer.

Layer normalization: In [1], it was shown that normal-
izing inputs across features can help in stabilizing and ac-
celerating neural networks. We used layer normalization in
our architecture for the same purpose.Layer normalization
is also applied at both the self-attention and feed forward
layer.

Prediction layer:
Finally, each row of the matrix Fi obtained above is passed
through the fully connected network with Sigmoid activation
to predict the performance of the student.

pi = Sigmoid(Fiw + b), (6)

where pi is a scalar and represents the probability of student
providing correct response to exercise ei, Fi is the ith row
of F and Sigmoid(z) = 1/(1 + e−z)

Network Training: The objective of training is to min-
imize the negative log likelihood of the observed sequence
of student responses under the model. The parameters are
learned by minimizing the cross entropy loss between pt and
rt.

L = −Σt(rt log(pt) + (1− rt) log(1− pt)) (7)

3. EXPERIMENTAL SETTINGS
3.1 Datasets
To evaluate our model, we used four real-world datasets and
one synthetic dataset.

• Synthetic1: This dataset is obtained by simulating
4000 virtual students’ answering trajectories. Each
student answers the same sequence of 50 exercises,
which are drawn from 5 virtual concepts with vary-
ing difficulty level.

• ASSISTment 20092 (ASSIST2009): This dataset is
provided by ASSISTment online tutoring platform and
is widely used for KT tasks. We conducted our ex-
periments on the updated ”skill-builder” dataset. The
dataset is sparse as the density of this dataset is 0.06,
shown in Table 2.

• ASSISTment 20153 (ASSIST2015):ASSISTment 2015
contains students’ responses on 100 skills. There are
19,917 students and 708,631 interactions. Although
the number of records in this dataset is more than
ASSISTment 2009, the average number of records per
student is smaller because the number of students is
larger. This dataset is the most sparse of all the avail-
able datasets, with a density of 0.05.

1https://github.com/chrispiech/DeepKnowledgeTracing/tree/
master/data/synthetic
2https://sites.google.com/site/assistmentsdata/home/assistment-
2009-2010-data/skill-builder-data-2009-2010
3https://sites.google.com/site/assistmentsdata/home/2015-
assistments-skill-builder-data
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Table 2: Dataset Statistics

Datasets #Users
#Skill

tags
#Interactions

#Unique

Interactions
Density

Synthetic-5 4000 50 200K 200K 1

ASSIST2009 4417 124 328K 35K 0.06

ASSIST2015 19917 100 709K 102K 0.05

ASSIST-Chall 686 102 943K 57K 0.81

STATICS 333 1223 190K 129K 0.31

The columns corresponding to #Users, #Skill tags and #Interactions

represent the number of students, total number of exercise tags and the

number of records, respectively. The column Density represents the den-

sity of each dataset (i.e., Density = #Unique Interactions/(#Users ×

#Skill tags)).

• ASSISTment Challenge (ASSISTChall): This data is
obtained from ASSISTment 2017 competition4. It is
the richest dataset in terms of the number of interac-
tions with 942,816 interactions, 686 students and 102
skills. This dataset is the most dense dataset of all the
available datasets because its density is 0.81.

• STATICS2011 (STATICS): This dataset contains the
interaction from an engineering statics course with 189,927
interactions, 333 students and 1223 skill tags. We
adopted the processed data from [11]. It is also a dense
dataset with a density of 0.31.

The complete statistical information for all the datasets can
be found in Table 2.

3.2 Evaluation Methodology
Metrics: The prediction task is considered in a binary clas-
sification setting i.e., answering an exercise correctly or not.
Hence, we compare the performance using the Area Under
Curve (AUC) metric.
Approaches: We compare our model against the state-of-
the-art KT methods, DKT [6], DKT+ [10], and DKVMN [11].
These methods are described in the introduction.
Model Training and parameter selection: We trained
the model with 80% of the dataset and test it on the remain-
ing. For all the methods, we tried the hidden state dimen-
sion d = {50, 100, 150, 200}. For the competing approaches,
we used the same hyperparameters as reported in their re-
spective papers. For initialization of weights and optimiza-
tion, we used a similar procedure as [10]. We implemented
SAKT with Tensorflow and used ADAM [5] optimizer with
learning rate of 0.001. We used a batch size of 256 for the
ASSISTChall dataset and 128 for the others. For datasets
with a larger number of records, e.g., ASSISTChall and AS-
SIST2015, we used a dropout rate of 0.2, while for the re-
maining datasets, we used a dropout rate of 0.2. We set the
maximum length of the sequence, n as roughly proportional
to the average exercise tags per student. For ASSISTChall
and STATICS dataset we use n = 500, for the ASSIST2009
n = 100 and 50 , for the synthetic and ASSIST2015 datasets
n is set to 50.

4https://sites.google.com/view/assistmentsdatamining

Table 3: Student Performance prediction comparison.

Datasets AUC

DKT DKT+ DKVMN SAKT Gain%

Synthetic 0.823 0.824 0.822 0.832 0.97

ASSIST2009 0.820 0.822 0.816 0.848 3.16

ASSIST2015 0.736 0.737 0.727 0.854 15.87

ASSISTChall 0.734 0.728 0.689 0.734 0.00

STATICS 0.815 0.835 0.814 0.853 2.16

Average 0.786 0.789 0.773 0.824 4.43

1 Bold numbers are the best performance.

2 The reported results are obtained by the best hyperparameter selec-

tion for each dataset individually.

4. RESULTS AND DISCUSSION
Student Performance Prediction: Table 3 shows the
performance comparison of SAKT with the current state-
of-the-art methods. On the Synthetic dataset, SAKT per-
forms better than the competing approaches, achieving an
AUC of 0.832 compared to 0.824 by DKT+. Even though
Synthetic is the most dense dataset, SAKT outperforms
RNN based methods because of the methodology used for
generating Synthetic. For this dataset, each individual ex-
ercise is derived from only one concept. The probability
of a student answering an exercise from this dataset cor-
rectly is determined using Item Response Theory [8] as,
p(correct|α, β) = c+ 1−c

1+exp(β−α) , where c denotes the prob-

ability of guessing it correctly, α and β are randomly chosen
numbers to indicate the concept ability and exercise diffi-
culty, respectively. Thus, in this dataset, the exercises be-
longing to the same concept are strongly correlated. SAKT,
unlike other benchmarks, directly attempts to identify ex-
ercises belonging to the same concept and hence performs
better than other methods. On ASSIST2009, SAKT per-
forms better than competing approaches, gaining a perfor-
mance improvement of 3.16% over the second best perform-
ing method. For ASSIST2015 dataset, SAKT shows an im-
pressive improvement of 15.87%. We attribute this gain to
the fact that attention mechanism leveraged by SAKT can
learn and generalize well even when the dataset is sparse,
which is the case with ASSIST2015 as its density is the least
among the other datasets. For STATICS2011, our method
achieves a performance improvement of 2.16% compared to
DKT+. For ASSISTChall, our method performs at par with
DKT. This can be attributed to the fact that ASSISTChall
is the most dense dataset of all the real-world datasets.
Attention weights visualization: Visualizing the atten-
tion weights between the elements of past interactions (which
serve as keys) and the exercise that the student is going to
solve next (which serves as query) can help in understand-
ing which exercises in the past interactions are relevant to
the query exercise. With this motivation, we compute the
sum of attention weights of each exercise pair (e1, e2) across
all the sequences where e1 serves as query and interaction
with exercise e2 serves as key. We then normalize the atten-
tion weights so that the sum of the weights for each query
is one. This results in a relevance matrix in which each
element, (e1, e2) represents the influence of e2 on e1. We
perform our analysis on Synthetic because this dataset was
generated with known hidden concepts and hence the ground
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Table 4: Example of attention weights for some sequences in ASSIST2009 dataset.

Exercise tag Past Interactions

Scale Factor (Probability of Two Distinct Events,1): 0.000001, (Circle Graph, 1): 0.0001, (Circle Graph,1):0.001,
(Division Fractions, 0): 0.99

Ordering integers (Intercepts,0): 0.21, (Ordering positive decimals,1): 0.611, (Multiplication whole numbers,1): 0.09,
(Proportion,1):0.033

Rate (Interior Angles Figures, 0):0.005, (Algebraic Simplification,0) : 0.009, (Rate,0):0.5, (Interior Angles
Figures, 0):0.1, (Algebraic Simplification,0) : 0.12

The columns corresponding to Exercise tag refers to the query (i.e., the exercise for which we have to predict the student’s
performance) and Past Interactions refers to the sequence of interactions that has been observed for that student, respectively.
red colored elements in the right column represent the most important element among the past interaction elements

(a) Heatmap depicting the attention weights between each pair
of exercises. Note that, the weight assigned for pair (i, j), where
j > i is always zero because all the sequences consists of exer-
cises in the same order from

(b) Graph depicting the relevance between exercises. The
relevance is determined by the attention weights learned
between the exercises using SAKT. We observe a perfect
clustering of latent concepts.

Figure 3: Visualizing attention weight of Synthetic dataset.

truth regarding the relevance of different exercises are known
to us. Figure 3a shows the heatmap corresponding to the
relevance matrix of exercises in Synthetic. For Synthetic,
all the sequences consist of all exercise tags in the same se-
quence starting from 1 to 50.
In order to build the influence graph between the exercise
tags, as shown in Figure 3b, we use the relevance matrix.
Firstly, we draw out the first exercise in the sequence that
belongs to each hidden concept, and visit each row of the
relevance matrix, and connect the exercise corresponding
to that row to the first two exercises ranked based on edge
weight, which is proportional to the attention weights be-
tween the pair of exercises. We can see that the based on
the attention weights, we are able to achieve the perfect
clustering of the exercise tags based on the hidden concepts
from which they are derived. An interesting observation is
that two exercises which occur far apart in the sequence but
belonging to the same concept can be identified by SAKT.
For example, as shown Figure 3b a query on exercise 22 as-
signed most weight to the key with exercise 5 even when
they occur far apart in the sequence.
Two exercises which are relevant to each other tend to have
high attention weights as the performance on one of them
impacts the performance on the other. Additionally, in the
real-world scenario, the exercises which occur close in the
sequence tend to belong to the same concept. Thus, we ex-
pect that the attention weights biased towards the exercises
that occur recently in the interaction sequence. To illustrate
this, we manually analyzed ASSIST2009 dataset to visual-
ize the attention weights for some selected samples. Table 4
shows some of the exercises along with the past interactions
and attention weights assigned to each interaction.
Ablation Study: Table 4 shows the performance of default
SAKT architecture and all the variants on all the datasets
(with d = 200).
No Positional Encoding (PE): In this variant of the default
architecture, we removed the positional encoding. As a re-
sult, the attention weights assigned for predicting the per-
formance of student on a particular exercise depends only
on the interaction embedding, without being affected by its
position in the sequence. In case of ASSIST2009 and AS-
SIST2015, the dataset is sparse and hence the impact of
removal of PE is not much pronounced as is the case with
the dense dataset such as ASSISTChall and STATICS.
No Residual Connection (RC):RCs shows the importance of
low level features i.e., the interaction embedding while mak-
ing the prediction. Since our architecture is not very deep,
the RC do not contribute much to the performance of the
model. In fact removal of residual connection gives better
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Table 5: Ablation Study

Architecture Synthetic
ASSIST

2009

ASSIST

2015

ASSIST

Chall
STATICS

Default 0.832 0.848 0.854 0.734 0.853

No PE 0.827 0.842 0.849 0.715 0.832

No RC 0.823 0.847 0.857 0.709 0.834

No Dropout 0.832 0.845 0.851 0.711 0.840

Single head 0.823 0.828 0.845 0.709 0.851

0 block 0.826 0.837 0.822 0.634 0.819

2 blocks 0.827 0.840 0.853 0.724 0.845

performance than default for the ASSIST2015 dataset.
No Dropout: Dropout is used in neural network to regular-
ize the model so that it can generalize better. Overfitting
of the model is more effective for dataset with less number
of records compared to the number of parameters of model.
As a result, role of dropout is more effective for ASSIST2009
dataset and STATICS dataset.
Single head: Instead of using 5 heads as is the case in de-
fault architecture, we tried a variant of using only one head.
Multiple heads help in capturing the attention weights in dif-
ferent subspaces. Using single head consistently drops the
performance of SAKT on all the datasets.
No block: When no self-attention block is used the predic-
tion of the next exercise depends only on the last interaction.
It can be seen that without attention block the performance
is significantly worse than that of default architecture.
2 Blocks: Increasing the number of blocks of self-attention
increases the number of parameters of the model. However,
in our case this increase of parameters does not prove to
be useful in improving the performance. The reason being
an important aspect of prediction of performance of student
at an exercise is dependent on his performance on the past
relevant exercises. Adding another block of self-attention
makes the model more complex.
Training efficiency: Figure 4 demonstrates the efficiency
of various methods based on their run times on GPU during
the training phase. Comparing the computational efficiency,
SAKT only spends 1.4 seconds in one epoch which is 46.42
less than the time taken by DKT+ (65 seconds/epoch), 32
times less than DKT (45 seconds/epoch) and 17.33 times
less than DKVMN (26 seconds/epoch). We conducted the
experiments on a single GPU of type NVIDIA Titan V.

Figure 4: Training Efficiency on ASSIST2009 dataset.

5. CONCLUSION AND FUTURE WORK
In this work, we proposed a self-attention based knowledge
tracing model, SAKT. It models a student’s interaction his-
tory (without using any RNN) and predicts his performance
on the next exercise by considering the relevant exercises
from his past interactions. Extensive experimentation on
a variety of real-world datasets shows that our model can
outperform the state-of-the-art methods and is an order of
magnitude faster than the RNN-based approaches.
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ABSTRACT
Success prediction in Massive Open Online Courses (MOOCs)
is now tackled in numerous works, but still needs new case
studies to compare the solutions proposed. We study here
a specific dataset from a French MOOC provided by the
OpenClassrooms company, featuring 12 courses. We exploit
various features present in the literature and test several
classification models.

1. INTRODUCTION
Multiple models and data mining methods for learner suc-
cess prediction in a Massive Open Online Courses (MOOCs)
are proposed by many works in the literature [1], with dif-
ferent conclusions about which model provides the best per-
formance. The quality of the results seems to highly depend
on the input dataset, and on the selected or computed fea-
tures. Generalization of the methodology for success pre-
diction seems now ongoing [1], but we still need new case
studies to improve the accuracy and insights obtained by
these methods.

This work presents a case study on a new dataset, pro-
vided by OpenClassrooms, a major online courses french
company. We test several models using classification algo-
rithms and sequence-based approaches, such as process and
pattern mining. Our study aims at enriching previous results
obtained for different datasets published in the literature.

Our first contribution in this work is the comparison of
8 classification models. Random Forest, AdaBoost, Sup-
port Vector Machine (SVM), logistic regression and neu-
ral networks are first applied, followed by sequence-based
approaches: an LSTM neural network, a process mining
method and a proposal of a solution based on a sequence
mining method. The second contribution consists in ex-
perimental results obtained from a new dataset for a suc-
cess prediction task. While most papers only focus on 1-5
courses [1], we use here 12 different courses from the same
platform.

The remainder of this paper is organized as follows: sec-
tion 2 surveys previous work related to success prediction.
Section 3 presents the dataset used for the experiments with
details on the raw data used to compute features. Sec-
tion 4 describes features obtained from the literature and
their adaptation to our context. Section 5 presents the clas-
sification methods that we applied. The result of our exper-
iments are detailed and discussed in section 6. We conclude
by summarizing our work and drawing perspectives in sec-
tion 7.

2. RELATED WORK
Prediction of dropout or success in MOOCs is carried out in
numerous works [1]. The goal is to improve the performance
of the learners by detecting a possible failure in advance.
Such a detection could for instance lead to a teacher inter-
vention to increase the learner engagement in the course.

The input data for such a prediction is based either on as-
signments [2, 3, 4, 5, 6] or clickstreams [7, 8, 9, 10]. Social
activities can also be included to assess the learner engage-
ment in a course [2, 3, 5].

Classification methods rely on common approaches such as
linear regression, logistic regression, K-nearest neighbors,
random forests, decision trees, support vector machines, hid-
den Markov models and neural networks. Because the course
context is different for each study, it is hard to determine
which model will be the best for a prediction task. Support
vector machine is the best method obtained for [5] while
random forest performs better in [6]. The conclusion of [2]
states that prediction performance depends more on the fea-
tures computed than on the model.

Several temporal data mining methods are proposed in the
literature [1, 8, 9]. Recurrent neural networks are assessed
for dropout detection and experiments conclude that LSTM
recurrent networks present the second best results in [11]
(where a Nonlinear State Space Model is slightly better). [9]
proposes a solution based on process mining to emphasize a
correlation between the way learners browse the course and
their performances. Other approaches use sequence mining
algorithms to predict learner skills [8].

In the present work, we test some of the common shallow
methods proposed in the literature, as well as neural network
approaches. We also explore a solution based on process
mining, and propose one based on sequence mining. For all
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Name # users # pass # fail

Java 7761 34 (0%) 7727 (100%)
XML 855 10 (1%) 845 (99%)
Ionic 960 46 (1%) 914 (99%)

Rubys 149 5 (3%) 144 (97%)
Node JS 2227 81 (4%) 2146 (96%)
Arduino 2487 115 (5%) 2372 (95%)

Bootstrap 8402 727 (8%) 7675 (92%)
Audace Entr. 225 26 (12%) 199 (88%)

JavaScript 8105 1803 (22%) 6302 (78%)
Gestion Projet 1808 666 (36%) 1142 (64%))

Twitter 817 328 (40%) 489 (60%)
Web 7947 3502 (44%) 4445 (56%)

Table 1: Number of learners per group for
each course of the OpenClassrooms dataset, after
cleanup. The first column presents the total number
of learners and the two last ones detail the number
of passing and failing learners.

these algorithms, we assess a large set of features adapted
from the literature.

3. INPUT DATA
OpenClassrooms is a MOOC platform that provides courses
in various domains, from art and culture to computer sci-
ence. All courses are freely accessible anytime, and paid ser-
vices are proposed for supplementary features such as online
help and certificates of achievement. Courses are generally
composed of texts, videos or e-books that users can browse,
read or download after a registration process. Based on the
properties proposed in [1], these courses can be characterized
as follows:

• massive, open and online: thousands of learners can
follow the courses freely. Paid access is provided to
get an access to a tutor or a completion certificate;

• no-stakes: the learner can complete a course without
certification or credit;

• asynchronous: learners are free to register, browse the
content, or complete a course. There is no constraint
on dates for enrollment or assignments. This point is
important and has an impact on the choice of features
used as input for the prediction model;

• heterogeneous: learners have various motivations and
mostly come from francophone countries since courses
are in french.

In this study, we are considering a dataset covering 12 courses
in the domains of programming languages, project manage-
ment and startup creation. The two leftmost columns of
table 1 present for each course its name and the total num-
ber of learners that followed it, from 2014 to 2016.

The provided courses are composed of static web pages and
quizzes/assignments, and do not contain any video. A course
is composed of chapters, divided in sections, and of exer-
cises based on quizzes and assignments. To succeed in a
course, a learner must obtain an average grade on all exer-
cises higher than 70/100 (the exercises are quizzes automat-
ically graded).

The input format of learner activity is a clickstream dataset.
Each access to a resource is recorded as one event in a log
file. The granularity of the retrieved events varies among
different courses. Apart from Audace Entreprendre, Node
JS, XML and Java (in bold in table 1), which are traced at
the section level, all courses present a chapter granularity.

The first step applied on the raw dataset consists in seg-
menting the learners’ sequences of events into sessions. This
session detection step aims to enrich some features related
to the learners’ regularity, the duration, or the number of
events in the working sessions. The learners’ sessions are de-
termined from the raw sequences with the method proposed
in [12], where a session is defined as a delimited and sustained
set of pages visited by the same user within the duration of
one particular visit to a particular website. Once sessions
are determined, a cleaning task is performed: learners with
only one session and no exercise attempt are removed. We
associate this behaviour to learners that want to check the
content of the course and do not really intend to follow it.

Discussion with the OpenClassrooms company about their
needs lead us to define two groups for our goal of success
prediction:

• passing group: set of learners that obtained an average
grade equal to or higher than 70/100 for a course;

• failing group: set of learners that did not obtain an
average grade higher than 70/100. This group contains
all the learners that either quit the course or completed
all exercises but failed to obtain a grade higher than
the 70/100 validation threshold.

Our choice for the terms ”Pass / Fail” is based on [1], where
it is defined that A student typically passes a course if they
meet or exceed an instructor-specified overall grade thresh-
old; otherwise they fail.

The two rightmost columns of table 1 present the number
of learners in each group for the 12 courses of the dataset,
after the cleaning step. As commonly encountered in MOOC
contexts, these groups are clearly unbalanced: on average,
the passing group represents 15% of the learners. Courses
of table 1 are ordered according to the percentage of passing
learners.

4. FEATURES
Table 2 presents our candidate features set. This set re-
groups an adaptation of the best features identified in [2, 7,
13, 14, 15]. We needed to adapt some of the features due
to differing contexts for our MOOC. A set of regularity fea-
tures proposed in [10] was also used in our experiments: the
features PDH, PWD, WS1, WS2, WS3, FDH, FWH and
FWD were tested for our classification task. Check [10] for
more details on these features.

Several options are possible to generate features depending
on the considered machine learning approach:

• basic features: features are computed for the whole
considered period (after x weeks of the course for in-
stance). These features do not evolve with time;

• temporal features: features are computed for succes-
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Category name description abbrev.

total duration total time spent on the course totalDuration
window duration time spent from the first event to the last

one
windowDuration

linearity ratio between the number of correct transi-
tions, w.r.t. the structure of the course and
the number of transitions in the sequence

linearityRatio

Activity # events per resource # of accesses per resource #eventPerR
duration per resource total time spent on each resource durationPerR

average duration per resource avg duration spent on each resource avgDurationPerR
average session duration avg duration of user sessions avgSessionDuration

average # events in session avg number of events in each user session avg#eventSession
median of intertime median of the time spent between sessions medianInterTime

duration before assessment∗ time spent before each assessment durationBeforeA
# events before assessment∗ # of events before each assessment #eventBeforeA

# sessions before assessment∗ # of sessions between each assessment #sessionBeforeA
Inter-
activity
periods

# events per day before assessment∗ average number of events per day between
each assessment

#eventPerDayBeforeA

# sessions per day before assessment∗ avg # of sessions per day between each as-
sessment

#sessionPerDayBeforeA

time since last event∗ time without activity after 1, 2,. . . , n
weeks (n=7 weeks in our experiment)

timeSinceLastEvent

Assignment marks∗ all marks obtained for each quiz marks

Table 2: Features used for our experiments: this set is composed of features identified in our litterature
review, adapted to the characteristics of our dataset (* indicates the features defined by a set of values).

sive time periods in order to emphasize their evolution
all along the course. The period commonly used in the
literature seems to be one week [1];

• temporal features with stacking: similar to the previ-
ous method but each feature of a period is stacked with
the previous one. Practically, it consists in adding the
values of week n with those of week n+1.

5. PREDICTION TASK
In this section, we present different classification methods
tested for our prediction task of passing/failing. We start
with the baseline methods commonly applied for this kind
of task and then detail a process mining approach and our
proposal based on a sequence mining solution.

5.1 Baseline approaches
In order to compare our results with other available works in
the literature, we experimented with the following methods:
Random Forest, AdaBoost, SVM, logistic regression, dense
neural network and LSTM neural network.

A first step of feature selection is necessary for logistic re-
gression and SVM models. We rely here on a wrapper
method with a forward selection to emphasize the best fea-
tures. A subset of features is iteratively built, starting from
an empty set and adding one by one the features that best
improve our model’s accuracy for the whole set of courses.
The process is stopped when accuracy does not increase any-
more.

Except for LSTM neural network that directly relies on a
sequence of features, other methods can deal with several

types of input features: basic features, temporal features and
temporal features with stacking. We test each possibility in
our experiment, to determine in what measure this choice
impacts the performance of the prediction.

5.2 Process mining approach
Process mining was initially a method to analyze business
processes for process discovery, process conformance check-
ing and process improvement. In the context of online cour-
ses, this method proposes to study the behavior of learners
during a course, by emphasizing common paths in course
resource navigation.

The classifier for our prediction task is built from the out-
puts of process discovery and conformance checking meth-
ods. Our process discovery relies on the Heuristic Miner
algorithm [16]. This algorithm is robust, and deals with the
majority of common problems in process detection. Models
for failing and passing are built with this algorithm for each
course. Our conformance checking solution relies on an al-
gorithm based on an alignment method [16]. Our prediction
task is carried out by computing the fitness of a learner on
both failing and passing models, and affecting him to the
group with the best fitness.

The input dataset of a process mining algorithm is a set of
traces, where each trace represents the sequence of activities
of one learner. In our context, an activity is an access to a
resource and is defined with the id of this resource. Because
the grades and the duration of each access are lost, a cat-
egorization step is carried out on each event of a learner’s
trace. It consists in updating the resource ids (the activity)
as follows: for an exercise id, the new id depends on suc-
cess or failure. For a chapter/section, the new id depends

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 392



Sequence
length

Random forest AdaBoost SVM Logistic regression

25% marks, durationPerR,
#sessionPerDayBe-
foreA, #eventBeforeA,
avgDurationPerR

marks,
avg#eventSession,
durationPerR, avgDura-
tionPerR

marks, #eventPerR,
#sessionPerDayBe-
foreA, durationBeforeA

#eventPerR, marks,
durationBeforeA, #ses-
sionBeforeA, #event-
PerDayBeforeA

50% marks, #sessionPerDay-
BeforeA, #eventPerDay-
BeforeA

marks, avgDura-
tionPerR, durationPerR,
#eventPerR

#eventPerR, marks,
#eventBeforeA, #event-
PerDayBeforeA

#sessionBeforeA,
#eventPerR, marks,
#eventBeforeA

75% marks, #sessionPerDay-
BeforeA, #eventPerDay-
BeforeA

marks, avgDura-
tionPerR, durationPerR

marks, #eventPerDay-
BeforeA, #eventPerR,
#sessionBeforeA

marks, #eventPerR

100% marks marks marks marks

Table 3: Best features for the different sequence lengths for random forest, AdaBoost, SVM and logistic
regression models. This result is an aggregation of the best features obtained on each course separately. For
each model and sequence length, features are ordered from most to least pertinent.

on the duration spent on the resource, using 3 classes of
short/medium/long durations.

5.3 Sequence mining approach
With this approach, our goal is to determine whether differ-
ent groups of learners present distinct frequent sub-sequences
of events in their traces.

Our first step is to build the passing model (by retrieving
the frequent sequence on only the passing learners) and the
failing model. We rely on the VMSP algorithm to generate
the maximal frequent sequences on both groups. Note that
all sub-sequences of a maximal sequence are also frequent
sequences, thus we still obtain all the frequent sequences.

Our second step is to compute a similarity score between
a model and a learner’s sequence. Our proposal consists
in tessellating the new learner sequence with the larger fre-
quent sub-sequences of the models. Practically, we try to
map each frequent sequence on the learner sequence. The
mapping obtained is used to compute a similarity score:

1. for a frequent sequence of length n in the model, gen-
erate all k-grams with k between 2 and n;

2. map all k-grams one by one on the learner sequence,
keeping the mapping with the larger k-gram;

3. repeat the steps 1-2 for all frequent sequences;
4. for each item position of the learner sequence, a score is

computed as the length of the longer k-gram that maps
this position. The similarity score is then obtained by
summing up all these positions’ scores.

The input dataset for this method is similar to the one used
for our process mining approach. Each learner’s event is
categorized with our previous method (see section 5.2).

6. EXPERIMENTS
For all the following experiments, a cross validation 80%
train - 20% test is carried out 10 times on each course sepa-
rately. For the neural network approaches, the training set
is divided into a train set, a validation set and a test set. In-
put features are standardized. The computation of temporal
features is carried out by grouping the sessions into 7 days

periods. For each period, all features, except the regularity
ones, are computed.

Neural networks present the advantage of avoiding the la-
borious feature selection step, but still need some tuning
for determining a correct architecture with its optimization
parameters. Our first task was to assess several candidate
architectures, varying the number of layers and units. Our
prediction tasks were carried out on all courses and results
were aggregated. The best accuracies were obtained with the
following parameters: [Dense Layer of 512 units, Dropout
layer, Dense Layer of 256 units, Dropout layer, Dense layer
of 1 unit with a sigmoid activation].

A similar search was carried out for the architecture of the
LSTM solution, leading to the following parameters: [LSTM
layer of 32 units, Dense layer of 1 units with a sigmoid ac-
tivation]. The input of the LSTM algorithm, a time series,
was computed as follows: each session is considered as a time
step. For a specific learner, the input features for time t is
computed with the learner tth session and each element of
a learner’s time step is stacked with its previous element (a
padding is applied to provide the same time’s series length
for each learner).

Finally, in order to assess our prediction at different time
steps of the learning process, classification tasks are tested
on truncated versions of the sequences. Experiments provide
results for 25%, 50%, 75% and 100% of learner’s sequence
length (number of events).

In the following, the best features for random forest, logistic
regression, SVM and AdaBoost models are first presented.
Second, the results of the prediction task are detailed for
each model.

6.1 Best features selection
The best features obtained for the shallow methods are pre-
sented in table 3. The best features for SVM and logistic
regression are obtained with the wrapper method described
in section 5.1. Best features on each course were computed
with a 10 times 80%-20% cross validation, leading to a score
for each feature depending on its ranking. These scores were
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25% 50% 75% 100%
A. P. F. A. P. F. A. P. F. A. P. F.

Basic
features

Random forest 91% 28% 96% 93% 36% 96% 94% 47% 96% 98% 77% 98%
AdaBoost 91% 41% 94% 93% 48% 95% 94% 59% 96% 99% 96% 99%
SVM 88% 61% 90% 91% 64% 92% 92% 69% 93% 98% 89% 99%
Logistic Reg. 88% 66% 89% 91% 71% 91% 93% 84% 93% 99% 100% 99%
Dense NN 91% 37% 94% 93% 47% 95% 94% 59% 95% 98% 82% 99%
LSTM 90% 38% 93% 91% 47% 93% 93% 55% 95% 97% 78% 98%
Process mining 66% 47% 64% 72% 49% 71% 67% 54% 65% 64% 54% 58%
Seq. mining 24% 85% 13% 24% 88% 9% 22% 95% 5% 18% 100% 0%

Temporal
features

Random forest 92% 9% 99% 92% 11% 99% 92% 12% 98% 92% 11% 99%
AdaBoost 90% 42% 94% 92% 46% 95% 92% 46% 96% 95% 55% 98%
SVM 88% 60% 90% 89% 65% 90% 92% 72% 92% 99% 87% 99%
Logistic Reg. 87% 58% 91% 91% 67% 92% 92% 76% 92% 99% 90% 99%
Dense NN 89% 36% 93% 90% 41% 93% 92% 48% 94% 94% 59% 96%

Temporal
features
with
stacking

Random forest 89% 16% 97% 90% 22% 98% 91% 24% 97% 92% 29% 96%
AdaBoost 91% 43% 94% 92% 47% 95% 93% 51% 96% 97% 67% 99%
SVM 91% 66% 93% 87% 23% 95% 91% 57% 92% 91% 61% 92%
Logistic Reg. 89% 64% 90% 90% 61% 92% 92% 76% 92% 98% 91% 98%
Dense NN 88% 36% 92% 83% 18% 88% 79% 17% 82% 78% 18% 83%

Table 4: Accuracies of the different models tested. A., P. and F. stand respectively for All, Pass and Fail

then aggregated among the courses. For random forest and
AdaBoost, the weights provided by the learning algorithms
have been used. For each method and sequence length, we
selected the features with the best scores until a sudden drop
appeared (the elbow method).

Clearly, the number of best features decreases with the in-
crease of the sequence length available for the classification
task, leading to the sole use of marks (feature marks) for
full length. The marks feature is obviously pertinent for all
sequence lengths.

If we ignore marks, random forest, logistic regression and
SVM seem more related to inter-activity periods features
while AdaBoost is associated to activity features. The best
features concern mainly the marks, the activity intensity and
the activity intensity between assessments. No regularity
feature appears in the best features list for any model.

In the following, the aggregated best features obtained for
SVM and logistic regression models are used to provide the
results of our prediction task.

6.2 Best models
Table 4 presents the aggregated accuracies obtained for each
model on each course separately, with basic features, tem-
poral features and temporal features with stacking.

Each row is associated to a model and the columns present
the sequence length used to fit the model (25%, 50%, 75%
and 100%). The sub-columns (A., P., F.) stand for All, Pass
and Fail, respectively for the overall accuracy, the accuracy
for the passing learners and the accuracy for the failing learn-
ers.

Among the shallow classification methods, the Adaboost
and logistic regression models present the more balanced
results on both the passing and failing groups: Adaboost

seems more reliable to detect the failing learners while the lo-
gistic regression model performs better on the passing group.
The Random Forest solution provides good results on bal-
anced courses but clearly fails on very unbalanced ones (see
the 28% accuracy on the passing group). The SVM model
presents results similar to the logistic regression model, ex-
cept for the passing learner accuracies which are clearly
lower.

Compared to the best shallow models, the dense neural net-
work presents a poor performance on passing learners and
does not significantly outperform failing learner prediction.
In our opinion, the lack of passing learners for each course
in the train set does not enable to fit appropriately the pa-
rameter of the network. The LSTM model provides a result
similar to the dense neural network, but with a higher com-
putation cost. Hence we do not recommend these neural-
based models in our context.

The process mining model presents very low scores. Our
explanation is that the graphs generated by the heuristic
miner algorithm on the two learner groups (passing and fail-
ing) contain the same navigation paths. Traces for passing
or failing learners can then be replayed on both graphs with
a good fitness.

A similarly bad result is also obtained with the sequence
mining model. It can be explained by the fact that frequent
sequences of failing learners are short and almost all included
in the frequent sequences of the passing learners. Passing
frequent patterns are more numerous and longer (longer pat-
terns involve an increase of the similarity score between a
model and an input learner trace). It is then more likely
to find a better similarity between a learner sequence and
the passing learner model. Our conclusion for the process
and sequence mining approaches is that passing and failing
learners do not present a discriminant behavior on the way
they browse the courses.
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The second and third parts of table 4 present the average
accuracies when temporal features are used for the input
dataset of the models, without and with stacking. Compared
to the results obtained with the basic features, the results
with the temporal features with and without stacking are
lower for all models on all sequence lengths, with a clear
drop on the accuracies of the passing learners. To conclude,
the temporal features do not provide any improvement in
our experiments.

To summarize, our experiments show that shallow models
present the best results for our dataset. Among them, Ad-
aBoost and logistic regression present the best results re-
spectively for the failing group and the passing group. An-
other observation is that contrary to several experimental
results [8, 9], our temporal data mining approaches (tem-
poral features, LSTM, process mining and sequence mining
solutions) do not perform well on our data set. Our con-
clusion here is that no difference can be found in the way
learners access the course resources.

7. CONCLUSION
The objective of our work was to assess several solutions for
predicting success in the context of Massive Online Open
Courses, using a new dataset provided by the OpenClass-
rooms company, a major online course enterprise in France.

From our experimental results, we reached the following con-
clusions:

• failing and passing learners do not seem to present
differences in the way they browse a course. Neither
specific paths nor specific patterns are identified with
our proposed solutions to discriminate between passing
and failing learners;

• best features depend on the model used for the predic-
tion tasks;

• temporal features do not increase the performance of
the prediction task;

• the best models to detect failing and passing learners
are respectively based on AdaBoost and logistic regres-
sion solutions.

A short term perspective work is to apply the same predic-
tion tasks on other MOOC datasets, in order to validate our
previous conclusions in other learning environments.
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ABSTRACT
Course selection is a crucial and challenging problem that
students have to face while navigating through an under-
graduate degree program. The decisions they make shape
their future in ways that they cannot conceive in advance.
Available departmental sample degree plans are not person-
alized for each student, and personal discussion time with
an academic advisor is usually limited. Data-driven meth-
ods supporting decision making have gained importance to
empower student choices and scale advice to large cohorts.
We propose Scholars Walk, a random-walk-based approach
that captures the sequential relationships between the dif-
ferent courses. Based on the “wisdom of the crowd” and the
students’ prior courses, we recommend a short list of courses
for next semester. Our experimental evaluation illustrates
that Scholars Walk outperforms other collaborative filtering
and popularity-based approaches. At the same time, our
framework is very efficient, easily interpretable, while also
being able to take into consideration important aspects of
the educational domain.

Keywords
course recommendation, Markov chains, random walks, se-
quential recommendation, higher education

1. INTRODUCTION
The general purpose of higher education is to offer programs,
which will help learners to gain knowledge throughout their
studies. Students enjoy a plethora of offerings. However,
course selection can be “messy and unorganized” [3] as it
depends on many factors that students need to consider.
Students have to balance personal preferences (interests, ob-
jectives, and career goals) and general education and degree
program requirements. As a result, course selection can be
a non-trivial task.

Decisions can be made based on manual guides offered from
each department, but these are not tailored to individual

cases [7] in a higher education setting. Personalized assis-
tance can be given by academic advisers, however this is not
scalable with large cohorts with thousands of students. The
ratio of student to advisor may be very high [14], limiting
the adviser-advisee discussion time. Additionally, college
students take on average up to 20% more courses than re-
quired [2]. Better advising can help alleviate these problems.
We need predictive models that can be employed to enable
strategic action and attain better results. In this paper, we
focus on appropriately designing a course recommendation
system (CRS) that could facilitate the conversation between
advisors and students for future planning.

There are several existing approaches to generate a set of
courses to recommend for next semester. Their majority
suggest courses based on either the constraints and require-
ments that they satisfy or their expected grades. This paper
introduces Scholars Walk, a random-walk based approach
for the course selection problem. It describes a personal-
ized model that takes advantage of the sequential nature of
course selection. We assume that students’ choices for the
next term depend on the courses they have taken so far.
In our approach, we build a Markov chain for each degree
program over the courses taken consecutively. Then, we per-
form a random walk, starting from the courses that students
took in the previous semester. We evaluated the proposed
approach on a number of different departments with dif-
ferent subjects and characteristics. Scholars Walk overall
outperforms other competing approaches in all the metrics
considered in this paper.

2. RELATED WORK
Recommender systems have been broadly applied within the
context of student learning [16]. We will further review the
different approaches developed to help students select a sub-
set of courses to register for an upcoming semester. The
first course recommender systems are based on constraint
satisfaction [22]. The sequence-based recommender [24] also
considers complex constraints to improve the expected time-
to-degree and GPA. A related body of work involves mining
of association rules. Al-Badarenah et al. [1] cluster the stu-
dents based on their grades first. Nguyen et al. [18] apply
sequential rule mining in (course, grade) pairs and recom-
mend the courses with the best performance. A different
CSR was proposed by Esteban et al. [10], where there is
available information about students’ satisfaction after tak-
ing a course.
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Table 1: Statistics for each major.

Major n m grades %pop flex

Accounting 846 53 22,524 45.9 0.28
Aerospace Engr 532 109 16,259 25.7 0.10
Biology 1,275 146 28,084 14.9 0.11
Biol Society Env 709 57 14,597 31.4 0.31
Biomedical Engr 644 131 19,748 23.8 0.16
Chemical Engr 826 108 24,825 26.3 0.11
Chemistry 724 145 18,292 17.4 0.14
Civil Engr 651 112 19,189 26.5 0.12
Communication 1,333 95 22,421 15.4 0.19
Computer Sc 998 161 24,899 13.7 0.11
Electrical Engr 740 164 22,191 17.1 0.12
Elementary Ed 770 49 16,527 40.4 0.31
English 1,176 153 17,736 9.5 0.11
Finance 1,234 83 32,255 29.7 0.20
Genetics Cell 680 93 15,385 23.1 0.19
Journalism 2,306 100 40,519 17.1 0.20
Kinesiology 1,176 164 33,622 14.8 0.16
Marketing 1,291 69 29,901 30.8 0.20
Mechanical Engr 1,369 132 39,436 18.9 0.11
Nursing 819 86 25,136 31.2 0.27
Nutrition 554 87 15,591 29.7 0.19
Political Science 1,307 171 19,260 8.1 0.12
Psychology 1,894 115 31,141 13.4 0.15

n, m are the number of students and courses.
%pop is the course popularity (percentage of students
that took a course at least once).
The last column (flex) is the degree flexibility.

Recently, recurrent neural networks (RNNs) have been suc-
cessfully applied within the educational domain. Long Short
Term Memory (LSTM) networks have been used for grad-
ing prediction [13, 20]. In terms of course recommenda-
tion, a combination of LSTMs and skip-gram models has
also developed to balance implicit and explicit student pref-
erences [23]. Morsy et al. [17] have also used RNN to rec-
ommend courses which are expected to help maintain or im-
prove students’ GPA. Other approaches include a Markov-
based model [15], that represents the sequence of courses
taken as a stochastic process. Garner et al. [11] build a co-
enrollment network and extract features for a network-based
structural model. Finally Elbadrawy et al. [9] propose us-
ing the academic features to improve the recommendation
performance.

3. DOMAIN & DATASET
This work focuses on the undergraduate students in a tradi-
tional educational institution. We used a dataset from the
University of Minnesota that spans more than 10 years. The
A–F grading scale (A, A-, B+, B, B-, C+, C, C-, D+, D, F)
is used. Courses in which a student receives less than a C-
do not count toward satisfying degree requirements.

We extracted the degree programs that have at least 500
graduated students from 23 different majors. We only kept
students that actually received their degree and had at least
three consecutive semesters with valid courses. We selected
the 40 most frequent courses and the courses that belonged
to frequent subjects. A subject is considered frequent if stu-

dents have taken at least three courses that belong to that
subject on average. We removed instances without an A–F
grade, and non-academic courses, like independent/directed
study or field study. We did not consider offerings in the
summer semester. As these are less common, they would
distort the course sequence of students not enrolled in sum-
mer. Basic statistics for each degree program are shown in
Table 1. The average course popularity (%pop) for course i
is the percentage of students that have taken i at least once
during their studies. The degree flexibility (flex) is a mea-
sure of how different are the course selections that students
make. It is one minus the average Jaccard similarity coef-
ficient for every pair of students. The Jaccard similarity is
computed as the number of courses that two students have
in common divided by the minimum courses that student
has taken them.

4. PROPOSED METHOD
4.1 Assumptions & Notation
In the context of course recommendation for higher educa-
tion, we make the following assumptions:

1. Time is discrete and moves in steps, from one semester
to the next.

2. There is a relative ordering of the courses in terms of
course levels, difficulty or material covered.

3. Learning is seldom non-sequential; each course com-
pleted provides some knowledge and experience that
can be used in future courses. As a consequence, se-
quence matters in course selection.

4. In the absence of enough domain experts, the order
in which courses are taken by students historically can
reveal useful information on the curriculum and degree
requirements.

5. We know the number of courses that the student will
take next semester.

For the rest of the paper we will adopt the following no-
tation. When we use the word target we will refer to the
student/course/semester for which we want to generate re-
commendation. Matrices are denoted with capital bold let-
ters, while vectors are denoted with lower bold letters. Cal-
ligraphic letters will be used for sets.

The set of students is S and has size m. The set of all courses
is denoted by C, |C| = n. Student j has an enrollment history
Hj , that is an ordered set of courses, {Cj,1, . . . , Cj,t, . . . , Cj,tj},
where Cj,t is the set of courses taken in semester t and tj is
the last semester that the student took courses. Table 2
presents the symbols we used.

4.2 Building the Markov chain
Markov models satisfy the Markov property, i.e., the condi-
tional probability distribution of future states depends only
on the current state. In the simplest Markov model, known
as first-order, each state is formed by a single action, i.e.,
a student took a course. In the case of K-th-order models,
the state-space will correspond to all possible sequences of
K actions. As the available data could not adequately sup-
port the number of states of higher-order chains, these mod-
els would suffer from reduced coverage and possibly worse
overall performance [6]. Therefore, we adopted a first-order
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Table 2: Notation.

n,m number of courses, students
i, i′ indexes for courses
j, j′ indexes for students
tj number of semesters that j has taken courses
t index for semesters
C, S set of courses, courses
A set of states in Markov chain {A1, . . . ,An}
Hj enrollment history of student j
Cj,t course that student j took in semester t
T, F matrices (n× n)
Tk,l the (k, l) element of matrix T
Tk the k-th row of matrix T (1× n)
T:,l the l-th column of matrix T (n× 1)
u personalization vector (1× n)

p(k) state vector (1× n) at timestep k

Figure 1: Example: Anna’s enrollment history.

1st	Semester	 2nd	Semester	
	

3rd	Semester	

MATH1000	

MATH1111	

CSCI1111	

MATH2222	

CSCI4444	

MATH3333	

CSCI2222	
Anna	

Markov chain. We assume that the next-semester courses
depend only on the courses that the student is taking the
current semester.

Markov models are represented by the parameters 〈A,T〉,
where A is the set of states for which the Markov model is
defined; and T is an (n × n) transition probability matrix
(TPM), where n is the number of states (i.e., courses). In
this context, state Ai is associated with the fact that the
student took the course i. Each entry Ti,i′ corresponds to
the probability of moving to state Ai′ when the process is
in state Ai, i.e., taking course i′ after course i. Note that
this matrix is not symmetric, i.e., Ti,i′ 6= Ti′,i, as the order
in which the courses are taken matters.

Based on the historical enrollment information of the stu-
dents, we first compute F, an (n × n) matrix that holds
the counts of every pair of consecutive courses. Every pair
of courses (i, i′) that a student has taken consecutively is
used to estimate the entry Fi′,i, i.e., the frequency of the
event that state Ai′ follows the state Ai. For example, con-
sider student Anna in Fig. 1. The entry corresponding to
the course pair of (MATH1000, CSCI1111) will be updated.
Similarly, every line connecting two courses will equally con-
tribute in the corresponding element of matrix F.

After we compute the frequencies of matrix F, we need to
normalize it to get T, a row stochastic matrix, so that the
total transition probability from state i to any other state

will sum up to 1:

Ti = Fi/

n∑
i′=1

Fi,i′ , if

n∑
i′=1

Fi,i′ > 0.

Additionally, it is possible that the sum of some rows to
be zero. This occurs when a course is taken at the last
semester of every student, so there are no courses after that
to pair it with. In that case, we set the diagonal elements
of the zero rows to one; Ti,i = 1 and Ti,i′ = 0 for i 6= i′, if∑n
i′=0 Fi,i′ = 0.

4.3 Walking over courses
We can view the Markov chain in the context of random
walk on a course-to-course graph that is governed by the
transition probability matrix. A random walk on a directed
graph will form a path of vertices generated from a start
vertex by selecting an edge, making a step by traversing the
edge to a new vertex, and repeating the process [4]. This
concept has been applied to many scientific fields. Closer to
this work, random walks have recently been used for top-
n item recommendation [19], and they are also known to
empower systems used in production at major social media
platforms [12, 8].

A random walk starts with any probability distribution u ∈
R1×n. ui is the probability of starting at vertex i. If one
starts at a vertex i, then ui = 1, else ui′ = 0 for i′ 6= i.
In our setting, the random walk for student j will equally
start from any course in the student’s last semester, so the
personalization vector will be:

ui =

{
1/|Cj,tj | if i ∈ Cj,tj ,
0 otherwise.

(1)

Let pt ∈ R1×n be a row vector with an element for each
vertex specifying the probability of being there at time t.
Before we start the walk, p0 = u. After the first step, the
probability of being at vertex i′ is the sum over each adjacent
vertex i of starting at i and taking the transition from i to
i′. In matrix notation, when we are at state k and we take
a step, we will get the following probability distribution:

pk+1 = pkT, (2)

where the i-th entry of the pk+1 is the probability of the walk
after k+ 1 steps to land at vertex i. This can be written as
a function of the starting probability vector as:

pk+1 = uTk. (3)

The probability of the walker to reach the vertices after K
steps provides an intuitive measure that can be used to rank
the courses and offer personalized recommendations to the
student accordingly.

Scholars Walk
To introduce an additional way for personalization in our
model, we perform a random walk with restarts [21]. We in-
troduce a parameter α, 0 < α ≤ 1 that controls if the walk
will take the step described above, or if the walk will restart.
In the latter case, we use the personalized probability dis-
tribution as the restarting distribution. The probability dis-
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Algorithm 1 Scholars Walk

Input: Model T, student’s personalization vector u, pa-

rameters α, β, number of steps K.

Output: Recommendation vector prec.

p0 ← u, k ← 0

repeat

k ← k + 1

pk ← αpk−1T + (1− α)u . Take a step.

pk ← pk/‖pk‖1 . Normalize pk.

until ‖pk − pk−1‖2 < tol or k ≥ K
for i← 1 to n do

pki ← pki ∗ pop−βi . Penalize popular courses.

end for

prec ← pk

tribution now is defined as:

pk+1 = αpkT + (1− α)u

= pk(αT + (1− α)1u)

= u(αT + (1− α)1u)k,

(4)

where 1 is a column vector (n× 1) of ones. The product of
1u will give us an (n×n) matrix where every row will have
the probability that the walk will start at the corresponding
course. Scholars Walk will perform a random walk governed
by the matrix αT + (1− α)1u.

The exact steps we followed are shown in Alg. 1. We can
specify the number of steps to perform, or we can allow the
algorithm to converge. If the number of steps is very small,
the walk might not explore enough courses. If the number of
steps is large, the walk might travel too far, and the recom-
mendations might not be so relevant for the student. Addi-
tionally, to limit the domination of popular courses, we pe-
nalize the probabilities with the term pop−βi [5], where popi
is the popularity of the course. The parameter β, 0 < β ≤ 1
shows how harsh we need to be with the penalty term.

Scholars Walk allows us to consider direct, as well as, tran-
sitive relations between the courses. It also provides a con-
siderable degree of personalization, in order to recommend
courses that are relevant to each particular student.

5. EXPERIMENTAL DESIGN
5.1 Competing approaches
The baselines are two group popularity approaches, on the
department level (Pop1) and the academic level (Pop2)
of the student measured by the number of years in the pro-
gram [9]. For Pop1, we recommend the most popular courses
in the major. For Pop2, we recommend the most common
courses on the major and the academic level of the student
(“freshmen”, “sophomores”, “juniors”, and “seniors”). Stu-
dents after their forth year are considered seniors.

We also compared against Basic Markov model (Markov)
and Basic Markov model with skip (MarkovSkip) [15]. In
these models, for a target student, the set of courses that
other students have taken after taking a course that the
target student took are the possible courses to recommend.
We consider the combination of courses during the last two

semesters to build and test the model. Each course is as-
signed a recommendation score that is the sum of all the
conditional probabilities that lead to that course starting
from the student’s enrollment in the last semester. While
the counts used in this case are the same with the ones
computed in our matrix F, the conditional probabilities are
computed differently. In order to produce recommendations
for students whose set of prior courses did not have a match,
the skip model was introduced. In that case, we find other
students that have similar course history with the target
student, and weight their corresponding probabilities by a
parameter λ.

Last, we train an LSTM-based course prediction model sim-
ilar to [17, 23]. LSTMs can learn temporal dependencies
with additional gates to retain and forget selected informa-
tion. As input, we use a multi-hot representation of course
enrollments per semester which are mapped to a predicted
sequence of vectors. Once the LSTM has been learnt, we
feed the network with a binary vector that indicates the
courses that the target student has taken the past semester.
The weights at the output of the model are used to rank the
courses.

5.2 Evaluation metrics
Like in prior work [9, 15, 17, 23], we used Recall@ns as
the primary evaluation metric for the predictions, where
ns is the number of courses that the student took in the
target semester. This is the percentage of actual enrolled
courses that were contained in the recommendation list. The
reported metrics are averaged out across all students pre-
dicted. Note that recall and precision are equivalent in our
setting, since we recommend exactly as many courses as the
student will take the upcoming semester.

We also compute the percentage of queries for which we were
able to retrieve at least one of the courses that the student
took in the target semester (%rel). It measures for how
many cases we were able to recommend at least one course
that was relevant.

5.3 Experimental setting
Model selection. Using the dataset described in Sect. 3,
we split it into train, validation and test sets as follows.
All semesters before 2013 (about 10 years) were used for
training, courses taken during 2013 and in Spring 2014 were
used for validation, and courses taken afterwards (Fall 2014
to Spring 2017) were used for test purposes, to report the
results. The training set was used for building the mod-
els, whereas the validation set was used to select the best
performing parameters in terms of the highest Recall@ns.
Based on the best set of parameters for the validation set,
we computed the test set results in Sect. 6.

Parameters. For parameter α, we tried the following set of
values: {1e-4, 1e-3, 1e-2, 1e-1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.85,
0.9, 0.99, 0.999}. For parameter β, we tested values from
0 to 0.8, in increments of 0.025. In terms of the number of
steps that we allowed for our walker, we tested the values 1,
3, and 1000. The last value corresponds to no limit for the
number of steps.

Additional filtering. We build a different model for each
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Table 3: Results for Scholars Walk w.r.t. K.

K Recall@ns %rel α β avg#steps

1 0.466 75.1 0.955 0.047 1
3 0.460 74.6 0.088 0.053 1.95

1000 0.461 74.6 0.075 0.051 2.32

K is the number of steps that we allow to our walker.
α, β columns show the average values of these param-
eters over the models of all the majors.
The last column shows the actual average number of
steps the Scholars Walk made before convergence.

Table 4: Performance comparison.

Model Recall@ns %rel

Pop1 0.336 62.5
Pop2 0.338 64.6
Markov 0.456 73.0
MarkovSkip 0.400 69.6
LSTM 0.406 69.6
Scholars Walk 0.466 75.1

major for all the approaches we tested. After we generate
a ranked list of the courses using any method, we filter out
courses that are not offered the target semester. We also
remove courses that the student has taken in the past and
achieved a grade above C-, as they do not count towards any
degree requirements, as mentioned in Sect. 3. In the end, we
return a list with as many recommendations as the number
of courses, ns, that the student took next semester, based
on assumption 5.

6. RESULTS
In this section, we will try to answer the following questions:
1) How do the parameters in our models affect the overall
performance? Specifically, how does the number of steps
affect recommendation performance? 2) What is the per-
formance of our approach compared to the state-of-the-art
approaches?

6.1 The effect of the number of steps
The performance of our models in terms of the metrics com-
puted for different values of K is shown in 3. For each
model and selection of K, we see the values of the parame-
ters α and β that were used. These parameters were selected
based on the recall on the validation set. The parameter α
controls the restarting probabilities, while β is used to re-
weight the probability distribution before recommending its
highest-weighted courses. The column avg#steps shows the
average number of steps that the Scholars Walk actually
made before convergence.

In this domain, we need only a few steps, as we can under-
stand from Table 3: not only when we set K = 1 we get the
best performance, but also, when we allow the walk to take
many steps, the parameter α gets smaller values. This forces
the walk to go back to the student’s personalized starting
vector with higher probability, indicating that the starting
distribution is very important. Additionally, even if we do
not put any constraints in K, the number of steps that the

Scholars Walk takes is quite small. There is a small increase
when increasing K from 1 to 3, but after that, the number
of steps actually taken is not that high.

It is worth pointing out that, while setting K = 1 gives us
the best overall performance, this is not the case for all the
departments. The right value for K depends on the dataset
used. In our data, there are four departments that need
these extra steps. We observed that these departments have
low average course popularity, which is average percentage
of students that have taken a course at least once at some
point during their studies, over all the courses. The aver-
age value for the departments with K > 1 was 16.7± 9.7%,
while for the rest of the models the corresponding number
is 24.1± 7.2%. A stronger signal is present in the metric of
the degree flexibility, which is the average Jaccard distance
between the courses that any pair of students took, as de-
fined in the end of Sect. 3. The departments with K > 1
have 0.118 ± 0.005 degree flexibility against 0.184 ± 0.066
of the rest of the departments. This is an indicator that
for stricter degrees, the walk depends on the extra steps to
explore more courses. In these departments, students will
take overall very similar sets of courses. On the other hand,
if the degree program offers more freedom to the students,
they select a wider range of courses, and there are more
connections within courses.

6.2 Performance comparison
By comparing the best Scholars Walk model against five
competing approaches, we get the results on Table 4. Our
model performs the best, both in terms of recall, and in the
percentage of cases for which it manages to be return some
relevant recommendations.

Popularity approaches are having considerably satisfactory
performance. However, specifying the academic level of the
student does not help much. They can recommend rele-
vant courses to more than 60% of the cases. The two Ba-
sic Markov models have quite different performance. The
Markov model with skips performs poorly, compared to the
Basic model. Additionally, it is worth mentioning that the
Skip model was performing better and better as the param-
eter λ was getting smaller. The weight of the cases that
do not completely match the target student’s history, have
as weight a power of λ. Consequently, when λ → 0, the
Skip model becomes the Basic Model. For that reason, the
smaller value of λ that we report results for, is 0.4.

While comparing the Basic Markov model with Scholars
Walk, it may seem that they have similar performance. How-
ever, that might be misleading, as the Basic Markov model
utilizes longer course enrollment history than the Scholars
Walk. It looks back two semesters on the student’s courses,
which corresponds to a second-order Markov chain. More-
over, the model uses data from two semesters not only for
computing the associated probabilities, but also to make pre-
dictions. This leads to increased complexity because of the
larger state-space with no benefit in recommendation qual-
ity. In the same boat are the LSTMs as well. Their increased
complexity might lead to the overfitting of the model, when
the data are not sufficient for training. Our approach, which
is a first-order Markov chain, manages to perform better
than the higher-order models and LSTMs.
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Scholars Walk can accurately predict the course selection
of the students, by taking advantage of the “breadth and
depth” of the data. In terms of time complexity, once we
build the transition probability matrix, walking through the
courses is trivial. As a result, it scales well with the number
of students, while providing them personalized recommen-
dations. At the same time, it is a white-box model, where
the recommendations are easily explainable.

7. CONCLUSION
In this paper we propose Scholars Walk, a novel method
designed to harvest the sequential patterns arising from past
course enrollment data in order to recommend a short list of
personalized course suggestions for the next semester. The
proposed method relies on a random walk-based scheme on a
course-to-course graph and personalization is achieved by a
student-adapted starting distribution reflecting the current
student’s enrollments. When compared with five competing
models, from popularity-based to LSTMs and Basic Markov
models, Scholars Walk achieves the best performance. It
manages to be a successful, scalable approach that provides
personalized recommendations for every student.
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[10] A. Esteban, A. Z. Gómez, and C. Romero. A hybrid
multi-criteria approach using a genetic algorithm for
recommending courses to university students. In 11th
Intl. Conf. on Educational Data Mining, 2018.

[11] J. P. Gardner, C. Brooks, and W. Li. Learn from your
(markov) neighbor: Coenrollment, assortativity, and
grade prediction in undergraduate courses. Journal of
Learning Analytics, 5(3):42–59, 2018.

[12] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh. Wtf: The who to follow service at twitter.
In 22Nd Intl. Conf. on World Wide Web, pages
505–514, New York, NY, USA, 2013. ACM.

[13] Q. Hu and H. Rangwala. Course-specific markovian
models for grade prediction. In Pacific-Asia Conf. on
Knowledge Discovery and Data Mining, pages 29–41.
Springer, 2018.

[14] A. Kadlec, J. Immerwahr, and J. Gupta. Guided
pathways to student success perspectives from indiana
college students and advisors. New York: Public
Agenda, 2014.

[15] E. S. Khorasani, Z. Zhenge, and J. Champaign. A
markov chain collaborative filtering model for course
enrollment recommendations. In Big Data (Big Data),
IEEE Intl. Conf. on, pages 3484–3490. IEEE, 2016.

[16] N. Manouselis, H. Drachsler, R. Vuorikari,
H. Hummel, and R. Koper. Recommender systems in
technology enhanced learning. In Recommender
systems handbook, pages 387–415. Springer, 2011.

[17] S. Morsy and G. Karypis. Learning course sequencing
for course recommendation. 2018.

[18] H.-Q. Nguyen, T.-T. Pham, V. Vo, B. Vo, and T.-T.
Quan. The predictive modeling for learning student
results based on sequential rules. Intl. Journal of
Innovative Computing, Information and Control
(IJICIC), 14(6):2129–2140, 2018.

[19] A. N. Nikolakopoulos and G. Karypis. Recwalk:
Nearly uncoupled random walks for top-n
recommendation. In 12th ACM Intl. Conf. on Web
Search and Data Mining, pages 150–158. ACM, 2019.

[20] F. Okubo, T. Yamashita, A. Shimada, and H. Ogata.
A neural network approach for students’ performance
prediction. In Seventh Intl. Learning Analytics &
Knowledge Conf., pages 598–599. ACM, 2017.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

[22] A. Parameswaran, P. Venetis, and H. Garcia-Molina.
Recommendation systems with complex constraints:
A course recommendation perspective. ACM Trans.
on Information Systems (TOIS), 29(4):20, 2011.

[23] Z. A. Pardos, Z. Fan, and W. Jiang. Connectionist
recommendation in the wild: on the utility and
scrutability of neural networks for personalized course
guidance. User Modeling and User-Adapted
Interaction, pages 1–39, 2019.

[24] C. Wong. Sequence based course recommender for
personalized curriculum planning. In Intl. Conf. on
Artificial Intelligence in Education, 2018.

401 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



A Comparison of Automated Scale Short Form Selection 
Strategies

Anthony W. Raborn 
Pasco County Schools 

7227 Land O' Lakes Blvd. 
Land O' Lakes, FL 34638 

1-727-774-4233 
araborn@pasco.k12.fl.us 

Walter L. Leite 
University of Florida 
1215 Norman Hall 

Gainesville, FL, 32611 
1-352-273-4302 

Walter.leite@coe.ufl.edu 

Katerina M. Marcoulides 
University of Florida 
1215 Norman Hall 

Gainesville, FL, 32611 
1-352-273-4332 

k.marcoulides@coe.ufl.edu 

 

 

ABSTRACT 
Short forms of psychometric scales have been commonly used in 
educational and psychological research to reduce the burden of test 
administration. However, it is challenging to select items for a short 
form that preserve the validity and reliability of the scores of the 
original scale. This paper presents and evaluates multiple 
automated methods for scale short form creation based on 
metaheuristic optimization algorithms that incorporate validity 
criteria based on internal structure and relationships with other 
variables. The ant colony optimization (ACO) algorithm, tabu 
search (TS), simulated annealing (SA) and genetic algorithm (GA) 
are examined using confirmatory factor analysis (CFA) of scales 
with one factor, three factor, and bi-factor factorial structure. The 
results indicate that SA created short forms with best model fit for 
scales with one and three factor structures, but ACO was able to 
obtain highest reliability. For scales with bi-factor structure, SA 
provide short forms with best model fit, but TS obtained highest 
reliability. Overall, the SA algorithm is recommended because it 
produced consistently best model fit and reliability that was only 
slightly lower than the ACO or TS algorithms.  

Keywords 

Short form development, confirmatory factor analysis, 
metaheuristic algorithms, validity, ant colony optimization, tabu 
search, genetic algorithm, simulated annealing 

1. INTRODUCTION 
Applied researchers using psychometric scales often face a 
dilemma due to limited resources: should they use the full form of 
a well-established scale with strong validity evidence supporting it, 
but with a large number of items requiring a substantial amount of 
time and effort to complete, or should they use a short form of the 
scale that has not had the extensive evidence of validity? This issue 
has generated strong interest in the academic community the 
development of short forms of scales (e.g. [1]). Multiple methods 
have been proposed for scale short form development [2], with 
different fields utilizing a few preferred methods. For example, 
these methods include theoretical or practical justifications for the 

inclusion or exclusion of items (e.g., [3]), keeping one item from a 
set of items that are apparently similar or redundant (e.g., [4]), 
obtaining certain criteria for statistical values such as high factor 
loadings or item correlations (e.g., [5]), adding or retaining items 
that seem to improve measures of reliability and/or dimensionality 
(e.g., [6]).  

The focus of item selection for short forms tends to be on the 
internal structure of the newly-created form, rather than using 
external relationships to help build the short form. For example, 
Petrillo, Capone, Caso, and Keyes [7] created a short form for a 
positive mental health assessment for use with Italian respondents 
by selecting items from twelve other scales with a focus on its 
internal structure. The resultant short form had adequate 
psychometric properties, but the average absolute correlation 
between the total score and sixteen other criterion measures was 
0.37 (range: 0.20 to 0.62). Despite the adequate validity evidence 
for the internal structure, the external relationships would be 
characterized as modest since on average the short form’s and the 
other measures’ scores shared about 6% of their variances. 

Obtaining a short form that has both adequate internal structure and 
strong validity with respect to relationships with other variables is 
difficult with traditional methods of short form development. 
Metaheuristic optimization algorithms [8] have the potential to 
solve these difficulties because the can simultaneously maximize 
multiple validity criteria for short forms. This paper aims to present 
the evaluation of multiple automated methods for short form 
creation based on metaheuristic optimization algorithms that 
incorporate criteria based on internal structure and relationships 
with other variables and determine which perform best under 
commonly used scale structures. 

2. THEORETICAL FRAMEWORK 
There have been some attempts to develop algorithms to derive 
short forms of scales that (a) maintain the internal structure of the 
scale in question (e.g. factor structure and/or content balance), (b) 
have favorable model characteristics such as meeting model fit 
statistic thresholds, and (c) produces scale scores that have 
favorable relationships with other variables, including other scales 
or external variables. For example, Olaru, Witthoft, and Wilhelm 
[9] compared multiple algorithms for the purpose of creating 
psychometrically valid short forms of a 99-item scale with various 
criterion (e.g., jointly optimizing two fit indices) and concluded 
that, under their study conditions, the Ant Colony Optimization 
(ACO) and Genetic Algorithm (GA) were able to produce 
statistically appropriate short forms that generalize well to new 
data. Marcoulides and Drezner [10] have shown that a Tabu search 
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can be used to successfully reduce the number of items loading on 
factors. Leite, Huang and Marcoulides [2] developed and 
demonstrated an ACO algorithm that selects items for short forms 
while keeping adequate model fit and maximizing the relationship 
between the latent variable and external variables. More recently, 
Browne, Rockloff, and Rawat [11] produced an automated 
structural equation modeling (SEM) scale reduction algorithm and 
purport that it is an effective and efficient method for reducing 
items during scale development.  

While these articles demonstrate the use of some automated scale 
short form development strategies and the importance of research 
in this area, an in-depth comparison of automated strategies under 
different scenarios does not seem to exist. In addition, some 
commonly-used metaheuristic algorithms for combinatorial 
problems have never been applied to the short-form development 
problem. For example, the inaugural example of the simulated 
annealing (SA) algorithm is with the Traveling Salesman Problem, 
which has various algorithms attempt to find the shortest path that 
travels between n cities exactly once [12], while no psychometric 
use of SA is apparent in the literature. To address these issues, this 
paper presents a simulation study utilizing three different scale 
structures commonly observed in educational research (one factor, 
three factor, and bifactor scales) and four meta-heuristic 
algorithms: The ant-colony optimization algorithm (ACO), genetic 
algorithm (GA), Tabu search (TS), and simulated annealing (SA). 
We chose these algorithms because they are the most well-
established metaheuristic algorithms in the combinatorial 
optimization literature. 

The ACO algorithm [13] mimics the behavior of ants searching for 
the shortest path to a food source. We evaluate the implementation 
of the ACO algorithm proposed by Leite, Huang and Marcoulides 
[2] for short form development, with minor modifications to the 
tuning parameters.  Their implementation of the ACO algorithm 
attaches sampling weights to items, which are used to sample items 
for a set of candidate short forms of the scales. Each set of candidate 
short forms is evaluated and the best short form in the set is 
identified based on criteria that are specified by the researcher, such 
as SEM fit indices and the relationship between the scale’s factors 
and an external variable. The criteria of choice are used to calculate 
the pheromone level, which is a summary of the quality of the short 
form chosen. The pheromone level is then used to update the 
sampling weights for the next round of sampling of candidate sets 
of short forms. This is repeated until a specified convergence 
criterion is met, such as number of iterations without improvement 
of the solution quality.  

The GA mimics the biological process of evolution using the model 
parameters as genes. As implemented by Yarkoni [14], the 
algorithm generates an initial population of candidate models of 
size 200 and, by evaluating the fitness of each candidate model 
through a loss function, selects the best 20% of the models and 
repopulates. Between model generations, new models are created 
from mutation (randomly changing the items in a model) and 
recombination (two models exchanging items retained). After a 
certain number of iterations (100+), the model with the best fit 
according to the loss function is retained as the best solution. The 
loss function penalizes the fit of the models for every item included; 
this value needs to be tuned to achieve the correct reduction of 
items. 

The TS algorithm implementation was modified from the 
presentation given in Marcoulides and Falk [15] to constrain the 
solution space to a specified number of items. Broadly, the TS looks 
at each of the local solutions to a model by changing one model 

parameter at a time; the particular change can be adjusted to suit 
the problem at hand. The main idea behind the TS procedure is to 
continually adjust the currently selected best model by examining 
other models in the neighborhood of the current best solution. If a 
neighboring model fits better than the current model, it is selected 
as the new best fitting model. If not, the examined neighboring 
model is marked “tabu”—placed on a list so that it is not 
reconsidered for some number of iterations. For this study, the TS 
was modified to (a) randomly generate a short form of a 
predetermined length from a longer form for the first iteration and 
(b) search for local short forms that maintain the predetermined 
length.  

The SA algorithm is a statistical analog to metallurgic processes of 
annealing metals [16]. Generally, the algorithm begins with a 
specified starting model whose parameters are randomly changed 
by some process and a starting temperature. The new model is 
compared to the starting model and the difference in model fit is 
calculated. At any time, if the new model has better fit than the 
current model, it is selected for use in the next iteration; otherwise, 
the new model is selected with probability equal to a function of 
the difference in model fit and the current temperature. After each 
new model is either selected or ignored, the temperature updates 
and the current model is randomly changed. The algorithm checks 
each model against the best model seen and updates as needed. 
Some variants of the algorithm include a process that selects this 
best model after a certain number of iterations in which no better 
model has been found. This process repeats until the temperature 
reaches zero. 

3. METHODS 
3.1 Research Questions 
1. How do the algorithms differ in terms of the time it takes for each 
to converge on a short form, model fit and reliability of the short 
form? 

2. How do model misspecifications in the full form affect the fit 
and reliability of the short forms created by the algorithms? 

3. Does the inclusion of an external variable affect the model fit and 
reliability of the short forms? 

4. Does the performance of the algorithms depend of the factorial 
structure of the scale? 

3.2 Manipulated conditions 
To investigate the research questions, a Monte Carlo simulation 
study was conducted using the following population confirmatory 
factor analysis models: (a) the 20-item unidimensional model of the 
self-deceptive enhancement (SDE) scale [17], (b) the 24-item 
three-dimensional model of the teacher efficacy scale [18], and (c) 
a three-factor bifactor model [20] of the 30-item BASC-2 BESS 
[19] scale. These models represent three common models seen in 
scale development and are good representations of what 
educational researchers would work with. The covariance structure 
from the multidimensional scale were used to simulate samples for 
these conditions, and the factor loadings for the unidimensional 
model were used to simulate samples for this condition. In each 
case, the goal was to create a short form that is half the length of 
the long form. 

Additional manipulated simulation conditions were the relationship 
with an external variable and full-scale model misspecification. For 
the relationship with an external variable, the two levels that were 
manipulated are (a) no relationship and (b) a moderate relationship 
(approximately equal to a path coefficient of 0.6 standard 
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deviations). The full-scale model misspecification was manipulated 
in the simulation according to three levels: (a) no misspecification, 
(b) a minor misspecification in the factor loadings (i.e., population 
models modified to have six of the items cross-loading on a 
nuisance factor with a loading of 0.3), and (c) a major 
misspecification in the factor loadings (i.e., same as (b), but with 
factor loadings of 0.6 on a nuisance factor). 

The data were simulated in R v3.5.0 [21] using the ‘MASS’ 
package [22]). The baseline condition (i.e., high reliability, no 
external variable relationship, no misspecification) used the values 
provided by the original models as the population values. These 
values were changed as necessary to create new population models 
that fit the target simulated conditions, resulting in fifteen 
covariance matrices. The sample size of each condition was set to 
500. For each combination of manipulated conditions, we created 
100 datasets. 

3.3 Outcomes 
The outcome variables of the simulation were the time to converge 
to a short form, the average level of model fit of the short form, and 
the composite reliability of the short form for each factor.  
 
The comparative fit index (CFI), Tucker-Lewis Index (TLI), and 
Root Mean Square Error of Approximation (RMSEA) were used as 
the model fit indices, and the cutoff values of CFI > .95, TLI > .95, 
and RMSEA < .05 were used as indicators of adequate model fit 
[26]. 
 
For this study, the composite reliability of the one and three factor 
models was calculated as [23]:   

 

where the items are indexed with i,  are the standardized factor 

loadings, and  are the (standardized) residual variances of the 
items [24]. For the bifactor model, the composite reliability for the 
of general factor was calculated as 

 
where s indexes the specific factors [25]. 
  

4. RESULTS 
For each factor model, results for the “Minor Error with External 
Variable” condition did not have noticeable differences from either 
the “Minor Error with No External Variable” conditions or the “No 
Error” conditions, so this condition was dropped from the current 
study.  

4.1 One Factor Model 
The time to complete for each algorithm was similar across 
conditions, except for GA (see Table 1), which was faster. The time 
to converge was slightly longer for the ACO, SA, and TS under the 
major error with an external relationship condition.  

The average model fit statistics for both factor models across 100 
replications of the analysis for the three conditions is also shown in 
Table 1, where bolded values indicate good model fit. When there 
is no error in the original model, each algorithm produced good 
model fit, but as the error level increases the model fit decreased. 

In the major error conditions, only the SA algorithm had model fit 
greater than the traditional cutoff values.  

Table 1. Model fit of short forms for one factor model 

Error/ 

External Method 

Minutes 
to 

Complete CFI TLI RMSEA 

None/ 
No 

ACO 2.482 0.976 0.969 0.043 
SA 2.516 0.993 0.992 0.018 
TS 3.933 0.985 0.981 0.028 
GA 0.699 0.975 0.967 0.042 

Minor/ 
No 

ACO 2.575 0.961 0.950 0.055 
SA 2.572 0.987 0.983 0.027 
TS 3.987 0.977 0.971 0.036 
GA 0.708 0.964 0.953 0.051 

Major/ 
No 

ACO 2.713 0.943 0.926 0.061 
SA 2.581 0.983 0.978 0.029 
TS 3.956 0.940 0.923 0.061 
GA 0.701 0.850 0.807 0.112 

None/ 
Yes 

ACO 3.059  0.943 0.929 0.058 
SA 2.871  0.981 0.976 0.029 
TS 2.819  0.923 0.903 0.066
GA 0.702  0.859 0.823 0.106

Major/ 
Yes 

ACO 3.301  0.942 0.928 0.058 
SA 3.107  0.981 0.976 0.029 
TS 5.162  0.934 0.917 0.060
GA 0.752  0.855 0.819 0.108 

 

The inclusion of the external variable reduced the model fit for each 
of the algorithms such that the conditions with no error and an 
external variable relationship had similar fit to the conditions with 
major error and either with or without external variable relationship 
(see Table 1).  

Table 2 shows the reliability of the full form of the scale, as well as 
the reliability the short forms. As expected, the full form resulted 
in scores with higher reliability than all the short forms. The ACO 
had the greatest composite reliability for both the no error and 
minor error conditions, followed by the GA.  
 
Table 2. Composite reliability estimates with one-factor model 

Method Reliability 

Full Form 0.889 

ACO 0.854 

SA 0.813 

TS 0.806 

GA 0.835 

 

4.2 Three Factor Model 
For all five conditions, the SA and TS algorithm took about twice 
as long to converge on average as compared to the ACO and GA 
algorithms (see Table 3). For the three-factor model, the average 
model fit for the conditions with no external variable can be seen 
in Table 3. In both the no error and minor error conditions, each of 
the algorithms had good model fit. In the major error conditions, 
only the SA algorithm produced short forms with adequate model 
fit according to all three fit indices. The ACO and TS algorithms 
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had good model fit according to CFI and TLI (ACO) and CFI (TS), 
while the GA algorithm had poor fit according to all three fit 
indices.  

Table 3. Model fit for short forms with three-factor structure  

Error/ 
External 

Method 

Minutes 
to 

complete CFI TLI RMSEA 

None/ 
No 

ACO 2.967 0.979 0.973 0.043 

SA 6.228 0.991 0.989 0.024 

TS 6.063 0.986 0.982 0.031 

GA 2.705 0.977 0.970 0.044 

Minor/ 
No 

ACO 3.091 0.978 0.971 0.047 

SA 6.238 0.989 0.985 0.030 

TS 6.264 0.984 0.979 0.037 

GA 2.710 0.974 0.967 0.048 

Major/ 
No 

ACO 3.285 0.964 0.953 0.054 

SA 6.295 0.990 0.987 0.027 

TS 6.061 0.956 0.943 0.056 

GA 2.695 0.910 0.883 0.087 

None/ 
Yes 

ACO 3.713 0.978 0.971 0.047 

SA 7.040 0.989 0.985 0.030 

TS 7.577 0.984 0.979 0.037 

GA 2.685 0.974 0.967 0.048 

Major/ 
Yes 

ACO 3.387 0.960 0.948 0.060 

SA 6.173 0.984 0.979 0.036 

TS 6.586 0.950 0.935 0.063 

GA 2.282 0.917 0.892 0.087 
 

Including an external variable had little effect on the model fit 
indices (see Table 3). With no error, the average model fit was 
approximately the same between the no external variable 
conditions and moderate external variable conditions, while the 
average model fit somewhat decreased in the major error condition 
for the external variable conditions as compared to the no external 
variable conditions. Only the SA produce short forms with good 
model fit across all the conditions.  

The reliability of the full form and short forms with the three-factor 
CFA is shown in Table 4. All methods produced short forms with 
less reliable scores than the full form, but among the metaheuristic 
methods, the ACO produced short forms with the largest composite 
reliability for each of the factors in each condition. 

Table 4. Composite reliability estimates with three-factor 
model 

Method 
Reliability 
Factor 1 

Reliability 
Factor 2 

Reliability 
Factor 3 

Full form 0.870 0.910 0.900 

ACO 0.788 0.846 0.833 

SA 0.752 0.829 0.813 

TS 0.754 0.828 0.809 

GA 0.763 0.846 0.819 

 

4.3 Bifactor Model 
With the bifactor model, the GA had the fastest time to converge, 
and the ACO took about four times longer. The TS and SA 
algorithms had convergence times that were about 10 times of the 
GA algorithm. 

Table 5 shows the average model fit indices of the bifactor model 
for the conditions with no external variable relationship. The SA 
and TS algorithms produced short forms with good model fit by 
each fit index in every condition, while the ACO resulted in good 
model fit by each fit index except for the RMSEA in the major error 
condition. The GA had good model fit by CFI in the no and minor 
error conditions only.  

Including the external variable tended to reduce model fit. Both the 
SA and TS showed slight reductions in model fit across both error 
conditions, but still found short forms with good model fit 
according to all three fit indices. The ACO maintained 
approximately the same model fit in both no error and minor error 
conditions, but showed an increase in average fit in the major error 
conditions when comparing the no external variable to moderate 
external variable relationship conditions. However, only the CFI 
and TLI showed good model fit in these conditions (see Table 5).  

The reliability of general factor with the full form and short forms 
with the bi-factor model are shown in Table 6. For the example 
scale used in this study, the full form produced scores with adequate 
reliability for the general factor, but for the specific factors the 
composite reliability is low. For the short forms, none of the 
algorithms produced consistently greater reliabilities for every 
factor in these conditions. The reliability of general factor with the 
short forms were smaller than the reliability of the full form for all 
algorithms. The GA performed best for the general factor reliability 
than the ACO, SA and TS. 
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Table 5. Model fit of short forms with bi-factor model and 
external variable 

Error/ 
External Method 

Minutes 
to 

complete CFI TLI RMSEA 

None/ 
No 

ACO 13.054 0.986 0.976 0.041 

SA 37.925 0.995 0.992 0.020 

TS 39.933 0.992 0.986 0.028 

GA 3.577 0.951 0.939 0.074 

Minor/ 
No 

ACO 12.296 0.982 0.969 0.047 

SA 40.658 0.994 0.990 0.023 

TS 48.200 0.990 0.984 0.031 

GA 3.562 0.954 0.943 0.069 

Major/ 
No 

ACO 12.875 0.974 0.956 0.055 

SA 39.556 0.993 0.987 0.027 

TS 41.211 0.982 0.969 0.043 

GA 3.606 0.945 0.921 0.079 

None/ 
Yes 

ACO 18.537 0.986 0.976 0.041 

SA 45.815 0.995 0.992 0.020 

TS 49.665 0.992 0.986 0.028 

GA 3.458 0.951 0.939 0.074 

Major/ 
Yes 

ACO 17.989 0.975 0.959 0.051 

SA 42.336 0.991 0.986 0.028 

TS 38.947 0.979 0.965 0.046 

GA 3.546 0.940 0.907 0.080 

 

For the specific factors, the TS performed better than the other 
methods for two out of three factors. Surprisingly, the TS produced 
scores with higher reliability than the full form for factor 3, and the 
SA produced higher reliability than the full form for factor 2. 

The results with the bi-factor model are limited in that the scale 
used produced scores with low reliability. Using a different scale 
that results in higher reliability of scores of the full form for all 
factors might have produced different results with respect to the 
comparison of algorithms.  

 

Table 6. Reliability of short forms of general factor of bi-factor 
model 

Method 
General 
Factor Factor 1 Factor 2 Factor 3 

Full 0.715 0.304 0.114 0.319 

ACO 0.661 0.067 0.115 0.062 

SA 0.641 0.061 0.133 0.055 

TS 0.659 0.149 0.124 0.433 

GA 0.669 0.055 0.118 0.049 

 

5. CONCLUSION 
In general, the algorithms produced short forms with adequate 
model fit in all cases with no error, with two exceptions: each 
algorithm except the SA under the one factor model with an 
external variable, and the GA under the bifactor model. Therefore, 
when the original scale is correctly specified, the results showed 
that the algorithms are likely to produce short forms with model fit 
that maintain the desired factor structure of the scale.  

The ACO, TS, and GA each had problems maintaining good model 
fit for the short forms with increasing error, though this was 
alleviated by increasing the factor structure’s complexity. Including 
an external variable into the process generally had a small negative 
effect on average model fit, but the effect was never enough to cross 
the model fit thresholds. Overall, the SA provided short forms with 
the best average model fit in every single condition, while the ACO 
seemed to have better reliability on average for each of the factors 
with one factor and three-factor models. Given that the difference 
in reliability between the ACO and SA algorithms was about .05 or 
less on average, the practical difference in reliability between these 
methods may be outweighed by the difference model fit of the 
resulting short forms. Therefore, the current results lead to 
recommending the SA as the preferable metaheuristic algorithm for 
automated short form selection.  

This study provides useful information to applied researchers about 
the benefits and drawbacks of utilizing these four algorithms for 
scale short form development in some common scenarios in 
educational research. This will allow for easier creation of 
psychometrically-sound short forms with stronger evidence of 
validity, especially as compared to creating short forms manually. 
Future research could apply these algorithms to the short form 
creation problem alongside other methods on real data to compare 
the efficacy of each approach.  
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ABSTRACT
Creativity is a dynamic process which generates ideas that
are both novel and of value. However there is little under-
standing in what drives creativity in students and how to
help teachers or education experts to detect creative think-
ing. This paper begins to address this gap by providing
a platform and experiments for studying how creative out-
comes can ensue over time. The platform is an open ended
environment for creating geometrical shapes that supports
exploration and trial and error. We show that participants
exhibit diversity in their usage patterns in the system, and
in particular, some exhibiting ’creative leaps’ in which they
move from creating a sequence of shapes in one category
to another, new category. We designed a visualization tool
that aids understanding in detecting these aspects in stu-
dents’ work. We provide a basic computational model that
is able to predict whether a student will create a new shape
at a given point in time. The impact of this work is in be-
ginning to provide tools for promoting creativity in students
and directing their interactions in a way that facilitates the
creative process.

Keywords
Creativity, Divergent Thinking, Geometry, Geogebra

1. INTRODUCTION
There is multiple evidence that exhibiting creativity in the
classroom is linked to positive learning gains, and using ed-
ucational technology to bring about creativity is an active
area of research [19, 8]. To date, however, such technologies
have relied on human teachers to detect and to promote cre-
ative behavior. While research on adaptive technologies for
education have flourished, there are few studies on automat-
ically detecting creativity from students’ interactions.

This paper begins to address this gap by providing a plat-
form for studying and computationally modeling creative
tasks. The task requires participants to create geometric

shapes and explore multiple solutions in a domain that is
simple to define and explain, while still providing a rich
space of possible solutions.

The task was chosen so that there is no single correct answer,
and the goodness of a solution is measured by the number
and quality of the different answers. This task supports a
process of exploration and discovery. There are many pos-
sible strategies for solving the tasks, some requiring more
skills than others.

We study people’s search trajectories in the space of possible
solutions, showing that people exhibit creative leaps [9], al-
ternating between clusters of solutions and exploration. We
adapt a model by Leikin [10] for measuring creative out-
comes in users’ interactions, based on defining their work
in terms of flexibility, originality and fluency. We provide a
visualization tool that decomposes a user’s interaction se-
quence in the system to separate sequences of solutions.
When a creative leap occurs, the solutions in the inferred
sequence belong to the same class.

We show that people’s creative outcomes in the system varies
widely, in a way that depends on the creative leaps that
are exhibited by the participants. We built a computational
model that attempts to predict whether or not a given shape
is new for a given participant. We define several sets of fea-
tures that include statistics about shapes created as well as
GUI operations used to create the shapes. The best perfor-
mance was achieved by a random forest classifier that was
based on both features.

These results can potentially inform the design of algorithms
for detecting and promoting creative outcomes.

The remainder of this paper is organized as follows. In the
next section we provide a general description of the creativ-
ity testbed for creating geometric shapes. We then describe
a tool for visualizing the shapes created by individual users
over time, and how to cluster these shapes in a way that can
detect creative leaps. Finally we provide a computational
model for detecting new shapes in a user’s interactions, and
discuss ways to extend this model to detect creative out-
comes.

2. RELATED WORK
Previous research showed that creativity is linked to positive
learning gains, and using educational technology to bring
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about creativity is an active area of research [19]. While
these programming environment support interactions that
can lead to creative thinking, they rely completely on human
teachers to detect and to promote this behavior.

We focus on the use of technology to promote divergent
thinking, which is a type of creative ability that generates
multiple answers to problems [18, 6]. Guilford [6] defines
divergent thinking as generation of multiple answers to a
problem. Torrance[17] defined fluency, flexibility, novelty,
and elaboration as parameters that describe divergent think-
ing. Fluency is the ability to create large number of ideas for
a problem that are useful. Flexibility is the ability to change
direction, thinking strategies and point of views. Original-
ity is the ability to generate novel and unconventional ideas.
Unconventional ideas defined as statistically infrequent.

There are several works focusing on the use of technology
to promote creative outcomes in students. Multi Solution
Tasks (MST) is mathematics open ended problems with mul-
tiple correct answers that can reached in different ways [12].
MST improves the participant’s understanding and the con-
nection between his knowledge domains, skills and strategies
[4]. Levav-Waynberg & Leikin [12] found that MSTs raised
the connection between knowledge domains in geometry, and
improve the fluency and flexibility of the participants. Ge-
ometry plays a major role in Math teaching. It includes
visual, abstract and logical skills. Geometry created op-
portunities for investigation, generalization, deduction and
gives autonomy to the learner to explore mathematics with
his personalized preferences [12, 3].

Sophocleous & Pitta-Pantazi [16] found that using software
environment for geometry enhanced the creative abilities of
students by facilitating them to provide more, different and
unique solutions.

Noy et al. [15] demonstrated the role of creative leaps in two
dimensional geometry. They show that human players ex-
hibit two types of exploration: ’scavenging’, where similar
shapes are accumulated, and ’creative leaps’, where players
shift to a new region in the shape space after a prolonged
search. They show that the network of shapes created by
human participants is different from the class of networks
created by applying a simple random-walk algorithm. We
extend their work in two ways. First by providing a com-
putational model to detect new shapes; second in extending
the notion of creative leaps to a framework that allows a
richer set of actions to be created. In subsequent work they
studied creative exploration using a scale invariant model
that considers relative changes in signals [7].

There are few studies on automatically detecting creativity
from students’ interactions. An exception is Manske and
Hoppe [14], who have used supervised learning methods to
detect creativity in programming assignments that require
mathematical skills. They combined low level features (e.g,
code snippets) with higher level features (e.g., the use of
recursion, number of lines of code) to train numerical pre-
dictors and predicted a creativity score for new solutions.
Chuang et al.[2] used fuzzy logic to detect student’s creativ-
ity measures in a gaming environment. Loveless et al.[13]
studied the use of technology to promote aspects of cre-

Figure 1: Open Creativity App

ative thinking for student teachers, including the develop-
ment of new ideas, modifying and evaluating the original-
ity and value of work as it develops. These works relied
on manual approaches for detecting creativity and did not
study how to visualize these creative outcomes.

3. THE GEO CREATIVITY TESTBED
We designed an activity (built as a GeoGebra app) in which
participants create geometric shapes by manipulating the
shaded area that intersects two rectangles (See Figure 1).

Participants can employ geometric transformations on each
rectangle according to several possible actions supporting
by the testbed GUI: Translation (shifting a rectangle along
the x or y axis), rotation (re-positioning the rectangle by
changing one or more of its angles), re-sizing (increasing or
decreasing the size of both of the rectangles). Creating dif-
ferent shapes requires to master different skills. It is easier to
create polygons of varying number of sides by rotating the
rectangles, but other types of shapes requires more steps,
using more actions or have a precise positioning of the rect-
angles in designated angles.

To help with the positioning, participants can optionally
choose to display the angels formed at the vertices, the
length of the intersection shape sides, or position the two
rectangles perpendicularly one to each other. At any point
in time, participants can choose to submit their shape to a
gallery. When the shape submitted to the gallery, the inter-
face doesn’t change and the participates continue their work
from the same point.

The GUI design supports several key factors that have been
shown to facilitate creative outcomes in students. First, it
provides an open ended task in which there is no single cor-
rect answer, and the goodness of a solution is measured by
the number and quality of the different answers [10].

Second, the task supports a process of exploration and dis-
covery. Participants can manipulate two rectangles to create
new shapes. Trial and error is a key part of the exploration
process [5].

Third, understanding the task does not rely on complex or
unique tool set. Participants with little knowledge in ge-
ometry can use the task and think about novel and useful
categories. Participants with more knowledge and experi-
ence will have a better potential to think about new and
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Figure 2: Categories Distribution over Participants

unconventional categories [1].

Fourth, there are many strategies to create shapes from the
same category. Some requiring more skills or using more
tools than others. For example, squares can be created by
rotating and positioning the two rectangles, and also by us-
ing “perpendicular rectangles” option in the GUI menu [1].

This task is recommended activity by content developers for
K4-K5 students that learn geometry. The idea is for students
to learn to generate geometric shapes in a novel way (inter-
secting the two rectangles). The number of possible shapes
that students can create with the system is not bounded.

3.1 Procedure
We recruited 183 Participants (87 undergraduate students
and 96 Mturk workers with varying educational background
- high school, Bachelor and master graduates). All partic-
ipants needed to pass a tutorial and comprehension quiz
about the study in order to participate.

All participants were requested to ”create as many different
polygons types as possible by intersecting two rectangles.”
Students performed the task as part of an extracurricular
activity and were not monetarily compensated. Participants
in Mturk received monetary compensation as follows: 30
cents as a show up fee and 10 cents for every type of shape
that they’ve created.

The task was limited by 10 minutes, and on average partic-
ipants spent 4.5 minutes on the task.

Participants created between one and ten different shape
categories (e.g., Polygon, square, etc.) and 1445 shapes in
total. Figure 2 shows the frequency of the shape categories
submitted by users to their portfolio. The x axis denotes the
shape category; the blue bars display the number of shapes
that was created for each category (values in the left vertical
axis). The red line shows the percentage of participates that
created shapes of the given category (values in the right
vertical axis.

As shown by the figure, the most popular shape categories
were Pentagon, Hexagons and ”other”Quadrilaterals (quadri-
laterals which were not rhombus, square or rectangles). The
least popular shape categories were septagon, square and
rectangles. There was a general correspondence between
the number of times a shape was created and the number
of users who created the shape. However, some shapes cat-

Figure 3: Visualization tool showing timeline of
shapes (top), and shape sequences (bottom) for user
ID 752

egories, namely Rhombus, square and rectangle, were more
popular. For example, the Rhombus is the fourth most pop-
ular shape category, yet it is the second most popular shape
among the users. We will show later that these shapes played
a special part in people’s creative process.

3.2 Visualization Tool
We designed a visualization tool for studying how individ-
ual participants create shapes over time. Fig 3 shows the
main interactive panel in the visualization system. The main
panel shows the shapes created by an individual user (ID
752). The x axis represents time (in seconds) from com-
mencement of the interaction, while the y axis represents
the length of time (in seconds) it took to create shapes. For
example, the coordinate (30, 4) shows the first shape cre-
ated by the user (Rhombus) at time 30 and took 4 seconds
to create. As shown in the figure, participant ID 752 cre-
ated 11 shapes over a time span of 230 seconds. We can see
that the participant exhibited high variance in the creation
time of the shapes. For ease of analysis, there is a way to
group shapes into temporal sequences according to the fol-
lowing criteria: First, a sequence has to include at least n
contiguous shapes. Second, the probability that the next
action belongs to the same sequence is greater than a desig-
nated threshold T . The threshold can be set in a way that
maximizes the number of shapes in the sequence. A shape
i commences a new sequence if P ( ∆i−µ

σ
) > T where ∆i is

the length of time spent to create shape i, µ and σ are the
average time and standard deviation for creating shapes by
the participant. In this way we consider the extent to which
the creation time of each shape agrees with the individual
participant (assuming a normal distribution over creation
time).

Figure 3 shows four shape sequences that were created by
the user, inferred by the criteria described above. We can
see that sequence II and IV are relatively short and include
shapes that share a common category (that of trapezoids or
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hexagons, respectively). In contrast, sequence I and III are
longer and include shapes of different categories. We next
show how these sequences yield insights into creative aspects
of the shape creation processes.

3.3 Measuring Creativity
We measure the creativity of a participant following Tor-
rance [17] who defined dimensions of flexibility, fluency and
originality to describe creative solutions to problems: Flu-
ency is the number of solutions that was proposed by the
participant. Flexibility is the number of strategies that the
participant applies for the solution. Originality is statisti-
cally infrequent ideas that were produced by students rela-
tive to their classes or groups.

We calculate the score by the formula suggested by Leikin
[11], adapted to the geometry app. The flexibility of a shape
i is 10 if the shape is new for this participant, or 1 otherwise.
The originality of a shape i is 10 if the shape was chosen by
fewer than 15% of participants (septagons), 1 if the shape
was chosen by between 15% and 40% of participants (rect-
angles and squares), and 0.1 if the shape was chosen by more
than 40% of participants.

The fluency of a shape is always 1. Let n be the number
of shapes created by the participant (also the participant’s
fluency score). The creativity score of a participant is com-
puted as

∑n
i=1 FXi ·ORi where FXi and ORi are the flex-

ibility and originality of shape i.

4. CREATIVE LEAPS
Participants exhibited a diverse range of creativity scores in
their work. The average score was 80 with a standard devia-
tion of 54. To explain differences between students, we need
to analyze the dynamics of how shapes were created. We
will distinguish between two types of shape creation, those
representing exploration in the space of possible concepts,
and those representing exploitation of one of the concepts
that is used to create shapes.

Koestler [9] describes a creative leap as the moment where
a new dimension of possibilities appears. The creative leap
signifies a point in the search space in which the learner
discovers a new class of solutions and begins to exploits this
space by creating shapes.

In sequence II and IV of participant 752 (shown in Fig-
ure 3) the participant exploits the concept of trapezoid and
of hexagons, completing two shapes in each category. Both
of these sequences represent creative leaps. In contrast, se-
quence I and III for this user represents exploratory behavior
in which the participant does not converge on a shape cate-
gory. In particular, sequence IV commenced 81 seconds after
the last shape, suggesting a lengthy process of exploration
leading to the next shape category.

We use the concept of creative leaps to distinguish between
different types of participants, as determined by their inter-
action in the system.

Another example, participate 651 holds an MA degree, ex-
hibited a creativity score of 128, with fluency of 36, flexibility
of 8, and originality of 1 (rectangle and square). Participant

Figure 4: Shape sequences for low scoring partici-
pant ID 655 (left) and high scoring participant ID
651 (right)

Figure 5: New and old shapes

655 holds a high school diploma, with a creativity score of
61, with fluency of 5, flexibility of 4 and originality of 1
(rectangle and square).

Figure 4 shows the shape sequences for these two partici-
pants. As shown by the figure the users exhibited drastically
different interaction styles with the system. The low scor-
ing participant (user ID 655) created only five shapes, which
can be described by 4 sequences. Only sequence I for this
user consisted of shapes of a similar category. In contrast,
the high scoring participant (user ID 651) created 36 shapes,
which can be described by 10 sequences (for brevity we only
show the first four). Five of these sequences included shapes
with particular categories.

5. COMPUTATIONAL MODEL
Using the creation of a new shape as a proxy for creativity,
we build a computational model that attempts to predict
whether or not a given shape is new for this participant.
This is a first step for detecting creativity for this partici-
pant. To this end, we extract a number of features and use
logistic regression and a random forest classifier to predict
the binary outcome of whether or not a given shape is new
for the user.

Figure 5 shows the layout of new shapes (green) and old
shapes (blue) for users across time. It demonstrates that
while the proportion of new shapes being generated certainly
does decrease as the user continues to interact on the plat-
form, there are a significant number of shapes that are cre-
ated ‘later’ on in the user’s interaction session. These shapes
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Figure 6: Plots showing the raw shape coordinates
and the extracted actions from the database. Top
is a resize action where both input rectangles are
affected. Bottom is a rotation action to the second
rectangle

are new to the user and can signify the commencement of a
creative leap.

5.1 Feature Extraction
The raw data represents individual coordinates of the two
input rectangles where the user can rotate, translate and re-
size the two rectangles. We extract changes to these coordi-
nates to represent the 5 actions that the user can perform on
the system. Figure 6 shows the primary actions that a user
can perform. The resize action affects both shapes simulta-
neously whereas the user can perform rotate and translate
actions to each shape individually.

As a number of actions are preformed before a user submits
a shape, we include the history of actions in the feature ma-
trix considering a maximum of 15 actions before the shape
was submitted; 95% of shapes were submitted with less than
15 steps. We aim to infer whether including the history of
actions provides additional information to a model predict-
ing the creation of a new shape. In other words, our goal is
to determine if combinations of actions are predictive of a
new shape and thus indicative of certain creative insights.

5.2 Method
Given four feature sets, we use cross-validated logistic regres-
sion (LR) and random forest (RF) classification to predict
the binary classification problem of whether or not the shape
is new for the user. Other classification techniques were ex-
plored including support vector machines, boosted decision
trees and naive Bayes classifiers but LR and RF were cho-
sen for simplicity and the ease of interpretation into the
parameter coefficients (or feature importance in the RF).
Moreover, LR allows the application of an L1 sparsity reg-
ularizing parameter to induce sparsity in the feature space
(thereby assisting inference). The available features are:

Table 1: Different combinations of available features
that the four feature sets used.

Feature Set Shape History Action History Aggregated Action
History

Feature set 1 Y
Feature set 2 Y Y Y
Feature set 3 Y Y
Feature set 4 Y Y

1. Shape History. Counts of previously submitted shapes
from the user for each of the 10 shape categories.

2. Action History. A one-hot encoded representation
of actions in 15 previous steps leading into the shape
creation. Following the actions shown in Figure 6 there
were 3 possible actions (translate, rotate or resize) at
each step. We further include a ’control’ action that
represents a recorded step but no action. This case
might occur when the user does not interact with the
shapes but rather interacts with a different UI element
or possibly performs an administrative action such as
submitting the shape. This creates 60 features in total
for each instance.

3. Aggregated Action History. The sum of the Ac-
tion History features across the 15 steps. This re-
sults in 4 additional features per instance describing
the number of times each action was performed. For
example, a vector (2, 3, 5, 5) corresponds to 2 translate,
3 rotate, 5 resize and 5 control actions (in any order).

The three sets of available features were aggregated in dif-
ferent combinations to provide four feature sets that were
used for evaluation. Table 1 summarizes the different com-
binations that were used.

5.3 Results
Our goal was to determine if certain sequences
and/or combinations of actions are predictive of the user
generating a new shape. Table 2 summarizes these results.
We note that the Feature Set 3 provides a slight improve-
ment over the baseline of Feature Set 1 for both LR and RF.
Feature Set 4 with RF shows the greatest accuracy with a
2% increase over the baseline feature set. The results are
reported from a 10 fold cross-validation but the predictive
increase is not significant across the folds. The results sug-
gest that the inclusion of the action data does assist slightly
with the predictive performance of the model but we note
the result is not conclusive. However, analyzing the feature
weights of the LR for Feature Set 3 and the RF for Feature
Set 4 is illuminating.

It is interesting to note that the RF model with the tem-
poral features outperforms the LR on these same feature
sets. Again, although the results are not significant they
do suggest there is a more complex interaction of the action
history of the user that might be predictive of the new shape
creation. Further investigation into how sequences of ac-
tions might be indicative of the creation of a new shape (and
thereby indicative of a creative leap) is needed to answer this
question definitively.
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Table 2: Table showing the results from the pre-
diction task of predicting a new shape for a given
user.

Accuracy
Feature Set LR RF

Trivial all 0 prediction 59.9% 59.9%
Feature set 1 75.5% 75.4%
Feature set 2 74.8% 76.1%
Feature set 3 76.0% 76.5%
Feature set 4 73.5% 77.5%

6. CONCLUSION AND FUTURE WORK
We presented an approach for studying creativity using a
web based tool in which participants created geometric shapes.
This task supports a process of exploration and discovery,
allowing people to exhibit creative leaps in which they tran-
sition between different areas of the search space of possible
solutions. We adapted a model by Leikin for measuring
creative outcomes in users’ interactions. We collected data
from multiple people interacting with the system showing
that they vary widely in terms of the creativity they ex-
hibit. We built a visualization tool that decomposes a user’s
interaction sequence in the system to separate sequences of
solutions. We built a computational model that attempts
to predict whether or not a given shape is new for a given
participant. We define several sets of features that include
the number and categories of shapes that were created by
the user, as well as basic actions performed by the users in
the system for a window of activity. The best performance
was achieved by a random forest classifier that was based
on both features. In future work we intend to extend the
computational model to detecting creative outcomes in new
types of domains.
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ABSTRACT
Prior research has shown that, under certain conditions,
Human-Agent (H-A) alignment exists to a stronger degree
than that found in Human-Human (H-H) communication.
In an H-H Second Language (L2) setting, evidence of align-
ment has been linked to learning and teaching strategy. We
present a novel analysis of H-A and H-H L2 learner dialogues
using automated metrics of alignment. Our contributions
are twofold: firstly we replicated the reported H-A align-
ment within an educational context, finding L2 students
align to an automated tutor. Secondly, we performed an
exploratory comparison of the alignment present in compa-
rable H-A and H-H L2 learner corpora using Bayesian Gaus-
sian Mixture Models (GMMs), finding preliminary evidence
that students in H-A L2 dialogues showed greater variability
in engagement.

Keywords
Language learning, chatbot, dialogue, alignment, tutoring,
agent, second language, student engagement, assessment

1. INTRODUCTION
This work reports on evidence of alignment within student
dialogue to that of an automatic tutor even when both par-
ties are restricted in their capacity to align: the student as
an L2 learner may lack the linguistic proficiency to show
alignment [5], and the agent aligns only minimally by de-
sign. Alignment consists of interlocutor interaction adap-
tation, resulting in convergence, or in their sharing of the
same concept space [13, 8]. Alignment of student to tutor
in dialogue has been used as a predictor of both student
learning and engagement [20]. A key aspect of dialogue is

the speakers’ ability to align: to either show engaged, will-
ing behaviour, or display little discernible adaption to their
interlocutor. Interestingly, humans have been shown to ex-
hibit greater alignment to agents than to other humans [4,
6]. In an automated L2 tutoring setting, where students
have been shown to imitate tutors as part of their learning
process [10] it is of great interest to determine whether the
user/learner is actively engaged, simply gaming the system,
or disengaged, either because of lack of ability or motiva-
tion [1]. Modelling alignment of student to tutor as evidence
of engagement could serve as a useful tool in the design of tu-
tor intervention or student assessment since there has been
limited research into identifying signs of engagement or gam-
ing in the automated L2 tutoring setting.

Given this relevance of alignment in modelling engagement
during tutor-student L2 dialogues [20], one key question is
whether L2 students demonstrate alignment behavior in con-
versation with an automated dialogue agent, even when they
know the agent is not human. Prior work has established
that L2 students display alignment when conversing with
a human tutor, in Human-Human (H-H) interactions [17];
however, this work has also demonstrated relatively symmet-
ric alignment, as human tutors verbally aligned with their
students in turn — this raises the possibility that L2 learn-
ers may fail to display alignment if the dialogue is predom-
inantly asymmetric , when interacting with a agent whose
capacity to align is also limited. Studies of Human-Agent
(H-A) dialogues in other domains demonstrate that fluent
speakers verbally align with agents [4, 6], but given the
unique constraints affecting alignment in L2 dialogue [5],
we cannot assume that L2 students will behave similarly. If
they do, a second key question arises: do L2 students display
similar alignment behavior in H-H and H-A dialogues? Even
if students align in both contexts, exploratory analysis may
reveal critical differences which could inform educational re-
searchers and practitioners working with dialogue agents.
Hence, our work addresses the following research questions:
RQ1 Do L2 students show alignment to an automated di-
alogue agent (i.e. H-A alignment)? and RQ2 What is the
nature of the alignment found in the H-A corpus and how
does it differ from that of H-H dialogues?
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We present a study of student verbal alignment within a new
dialogue corpus consisting of transcripts from a language
teaching app where students are interacting with a dialogue
agent. We contrast this H-A corpus with a comparable H-
H L2 learner corpus of tutoring dialogue transcripts. We
found that students in H-A interactions align to the agent
more so than they would by chance, albeit to a lesser de-
gree than students in H-H dialogues. Our results found that
within H-H dialogues, students exhibited greater alignment
than tutors. Finally, we compared the distribution of stu-
dent to tutor alignment within both corpora, revealing more
variance in alignment within the H-A dialogues. We hypoth-
esise this was due to either student engagement effects, or
different types of student alignment strategy within the H-A
dialogues than the more uniform alignment present in the
H-H corpus.

2. BACKGROUND
To achieve effective communication within dialogue, speak-
ers typically align, adapting their interaction to their inter-
locutor. The Interactive Alignment Model (IAM) [13], de-
scribes this process as that of speakers agreeing on a shared
conceptual space. In educational settings, by contrast, align-
ment has been found to predict both student learning and
engagement [20].Automatic alignment between interlocutors
occurs over different linguistic levels, including that of the
lexical, syntactic and semantic [13]. Lexical alignment con-
sists of speakers beginning to use the same words [21, 17]
or phrases [6] as each other. Syntactic alignment consists of
the use of the same parts of speech patterns, such as similar
noun-phrase constructions, or similar adjuncts [14] as the
conversation progresses. Finally, semantic alignment can
range from adaptation to individual differences in person-
ality [11] to convergence at a higher level of representation
such as Dialogue Acts [16]Recent research has established
a number of metrics for linguistic alignment which can be
computed automatically, enabling large-scale corpus analy-
sis based on sequential pattern mining [6]. These methods
quantify alignment in terms of the expressions, or contigu-
ous sequences of tokens appearing in the utterances of both
interlocutors. While these methods have been applied to the
analysis of H-A interaction [6] and H-H student-tutor inter-
action [17], the work presented in this paper is the first to
apply this computational methodology to compare H-A and
H-H dialogue in an educational L2 setting.

Within an L2 practice setting, we predict alignment to have
slightly different properties compared to a fluent conversa-
tional setting where speakers tend to have a symmetric con-
tribution and equal status within the dialogue [18], and are
equally capable of participating [5]. L2 learners have been
found to perform at a higher level when speaking in dia-
logue with a peer than in a monologue context [15] This
suggests students draw from the example language of their
interlocutor leading us to expect evidence of alignment. L2
students have also been shown to learn vocabulary through
taking part in dialogue [9], suggesting this process of align-
ment and repetition of their interlocutor’s speech produces
learning gains. In the case of the tutor, their need to adhere
to the ZPD suggests that their alignment patterns will also
differ from that of straightforward dialogue. These different
factors influence the speakers’ convergence to a shared men-
tal state [5]. Vygotsky’s theory of ZPD [19] states students

Table 1: Tutorbot dialogue example. Italics indicate
Expression Repetition
1. bot: What is your favorite day of the week ?
2. user: My favorite day of the week is Friday ...
3. bot: Do you play sports ?
4. user: yes
5. bot: What sport do you play ?
6. user: I play volleyball and I go running
7. bot: When do you do that ?
8. user: On Monday , Wednesday and Friday
9. bot: What time does it start ?
10. user: At 4 o’clock in the afternoon

will learn best when addressed at the correct level, therefore
we also expect to see alignment, in the case of tutors in H-H
dialogues, to student ability.

3. CORPORA
We are interested in the comparison between student align-
ment in H-H and H-A dialogues. The H-A corpus analyzed
in this study comprises dialogues drawn from a large-scale
commercial platform for L2 learners1. In this application,
novice learners of English who had completed lessons on rele-
vant topics were offered the possibility to review the material
via simple conversations with the automated dialogue agent
Tutorbot. Given the focus on relevant learning material,
the agent engaged learners in a system-initiative dialogue
with extensive guidance, rather than user-initiative [2]; as
a result, Tutorbot steered the learner conversations very de-
liberately, and alignment from the tutor agent to the student
was highly limited by design. A sample dialogue from the
corpus can be seen in Table 1. The H-H corpus used is
the Barcelona English Language Corpus (BELC) [12] which
consists of tutor guided conversations with L2 learners of En-
glish at varying stages of fluency from absolute beginner to
approaching intermediate. The tutor’s goal was to elicit as
much conversation from the learner as possible while setting
them at ease in as natural and conversational a manner as
they could. Key differences are shown in Table 2. However,
it should also be noted that the Tutorbot corpus only con-
sists of single utterance turns, whereas BELC has multiple.
The topics are also more diverse in BELC, as the Tutor-
bot explicitly guided learners to review practiced material
rather than engage in open-ended discussion. Nevertheless,
certain main topics (how are you, where are you from, tell
me about your family, hobbies, what time do you do that)
and the beginner/lower-intermediate range of learner abil-
ity are common to both, facilitating automated alignment
comparison.

4. METHODS
4.1 Alignment
In order to analyse the verbal alignment present in both
corpora, which allows us to answer both RQ1 and RQ2, we
use the expressions-based measures introduced by [6]. This
approach identifies sequences of tokens (Expressions) which
are used by both dialogue participants (thus established as
expressions). These expressions allow us to see the fixed ex-
pressions established between speakers, called the routiniza-

1This data was kindly shared with us by Babbel,
https://www.babbel.com/
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Table 2: H-A and H-H Corpora Differences
Tutorbot BELC

number of dialogues 3689 118
average Num. utterances 20.41 130.69
average Num. tokens 128.99 634.28
average tokens/utterance 6.32 4.85
communication medium typed spoken
speakers H-A H-H
student L1 German Spanish
vocabulary overlap 0.085 0.251

tion process in the interactive alignment theory [13], and
thus an indication of speaker alignment. We re-define the
following in order to discuss our results in the following sec-
tions:

Expression Lexicon EL is the set of expressions used by
both speakers for a given dialogue.

Expression Variety (EV) is the size of the EL normalised
by the total number of tokens in the dialogue. This ra-
tio indicates the variety of the expression lexicon rela-
tively to the length of the dialogue: the higher the EV,
the more incidence of established expressions between
participants. The EV indicates the routinization be-
tween speakers.

EV = length(EL)
numberoftokens

Expression Repetition – speaker (ERS) is the ratio of
Expressions to dialogue produced. This is measured in
tokens. This value indicates the Expression repetition
present in the dialogue, i.e. the higher the ER, the
more the speakers dedicate tokens to the repetition of
established expressions. This is indicative of speaker
alignment.

Initiated Expression (IES) are the established expressions
initiated by S

Vocabulary Overlap (VO) is the ratio of shared tokens
between interlocutors S1 and S2. The higher the VO,
the more vocabulary is shared between speakers.

V O =
(TokensS1

∩TokensS2
)

(TokensS1
∪TokensS2

)

4.2 Baseline
In order to test that the alignment reported was not sim-
ply due to corpus-specific vocabulary effects (which would
be influenced by the vocabulary overlap defined in the pre-
vious section), a ‘scrambled baseline’ was created for each
corpus. This was achieved by creating a ‘bag of words’ of
the tokens produced by each speaker for a specific dialogue,
then substituting each token from each speakers utterances
with one from the shuffled bag of words. This method re-
tains the turn-taking of the speakers, and the distribution
of utterance lengths from the original dialogue, but removes
any word ordering present. In the results section for each
alignment measure, we report on whether the effects were
significantly different from this baseline. This baseline al-
lows us to compare the effects of alignment across corpora,
answering RQ1.

4.3 Alignment Distribution Clustering
In order to answer RQ2 investigating student alignment dif-
ferences within and between the H-H and H-A corpora, we
fitted a Gaussian mixture model (GMM)[7] to the student
ERS data for both the H-H and H-A students. GMMs al-
lowed us to detect and characterize distinct sub-populations
within a larger group, provided those sub-populations were
marked by differences in a parameter of interest, e.g., mea-
sured ERS. To find the number of components which best
fitted the data, we used a Bayesian Gaussian mixture model
with a Wishart prior of [[0.1]] on the precisions and a scale-1
exponential prior on the number of clusters, and selected the
most probable number of clusters given the data (i.e. the
posterior mode), assuming that up to seven clusters might
be present. We used a Bayesian approach in order to avoid
the degeneracies that are common when using maximum-
likelihood estimation and information criteria (e.g., AIC or
BIC) to estimate cluster counts and parameters [3]. To
implement this, we used the toolkit scikit-learn2, package
BayesianGaussianMixture; the priors on component means
were scikit-learn 0.20 defaults.

5. RESULTS AND ANALYSIS
The following subsections all contribute to answering RQ1,
through the comparison of H-H to H-A student alignment
and corpus statistics. Section 5.5 specifically explores the
variation in alignment styles across corpora, allowing us to
answer RQ2.

5.1 Expression Lexicon
The Expression lexicon is the set of expressions which are
shared between speakers. On inspection, the most common
multi-word expressions being aligned to in the Tutorbot cor-
pus fell into two main categories: 1) the student using the
direct re-form of the question in the creation of their answer:
“bot|4: What is your favorite day of the week ? user|5:
My [favorite day of the week] [is] Friday”. 2) The student
reflecting the question back to the tutor-bot. “bot|4: Where
do you live? user|5: I live in <LOCATION>, where [do
you live]?”. The rephrasing in BELC is different: it is more
likely that the tutor will re-phrase the student’s single or
multi word answer as a form of confirmatory feedback. e.g.
“Tutor: you like going out with your friends, good”when this
is really more repetition/confirmation. The student align-
ment also consisted of their reflection of tutor questions back
to them, and in their repetition of tutor scaffolding moves
(something not present in the Tutorbot corpus due to the
agent dialogue design) Table 3 contains details of the vocab-
ulary overlap, speaker specific token ratios and the expres-
sion lexicon size differences between corpora.

Table 3: Corpora Differences- values represent the
average per dialouge

Tutorbot BELC
Expression Lexicon Size (ELS) 3.04 48.55
S1/tokens (%) 0.81 0.68
S2/tokens (%) 0.19 0.30
Voc. Overlap 0.085 0.251
Voc. Overlap S1 0.105 0.312
Voc. Overlap S2 0.258 0.613

2https://scikit-learn.org/stable/
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5.2 Vocabulary Overlap
The vocabulary overlap (VO) between speakers gives us an
idea about how likely ‘’alignment’ according to our metric
will occur by chance. The results in Table 3 therefore can
inform our interpretation of the levels of ERS reported in
section 5.4. Student VO in BELC (HH) is much higher than
from the students in Tutorbot (HA) (0.613 vs. 0.258 ) This
could be due to the fact that Tutorbot learners were at a
lower level of proficiency, so they did not use such extensive
vocabulary; alternatively, it could be due to the method of
data collection: Tutorbot allows learners a one turn response
(a single utterance), limiting their production.

Figure 1: H-H/A corpora Vocabulary Overlap.
Speaker difference was significant for H-A (p <
0.0001 (statistic = 6.42, pvalue = num1.4e− 10) and H-
H (p < 0.001) (statistic = −2.11, pvalue = 0.00036) S1
= Tutor/Agent, S2 = Student

5.3 Expression Variation
We compare the H-H and H-A corpora of real interactions
to each other, and to the baseline H-HR and H-AR corpora
to control for vocabulary effects. Firstly, EV was signif-
icantly higher for the H-H corpus (mean = 0.075, std =
0.025) than that in the H-A corpus (mean = 0.032, std =
0.046). Statistical difference was checked by performing a
t-test (statistic = −10.05, p− value = 1.888× 10−23), indi-
cating H-H interactions result in a richer expression lexicon
than H-A interactions. The EV values were much lower than
those reported for negotiation dialogues [6], which may be
due to dialogue type: routinisation may form a much greater
part of negotiation than it does L2 tutoring. Another reason
for the low EV in the H-A corpus is that the student cannot
establish expressions other than by chance since the Tutor-
bot corpus is system-initiated and is not designed to align
to the student’s responses. Neither the EV of the H-H nor
the H-A corpus was statistically greater than the H-HR and
H-AR baselines, which can be in part attributed to the high
proportion of single-token expressions in both corpora, lead-
ing to greater likelihood of their existence in the scrambled
baseline.

5.4 Expression Repetition
Expression repetition (ERS) is the main indication of speaker
alignment measured. Figure 2 shows the different degrees

Figure 2: H-H/A corpora ER s. Speaker differ-
ence is significant for H-A (p < 0.0001) (statistic =
−44.91, pvalue = 0.0) and H-H (p < 0.0001) (statistic =
−12.71, pvalue = 1.77× 10−28) S1 = Tutor/Agent, S2 =
Student

of ERs for both the H-A and H-H corpora. The differ-
ence between the ERs of each speaker was significant for
both corpora: H-A (statistic = −44.91, p − value = 0.0)
and H-H (statistic = −12.71, p − value = 1.770× 10−28).
It is interesting to note the asymmetry between speakers
for both dialogues. The tutor in the H-H dialogues had
a significantly lower proportion of ER than the student,
suggesting ER has less to do do with teacher strategy as
with learner strategy. We compared each ERS with its
ERR for both corpora: for the H-A corpus, student ERS2

(mean = 0.192, std = 0.235) was significantly higher than
that of ERR S2 (mean = 0.134, std = 0.206) (statistic =
−11.20, p− value = 6.593× 10−29). Meanwhile, tutor ERS1

(mean = 0.016, std = 0.032) was significantly lower than
that of their scrambled baseline ERR S1 (mean = 0.024, std =
0.037) (statistic = 9.865, p − value = 8.2012× 10−23) in-
dicating the absence of alignment expected from an agent
not designed to do so. For the H-H corpus, student ERS2

was not significantly different from their baseline ERR S2

(statistic = 0.932, p − value = 0.352), nor was tutor ERS1

(statistic = 2.506, p − value = 0.013). This can be ex-
plained in part by the fact that VO for the H-H corpus
(mean = 0.251, std = 0.061) was significantly larger than in
the H-A corpus (mean = 0.085, std = 0.146) (statistic =
−12.32, p− value = 3.089× 10−34).

5.5 Student ER Distribution
In answer to RQ2, we compare the distributions of per-
dialogue ERS values between H-A and H-H corpora. Fig-
ure 3 shows histograms of ER frequency for each corpus,
which suggest there were multiple types of student align-
ment in the H-A corpus (a), in contrast to a single cluster of
ER values for the H-H corpus (b). To quantify these differ-
ences in student alignment – and go beyond a comparison of
averages which neglects the possibility of differences across
individuals and dialogues – we fit a Bayesian Gaussian Mix-
ture Models [7] (described in Section 4.3) to student ERS

values. The results of our model indicate that the most
probable number of clusters, given the data (i.e., the pos-
terior mode), was 5 for the H-A corpus (Figure 3a) and 1
for the H-H corpus (Figure 3b). This analysis also reveals a
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(a) GMM with number of components = 5
means: (0.0004, 0.15, 0.31, 0.52, 0.90)
weights: (0.30, 0.49, 0.08, 0.09, 0.05)

(b) GMM with number of components = 1
mean: 0.33
weight: 1

Figure 3: Frequency of Expression Repetition values (High ER indicates greater alignment). Gaussian
Mixture Models (GMM) which best fitted to the data shown by the red line. Means: centroids of the
component clusters. Weight: the proportion of dialogues in a cluster.

Table 4: Qualitative Analysis of H-A dialogues at
the ‘centroids’ of the component clusters
ER Description and example
0-0.01 no-response or request for help: students ei-

ther do not engage with the agent, or demonstrate
inability to engage

0.1-0.15 minimal response: students respond curtly, ap-
pear less engaged
bot: What is your favorite day of the week ?
user: That ’s Sunday .

0.25-0.4 high engagement: dialogues either longer with
align and rephrase within longer utterances, with-
out excess repetition, or shorter dialogues consist
of more repetition and rephrasing, and the limited
vocabulary contributes to alignment
bot: Do [you] have a boyfriend or a girlfriend
? Or a husband or a wife ?
user: I [have [a] husband] .

0.5-0.55 minimal response: low rate of student produc-
tion, typical response one high-frequency word,
low engagement despite high alignment
’hi’, ’bye.’

0.85-0.9 high repetition: all student responses are
rephrases, dialogues very short
bot: Hello , nice to see you !
user: [Hello] [nice to see you] too

cluster in the H-A corpus which has a qualitatively compa-
rable mean value to the one in H-H (0.310-H-A, 0.330-H-H).
Table 4,shows this cluster contains the longest dialogues in
Tutorbot, which are qualitatively the most similar to those
in BELC.

We hypothesise the other clusters are either, in the case
of low level ER, signs of student lack of engagement (align-
ment being symptomatic of engagement within dialogue) or,
in the case of higher ER, signs that the students are in some
way conversing in a manner impossible to find in H-H dia-
logues. We hypothesise either this is due to the communi-
cation medium: students can copy, paste and edit the agent
utterance to create their response or due to students’ desire
to learn through continual repetition of the agent’s phrases.

Table 4 shows examples and descriptions of the H-A corpus
data, corresponding to the component means in Figure 3.
Since the H-H corpus was gathered as part of an experi-
ment, we know that there would not be ‘outlier’ behaviour
present, but the upper and lower ranges show some differ-
ences in interaction style of the learner.

6. DISCUSSION
In relation to RQ1, whether there is evidence of student
- agent alignment in L2 dialogues, we find significant H-A
alignment. The magnitude of this effect was weaker than
that found in H-H dialogues, and we hypothesise that adap-
tive student support in the form of tutor alignment is es-
sential for students to align to the degree they do in an L2
H-H setting. We found no significant alignment of agent to
student, however an agent designed to interact with more
explicit alignment may more resemble the alignment found
in the H-H corpus. We found asymmetrical alignment within
the H-H corpus, which was in keeping with results reported
on lexical priming for the same corpus which found the
strongest priming effects are those from student to tutor [17].
In relation to RQ2, concerning the exploratory analysis of
alignment differences across corpora, a particularly salient
finding are the differences in alignment across dialogues,
suggesting different patterns of student engagement could
be detected via their alignment levels. Table 4 shows that
there was a clear ‘normal range’ for interaction, and the
outliers showed different signs of student non-engagement.
Our key finding is that there was greater variability in H-
A compared to H-H alignment (best fit of 5 clusters com-
pared to a single cluster), although role of factors such as
dialogue and utterance length in these findings should be
investigated in future work. We hypothesise that building
a more alignment-focused tutoring agent could increase stu-
dent engagement and yield results consistent to those within
BELC. This could lead to better online L2 tutoring systems
which promote student engagement and therefore improve
participation and learning. It may be that the nature of
an online learning platform will always result in some stu-
dents who do not fully engage, and need different interven-
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tion strategies. Using an alignment metric in the manner
of our study could allow for the identification of these stu-
dents, measurement of their engagement, and prediction of
personalised interventions.

7. CONCLUSIONS AND FUTURE WORK
This paper presents a comparative analysis on student to tu-
tor alignment in both an H-A and an H-H dialogue setting.
We found students aligned to the agent, although this align-
ment was not stronger than that present in H-H dialogues
which is the case for both negotiation [6] and task-based di-
alogues [4]. We hypothesise we can better explore this in a
setting where the agent is specifically designed to align to
the student.A limitation of our study is that both corpora
were collected independently and therefore differ in more
aspects than the one we wish to explore. In future work
it would be desirable to collect data in a controlled setting
which is more similar to the Tutorbot corpus to facilitate
a more in-depth comparison. Another avenue for future re-
search is the design of adaptive ‘alignment’ moves for the
automated tutor to make. The design could draw on how
the ZPD influences alignment and what the common ERS

are in the H-H corpus, such as confirmatory rephrasing (e.g.
“Student: I speak Germanish”, “Tutor: you speak German?
Great!”) or repetition (e.g. ”student: I am 20 years old”,
”tutor: 20 years old? good!”). This research has a number
of implications for the educational community, particularly
regarding the use of alignment as an indicator of engage-
ment. Furthermore, our method of clustering student ERS

to identify ‘normal’ engagement behaviour for a given do-
main may inform the detection of outliers and has potential
for automating dialogue planning and intervention policies.
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ABSTRACT 
We examine the ability of supervised text classification models to 
identify several discourse properties from teachers’ speech with 
an eye for providing teachers with meaningful automated 
feedback about the quality of their classroom discourse. We 
collected audio recordings from 28 teachers from 10 schools in 
164 authentic classroom sessions, which we then automatically 
transcribed into text utterances and then manually coded to 
identify whether: (1) the utterance contained a question (as 
opposed to a statement), (2) the question or statement was 
Instructional vs. Non-Instructional, and (3) the question or 
statement was Content-Specific. We experimented with Random 
Forest classifiers and engineered (linguistic, acoustic-prosodic, 
and contextual) features vs. open-vocabulary n-grams as features 
to discriminate these discourse variables at the utterance level in a 
teacher-independent fashion. We achieved AUC scores ranging 
from 0.71 to 0.77 using open-vocabulary language modeling, 
which were well above chance (AUC = 0.5), an important step 
towards our predominant goal of constructing of an automated 
feedback system for teacher reflection and learning.  

Keywords 
Automatic Speech Recognition, Natural Language Processing, 
Dialogic Instruction, Classroom Discourse, Open-vocabulary 

1. INTRODUCTION 
A teacher’s ability to engage students in classroom instruction is 
of paramount importance in promoting greater student 
achievement and improving educational outcomes. The level of 
student engagement is highly dependent upon the ways a teacher 
interacts with students [1]. The nature of classroom discourse, 
consisting of the ongoing conversation between the teacher and 
students, may provide unique insights into a teacher’s ability to 
engage students in the classroom.  
Many defining characteristics of classroom discourse have been 
studied and documented [21]. Traditional methods of classroom 
instruction are typically presented as monologic discourse, 
usually in the form of lecture, recitation, and seatwork [20]. 
However, substantive engagement requires more than just passive 
listening from students; rather, it requires a degree of student 
involvement. Not surprisingly, the degree to which classroom 

discourse is monologic vs. dialogic has been found to greatly 
influence student engagement, with higher ratios of student talk 
providing a necessary condition for improved engagement and 
dialogic interaction [15, 22]. In order to achieve more widespread 
classroom engagement, students must not only take notes or listen 
attentively to well-rehearsed lectures from an instructor but must 
also be engaged in meaningful conversations about a topic. This 
deep discussion, a hallmark of dialogic instruction [21], is 
characterized by a symmetrical balance between student and 
teacher speech, with social interaction shaping the instruction. 
In addition to the ratio of teacher speech to student speech, other 
trends help to characterize dialogic instruction. For example, 
teachers who ask more questions tend to promote increased 
student interaction and discussion in classroom discourse [17]. To 
this note, the Measures of Effective Teaching Study (MET) found 
question-asking behavior to be a primary factor in the variability 
of teaching quality [13]. However, questions are not all created 
equally. Questions associated with classroom management (like 
attendance-taking or rhetorical questions which require no student 
response) are not expected to influence student engagement. 
Compared to informational questions with a known answer, 
questions which elicit open-ended responses from students are 
expected to promote increased levels of engagement [34]. These 
open-ended, or “authentic” questions, draw upon students’ ability 
to put forth independent thought in forming a response, rather 
than simply perform an affirmation check of the right answer. 
Authentic questions also serve to initiate discussion in which 
students can more thoroughly explore an idea and consider 
different viewpoints [20]. This in turn helps improve their overall 
understanding and can increase interest in the subject [21].  
Additional defining characteristics of dialog associated with 
increased engagement, and consequently achievement, include 
higher levels of uptake (teacher questions which incorporate 
student responses) and cognitive level (the level of cognitive 
functioning a teacher question seeks to elicit), among other 
factors [20]. The study by Gamoran and Kelly (2003) 
demonstrates the benefits of discussion-based approaches to 
classroom instruction, which contributed the most towards 
enhanced student performance on complex literacy [12]. 
Despite the positive correlation of indicators of dialogic 
instruction (such as authenticity, uptake, and cognitive level) with 
increased student engagement and achievement [22], the practice 
has not gained widespread adoption among teachers. Instead, 
traditional means of instruction and monologic discourse tend to 
be most prevalent in the classroom [29]. This might be attributed 
to the challenges encountered by teachers in adopting sustained 
dialogic discourse into their pedagogical practices. Most 
importantly, receiving and learning from feedback is essential to 
assess current abilities and identify areas for improvement. We 
know that providing teachers with training and data-driven 
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analysis about their discourse has been shown to positively 
correlate with student achievement [16]. However, assessment of 
teachers’ instruction via live classroom observations often 
provides evaluative rather than formative feedback [16]. 
Moreover, conducting these observations can be expensive, as 
they require skilled human judges, rubrics, training, and 
continuous assessment of observers [2]. Therefore, classroom 
observations occur infrequently, if at all, and must be augmented 
by additional approaches to further facilitate teacher 
improvement. 
To address this challenge, our study derives from a larger multi-
disciplinary project that aims to address a critical lack of 
quantitative and actionable feedback that teachers receive about 
the quality of their speech by providing an approach for the 
automatic analysis of teacher discourse. The present study works 
towards this overarching goal by automatically classifying teacher 
utterances from audio recordings of live classroom sessions.  

1.1 Related Work 
The study of automatic analysis of educational discourse has 
focused on areas such as online discussions [19], dialog-based 
intelligent tutoring systems [25], and cognitive models of student 
learning [5]. In this work we model teachers’ classroom discourse 
through a fully automated process. We examine some of the 
recent findings in this area.  

1.1.1 Modeling classroom discourse 
Instructional segment (activity) classification. An instructional 
segment (or activity) provides coarse-grained information 
regarding what is occurring at the moment. For example, are 
students quietly doing seatwork, or is the classroom participating 
in a discussion or question and answer session? Wang et al. [28] 
investigated the use of automatic speech recognition of classroom 
discourse in order to provide feedback for teachers. The authors 
applied the Language Environment Analysis (LENA) system [11] 
to segment classroom recordings into broad categories (lecture, 
discussion, group work). Although the system could provide 
feedback about the ratio of student to teacher speech, it did not 
provide any qualitative information about the content or utility of 
the speech itself. Donnelly et al. [8] also examined automatic 
identification of instructional activities from classroom recording. 
Recordings of teacher speech were segmented into individual 
utterances and transcribed using automatic speech recognition. 
Using models trained on temporal, natural language, and acoustic 
features, the authors trained models to identify the dominant 
(76%) activities (question and answer, procedures and directions, 
supervised seatwork, group work, and lecture) with accuracies 
that easily outperformed chance baselines. 
Utterance-level classification. At a finer grain than Instructional 
segment classification, Donnelly et al. [9] built on work by [3] to 
identify teacher questions within individual utterances. Classroom 
recordings were segmented, transcribed using Automatic Speech 
Recognizers (ASRs), and 218 acoustic, linguistic, and contextual 
features were derived. The acoustic features derived from 384 
prosodic, spectral, and voice quality features extracted with the 
OpenSmile toolkit [10]. Then, a smaller set of 168 acoustic 
features was obtained by eliminating features with high 
multicollinearity using tolerance analysis. The transcriptions were 
analyzed for part-of-speech tags and the presence of specific 
words (e.g., why, how) to provide 37 linguistic features. A total of 
13 contextual features included timing information, such as the 
duration of the utterance, the position of the utterance within the 

class session, and the duration of the pauses preceding and 
following the utterance. The authors found that combination of all 
three modalities made no improvement over linguistic features 
alone in the task of question identification but did yield small 
improvements in non-question detection. 
Session level classification. Given the positive association 
between the use of authentic questions and student engagement 
and achievement [1, 20, 21], any system seeking to provide 
automatic feedback needs to be able to automatically identify this 
variable. However, the infrequent use of authentic questions 
compared to other types of dialog leads to highly imbalanced 
class distributions that make classification tasks difficult [14]. For 
this reason, Olney et al. [23] aimed to detect the proportion of 
authentic questions over the course of the class session, rather 
than seek to classify individual utterances. Using a model trained 
on word, part-of-speech, syntactic, and discourse features, the 
prediction of class-level proportions (r = 0.50) outperformed 
aggregated utterance-level classification (r = 0.27), and these 
results were consistent across low and high dialogic classrooms, 
and on both ASR and human transcripts. In a follow-up study, 
Cook et al. [7] compared closed- and open-vocabulary techniques 
(described in Section 1.1.2) for the same task and found that that 
both approaches were equally predictive of authenticity, but that 
averaging the models’ predictions yielded significant additional 
improvements.  

1.1.2 Computational techniques 
We apply techniques from natural language processing and 
machine learning in the automatic analysis of teacher discourse.  
Open-vocabulary language modeling. In contrast to hand-
crafted feature sets, open-vocabulary language modeling 
dynamically generates features for machine learning models by 
obtaining counts of consecutive words (n-grams) extracted 
directly from the input text [27]. This “bag-of-n-grams” model 
then assigns each n-gram feature a value based on its frequency 
within each utterance. This approach lends itself to human-
interpretable analysis of models (e.g., word clouds). Several 
hyperparameters might also guide the selection of n-grams 
derived from the training set that should be included in the set of 
features, as certain n-grams may be unimportant for models, such 
as n-grams that occur infrequently. These hyperparameters might 
include whether or not stopwords are removed from text, whether 
stemming is performed on words, and the types of n-grams 
considered (unigrams, bigrams, trigrams, etc.). In addition, 
pointwise mutual information (PMI), described in detail in [6], 
can be specified as a hyperparamter to filter n-grams by 
incorporating information about the collocations of words. The 
PMI for a given n-gram can be defined as pmi(n-gram) = log 
(p(n-gram) ⁄ Π p(word) ) where p(n-gram) is the probability of an 
n-gram based on its relative frequency in the training data and Π 
p(word) is the product of the probabilities of each word in the n-
gram in the training data. This can help ensure only meaningful 
phrases (such as “high school”) are used as features. Minimum 
document frequency might further guide the selection of n-grams 
(i.e. the n-gram must occur in a specified minimum percentage of 
all documents to be considered a feature). An overview of these 
techniques can be found in [6]. 

1.2 Novelty and Contribution 
We apply natural language processing and supervised 
classification techniques for the utterance-level classification of 
multiple aspects of classroom discourse with an eye for providing 
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automated feedback to teachers. Our study is novel in multiple 
respects. First, with the exception of work on detecting individual 
questions, as noted in Section 1.1.1, existing analyses on the 
automatic classification of classroom discourse have focused on 
coarse-grained temporal information ranging from a few minutes 
to an entire class session. We hypothesize that fine-grained 
utterance-level information is needed in order to provide 
meaningful and actionable feedback. Therefore, this study 
analyzes classroom discourse at the utterance level.  
The intrinsic value of a system for automated feedback to teachers 
is inherently dependent upon the ability to correctly classify 
different types of discourse from automatically segmented 
recorded speech. Whereas previous work has focused on 
identifying questions, the present approach considers several 
more specific discourse variables, which have not previously been 
studied using automatic recognition methods. In addition to 
question prediction, we also predict Instructional Questions and 
Statements as well as Content-Specific Questions and Statements. 
These discourse variables are described in detail in Section 2.1.2. 

2. METHODS 
2.1 Dataset 
2.1.1 Data collection 
Our dataset consists 167 recordings of class sessions, drawn from 
two sources. One source of data was collected in 2018 and 
consists of 127 observations from 16 teachers at three schools in 
western Pennsylvania. Additionally, we newly recoded a subset of 
the CLASS5 dataset, collected at seven schools in rural Wisconsin 
over 2014 to 2016. This source of data consists of 40 class 
observations from 11 teachers [8]. Teachers wore a wireless 
Samson AirLine 77 vocal headset which transmitted audio to a 
receiver to then be recorded on a laptop.  

2.1.1 Utterance transcription using ASRs 
The IBM Watson ASR [26] was used to automatically segment 
the class recordings into utterances based on hesitations in the 
audio stream, and to transcribe each resulting utterance. To 
evaluate the efficacy of the ASR, a sample of 20 utterances per 
class session was manually transcribed by human coders and 
these transcriptions were compared to the ASR transcriptions. The 
average word accuracy (Wacc) of the automatic transcriptions 
across class sessions was 0.602 when considering all utterances. 
The Wacc increased to 0.754 when considering only longer 
utterances that contained three or more words.  

2.1.2 Coding of utterances and coding scheme 
To prepare a labeled dataset for training supervised models, a 
subset of the transcribed utterances was selected for manual 
annotation by trained human coders. First, to generate this set, 
any two consecutive utterances were merged together if the pause 
between them was less than 1.0 seconds. This preprocessing step 
helped adjoin related phrases together and reduced the number of 
single word utterances. Next, 200 consecutive merged-utterances 
were randomly sampled from each class session. If a class session 
contained less than 200 utterances, then all utterances were 
sampled for that session. English and language arts content 
experts trained in the coding schema were given audio excerpts 
for each utterance in the sampled dataset. The coders manually 
annotated each utterance with several markers of classroom 
discourse. Because many of the annotated categories occur only 
infrequently in the dataset, some markers have been aggregated 

together to form binary labels, such as Question or Non-Question. 
Below we describe the variables used in the current work.  

Question/Statement/Fragment. Utterances were coded to 
determine whether they consisted of a question, statement, or 
fragment. Questions are defined as requests for information, while 
conversely, statements are utterances which do not request 
information. Rhetorical questions, such as, “It’s the characteristic 
of a person, right?” are not coded as questions because they are 
not requests for information. Fragments are a single word or a few 
words that have been separated from a cohesive statement or 
question in the ASR transcription and appear as an individual 
utterance. Fragments by themselves are meaningless, and it would 
not be useful to code their discourse properties. To perform binary 
classification, we combined statements and fragments to predict 
whether each utterance was a Question or Non-Question. 
Instructional questions. Utterances identified as questions were 
further coded as Instructional or Non-Instructional Questions. 
Instructional Questions relate to the lesson and its learning goals, 
whereas Non-Instructional Questions are irrelevant to the lesson 
and its learning goals, such as questions about student movement 
and behaviors. For example, “Who can tell me what a plot 
diagram is?” would be coded as an Instructional Question, while 
“Why are you late?” would be considered Non-Instructional. 
Instructional question type. Instructional Questions were further 
coded as Content-Specific, Generic, or Clarifying. Content-
Specific Questions inquire about the content/disciplinary practices 
of the lesson and its learning goals, such as “What is the theme of 
the poem?”, or “How do you typically revise?”. Generic 
Instructional Questions are broad questions about organization, 
materials, behaviors, or checks for understanding connected to the 
lesson. Examples include “Where is your paper from yesterday?” 
and “Does that answer your question?”. Clarifying Questions are 
requests for restatements and repetitions, such as “Can you say 
that again?”. We combined the Generic and Clarifying codes to 
predict the binary classification of Content-Specific Questions vs. 
Non-Content-Specific Questions.  
Instructional statements. Similar to Instructional Questions, 
utterances identified as Statements were coded as Instructional or 
Non-Instructional. Instructional Statements relate to the lesson 
and its learning goals, such as “A character that moves the action 
forward but is not central to the story is a minor character” and 
“Today we are going to review literary terms that will be on the 
quiz on Thursday.” Non-Instructional Statements are irrelevant to 
the lesson and its learning goals, such as statements about student 
movement and behaviors. For instance, “You shouldn’t be walking 
around the room. Please sit down.” In addition, short, 
placeholding utterances that connote continued thinking (e.g., 
“hmmm”, “um”, “okay”) were coded as Non-Instructional; 
however, “okay” was not automatically coded as Non-
Instructional as it can also be an evaluation of a student's response 
or serve another function, depending on its context.  
Instructional statement type. Instructional Statements were 
further coded as Content-Specific, Generic, or Reading Aloud. 
Content-Specific Statements are statements about the 
content/disciplinary practices of the lesson and learning goals. For 
example, “The mood of the play contributes to our understanding 
of the theme of the play.” Generic statements are broad statements 
about organization, behaviors, materials, or checks for 
understanding connected to the lesson, as in “Take out your 
journals, and turn to a new page.” Reading Aloud statements 
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occur when the teacher or the students are reading aloud from a 
text verbatim. If the teacher is reading a short Instructional 
Statement or discussion question out of a textbook, off a 
PowerPoint slide, off a worksheet, etc., it is not considered 
Reading Aloud and is coded as Content-Specific. Furthermore, if 
the teacher stops reading to make a comment or interjects while 
the students are reading, those utterances are not coded as 
Reading Aloud. Similar to predictions made for Instructional 
Question Type, Generic and Clarifying codes were combined to 
predict Content-Specific Statements vs. Non-Content-Specific 
Statements. 

2.1.3 Prevalence of discourse types 
Our dataset contained a total of 24,755 teacher utterances, with 
16,977 from the new Spring 2018 data and 7778 from CLASS5. 
Table 1 provides information about the prevalence of each of 
these types of discourse variables in this combined dataset.  

Table 1: Summary of dataset 

    

Count  Proportion 

Teacher 24755 
 

 
Question 

 
7792 0.31 

  
Instructional 

  
7267 0.29 

   
Content-Specific 

   
5327 0.22 

   
Non-Content-Specific 

   
1940 0.08 

  
Non-Instructional 

  
525 0.02 

 
Non-Question 

 
16963 0.69 

  
Instructional 

  
12113 0.49 

   Content-Specific    8369 0.34 
   Non-Content-Specific    3744 0.15 

  
Non-Instructional 

  
4850 0.20 

2.2 Machine learning 
Using several modalities of features, we trained Random Forest 
classifiers implemented using the scikit-learn library [24] to 
perform a binary (present vs. absent) classification of these 
discourse features. We constructed models using three 
representations of the input data: as a set of engineered features 
computed from the audio and transcribed text of utterances, as a 
set of features derived via open-vocabulary language modeling, 
and finally as a combination of both of these sources. 
We generated the set of engineered features using the acoustic, 
context, and linguistic features as described in [9]. Acoustic 
features were extracted from the audio of utterances using the 
OpenSmile toolkit [10], using the feature set from the 2009 
Interspeech Emotion Challenge. This resulted in 384 acoustic 
features. Context features describe properties of the utterance 
such as its duration, its normalized (to unit variance) position in 
the overall classroom session, and the length of time of the 
surrounding pauses. In total, we considered 13 context features. 
Linguistic analyzers parsed the transcribed text and identified the 
presence of known question words and part of speech tags. These 
were found using the Brill Tagger [4] to identify certain question 
words, part-of-speech tags, and other keywords, resulting in 37 
total features. The values of all these features were standardized 
to have a mean of 0 and unit variance. Standardization was 
computed using the formula z = (x-u) / s such that z is the 
standardized score, x is the value of an individual sample, u the 
mean value of all training samples, and s is the standard deviation 
of the samples. 
A bag-of-n-grams representation of input formed the open-
vocabulary feature set. N-grams (of which we considered 
unigrams, bigrams, and trigrams) derived from the texts of 

transcribed utterances were filtered according to the values of a 
few hyperparameters. We experimented using minimum 
document frequencies of 0.01, 0.02, and 0.03; PMI values of 0.2 
and 0.4; and either including or excluding stopwords (see Section 
1.1.2).  
We implemented teacher-level 5-fold cross-validation to 
determine the best set of hyperparameters for models within each 
training fold. Specifically, we ensured that all utterances from the 
same teacher were always kept within the same 
train/test/validation fold. This helps ensure generalizability of our 
approach to new data and new teachers. To enable faster training 
of models, we limited the overall search space of 
hyperparameters, varying the parameters specified for the open-
vocabulary models and leaving other parameters at default values 
as specified by scikit-learn. To overcome the underlying class 
imbalance in the dataset (see Table 1), we experimented using the 
imblearn library [18] to resample the minority class utterances 
such that both classes were more equally represented in the input 
dataset. This approach was applied to all models and only 
performed on the training set; class distributions in the validation 
and testing sets were unchanged.  

3. RESULTS 
We examined the ability of different types of models to predict 
five indicators of teacher discourse using utterances automatically 
segmented and transcribed by an ASR. We used area under the 
receiver operating characteristic curve (AUROC or AUC) as our 
primary outcome metric, which we computed using the pooled 
predicted probabilities from the five folds of our dataset. An AUC 
of 0.5 would signify chance performance. 

3.1 Predictive language features 
 

Table 2. Top 10 correlated n-grams 

Variable Top 10 correlated n-
grams 

Example sentences from 
dataset 

Question does, did, think, good, 
say, mean, yes, guys, 
kind, make 

“why do you say you want 
to do” 

Instructional 
Question 

does, did, think, good, 
say, yes, kind, mean, 
guys, make 

“are you guys doing”; 

“did you talk to me on 
Friday” 

Content-
Specific 
Question 

does, think, did, good, 
kind, say, know, make, 
mean, people 

“okay why does she think 
it’s any better for her son”; 

“what does that mean” 

Instructional 
Statement 

na, gon, gon na, going, 
just, like, right, 
<hesitation>, look, 
little 

 “all right now notice what 
you need to do look at this 
part” 

Content-
Specific 
Statement 

like, <hesitation>, 
going, na, just, gonna, 
gon, kind, little, right  

“like if I’d done that all 
right I have a sample body 
paragraph here” 

Note: <hesitation> expresses a token generated by ASRs to indicate hesitation in 
speech. Here we treat it as a word. 
 
We analyzed our models to correlate the top 10 n-grams for each 
discourse variable in order to investigate characteristic language 
features. We calculated Spearman correlations of n-grams to the 
class labels (either 0 or 1) of the documents in which they appear. 
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These correlations were averaged across the five folds on which 
Random Forest models were trained. These n-grams are listed in 
Table 2, and we note some expected patterns. For example, one 
would expect that questions would be characterized by auxiliary 
verbs such as does and did as well as action verbs such as think, 
say, and make. We also observed considerable overlap between 
these categories. For example, both Instructional and Content-
Specific questions include does, think, and did among their top 
three n-grams and share eight of ten most common n-grams. 
Likewise, Instructional and Content-Specific Statements share 
nine of the top ten most common n-grams. Conversely, we found 
that Content-Specific Statements and Questions have overlap only 
in the n-gram kind. 

3.2 Comparison of feature sets 
We constructed Random Forest models using three types of 
features: (1) engineered acoustic, context, and linguistic features, 
(2) bag-of-n-grams language features via open-vocabulary 
language modeling, and (3) a combination of both. Results using 
the Random Forest model are shown in Figure 1. We found that 
open-vocabulary language modeling resulted in the highest 
average AUC scores (average AUC = 0.74) for all discourse 
variables, followed by the combined set of features (average AUC 
= 0.72), while the engineered features were the least predictive 
(average AUC = 0.68). With respect to question detection, for 
which we have a baseline from previous work [9], we found that 
the current approach with language features yielded a 11% 
improvement over engineered features alone. These results 
demonstrate significant improvement (3-12%) over the previous 
state of the art.  

 
Figure 1. Random Forest: AUROC per feature set 

4. DISCUSSION 
We investigated the extent to which several characteristics of 
classrooms discourse could be automatically identified at the 
utterance level. While prior work focused on predicting questions 
at the utterance level, in this study we detected several additional 
discourse characteristics at the utterance level, which would be of 
paramount importance in a real-time feedback system for 
teachers. We collected additional data from live classroom 
sessions during the Spring of 2018 to augment previously 
collected data. We developed a new coding scheme and manually 
annotated the dataset. Audio recordings of entire classroom 
sessions were automatically segmented into utterances which 
were then manually coded by humans and transcribed into text by 
the IBM Watson ASR. We then executed machine learning 
experiments to examine the extent to which these discourse 
variables could be recognized from the audio signal alone.  

4.1 Main findings 
First, we observed that open-vocabulary bag-of-n-grams Random 
Forest models outperformed our previous attempt using models 
built using only engineered features. These results demonstrate 
that the specific words a teacher uses, as determined by automatic 
transcriptions, may be of more utility than acoustic and prosodic 
cues, timing cues, rates of speech, parts-of-speech analysis, and 
closed-vocabulary word lists. Moreover, these findings indicate 
that the words most useful to differentiate between dialogic acts 
often differ from those anticipated by domain-specific closed-
vocabulary lists. For example, closed-vocabulary lists created to 
predict questions may only look for whose words typically 
indicative of questions (e.g., what, where, why, how), while 
overlooking other words that may also be useful to distinguish 
this type of discourse (such as think, say, mean). 
In summary, our results using open-vocabulary modeling (with 
AUCs ranging from 0.71 to 0.77) comfortably outperformed 
chance (AUC = 0.5), and reflect the state of the art performance 
on automatic modeling of classroom discourse. Further, the fact 
that the models were trained in a manner that generalizes to new 
teachers, and that the training data included audio from two 
different U.S. states across varying grade levels (mainly middle 
school for CLASS 5 vs. mainly high school for Spring 2018 data), 
increases our confidence in their generalizability As such, we are 
optimistic that our present results reflect the feasibility of fully-
automated utterance-level classrooms discourse modeling, a key 
step towards providing actionable feedback for teachers. 

4.2 Limitations and future work 
Although research indicates that the dialogic indicators of 
authenticity, uptake, and cognitive level are predictors of 
enhanced student engagement, this study does not aim to identify 
these indicators at the utterance level. This is because these 
variables have extremely low base rates (all under 10%), resulting 
in severe class imbalance when attempting to identify them from 
all teacher utterances. However, the automatic recognition of the 
discourse variables in this study serves as a precursor for 
subsequent approaches to better accurately identify these useful 
but infrequently occurring dialogic variables. The identification of 
these key dialogic variables relies on the ability to first correctly 
differentiate between more generic discourse properties, such as 
Questions vs. Statements, followed by Content-Specific Questions 
(of which Authentic Questions are a subset) vs. Instructional 
Questions. 
In addition, we are currently limited by the lack of annotated data 
to provide sufficient exemplars of these specific dialogic 
properties (authenticity, uptake, and cognitive level) at the 
utterance level. Thus, additional collection of data would allow 
more examples of these more rarely occurring discourse types. 
Given this new data, we will extend our models to attempt to 
identify these infrequently occurring dialogic indicators.  
Furthermore, continued improvement in the accuracy of our 
predictions is necessary to ensure the value of the assessment and 
feedback from our automated system. We plan on exploring 
several improvements to advance this goal. First, we will 
incorporate transcription metadata, such as the confidence values 
of the ASRs, in the models in order to weight individual words in 
the open-language model based on the quality of the transcription. 
Since words transcribed with a low confidence may be 
misidentified, excluding or discounting these words from 
language model may help to reduce modeling error. Second, we 
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will empirically experiment with varying the pause threshold used 
for segmentation. Perhaps a slightly longer or shorter gap in 
speech would provide a better separator of utterances. Third, we 
will continue to explore different supervised machine learning 
models or neural network architectures to further improve our 
ability to automatically identify these discourse indicators. 

4.3 Concluding remarks 
We hope that in our continued efforts towards automatic 
prediction of types of discourse, we can achieve the capability to 
provide valuable, actionable feedback to teachers about their 
instructional techniques so that they can better engage students in 
learning. Certainly, much work remains to be done in this area in 
order to improve upon our current ability. Nonetheless, this study 
forms an important step towards our overarching goal and serves 
as a foundation for future work in this area. 
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ABSTRACT
Peer assessment is a promising solution for scaling up the
grading of a large number of submissions. The reliability of
evaluations is one of the critical issues in peer assessment;
several probabilistic models have been proposed for obtain-
ing reliable grades from peers. Peer correction is a similar
framework, in which students are instructed to correct the
errors in submissions from other students. Peer correction
is typically performed simultaneously with peer assessment;
a reviewer is instructed to correct the errors in a submission
and to provide a grade to it. We observe the occasional in-
consistency between a grade and the correction; for example,
a reviewer provides a high grade for a submission but she
corrects many errors in it. Such inconsistencies can point to
unreliable reviewers. In this paper, we propose probabilistic
models for peer correction, and the combination of the peer
correction models and the existing peer assessment mod-
els for capturing the inconsistency to accurately estimate
the reviewer reliability and the student ability. We conduct
experiments using the dataset of an actual peer correction
platform for language translation, and the results demon-
strate that the combination of peer correction models and
peer assessment models improves the accuracy of the student
ability estimation.

Keywords
Peer correction, peer assessment, statistical models

1. INTRODUCTION
MOOCs have changed education by offering open access to
university course materials; however, not everything per-
formed in offline classes is effectively introduced in MOOCs.
An example is the ability assessment; in offline classes,
teachers evaluate the student abilities by examining their
submitted assignments and decide how to improve the ed-
ucational efficiency. In contrast, assessing the abilities of
tens of thousands of students in MOOCs is not feasible for
teachers.

A promising solution for large-scale ability assessment is to
allow students themselves to be involved in the evaluation;
instead of teachers, students grade the submissions from
other students. Such peer assessment approach is beneficial
for scaling-up the ability assessment and it has been applied
to several MOOCs courses [7]. However, the reliability of
evaluations is one of the critical issues in peer assessment
because some students may provide unreliable evaluations
owing to laziness or lack of evaluation skills. Several prob-
abilistic models have been proposed for estimating the re-
liabilities of the reviewers in order to accurately assess the
student abilities in peer assessment [7, 4, 11, 8, 13, 6]. These
models are based on the assumption that students with high
ability are likely to provide reliable grades. The models are
used to estimate the ability of a student as a test taker and
the reliability as a reviewer.

In a similar framework of peer assessment, called peer cor-
rection, students correct the errors in the submissions from
other students. Peer correction is helpful for teachers to
reduce their efforts for providing feedback to the students.
Typically, peer correction is performed simultaneously with
peer assessment; a student is instructed to grade a submis-
sion and to correct its errors.

Although the outcomes of peer correction are naturally as-
sumed to be informative for estimating the student abilities,
probabilistic models for peer correction have not yet been
investigated. Based on a natural assumption that a student
who receives fewer corrections are likely to have a higher
ability, we propose probabilistic models for peer correction
that capture the relationship between the student abilities
and the correction outcomes.

Additionally, we noticed an inconsistency between the out-
comes of peer correction and those of peer assessment. In
one case, a reviewer provides a high grade to a submission
but she corrects many errors in it; in another case, a reviewer
assigns a low grade but she does not make any corrections.
Our idea is that such inconsistencies are beneficial in deter-
mining unreliable reviewers; thus, we propose to combine
peer assessment models with our peer correction models.
This combination allows us to capture the inconsistency and
to incorporate it into the estimation of the reviewer reliabil-
ity and the student ability.

We conduct experiments using a peer correction dataset
about language translation. The results of the experiments
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show that our probabilistic models for peer correction are ca-
pable of estimating the student abilities, and the combined
models of peer correction and peer assessment demonstrate
a better performance in determining high-ability students
than the peer assessment models.

The contributions of this paper are twofold: (i) we propose
novel probabilistic models for peer correction that enable us
to estimate the student abilities from the received correc-
tions (Section 4), and (ii) we propose to combine our peer
correction models and peer assessment models to exploit the
inconsistencies among the outcomes of corrections and as-
sessments (Section 6); the results of the experiments show
that the combined models are efficient in accurately estimat-
ing the student abilities.

2. PROBLEM DEFINITION
We begin with the formulation of peer assessment and peer
correction. We assume there is a set of students S. When
a student creates a submission for an assignment, other stu-
dents (that we call reviewers) evaluate it and assign grades.
The grade for the student u ∈ S assigned by the reviewer
v ∈ S is denoted by zuv ∈ R. Each reviewer is additionally
instructed to correct the errors in a submission. A correc-
tion result is denoted by yuv. If a reviewer does not provide
any correction for a submission, such information is also em-
bedded in yuv. The representation of yuv is discussed in the
next section.

Given a set of peer assessment and peer correction outcomes,
D, each of which is represented by a tuple (u, v, zuv, yuv), our
goal is to estimate the true abilities of the students {su}u∈S ,
where su ∈ R.

3. DATASET
In this work, we use a peer assessment and peer correction
dataset collected from Conyac1, which is a crowdsourcing
language translation platform. This platform employs peer
correction and peer assessment between translators for col-
laboratively improving their skills; thus, a translator on this
platform can be considered as a student. When a student
submits a translation, other students evaluate its quality on
a five-point scale (zero (low) to four (high)) and correct the
errors in it. Students are invited to high-reward jobs if they
have reviewed several submissions.

Students on Conyac can take a qualification test to demon-
strate their skills. On this test, a student is instructed to
translate the given sentences and then the translations are
evaluated by experts employed by the service provider. Ac-
cording to the score, a student is assigned one of five exper-
tise levels (D, C, B, A, and A+). This level is used for the
job assignment and the default level is set to one. We con-
sider the assigned levels as the ground truth of the student
abilities, that we aim to estimate from the outcomes of peer
assessment and peer correction.

We target the peer assessment and peer correction for
Japanese to English translations on Conyac. Our dataset
contains 5,008 reviews for 413 students, and 135 students

1https://conyac.cc/

provide at least one review. Figure 1(a) shows the distribu-
tion of the grades assigned to translations and Figure 1(b)
illustrates the distribution of the students’ true expertise
levels.

We conduct exploratory data analysis to investigate how
the outcomes of peer correction can be used for estimating
student expertise levels. A natural expectation is that a stu-
dent whose submissions are likely to be corrected would have
lower ability. We calculate the correction ratio of each stu-
dent, which is the number of corrected submissions divided
by the number of submissions. Figure 1(c) shows the aver-
age correction ratio of the students in each expertise level.
We observe that students with the highest level are likely to
have lower correction ratios than the others.

Additionally, we consider that students who have more er-
rors in their submissions would be have lower ability. We cal-
culate the number of corrected parts in each submission by
applying the Gestalt pattern matching [10]. We first obtain
the matched patterns in pre-correction and post-correction
submissions, and then count the number of unmatched pat-
terns in the post-correction submissions. The examples of
the calculated numbers are shown in Table 1 and Figure 1(d)
shows the distribution of the number of corrected parts in
each submission. We calculated the average number of cor-
rected parts of each student and Figure 1(e) presents the
average of the values at each level. We found that the stu-
dents with higher levels are likely to have a lower number of
corrected parts.

From these observations, we decide to use the following bi-
nary and numerical variables to represent a correction out-

come: (1) y
(b)
uv ∈ {0, 1}, which indicates whether the corre-

sponding submission is corrected by the grader (y
(b)
uv = 0) or

not (y
(b)
uv = 1), (2) y

(n)
uv ∈ {0, 1, 2, . . . , }, which indicates the

number of parts corrected by the grader.

4. PEER CORRECTION MODELS
We propose two peer correction models, PCb and PCn, for
estimating the student true abilities. The models are illus-
trated in Figure 2(a).

4.1 PCb model
We first present a generative model for y

(b)
uv ∈ {0, 1}, which

is a binary indicator whether the submission has been cor-
rected by the reviewer or not. We have two latent parame-
ters into our model, that is, student true ability and reviewer
bias; each student is associated with the latent true ability,
su ∈ R, which we aim to estimate, and each reviewer has a
different bias parameter, bv ∈ R, presuming that a reviewer
with a lower bias tends to review a submission negatively.

Following the observations, we assume that a submission
from a student is likely to be not corrected by a reviewer
if the student has high ability. In addition, a reviewer is
not likely to correct a submission if he/she has a higher
bias. These assumptions are represented as the following
generative model:

y(b)
uv ∼ Bern

(
y(b)
uv

∣∣∣σ (su + bv + r)
)
, (1)

where σ(x) = 1/ (1 + exp(−x)), Bern(·) is the Bernoulli dis-
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Figure 1: Statistics of our dataset

Table 1: Examples of the calculated number of corrected parts. The corrected parts are highlighted (modified parts are
highlighted in yellow, added parts are highlighted in pink, and removed parts are highlighted in blue). There were seven
corrected parts in the last example because there were three modified parts (“Current members,”“are” and “was working on
the”), two added parts (“female” and “,”), and two removed parts (“girls” and “the”).

Pre-correction Post-correction
Num. of
corrected
parts

Please enter the title. Please enter the
application conditions .

Please enter the title. Please enter the
eligibility requirements .

1

41 people from major travel agencies of Japan and land
operators participated and had the business meetings with
suppliers about latest Thailand MICE circumstances.

41 people from major travel agencies of Japan and land
operators participated and had the business meetings with

suppliers about the latest Thailand MICE circumstances.

1

Kalafina is the vocal girls band produced by Yuki Ka-

jiura. Currently the member of Kalafina is WAKANA,

KEIKO and HIKARU. The group was formed in order

to produce the main song when the composer Yuki Ka-

jimura produced music for the film “Boundary of Empti-

ness”.

Kalafina is the female vocal band produced by Yuki Ka-

jiura. Current members of Kalafina are WAKANA,
KEIKO , and HIKARU. The group was formed in or-

der to produce the main song when composer Yuki Ka-

jimura was working on the music for the film “Boundary

of Emptiness”.

7

tribution, and r is a noise. Note that y
(b)
uv = 1 indicates

that the corresponding submission is not corrected by the
reviewer. We denote this generative model by PCb model.
We can interpret su + bv + r as an apparent ability of the
student u for the reviewer v at the time. The model indi-
cates that a submission is likely to be not corrected when
the apparent ability is high.

In the same way as the existing peer assessment models that
will be reviewed in the next section, we use normal distri-
butions as priors for su, bv, and r:

(Student ability) su ∼ N (su|µ0, 1/γ0) (2)

(Reviewer bias) bv ∼ N (bv|0, 1/η0) (3)

(Noise) r ∼ N (r|0, 1/κ0), (4)

where µ0, γ0, η0, and κ0 are hyperparameters.

4.2 PCn model
Our second model targets the number of corrected parts in

each correction, y
(n)
uv ∈ {0, 1, 2, . . . , }. Following the obser-

vations from the actual dataset, we assume that a reviewer
corrects more parts of a submission when the student has a
lower ability. We use the Poisson distribution to represent
this assumption:

y(n)
uv ∼ Poisson

(
y(n)
uv

∣∣∣∣ 1

exp (su + bv + r)

)
.

Similar to the PCb model, su + bv + r is considered as the
apparent ability of the student u to the reviewer v, and this
model indicates that more parts of the submission is likely
to be corrected by the reviewer if the apparent ability of
the student is lower. We call this model PCn. The priors
given in Eqs. (2), (3), and (4) are incorporated into the PCn

model as well.
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(a) PCb and PCn (b) PG1

(PG3)
(PG4)

(PG5)

(c) PG3, PG4, and PG5 (d) PG1+PCb

Figure 2: Peer correction and peer assessment models, and combined models

5. PEER ASSESSMENT MODELS
We next review the existing peer assessment models, which
are combined with our peer correction models in the next
section. In particular, we summarize the PG1 [7], PG3 [7],
PG4 [6], and PG5 [6] models2. These are the generative
models for grades, zuv ∈ R. The peer assessment models
are illustrated in Figures 2(b) and 2(c).

The student ability and the reviewer bias parameters are
also incorporated in the peer assessment models. All the
models use the same priors given in Eqs. (2) and (3).

5.1 PG1 and PG3 models
In addition to the latent parameters incorporated in the peer
correction models (su and bv), the peer assessment models
contain the reviewer reliability τv ∈ R+. This parameter
indicates how likely a grade given by the reviewer contains
a noise. PG1 is defined as follows:

(Reviewer reliability) τv ∼ Gamma(τv|α0, β0)

(Outcome) zuv ∼ N (zuv|su + bv, 1/τv) ,

where α0 and β0 are hyper parameters. PG3 is an exten-
sion of PG1, which incorporates the relationship between
the reviewer reliability and the ability of the reviewer (as a
student). PG3 is given as follows:

(Reviewer reliability) τv = θ1sv + θ0

(Outcome) zuv ∼ N (zuv|su + bv, 1/τv) ,

where θ0 and θ1 are hyperparameters.

5.2 PG4 and PG5 models
PG4 and PG5 are variations of PG3 and they incorporate
the relationship between the reviewer reliability and the re-
viewer ability into the priors of the reliability parameter.
The generative models of the reviewer reliability and out-
come in PG4 are given as follows:

(Reviewer reliability) τv ∼ Gamma(τv|sv, β0)

(Outcome) zuv ∼ N (zuv|su + bv, 1/τv) ,

and those in PG5 are given as follows:

(Reviewer reliability) τv ∼ N (τv|sv, 1/β0)

(Outcome) zuv ∼ N (zuv|su + bv, λ/τv) ,

where β0 and λ are hyperparameters.

2We do not include PG2 [7], which is almost similar to PG1

except it incorporates time-series factors.

6. COMBINED MODELS FOR PEER COR-
RECTION AND PEER ASSESSMENT

We finally combine our peer correction models and the exist-
ing peer assessment models. By combining these two types
of models, we expect to capture an inconsistency between
the outcome of peer correction and that of peer assessment;
the inconsistency can be informative for estimating the re-
viewer reliabilities.

We use PG1 and PCb to explain the model combining and we
term the combined model as PG1+PCb. We simply consider
that su and bv are shared between these two models; namely,
the generative model for PG1+PCb is given as:

(Student ability) su ∼ N (su|µ0, 1/γ0)

(Reviewer reliability) τv ∼ Gamma(τv|α0, β0)

(Reviewer bias) bv ∼ N (bv|0, 1/η0)
(Noise) r ∼ N (r|0, 1/κ0)

(Outcomes) zuv ∼ N (zuv|su + bv, 1/τv) , and

y(b)
uv ∼ Bern

(
y(b)
uv

∣∣∣σ (su + bv + r)
)
.

The PG1+PCb model is illustrated in Figure 2(d). Other
combined models are defined similarly as PG1+PCb.

When an inconsistency occurs between corrections and
grades, i.e., a reviewer provides a high grade to a submission
but makes many corrections in it, we consider that a large
noise occurs on the grade (zuv) and thus the reliability of
the reviewer (τv) is estimated as low. The combination of
peer assessment models and peer correction models allows
us to leverage such inconsistencies to estimate the reviewer
reliabilities and the student abilities.

7. EXPERIMENTS
We conduct experiments using the actual peer assessment
and peer correction dataset about language translation. We
investigate the effectiveness of the proposed methods to es-
timate the student abilities.

7.1 Baselines
We compare the proposed models (PCb, PCn, and
PG{1,3,4,5}+PC{b,n}) with the following baselines: (a) Cor-

rection ratio (PC♯
b): this is a näıve version of PCb

and considers the correction ratio of each student as the
ability. Specifically, the correction ratio is defined as

−
∑

y
(b)
uv ∈Y(b)

u
δ
(
y
(b)
uv = 0

)
/|Y(b)

u |, where Y(b)
u is the set of

correction outcomes for the student u, and δ (·) is the in-
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Table 2: Average and standard deviation of AUC scores of each method on various classification boundaries. Each column
indicates the results for each classification boundary; for example, (D,C,B,A | A+) represents the results for classifying the
students at A+ and the others. The winner for each boundary is bold-faced. The cases where a combined model outperforms
the corresponding peer assessment model (PG1, PG3, PG4, or PG5) are underlined.

AUC
(D,C,B,A | A+) (D,C,B | A,A+) (D,C | B,A,A+) (D | C,B,A,A+)

PC♯
b 0.713± 0.020 0.584± 0.015 0.580± 0.013 0.498± 0.025

PCb 0.805± 0.037 0.628± 0.008 0.604± 0.013 0.483± 0.034

PC♯
n 0.714± 0.045 0.627± 0.013 0.598± 0.010 0.611± 0.041

PCn 0.832± 0.050 0.710± 0.012 0.690± 0.008 0.602± 0.046

PG♯ 0.794± 0.023 0.723± 0.015 0.697± 0.013 0.810± 0.011
PG1 0.845± 0.016 0.739± 0.025 0.742± 0.013 0.801± 0.015
PG3 0.751± 0.193 0.756± 0.033 0.725± 0.020 0.786± 0.020
PG4 0.862± 0.069 0.774± 0.012 0.743± 0.015 0.791± 0.011
PG5 0.842± 0.115 0.775± 0.029 0.731± 0.015 0.759± 0.043
PG1+PCb 0.821± 0.020 0.755± 0.016 0.736± 0.010 0.792± 0.011
PG3+PCb 0.841± 0.137 0.779± 0.026 0.736± 0.011 0.789± 0.030
PG4+PCb 0.870± 0.019 0.764± 0.008 0.730± 0.021 0.800± 0.016
PG5+PCb 0.914± 0.018 0.782± 0.016 0.719± 0.026 0.782± 0.032
PG1+PCn 0.846± 0.019 0.737± 0.017 0.726± 0.009 0.661± 0.047
PG3+PCn 0.788± 0.153 0.705± 0.044 0.704± 0.022 0.710± 0.060
PG4+PCn 0.844± 0.038 0.753± 0.017 0.724± 0.018 0.646± 0.054
PG5+PCn 0.888± 0.024 0.746± 0.033 0.731± 0.012 0.686± 0.066

dicator function. For assigning a higher ability for a stu-
dent with less corrections, we multiply the value with −1.
(b) Mean number of corrected parts (PC♯

n): this is
a näıve version of PCn and considers the mean number of
the corrected parts of each student as the ability. Specifi-
cally, the mean number of the corrected parts of the student

u is defined as −
∑

y
(n)
uv ∈Y(n)

u
y
(n)
uv /|Y(n)

u |, where Y(n)
u is the

set of correction outcomes for the student u. For assigning
a higher ability for a student with less corrected parts, we
multiply with −1. (c) Mean grades (PG♯): this is a näıve
version of PG1 and considers the mean assigned grades of
each student as the ability. The mean grade is defined as∑

zuv∈Zu
zuv/|Zu|, where Zu is the set of grades assigned to

the student u. (d) PG1, PG3, PG4, and PG5: existing
peer assessment models.

7.2 Experimental setup
We implemented the models using the No-U-Turn Sam-
pler (NUTS) [3], which is a variation of the Hamiltonian
Monte Carlo. We executed four chains and they produce
5,000 samples in total. The initial 500 samples were ignored
and the average of the rest samples were used as the esti-
mated parameters.

We randomly generated 150 sets of candidate hyperparam-
eters for each method. A method with a set of candidate
hyperparameters produces the estimated student abilities.
Their performance was evaluated using the groundtruth of
20% of the students. We then decided the best set of hy-
perparameters for the method and the final result for each
method was evaluated by the remaining students. We per-
formed this procedure five times and calculated the average.

Each method outputs the estimated ability of each student.
We use the expertise levels assessed by the experts as the
ground truth, and investigate how accurately each method

classifies the students with high expertise and those with
low expertise. We specifically use the area under the ROC
curve (AUC) as an evaluation metric.

7.3 Results
Table 2 shows the AUC scores of each method on different
classification boundaries. Our peer correction models (PCb

and PCn) demonstrate better or comparative performance
to the existing peer grading models in detecting the students
at the highest level; this supports the effectiveness of the
peer correction results for estimating student abilities. We
see that the “no-correction” cases only occur for high-ability
students and the correction information is helpful for distin-
guishing between the “perfect students” and “almost perfect
students”, both are likely to obtain the highest grades from
the reviewers and the correction outcomes are required to
classify them.

In contrast, the performance of peer correction models be-
comes inferior for detecting the students at lower levels, and
PG♯ achieves the best performance for detecting the stu-
dents at the lowest level; the average of the obtained grades
is sufficiently informative for detecting low-ability students.
Our methods would be beneficial for a situation where teach-
ers aim to detect students who require advanced course ma-
terials or assignments.

The combined models of PG{1,3,4,5}+PCb outperform the
corresponding PG{1,3,4,5} in most cases; the outcomes of
peer correction are useful for improving the student abil-
ity estimation. It is noteworthy that PG5+PCb achieves an
AUC of 0.914 for classifying the students at A+ and the
others. This result is brought by the capability of the com-
bined models for capturing the inconsistencies between the
outcomes of assessments and those of corrections.
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The number of corrected parts can be more informa-
tive than simply considering whether a submission is cor-
rected; in fact, PCn is better than PCb and PC♯

n performs
better than PC♯

b; however, PG{1,3,4,5}+PCb outperforms
PG{1,3,4,5}+PCn in our experiments. Because there are
more model variations in PCn than PCb, a more meticu-
lous modeling for combining the PG models and the PCn

model would be required.

8. RELATED WORK
Peer assessment models are categorized into two groups:
models for cardinal peer assessment and models for ordinal
peer assessment. The former models target a situation where
the outcomes are assigned in explicit numerical scores, such
as five-point scores. In addition to the probabilistic models
reviewed in Section 5, Walsh proposed PeerRank [13], an
extension of PageRank for peer assessment. In ordinal peer
assessment, each grader is shown multiple submissions and
instructed to rank them. The Bradley–Terry model [2] has
been applied for ordinal peer assessment [11, 8] and Mi et
al. proposed to use the cardinal peer assessment models for
ordinal peer assessment [6]. Although several probabilistic
models for peer assessment have been studied, peer correc-
tion has not yet been investigated.

The design of peer assessment frameworks has been at-
tempted to improve the reliability of evaluation. Kulkarni
et al. ([4]) reported that the feedback about the grading bias
to graders was beneficial for improving the reliability. An-
other work proposed to design peer assessment as a multiple
choice task where a grader is instructed to choice the best
submission [5]. Peer assessment mechanisms based on game
theory have been introduced to derive accurate evaluations
from peers [14].

Our peer correction models are very related to the models
studied in the item response theory, which are for quantify-
ing student abilities and item characteristics in educational
tests. One of the simple item response theory model is the
Rasch model [9] and our PCb (given in Eq.(1)) model has a
similar formulation to the Rasch model.

Besides peer assessment, probabilistic models for estimat-
ing grader reliability have been studied in crowdsourcing
as well. Specifically, a two-stage framework was proposed
where crowdsourcing workers in the first stage produce out-
puts, such as translations or logo designs, and another set of
workers in the second stage evaluates the outputs [1]. Prob-
abilistic models for estimating the reliability of each grader
and the quality of each output in this two-stage framework
have been proposed [1, 12]. Unlike peer assessment, the over-
lap between students (i.e., creators of outputs) and graders
is not assumed in crowdsourcing.

9. CONCLUSIONS
We presented probabilistic models for peer correction, which
are used for estimating the student abilities. We proposed
two models: one considering whether a grader has corrected
a submission, and the other utilizing the number of corrected
parts in each submission. We also combined the peer cor-
rection models with the peer assessment models; this com-
bination allows us to estimate the reliability of graders from
the outcomes of peer corrections and those of peer assess-

ment by considering the consistency between the corrections
and assessments. The experiments using the actual dataset
of peer correction showed that the combination of peer cor-
rection models and peer assessment models was particularly
effective in detecting high ability students.

In our models, we did not consider the importance of each
corrected part; however, the importance levels differ among
corrected parts in which minor corrections (e.g., adding a
punctuation mark) and major corrections (e.g., paraphras-
ing) exist. A major correction would indicate the low quality
of a submission and considering such factors is a promising
direction to improve the ability estimation accuracy.
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ABSTRACT
Understanding the affect expressed by learners is essential
for enriching the learning experience in Massive Open On-
line Courses (MOOCs). However, online learning environ-
ments, especially MOOCs, pose several challenges in un-
derstanding the different types of affect experienced by a
learner. In this paper, we define two categories of emotions,
explicit emotions as those collected directly from the stu-
dent through self-reported surveys, and implicit emotions as
those inferred unobtrusively during the learning process. We
also introduce positivity as a measure to study the valence
reported by students chronologically, and use it to derive in-
sights into their emotion patterns and their association with
learning outcomes. We show that implicit and explicit emo-
tions expressed by students within the context of a MOOC
are independent of each other, however, they correlate better
with students’ behavior compared to their valence.

Keywords
MOOC, emotions, discussion forum, valence, surveys

1. INTRODUCTION
The exploration of emotions expressed by students in Mas-
sive Open Online Courses (MOOCs) has caught the atten-
tion of researchers for improving the remote and non-contact
learning experience [28, 8, 16, 5]. A few examples of these
studies infer emotions of students from their behavior [16],
surveys collected during the course [8, 1], clickstream data
and discussion forums [28, 5]. The relationship between stu-
dents’ emotions and their behavior, learning outcomes, en-
gagement, and dropout within the MOOC context is estab-
lished in [1, 25, 21].

Emotions experienced by students during a course impact
their behavior and learning outcomes [15, 19]. Detecting the
emotion experienced during learning is difficult, and various
methods have been employed for this purpose. The meth-
ods used to sample emotions mainly fall into three categories

as outlined by [27]. The first category consists of methods
that take snapshots of students’ emotions during the course
through survey questionnaires. These methods are intrusive
to the learning process and are usually self-reported and
subjective in nature. The second category detects emotions
during the learning process and includes methods that sam-
ple emotions non-intrusively like facial expression detection,
conversations, gaze detection, and analysis of text data gen-
erated by student interactions within the course [9, 10]. The
third category measures emotions after the learning process.
The first two categories are relevant to our paper. In [27],
the methods in the second category are assumed to coun-
teract the limitations of the methods in the first category.
Therefore, in our study we use two categories of emotions
to get a more complete view of students’ emotional states.
In this paper, we measure explicit emotions as the emotions
recorded from student’s self-reported surveys and Self- As-
sessment Manikins (SAMs), and implicit emotions as those
from the open discussion forum posts of students.

Emotions measured in association with learning seem to be
short-lived and last for a few seconds to minutes [15]. Since
the emotions were expressed by students in this MOOC at
different, non-uniform points in time, one of the challenges
of analyzing such a series is the spontaneity of emotions.
As the emotions are surveyed after the end of a video or
module, we only get a snapshot of the students’ emotions
during the course [27]. Between two consecutive surveys, a
student’s emotions can not only change multiple times, but
also be conflicting, as students can experience multiple emo-
tions simultaneously [1], which could hinder a chronological
analysis of the emotions. However, even if students’ emo-
tions are spontaneous and likely to be fraught with missing
data, there might be a trend to their emotions over time.
An approach that leverages this idea has been proposed in
[7], where the positive affect experienced by an individual
is averaged over a period of time while the negative reports
are ignored. Inspired by this technique, we also calculate the
“positivity” of students at each point of the reported emo-
tions and derive a positivity sequence instead of an emotion
sequence. This positivity sequence is expected to be more
stable over time as compared to the emotion sequence.

We study the implicit and explicit emotions expressed by the
MOOC students through the following research questions.

RQ1: Are the explicit and implicit emotions expressed within
a MOOC context similar? Can one be used as a proxy for
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the other or are both of them equally important for charac-
terizing a student’s emotional state?
RQ2: What do the combined (explicit plus implicit) emo-
tional states and positivity sequences characterize about a
student’s learning?

To the best of our knowledge, this is the first attempt at
investigating the effect of explicit and implicit emotion cat-
egories within a MOOC context. We find that implicit and
explicit emotions expressed by students are indeed different
and both are necessary to characterize student emotions. We
also see that combined positivity values correlate relatively
well with behavior compared to their valence values.

2. RELATED WORK
The comparison of self-reported metrics like emotions and
performance in self-regulated learning and other educational
contexts has been studied and generally found to be incon-
sistent with the measured reports [14, 26, 29]. While many
of these studies measure the alignment of students’ achieve-
ment calibration with their actual performance [13, 26, 14],
we aim to compare the self-reported emotions of students in
MOOCs against the emotions we measure from their behav-
ior in the MOOC, in the form of interactions on the discus-
sion forum. A direct comparison of these methods with ours
is infeasible because of the difference in instrumentation and
methodology. However, we will compare our general obser-
vations with the trends in literature.

We use students’ self-reports of emotions along with Self-
Assessment Manikin (SAM) as the explicit measures of stu-
dents’ emotions. Self-reports are a very common way of
measuring students’ emotions because of their subjective na-
ture [11]. Collecting students’ emotions through surveys is
easy to deploy on a large-scale and is low cost [11], which
makes them favourable for use in MOOCs [1]. SAM is a
non-verbal assessment technique that allows people to rate
their pleasure, represented as valence in our case, on an or-
dinal scale [4]. SAMs have been used to measure emotion in
online learning environments [6, 8].

Among the techniques available for detecting the implicitly
expressed emotions of students, analyzing emotions from
texts is one of the least invasive ways of detecting students’
emotions [17, 22]. Using discussion forums to detect stu-
dents’ emotions in MOOCs is becoming prominent due to
its unobtrusiveness and low instrumentation [28]. Many
sentiment analysis techniques for detecting valence from text
including the word-affect lexicon used in this paper are listed
in [18], and education has been noted as one of the applica-
tions of sentiment analysis. We use Warriner’s [24] word-
affect lexicon to calculate the valence values of words in
the discussion forum records. The effectiveness of War-
riner’s word-affect lexicon [24] for sentiment analysis has
been demonstrated for detecting sarcasm [20], finding geo-
graphical locations associated with happier tweets [12], etc.
This automatic method to detect affect from discussion fo-
rum data enables a scalable way to glean implicit affect in
MOOCs from a large number of forum posts. Sentiment
analysis polarity techniques were applied on discussion fo-
rum posts in [25]. In [28], a Mechanical Turk is used to
obtain confusion ratings among students through simple fea-
tures like counting the number of question marks to predict

Table 1: 1. Number of students vs. SAM surveys
2. Number of students vs. SAM scores

SAM
survey

No. of
students

SAM
score

No. of
students

1 4111 1 3204
2 2815 2 4355
3 1354 3 1557
4 906 4 295
5 326 5 101

the level of confusion in the discussion forum posts. They
also use Linguistic Inquiry and Word Count (LIWC) to con-
sider negation words and phrases as an indicator of potential
confusion, and clickstream patterns (eg. quiz-quiz-forum) as
a feature for detecting confusion. Previous research on us-
ing the discussion forum to estimate student retention and
performance is complicated due to a vast amount of missing
and imbalanced data [3]. We also face challenges to detect
implicit emotions in the midst of context-specific terms.

3. DATA DESCRIPTION
3.1 Course Description
We use the data from the introductory course on Statistics
called “I Heart Stats” for our study. This was a self-paced
MOOC on the EdX platform, and the entire course content
was released at the start of the course. The course had nine
modules, with the ninth module being for the assessment of
the overall course. During the course, students were asked
to self-report their emotions and valence through emotion
surveys and SAM surveys respectively. Initially 24,279 stu-
dents were enrolled in the course, however, only less than
15,000 students had activity in the first two weeks. Finally,
only 1,941 students completed it. Of all the students, 1,629
responded to at least one emotion or SAM survey, and par-
ticipated in the discussion forum as well. Only these stu-
dents have been included in the Analysis section of the pa-
per as these are the only students generating both implicit
as well as explicit emotions. Note that students completing
the course are likely to have longer sequence lengths. Stu-
dents not interacting with the discussion forum but are still
part of the course cannot be included in the analysis leading
to an overrepresentation of active users.

3.2 Explicit Emotions
Emotion Surveys: Of all the students, 6,100 submitted
21,448 emotion surveys. During the course, 12 emotion sur-
veys were conducted in which students self-reported their
current emotional state. This was optional and students
could choose multiple of a list of 15 emotions: anger, anx-
iety, boredom, confusion, contentment, disappointment, en-
joyment, frustration, hope, hopelessness, isolation, pride, re-
lief, sadness, and shame. Further details can be found in [1].
The valence values of these emotions were calculated using
Warriner’s lexicon [24], with a scale of 1 to 9 and 5 being
neutral. We shift the scale to [-4, 4] to bring the neutral va-
lence to 0. In the case of multiple emotions being expressed,
the associated valence values were averaged to obtain one
valence value per survey. Thus, the surveys have positive
(0, 4], negative [-4, 0), and neutral {0} valence values.
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Figure 1: Histogram of implicit, explicit, and com-
bined sequence lengths (until sequence length of 25)

SAM Surveys: A total of 5 SAM surveys, using a 5-point
scale, were conducted in this MOOC. The SAM score repre-
sented in Table 1 ranges from 1 to 5 with 1 being the least
and 5 being the highest state of pleasure. As the distribu-
tion of the number of students corresponding to each SAM
score is normal, we convert this scale to an interval scale in
the range [-4, 4] linearly. In total, 5,363 students have sub-
mitted 9,512 SAM surveys with the rest of the details shows
in Table 1.

3.3 Implicit Emotions
The discussion forum is a platform that students use to in-
teract with each other, the instructor, and teaching assistant
of the MOOC. In total, 1,717 students generated 5,322 dis-
cussion forum records. The posts, comments, and replies
(i.e. records) on the discussion forum are used to infer the
implicit emotions of students.

We use Warriner’s word-affect lexicon [24] to calculate the
valence values of discussion form records. The tokenized
words in tweets are used to calculate the mean valence value
of the tweet using Warriner’s word-affect lexicon. We use a
similar approach to calculate valence values for discussion
forum records using the following steps: (i) Tokenize the
records to get a list of words, (ii) Remove the stop words
from the list, (iii) Make a list v of valence values associated
with a word using the lexicon, if present, after re-scaling
them between [-4, 4], (iv) Multiply the valence values of
words/phrases that follow a negative word with −1 (eg. not,
never), and (iv) Return the average valence value of list v.

3.4 Combined Emotions
Throughout the course, students have multiple opportuni-
ties, explicit or implicit, to express their emotions. The 12
emotion surveys, 5 SAM surveys, and valence values cal-
culated from discussion forum records were interleaved and
ordered chronologically for each student to form a combined
sequence of valence values.

A histogram of the number of reports corresponding to the
number of students in Figure 3.4 shows that the highest
number of students (14%) has a maximum combined se-
quence length of 3 with the number of students tapering

down after that point. The maximum number of reports
corresponding to a student is 74, as this student was very
active in the discussion forum.

To mitigate the spontaneous nature of emotions, we calcu-
late the positivity of students at each report from the valence
sequence values. Thus, if a student reports one negative
emotion among a string of positive emotions, the impact of
the negative emotion is reduced because of the previously
expressed positive emotions. We define positivity as follows.

Positivity: Let r1, r2, ..., rn be the reports made by a stu-
dent until element n such that:
timestamp(ri−1) < timestamp(ri) for all i. The valences
are normalized between [-1, 1], instead of [-4, 4], by divid-
ing them by 4. Let p1, p2, ..., pm be the positive normalized
valences where m <= n and m + 1 > n. The positivity at
the nth element is given by (p1 + p2 + ... + pm)/n.

In other words, an element of the positivity sequence is cal-
culated by averaging over only the positive valences in the
sequence until that element. Since students have reported
more positive than negative valences both explicitly and im-
plicitly, calculating negativity instead of positivity would
lead to extremely sparse sequences.

4. ANALYSIS
4.1 Calculated Valences
Section 3.3 lists the steps to calculate the valence values
of the discussion forum records. To validate these valence
values, 440 samples of the discussion forum records were
manually annotated by three human raters in which each
rater chooses one, two, or none of the 15 emotion choices
that students had for their emotion surveys. The fourth
rater is the calculated valence. We use Fleiss’ Kappa [2]
to calculate the inter-rater agreement by converting the va-
lence scores to positive, negative, or zero valence. The inter-
rater agreement of the three human raters is 0.457 (moder-
ate agreement), whereas the inter-rater agreement of the
four raters including the calculated valences is 0.218 (fair
agreement) [23]. While the agreement including the calcu-
lated valences is lower, it is adequate, and so we use the
calculated valence of these discussion forum records as the
implicit valence values.

4.2 Implicit vs. Explicit features (RQ1)
Both implicit and explicit sequences are instances of irreg-
ular time-series data. However, since emotion data is spon-
taneous and might change multiple times between consec-
utive reports [15], averaging, downsampling, interpolating
or duplicating valence values in an emotion sequence might
misrepresent the true emotional trajectory of the student.

4.2.1 Feature vectors description
Since the valence sequences are not uniform in length, we
create fixed length feature vectors for analysis. The features
are used in Sections 4.2.2 and 4.2.3 with their description
given: (i) pos: ratio of the number of positive valences to
the total length of the sequence (ii) neg : ratio of the num-
ber of negative valences to the total length of the sequence
(iii) neu: ratio of the number of neutral valences to the to-
tal length of the sequence (iv) trans: ratio of the number

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 434

800 
- implicit 
- explicit 

700 - combined 

~ 
C 

" " 
600 

" ti 500 

0 
400 ~ 

" .0 

§ 300 
C 

200 

100 

0 

sequence length 



Table 2: Corr. between implicit & explicit features
Features Pearson’s r Spearman’s rho

pos 0.0401 0.0696**
neg 0.0413* 0.102***
neu 0.0150 0.0380

seq len 0.346*** 0.422***
trans 0.125*** 0.162***

neg pos 0.113*** 0.165***
pos neg 0.0805** 0.127***
range 0.243*** 0.257***

*:p-val.<0.1, **:p-val.<0.05, ***:p-val.<0.0001

of transition of valences from positive to negative or vice
versa in the sequence to the sequence length (v) pos neg :
ratio of the number of transition of valences from positive
to negative to the sequence length (vi) neg pos: ratio of the
number of transition of valences from negative to positive
to the sequence length (vii) range: calculated by subtract-
ing the minimum valence value from the maximum valence
value expressed (To normalize the value the resulting range
is divided by 8, as the valence values lie in the range [-4,
4].) (viii) seq len: length of the valence sequence (integral
value).

4.2.2 Correlation
In Table 2, we see that pos, neg, and neu, as defined in
Section 4.2.1, between implicit and explicit emotions of stu-
dents are not correlated with each other. This shows that
both types of sequences are somewhat independent of each
other and might show different insights into students’ affect.
There are relatively few neutral discussion forum records
which is why its correlation with completion is not signifi-
cant. That is why transitions from neutral to positive and
negative valences, and vice-versa have been left out of the
features list. The sequence lengths seem to be mildly cor-
related showing that students reporting more emotions in
the emotion surveys were also more likely to submit more
records in the discussion forum. This correlation is expected
since the number of students with larger sequence lengths
decreases as seen from Figure 3.4.

4.2.3 Clustering of Feature Vectors
We cluster the 7-dimensional feature vector to identify groups
of similar students using K-Means. To visualize the clus-
ters created, we decompose the 7-dimensional feature vec-
tors of students’ implicit and explicit emotion sequences to
a 2-dimensional space using Principal Component Analysis
(PCA) separately. The PCA decomposition in Figure 4.2.3
shows very separable clusters in the 2-dimensional space.
The explicit clusters have significantly different ratios of
course completion: orange: 37.2%, purple: 25.5%, olive:
51.9%. Similarly, the completion ratios of the implicit clus-
ters are: red: 34.5%, blue 32.6%:, green: 60.3%, with the
green cluster having significantly more students completing
the course than the other two.

4.3 Combined sequence features (RQ2)
From the previous subsection, we saw that implicit and ex-
plicit sequences are not identical and should both be incor-
porated into a student’s valence trajectory. So we use both

Figure 2: PCA decomposition of explicit (top) and
implicit (bottom) seq. clusters (’x’: cluster centers)

implicit and explicit sources of emotions ordered by time
to generate a combined valence sequence for students. The
features from Section 4.2.1 are used in the analysis below.

4.3.1 Correlation of features with completion
We generate the 7-dimensional feature vector from the com-
bined valence sequence for each as defined in Section 4.2.1
and show the correlation of each dimension with completion
in Table 3. Completion is defined by a student reaching
module 8 [1]. We see that seq len has the highest correla-
tion with completion possibly because sequence length could
act as proxy for the amount of time students spent in the
course. A similar reasoning might hold for trans. The pos,
neg, or neu features do not seem to be correlated with com-
pletion. However, neg pos seems to be better correlated with

Table 3: Corr. of combined vectors with completion

Feature Pearson’s r Spearman’s rho
pos -0.0549*** -0.110***
neg 0.0807*** 0.156***
neu -0.0382** 0.0828***

neg pos 0.215*** 0.300***
pos neg 0.112*** 0.201***
trans 0.186*** 0.223***
seq len 0.523*** 0.460***
range 0.390*** 0.392***

**: p-val. <0.05, ***: p-val. <0.0001
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Table 4: Corr. of features with quiz performance
Features average minimum maximum
range -0.0804* -0.181*** 0.0735*
seq len -0.232*** 0.0681* -0.405***
*: p-val.<0.1, **: p-val.<0.05, ***: p-val.<0.0001

Figure 3: Positivity Clustering of Combined Seqs.

completion than pos neg. This supports our intuition that
students transitioning from a negative to positive emotional
state are more likely to stay in the course, compared to the
other way round. The feature range is better correlated with
completion than trans which indicates that higher intensity
of changes in emotions is more likely to result in completion.

4.3.2 Correlation of features with Quiz Performance
The performance score of students for a quiz is normalized
between 0 and 1. The average, minimum, and maximum
performance score of the quizzes (total 4) that students have
attempted is used as the y-variable for correlation. The
features that are significantly correlated with these statis-
tics using Pearson’s correlation are in Table 4. While the
negative correlation with seq len is unsurprising given that
harder quizzes are towards the end of the course, the positive
correlation with range suggests that student who experience
extreme emotions tend to perform better.

4.4 Positivity clustering (RQ2)
We compare fixed length positivity sequences by clustering
the first 10 elements of 767 students who have a sequence
length of at least 10. We see that k=3 is the highest num-
ber that shows no overlap of cluster centers. While there is
no significant difference between the clusters for quiz per-
formance, the difference between clusters in terms of quiz
participation using ANOVA is significant at p-value < 0.05.
Specifically, in the k=3 chart in Figure 4.4, there are more
students in the most positive (green) cluster that do not sub-
mit a single quiz (29.3%) than the other two clusters (20%).
A possible explanation is that students had trouble with the
quizzes and the ones who did not attempt them were more
likely to be happier. All three cluster centers converge to-

wards a narrow range of positivity, suggesting that students
tend towards the same positivity in the course even though
they started out differently.

5. DISCUSSION AND FUTURE WORK
Similar to the studies [14, 26, 29], we found that the self-
reported emotions did not reflect the implicitly measured
emotions. Clustering students by their emotion sequence
had different ratios of students that completed the course in
each cluster. This observation is similar to what [14] found
about different learning strategies and activity of students.
To investigate whether the temporally proximal self-report
was correlated with the outcome completion, we measured
the correlation of the last reported valence and the final pos-
itivity in the students’ sequences with completion. However,
similar to [29], we found no correlation. This suggests that
the proximity of students’ emotions to the outcome comple-
tion does not have a bearing on completion.

Through RQ1, we show that both the implicit and explicit
emotion sequences are independent of each other and con-
tribute different emotional information. Through RQ2, we
showed that students tend to converge towards the same
positivity even though they start out differently, indicating
that they end up feeling the same way. This might be be-
cause of external factors that remained constant for all the
students, e.g., how the course was conducted, possibly ex-
plaining the lack of correlation with the course outcomes.
We see significant differences between these clusters in quiz
participation but not in other learning outcomes. This may
be because students who did not attempt the quizzes did not
struggle through the course and remained relatively happy.
Our results show that there is potential for identifying dif-
ferent groups of students that participate in a MOOC. Table
2 shows that the explicit and implicit sequences are associ-
ated with behavior, but not valence. One of the possible
reasons is that students who participate more in the discus-
sion forum tend to submit more surveys as well but the two
types of sequences do not corroborate each other in valence.
From Table 3, we also observe that students who feel neg-
atively about the course and then transition to a positive
emotional state are more likely to stay in the course. We
found that the range of valence that students experience is
more indicative of their course completion and quiz perfor-
mance possibly because the students who struggle through
the course report higher valence values after achieving their
course objectives, resulting in their highly varied emotions.

A limitation of our work is our sentiment analysis technique
that uses a bag-of-words model with the discussion forum
records only and does not consider other implicit measures
of emotions. In this work, we have only relied on a single
word-affect lexicon. However, we can make the calculated
valence values more stable by triangulating the valences with
other lexicons. We would also like to improve granularity
and quantify the extra information conveyed by either type
of emotion sequence. Even so, as most emotion research in
MOOC relies on only one category of emotions, we conclude
that it might be advantageous for researchers in this area
to supplement their current method with a method from
the other category of emotions. It is important to continue
exploring emotions in MOOCs in pursuit of goals such as the
personalization of MOOCs, improving the emotional well-
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being of students, and the design of MOOCs.
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ABSTRACT
Gamification frameworks can aid in gamification planning
for education. Most frameworks, however, do not provide
ways to select, relate or recommend how to use game ele-
ments, to gamify a certain educational task. Instead, most
provide a “one-size-fits-all” approach covering all learners,
without considering different user characteristics, such as
gender. Therefore, this work aims to adopt a data-driven
approach to provide a set of game element recommenda-
tions, based on user preferences, that could be used by teach-
ers and instructors to gamify learning activities. We anal-
ysed data from a novel survey of 733 people (male=569
and female=164), collecting information about user prefer-
ences regarding game elements. Our results suggest that
the most important rules were based on four (out of nine-
teen) types of game elements: Objectives, Levels, Progress
and Choice. From the perspective of user gender, for the fe-
male sample, the most interesting rule associated Objectives
with Progress, Badges and Information (confidence=0.97),
whilst the most interesting rule for the male sample associ-
ated also Objectives with Progress, Renovation and Choice
(confidence=0.94). These rules and our descriptive analy-
sis provides recommendations on how game elements can be
used in educational scenarios.

1. INTRODUCTION
Gamification has been a widely popular phenomenon in the
past few years, being used in various domains, including that
of education. Gamification is defined as the use of game el-
ements outside their scope (i.e., games or game playing)
[1, 2]. However, educators often may not be familiar with

specific game-related concepts, or know how to use game
elements, or may not have the resources or time necessary
[3, 4, 5]. A solution is to employ conceptual gamification
frameworks [6]. Still, existing frameworks lack resources and
explanations on how to use game elements appropriately [5],
especially when considering user preferences affected by de-
mographic differences. Understanding users’ characteristics,
such as gender, may be especially beneficial, e.g., in STEM
education, where the well-known problem of ’the leaking
STEM pipeline’1 occurs [7].

In this paper, we apply a data-driven approach to provide
insights into the educational domain, via the research ques-
tion: “How can gender differences in preferences about gam-
ification elements be used to support gamification design?”
We conducted a very large survey (808 raw answers) allow-
ing respondents to rank gamification elements. We based
these elements on the works of Dignan [8] and Toda et al.
[5], due to (a) the relatively large number and variety of
elements, (b) the availability of synonyms used. Next, we
used an unsupervised learning algorithm to generate Asso-
ciation Rules to find patterns within the dataset, in order
to understand relations among these elements, based on the
users’ genders. Our main contributions are: (a) a survey2

for extracting preferences for gamification for education, ap-
plied to a large, varied number of respondents; (b) extract-
ing gamification elements relevant to the different genders,
for the educational domain; (c) extracting relations between
these elements, relevant to the different genders; (d) insights
into users’ acceptance of specific game elements, or groups
thereof (and their relations).

2. RELATED WORKS
As there are very few frameworks focusing on gamification in
education domains, we discuss: (i) existing models related
to game elements, (ii) gamification studies on user charac-
teristics, (iii) planning of gamification.

1dropout in STEM education
2https://forms.gle/hFgTT7kCqBKLqiPd8
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Yee and Marczewski both proposed models on how to use
game elements,using also large data collections [9, 10]; how-
ever, their focus is different: they collected (a) players’ moti-
vations towards online RPGs and (b) generic gamified appli-
cations. [10] only provides recommendations of elements for
behavioural profiles, but not user demographic characteris-
tics, such as gender. Yee’s model additionally analysed be-
haviours from a gender perspective, but only fo online RPG
(World of Warcraft) players exclusively. A recent study by
Shi and Cristea [11, 12] proposed a model and a set of rec-
ommendations based on the Self-Determination Theory [13].
Their Motivational Gamification Strategies related game el-
ements with each construct of the SDT, i.e., Autonomy,
Competence and Relatedness, and implemented them [11],
achieving positive results for each construct. Such studies
show how motivational theories and gamification constructs
can be related, as well support gamification in education.
They however do not support the design process of gamifi-
cation for educators and teachers.

Denden et al. [14] conducted an experiment analysing user
preferences (N = 120) over eight game elements within a
gamified educational system, based on personality traits (the
famous ’Big Five’ [15]). According to the authors, only
extraversion, openness and conscientiousness affected stu-
dents’ preferences for particular game elements. The au-
thors also stated the importance of this kind of recommen-
dation to designers and instructors when gamifying their
learning environments. However, the gamification in edu-
cation literature lacks studies which relate the acceptance
and influence of game elements with users’ genders, involv-
ing large-scale data [16]. One recent study [17] conducted
an experimental study aiming at identifying differences be-
tween male and female users (N = 70) towards ’gaming the
system’ behaviours. It was shown that game elements led to
male users decreasing their undesired behaviours; moreover,
female users felt less competent than male users. Never-
theless, although the results are interesting, the number of
students who were analysed is still relatively small, with stu-
dents from within a course context - whereas our study has
a wider scale and variety of participants.

Toda et al. [5] proposes a framework for blended class-
room environments using social networks, via a list of rec-
ommendations (names of gamified strategies) based on pre-
vious studies in gamification in education. They also ap-
ply Dignan’s game elements classification [8]. However, the
gamified strategies proposed are solely based on literature.
Nevertheless, their positive results show that game elements
are suited for educational environments (e.g., classroom and
digital platforms). As noted, other gamification frameworks
focused on specific domains (e.g. Computational Thinking
[18]). Klock et al [19]’s framework is usable for adaptive sys-
tem. Still, Mora et al [6] note that this framework focuses
on the researchers, rather than the stakeholders (teachers
and instructors) and presents limited recommendations on
game elements usage.

Thus, whilst gamification shows potential benefits for ed-
ucational applications, the gender differences in preference
towards specific game elements needed further, large-scale,
systematic studies, to better provide support for Data-Driven
Gamification Design, as tackled by our current paper.

3. DATASET AND METHODS
Our survey on game elements contains 29 questions. The
first part collected demographic information (age, favourite
game setting, and gender). The second part asked to what
extend certain game elements were relevant to users in the
gamified educational system context, through a Likert Scale,
from 1 “I think this element is irrelevant to me” to 5 “I think
this element is highly relevant to me”. The game elements
used and their advantages and potential drawbacks are pre-
sented in https://tinyurl.com/y44kqvn5 based on [8] and
used in [5] in an educational domain.

Additionally to theoretical motivations, we further validated
the selected gamification elements with 4 specialists in gam-
ification, who were also teachers, via an interview, verify-
ing the specialists’ acceptance of the used elements, con-
cepts, as well as questions cohesion. Finally, a pilot sur-
vey with 18 people verified the time spent and the consis-
tency of the questions, before launching the main survey
https://goo.gl/forms/d0i5WosBcMVWvQAK2. We then re-
cruited surveyees through social networks, forums and digi-
tal environments used by people who play games.

In total, we collected 808 raw answers. Further cleaning
removed data from users who: (a) did not answer all ques-
tions; (b) claimed not having played any digital games; (c)
were of age<0 or age>90. Then, we analysed our population
characteristics based on demographic data. As the normal-
ity test showed a non-normal distribution, a Mann-Whitney
test [20] was used to compare males and females.

Finally, we used association rule mining to analyse the re-
lations amongst our data, based on gender. Unsupervised
learning was used as we do not have any predefined la-
bels (outputs) and also to understand the relations between
the elements (different from clustering which create groups
based on all variables of the dataset).The algorithm analyses
the items’ frequency (support) and renders a level of confi-
dence, ranging from 0 to 1 (where 1 is the maximum confi-
dence). The confidence can also be supported by conviction
[21], lift and leverage -– both measuring the independence
of items.

4. RESULTS AND DISCUSSION
4.1 Gender differences
After filtering, we retrieved 733 valid answers (90.72%). We
applied Cronbach’s α on the second group of questions (as
game elements were based on a Likert scale) and achieved
an α = 0.83 (high reliability factor [22]). Our sample is
varied in terms of age (ranging from 13 to 68), but limited in
terms of experience in playing (at least a year: by design and
filtering) and country of origin (Brazil; due to convenience
sampling). Nevertheless, the sampling size is much larger
than the recommended one (733 >> 384; people playing
online games estimated at 700 mio; confidence level 95%).

We further organised our valid answers into two groups:
males (N = 569) and females (N = 164), and verified the
distribution of the data using the Shapiro-Wilk normality
test. The result showed that our data rejected the null hy-
pothesis (p < 0.05), so we adopted non-parametric tests in
further analyses. Table 1 summarises the result.
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Table 1: Relevance of game elements, averaged per
gender

Gender (mean) Mann-Whitney
Element Female Male W p-value
Point 3.76 3.68 44836 0.429
Level 4.14 4.21 48418 0.427
Cooperation 3.62 3.86 52306 0.013
Competition 3.26 3.56 53016 0.006
Renovation 4.16 3.78 35878 2.36e-03
Progress 4.24 4.32 48856 0.312
Objective 4.41 4.4 45902 0.791
Puzzles 4.14 3.91 40636 0.008
Novelty 4.05 4.16 49530 0.197
Chances 3.68 3.61 44901 0.447
Social Pressure 3.43 3.65 51142 0.05
Acknowledgement 3.85 3.73 44673 0.387
Data 4.05 4.09 46675 0.994
Scarcity 3.16 3.42 52468 0.011
Choice 4.07 4.23 50267 0.08
Time Pressure 3.16 2.97 42711 0.09
Economy 3.41 3.42 46738 0.973
Sensation 3.62 3.1 37094 1.17e-02
Classification 3.51 3.72 51340 0.042

Table 1 shows many significant differences (p-value < 0.05).
Interestingly, Competition, Cooperation, Social Pressure,
Scarcity and Classification were considered slightly more rel-
evant by the males, whilst Renovation, Puzzle and Sensation
elements were considered more relevant by females. Time
pressure was disliked by males, but not as much by females.

4.2 Descriptive Analysis
Comparing surveyees, for elements preferred in different pro-
portions, which are statistically significant between males
and females, Cooperation was more relevant to males (57.3%);
with 41.6% males selecting highly relevant, vs. 31.1% fe-
males (Table 2).

Figure 1: Favourite game elements for males (a,b-
correspond to Tables 2,3, rsp.)

A more drastic difference appeared when more than 25%
of the females did not consider Competition to be relevant,
versus 54.5% males. This result suggests that males may
perceive social interactions, such as Competition elements
and Cooperation, as highly relevant overall in games, with
a slight preference of Competition. For females, however,
Competition is not that relevant, but, surprisingly, Cooper-

ation is only marginally relevant. Social Pressure is signifi-
cantly less liked by females (difference of 7.7%).

Table 2: Cooperation, Competition and Social Pres-
sure answers.

Cooperation Competition Social Pressure
Sc F % M % F % M % F % M %
1 12 7.3 37 6.5 20 12.2 42 7.4 14 8.5 32 5.6
2 20 12.2 53 9.3 25 15.2 80 14.1 26 15.8 63 11.1
3 38 23.8 100 17.6 44 26.8 137 24.1 45 27.4 146 25.7
4 43 26.2 142 25 43 26.2 135 23.7 34 20.7 160 28.1
5 51 31.1 237 41.6 32 19.5 175 30.8 45 27.4 168 29.5

Scarcity was instead favoured (significantly) by males (Ta-
ble 3), where 37.8% of the females are indifferent. Classi-
fication, also a social element, was considered significantly
more relevant by males. 50.6% of the females considered it
relevant, against 60.6% males (Table 3). Based solely on
our descriptive analysis, we observed that the male popula-
tion considered limited or rare tasks, allowing, e.g., rewards
such as interaction or collecting titles, as relevant. Again, in
practice, this information allows the teachers to create titles
for completing specific tasks during their lectures e.g., by
giving a title of ’Speedster’ to the student who completes a
list of task correctly and quicker than the others.

Table 3: Scarcity and Classification answers
Scarcity Classification

Sc F % M % F % M %
1 16 9.8 32 5.6 13 7.9 25 4.4
2 25 15.2 78 13.7 14 8.5 68 11.9
3 62 37.8 189 33.2 54 32.9 131 23
4 39 23.8 161 28.3 42 25.6 163 28.6
5 22 13.4 109 19.2 41 25.0 182 32.0

As for the elements most favoured by females (Figure 2),
Renovation scored highest. 76.2% said it was relevant, with
50% considering it highly relevant. In contrast, only 30.0%
of the males considered it highly relevant, with almost 30%
indifferent (Table 4). In a learning context, this may tell
the teacher that female students might be more pleased with
features as “continue”, “try again” or be given ’extra lives’.

Another element highly relevant to females was Puzzles:
80.8%, against 68.1% of males; with 21.9% males indiffer-
ent. Again, females, in this scope, considered that testing
their skills was more relevant than males did. The Puzzle
and Renovation elements, when combined in practice, allow
problem solving, with the opportunity to correct mistakes.

Finally, the Sensation element was considered more relevant
by females. More than half (54.8%) of the female sample
considered it relevant, against 42.5% of the males. This
could be explained by Sensation being related to the user
experience [8], and, based on Table 4, we can infer that the
most relevant elements for the female sample were related
to the experience, rather than social ones. This means that
they may perceive tasks that involve their senses, e.g., with
a visual or phonetic appeal, as more relevant, which could
further be redone whenever they wish, to improve a certain
skill through challenges. In practice, this means that using
materials and resources that are more visual appealing may
be more pleasant to female students than the male ones.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 440

Gender • Female • Mak 



Figure 2: Favourite game elements for the female
sample

Table 4: Renovation, Puzzle and Sensation answers
Renovation Puzzle Sensation

Sc F % M % F % M % F % M %
1 4 2.4 14 2.5 5 3 17 3 12 7.3 108 19
2 9 5.5 39 6.8 8 4.9 40 7 21 12.8 97 18
3 26 15.8 167 29.3 20 12.2 125 22 41 25 122 21.4
4 43 26.2 161 28.3 57 34.8 180 31.6 34 20.7 115 20.2
5 82 50 188 33 74 45.2 207 36.4 56 34.1 127 22.3

4.3 Association Rules analysis
To identify the strongest rules for each gender and to ver-
ify how the rules found matched or complemented the find-
ings from our descriptive analysis (Section 4.2), we used the
Apriori algorithm in Weka, with: (i) minimum support of
10% for the male sample size and 20% for female (to bal-
ance sample sizes); (ii) minimum confidence of 90%; and,
after applying those attributes, (iii) we used the measures
of interest conviction, lift and leverage to find the most in-
teresting rules [23]. Using this setting we found a total of
11 rules for the female sample and 13 rules in the male one.

The majority (>90%) of the rules were based on the Ob-
jective element, which suggests its overall popularity. This
translates into a general recommendation towards using ’Ob-
jective’ elements in the educational gamification design, such
as missions, milestones and quests, to guide the students.
In this work we focused on analysing the most interesting
rules in female and male samples. For females, the strongest
rules were associated with the Objective (Table 5). The lift
> 1 and leverage near 0 indicate that our items are inde-
pendent and have a positive correlation, and the conviction
between 1 and 5 indicates that these are interesting rules.
The strongest rule relates Progress, Acknowledgement and
Data elements (e.g., Representations of progression, badges
and medals and results screen) with Objective (e.g., mis-
sions and quests). Rules regarding Progress and Level were
also amongst the 10 strongest. Thus, we can suggest that
teachers and instructors should use Acknowledgement (such
as badges and trophies), with other elements associated with
the personal enhancement of users (Progress and Level).

As for the male sample, Objective was also the main ele-
ment but, in contrast to the females, we did not find any
rules (with confidence > 90%) related to elements that were
most relevant to the male population (Table 6). There was
only 1 rule that specified a social element (Social Pressure)

amongst all the 14 rules. We can observe that Progress ap-
pears in almost all the rules, followed by Choice, appearing
in seven rules. This means that, in our sample, designers
and teachers should consider quests and missions that con-
tain a form of progression and allow the students to make
meaningful choices; those choices can be tied to a challenge
(Rule 14), to transactions (Rule 24) and points (Rule 16).

Based on the data on Tables 5 and 6, we can observe that
Objective associated to Progress is a concept that is (gener-
ally) well accepted by both genders. This means that teach-
ers and designers should focus on, e.g., developing quests
(which can be tied to their original learning objectives) that
allow the learners to place themselves within the task. This
is important, since in some educational context, students do
not know why they are learning a specific content; and con-
sequently, may become demotivated [24]. In practice, this
means that teachers can create milestones or goals, allowing
students to visualise their progress towards this goal. Thus,
guidelines can be provided to teachers, to convert their ob-
jectives in their classes into milestones or quests. Addition-
ally, other representations of Progress, showing the users
where they are in the course could be implemented, such as
those supported by Levels, Points and Data.

4.4 Further Discussion
We consider this work to be important, as, with the advent
of ’big data’, various theoretical assumptions and statements
can now be backed up by (significant) evidence. In the case
of game elements, there is firstly a vast (not always research-
based) evidence that games are linked to motivation, and
keep players ’in the flow’ [25]. Some studies even link spe-
cific game elements to higher levels of commitment or mo-
tivation [9]. Based on this evidence, as well as theories of
motivation, gamification has been proposed for education.
Currently, however, the data supporting these assumptions
is scarce. There is a lot of small-scale empirical evidence, at
classroom-scale, of approaches that showed mixed successes
[26, 27]. In a similar way, there is evidence that gamification
can also have undesirable effects [28]. This clearly points to
the fact that there are parameters which need taken into
consideration, which may influence the outcomes of gami-
fied approaches to education. In this study, we specifically
focus on demographic parameters - namely, gender.

Gender in education has been brought to the fore recently,
with the advent of initiatives such as the ’Athena SWAN’3

initiative towards gender equality in Higher Education in the
UK, as well as similar initiatives world-wide. Importantly,
equality doesn’t mean ’one size fits all’: on the contrary, gen-
der equality means that the provision of education takes into
account specific preferences that may be gender related. In a
similar vein, certain types of games appeal to certain demo-
graphics and not others. For instance, card-related games
are potentially more appealing to women, and first-player-
shooter games to men (although, of course, preferences can
vary) [29].

Further analysis of Table 1 shows that male and female pref-
erences of some elements is relatively similar; e.g., Data,
Economy, Objective are almost identical, and some are only

3https://www.ecu.ac.uk/equality-charters/athena-swan/
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Table 5: Relevant association rules for female sample
Rule
ID

If Then Conf Lift Lev Conv

1 {progress, acknowledgement, data} {objective} 0.97 1.63 0.08 7.04
2 {level, progress, acknowledgement} {objective} 0.97 1.62 0.08 6.84
3 {progress, acknowledgement} {objective} 0.96 1.6 0.1 6.04
4 {level, acknowledgement} {objective} 0.95 1.59 0.09 5.5
5 {point, acknowledgement} {objective} 0.95 1.58 0.08 4.96
6 {progress, puzzles} {objective} 0.94 1.57 0.1 4.73
7 {puzzles, novelty} {objective} 0.92 1.54 0.07 3.82
8 {novelty, acknowledgement} {objective} 0.92 1.54 0.07 3.72
9 {acknowledgement, choice} {objective} 0.92 1.54 0.07 3.72
10 {acknowledgement, data} {objective} 0.91 1.52 0.08 3.54
11 {puzzles, acknowledgement} {objective} 0.9 1.51 0.08 3.38

Table 6: Relevant rules to male sample
Rule
ID

If Then Conf Lift Lev Conv

12 {renovation, progress, choice} {objective} 0.94 1.6 0.04 5.37
13 {progress, social pressure, data} {objective} 0.93 1.59 0.04 5.04
14 {progress, puzzles, acknowledgement} {objective} 0.93 1.59 0.05 5.16
15 {level, renovation, progress} {objective} 0.93 1.59 0.04 4.96
16 {point, objective, puzzles} {level} 0.92 1.93 0.05 5.74
17 {level, progress, puzzles, choice} {objective} 0.92 1.57 0.04 4.27
18 {progress, acknowledgement, data} {objective} 0.91 1.55 0.05 4.13
19 {point, progress, choice} {objective} 0.91 1.55 0.04 4.01
20 {progress, novelty, data, choice} {objective} 0.91 1.55 0.04 4.01
21 {progress, novelty, acknowledgement, choice} {objective} 0.91 1.55 0.04 3.95
22 {renovation, progress, novelty} {objective} 0.91 1.55 0.04 3.92
23 {level, progress, data, choice} {objective} 0.91 1.55 0.04 3.92
24 {progress, novelty, economy} {objective} 0.91 1.54 0.04 3.78
25 {progress, choice, economy} {objective} 0.91 1.54 0.04 3.78

slightly different. Thus, some game elements may be per-
ceived similarly by males and females - which makes the
teacher’s job much easier, in terms of design choices. This
also puts more emphasis on the game elements where large
differences exist, as well as on game elements where the dif-
ferences in preference are slight, but statistically relevant.

Some of the results obtained were surprising: for instance,
we expected females to appreciate cooperation more than
males, but results (see section 4.2) showed otherwise. We
did, on the other hand, obtain the expected results in terms
of preference for competition. It is possible that online social
interaction overall is perceived differently by males and fe-
males; for instance, females may perceive any type of social
interaction online, where people are not known in advance,
and anyone from anywhere can participate, as potentially
threatening. These types of areas need further analysis.

For educational applications, it may seem that such poten-
tial ’fears’ are less likely in controlled (classroom, or classroom-
based) environments. However, for example, on Massive
Online Open Courses (MOOCs), where people can partici-
pate from anywhere, such issues can again prevail. In fact,
research on social interactions on MOOCs (e.g., comments,
etc.) shows a predominance of males performing such ac-
tivities. In contrast, females preferred puzzles (which can
be solved also as solo-player) and the ’Renovation’ element

(see Figure 2), which allow for an independent style of play
where one focuses only on ones own progress, instead of be-
ing interrupted by others.

5. CONCLUSIONS
This work presents our approach based on DDGD, towards
planning of gamification in the educational information sys-
tems domain by using data mining. The main contribution
of our work is to present a poll of gamified strategies tied
to male and female genders. Furthermore, we use real data
to aid in the decision process of teachers and instructors
is selecting gamification strategies. Through our data, we
could identify that males would make more use of social in-
teractions, with strong confidence rules pairing gamification
elements Progression and Choice. For the females, we iden-
tified that user experience and rewards are more relevant,
with association rules indicating a strong confidence for the
need of Acknowledgement and Progression. We believe that
this work can impact the way teachers perceive and apply
gamification in their environments, consequently improving
students’ engagement and motivation through a game-like
experience.
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ABSTRACT
Email has become the most preferred form of business com-
munication. Writing good email has become an essential
skill required in the industry. Good email writing not only
facilitates clear communication, but also makes a positive
impression on the recipient, whether it be one’s colleague
or a customer. The aim of this paper is to demystify the
components of a good email and to define a set of parameters
by which to grade the quality of an email and provide de-
tailed feedback. This can help candidates improve their email
writing skills and also guide tutors. The email grading pa-
rameters encompass traditional attributes of written English
(i.e. coherent and relevant content and correct grammar)
but also include a unique set of characteristics that we may
objectively identify as email etiquette. These characterstics
comprise the metrics we use to evaluate the quality of the
various constituent parts of an email. We grade the email
using artificial intelligence, acting on semi-structured text.
We use a mix of machine learning and rule-based systems to
effectively grade an email on the specified parameters. Our
system automatically grades email with accuracy comparable
to human graders.

Keywords
Automatic grading; Email Writing; Semi-Structured Text
analysis; Education; Supervised Learning

1. INTRODUCTION
In today’s knowledge economy, good communication skills
(spoken as well as written) are vital for success in the work-
place. According to the O*NET taxonomy of jobs and skills
[5], 53% of all jobs require a moderate to high level of writing
and speaking skills. Lately, there has been a lot of work
[18], [10], [17] on automated evaluation of speaking skills.
Some of these automated systems help candidates to im-
prove their language-speaking skills [3], [7]. The evaluation
of writing skills is generally thought to be confined to aca-
demic essay grading [1], [14]. These studies were prompted

by the demand for more efficient evaluation of high-volume
educational/academic tests such as TOEFL and SAT. There
are job tasks that mimic essay writing such as writing user
manuals, product documents or filing Request-for-Proposals
(RFPs). However, the writing that is most ubiquitous in
companies is email. Interactions with clients and all manner
of internal communications with managers, peers, and sup-
port services (i.e. human resources, tech support, etc) are
carried out via email. Therefore, composing good email has
become a necessary skill.
We wish to automatically grade email writing skills and pro-
vide feedback. This will create a mechanism for students and
jobseekers to get feedback on their email writing skills and
also provide companies with the ability to automatically test
email writing skills of job candidates on a large scale and
use the grades in the hiring process. We wish to automati-
cally grade email writing skills and provide feedback. This
will create a mechanism for students and jobseekers to get
feedback on their email writing skills and outline a path for
improvement. It will also provide companies with the ability
to automatically test email writing skills of job candidates
on a large scale and use the grades in the hiring process.
Despite the importance of email writing skills, we have not
found any previous work in this area.
We first demystify the components of a good email. The grad-
ing parameters consist of the traditional attributes of written
English (i.e. coherent and relevant content and correct gram-
mar) but also include a unique set of characterstics that we
objectively identify as email etiquette. We have identified
a set of 36 metrics on which to evaluate the quality of the
various constituent parts of an email. Many of these metrics
are derived from the general norms of communication, while
others are specific to the written form of email (discussed in
detail in Section 2). Our aim is to automatically grade email
on each of these metrics.
We grade email using artificial intelligence, acting on semi-
structured text. Some parts of an email are structured, such
as the subject, salutation and sign-off (Figure 1). The body
of the email, a set of sentences, is unstructured. There are
multiple approaches to grading structured and unstructured
text. Essay grading [4] and the grading of short answers
[13] are examples of unstructured text grading. Generally,
researchers generate a set of features such as bag of words,
word embeddings, parts-of-speech (POS) tags, etc. and use
supervised or semi-supervised learning to predict grades.
The grading of computer programs which use tightly de-
fined grammar is an example of structured input grading. In
[15] authors derive sophisticated features by exploiting the
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Figure 1: Sample email being written by a student.

structure of the program by drawing control row and data
dependency graphs. Whereas, resume parsing is an example
of processing semi-structured text [2].
We propose a mix of machine learning and rule-based models
to grade the various quality metrics of an email. We find that
such an approach works well for semi-structured text and for
a variety of evaluation parameters. We show that generally
the rule-based models work well for processing the structured
parts of email and for grading email on etiquette. On the
other hand, content relevance and grammar are better graded
via machine learning. Interestingly, for some attributes, a
mix of both models work best. Our approach stands contrast
to recent trends that apply machine learning to all tasks
indiscriminately.
We derive a number of natural language features for our
machine learning models. We use supervised learning to
build the models. The rule-based models use word lists and
regular expressions. Our algorithm provides accuracy that
rivals expert consensus. Our final system generates separate
grades for content relevance, grammar and email etiquette.
It also provides detailed feedback on the types of errors that
occur in each part of the email. In particular, the paper
makes the following contributions:

• We propose the first viable system for automatically grad-
ing email writing skills and delivering constructive feed-
back.

• We demystify the components of good email and provide
objective evaluation criteria.

• We propose a mix of machine learning and rule-based
models for evaluating emails. The accuracy of our system
rivals expert consensus.

• We provide first-of-its-kind data-based insight into the
errors committed by students and jobseekers.

The paper is organized as follows. In Section 2, we describe
the metrics we define for evaluating email etiquette. In Sec-
tion 3, we discuss the methods used to evaluate the metrics.
In Section 4 we explain the experiments, datasets and models
that have been developed for grading. In Section 5 we present
our results by comparing the performance of our system with
that of human experts. Concluding remarks are provided in
Section 6.

Response Status

I care for this in an email that I receive agree
I may care for this in an email that I receive not sure
I do not care for this in an email that I
receive

disagree

Table 1: Each rule was put into one of these cate-
gories

2. EMAIL ETIQUETTE
Quality metrics for evaluating email writing skills go beyond
the parameters traditionally defined in the grading of written
language, i.e. paragraphs and essays.
Email as social communication must follow certain norms.
Some of these norms are derived from the general norms of
verbal communication, while others are specific to the written
form of email. These norms manifest themselves as rule sets
for the structured fields of email and the unstructured body.
A simple rule is that values for all the structured fields should
be present. For example, an email that lacks a subject line is
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Email address 

To: charlie.daniel@cognitivesolutions.com 

Subject: Feedback about behavioural and performance issues 

Email subject 
Salutation 

Dear Charlie, Body opening 

This email is regarding the feedback of your behavioural and performance issues in the past month. In 

the record, it says that you have taken 5 leaves in the past month. Now taking a leave is not that much 

of an issue if it doesn't affect work performance. But I have been brought into notice, your casual 

attitude towards work. There have been two occasions where you have asked for an extension of your 

deadlines. 

Please make sure that you don't show a casual attitude towards the work and follow the company 

leave policy. 

Regards, 

Joy Samuel 

Senior Manager, Marketing and Promotions 

Cognitive Solutions Pvt. Ltd . 

Body closing 

Email closing 

Body 



Quality Metrics Explanation & Examples Counts

Missing Missing subject line, salutation, signoff etc.
Subject:
Email Body: This is to inform you that....

3

Redundancy Starting the subject line with terms such as ‘regarding’, ‘response to’.
Subject: regarding behavioral and performance issues.

6

Word usage Incorrect usage of words in various sections of an email - using names/greetings
in subject line, usage of informal, abbreviated words etc.
Subject:Employee feedback for Charlie Daniels
Email Body:Hi Daniel, Can u pls respond quickly...

10

Style Errors specific to conventions like greeting and sign-off style.
Email Body:
Hella Daniel/Heyy Charlie Daniels/Hi Mr Charlie Daniel
.....
Yours Sincerely/Truly/faithfully
Mr Charlie Daniel

7

Emotional Punctuation Errors like using too many commas inside a sentence, using exclamation/semi-
colons marks inside subject/salutation/closing, using all uppercase words in
subject line etc.
Subject: POOR performance !!! neeed improvement
Email Body: Heyy!! Charlie, HI CHARLIE please reply...Thanks, Alisha

5

Punctuation Capitalisation errors like starting subject line with lowercase, proper nouns
starting in lowercase etc. Not giving space after fullstop.
Subject: feedback on performance
Email Body:
hi charlie daniel, This is to inform you about the poor performance in last
financial year.I have seen many instances of work lapse.

5

Table 2: Quality metrics with explanations & examples.

not good. A rule derived from verbal communication norms
is that the opening greeting should not address the recipient
by both first and last name, and that a title should be added
when addressing a person by last name only. An example
of a rule typical to the written form is that the subject line
should not be longer than a given length. Another example
is that no words (except acronyms) should appear in all
upper case, and that emoticons should be avoided. There
are also other metrics that derive from the changing norms
of communication. In today’s business world, one doesn’t ad-
dress others as ‘Respected’ and rather use a ‘Hi/Hello/Dear’.
There are similar rules that govern the body of an email.
There are additional regarding the purpose of the email, or in
a grading scenario, the prompt of the email writing task. For
example, when responding to an irate customer, one should
not employ the oft-used email phrase “Hope you are doing
well”. Similarly, the closing line of an email may depend on
the prompt. Emails that seek a response may conclude with,
“I look forward to your response”, while a simple conversation
may end with simply “Feel free to reach out to me”.
There is no standard list of these rules. We looked at the
various blogs and documents with email writing rules to put
together a super-set of 57 different possible rules. We shared
these rules with three professionals from India and three from
US, each with 10+ years experience in the corporate world.
Two from each country were from either the IT, banking
or contact center industry. Three were involved in external
communications, while another three were into internal com-

munications. We asked them to rate each rule as in Table 1.
From the original 57 rules, we selected the 36 on which four

Section Number of errors

Subject 9
Salutation 6
Email Body 13
Closing 8

Table 3: Section-wise error counts.

or more of the professionals agreed. These 36 rules became
our quality metrics, which we categorized into 6 broad cat-
egories with definitions (See Table 2). In Table 3, we show
the number of rules that apply to each part of an email. We
evaluate an email against each of these rules and delineate
the errors in a candidate feedback section. We also provide
a total score for email etiquette. This score is based on the
number and severity of errors made. For example, a missing
error is more severe than redundancy errors. We also include
the standard parameters and rubrics [8] of English evaluation:
content relevance and grammar.

3. METHODS USED
We used three different methods to evaluate the various facets
of quality metrics. We use a mix of rule-based and machine
learning methods.
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3.1 Word list-based
Many email etiquette errors may be detected simply by
presence or absence of certain words or phrases. For instance,
an email should not have abusive words or slangs. On the
other hand, a pleasing email shall have words like ‘thank
you’, ‘please’, ‘request’ etc. We created word-lists to evaluate
such metrics in an email. Such an approach has also been
followed earlier in emotion detection [16]. The words in
email are matched against the word lists after stemming.
Based on the occurrence and counts (normalized, in some
cases), the feedback and scores, are respectively generated.
For instance, if someone writes “Whoa, It was great working
with u.” we provide a feedback to avoid the usage of informal
words like ‘whoa’ and ‘u’. We graded 19 error metrics in this
manner using 26 word lists1. The efficacy of this approach
was tested by evaluating the generated feedback and score
against human expert feedback. This is described in Section
4.

3.2 Pattern-based
Certain metrics were evaluated not by the occurrence of a
single word or phrase, but based on an expected pattern.
For instance, the recipient may be addressed by using more
than one combination of the greeting (Dear/Hi/Hey), title
(Mr/Ms/Dr), first name and last name. Some combinations
are right (Dear First Name), while some are wrong (Dear
Last Name). The correct and incorrect patterns were coded
into regular expressions, to provide exact detection of an
error and providing feedback (e.g., ‘Do not use only last name
without title’). One may note that this detection assumes
we know the full name of the recipient. For every email
writing task (prompt), certain structured information such
as recipient name, company name, sender name and certain
keywords is generated at the beginning (manually). This
is used for various error detection including, for example,
capitalization, and spelling errors. In total, 16 error metrics
were evaluated using pattern matching.

3.3 Regression-based
We use supervised learning to grade an email on content
relevance and grammar. We train regression models using a
number of different features to predict expert grades. We now
describe the features used for each of the two parameters.

3.3.1 Content Relevance
The candidate’s task was to write an email according to
the situation provided in the prompt. We wish to evaluate
whether the content properly addresses the situation, is com-
prehensive, coherent and without unnecessary information.
This metric is linked to the semantics of the email only and
doesn’t evaluate other parameters such as the emotion of the
email. We describe the natural language features used for
the task.

• Word embeddings: Here, we used the Word2vec model
[11], particularly Google’s pre-trained model developed
with a vocabulary over 3 million words and phrases and
trained on roughly 100 billion words from Google’s news
dataset. For each word in the email we first calculate a
300-length lower dimensional vector and then sum it across
all the words in the email.

1For some error metrics more than one word lists were used.

• Bag of Words (BOW): We used the bag of words
feature-counts of unigrams, bigrams and trigrams. All
the words were stemmed and stops words were removed.

• Prompt Overlap: We calculated prompt overlap in two
ways: exact match and extended match. In exact match,
we count the number of common words between the prompt
and the email. In extended match, we add the synonyms
of all words in the prompt using WordNet [12]. We then
count the number of common words between the extended
prompt word list and the words in the email.

3.3.2 Grammar
Below are the features we used to evaluate the grammatical
correctness of Here our aim is to evaluate the grammatical
correctness of the email. We use the following features:

• Bag of POS tags: Here, words are assigned to their
respective part of speech (POS) tags using the Penn Tree-
bank NLTK tagger [9]. We then considered bigrams and
trigrams of POS tags. This feature removes the semantic
information from the words, while preserving the sentence
structure and grammatical features.

• Error Counts: We also use counts of the grammatical
errors in the email as identified by open-source grammar
correction tools.

• Proportion of good tags: Here, we wish to find the
similarity of the language in the email with that of a
grammatically correct corpus. We used Brown corpus [6]
for our purpose. We generated bag of POS bigrams and
trigrams from this corpus. We consider the top 70% most
frequently occuring POS bigrams and trigrams as a set of
good n-grams. We then find what proportion of n-grams
in the email are good n-grams.

4. EXPERIMENTS
We had designed our experiments to answer the following
questions:

• How accurate is our approach in predicting content and
grammar scores as compared to human experts?

• How accurately do we detect email etiquette errors using
the word list and the pattern matching methods?

• What proportion of errors marked by humans experts
do we correctly detect and how many false errors do we
generate?

We conducted our experiments on a set of 1200 emails which
were manually rated by human experts. For training models,
we made use of both linear (linear, ridge regression) and
non-linear (random forest(R.Forest), SVM) techniques. We
discuss more about the dataset in the next section.

4.1 Dataset
Our dataset consists of 1200 emails in response to three differ-
ent prompts. We used an equal set of 400 emails per prompt,
after removing any blank email or those with very little con-
tent . These samples were collected from both undergraduate
and graduate students. The candidates were given a situa-
tion and asked to write an email to address the situation.
The three situations included a customer service situation
where one needs to address a customer’s complaints, a sales
situation where one probes the requirement of a prospect and
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Prompt 1 Prompt 2 Prompt 3

Model #Features Train (r) Validation (r) Train (r) Validation (r) Train (r) Validation (r)

Linear 50 0.86 0.79 0.87 0.81 0.85 0.77
Ridge 50 0.86 0.80 0.87 0.81 0.84 0.77
R.Forest 150 0.95 0.80 0.95 0.82 0.92 0.79
SVM 50 0.84 0.79 0.86 0.80 0.83 0.76

Table 4: Performance of prompt-specific content models.

Validation

Model #Features Train (r) Overall (r) Prompt 1 (r) Prompt 2 (r) Prompt 3 (r)

Linear 75 0.77 0.62 0.59 0.65 0.65
Ridge 75 0.70 0.66 0.62 0.67 0.75
R.Forest 150 0.85 0.73 0.71 0.73 0.74
SVM 150 0.62 0.60 0.52 0.59 0.74

Table 5: Performance of grammar models trained on complete set of emails. We present the overall and
prompt wise validation correlations(r).

promotes a service and a people management situation where
one needs to give feedback to an employee on performance
issues. The responses were collected using AMCAT 2, our
proprietary computer based testing platform.
All email responses were graded by human experts. Content
Relevance and Grammar were graded based on a 7 point and
5 point rubric respectively. Detailed guidelines were provided
for identifying each email etiquette error. The experts had
to mark the exact location where the error occurred and the
category of the error. Each email was graded by 3 different
experts. These included an English language trainer, a sales
manager and a customer service manager. Each of these had
an experience of more than seven years in the industry. The
experts first went through a three-day training where they
learned how to interpret the rubric and were subjected to
practice grading exercises.
We achieved an average inter-rater correlation 0.83 for con-
tent scores and 0.74 for the grammar scores. For email
etiquette, only those errors were considered where atleast
two experts had a consensus. A consensus was reached for
83% of the total cases.

4.2 Models
For content relevance we trained different models for each
prompt, while for grammar, a generic model was trained
across all prompts. For each model the corresponding dataset
was divided into train and validation sets. We used a strat-
ified 70-30 split for train-validation sets. We used linear
regression, linear regression with L2 regularization (ridge),
SVM and R.Forest to train models. Select K-best algorithm
was used for feature selection. The models with the lowest
cross-validation (4-fold) error were selected.
For the rule-based system, we used 50% of the email sets to
experiment with the rules, patterns and word-lists. Several
iterations were performed to fine tune the algorithm. The
rules were then tested on the remaining 50% data. We report
the results on this validation set.

2https://www.aspiringminds.com/contentTech

5. RESULTS
We evaluate our machine learning models using the Pear-
son correlation coefficient between predicted and the expert
grades. We report and discuss results for the validation
set. For content evaluation, all modeling techniques provide
similar results. The correlation for all prompts is around
0.79 (refer Table 4). For grammar scores, R.Forest gives the
best results, though marginally better than other techniques.
Here, we created one model across prompts and the overall
correlation across prompts is 0.73. Also, the correlation value
of any individual prompt is more than 0.71 (refer Table 5).
For email etiquette errors, we report two metrics of errors:

Error Category Counts(%) TP(%) FP(%)

Redundancy 31.27 70.00 17.86
Missing 69.77 93.55 11.29
Punctuation 90.78 94.12 19.17
Emotional Punctuation 18.00 84.48 6.90
Style 95.74 95.11 8.27
Word usage 17.05 100.00 20.00

Average 53.76 89.54 13.91

Table 6: Category wise performance of rule based
system for email etiquette.

• TP (True Positives): It is the proportion of expert
errors that were correctly identified. An error is deemed
correctly identified only when the position and error type
is correct.

• FP (False Positives): It is the number of non-existent
errors identified, normalized by the total count of expert
errors. This provides an idea of the proportion of extra
errors detected.

We report all the values for the unseen validation set, 50% of
the total data. We present the category-wise and section-wise
results in Table 6 and Table 7 respectively. Counts(%) (in
Table 6 and 7) states the percentage of emails that had the
given error. This provides some interesting insights. For
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Section Counts(%) TP(%) FP(%)

Subject 70.41 70.59 8.82
Salutation 79.84 92.78 17.53
Closing 94.88 95.28 11.02
Email Body 77.43 89.83 10.10

Table 7: Section wise performance of rule based sys-
tem for email etiquette.

instance, we find that most students make an error in the
email closing, followed by salutation and the least number
of errors in writing the subject line. On the other hand,
the most number of emails are impacted by errors in style
and classical punctuations. When we analysed in detail, we
find that the style of the closing has the most number of
errors. Candidates either completely miss the sign-off or use
overly formal phrases like ‘Yours Truly/Sincerely/faithfully’.
We find that the average TP is 89.54% and FP is 13.91%.
One may recall that the expert consensus was achieved in
83% of the cases. Our system detects most of the expert-
identified errors and has a low rate of detecting false errors.
Further, we find that the lowest TP rate for any category is
70% (redundancy) and highest FP rate is 20% (word usage).
There are only two categories with either a TP rate less than
80% or a FP rate of more than 20%. On the other hand, the
lowest TP is for the subject (70.6%) and highest FP is for
salutation (17.5%) yet under the 20% mark. We ultimately
aim to get all error rates in the 80-20 range of TP-FP.

6. CONCLUSION
We propose a system to grade email on content relevance,
grammar and email etiquette using a mix of rule based and
machine learning methods. We present a set of 36 quality
metrics to evaluate email etiquette, their broad categorization
and explanation. Our automated system provides human
competitive performance on all evaluation parameters. The
system provides scores on the three parameters and also
detailed feedback on email etiquette. This feedback comprises
the exact location of error, details of the error, and possible
corrections.
In future, we plan to work on grading the finer aspects of
email writing skills, such as flow of the email, its sentiment
and how well the different parts of the email address the
situation in the prompt. Also, this is a new interesting
approach to process semi-structured text. We plan to use
and benchmark the approach for other applications.
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ABSTRACT
Massive Open Online Courses (MOOCs) have become more
and more popular recently. These courses have attracted a
large number of students world-wide. In a popular course,
there may be thousands of students. Such a large number
of students in one course makes it infeasible for the instruc-
tors to grade all the submissions. Peer assessment is thus an
effective paradigm that can help grade the submissions at a
large scale. However, due to the variance in the ability and
standard of the student graders, peer grades may be noisy
and biased. Aggregating peer grades to have an accurate
and fair final grade for a submission is a challenging prob-
lem because the reliability and bias degrees of graders are
usually unknown in practice. To address this issue, some
probabilistic models considering the graders’ reliability and
bias are proposed. However, due to the sparsity of peer grade
observations, it is difficult for these models to estimate the
accurate reliability and bias of the graders as well as the true
grades of the submissions. Compared with absolute peer
grades, the relative peer grades, derived from the difference
between the peer grades of two submissions graded by the
same grader, are less sparse and more robust to the grader’s
bias. Thus relative peer grades are informative and helpful
in cardinal peer grading estimation whose goal is to estimate
the absolute numeric grades of submissions. In this paper,
we propose two new probabilistic models to help improve the
accuracy of cardinal peer grading estimation using the ob-
served relative grades among submissions. In this way, the
relation between the true grades among submissions is taken
into consideration when deriving the final grades. Experi-
mental results on real MOOC peer grading datasets show
that the proposed models outperform baselines and the re-
lation of true grades among submissions indeed contributes
to the improvement in the grade estimation.

Keywords
Peer grading, relative peer grades, MOOCs

1. INTRODUCTION
Massive Open Online Courses (MOOCs) have provided mil-
lions of learners with open access to high quality courses
via web. For a popular course, there may be thousands of
students. Recently, several MOOC platforms offer verified
certificates or even degree programs, and peer grading plays
an important role in the student performance evaluation.
The benefit of peer grading is two-folded. On one hand,
it is helpful for the instructors to evaluate students perfor-
mance, which is otherwise infeasible due to the large number
of enrollment. On the other hand, it is also beneficial to the
students: they can see peers’ work from different aspects
and increase their involvement in the course [5]. Especially,
peer grading can be used when automatic grading cannot
be applied, for example, on essays and projects. A typical
process of peer assessment includes two steps: first, students
are assigned to grade a subset of submissions and then the
platform aggregates these peer grades to compute the final
grades of these submissions.

Although peer grading is helpful, it is a challenging problem
to aggregate these peer grades and determine the final grade
of a submission. In this paper, we consider the case of cardi-
nal peer grading (i.e., each submission receives a numerical
grade as the final grade). Most platforms use the median
of received peer grades as the final grade of a submission.
However, the median grade may be inaccurate due to the
different reliability and bias degrees of graders. Usually, the
difference between the grade given by a grader and the true
grade of the submission can be decomposed into bias and
reliability degree. Suppose a grader grades multiple submis-
sions, and then the bias represents the difference between
the mean grades of this grader and the true grades on these
submissions. The reliability degree of the grader is measured
by the variance of the difference between the the grades that
the grader gives and the true grades of these submissions. If
a grader randomly assigns grades to the submissions, he/she
is not a reliable grader. If the variance is small, then a grader
grades the submission in a consistent way and is thus a re-
liable grader. It is important to consider the modeling of
grader bias and reliability to derive more accurate estimates
of the final grades. Therefore, there are some existing efforts
towards this direction [7].

However, the mechanism of peer grading that each student
only grades a small subset of submissions leads to a data
sparsity issue. The sparsity of the observed grades makes
these models difficult to correctly estimate reliability, bias
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of the grader and the true grades of the submissions. In ad-
dition the observed grades are sensitive to the grader’s bias.
Compared with absolute observed grades, the relative peer
grades between two submissions are less sparse and more
robust to the grader’s bias, since the relative peer grades
are derived from the difference of the grades assigned by the
same grader to two different submissions. Thus the relative
peer grades are informative in estimating the true grades
of submissions. However, all existing cardinal peer grading
estimation models [7, 6, 2] only consider the absolute peer
grades of each submission. None of these models considers
the relative grades between two submissions.

Recognizing the importance of relative peer grades, we de-
velop new probabilistic graphical models by leveraging rel-
ative peer grades between submissions to model the depen-
dency between the true grades. The proposed probabilistic
models estimate the true grades of submissions from the
peer grades as well as relative peer grades by modeling the
bias and reliability of graders. Gaussian distributions are
applied to model the true grades, the bias of grader, the
absolute peer grades, and relative peer grades in the pro-
posed models. Two different distributions are proposed to
estimate the reliability of the graders. In the first model,
the reliability of the grader follows a Gamma distribution
with the shape parameter determined by the grader’s own
true grade, while in the second model, it follows a Gaus-
sian distribution with the mean equal to the grader’s true
grade. To evaluate the proposed models, experiments are
conducted on peer grading datasets collected from a pop-
ular MOOC platform in China. Experimental results show
that the proposed models improve the accuracy of the cardi-
nal peer grading estimation by considering the dependency
of true scores between two submissions. The main contribu-
tions of this paper are summarized as follows:

• We find that relative peer grades among submissions
can help improve cardinal peer grading estimation ac-
curacy.

• We propose new probabilistic graphical models by in-
corporating observed relative grades to model the de-
pendency between the true grades of these two sub-
missions.

• We evaluate the proposed models on real peer grad-
ing datasets and experimental results show that the
proposed models can improve the accuracy of cardinal
peer grading estimation.

2. RELATED WORK
Existing work on peer assessment aggregation can be di-
vided into two categories based on the data types: the car-
dinal and ordinal peer grade estimation. The goal of ordinal
peer grade estimation is to rank the students according to
their submissions. Models based on pair comparison [10, 8],
Bayesian generative approach [12] and matrix factorization
are developed for the ordinal peer grades estimation [1].

For cardinal peer grading estimation, students are asked to
grade their peers’ submissions by assigning a specific nu-
merical grade and the aim of cardinal grades estimation is
to find the absolute true scores of the submissions. Below we
summarize the existing work related to cardinal peer grad-
ing estimation respectively.

One major approach of cardinal peer grading estimation is to

update grades and grader weights iteratively [4, 12, 3]. An-
other major category of methods are based on probabilistic
graphical models [7, 6, 2]. The proposed models in this pa-
per fall into this category. The main idea is to model the true
grade of a submission, the reliability and bias of each grader
as hidden random variables following certain distributions,
and infer the model parameters by fitting the models on ob-
served peer grades. In particular, the following methods [7,
6] (referred to as PG1 to PG5) are the most relevant to our
proposed model. In [7], three probabilistic graphical mod-
els named PG1, PG2 and PG3 are proposed. PG1 is the
basic model, which assumes that true grades, observed peer
grades, and biases follow Gaussian distributions and the re-
liability of the grader follows a Gamma distribution. Upon
PG1, PG2 links the bias of a grader among assignments,
and PG3 couples the grader’s grade of his/her submission
and the grader’s reliability. In PG3, the grader’s reliability
is modeled as a linear function of the grader’s grade. To
relax this assumption of linear relationship, two extensions
of PG3 referred as PG4 and PG5 are later proposed in [6].
Both PG4 and PG5 assume the reliability of a grader is
related to the grader’s own grade, and use either Gamma
distribution or Gaussian distribution to model this reliabil-
ity. Recently, social connections are also considered in the
modeling of the dependencies of bias among students [2].

However, all existing cardinal peer grading estimation meth-
ods only consider absolute grades. In these methods, the
true grades of different submissions are treated indepen-
dently. None of these models takes the relative grades into
consideration. In fact, leveraging the relative grades be-
tween submissions to model the dependency between true
grades of these two submissions can help reduce the noise
introduced by the bias of graders and alleviate the data spar-
sity issue, and thus can help to improve the accuracy of
cardinal peer grading estimation. To the best of our knowl-
edge, this is the first work that integrates relative grades
into cardinal peer grading aggregation to achieve improved
estimation.

3. PROBLEM DEFINITION
In this section, we first introduce some concepts and nota-
tions used in the rest of this paper. Then we formally define
the problem.

The set of all the students is denoted as S and the set of
all the graders is denoted as G. Under the peer grading set-
ting, G ⊆ S, since the graders are students as well. The
observed absolute grade (peer grade) of a submission sub-
mitted by student i graded by grader g is denoted as zgi , and
the observed relative grades (relative peer grades) between
submissions submitted by students i and j graded by grader
g is denoted as dgij . The relative peer grades are derived
using absolute peer grades, which are the difference of the
absolute peer grades. For example, if a grader g assigned a
score of 4 to the submission submitted by student i and a
score of 6 to the submission submitted by student j, then
zgi is 4 and zgj is 6. We can derive that the relative grade
dgij = zgi − z

g
j = 6 − 4 = 2. The subset of students whose

submissions are graded by an arbitrary grader g ∈ G is de-
scribed as Sg and the set of graders who assign grades to
the submission submitted by student i is defined as Gi.

With these definitions introduced, we define the cardinal
peer grading estimation problem as follows: Given a set of

451 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



students S, a set of graders G, a set of peer grades {zgi }
g∈G
i∈S

and relative peer grades {dgij}
g∈G
i,j∈S,i6=j , we want to estimate

the true absolute grade for submission submitted by student
i, ∀i ∈ S, and to learn the reliability and bias for each grader
g, ∀g ∈ G.

4. METHODOLOGY
In this section, we describe our probabilistic graphical mod-
els named PG6 and PG7 for cardinal peer grading estima-
tion. Both models specify a two-stage generation for the
peer grades and relative peer grades. The first stage specifies
the generation of graders’ bias, reliability and true scores of
submissions and the second stage generates the peer grades
and relative peer grades given the grader’s bias, reliability
as well as the true scores of submissions.

True score generation: In the proposed models, the true
score of the submission submitted by student i is modeled
as a random variable following a Gaussian distribution.

Grader bias generation: The bias of grader g is denoted
as bg, which measures the constant grade inflation or defla-
tion of a grader. We model the grader’s bias as a random
variable following a Gaussian distribution. Though different
graders may have different bias, we can assume the average
of all graders’ bias is 0.

Grader reliability generation: The reliability of a grader
reflects how consistent a grader assigns grades. A reliable
grader keeps a stable bias when assigning grades to differ-
ent submissions. Following the assumptions in [11], we as-
sume that the reliability of a grader is related to his/her
own grade, which reflects the grader’s knowledge about the
assignment. We assume that the grader with a higher grade
of the assignment may be a more reliable grader for submis-
sions of the same assignment. The reliability of a grader g is
denoted as τg and modeled as a random variable following a
Gamma distribution in the PG6 model and a Gaussian dis-
tribution in the PG7 model, respectively. In the PG6 model
the grader’s true grade is used as the shape parameter of
the Gamma distribution, while in the PG7 model it is used
as the mean value of the Gaussian distribution.

Peer grade generation: After generating the bias and
reliability of graders as well as the true scores, the peer
grades can be generated with these variables. The peer grade
is modeled as a variable following a Gaussian distribution
whose mean is the sum of the true grade of the submission
and the bias of the grader, and its variance is inversely pro-
portional to the reliability of the grader. In the PG7 model,
we introduce a hyper-parameter λ to tune the scale of the
variance.

Relative peer grade generation: To incorporate more
observations to estimate the reliability and bias of the grader
and the true grade of the submission, the relative peer grade
is generated. The generation of relative peer grade provides
us with another view of true score of a submission in addi-
tion to the traditional way that models the true grade as the
sum of observed peer grade and the bias of the grader. With
the relative peer grade, the true grade si of submission i can
be estimated by the sum of the true grade sj of submission j
and the relative peer grade between these two submissions.
In such a way, the influence of grader bias is excluded.

Similarly to the generation process of peer grade, the rel-
ative peer grade is generated with the given true grades of

𝑧𝑖 𝑧𝑗𝑑𝑖𝑗
𝑔

𝑠𝑗

𝜇 𝛾 𝛽 𝜂

𝜏𝑗 𝑏𝑗𝑠𝑔

𝜇 𝛾 𝛽 𝜂

𝜏𝑔 𝑏𝑔𝑠𝑖

𝜇 𝛾 𝛽 𝜂

𝜏𝑖 𝑏𝑖
Student 𝑖 Grader 𝑔 Student 𝑗

Figure 1: The plate notation of the PG6 and PG7

model.

Table 1: Notations
Notation Description

S set of all students
G set of all graders
τg reliability of grader g
bg bias of grader g
si true grade of submission from student i

zgi
observed grade of submission
from student i by grader g

dgij
observed grade differences between

submissions from student i and j by grader g

two submissions and the reliability of the grader. We assume
the relative peer grade follows a Gaussian distribution with
mean value equal to the difference of the true grades be-
tween two submissions and variance inversely proportional
to the grader’s reliability. Also, in the PG7 model, λ is used
to specify the scale of the variance.

Figure 1 shows the graphical structure of the PG6 and PG7

models. The box in the middle indicate a grader g and the
first and last box indicate student i and j whose submissions
are graded by grader g. Table 1 summarizes the notations
of variables.

In the PG6 model and PG7 model, the grader’s reliability
τg and bias bg and the submission’s true grade si are the
latent variables that need to be estimated. However, these
latent variables are related to each. To estimate the values
of these latent variables, Gibbs sampling is applied in this
work to draw samples of a latent variable from an approx-
imated posterior distribution. After enough iterations, we
discard the first few burn-in iterations and we use the mean
value of sampled si as the final estimate of the true score
of submission i. For si in PG6 and τg in PG7, we cannot
find a closed form of the posterior distribution, so we use
a discrete approximation to get the approximate posterior
distribution of these two variables. Next we will describe the
details of generation process and the inference of the PG6

and PG7 model separately.

4.1 The PG6 Model
The generative process of the PG6 model is as follows:

• For each submission submitted by student i

- Draw true grade si ∼ N (µ, 1
γ

)

• For each grader g

- Draw bias bg ∼ N (0, 1
η

)

- Draw reliability τg ∼ Γ(sg, β)

• For each peer grade zgi submitted by grader i graded
by grader g

- Draw peer grade zgi ∼ N (si + bg,
1
τg

)
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• For each relative peer grade dgij between submissions
submitted by student i and j graded by grader g

- Draw relative peer grade dgij ∼ N (si − sj , 2
τg

)

In the PG6 model, the posterior distribution of the true
score of submission si does not have a closed form. To have
an approximate distribution of this latent variable, in this
paper, we discretized the true score of submission si from 0
to 15 (the full mark of the assignment) with an interval of
0.1. The variables are updated according to Eq. 1.

b ∼ N (

∑
i∈Sg

τg(z
g
i − si)

η + |Sg|τg
,

1

η + |Sg|τg
)

τ ∼ Γ(sg +
|Sg|2

2
, β+∑

i∈Sg
(zgi − si − bg)

2 +
∑
i,j∈Sg

1
2
(dgij − (si − sj))2

2
)

s ∝ βsiτsi−1
i

Γ(si)
× exp(−R

2
(si −

Y

R
)2)

(1)

where R = γ +
∑
g∈Gi

( 1
2
τg(|Sg|+ 1)), and

Y = µγ + τg(
∑
g∈Gi

(zgi − bg) +
∑
g∈Gi

∑
j∈Sg

(d
g
ij+sj)

2
).

4.2 The PG7 Model
The difference between PG7 model and PG6 model lies in
the grader reliability generation: PG7 adopts Gamma dis-
tribution while PG6 adopts Gaussian distribution. The gen-
erative process of the PG7 model is as follows:

• For each submission submitted by student i
- Draw true grade si ∼ N (µ, 1

γ
)

• For each grader g
- Draw bias bg ∼ N (0, 1

η
)

- Draw reliability τg ∼ N (sg, β)

• For each peer grade zgi submitted by grader i graded
by grader g

- Draw peer grade zgi ∼ N (si + bg,
λ
τg

)

• For each relative peer grade dgij between submissions
submitted by student i and j graded by grader g

- Draw relative peer grade dgij ∼ N (si − sj , 2λ
τg

)

In this model, the posterior distribution of the reliability of
a grader τg does not have a closed form neither and we apply
discrete approximation to approximate the posterior distri-
bution of grader’s reliability from 0 to 15 with an interval of
0.1. The variables are updated according to Eq. 2.

b ∼ N (

∑
i∈Sg

τg
λ

(zgi − si)
η + |Sg| τgλ

,
1

η + |Sg| τgλ
)

τ ∝ τg
|Sg|2

2 × exp(−β
2

[τg − (sg−∑
i∈Sg

(zgi − si − bg)
2

2λβ
−

∑
i,j∈Sg

(dgij − si + sj)
2

4λβ
)]2)

s ∼ N (
Y

R
,

1

R
)

(2)

where R = γ + β +
∑
g∈Gi

τg
λ

+
∑
g∈Gi

τg∗(|Sg|−1)

2λ
, and

Y = γµ+ βτi +
τg
λ

(
∑
g∈Gi

(zgi − bg) +

∑
g∈Gi

∑
j∈Sg

(d
g
ij+sj)

2
).

Table 2: Dataset Statistics
� Question1 Question2 Question3

# of graders 100 237 105
# of submissions 126 288 141
# of peer grades 493 1121 516

# of instructor grades 114 257 123
full grades 15 15 15

observed mean 6.8 6.7 6.2
observed variance 0.11 0.12 0.14

5. EXPERIMENTAL RESULTS
We perform experiments on a real-world dataset with three
questions to evaluate the performance of the proposed mod-
els, and we show the results in this section.

5.1 Dataset
The real dataset including peer grades for three questions
was collected from a course named ”Immortal Arts: Ap-
proaching the masters and classics” on the XuetangX plat-
form 1. For each question, students are asked to write an
essay between 100 and 250 words. The peer graders for each
submission are automatically assigned by the platform and
the grading process is double-blind. After receiving the peer
grades, the platform uses the median of peer grades as the
final grades for submissions. The grades assigned by TAs
are also available in this dataset, which we use as ground
truth (true score) in evaluation. The overall statistics of
this dataset is shown in Table 2.

5.2 Baselines
In order to evaluate the effectiveness of the proposed models,
we compare them with 6 baselines, which are discussed as
follows. including the median of peer grades, the mean of
peer grades, the PG1 model and the PG3 mode in [7] and
the PG4 model and PG5 model in [6].

• Median: This approach takes the media of peer grades
as the final grade. This is the most frequently used
method to aggregate peer grades in MOOC platforms
such as Coursera2 and XuetangX platform.

• Mean: This approach simply assigns the mean value of
peer grades as the final grade to a submission. In some
cases, using the mean value of peer grades as the final
peer grades may achieve good performance according
to [9].

• PG1: This is the first probabilistic model for cardinal
peer grading estimation that considers the reliability
and bias of graders [7].

• PG3: This is a probabilistic model that links the grader’s
reliability with the grader’s own grade. This model
assumes that the variance of distribution for the peer
grades is inversely proportional to a linear function of
the grader’s grade [7].

• PG4: This is a probabilistic model assuming that a
grader’s reliability follows a Gamma distribution with
the shape parameter equal to the grader’s own grade.
The PG6 model is an extension of this model [6].

1www.xuetangx.com
2www.coursera.org
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Table 3: Experimental Results
Question 1 Question 2 Question 3

Mean Std Mean Std Mean Std
Mean 1.80 2.29 2.06

Median 2.19 2.57 2.29
PG1 1.97 0.02 2.34 0.01 2.21 0.02
PG3 1.69 0.07 2.85 0.01 1.92 0.01
PG4 2.54 0.02 2.94 0.02 3.07 0.02
PG6 1.31 0.01 1.44 0.01 1.38 0.02
PG5 1.52 0.04 1.80 0.01 1.74 0.02
PG7 1.24 0.02 1.45 0.01 1.31 0.01

• PG5: This is a probabilistic model assuming that a
grader’s reliability follows a Gaussian distribution with
the mean equal to the grader’s own grade. The PG7

model is an extension of this model.

5.3 Experimental Settings
As described before, many hyper-parameters are used in
the proposed models and baselines, and it is important to
set reasonable values for these hyper-parameters. In this
section, we describe how to set the values of these hyper-
parameters in our experiment.

Since the proposed models are the extensions of the PG4

and PG5 model in [6], to evaluate the effect of leveraging
relative grades, we set the same values for the shared hyper-
parameters in the proposed models and the PG4 and PG5

models. We use the mean and variance of the peer grades
as the mean (µ) and variance ( 1

γ
) of the prior distribution

of the true grade (si). As claimed in [6], the β in the PG4

model which decides the rate of the Gamma distribution for
the grader’s reliability and the λ in the PG5 model which
determines the variance of the Gaussian distribution for peer
grades are the most important hyper-parameters. These pa-
rameters have a significant influence on the performance of
these two models while other hyper-parameters influence the
performance slightly if set in a reasonable range. Thus we
mainly tune β in the PG4 and PG6 model and λ in the PG5

and PG7 model. We search for these two hyper-parameters
in the range of [50, 300] with the interval of 50 to get the
best performance. We set η to 0.1 in our experiment, and
in the PG5 and PG7 model, β is set to 0.1. For each la-
tent variable, we sample it for 300 iterations and the first 60
iterations are the burn-in iterations that will be discarded.
The average results over 10 runs with the hyper-parameter
settings described above are reported.

5.4 Real Dataset Performance
We use Root-Mean-Square-Error (RMSE) to evaluate the
performance of the proposed models and baselines on the
datasets. The experimental results are shown in Table 3.
From Table 3, we can find that on all these three ques-
tions, the PG6 and PG7 models outperform other baselines.
The RMSE of the PG6 and the PG7 models which incorpo-
rate the relative observed grades to capture the dependency
between true grades of submissions has dropped compared
with that of the PG4 and PG5 models. The results demon-
strate the effectiveness of incorporating relative peer grades
in cardinal peer grade estimation.

To better illustrate the performance of the PG6 and PG7

models, we further compare the estimated grades with the

ground truth on individual submissions in Figure 2. The
submissions are sorted with an increasing order of the ground
truth. Then we plot the estimated grades from Mean (the
best naive method), PG5 (the best baseline), and the pro-
posed PG7 model which has the best performance. We can
find that the estimated grades by all three models show an
increasing trend, but Mean shows a strong negative bias in
the peer grades: the peer grades are consistently lower than
the ground truth grade. Therefore, it is important to model
the bias in graders to improve the aggregation results. PG5

and PG7 both show positive bias compared with the ground
truth, but PG5’s bias is a bit higher. The comparison be-
tween PG5 and PG7 illustrates that the relative grades can
also help estimate the bias more accurately. It may imply
that although graders cannot give accurate absolute grades,
they can assign accurate relative grades.

We further compare the experimental bias estimated by the
proposed models with the real bias. The experimental bias
is defined as the average difference between the peer grades
assigned by a grader and the estimated true grades. The
real bias is defined as the average difference between the
peer grades assigned by a grader and the ground truth. For
example, a grader g grades two submissions from student i

and j, the experimental bias of this grader is
(z

g
i −si)+(z

g
j−sj)

2

and the real bias is
(z

g
i −s

∗
i )+(z

g
j−s

∗
j )

2
, where si and sj are

the estimated grades, s∗i and s∗j are the groundtruth grades
for submission i and j. The results are illustrated in Fig-
ure 3, where x-axis denotes the real bias and y-axis denotes
the experimental bias. We can see that most graders are
harsh graders whose real biases are less than 0. The di-
agonal means that the estimated bias is the same as the
real bias. The closer to the diagonal, the more accurate the
bias estimation is. We can observe that our estimated bias
is close to the real bias. With better bias estimation, the
proposed models achieve more accurate cardinal estimation.
This result again indicates the informativeness of relative
grades in estimating final grades.

5.5 Sensitivity of Hyper-parameters
To show how the value of hyper-parameter β in the PG6

model and the hyper-parameter λ in the PG7 model will in-
fluence the performance, we conduct experiments using dif-
ferent values of these two hyper-parameters with all other
hyper-parameter fixed. In the experiment to test the sen-
sitivity of the models, the settings for other fixed hyper-
parameters are the same as described above and the β in
the PG6 model and the λ in the PG7 model are set from
50 to 300 with an interval of 50. The results in Figure 4
show that in a reasonable range these two models are ro-
bust to the value of the parameter and achieve acceptable
performance.

6. CONCLUSIONS AND FUTURE WORK
With the popularity of the MOOCs, peer assessment has
become an effective paradigm for large-scale grading. The
aggregation of peer grades is a challenging problem due to
the various levels of bias and reliability among graders that
are unknown. Existing work contributes to the development
of effective peer grading aggregation methods by modeling
grader bias and reliability, but they ignore an important as-
pect in peer grading aggregation, which is the dependency
relation among grades. In these models, the relative grades
are not considered and the true grades of submission are
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Figure 2: The estimated grades of three questions using mean, the PG6 and PG7 model and ground truth.
The submissions are sorted by their ground truth.
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Figure 3: The comparison of experimental bias with real bias
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Figure 4: Hyper-parameter sensitivity of the PG6

and PG7 model

modeled independently. Modeling the dependencies among
the true grades of different submissions can help improve
the robustness of the aggregated grade estimation. In this
paper, we propose two novel models that leverage relative
grades to achieve improved estimation of final grades. In
the proposed probabilistic models, we capture the distribu-
tions of true scores based on graders’ bias and reliability
degrees as well as their own submission scores which repre-
sents their knowledge about the question. In addition, the
proposed models couple the true scores of different submis-
sions via their differences. Effective inference algorithms are
proposed to infer both model parameters and final scores.
Experimental results demonstrate that the proposed models
improve the accuracy of cardinal peer grading estimation.
It can also be observed that the relative peer grades among
submissions indeed contribute to the improvement in the ac-
curacy of cardinal peer grading estimation.

In the future, we will investigate how to better model the
ability of graders reflecting both reliability and bias of graders
and how to cluster the graders and submissions into different
groups to improve the peer assessment.
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ABSTRACT
Computational models of learning can be powerful tools to
test educational technologies, automate the authoring of in-
structional software, and advance theories of learning. These
mechanistic models of learning, which instantiate computa-
tional theories of the learning process, are capable of mak-
ing predictions about learners’ performance in instructional
technologies given only the technology itself without fitting
any parameters to existing learners’ data. While these so
call “zero-parameter” models have been successful in mod-
eling student learning in intelligent tutoring systems they
still show systematic deviation from human learning perfor-
mance. One deviation stems from the computational mod-
els’ lack of prior knowledge—all models start off as a blank
slate—leading to substantial differences in performance at
the first practice opportunity. In this paper, we explore
three different strategies for accounting for prior knowledge
within computational models of learning and the effect of
these strategies on the predictive accuracy of these models.

1. INTRODUCTION
A computational theory approach to modeling psychological
phenomenon consist of building simulations of cognitive pro-
cesses and testing their ability to emulate and explain human
behavior. Within educational data mining there have been
several attempts to model student learning processes using
a computational theory approach. For example SimStudent
[1] is a computational approach which simulates human stu-
dents. The Apprentice Learner (AL) Architecture [2] is a
modular framework for creating computational agents such
as SimStudent that learn to solve problems in intelligent tu-
toring systems (ITSs) as a human student would. These
computational agents mimic the inductive learning process

undergone by students in response to examples and correct-
ness feedback given in a particular domain.

These approaches afford several different use cases relevant
to the domain of EDM. First, as cognitive models of human
learning, these computational agent models can be used to
test theories of human learning. The AL framework uniquely
serves this role since it is designed so that its components
can be interchanged, to enable the instantiation of differ-
ent theories of learning that can be tested against human
behavior.

Second, insofar as as computational agents constitute high
fidelity models of human learning as simulated students,
they can be used as cognitive crash dummies for instruc-
tional design prior to the longer process of classroom tri-
als and A/B studies. For example, experiments with Sim-
Student and agents built with AL showed that interleaving
fraction addition and fraction multiplication problems would
lead to more efficient learning by opportunity in an ITS [14].
This result was later corroborated by human trials [15].

Finally, simulated students can be used as efficient authoring
tools. Simulated students can form generalized production
rules from examples and correctness feedback meaning that
they can be trained in a manner similar to example tracing
[3] to build expert models for ITSs. Expert models trained
with SimStudent, for example, have similar expressivity and
accuracy as hand-written production rule models, but can be
built in significantly less time and without any programming
knowledge required by the author [12, 11, 16].

Computational theory approaches of learning such as Sim-
Student and the simulated students built with the AL frame-
work are at their core zero-parameter models of human learn-
ing. These approaches are distinct from performance pat-
tern models such as the Additive Factors Model (AFM) [4, 5]
or Bayesian Knowledge Tracing (BKT) [6] since they at-
tempt to predict the presence of a pattern in behavior (e.g.,
learning a new skill or misconception) given only the task
environment and a few underlying assumptions about the
learning process rather than fitting to data from individual
students. These computational theory approaches to human

Daniel Weitekamp, Erik Harpstead, Napol Rachatasumrit,
Christopher Maclellan and Kenneth R. Koedinger "Toward Near
Zero-Parameter Prediction Using a Computational Model of
Student Learning" In: Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019), Collin F.
Lynch, Agathe Merceron, Michel Desmarais, & Roger Nkambou
(eds.) 2019, pp. 456 - 461
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modeling attempt to make predictions of human behavior
without knowing anything about the humans that they are
modeling, putting the burden of the modeling process on de-
liberate and explainable algorithmic design choices. While
there are added challenges to designing computational the-
ory approaches that accurately reflect human behavior, they
have the advantage of fine-grained explainability. Since a
computational theory approach actually performs the tasks
given to the students that it attempts to model, the fidelity
of the model to its human counterparts can be evaluated in a
more incisive manner, considering not just the performance
of the model by opportunity, but the types of errors it makes
and strategies it employs as well.

While computational theory models have demonstrated some
success in the past they still possess several systematic issues
in their performance. When applied to the task of modeling
learning many computational theory models manifest some
version of a cold start problem. Namely, as these models,
by definition, are not fit to information from individual stu-
dents, they often lack the ability to account for individual
differences in prior knowledge or experience that students
bring to bear. Performance pattern models are free to deal
with this problem in a number of ways. For example, AFM
and its variants often fit some kind of student intercept to
allow for variation among students’ initial ability [4, 5]. Sev-
eral strategies for estimating Bayesian priors in BKT have
been proposed in the EDM literature [6, 7]. In a perfor-
mance pattern context estimating prior knowledge amounts
to estimating some parameter between 0 and 1. Compu-
tational theory models, on the other hand, require a fully
specified mechanistic skill to be initialized and refined in a
learning process that directly models the process of a human
trying to master skills in an intelligent tutoring system.

In this paper we explore several strategies for accounting for
prior knowledge in the AL architecture and compare each
strategy’s ability to generate learner performance similar to
that of students. We close with a discussion of these strate-
gies and discuss the limitations of our current approaches as
well as directions for future work.

2. OUR EXPERIMENT
2.1 The Apprentice Learner Architecture
The Apprentice Learner (AL) Architecture is a modular
framework for modeling the human learning process from
demonstrations and feedback [2]. The purpose of the archi-
tecture is to serve as a test-bed for computational theory
approaches to student modeling. Agents created in the AL
framework induce production rules from training that can
be provided either interactively by a human or by working
with an existing ITS. In our experiments we use the latter
approach to train a set of simulated students on an intel-
ligent tutoring system with the same order of problems as
each student from a human dataset.

AL agents receive two types of feedback from ITSs, exam-
ples and correctness feedback. When an AL agent has a
learned production rule that can fire it will try the resulting
action and get correctness feedback from the ITS, other-
wise the agent will request a hint (i.e., an example) from
the ITS. Through positive examples from hint requests and
positive feedback, and negative examples from negative feed-

back, AL refines its understanding of the domain and learns
to correctly solve problems in the ITS.

To induce a production rule model suitable for solving prob-
lems, AL employs a four mechanism learning process con-
sisting of when-learning, where-learning, how-learning, and
which-learning. The when- and where-learning mechanisms
determine the context in which a production rule should fire,
the how-learning mechanism searches for chains of overly
general operators that explain tutor demonstrations to de-
termine what a production should do when it fires, and the
which-learning determines which production rule should fire
if multiple are applicable.

The operators that how-learning employs are “overly gen-
eral”, in the sense that they are applicable in a wide range
of domains, but not specific enough to solve problems in any
particular domain. Overly general operators do not consti-
tute production rules since they are not programmed with
any sense of when they should fire. In our experiments we
use one perceptual operator ‘equals’ which adds to the prob-
lem state the fact that two values are equal, and four pro-
cedural operators ‘add’, ‘subtract’, ‘multiply’ and ‘divide’.
The conditions in which these operators should be utilized,
the particular interface elements from which they derive
their numerical inputs, and the interface elements that will
receive their outputs are learned by the when- and where-
learning mechanisms respectively to create full production
rules.

The AL agents in our experiments employ Trestle [13], an
incremental hierarchical categorization algorithm for when-
learning. For where-learning, since we use only static in-
terfaces in our experiments, we employed a ‘most specific’
strategy, which uses the inputs and outputs present in pos-
itive training examples without trying to generalize from
those examples to unseen cases. We allow our how-learning
mechanism to only use single operation explanations (i.e.
just multiply or add two numbers, not three numbers or
combinations of operators). The which-learning mechanism
chooses the production rule which has been employed suc-
cessfully with the highest frequency so far given the current
state representation.

2.2 Data Source
To evaluate different methods of pretraining AL agents we
used student performance data from an ITS for fraction
arithmetic [15]. The dataset consisted of the work of 117
students on three different types of fraction arithmetic prob-
lems: 1) adding fractions with the same denominator, 2)
adding fractions with different denominators, and 3) multi-
plying fractions. In the interface students are first asked
if they need to convert the two fractions, which is false
in the addition-same and multiplication cases and true in
the addition-different case. If the fractions need to be con-
verted then the students must find the common denomina-
tor between them and write in the converted fractions before
adding them. This dataset is available on DataShop [9] 1.

1https://pslcdatashop.web.cmu.edu/Project?id=243
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2.3 Training Strategies
We explored three different strategies for accounting for prior
knowledge in AL Agents. For each of these strategies an
agent was paired with a human student and provided some
form of pretraining based on data collected about that stu-
dent prior to working through that student’s problem se-
quence in the data. In our experiments we attempted three
different strategies to account for prior knowledge estimated
fraction prior experience, estimated whole number prior ex-
perience, and demonstrated pretest. Additionally, we ran a
no pretraining control condition which begins from a con-
ventional cold start.

2.3.1 Estimating Prior Experience
In the estimated fraction and estimated whole number prior
experience strategies agents worked through a number of
pretraining problems based on estimates of each student’s
prior opportunities to practice problems in each of the three
types of fraction arithmetic problem. We estimated the
number of prior opportunities (Pik) that a student i had
on each knowledge component (KC) k [10] in the fraction
arithmetic tutor. Taking the AFM mixed model regression
equation:

log(
pij

1−pij
) = θi + Σk(qjkβk + qjkγkTik), θi ∼ N (0, σ2)

Consider an imaginary tabla-rasa student with no knowledge
of anything at all with student intercept θ−∞, and a student
with student-intercept θ. We can find the number of prior
opportunities Pik such that the tabla-rasa student has the
same log odds of answering a question in KC k as student i:

θ−∞ + Σk(qjkβk) + Σk(qjkγkPik) = θi + Σk(qjkβk)

=⇒ Pik =
θi−θ−∞

γk

An issue with this formulation is that a true tabla-rasa stu-
dent would have θ−∞ equal to -inf, so we introduce an ap-
proximation for θ−∞ in order to get reasonable values for
Pik. In our experiments we choose θ−∞=-2 since this is the
student intercept at which a student practicing a single KC
step with a KC intercept of zero would have about a 10%
probability of getting the step correct. Although this an ar-
bitrary choice, we believe it is a reasonable one, much in the
same way that it is reasonable to choose a 90% chance of
correct behavior as a mastery threshold in a BKT model.

There are three distinct types of fraction arithmetic prob-
lems, which each have their own sets of KCs. In the case of
fraction addition the two fractions can either have the same
denominator, in which case the student need only add the
numerators, or the denominators could be different, requir-
ing the student to convert the fractions before adding. In
the third case, fraction multiplication, the KCs are distinct
from the addition cases. Since in practice fraction arith-
metic problems are not presented with any of their KCs in
isolation we estimated the number of problems of each type
to give as prior training to our learning agents as the min-
imum Pik among the problems of a given type. For the

estimated fraction prior experience case we pretrain on a
number of random problems from each type according to
these estimates. In the estimated whole number prior ex-
perience case we pretrain as many random whole number
addition problems as there are estimated same denominator
problems and as many random whole number multiplication
problems as estimated multiplication problems.

In the estimated fraction condition, randomly generated prob-
lems were restricted to have denominators between 2 and
12 with numerators less than each fraction’s denominator
(i.e., no improper fractions). In the estimated whole number
condition, each agent was given randomly generated whole
number arithmetic problems prior to beginning the core tu-
toring sequence. These whole number arithmetic tutors were
restricted to numbers between 1 and 12.

2.3.2 Demonstrating Prior Answers
In the demonstrated pretest case we pretrain the AL agents
by providing them with demonstrations of the exact answers
that students gave in a pretest evaluation of the original
study. In order to model both the knowledge and miscon-
ceptions of the student, these answers are given to AL as
positive examples regardless of whether or not each of the
students’ answers were correct. The goal here is that the
pretest encapsulates a picture of each students’ prior con-
ceptions that may contain more information than a fit pa-
rameter. The pretest is a snapshot of students behavior
under a particular set of problems, a sample which we use
to infuse an associated AL agent with the same knowledge
and misconceptions as the original student.

One limitation of our pretest demonstration approach is that
the available pretest data only contained the given fraction
problems and the students’ final answers. Thus, the demon-
strations that we provided to the agents appeared as single
steps even though the human students may have done mul-
tiple mental calculations to arrive at their answer. This
issue is likely to be particularly salient on fraction addition
problems with different denominators as the common de-
nominator process would not be apparent.

3. RESULTS
In Figure 1 we see that the estimated fraction condition gets
closest to the human first opportunity performance, followed
by the demonstrated pretest condition. The estimated whole
number condition behaves almost equivalent to the control
case with a 100% first opportunity error rate.

To test the fit of each strategy to the human data we cal-
culate the residuals between the human learning curves and
the learning curves generated from the AL agents run with
each pretraining strategy (Figure 2). Table 1 shows sev-
eral statistics of the fit of each strategy to the human data.
The ”Accuracy” column shows the mean accuracy between
the correctness (0 for incorrect and 1 for correct) of each
human and that human’s AL agent counterpart over all stu-
dents and opportunities. The ”First Opp. Accuracy”column
shows this same statistic, but only for the first opportunity.
In both cases the estimated fraction strategy shows the best
fit to the human data.

In addition to testing the predictive accuracy of the models,
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Figure 1: Learning curves aggregated over all knowl-
edge components for each pertaining strategy and
the human learning curves.

Figure 2: Learning curve residuals (human minus
agent) for each strategy across all knowledge com-
ponents. Error bars are standard errors.

we next looked at the explanatory power of the model– by
looking at its ability to account for variation in the human
error rates over the course of problem solving. As a coarse
measure of explanatory power, we first conducted a χ2 test
of independence between each model correctness and the hu-
man correctness. This test confirmed that there is a signifi-
cant relationship between each models’ predictions and the
human correctness (independence hypothesis rejected for all
models, p < 0.001). Next, we looked to more finely eval-
uate how well each model explains variation in the human
data. To do this we used a mixed-effects regression analysis
[16]. For this analysis, we used a mixed-effects model with
fixed effects for each model prediction as well as the prac-
tice opportunity counts. The model also included random
effects for the intercept and slopes of each knowledge com-
ponents as well as intercepts for each student.2 This model,

2The mixed-effect regression model used in R: Hu-
man.Correctness ∼ Agent.Correctness + Opportunity + (1

which is effectively the Additive Factors Model [4, 5] with an
additional term for the model predictions, serves a role sim-
ilar to a repeated measures ANOVA analysis by accounting
for general effects of within student and skill ( knowledge
component) performance as well as the effect of repeated
practice. The model enabled us to evaluate how well each
computational models’ predictions improved the overall re-
gression model fit over the baseline AFM model. By apply-
ing model fit statistics, such as AIC, to these mixed-effects
models, we could evaluate which model better accounted for
variation in the human behavior above general practice ef-
fects and general correlations of behavior within students
and skills. The baseline AFM model fit to this data had an
AIC score of 9558.7. The ”AIC”column in Table 1 shows the
AIC scores for the mixed-effects model with the added fixed
effects for each respective computational model. Note, the
numbers of free parameters and data points between each of
these models is equivalent thus we did not consider other fit
statistics such as BIC or HQC as they would have resulted
in an identical ordering.

These results show that all models provide some explana-
tory power over the baseline AFM model. However, the
no pretraining control model appears to provide the most
explanatory power. Although this result seems counter-
intuitive from the graphs shown in Figure 1, there is at least
one possible explanation. Mainly, that the estimated frac-
tion model better fits the average of all students whereas
the no pretraining model better fits individual students–
specifically students with high initial error. The estimated
fraction model likely better fits the students that perform
better initially; however these students have less variation
in their behavior that the model might account for and this
variation is already accounted for as a general within-student
effect of the regression evaluation. In contrast, the no pre-
training control and demonstrated pretest models better fit
students with lower performance at the beginning, who also
have more variation to account for.

Finally, we analyzed the residuals shown in Figure 2 using
a linear regression analysis. This analysis fit a line to each
residual curve to get an estimate of the intercept and slope
of these curves. Table 2 shows the slopes and intercepts of
these linear models with their accompanying 95% confidence
regions. This analysis shows there is a significant intercept
and slope for each of the models (all intercepts and slopes
are non-zero, p < 0.001). However, the estimated fraction
model has the intercepts and slopes that are closest to zero,
suggesting that it is a better fit of the overall error rates and
error rates by opportunity.

+ Opportunity | KnowledgeComponent) + (1 | Student.Id).

Table 1: Fit statistics to human data by strategy.
Strategy Acc. First Opp. Acc. AIC

No Pretraining 0.684 0.316 9541.3
Est. Fractions 0.805 0.643 9558.1
Demo Pretest 0.701 0.389 9548.2

Est. Whole Num 0.681 0.326 9556.4
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4. DISCUSSION
Our current experiments in accounting for prior knowledge
in AL agents have mixed results, but yield fruitful direc-
tions for future work. Our most promising method, the es-
timated fraction prior experience case, reduces the average
first opportunity error rate across all knowledge components
down to about 40%. The human students by contrast be-
gin at about a 30% error rate. The demonstrated pretest
case yielded little improvement over the control. The only
slight first opportunity improvement in the demonstrated
pretest case is likely due to the often erroneous answers that
the students produced in the pretest, which we presented to
our AL agents as the ground truth in this condition. Our
original hypothesis was that these erroneous but positively
labelled examples would account for any existing miscon-
ceptions in the human students. However, these erroneous
examples may have gone too far toward confusing the AL
agents. An alternate explanation is that the lack of nega-
tive examples in this case hinders the AL agents’ capacity to
effectively delineate between their learned production rules.
Finally, since the estimated whole number learning curves
turned out to behave equivalently to the control case both
in first opportunity error rate and in over-all shape, we need
to look more closely at AL’s capabilities for cross-interface
skill transfer in future work .

We consider these experiments to be a first exploratory pass
at accounting for prior knowledge in computational model-
ing approaches to human learning. Among them, the esti-
mated fraction prior experience case is decidedly the closest
to human behavior. However, we certainly think we can get
much closer to the human behavior going forward.

One direction for future work is to improve our estimates
for the number of opportunities to pre-train our agents with
to account for the prior knowledge of their human coun-
terparts so that the intercepts of the human and AL agent
learning curves match. We can approximate the average of
the ground truth number of prior opportunities by calculat-
ing the number of opportunities that the control condition
takes to gain parity with the human students at their first
opportunity. By comparison to this ground truth average it
appears that our estimates are too large in the multiplica-
tion (14.17 vs. 6) and same denominator addition problems
(6.76 vs. 4) and too low in the addition different problems
(6.79 vs. 9). We found that these discrepancies could not
be remedied by a different choice of θ−∞.

In previous evaluations of the AL framework in other do-
mains AL agents learned more per opportunity than the
human subjects [16]. We hope to explore this fact further
by evaluating situations where AL agents over/under per-
forms relative to the humans, and find ways of correcting
the discrepancy.

Table 2: Linear model fit to residuals.
Strategy Intercept Slope

No Pretraining −0.474± 0.012 0.030± 0.002
Est. Fractions -0.108± 0.011 0.007± 0.002
Demo Pretest −0.422± 0.012 0.026± 0.001

Est. Whole Num −0.490± 0.012 0.031± 0.001

One direction for future work that will help us converge on
an accurate model of a human learning, is to give AL agents
the capability to make random guesses guided by statistics
of human errors. This behavior might include inputting
common random numbers, copying random numbers, and
applying overly general operators at random. Much in the
same way that we have estimated the Pik from human data,
we would need to estimate a distribution from which these
behaviors could be drawn. Similar statistics could be esti-
mated for inferential and procedural slip mistakes 3.

The question certainly is raised: if we must rely on descrip-
tors of human behavior derived from fitting statistical mod-
els to human performance, then to what extent are we em-
ploying a zero-parameter approach to modeling? No doubt,
we are using fit parameters in our modeling approach by
bootstrapping our models guided by student intercepts cal-
culated from AFM. However, our computational modelling
approach attempts to replicate human behavior instead of
only fitting performance, and this process is guided a pri-
ori via computational theories of student learning, not by
comparison to human data.

Although our nearly zero-parameter computational approach
opens up many possibilities for testing theories of human
learning, it comes with its own set of difficulties and limita-
tions. In contrast to performance estimation models such as
AFM and BKT which require only the logs of human per-
formance on an ITS, our approach also requires a working
ITS for the AL agent to work against. This limits the appli-
cability of our method to older datasets for which the actual
tutoring interfaces have been lost to time. Currently our
system works on the newest HTML version of CTAT and
has been used successfully in previous experiments on the
older Java version of CTAT as well. However, in order to
use different ITSs new code must be written to communicate
tutor events to the AL framework’s RESTful API.

While a nearly zero-parameter computational approach to
human learning allows us to form and test theories of learn-
ing in a very detailed manner, it should be noted that the
strength of any claim about the underlying cognitive pro-
cesses of students is dependant on both the specificity of
such a model in replicating human behavior and the gener-
alizability of such a model across different domains. Here
we have looked at just a single domain, fraction arithmetic,
since it is amenable to all three of our proposed strategies.
However, it should be noted that although validity claims are
strengthened in a zero-parameter computational approach
by the fact that behavior must be explained on an algorith-
mic level and not by fitting parameters, it is still possible
that two underlying learning mechanisms yield almost in-
distinguishable behavior. Thus generalizability is essential
to any claim about human cognitive processes. However,
generalizability cannot be gained for free by the availability
of more diverse data, as is often the case with deep learn-
ing models. Rather, any observed discrepancies between do-
mains must be explicitly explained and accounted for by the
investigator at an algorithmic level. This fact lends very high
explainability to a zero-parameter computational approach,
but nonetheless presents an added challenge.

3These statistics would be difficult to estimate convincingly
with a zero-parameter approach.
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5. CONCLUSION
We have tested three different strategies for accounting for
prior knowledge in AL agents trained on fraction arithmetic
problems. Our three strategies were 1) ’estimated fraction
prior experience’ where we gave the AL agents additional
practice in fraction arithmetic problems before starting the
core tutor problems, 2) ’demonstrated pretest’ where we
showed the AL agents their human counterparts’ answers
on pretest problems before starting the core tutor problems,
and 3) ’estimated whole number prior experience’ where we
pretrained the AL agents with whole number arithmetic
problems. Our results showed that in terms of matching
human learning curves the estimated fraction case beats out
all the other strategies. However the control case, which had
no pretraining at all, best explains the variance in the data.

We have discussed several limitations of our nearly zero-
parameter computational approach to testing theories of
learning, and have offered several avenues for improvement.
Concerning the limited accuracy of our current approach in
estimating the number of prior opportunities necessary for
an AL agent to account for the prior knowledge of its human
counterpart, we have offered an avenue for further refine-
ment. Additionally we have discussed ways that we might
accounting for non-deterministic human behavior such as
initial guessing. Finally, we have addressed the zero-parameter
nature of our approach and considered its technical and epis-
temological limitations and strengths. We consider the AL
framework to be a strong avenue for testing theories of learn-
ing, and hope to refine our computational approach to mod-
eling human learning in future work.
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ABSTRACT
We explored1 how learners’ subjective ratings of open edu-
cational resources (OERs) in terms of how much they find
them “helpful” can predict the actual learning gains associ-
ated with those resources as measured with pre- and post-
tests. To this end, we developed a probabilistic model called
GRAM (Gaussian Rating Aggregation Model) that com-
bines subjective ratings from multiple learners into an ag-
gregate quality score of each resource. Based on an exper-
iment we conducted on Mechanical Turk (n = 304 par-
ticipants with m = 17 math tutorial videos as resources),
we found that aggregated subjective ratings are highly (and
stat. sig.) predictive of the resources’ average learning gains,
with Pearson correlation of 0.78. Moreover, when predict-
ing average learning gains of new learners, subjective scores
were still predictive (Pearson correlation of 0.49) and at-
tained higher prediction accuracy than a model that di-
rectly uses pre- and post-test data to estimate learning gains
for each resource. These results have potential implica-
tions for large-scale learning platforms (e.g., MOOCs, Khan
Academy) that assign resources (tutorials, explanations, hints,
etc.) to learners based on the expected learning gains.

Keywords
open educational resources (OER); adaptive learning; crowd-
sourcing; treatment effect estimation

1. INTRODUCTION
Consider a hypothetical large-scale online learning platform
in which learners engage with open educational resources
(OERs) that are sampled from a vast collection. These re-
sources could include tutorial videos, practice exercises, ex-
planations of wrong answers, hints, etc. In order to help
students learn optimally, the learning platform must decide

1The data and source code (in R) to reproduce the results
in this paper are available at
https://github.com/jwhitehill/gram.
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Figure 1: An adaptive learning community in which each
learner i is assigned different resources over time, and the
effectiveness (expected learning gains lij) of each resource j
is estimated both from test scores as well as from subjective
ratings sij given by the learners. Gray lines show hypothet-
ical assignments of OERs to learners. Ei[lij ] denotes the
average learning gains over all learners i who received j.

which resource is most beneficial to each learner at each mo-
ment in time, and then assign that resource to the learner
(see Figure 1). Although various criteria could be used for
this decision (e.g., the impact on student engagement), per-
haps the most natural one is how much the student will learn
– learning gains – from receiving the resource.

The standard way to estimate the learning gains lij of each
resource is to give each student i who receives resource j a
pre-test (before receiving it) and post-test (after receiving it)
to measure how much she/he learned, i.e., the difference be-
tween pre- and post-tests. We call each (learner, resource)-
pair an assignment. After a sufficient number of assign-
ments, the average learning gains of each resource Ei[lij ]
(averaged over all learners i who receive j) can be estimated.
Then, using these estimates for all the resources, the most
effective ones can be served to students. Unfortunately, this
approach to estimating the quality of a large collection of
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OERs is expensive because testing takes a long time. On
the other hand, after receiving a resource j, learners may
have a subjective opinion about how effective j was. These
opinions can arguably be queried more easily and efficiently
than administering tests; for example, the learner could sim-
ply select between 1 and 5 stars (à la Yelp) to express how
much she/he liked it. It is even possible that subjective
scores might be better than test scores in some situations.
For example, even if a learner her/himself has already mas-
tered a skill and thus has a learning gain of 0, she/he might
still be able to judge whether a resource is useful.

When using subjective scores to predict learning gains, care
must be taken: some learners may be more or less reliable
in making such judgments. However, there are reasons to
be optimistic: (1) As long as enough learners “vote”, then
the noise of their judgments can be averaged out. (2) Using
algorithms for crowdsourcing consensus (see below), the re-
liabilities of the learners as well as the learning gains of the
resources can be estimated in an unsupervised fashion. The
chief contribution of our work is to propose and evaluate
experimentally an efficient crowdsourcing model to estimate
the quality of a set of learning resources by combining mul-
tiple learners’ subjective opinions about them.

2. RELATED WORK
Students’ judgments of learning and teaching: Esti-
mating the learning gains of an OER is related to metacogni-
tion. The ability of students to judge how well other people
learn has been analyzed experimentally in prior works such
as [12, 3]. However, we are not aware of previous research
that considers this problem in the large scale of an online
learning community or how to combine multiple learners’
judgments to improve accuracy. In the context of student
course evaluations, there is evidence that learners may ac-
tually be poor judges of their teachers’ effectiveness [7, 4].

Adaptive online learning communities: Adaptive learn-
ing communities that decide which resources to serve to stu-
dents based on up-to-date estimates have generated recent
interest in the educational data mining and reinforcement
learning communities. Notable works are by Rafferty, et
al. [9] and Williams, et al. [17]. In these works, reinforcement
learning techniques based on bandits and Thompson sam-
pling were used both to estimate the learning gains of each
resource and simultaneously to assign resources to learners.
Our work is complementary: we explore how not only test
score information, but subjective ratings provided by learn-
ers, could be useful in estimating the utility of each resource.

Crowdsourcing for education: In [14], Weld et al. pro-
vided an overview of how online learning creates challenges
due to its large scale, but also suggests possible ways in
which crowdsourcing can offer solutions to these challenges.
Heffernan, et al. [6] proposes a vision of how crowdsourc-
ing can help provide important functionality toward adap-
tive personalized online learning. As one specific instance
of how the crowd can contribute new resources to an online
learning community, Williams, et al. showed that people
on Mechanical Turk can be induced to author novel and
useful text-based explanations [17]. Whitehill & Seltzer [16]
showed that Mechanical Turk workers can even create entire
tutorial videos, at least some of which are effective at help-
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Figure 2: Gaussian Rating Aggregation Model (GRAM).
Only the subjective ratings sij from student i about resource
j are observed. Latent variable qj expresses the “quality”
of resource j and is used to predict the learning gains of
students who receive the resource.

ing students to learn. Peer grading (e.g., Piech, et al. [8])
and peer feedback are other ways of harnessing the crowd to
provide useful feedback for learners at scale.

Crowdsourcing consensus algorithms: Since Dawid and
Skene’s seminal work [5] on optimal weighting of annotators’
opinions, there have been a slew (e.g., [15, 10, 11, 2, 13, 1]) of
crowdsourcing models, which are suitable for different kinds
of tasks (binary, multiple choice, etc.) and capture different
features of the labeling task (e.g., task difficulty, biases).

3. GAUSSIAN RATING AGGREGATION
MODEL (GRAM)

We model the quality of each open educational resource
(OER) j with a real number, qj , that can be estimated by
aggregating over many (real-valued) subjective ratings sij
from many learners i. We thus develop a Gaussian proba-
bility model of how each sij is related to each qj as well as
several parameters specific to each learner i. The model is
portrayed in Figure 2: Let µi and γ2

i be the bias and reliabil-
ity (variance) of learner i, respectively. Let qj be the ground-
truth quality of resource j. We posit that student i’s label
sij for resource j is a Gaussian random variable with mean
qj +µi and variance γ2

i . In other words, if the ground-truth
quality is qj , then student i adds a bias µi, and then adds in-
dependent 0-mean Gaussian noise with variance γ2

i . We can
express these relationships using the conditional probability
density function (PDF) P (sij | qj , µi, γ

2
i ) = N (qj + µi, γ

2
i )

where N is a Gaussian with a given mean and variance.

3.1 Inference
As with many crowdsourcing consensus models, inference in
the GRAM requires solving a “chicken-and-the-egg” prob-
lem: if the parameters µi, γ

2
i of each learner i were known,

then an optimal weighting of their votes sij could be used
to estimate the quality qj of each resource j. On the other
hand, if the ground-truth quality qj of each resource were
known, then the parameters of each learner could be esti-
mated. We solve this problem using Expectation-Maximization:
in the E-Step we compute the PDF of each qj conditional
on the parameters {µi, γi}. In the M-Step, we compute the
expected joint log-likelihood of the {qj} and {sij} w.r.t. the
PDFs computed during the previous E-Step, and then max-
imize this expectation w.r.t. the parameters {µi, γi}. Since
the GRAM is Gaussian, both the E- and M-Steps can be
done analytically, and thus the algorithm is very efficient.
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Let the mean and variance of the prior distribution over each
qj be m and s2, respectively. Recall that the product of
two Gaussian PDFs, with means m1 and m2 and variances
s21 and s22, respectively, is also Gaussian and has a mean
s2(m1/s

2
1 +m2/s

2
2) and variance s2 = (1/s21 + 1/s22)−1.

E-Step:

P̃ (qj)
.
= P (qj | {sij}, {µi}, {γ2

i })
∝ P (qj | {µi}, {γ2

i })P ({sij} |qj , {µi}, {γ2
i })

= P (qj)
∏
i

P (sij | qj , µi, γ
2
i )

= N (mj , s
2
j ) where

s2j =

(
1/s2 +

∑
i

1/γ2
i

)−1

mj = s2j

(
m/s2 +

∑
i

(sij − µi)/γ
2
i

)

In other words, the posterior distribution of each qj is a
Gaussian whose mean is the average of the relevant sij after
shifting each one by the learner’s bias µi and then scaling
it by γ2

i . We can achieve a non-informative prior by setting
the variance s2 to be very high (e.g., 1000).

M-Step: We derive the auxiliary function Q as the expec-
tation, w.r.t. the PDF P̃ computed during the E-Step, of the
joint log-likelihood of the observed ratings {sij} and hidden
ratings {qj}. In the derivation below, C and D are constants
that do not depend on any of the parameters.

Q({µi}, {γ2
i })

= E
[
logP ({sij}, {qj} |{µi}, {γ2

i })
]

= E

[
log
∏
j

P (qj | {µi}, {γ2
i }) +

log
∏
ij

P (sij | {qj}, {µi}, {γ2
i })

]

= E

[
log
∏
j

P (qj) + log
∏
ij

P (sij | qj , µi, γ
2
i )

]
=

∑
j

E[logP (qj)] +
∑
ij

E[logP (sij | qj , µi, γ
2
i )]

=
∑
ij

∫ +∞

−∞
dqjP̃ (qj)[logP (sij | qj , µi, γ

2
i )] + C

= −
∑
ij

∫ +∞

−∞
dqjP̃ (qj)

[
(sij − qj − µi)

2

2γ2
i

+ log γi

]
+D

= −
∑
i

log γi −

1

2

∑
ij

∫ +∞

−∞
dqjP̃ (qj)[(sij − qj − µi)

2/γ2
i ] +D

= −
∑
i

log γi −
1

2

∑
ij

[
(sij − µi)

2/γ2
i −

2(sij − µi)

γ2
i

∫ +∞

−∞
dqjP̃ (qj)qj +

1

γ2
i

∫ +∞

−∞
dqjP̃ (qj)q

2
j

]

where we omitted the constant D in the last line for brevity.
The two integrals are the first and second plain moments of
P̃ (qj). The first is the mean of P̃ (qj), i.e., mj . The second
can be obtained using the fact that the variance V[x] =
E[x2] − E[x]2 for any random variable x. The second plain
moment is thus m2

j + s2j . Hence,

Q({µi}, {γ2
i }) = −

∑
i

log γi −

1

2

∑
ij

1

γ2
i

[
(sij − µi)

2 − 2(sij − µi)mj +m2
j + s2j

]
We now differentiate with respect to each parameter, set to
0, and solve:

∂Q

∂µi
= −1

2

1

γ2
i

∑
j

(−2(sij − µi) + 2mj)

0 = − 1

γ2
i

∑
j

(µi − sij +mj)∑
j

µi =
∑
j

(sij −mj)

µi =
1

Ni

∑
j

(sij −mj) where (1)

Ni is the # of ratings from person i

∂Q

∂γi
= −1/γi +

1

γ3
i

∑
j

[
(sij − µi)

2 − 2(sij − µi)mj +m2
j + s2j

]
γ2
i =

∑
j

[
(sij − µi)

2 − 2(sij − µi)mj +m2
j + s2j

]
(2)

For our experiments we conducted 50 EM iterations.

3.2 Regularizing the model
In the full-fledged GRAM, all of the parameters (bias and re-
liability of each rater) are learned in an unsupervised fashion
(see Section 3.1). Given enough data, these parameters can
lead to more accurate estimates of each qj . However, given
limited data, it can also be useful to regularize the model by
removing parameters and/or fixing them to known values.
In fact, if there are too few subjective scores sij per learner,
then it is important to remove some parameters because oth-
erwise the model encounters identifiability problems. Hence,
we considered several variants of the GRAM: (1) each γ2

i is
estimated, but each µi is fixed to 0; (2) each µi is estimated,
but γ2

i = 1. Finally, we also explored the hypothesis that
the students with the higher pre-test scores might, perhaps
due to a higher overall engagement, also be more reliable
in giving subjective ratings. Hence, we also tried: (4) µi

is estimated, but γ2
i = 1/

√
Ej [pij ] + ε, where Ej [pij ] is the

average (over all their assignments) pre-test score pij of stu-
dent i before receiving resource j, and ε = 0.1 ensures that
the denominator is positive.

4. MODELS FOR COMPARISON
We compared the GRAM to two other models: (1) un-
weighted average of subjective scores, and (2) prediction
model trained directly on pre- and post-test scores.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 464



4.1 Unweighted average of subjective scores
Instead of using the GRAM, we can estimate the quality qj
of each resource j simply as the unweighted average, over all
learners who rated j, of their subjective rating scores sij .

4.2 Average post-test minus pre-test scores
The primary goal of our paper is to assess to what extent
subjective scores can estimate the learning gains as mea-
sured in a pre-test/post-test paradigm. Hence, a strong
baseline – indeed, a likely upper bound – to which to com-
pare our GRAM approach is using a prediction model that
directly uses test scores (on training data) to estimate stu-
dents’ learning gains (on testing data). In particular, for
each resource j, we estimate Ei[lij ] – the average difference
between post-tests and pre-tests of all students i in the train-
ing set who received resource j. We then use this number
to predict the average learning gains of resource j in the
test set. Obviously, this requires that the adaptive learning
system administer pre- and post-tests to learners in order
to assess each resource’s quality, and this can be much more
time-consuming than simply asking the learner how much
she/he likes it. Note that we also considered a prediction
model that additionally uses students’ pre-test scores as a
co-variate, which could model possible ceiling effects in the
tests. However, our results with that model were slightly
worse, and hence we do not report them.

5. EXPERIMENT
To assess how well subjective scores of the resources’ qual-
ity predicted their associated learning gains, we conducted
a randomized expeirment on Mechanical Turk. Each partic-
ipant was paid $1 and could complete up to 3 tasks. In each
task, the pre- and post-tests were the same, but the learning
resource was usually different due to random assignment.

5.1 Overview
During the task, participants learned about logarithms. Log-
arithms are a topic that many adults have learned, but many
have forgotten. The topic is hard enough to induce variabil-
ity in test scores, but easy enough to be learned (or re-
freshed) in a short amount of time. The learning resources
in our experiment comprised a set of tutorial videos on log-
arithms, most of which were 2-3 minutes long. These re-
sources were authored by different people around the world
and collected in a study by Whitehill & Seltzer [16]. Each
tutorial explains the solution to one of the math problems
that appeared on the pre-test (see Figure 4).

To select videos for our experiment, we watched over 100
candidate tutorial videos collected by [16]. Each video was
watched by at least one of the investigators and labeled as
either “High Quality,” “Low Quality,” or “Not Acceptable.”
Videos labeled as “Not Acceptable” were excluded. To in-
duce some variability in the quality of videos, we chose one
“High Quality”video as well as one“Low Quality” for each of
the Basic Logarithm problems in the pre-test (see Figure 4),
except for a few problems where only one quality level was
available. In total, there were m = 17 resources (tutorials)
that could be assigned; see Figure 3 for examples.

5.2 Protocol

Figure 3: Sample learning resources (tutorial videos on log-
arithms from [16]) that we used in our experiment.

Basic Logarithms – Simplify:
log3 1 = log9 1 =
log 100 = log 1

5
125 =

log10 1000 = log 1
x
x2 =

log3 81 = logw
1
w

=

log2 8 = log 1
2

1
4
=

Logarithms and Variables – Simplify:
loga a2 = logx x4 =
log4 4

2b = logx−1(x− 1)y =
Equations with Logarithms – Solve:
log3(x− 1) = 4 x log4 16 = 3

z log10
√
10 = 4 y log10 1000 = 3

Figure 4: The pre-test on logarithms (borrowed from [16])
in our experiment.

The experiment was built as a web application using HTML
and Javascript. Each session consisted of multiple phases:

1. Survey: The participants were first asked some basic
demographic questions, such as their highest level of
education, gender, and age. (Note that we did not use
these data in the analyses in this paper.)

2. Pre-test: The pre-test surveyed their pre-existing skills
in three areas: Basic Logarithms, Logarithms and Vari-
ables, and Equations with Logarithms.

3. Tutorial video: Participants were then randomly as-
signed one of the 17 different tutorial videos.

4. Subjective rating of the resource: On a Likert
scale of 1 to 5, participants were asked how much they
agreed with the statement: “This video will help other
students learn about logarithms.”

5. Post-test: The post-test contained different math prob-
lems but was otherwise comparable in format, subject
matter, and difficulty to the pre-test.

6. RESULTS AND ANALYSIS
A total of n = 304 participants completed the task. Of
these, 239 completed 1 task, 35 completed 2 tasks, and 30
completed 3 tasks. Figure 5 shows the box plot, for each
resource (tutorial video) j, of the learning gains associated
with each resource. There is high variance in learning gains
within each resource (Ej [Vi[lij ]] averaged over the m = 17
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Figure 5: Box plot, for each OER (math tutorial video) j,
of the learning gains lij for all users i who received it. Re-
sources are sorted according to their median learning gains
over all learners who received them.

videos is 0.03) that dwarfs the variance in average learn-
ing gains between resources (Vj [Ei[lij ]] is 0.003), where Vi[·]
denotes the variance with respect to learners i and Vj [·]
denotes the variance with respect to resources j. The rela-
tive magnitudes of these variances makes the prediction of
average learning gains Ei[lij ] of each individual resource a
challenging task.

6.1 Are subjective ratings correlated with
average learning gains?

From the set of all subjective scores collected in our experi-
ment, we can aggregate the ratings sij , using either the pro-
posed GRAM or simply the unweighted average, for each
resource j into a quality estimate qj . Similarly, we can
compute the average learning gains associated with each re-
source j over all students assigned j to obtain Ei[lij ], where
the subscript indicates that the expectation is w.r.t. all stu-
dents assigned j. This is equivalent to estimating the av-
erage treatment effect of resource j. We then compute the
correlation (Pearson, Spearman) between these two sets of
variables. Note that, since many learners in our experiment
completed only one task, we needed to simplify the GRAM
in order to avoid identifiability problems (see Section 3.2).
Hence, instead of the full-fledged GRAM, we used two vari-
ants: one where each µi = 0, and one where µi = 0 and γ2

i

is determined by the learner’s pre-test score.

Results are shown in Table 1. Because all correlations
are estimated within-sample (i.e., there is no separation of
training and validation data), computing the p-values (two-
tailed) is straightforward. When the GRAM was used to
infer only the reliability γ2

i (first line of Table 1), the accu-
racy is low – 0.15 (Pearson) and 0.13. On the other hand,
with the other two GRAM variants, when either a bias µi

for each labeler is learned, the performance was much bet-
ter – up to 0.78 (Pearson) and 0.75 (Spearman) between the
inferred qj and the average learning gains. These results
are easily better than what is obtained using just the un-
weighted average of the learners’ ratings. Estimating γ2

i as
a function of each learner’s pre-test score did not yield a clear
accuracy improvement. Altogether, the results suggest that,
with the right aggregation model, learners’ subjective scores
carry considerable information about the average learning
gains of the resources they receive.

Predicting learning gains within-sample
Method Pearson Spearman

GRAM (learn γ2
i ) 0.15 (p = 0.56) 0.13 (p = 0.63)

GRAM (learn µi) 0.78 (p < 0.001) 0.70 (p = 0.002)
GRAM (learn µi,
set γ2

i from pretest) 0.76 (p < 0.001) 0.75 (p < 0.001)
Unweighted average 0.38 (p = 0.14) 0.54 (p = 0.03)

Table 1: Accuracies, and associated p-values, of different
models when predicting the average learning gains Ei[lij ]
of the resources from subjective ratings reported by learn-
ers. For aggregating learners’ subjective ratings, we consider
both the unweighted average as well as the quality scores in-
ferred using the GRAM.

6.2 Do subjective ratings predict the average
learning gains for new students?

Suppose some new students enter the adaptive learning com-
munity. How accurately can we predict the average learning
gains Ei[lij ] of a resource j for these learners? How does this
accuracy compare to that of a prediction model in which we
estimate the effectiveness of each resource directly based on
pre- and post-test data?

We conducted 3-fold cross-validation, where the same stu-
dents never appear in more than one fold. From the training
data in each fold, we use GRAM to infer the latent variables
qj from the subjective scores sij ; we use the variant in which
only µi is learned. We then compute the correlation (Pear-
son, Spearman) between qj and the average learning gains
of resource j over all students i in the test set who received
j. Due to the high variability in results over the 3 folds,
we repeated the 3-fold cross-validation 30 times, and aver-
aged the results over trials. In each trial, we ensured that
the data were randomly partitioned such that every resource
was assigned to at least 1 learner in at least 2 folds (i.e., one
testing fold and one training fold).

In the cross-validation framework, computing p-values is not
straightforward because the estimates from each fold are not
statistically independent. Instead, we estimated the uncer-
tainty of each correlation as the average (over the 30 trials)
standard error (i.e., the standard deviation of the correla-

tions over the K = 3 folds, divided by
√
K). We compare

the accuracy of predictions obtained with the GRAM to the
predictions by the unweighted average model (Section 4.1),
and also to the predictions from a model that has direct
access to the test scores (see Section 4.2). The latter is a
strong comparison because it has access to actual pre- and
post-test scores, whereas the other models do not.

Results are shown in Table 2. The GRAM – which utilizes
only subjective scores, not test results, of the training data –
is able to predict the average learning gains for new learners
with higher accuracy (0.49 Pearson and 0.43 Spearman cor-
relation) compared to the model that uses pre- and post-test
data (0.36 Pearson and 0.41 Spearman correlation) to esti-
mate the quality of each resource. Even the unweighted av-
erage of learners’ subjective ratings retains most of the pre-
diction accuracy that could be achieved using explicit pre-
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Predicting learning gains for new students
Method Pearson Spearman

GRAM (learn µi) 0.49 (±0.11) 0.43 (±0.11)
Unweighted average 0.32 (±0.09) 0.35 (±0.11)
Predict from test scores 0.36 (±0.09) 0.41 (±0.08)

Table 2: Accuracies (± their standard errors) over K = 3
cross-validation folds, of different models when predicting
the average learning gains Ei[lij ] of new learners (i.e., not
used for training).

and post-test score data. All in all, our results suggest that
(1) learners’ subjective ratings carry considerable informa-
tion that could be useful in an adaptive learning community
for deciding which resources are more effective than others,
and (2) using a crowdsourcing consensus model such as our
proposed GRAM can potentially yield higher accuracy than
simply taking the unweighted average.

7. CONCLUSION
We investigated whether learners’ subjective opinions about
the quality of learning resources (e.g., a tutorial video) are
correlated with the learning gains (post-test minus pre-test)
associated with receiving those resources. This could have
implications for adaptive online learning communities in which
open educational resources (OER) are served to students
based on estimates of how effective they would be for learn-
ing: Rather than giving relatively time-consuming pre- and
post-tests, the adaptive learning platform could instead sim-
ply ask learners how helpful they found the resources to be.
We developed a novel Gaussian Rating Aggregation Model
(GRAM) with which to aggregate many learners’ subjec-
tive scores into an overall quality estimate for each resource.
Based on an experiment that we conducted on Mechani-
cal Turk, we found that (1) subjective scores are highly
correlated with average learning gains (Pearson correlation
of 0.78). Moreover, (2) when predicting the average learn-
ing gains for learners who are new to the learning commu-
nity, the accuracy (Pearson correlation of 0.49) using the
GRAM from subjective scores was even better than esti-
mating learning gains from test scores.

Future work will consider how to combine subjective scores
with test data in order to arrive at improved estimation ac-
curacy of resources’ effectiveness. Moreover, with the goal to
personalize education, it would be interesting to explore how
to harness subjective ratings to estimate individual learning
gains rather than just average learning gains. Finally, it is
important to establish whether the results we collected in
our study on adult participants from Mechanical Turk gen-
eralizes to more authentic online learning communities (e.g.,
Khan Academy, ASSISTments).
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ABSTRACT
“Wheel spinning” is the phenomenon in which a student fails
to master a Knowledge Component (KC), despite significant
practice. Ideally, an intelligent tutoring system would de-
tect this phenomenon early, so that the system or a teacher
could try alternative instructional strategies. Prior work
has put forward several criteria for wheel spinning and has
demonstrated that wheel spinning can be detected reason-
ably early. Yet the literature lacks systematic comparisons
among the multiple wheel spinning criteria, features, and
models that have been proposed, across multiple evaluation
criteria (e.g., earliness, precision, and generalizability) and
datasets. In our experiments, we constructed six wheel spin-
ning detectors and compared their performance under two
different wheel spinning criteria with three datasets. The
results show that two prominent criteria for wheel spinning
diverge substantially, and that a Random Forest model has
the most consistent performance in early detection of wheel
spinning across datasets and wheel spinning criteria. In ad-
dition, we found that a simple model overlooked by previous
research (Logistic Regression trained on a single feature) is
able to detect wheel spinning at an early stage with decent
performance. This work brings us closer to unifying strands
of prior work on wheel spinning (e.g., understanding how
different criteria compare) and to early detection of wheel
spinning in educational practice.

1. INTRODUCTION
Intelligent tutoring systems (ITS) aim to guide students to-
wards mastery of knowledge components by providing step-
by-step personalized guidance. However, there are cases
where students persistently work on problems without mak-
ing progress towards mastery. This phenomenon of unpro-
ductive student persistence has been called “wheel spinning”
[1]. If ITSs were able to detect potential wheel spinning as
early as possible, they might be able to adjust their instruc-
tional strategies accordingly to avoid wasting students’ time.

Beck & Gong [1] operationalized wheel spinning as failing to
get three attempts correct in a row within the first 10 prac-
tice opportunities. We refer to this as “three correct in a row
criterion.” They presented evidence in [3] that wheel spin-
ning is not a rare phenomenon. Other operationalizations
of unproductive persistence have since been proposed. For
example, Predictive Stability (PS) is a when-to-stop policy
for ITSs proposed in [5], which stops when the probability of
a student getting the next step correct stabilizes. The pol-
icy uses student performance at each step to decide whether
the ITS should stop giving more questions, either because
of mastery or wheel spinning. The Predictive Stability++
(PS++) policy [5] provides further analysis about mastery
after the PS policy would have stopped. This policy can de-
tect wheel spinning under various student models. Although
the two operationalizations are, at the surface, rather differ-
ent, prior work has not investigated how they compare.

More generally, although prior work has introduced various
machine learning models for the early detection of wheel
spinning, fitted on a variety of datasets, we are not aware of
any systematic comparison across models, datasets, and op-
erationalizations. This makes it difficult for researchers to
compare and establish global evaluations, which is impor-
tant both for practical and theoretical reasons. Therefore,
in this study, we conducted a comprehensive examination
to address the following questions: (1) To what extent do
different operationalizations of wheel spinning agree or dis-
agree? (2) Which set of features leads to better predictions?
(3) What is the simplest set of features that can be effec-
tive? (4) What are some good methods for early detection
of wheel spinning? and (5) How early can these methods
detect wheel spinning with decent performance?

2. DATASET
We used three datasets in our experiments. Two of the
datasets were collected from two sections of Algebra con-
tent in the MATHia ITS [9] during the 2017-18 school year.
Sections within MATHia, which is built on Cognitive Tutor
technology from Carnegie Learning, provide instruction and
practice on a series of KCs via multi-step problem solving
tasks, each problem providing practice on several KCs (we
will refer to this as the “CL1 dataset” and “CL2 dataset”).
There are 132,551 student-KC pairs in CL1 dataset and
419,832 student-KC pairs in CL2 dataset. The third dataset
is from a high school geometry tutor [6] (we will refer to
this as the“Geometry dataset”) with 8175 student-KC pairs.
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The datasets used in these experiments were exported from
DataShop data [10].

2.1 Label Generation
We labeled each (student, KC) pair in our three datasets
according to both the three correct in a row criterion and
the PS++ policy [5]. With each criterion, there are three
possible label values: mastered, wheel spinning, and indeter-
minate. A (student, KC) pair was labeled indeterminate if
there were not enough steps to determine whether the stu-
dent has or will master the KC. Following [1], we discarded
(student, KC) pairs labeled as ‘indeterminate’ before train-
ing our models, given insufficient data to apply the criterion.

2.1.1 Three Correct in a Row
We generated labels for the three correct in a row crite-
rion as follows: For each (student, KC) pair, if there were
three or more contiguous correct attempts within the first
10 steps, then the (student, KC) pair was labeled mastered
(even if there were less than 10 steps). The (student, KC)
pairs that did not reach mastery with 10 or more steps were
labeled wheel spinning. The (student, KC) pairs with less
than 10 steps and no occurrence of three contiguous cor-
rect steps were labeled indeterminate. Under this criterion,
the frequency of wheel spinning in CL1, CL2 and Geometry
dataset is 6.6%, 0.56%, and 10.2% of (student, KC) pairs,
respectively.

2.1.2 Predictive Stability++
The second set of labels are derived from the PS++ pol-
icy, which is defined as not reaching a mastery condition
after a student model’s predictions of next step correctness
have stabilized to a steady state [5]. In our analysis, we
used Bayesian Knowledge Tracing (BKT) as the student
model. On the Geometry dataset, we used BKT param-
eters obtained by fitting the model to data. In the other
two datasets, we used the “shipped parameters,” that is, the
parameters actually used by the ITS. For each step in a (stu-
dent, KC) pair, BKT calculates PC(t), which is the probabil-
ity of getting a correct response for the current step, as well
as PC|0(t) = P (Ct+1|¬Ct) and PC|1(t) = P (Ct+1|Ct), the
probabilities of a correct response on the next step, condi-
tioned on a correct or incorrect response on the current step.
When PC|0(t) and PC|1(t) converge, the stopping criterion
defined in PS [5] is reached. We then determine the label of
the (student, KC) pair as follows: According to PS++ [5],
after convergence, when PC(t) is close enough to its upper
bound, we consider the student has mastered this KC. Oth-
erwise the (student, KC) pair is labeled as wheel spinning.
For those (student, KC) pairs where the stopping criterion
has never been met, we assign indeterminate as the label.
Under this criterion, the frequency of wheel spinning in CL1,
CL2 and Geometry dataset is 24.2%, 2.17%, and 13.2% of
(student, KC) pairs, respectively.

2.2 Features
As we explored ways of creating early detectors for wheel
spinning, we used a total of 28 features. Among these, 15
were introduced by [3]. These 15 features are extracted
to analyze and record three aspects of students’ learning
progress. The first aspect is students’ learning performance
like ‘correct response count’ and ‘prior problem count with

hint request’, which indicate whether the student is doing
well on a particular KC. The second aspect is the ‘seri-
ousness’ of students, including ‘prior problem fast correct’
and ‘prior problem slow incorrect’. These features indicate
whether the student appears to be making a deliberate ef-
fort on a particular KC. The third category of the features
includes general features like ‘skill id’. In addition, we used
7 features introduced by [4], and 6 new features based on
our previous research and our explorations on the Carnegie
Learning dataset. A complete list of features and their de-
scriptions can be found in the online appendix.1

3. EXPERIMENTS AND DISCUSSION
We conducted the following experiments and analyses to an-
swer the research questions listed in section 1.

3.1 Compatibility of Operationalizations
3.1.1 Comparing Operationalizations

Regarding Research Question (1) (to what extent do differ-
ent operationalizations of wheel spinning agree or disagree?),
a first observation is that the overall frequency of wheel
spinning, reported above, differs substantially under the two
operationalizations, with no clear pattern of one predicting
more wheel spinning than the other. The confusion matrices
(Figure 1, 2, 3) that compare the two operationalizations on
each of the three datasets provide further insight into this
divergence. For instance, in the CL1 dataset, among all
(student, kc) pairs that are labeled as wheel spinning by
either operationalization, the two operationalizations agree
on only 22.2% of them. In CL2 dataset, the same wheel
spinning agreement percentage is 14.1%. In the Geometry
dataset, it is 41.6%. The agreement on wheel spinning is
generally less than 50%.

Figure 1: Comparison of two different criteria for wheel spin-
ning in the CL1 dataset.

Figure 2: Comparison of two different criteria for wheel spin-
ning in the CL2 dataset.

To investigate the divergence between the two operational-
izations in more detail, we present examples of (student,
KC) pairs where the criteria disagree (see Figures 4 and

1https://tinyurl.com/edm19supplement
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Figure 3: Comparison of two different criteria for wheel spin-
ning in the Geometry dataset.

5). These visualizations show the student first attempted
response on each step together with different wheel spin-
ning metrics. Specifically, the student’s correct answers, in-
correct answers, and hints for the given KC are visualized
at the bottom of each graph. When there are 3 contigu-
ous green dots within the first 10 steps (shown in a dash-
lined box), the KC will be considered mastered under the
three correct in a row criterion. Shown above are PC(t)
,PC|0(t),PC|1(t), Pmaster, and upper bound of PC(t). A ver-
tical, dashed line shows the stopping step for PS; the x-axis
denotes the practice opportunity using a 0-based index. In
most of the cases in which the three correct in a row criterion
and PS++ agree with each other, there is a clear pattern in
students’ responses towards mastery or wheel spinning. For
example, many contiguous corrects will generally result in
mastery under both criteria; many contiguous incorrect at-
tempts will result in agreement for wheel spinning. Figure
4 shows one case where PS++ detects wheel spinning but
the three correct in a row criterion detects mastery. For this
specific (student, KC) pair, mastery (under both criteria)
occurs past the point where PS stopped; the initial string of
incorrect responses appears to have been influential.

Figure 4: An example of (student, KC) where the three
correct in a row criterion detects mastery and PS++ detects
wheel spinning.

Figure 5 shows the opposite situation, where PS++ gives
a mastery label but the three correct in a row criterion is
detecting wheel spinning. In this instance, mastery under
the various criteria happens past the 10 step cutoff.

3.1.2 Discussion
We found some overlap but also substantial disagreement
between the two operationalizations of wheel spinning, the

Figure 5: An example of (student, KC) where the three
correct in a row criterion detects wheel spinning and PS++
detects mastery.

three correct in a row criterion and PS++. The operational-
izations tend to agree when the student’s performance is ob-
vious and steady (e.g. the student is doing extremely well or
poorly on a KC, or when, as is common, there is a gradual in-
crease in performance). However, these criteria can disagree
when students’ responses fluctuate. One of the reasons is
that the two operationalizations judge mastery in different
ways. The three correct in a row criterion, with the explicit
10-step (or other configurable number of steps) cutoff, fo-
cuses on mastery in the early stage. Student performance
after the cutoff is not taken into account. In contrast, PS++
may consider long-term performance; its mastery judgment
can be made using more data, although, as seen in one of
our examples, PS++ may stop too early on KCs with lower
Plearn and an early string of incorrect responses.

3.2 Feature Effectiveness
In this section, we aim to explore the effectiveness of features
we are using. In particular, we focus on Research Questions
(2): Which set of features lead to better predictions; and (3):
What is the simplest set of features that can be effective?

3.2.1 Feature Importance with Random Forest
In order to find a set of features for better prediction, we
trained a Random Forest model and generated the feature
importance graph. Feature importance of a Random Forest
is measured by the total decrease in Gini impurity averaged
over all the trees in the ensemble [2]. We rely on [8]’s im-
plementation of Random Forest and feature importance and
used the default hyperparameters. Figure 6 is an example of
the feature importance graph. Among the set of 28 features,
four are repeatedly identified as important by the Random
Forest model. In all 6 scenarios (three datasets with two
wheel spinning criteria), at least three of the four selected
features appear in the top five most important features. Two
of these features are related to students’ performance: ‘Cor-
rect Response Count’ and ‘Correct Response Percentage’.
The other two features are related to the speed and atten-
tiveness of students: ‘Exp Mean Response Time Z-Score’
and ‘Prior Step Count Normal Correct’.
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Figure 6: An example of feature importance, trained on CL1
dataset under PS++ criterion.

3.2.2 Fitting Single-feature Logistic Regression
The predictive power of very simple wheel spinning detec-
tors is under-explored in prior literature. Here, we are in-
terested in finding out the predictive value of individual fea-
tures. Therefore, we picked 6 features that were repeatedly
deemed as important in the work reported in section 3.2.1
and built 6 Logistic Regression models, each trained on one
of the 6 features. We used [8]’s implementation of Logistic
Regression and applied the default hyperparameters.

The results show that the detectors trained on ‘Correct Re-
sponse Count’, ‘Correct Response Percentage’, ‘Correct Re-
sponse in a Row Count’ and ‘Prior Step Count Normal Cor-
rect’ achieve high precision and recall when predicting the
PS++ label. For example, a Logistic Regression model,
trained with ‘Correct Response Percentage’ as the single
feature, detected wheel spinning with 93.5% precision and
77.1% recall after just 4 steps. Generally, features involv-
ing correctness seem to be highly effective in wheel spinning
detection. In addition, although the detector trained on
‘Assistance Score’ (i.e. the sum of the number of errors and
the number of hints on a step) somewhat surprisingly didn’t
perform as well as the rest, it still reached 68.4% precision
and 60% recall in the fourth step.

3.2.3 Discussion
In our experiment, we found that the features that involve
correctness of steps tend to be effective in predicting wheel
spinning, independent of the criteria or datasets used. These
results make sense because intuitively, if a student can get a
large percentage of steps correct, then this student is likely
on their way to mastering the given KC. They also lead
to the question of whether we can build an effective de-
tector that relies on correctness only. The results above
show that a Logistic Regression model trained with ‘Cor-
rect Response Percentage’ is able to give us comparable
result to other models, although it suffers more from the
cold start problem and fluctuates more than other detec-
tors. In addition, other aspects of the step-solving process,
including time and help requested, can also be useful, as
‘Exp Mean Response Time Z-Score’ and ‘Assistance Score’
also have high feature importance while training Random
Forest model. These findings indicate that certain aspects
in students’ learning performance help predict wheel spin-
ning regardless of the problem setting and tutoring system.

3.3 Early Detection Models
To answer Research Question (4) and (5), we trained mul-
tiple machine learning models to study their performance
on early detection. We used a Logistic Regression model,
trained on the same set of features as in [1], as a baseline.
Another detector based on Logistic Regression was trained
with the full set of 28 features. In addition, we include one
of the detectors used in section 3.2.2, namely, a Logistic Re-
gression model trained on ‘Correct Response Percentage’,
to compare the performance of a simple model with that of
other more complex ones. Inspired by [4], we also included
a Random Forest model. Finally, we trained two neural-
network-based detectors: a 5-layer fully-connected artificial
neural network and a 3-layer LSTM. We split our dataset
into training and testing data with a 6:4 ratio.

In order to study how early the detectors could accurately
detect wheel spinning - by early we mean early in the op-
portunity count for any given (student, KC) pair - we fitted
Random Forest, Logistic Regression and MLP models sep-
arately for each practice opportunity - that is, separately
with data up to and including opportunity N, for N from
1 to the available data for the given (student, KC) pair.
(The labels were computed based on all data, as described
above.) Doing so was necessary for these three models as
they do not have a recurrent structure to handle variable
length steps and most of our features are accumulative. By
contrast LSTMs are inherently recurrent, so we trained it
on data from every step. We rely on [8]’s implementation of
Logistic Regression, Random Forest and Multi-Layer Per-
ceptron (MLP) and [7]’s implementation of LSTM. For Lo-
gistic Regression and Random Forest, we used the default
hyperparameter provided by [8]. For MLP, we had 3 hidden
layers with 64, 32, 16 units, respectively. For LSTM, we
used 2 layers with 64 hidden units. For each dataset, we
evaluated our detectors on the corresponding test data, and
computed precision and recall for the wheel spinning class.
Figure 7 shows the detectors’ performance on early detec-
tion, with two (precision, recall) plot pairs for each detector
on the ‘wheel spinning’ class, one pair for each of the two
operationalizations.

3.3.1 Model Performance
We found that these detectors in general perform well under
the PS++ criterion. Most of them reached more than 60%
precision and recall after the fourth step, and more than 80%
precision and accuracy after the sixth step. Under the three
correct in a row criterion, the detectors in general perform
worse in terms of both precision and recall compared to the
PS++ criterion. In particular, in CL2 dataset, we observed
extremely low recall for all models. As foreshadowed in sec-
tion 3.2.2, the single-feature Logistic Regression model (blue
line in Figure 7) achieved decent performance compared to
more complex models, except on the CL2 dataset. Although
it tends to have lower precision and recall in earlier steps,
after step 4, its performance is comparable to those of Logis-
tic Regression trained on 15 features and Logistic Regression
trained on the full feature set.

The two most accurate models are Random Forest (red line
in Figure 7) and MLP (purple line in Figure 7). In par-
ticular, at the fourth step, Random Forest exhibits (77.2%,
63.5%) precision and recall on three correct in a row and
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investigations have not compared across different models for
early detection across datasets and operationalizations. To
begin addressing this gap, we compared two prominent oper-
ationalizations of wheel spinning ([1] and [5]) and compared,
across three datasets, the performance of several detectors
that were trained with different sets of features. First, the
frequency of wheel spinning across the three datasets, 0.56%-
10.2% under 3-in-a-row and 2.17%-24.2% under PS++ was
in line with what previously studies have reported. For ex-
ample, in the two datasets used by [3], the wheel spinning ra-
tio was 16% and 6%. Further, we found that two well-known
operationalizations of wheel spinning diverge substantially
in our three datasets, which is not desirable from either a
practical or a theoretical perspective, as we do do not know
which one to apply or build on. Some typical cases on which
they do not agree include getting more KC opportunities
correct after [1]’s threshold and answering several consecu-
tive steps incorrectly early followed by much improved per-
formance on later steps. We also found that our models
predict PS++ more accurately than they predict [1]’s crite-
rion, most dramatically in the CL2 dataset, but also in the
other two data sets (see section 3.3). This finding is surpris-
ing especially if one considers that our feature sets included
features engineered for prior detectors of three correct in a
row reported in the literature [1, 3, 4]. Therefore, it appears
unlikely that the more accurate prediction of PS++ is just
an artifact of the particular choice of features. What may
play a role is that the three correct in a row criterion, in con-
trast to PS++, does not allow for the fact that KCs vary in
difficulty (i.e., require different numbers of practice oppor-
tunities, on average, to reach mastery), as is by now well-
established [3]. It would be highly desirable to investigate
whether our key findings, the discrepancy of the two criteria
and the more accurate prediction of PS++, are replicated
in a wider range of datasets.

Further, when we evaluated the predictive value of 28 fea-
tures, we found there is a set of common features that are
effective across different datasets and criteria, namely those
having to do with step correctness and assistance gained
from the system. These features are essential aspects of
the learning process to capture for early detection of wheel
spinning. Of the 6 wheel spinning detectors we built, the
Random Forest model performed consistently well across
datasets and operationalizations. Combined with its abil-
ity to evaluate feature importance and its potential for in-
terpretability, we recommend trying Random Forest when
developing a wheel spinning detector for a tutoring sys-
tem. In addition, to our surprise, a Logistic Regression
model trained on a single feature ‘Correct Response Per-
centage’ achieved results that were not far behind those of
more complex models like MLP. Addressing our research
question of how early we could predict wheel spinning, our
best model was able to make predictions with decent preci-
sion and recall as early as step 4, namely, on CL1 dataset.
These results compare favorably with the accuracy achieved
by prior early detectors for wheel spinning, discussed in
the introduction. Note that we are not trying to recom-
mend using the fourth step as a definitive criterion for ear-
liness. We merely note that, as our results show, machine-
learned models can do well from that particular step onward.

There are several limitations of our work that could be stud-
ied further in future work. For example, it would be worth-
while to continue to study agreement and disagreement of
additional operationalizations of wheel spinning (e.g., [6]),
given that the two we studied agreed to a lesser extent than
expected. In addition, some hyperparameters in PS++ can
be tuned for a given system, which may further support
comparisons.
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ABSTRACT 
Peer assessment has proven to be a useful strategy for increasing 
the timeliness and quantity of formative feedback, as well as for 
promoting metacognitive thinking among students. Previous 
research has determined that reviews that contain suggestions can 
motivate students to revise and improve their work. This paper 
describes a method for automatically detecting suggestions in 
review text. The quantity of suggestions can be treated as a metric 
for the helpfulness of review text. Even before a review is 
submitted, the system can tell a reviewer when a review is lacking 
in suggestions and consequently advise that they be added. This 
paper presents several neural-network approaches for detecting 
suggestions and compares them against traditional natural language 
processing (NLP) methods such as rule-based techniques, as well 
as past machine-learning approaches.  

Our network-based classifiers outperformed rule-based classifiers 
in every experiment. Our neural-network classifiers attained F1-
scores in the low 90% range, outperforming the support vector 
machine (SVM) classifier whose F1-score was 88%. The naïve 
Bayes (NB) classifier had an F1-score of 84% and the rule-based 
classifier had an F1-score of 80%. As in other domains such as 
determining sentiment, we found that neural-network models 
perform better than the likes of naïve Bayes and support vector 
machines when classifying suggestions in text.   

Keywords 

Peer assessment, suggestion mining, classification techniques, text 
analytics, text mining. 

1. INTRODUCTION 
Peer assessment is known to have several advantages for student 
learning [1]. It provides students with prompt and rich feedback that 
helps them improve their performance and learning readiness [2]. 
It gives students an opportunity to learn from others by observing 
their approaches to solving a problem. Not only do students learn 
from the feedback they receive; they also benefit from reviewing 
others. In fact, they probably learn more from reviewing than they 
do from receiving feedback [3, 4, 5, 6, 7, 8]. Finally, reviews from 
other students may help instructors to assign more informed grades.  

However, these advantages can only be achieved with high-quality 
feedback. Nelson and Schunn [2] showed that high-quality 
feedback comprises several features, including suggestions on how 
to address problems in the work. Having concrete suggestions 
makes the feedback actionable for the reviewee and also trains the 
reviewer to solve problems [2], instead of just focusing on the 
existence of the problems. 

So it is desirable for peer reviews to contain suggestions, but it is 
not easy for the instructor to give students credit for making them. 
The instructor would have to look through each review and keep a 
tally. If this could be done automatically, particularly before the 
reviewer submits a review [9, 10], it could help reviewers to 
improve the quality of their feedback, which in turn would help 
reviewees to improve their work. 

2. LITERATURE REVIEW 
Before digging in further, we must first decide what constitutes a 
suggestion. Negi and Buitelaar [11] state that, due to the variation 
in the definition of suggestion, previous results may be 
incompatible with each other. In this paper, we define suggestions 
as comments that constitute advice for making improvements [12]. 

Suggestions normally contain some or all of the components of 
specificity [2]: locating the problem, identifying the problem, 
offering a solution to the problem. Specificity has proven to have a 
direct correlation to understanding. Understanding is found to be 
the only significant mediator that directly contributes to the 
likelihood of implementing the feedback, thus improving the 
student’s work. 

Some effort has been made to detect suggestions through 
conventional natural language processing. These NLP approaches 
usually utilize rules that match the feedback to a set of predefined 
linguistic patterns, as well as part-of-speech (POS) tagging and a 
carefully crafted thesaurus relevant to each domain on which the 
approach is going to be implemented [13, 14, 15]. The main 
drawback of these approaches is that they require the knowledge of 
engineers to define the rules and patterns in the software logic. 
However, it is almost impossible to foresee all possible rules and 
patterns that indicate the existence of suggestions in a text 
document. Thus, as the number of patterns and rules grow, it 
becomes very difficult for engineers to maintain the software. 

Another approach that has shown promising results for detecting 
patterns is based on machine-learning techniques. For instance, 
researchers have utilized machine-learning methods such as SVM 
with some degree of success to find patterns that indicate the 
sentiment polarity of a text [9]. 

Machine-learning algorithms are able to discover patterns and rules 
automatically based on training samples [16]. For software 
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engineers, this is a game-changer since it allows them to keep the 
complexity of the software consistent and manageable. There are 
many machine-learning algorithms that can be used for classifying 
text as to whether it contains suggestions or not, such as decision 
trees (DT) and support vector machines [17]. Machine-learning 
approaches can usually outperform rule-based approaches once 
they are trained with sufficient and representative samples that have 
been labeled. However, obtaining labeled data is usually very 
expensive.  

Recently, the neural network approach has stood out for its ability 
to solve classification problems in different domains, e.g., image 
and voice recognition, and text classification [11].  This work tries 
to apply neural networks to suggestion detection and compares the 
results with the rule-based and traditional machine-learning 
classifiers. 

3. DATA 
In this experiment, we used a balanced dataset of peer reviews with 
a total of 3878 peer reviews, each labeled as containing a 
suggestion (1) or as not containing a suggestion (0). It is extracted 
from the Expertiza [18, 19] platform, which we would describe 
later on in this section. The dataset has two main components: (i) 
the input text, and (ii) a label indicating whether suggestions were 
present in the text. The datasets for the neural network classifiers 
were broken down into an 80–10–10% split for training, validation, 
and test sets. For the naïve Bayes classifier and the support vector 
machine classifier, split for training and test sets was 90-10%. All 
the models were trained and tested on the same dataset. 

The platform we mentioned in the previous paragraph, Expertiza, 
is a web-based peer-review system that allows students to exchange 
ideas and build shared knowledge. It facilitates anonymous reviews 
for students’ submissions. In this paper, we use reviews submitted 
to Expertiza to test our approaches. Authors who received reviews 
manually labeled 15,067 review comments as to whether they 
contained a suggestion. The labeling of these reviews was 
incentivized by giving extra credit to students in a class who tagged 
review comments. A team made up of the instructor, TAs, and 
authors of this paper went through the labels and removed labels 
assigned by students whose labels were clearly not trustworthy. 
Untrustworthy labels included random labels unrelated to review 
content, all no’s or all yes’s on reviews with obvious variety of 
status of containing suggestions. Inter-rater reliability of the dataset 
was calculated between each team of students labeling peer reviews 
with a Krippendorff alpha [20] of 0.69 before removing unreliable 
labels and 0.74 afterwards. Students receiving these reviews were 
an ideal choice for annotating these reviews, since the reviews were 
of their own work. Thus, they were capable of judging whether they 
really contained suggestions. In the preprocessing stage, entries that 
are invalid to the experiment, such as blank entries, duplicated 
entries, entries with unrecognizable symbols and marks, as well as 
html tags, were striped from the dataset. After preprocessing, the 
dataset contained 5,842 entries without suggestions, and 1,939 
entries with suggestions. 

With an imbalanced dataset, the process of machine learning is 
greatly compromised. Classifiers such as naïve Bayes that have 
been trained on too great a prevalence of a single label type can 
create a classifier that will only predict that single label. Machine-
learning algorithms tend to focus much more on a prevalent class 
and much less on rare cases, even if the rare cases are trustworthy 
[21]. 

One way to deal with this problem is to apply selection techniques. 
A well-known method is to down-sample the dataset. One should 
always keep all rare positive samples that need to be focused on and 
only prune out negative samples [22]. 

We applied this technique on our dataset in order to minimize the 
impact of an imbalanced dataset. Down-sampling kept all 1,939 of 
the positive cases in our dataset and randomly selected 1,939 
negative cases to form a new balanced dataset that we used for 
analysis. Table 1 shows sample review comments with their 
respective labels. The dataset is available upon request. 

4. METHODOLOGY 
This section describes the methodology for each classifier. Our 
input data for these Classifiers is document level review text instead 
of sentence level, frequently we would observe students describing 
their solutions in sentences or even paragraphs, and we believe 
keeping them in their original form would be beneficial for the 
study. Currently, we are rating the quality of a review based on the 
presence of a single suggestion. Later on, we can generalize our 
approach to count the number of sentences that contain suggestions. 

4.1 Traditional Machine Learning and Rule-
based Methods 
Section 4.1 discusses the formation of the rule-based, naïve Bayes, 
and support vector machine classifiers. Text preprocessing in the 
form of stop-word removal and stemming was not used except for 
stemming the data for the naïve Bayes classifier. The reason behind 
this was due to decreased classifier performance by experimenting 
with these preprocessing techniques and then testing the classifiers. 

4.1.1 Rule-based NLP Methods 
Part-of-speech tagging was used to determine the word class of 
each processed word. The relevant tags used for this classifier 
included MD (modal auxiliary), VB (verb, base form), VBZ (verb, 
present tense, 3rd person singular), VBP (verb, present tense, not 
3rd person singular), NNS (noun, common, plural), and NNP 
(noun, proper, singular). 

Table 1: Sample review comments. 

Review Comment Contains a 
suggestion? 

“Very well written and very obvious how 
much of an impact the refactoring had.” 

No 

“Yes, all the functionality are covered in 
the design document.” 

No 

“The test plan talks about automated tests, but 
then goes on and talks about 2 manual testing 
scenarios. Details for automation test cases are 
missing. If the team does not plan on writing 
automated test cases, then it should be 
mentioned in the documentation. Otherwise, 
the team should provide more details about the 
test plan for automated test cases.” 

Yes 

"Code is good. Just in tests, the code could've 
been reduced in some cases where same object 
is being mocked multiple times. " 

Yes 
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The idea and rules for this rule-based classifier were derived from 
Gottipati et al. [17]. We used pattern-matching and part-of-speech 
tagging methods, based on the work of Brun and Hagège [14], Bird 
et al. [13], and Marcus et al. [15]. The patterns we used are as 
follows.  

• The first rule utilized a pattern-matching technique that locates 
specific phrases and keywords that indicate the likely presence of a 
suggestion. The phrases used included “have more”, “suggestion”, 
“perhaps”, and “better if”.  

• The second rule uses part of speech tagging through the Natural 
Language Toolkit (NLTK) [13] to find a sequence of verb pairs in 
a review. If a word was tagged as a modal (MD) and the word 
directly following this was tagged as either of the verb types VB, 
VBZ, or VBP, then the review would be classified as a suggestion. 
For example, in the sentence “You should have included a diagram 
to visualize your results.” the words “should have” would be tagged 
as MD and VB respectively. This sentence would be classified as a 
suggestion.  

• Following Gottipati, the third rule also used POS tagging. 
Reviews were classified as a suggestion if a word tagged NNS or 
NNP was followed by a word of type VB, VBZ, or VBP. This is 
similar to rule 2 and it was used due to the fact that some words 
would be labeled with different tags depending on whether they 
were the first word in a sentence or were located within the 
sentence. An example of this rule would be the processing of a 
sentence such as “Could include more examples in your lab report.” 
where the words “Could include” are tagged as NNP and VBP 
respectively by the NLTK POS tagger. It is important to note that a 
word such as “Could” will be tagged as NNP or MD depending on 
whether it starts a sentence or not. This would classify the sentence 
as a suggestion. Rule three was later removed from the classifier 
due to decreased performance as discussed in the results section. 

4.1.2 Naïve Bayes 
The Naïve Bayes classifier was formed using a train-and-test split 
of 90-10%. The functionality for creating this classifier is provided 
by libraries from Scikit-learn [23]. A pipeline of transformers was 
used to facilitate the construction of the classifier. These 
transformers include a count vectorizer that converted a collection 
of text documents to a matrix of token counts for future use. Then 
the count matrix was transformed into a normalized tf-idf 
representation to form the linguistic features. These fractional 
counts from the tf-idf representation then enabled the naïve Bayes 
classifier to fit the model. As previously noted, stemming the data 
did result in a slight increase in classifier performance, therefore 
composing part of the preprocessing for the final model. 

4.1.3 Support Vector Machine 
The support vector machine classifier was formed using a similar 
approach to that of the naïve Bayes classifier. The train-and-test 
split was 90-10%. The same count vectorizer and tf-idf transformer 
were used to prepare the data as with the naïve Bayes model. Scikit-
learn’s [23] stochastic gradient descent training for a linear model 
was then used to form the support vector machine classifier. 

4.1.4 Tools: Traditional Machine Learning and 
Rule-based 
The Python natural language toolkit [13] was used for tokenization 
and part-of-speech tagging to prepare the text for analysis by the 
rule-based classifier. Stop-word removal from NLTK was 
attempted in the rule-based and naïve Bayes classifier, though later 
abandoned due to the exclusion of vital words for finding patterns 

for suggestions, which decreased classifier performance. The 
Python library Pandas [24] was used to read the dataset into a data 
frame for reference within the program. Scikit-learn [23] was also 
used to calculate and present the resulting F1-score for the 
classifiers. Scikit-learn provided feature extraction and linguistic-
feature processing for the naïve Bayes and support vector machine 
classifiers. The Scitkit-learn functionality utilized included a count-
vectorizer and tf-idf transformer to prepare the data for 
classification by these two classifiers. 

4.2 Artificial Neural-Network Methods 
Neural networks are a state-of-the-art method when it comes to 
classification. They generally tend to perform well across domains 
as well as across different types of data such as images, text, and 
speech. The core idea behind this work is to convert the task of 
detecting suggestions into a text-classification task and using neural 
networks to perform this classification. Neural networks work well 
for this kind of text classification. This is especially true for any 
kind of recurrent model, such as RNN or LSTM. Recurrent models 
are widely used for processing any kind of sequential data such as 
text, speech, and patterns. This is due to their inherent ability to 
process data in a sequential manner, one step of the sequence at a 
time. Thus, they are an ideal choice for tasks involving text, such 
as text classification and text generation.  

In this paper, we have focused on utilizing recurrent models to 
perform text classification. More specifically, we focus on LSTMs 
and bi-directional LSTMs to achieve the best performance. In 
addition to the aforementioned recurrent models, we also explore 
the feasibility of using convolutional neural networks (CNNs) to 
perform the same tasks. CNNs have traditionally been used to deal 
with images, but there has been a recent trend toward using them 
for text-classification tasks. CNNs are not as optimized as recurrent 
models are for inputs in the form of a sequence, but they offer other 
benefits such as significantly improved model training times. 
CNNs can be used either on their own or in conjunction with 
recurrent models such as LSTMs. We implemented both variants. 
As is the norm with applying CNN’s to text classification tasks, we 
used a 1-D CNN everywhere in this paper. 

4.2.1 LSTM 
LSTM networks are a type of RNNs (Recurrent Neural Networks). 
They improve upon RNNs by avoiding their single biggest pitfall, 
the inability to capture long-term dependencies. They incorporate 
memory into the network in the form of a cell state, thus allowing 
for relevant information to be retained for long periods of time. 
LSTMs are preceded by word embeddings, and these embeddings 
may be pre-trained or not. In this work, we used pre-trained word 
embeddings only with the Bi-LSTM model which will be discussed 
next. We do not use pre-trained word embeddings with the 
“vanilla” LSTM model. For the vanilla LSTM model, we use the 
embeddings trained as a part of the Keras [25] embedding layer. 
We use an LSTM of size 100 (100 hidden units). We use dropout 
as a regularization mechanism to try to combat overfitting. Finally, 
we use a sigmoid layer to make the predictions. 

 
Figure 1: LSTM Architecture 

In: 50 In: 50 In: 50,100 In: 50,100 In: 100 In: 100

Out: 50 Out: 50,100 Out: 50,100 Out: 100 Out: 100 Out: 1

--->

Input Embedding Dropout LSTM Dropout Dense
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Figure 1 shows the LSTM architecture that we implemented with a 
detailed description of its various layers and their respective shapes 
in Keras. 

4.2.2 Bidirectional LSTM 
Bidirectional LSTMs are an extension of LSTMs. A drawback of 
Vanilla LSTMs is that they can learn representations only from the 
previous time steps. This means that when processing a given word, 
the model only has access to all the words that came before this 
word. This way, the model might lose out on a lot of valuable and 
relevant information that might be present after the word that is 
currently being processed. In order to combat this problem, we need 
to be able to look ahead of the current word. A Bidirectional LSTM 
has the ability to use words both preceding and following the word 
being processed. This should give it an edge over a vanilla LSTM. 
We use the pre-trained Glove embeddings [26] in tandem with the 
bidirectional LSTM. We chose a Glove embedding that generates 
a 300-dimensional vector embedding for every word. The size of 
this bidirectional LSTM is 150 (150 hidden units). As with the 
vanilla LSTM, we use dropout for regularization and sigmoid as the 
final classification layer. 

Figure 2 shows the Bidirectional LSTM architecture that was 
implemented with a detailed description of its various layers and 
their respective shapes in Keras [25]. 

4.2.3 CNN 
CNNs are a type of feed-forward deep neural network that is 
primarily applied to data in the form of images. They require 
minimal pre-processing and are shift invariant. They are used in the 
domains of image and video recognition, recommender systems 
and, more recently, NLP.  They have already achieved human-level 
performance on image recognition and have recently made the 
transition to text classification, where they have been shown to 
work surprisingly well. CNNs work well with images because they 
preserve the 2D spatial orientation of the input image. In contrast, 
texts have a 1D orientation, wherein the sequence of the input 
words matter. So, we use a 1D CNN to be able to capture this 
orientation in text. Here we utilize a 1D CNN, followed by a dense 
layer of size 100. We continue to use sigmoid for the final 
classification. 

Figure 3 shows the CNN architecture that is implemented in this 
paper with a detailed description of its various layers and their 
respective shapes in Keras [25]. 

4.2.4 CNN + LSTM 
It is interesting to combine the CNN and the LSTM models. LSTM 
models are very well suited for text classification, but due to their 
inherent design and sequential processing, they take a long time to 
train. CNNs, on the other hand, are highly parallel in nature and 
process the entire data at once. This allows for very short training 
times, especially when compared to an LSTM. To avoid this 
shortcoming of LSTMs, we add a convolutional layer before the 
LSTM layer. This convolutional layer passes a filter over the input 
text and generates a high-level representation of the input. This 
high-level representation is then fed to the LSTM instead of the 
word embeddings. This has a significant positive effect on training 
times of the LSTM model. Thus we can achieve the best of both 
worlds by following a CNN with an LSTM, and reducing the 
training times of the LSTM while retaining its sequence-processing 
abilities. In this paper, we use a 1D CNN followed by an LSTM of 
size 100 (100 hidden units). As is the case with all other models, 
we stick with dropout for regularization and sigmoid for the final 
classification layer. 

Figure 4 shows the CNN+LSTM architecture that is implemented 
in this paper with a detailed description of its various layers and 
their respective shapes in Keras [25]. 

4.2.5 Tools: Artificial Neural Network 
Keras was the deep learning framework of choice that was used to 
implement the various neural network models. Scikit-learn’s 
classification report was used to generate metrics including 
precision, recall, and F1-Score.  The inbuilt tokenizer from Keras 
was used to tokenize the peer reviews before feeding them to the 
neural network models. 

For each of these networks, a series of hyper-parameters are 
isolated and tuned, which include parameters such as input batch 
size, number of memory states, recurrent dropout rate, dropout rate 
between layers, padding rules, CNN window size and stride size, 
activation methods, number of epochs to train. Based on 
classification accuracy on the validation dataset, we have tuned the 
network into their respective final stages and have achieved results 
described in the next section.  

5. RESULTS 
Table 2 displays the total number of suggestions present in the peer 
review dataset used for this experiment, along with a summary of 
the weighted average F1-scores. Dataset reformatting was 

accomplished prior to this so that the number of 
suggestions to non-suggestions resulted in a mostly 
equal proportion within the dataset. Abbreviations for 
the tables are as follows: Rule (as itself), NB (Naïve 
Bayes), SVM (Support Vector Machine), and N1-N4 
as the neural network classifiers (LSTM, BiLSTM, 
CNN, and CNN+LSTM respectively). 

From the results obtained by testing on the Peer 
Review dataset, we found that the LSTM, CNN, and 
CNN+LSTM neural network architectures 
outperform the other classifiers used in this 
experiment. This relates to our discussion in the 
literature section where the neural network 
approaches have demonstrated the greatest potential 

 
Figure 2: Bi-LSTM Architecture 
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Out: 50 Out: 50,300 Out: 50,300 Out: 300 Out: 300 Out: 1
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Figure 3: CNN Architecture 

 
Figure 4:  CNN+LSTM Architecture 
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for text classification tasks like suggestion detection. The BiLSTM 
classifier was the second best at detecting suggestions, followed by 
the support vector machine, rule-based, and naïve Bayes classifiers. 
Tables 3 and 4 display the extended breakdown of the results of the 
classifiers. 

These results show precision, recall, and F1-score as generated by 
the classification report function by Scikit-learn. The number of 
data points that are false and true is noted in the Support column. 
The rates of classification for both positives and negatives are 
included in the table as False and True, along with the support for 
each. Finally, the weighted average was used to demonstrate the 
classifier’s overall effectiveness by combining the metrics for 
positives and negatives using a weighting based upon the quantity 
in Support. 

The weighted average is calculated by taking the mean of the false 
and true predictions by their relevance in the dataset. In terms of 
these results tables, the weighted average is determined by 
multiplying the metric (precision, recall, or F1-score) of the false 
predictions by the percentage of these predictions over the whole 
dataset. The same calculation is made for the true predictions. Then 
the value calculated by the False row is added to the value 
calculated for the True row. 

The classifiers performed similarly on overall accuracy, with 
some deviation in the performance for False and True observations. 
The F1-scores of the classifiers ranged from 80% up to 93%, where 
the neural network classifiers were close in performance. Rule 3 of 
the rule-based classifier was removed due to the tagging of some 

words as NNS or NNP that were not indicative of a suggestion. This 
resulted in numerous false positive classifications and therefore a 
net loss of overall performance. Rule 2 can also have result in a 
high false-positive classification rate since it does not consider the 
context of a tagged pair of words within a sentence, although it was 
the most effective rule at finding suggestions. 

6. DISCUSSION AND FUTURE WORK 
In this study, we have compared the performance of a few neural 
network classifiers against a rule-based classifier on suggestion 
detection towards multiple datasets. We found that neural network 
classifiers outperformed existing rule-based and traditional 
machine learning classifiers across the board.  

Despite using a small dataset, we were able to obtain F1 scores in 
the low 90% range. This demonstrates the potential of the neural 
network classifiers. When large-scale datasets are obtained, 
classification scores in the upper 90% range will be probable, 
therefore reaching the high accuracy levels that some sentiment 
analysis models have obtained. 

One of the biggest challenges we’ve encountered in this study is the 
insufficient amount of readily labeled data in hand. Most of the 
times we would need to manually label datasets that we acquired. 
Larger datasets would help with tuning and training the classifier. 
They would also give us the opportunity to train on more balanced 
sets of data, while not excluding too large of a portion of the overall 
dataset. Larger training samples would help alleviate the concern 
that the models may not be able to generalize to new input strings 
that aren’t similar enough to the current training set. However, as 
noted in Section 2 we removed around 7000 duplicate observations 
from the dataset, indicating that there are commonly occurring 
review comments that the model would be tuned for. Additional 
pattern-matching phrases can be added to the rule-based classifier 
to improve its accuracy, although additional conditions would be 
required to consider the context of the phrases within a larger body 
of text. Also, the inclusion of more types of classifiers such as a 
decision tree can provide an extended comparison of what 
classifiers perform best for this text classification task. 

As discussed in the introduction, the domain of primary 
interest revolved around peer reviews. Later on, we might find a 
way to let instructors use the classifier to grade the quality of peer 
reviews. We would seek feedback on the effectiveness of the 
classifier, and suggestions for its improvement. This system could 
also notify the reviewer that a review should have more 

Table 3: Breakdown of accuracy of non-neural network classifiers on peer review 

Peer 
review 

Precision Recall F1 score Support 

Rule NB SVM Rule NB SVM Rule NB SVM Rule NB SVM 

False 0.76 0.87 0.87 0.88 0.81 0.90 0.82 0.84 0.89 1939 205 205 

True 0.86 0.80 0.89 0.73 0.87 0.85 0.79 0.83 0.87 1939 183 183 

Avg. 0.81 0.84 0.88 0.80 0.84 0.88 0.80 0.84 0.88 3878 388 388 

Table 4: Breakdown of accuracy of neural-network classifiers on peer review 

Peer 
review 

Precision Recall F1 score Support 

N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 All 

False 0.90 0.94 0.90 0.90 0.92 0.93 0.94 0.90 0.91 0.93 0.92 0.90 189 

True 0.92 0.93 0.94 0.90 0.90 0.94 0.90 0.90 0.91 0.93 0.92 0.90 199 

Avg. 0.91 0.93 0.92 0.90 0.91 0.93 0.92 0.90 0.91 0.93 0.92 0.90 388 

Table 2: Accuracy of classifiers  
on peer-review dataset 

# of comments  3878 

# containing suggestions.  1939 

F1 
score 

Rule  0.80 

NB  0.84 

SVM  0.88 

N1  0.91 

N2  0.93 

N3  0.92 

N4  0.90 
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suggestions. Furthermore, the reviewer could have the opportunity 
to identify any suggestions that were missed by the system. This 
would function as a useful method for generating labeled training 
data. These missed suggestions indicated by the reviewer could 
enable analysis in the form of determining what types of sentences 
are not being properly detected as suggestions. This system could 
be deployed as a supplement to instructor grading until enough data 
has been obtained to train a sufficiently accurate classifier for 
automatic suggestion extraction. 

7. CONCLUSION 
In this paper, we have demonstrated several models that parse and 
classify suggestions. The greater performance of neural network 
architectures over rule-based methods in this task demonstrates the 
advantage of classifiers that train on text in a certain domain, rather 
than following strict rules for classification. Furthermore, forming 
an extensive list of phrases and keywords that improve a rule-based 
classifier's performance in a domain is more time consuming than 
training a statistical classifier. While rule-based approaches have 
the advantage of being simpler to implement and not requiring data 
to train on, they are typically outperformed by statistical classifiers 
provided they have access to enough labeled data. 

8. ACKNOWLEDGMENTS 
The authors acknowledge the support of the National Science 
Foundation, through grant #1432347. 

9. REFERENCES 
[1] Topping, K.J. 2009. Peer Assessment. Theory into practice. 

48, 1 (Jan. 2009), 20–27.   

[2] Nelson, M.M. and Schunn, C.D. 2009. The nature of 
feedback: how different types of peer feedback affect writing 
performance. Instructional Science. 37, 4 (Jul. 2009), 375–
401.   

[3] Demiraslan Çevik, Y. et al. 2015. The effect of peer 
assessment on problem solving skills of prospective teachers 
supported by online learning activities. Studies in 
Educational Evaluation. 44, (Mar. 2015), 23–35.  

[4] Liu, X. and Li, L. 2014. Assessment training effects on 
student assessment skills and task performance in a 
technology-facilitated peer assessment. Assessment & 
Evaluation in Higher Education. 39, 3 (Apr. 2014), 275–292. 

[5] Lundstrom, K. and Baker, W. 2009. To give is better than to 
receive: The benefits of peer review to the reviewer’s own 
writing. Journal of Second Language Writing. 18, 1 (Mar. 
2009), 30–43.  

[6] moocs peer to peer: 
https://docs.google.com/presentation/d/1wkJOFgH0DYihsfH
_tddcYeI5DMNl9uP1qYgHMPRf_UY/edit. Accessed: 2018-
10-01.  

[7] Van Popta, E. et al. 2017. Exploring the value of peer 
feedback in online learning for the provider. Educational 
Research Review. 20, (Feb. 2017), 24–34.  

[8] Tsivitanidou, O.E. and Constantinou, C.P. 2016. A study of 
students’ heuristics and strategy patterns in web-based 
reciprocal peer assessment for science learning. The Internet 
and Higher Education. 29, (Apr. 2016), 12–22.  

[9] Ramachandran, L. et al. 2017. Automated Assessment of the 
Quality of Peer Reviews using Natural Language Processing 
Techniques. International Journal of Artificial Intelligence in 
Education. 27, 3 (Sep. 2017), 534–581.   

[10] Xiong, W., & Litman, D. 2011, Automatically predicting 
peer-review helpfulness. In Proceedings of the 49th Annual 
Meeting of the Association for Computational Linguistics: 
Human Language Technologies: short papers-Volume 2 (pp. 
502-507). Association for Computational Linguistics. 

[11] Negi, S. and Buitelaar, P. 2017. Chapter 8 - Suggestion 
Mining From Opinionated Text. Sentiment Analysis in 
Social Networks. F.A. Pozzi et al., eds. Morgan Kaufmann. 
129–139.   

[12] Austin, J. L. 1962. How to do things with words. Cambridge: 
Harvard University Press.  

[13] Bird, S. et al. 2009. Natural Language Processing with 
Python. O’Reilly Media, Inc. 

[14] Brun, C. and Hagège, C. 2013. Suggestion Mining: Detecting 
Suggestions for Improvement in Users’ Comments. Research 
in Computing Science. 70, 79.7179 (2013), 5379–5362. 

[15] Marcus, M.P. et al. 1993. Building a large annotated corpus 
of English: The Penn Treebank. Computational Linguistics. 
(1993).  

[16] Murphy, K.P. 2012. Machine Learning : A Probabilistic 
Perspective. MIT Press.  

[17] Gottipati, S. et al. 2018. Text analytics approach to extract 
course improvement suggestions from students’ feedback. 
Research and Practice in Technology Enhanced Learning. 
13, 1 (Jun. 2018), 6.  

[18] Gehringer, E. et al. 2007. “Reusable learning objects through 
peer review: The Expertiza approach,” Innovate—Journal of 
Online Education 3:6 

[19] Gehringer, E. et al. 2006. “Expertiza: Reusable learning 
objects and active learning for distance education,” 
Proceedings of the UNC Teaching and Learning with 
Technology conference, Raleigh  

[20] Krippendorff, Klaus. "Computing Krippendorff's alpha-
reliability." (2011). 

[21] Menardi, G. and Torelli, N. 2014. Training and assessing 
classification rules with imbalanced data. Data mining and 
knowledge discovery. 28, 1 (Jan. 2014), 92–122.   

[22] Kubat, M. et al. 1997. Learning when negative examples 
abound. Machine Learning: ECML-97. M. Somerenand G. 
Widmer, eds. Springer Berlin Heidelberg. 146–153.  

[23] Pedregosa, F. et al. 2011 "Scikit-learn: Machine learning in 
Python." Journal of machine learning research: 2825-2830. 

[24] Wes McKinney. Data Structures for Statistical Computing in 
Python, Proceedings of the 9th Python in Science 
Conference, 51-56 (2010)   

[25] François Chollet. Keras: Deep learning library for theano and 
tensorflow. https://github.com/keras-team/keras, 2015. 

[26] Pennington, J. et al. 2014. "Glove: Global vectors for word 
representation." Proceedings of the 2014 conference on 
empirical methods in natural language processing (EMNLP) 

 

479 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



Towards a General Purpose Anomaly Detection Method to
Identify Cheaters in Massive Open Online Courses

Giora Alexandron1, José A. Ruipérez-Valiente2 and David E. Pritchard2

1 Weizmann Institute of Science, Herzl St 234, Rehovot, Israel
2 Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge (MA), 02139, USA

giora.alexandron@weizmann.ac.il, jruipere@mit.edu, dpritch@mit.edu

ABSTRACT
We propose a general-purpose method for detecting cheat-
ing in Massive Open Online Courses (MOOCs) using an
Anomaly Detection technique. Using features that are based
on measures of aberrant behavior, we show that a classifier
that is trained on data of one type of cheating (Copying
Using Multiple Accounts) can detect users who perform an-
other type of cheating (unauthorized collaboration). The
study exploits the fact that we have dedicated algorithms for
detecting these two methods of cheating, which are used as
reference models. The contribution of this paper is twofold.
First, we demonstrate that a detection method that is based
on anomaly detection, which is trained on a known set of
cheaters, can generalize to detect cheaters who use other
methods. Second, we propose a new time-based person-fit
aberrant behavior statistic.

Keywords
MOOCs; Learning Analytics; Anomaly Detection; Cheating

1. INTRODUCTION
Academic dishonesty is one of the endemic problems of higher
education. Some studies have reported that up to 95% of
college students are engaged in some kind of dishonest be-
havior [10, 4, 9]. The anonymity of online environments
makes it easier for students to cheat [8]. In addition, online
learning environments tend to be more heterogeneous, and
students might differ significantly in their perception of what
constitutes cheating [3]. These might lead students to look
for ways to exploit the properties of a learning environment
to gain credit without learning the contents [2, 3].

Within the context of online learning, Massive Open Online
Courses (MOOCs) have greatly garnered the attention of the
media and researchers over the last decade [5]. Estimates are
that during 2018 there were more than 100M MOOC learn-
ers, more than 11k MOOCs, and more than 900 institutes
involved [18]. These large numbers tell some of the story of
how MOOCs change the educational landscape.

MOOCs offer certificates that do not have formal academic
status, but are still perceived as valuable, for example in the
labor market. Thus, it is not surprising that several studies
reported on cheating in MOOCS, for example by plagiariz-
ing peer-review assignments [7]. One of the main cheating
methods that was discovered in MOOCs is Copying Using
Multiple Accounts (CUMA). Several studies have been suc-
cessful at detecting CUMA by implementing probabilistic
algorithms [13], heuristics [2], and machine learning [17]. A
different cheating method, unauthorized collaboration, was
reported in [16], and detected using a method that is based
on proximity of submissions in time. We note that CUMA
and unauthorized collaboration are strictly forbidden by all
the major MOOC platforms, e.g., edX 1.

With major MOOC providers currently pivoting towards
the direction of professional development and online degrees
[15], their is an even greater need for robust techniques to
prevent and detect cheating, which can generalize and scale
across platforms, topics and courses. The goal of this study
is to develop general detection techniques that can identify
cheating without assuming a specific pattern. The ratio-
nale is to rely on behavioral patterns that capture various
types of aberrant behavior, rather than relying on temporal
patterns that are specific to a certain method of cheating.

In previous work [1] we hypothesized that anomaly detec-
tion can be used to build such a general purpose classifier,
which ‘bootstrap’ from one type of cheating to detect other
types of cheating. However we were unable to demonstrate
this, due to lack of a reference model. The current study ex-
tends [1], and demonstrates that a general-purpose cheater
detector that is based on anomaly detection can be trained
on one type of cheating and then be used to discover other
type of cheating. The detector is based on measures of aber-
rant behavior, such as Guttman Error [11]. As an additional
contribution, we also formalize a new time-based aberrant
behavior person-fit statistic that was proved useful in dis-
criminating cheaters.

2. METHODOLOGY
2.1 Procedure
The overall rationale of this research is to develop a ‘boot-
strap’ process in which a detector that is trained on one type
of cheating is used to build a more general classifier that can
detect other types of cheating as well. In our case, the first

1https://www.edx.org/edx-terms-service
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type is CUMA, and the other type of cheating is unautho-
rized collaboration, for which we also have a detector that
serves as a reference model.

To test this approach, we use the following cross-validation
procedure (with K=3, repeated 500 times). First, we train a
classifier on a test set, under the assumption that we know to
detect only CUMA. In practice, this means that in the test
set only CUMA users appear as positive examples (though
it may include collaborators data, depending on the random
assignment to training/held-out datasets). Second, we use
this classifier to classify the held-out dataset. On this set,
we check the recall with respect to collaborators. That is, we
compute how many of the collaborators in the test set were
classified as ‘cheaters’ by the algorithm, and compare it to
the fraction of non-cheaters that were identified as cheaters.

In addition, we evaluate the performance of a classifier that
is built on a dataset in which both types of cheaters are
tagged as positive examples. The rationale for this evalu-
ation is to support future research, in which we intend to
check the generalizability of this classifier not only from one
method of cheating to the other, but also between MOOCs.

2.2 Data
We use data from an Introductory Physics MOOC offered by
the third author through edX on summer 2014. The course
consists of 12 required and 2 optional weekly units. A typ-
ical unit contains three sections: Instructional e-text/video
pages (with interspersed concept questions, aka checkpoints),
Homework, and Quiz. Altogether the course contains 273
e-text pages, 69 videos, and ∼1000 problems. About 13500
students registered to the course, and from them, 502 earned
a certificate. This research use the data of 495 certificate
earners (7 were omitted due to technical reasons).

2.3 Detecting Cheaters
We define as cheaters those users who use methods that
break the code of honor (such as creating multiple accounts
or sharing responses with peers) to achieve credit in a way
that does not rely on learning. We have algorithms that can
detect two specific types of cheating – CUMA, and unau-
thorized collaboration.

2.3.1 Copying Using Multiple Accounts (CUMA):
To detect CUMA users, we use the algorithm of [2]. It de-
tects 65 users (∼13% of the certificate earners).

2.3.2 Collaborators:
To detect collaborators, we use the algorithm of [16]. Over-
all, it detects 20 of the certificate earners. However, among
those learners, 11 were also classified as CUMA users by the
previous algorithm. In these cases, we decided to give prior-
ity to the CUMA algorithm, as it represents a more specific
behavioral pattern. Hereafter, we refer as ‘collaborators’ to
the 9 accounts who were not CUMA users.

2.4 Feature Engineering
We use the following features, divided into three groups:

Video use:
The rationale for this set of features is that cheaters tend

to spend less time on learning resources [1]. As videos are
the main learning resource in most MOOCs, this feature can
generalize between courses.
i. Watching time: (Log of) The total amount of time, in
seconds, that the user spent watching videos.
ii. Fraction of videos watched: The fraction of videos
watched. A video is considered as ‘watched’ if the user
played more than 30 seconds of it.

Students Performance:
iii. Correct on first attempt: The fraction of the items
that were solved correctly on first attempt.
iv. Mean time to correct: The average time on task, for
items solved correctly.
v. Fraction of correct-in-less-than-30 seconds: The
fraction of the items that were solved correctly in less than
30 seconds. The 30-second threshold is taken from [14].

Person-fit statistics:
vi. Guttman Error (GE): The number of item pairs
in which an easier item is answered incorrectly and a more
difficult item is answered correctly, normalized by the total
number of pairs [11]. To make our method more general, we
use the non-parametric variant, as parametric models (e.g.
2PL IRT) are difficult to fit on MOOCs data. It is computed
in R using the package PerF it [19]
vii. Guttman Error on time-on-task (GE-time): This
is a new aberrant behavior person-fit statistic that we pro-
pose. It basically applies the notion of Guttman Error to
time-on-task. It is described in more detail in the Appendix.

2.4.1 Z-scores and Feature Selection
The independent variables were standardized using z -scores,
to enable comparing the relative importance of features based
on standardized logistic regression coefficients [12], and to
allow (in the future) generalizing to other MOOCs. For fea-
ture selection, we use a LASSO logistic regression and pick
the features that have a non-zero coefficient (the tuning pa-
rameter lambda is chosen via cross-validation). This is done
in R using the package glmnet [6].

3. RESULTS
This section is organized as follows. First, we report on the
results of the feature selection. Second, we present the dis-
tribution of the features among CUMA, collaborators, and
non-cheaters. Third, we present the performance of the clas-
sifier trained on the CUMA users, when used to detect col-
laborators. Fourth, we report on the performance of a clas-
sifier that is trained on both type of cheating.

3.1 Feature Selection
The features with non-zero value are GE, GE-time, fraction
of videos watched, and fraction of questions answered in less
than 30 seconds.

3.2 Group Differences
Figure 1 presents the differences between the three groups –
CUMA users (red), collaborators (black), and non-cheaters
(blue), with respect to the four features.
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Figure 1: Distribution of the independent variables
among CUMA users (red), collaborators (black),
and non-cheaters (blue).

3.3 Detecting unauthorized collaboration with
a classifier build on CUMA

As described in Section 2, we train a logistic regression
model that receives a training set with only ‘CUMA’ users
tagged as positive examples, and use it to detect ‘collabo-
rators’. To ensure that we accurately simulate a scenario
in which no information on collaborators exists during the
training phase, the training set is used for fitting the model
and tuning hyper-parameters, and for model-selection. Col-
laborators might exist in the training data (depending on
the random assignment to training/test), but as negative
examples (i.e., non-cheaters).

The results (recall = TP
TP+FN

) of applying this cross-validation
process with K = 3, repeated over 500 times, are presented
in Figure 2. Overall, mean(recall) = 0.72, sd = 0.12.

For negative examples (neither CUMA nor collaborators),
the mean amount of miss-classification ( FP

FP+TN
) is 0.16 (sd =

0.01). This means that a collaborator is 4.5 times more likely
to be classified as ‘positive’, than a non-cheater.

3.4 Building a general classifier
Next, we turn to build a classifier on a dataset that contains
both types of cheaters as positive examples. The rationale
that underlies this is to build a classifier that can 1) ‘boot-
strap’: use data that includes two types of cheating to dis-
cover additional ones; and 2) build a global classifier that
can (hopefully) generalize across MOOCs.

1. Feature Selection. This yields the same set of features
as reported above.

2. Performance of the classifier. We evaluate the per-
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Figure 2: Fraction of collaborators identified by the
classifier.

Table 1: Confusion matrix.
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False 377 45

True 22 51

formance of the classifier using cross-validation and by ob-
serving the in-sample classification error. For cross-validation,
we measure the AUC of 500 5-fold cross-validation runs.
The results are presented in Figure 3. mean(auc) = 0.85,
sd = 0.01.
The confusion matrix for in-sample classification is given
in Table 1. The classifier identifies 45 additional users as
‘cheaters’. Applying the previous results, we can hypothe-
size that among these, ∼ 35 are ‘real’ cheaters who are not
detected by our previous algorithms, and that ∼ 10 are true
false positives.
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Figure 3: AUC of the classifier
.

4. DISCUSSION
In previous work [1] we hypothesized that anomaly detec-
tion can be used to build classifiers that can generalize from
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known cheating methods to unknown ones. However, in our
previous work we were unable to provide an empirical evi-
dence for this, due to lack of reference model on a second
type of cheating.

The current paper re-visits this approach, exploiting the fact
that we now have a dedicated algorithm for detecting unau-
thorized collaboration, which serves as a reference model.
Based on this, we demonstrates that an anomaly-detection
based classifier can generalize from one type of cheating to
another with high accuracy.

The classifier uses 4 aberrant behavior features. One of them
is a new time-based aberrant behavior person-fit statistics
that we propose, which was found to be very effective in
discriminating cheaters. We name it Guttman Error-time.

The power of our approach lies in the fact that 1) it does
not rely on prior assumptions on the cheating method, and
thus does not require dedicated algorithms that are tailored
to a specific method; and 2) the features that it uses are
relatively simple to compute, and do not rely on fitting so-
phisticated parametric models (e.g., IRT). This makes our
method scalable and easy to implement across contexts.

Future research. In the future we intend to study whether
this method can generalize not only between different meth-
ods within the same course, but also between courses.
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G. Alexandron, and D. E. Pritchard. Using machine
learning to detect ‘multiple-account’ cheating and
analyze the influence of student and problem features.
IEEE Transactions on Learning Technologies, 2017.

[18] D. Shah. By The Numbers: MOOCs in 2018. Class
Central, 2019.

[19] J. N. Tendeiro, R. R. Meijer, and A. S. M. Niessen.
PerFit: An R package for person-fit analysis in IRT.
Journal of Statistical Software, 74(5):1–27, 2016.

APPENDIX: Guttman Error-time – a new time-
based person-fit statistic
Guttman Error-time applies the idea of Guttman Error to
time-on-task. Let us define the following notations:
mean ttc(u) = the mean time-to-correct of user u on all the
items u solved correctly.
ttc(u, i) = time-to-correct of user u on item i.
Now assume we have the Time-To-Correct matrix TTC with
TTC[u, i] = ttc(u, i)
Let us build a new matrix Boolean-TTC, such that:
Boolean-TTC[u,i] = 0 if ttc(u, i) > mean ttc(u), 1 other-
wise.
This means that an item on which many students were
slower than usual, will have a lot 0’s in its column. Intu-
itively, this is the equivalence of a ‘hard’ item in the correct-
on-first-attempt matrix. Now, we define:
GE − time = GEnormed(Boolean− TTC)
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ABSTRACT 

In outcome-based academic programs, Program Educational 

Objectives (PEOs) and Student Outcomes (SOs) are two cores, 

which are mapped to each other in a hierarchical manner. This 

paper presents a novel application of educational data mining to 

discover useful knowledge on these components. More 

specifically, it applies association rule mining techniques to 

discover mapping rules between PEOs and SOs and correlation 

rules among SOs. As a case study, this paper demonstrates how 

association rule mining techniques is applied to discover PEO-

SOs mapping rules and SOs correlation rules in engineering 

programs. To this end, a set of 152 self-study reports of 

engineering programs, accredited by American Board for 

Engineering and Technology-Engineering Accreditation 

Commission (ABET-EAC), have been collected and the mapping 

data between their PEOs and ABET-EAC SOs have been 

extracted. The dataset has been processed and transformed into a 

representation suitable for association rule mining techniques. 

This involves identifying a set of PEOs labels, annotating data 

instances with PEOs labels, and projecting each multi-label data 

instance into a set of single-label instances. Apriori algorithm is 

then applied to generate rules involving PEOs and SOs. The 

generated rules are then filtered to obtain mapping rules between 

PEOs and ABET-EAC SOs and the correlation rules among SOs. 

The filtered rules are then used to draw a set of generic rules for 

mapping each PEO to ABET-EAC SOs and to figure out potential 

correlations exist among ABET-EAC SOs.   

Keywords 

Association rule mining, Educational data mining, Academic 

program management, Program educational objectives, Student 

outcomes; ABET accreditation. 

1. INTRODUCTION 
Outcome Based Education (OBE) [1] is a new educational system 

that focuses on graduate attributes which allow students to accept 

the challenges, adopt to technological changes, and translate their 

knowledge to new contexts for the benefit of the society. In this 

sense, OBE-based academic programs are designed to develop 

various abilities as per the requirements of graduate attributes. An 

essential step in designing OBE academic program is the 

identification of long-term PEOs and SOs [2]. While SOs 

represent the knowledge, skills, and capabilities that students 

should possess by the time of graduation, PEOs represent the 

achievements graduates should attain few years (3 to 5 years and 

more) after graduation. Having specified the PEOs and SOs of an 

OBE academic program and established the mapping between 

them, the curriculum, teaching and learning strategies, and 

assessment strategies are then designed in such a way that 

students ultimately gain knowledge and develop skills stated in 

the SOs. In this manner, the curriculum is viewed as a set of 

courses aim to attain certain Course Outcomes (COs) that map to 

SOs which themselves map to PEOs which in turn map to the 

mission of the institution in a hierarchical structure shown in 

Figure 1. 

 

 
 Despite the crucial role of PEOs-SOs mapping, there is a 

consensus on the lingering confusion, among practitioners, related 

to them and how they are correlated to each other [3]. The drastic 

consequences of such confusion is a poor design of curriculum 

and teaching strategies and a misleading assessment of PEOs and 

ultimately inaccurate corrective plan. To this end, this paper 

proposes using Association Rules Mining (ARM) techniques [4] 

to inductively interrogate a set of PEOs-SOs mapping data. More 

specifically, this paper demonstrates an application of Apriori 

algorithm to  a set of PEOs-SOs mapping data extracted from self-

study reports (SSRs) of a number of engineering programs 

accredited by ABET-EAC. This results in a huge sets of rules 

which are further filtered to arrive at specific knowledge in a form 

of generic rules for mapping PEOs to ABET-EAC SOs and 

correlations rules among ABET-EAC SOs. 

2. METHODOLOGY 
 The methodology of this work has been customized from the 

general methodology of the knowledge discovery process 

depicted in Fig. 2. It involves raw data collection, selection, 

preprocessing, transformation, mining, and evaluation [4]. In the 

data collection step, a raw data is collected and used to create a 

target dataset or focusing on a subset of variables or data samples 

on which discovery is to be performed. The target data is cleaned 

 

Figure 1. Structure of OBE academic program [1]  
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and preprocessed in order to obtain consistent data in the pre-

processing step. The transformation step transforms the data using 

dimensionality reduction or other transformation methods. The 

step of data mining applies procedures to search for patterns of 

interest in a particular representational form, depending on the 

data mining objective. Finally, in the interpretation/evaluation 

step, the mined patterns are interpreted and evaluated.  

A particular data mining techniques, which are applied to discover 

all hidden associations that satisfy some user-predefined criteria 

are association rules algorithms [5]. A widely used algorithm for 

the association rules mining is the Apriori algorithm [6]. It is 

based on the following rule: All sub-itemsets of a frequent itemset 

must also be frequent. Using this rule, Apriori algorithm prunes a 

huge amount of itemsets examinations since it is certain that they 

are not frequent. Frequent sub-itemsets are extended one item at a 

time (candidate generation), and groups of candidates are 

examined. It terminates when no further extensions are found. 

 

 

3. ARM OF PEOs-SOs DATA IN 

ENGINEERING PROGRAMS  

3.1 Raw Data Collection   
The raw data is a set of SSRs of 152 engineering programs [7]  

accredited by ABET-EAC between 2000 and 2017 and distributed 

over the years  as in Figure 3. 

 
 

3.2 Data Selection   
The PEOs-SOs mapping data are extracted from sub-section B of 

the third criteria (Student Outcomes) of each SSR and 

consolidated in a table form as shown in Table 1, where symbol ✓ 

(×) indicates the presence (absence) of the SO in the mapping 

with the PEO. 

Table 1. Excerpts from PEOs-SOs mapping data 

PEOs a b c d e f g h i j k 

Practice the disciplines of 

transportation, 

environmental, structural, 

water resources, and 

geotechnical engineering, 

and/or related fields. 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Engage in advanced 

education, research, and 

development 
✓ ✓ ✓ × ✓ × × × ✓ × ✓ 

Pursue continuing 

education and 

professional licensure 

× × × × × × × × ✓ × ✓ 

Act in a responsible, 

professional and ethical 

manner 

× × × × × × × ✓ × ✓ × 

3.3 Data Preprocessing   
The preprocessing of the dataset involves substantial verification 

and validation of the content, attempts to remove spurious or 

duplicated objectives, fulfilling the objectives and outcomes 

format. 

3.4 Data Transformation  
A transformation procedure is proposed to transform each PEO 

into a set of labels representing attributes expressed in its text as 

follows. 

3.4.1 PEOs Labels Set Identification 
PEOs are grouped into a finite set of common attributes. Based on 

PEOs wordings of a number of engineering programs, a set of 

common PEOs labels has been proposed as shows in Table 2. 

Table 2.  PEOs Labels Set 

No PEOs Category PEO Label Frequency 

1 Life-long Learning LL 130 

2 Communication C 82 

3 Leadership L 62 

4 Teaming T 98 

5 Ethical Conduct EC 81 

6 Professionalism  P 137 

7 Social and Community  SC 78 

8 Career Success CS 127 

9 Technical Competency TC 212 

10 Knowledge 

Competency 

KC 96 

11 Graduate Studies GS 64 

12 Others O 29 

3.4.2 PEO Annotation 
Each instance of PEOs-SOs mapping data is annotated with one or 

more labels that match its PEO text. Three annotators initially 

annotated the dataset individually. The three annotators then met 

to resolve the conflicting cases. Table 3 shows excerpts of the 

dataset after PEOs annotation. The symbol ✓(×) denotes the 

inclusion (exclusion) of a particular SO in the mapping. 

Figure 2. Knowledge Discovery Methodology  

 

 

Figure 3.  SSRs distribution over years  
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Table 3.  PEOs Labeled Dataset 

PEOs Labels a b c d e f g h i j K 

TC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

LL GS ✓ ✓ ✓ × ✓ × × × ✓ × ✓ 

LL P × × × × × × × × ✓ × ✓ 

3.4.3 Data Projection 
Each multi-label data instance is projected into a set of single-

label data instances by making a single copy for each PEO 

appears in the original data instance. This results in an enlarged 

dataset with 1196 single-label data instances. Table 4 shows the 

excerpts of Table 3 projection. 

Table 4.  Projected PEOs Labeled Dataset 

PEOs Labels a b c d e f g h i j k 

TC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

LL ✓ ✓ ✓ × ✓ × × × ✓ × ✓ 

GS ✓ ✓ ✓ × ✓ × × × ✓ × ✓ 

LL × × × × × × × × ✓ × ✓ 

P × × × × × × × × ✓ × ✓ 

3.5 Association Rules Mining  Application  
Apriori algorithm is applied under WEKA framework [8]. It 

works by iteratively generating the frequent k-item sets whose 

their count equal to or greater than a pre-specified minimum 

support count, which is calculated as in Eq. 1  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑃𝐸𝑂SOs) =
𝑐𝑜𝑢𝑛𝑡(𝑃𝐸𝑂 ∪𝑆𝑂𝑠)

𝑁
                   (1) 

Then in the rules generation, rules that satisfy the user specified 

confidence threshold is generated. The confidence level of the 

rules is calculated using Eq.2 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑃𝐸𝑂SOs) =
𝑐𝑜𝑢𝑛𝑡(𝑃𝐸𝑂 ∪𝑆𝑂𝑠)

𝑐𝑜𝑢𝑛𝑡(𝑃𝐸𝑂)
            (2) 

In this research the minimum support and minimum confidence 

are set to low values, 0.1, to generate as many rules as possible. 

3.6 Evaluation  
The application of Apriori algorithm results in a huge number of 

rules, therefore, the generated rules are then filtered and 

interpreted to extract useful insights. 

3.6.1 PEOs-SOs Mapping Rules  
The generated rules are filtered to extract PEOs-SOs mapping 

rules. These rules are characterized by having a particular PEO in 

its antecedent and a combination of SOs in its consequent. The 

filtered rules are then sorted based on their confidence and the 

top-10 rules are presented in Table 5.  

Using the top-10 rules for each PEO, a more generic 

representation can be obtained as shown in Table 6. In this Table 

the symbols ✓, ×, and ? indicate, respectively, the presence, 

absence, and undetermined state of a given SO in the consequent 

of the PEO rule. It can be observed that the Ethical Conduct and 

Social and Community PEOs (EC and SC) have the highest 

average confidence, whereas Knowledge Competency and 

Graduate Studies PEO (KC and GS) have the lowest. Moreover, it 

can be observed that the Social and Community  and Knowledge 

Competency PEOs (SC and KC) are not dependent on the presence 

of any SOs. They mainly depend on the absence of different 

combinations of SOs. The Lifelong Learning, Communication, 

Ethical Conduct, and Professionalism PEOs (LL, C, EC, P) 

depend on the presence of a single SO, which indicates a one to 

one mapping between the graduate attribute of the PEO and the 

skills of the SO. 

Table 6. Recommended PEOs-SOs mapping 

PE

O 

SOs Conf. 

Interval 

Avg. 

Conf. a b c d e f g h i j k 

LL × × × × × ? × ? ✓ ? ? 0.65-0.85 0.69 

C × × ? ? ? × ✓ ? × ? ? 0.77-0.91 0.79 

L × × × ✓ ? ? ✓ ? × ? × 0.65-0.76 0.68 

T × × × ✓ × ? ✓ ? × ? × 0.66-0.82 0.73 

EC × × ? ? × ✓ ? ? ? ? × 0.81-0.89 0.83 

P × × × × × ✓ × ? ? ? ? 0.68-0.8 0.71 

SC × × ? ? × ? ? ? ? ? × 0.81-0.9 0.83 

CS ✓ ✓ ✓ ? ✓ ? ? ? ? ? ✓ 0.69-0.74 0.68 

TC ✓ ✓ ✓ ? ✓ × × × × × ✓ 0.65-0.74 0.69 

KC ? × ? × ? × × × × ? × 0.53-0.75 0.6 

GS ✓ ✓ ? × ✓ × ? ? ✓ ✓ ✓ 0.56-0.77 0.6 
 

3.6.2 ABET-EAC SOs Correlations Rules  
In order to discover correlations among ABET-EAC SOs, the 

generated rules are filtered to extract rules of the form SOx  

SOy and 𝑆𝑂𝑥̅̅ ̅̅ ̅  𝑆𝑂𝑦̅̅ ̅̅ ̅̅ , where SOx and SOy are two given SOs. 

Table 7 shows the extracted rules along with their confidence 

values. The correlation between SOx and SOy is defined in terms 

of the confidence in their equivalency as follows 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑆𝑂𝑥, 𝑆𝑂𝑦) = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑆𝑂𝑥 ⟺ 𝑆𝑂𝑦)               (3) 

         = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ((𝑆𝑂𝑥  𝑆𝑂𝑦)   (𝑆𝑂𝑥̅̅ ̅̅ ̅  𝑆𝑂𝑦̅̅ ̅̅ ̅̅ ))                       (4) 

        = 𝑃((𝑆𝑂𝑥  𝑆𝑂𝑦)  (𝑆𝑂𝑥̅̅ ̅̅ ̅  𝑆𝑂𝑦̅̅ ̅̅ ̅̅ ))                                           (5) 
         = 𝑃(𝑆𝑂𝑥  𝑆𝑂𝑦) +  𝑃(𝑆𝑂𝑥̅̅ ̅̅ ̅  𝑆𝑂𝑦̅̅ ̅̅ ̅̅ )                                       (6)  

         = 𝑃(𝑆𝑂𝑥 | 𝑆𝑂𝑦) × 𝑃(𝑆𝑂𝑦) + 𝑆𝑂𝑥̅̅ ̅̅ ̅ | 𝑆𝑂𝑦̅̅ ̅̅ ̅̅ ) × 𝑃(𝑆𝑂𝑦̅̅ ̅̅ ̅̅ )          (7)  

        = Confidence (SO𝑥 ⟹ SO𝑦) × P(SO𝑦) +  

             Confidence (𝑆𝑂𝑥̅̅ ̅̅ ̅  ⟹ 𝑆𝑂𝑦̅̅ ̅̅ ̅̅ ) ×  P(𝑆𝑂𝑦̅̅ ̅̅ ̅̅ )                                 (8) 

Table 5: Top-10 PEOs-SOs mapping rules 

Life-Long 

Learning  

Communi-

cation 
Leadership Teaming 

Ethical 

Conduct 

Profession-

alism 

Social &  

Community 

Career 

Success 

Technical 

Competency 

Knowledge 

Competency 

Graduate 

Study 

𝐿𝐿
0.85
⇒  𝑖 

𝐿𝐿
0.73
⇒  �̅� 

𝐿𝐿
0.72
⇒   �̅� 

𝐿𝐿
0.70
⇒  �̅� 

𝐿𝐿
0.68
⇒  𝑐̅ 

𝐿𝐿
0.68
⇒  �̅� 

𝐿𝐿
0.65
⇒  �̅� 

𝐿𝐿
0.64
⇒  �̅�˄𝑐̅ 

𝐿𝐿
0.64
⇒  �̅�˄�̅� 

𝐿𝐿
0.64
⇒  �̅�˄𝑖 

𝐶
0.90
⇒  𝑔 

𝐶
0.80
⇒  𝑖 ̅

𝐶
0.82
⇒   �̅� 

𝐶
0.79
⇒  �̅� 

𝐶
0.79
⇒  𝑔˄𝑖 ̅

𝐶
0.77
⇒  𝑓̅ 

𝐶
0.76
⇒  �̅�˄�̅� 

𝐶
0.74
⇒  �̅�˄𝑔 

𝐶
0.74
⇒  �̅�˄𝑖 ̅

𝐶 
0.73
⇒  �̅�˄𝑔 

𝐿
0.76
⇒  𝑑 

𝐿
0.71
⇒  �̅� 

𝐿
0.69
⇒  �̅� 

𝐿
0.69
⇒  �̅� 

𝐿
0.66
⇒  𝑔 

𝐿
0.66
⇒  𝑖 ̅

𝐿
0.66
⇒  𝑎 ̅˄�̅� 

𝐿
0.66
⇒  �̅�˄�̅� 

𝐿
0.65
⇒  𝑐̅ 

𝐿 
0.65
⇒  �̅�˄�̅� 

𝑇
0.85
⇒  𝑑 

𝑇
0.73
⇒  �̅� 

𝑇
0.72
⇒  �̅� 

𝑇
0.7
⇒ �̅�˄�̅� 

𝑇
0.68
⇒  𝑖 ̅

𝑇
0.68
⇒  𝑐̅ 

𝑇
0.65
⇒  �̅� 

𝑇
0.64
⇒  𝑔 

𝑇
0.64
⇒  �̅�˄𝑐̅ 

𝑇
0.64
⇒  �̅� 

𝐸𝐶
0.89
⇒  �̅� 

𝐸𝐶
0.86
⇒  �̅� 

𝐸𝐶
0.85
⇒   �̅� 

𝐸𝐶
0.83
⇒  �̅� 

𝐸𝐶
0.83
⇒  �̅�˄�̅� 

𝐸𝐶
0.81
⇒  𝑓 

𝐸𝐶
0.81
⇒  �̅�˄�̅� 

𝐸𝐶
0.81
⇒  �̅�˄�̅� 

𝐸𝐶
0.80
⇒  �̅�˄�̅� 

𝐸𝐶
0.78
⇒  �̅�˄�̅� 

𝑃
0.80
⇒  �̅� 

𝑃
0.73
⇒  �̅� 

𝑃
0.72
⇒  𝑐̅ 

𝑃
0.72
⇒  �̅� 

𝑃
0.70
⇒  �̅�˄𝑐̅ 

𝑃
0.64
⇒  �̅� 

𝑃
0.64
⇒  𝑓 

𝑃
0.64
⇒  �̅�˄�̅� 

𝑃
0.64
⇒  �̅�˄�̅� 

𝑃
0.68
⇒  �̅�  

𝑆𝐶
0.90
⇒  �̅� 

𝑆𝐶
0.87
⇒  �̅� 

𝑆𝐶
0.87
⇒  �̅�˄�̅� 

𝑆𝐶
0.85
⇒  �̅� 

𝑆𝐶
0.81
⇒  �̅� 

𝑆𝐶
0.81
⇒  �̅�˄�̅� 

𝑆𝐶
0.79
⇒  �̅�˄�̅� 

𝑆𝐶
0.90
⇒  �̅�˄�̅� 

𝑆𝐶
0.90
⇒  �̅�˄�̅�˄�̅� 

𝑆𝐶
0.78
⇒  �̅�˄�̅� 

𝐶𝑆
0.74
⇒  𝑒 

𝐶𝑆
0.71
⇒  𝑎 

𝐶𝑆
0.70
⇒  𝑘 

𝐶𝑆
0.69
⇒  𝑐 

𝐶𝑆
0.69
⇒  𝑏 

𝐶𝑆
0.66
⇒  𝑎˄𝑒 

𝐶𝑆
0.65
⇒  𝑏˄𝑒 

𝐶𝑆
0.65
⇒  𝑎˄𝑏 

𝐶𝑆
0.65
⇒  𝑎˄𝑐 

𝐶𝑆
0.64
⇒  𝑏˄𝑐 

    𝑇𝐶
0.74
⇒   a 

𝑇𝐶
0.71
⇒  𝑐 

𝑇𝐶
0.71
⇒  𝑒 

𝑇𝐶
0.71
⇒  𝑓̅ 

𝑇𝐶
0.71
⇒  𝑖 ̅

𝑇𝐶
0.68
⇒  𝑏 

𝑇𝐶
0.68
⇒  𝑘 

𝑇𝐶
0.67
⇒  𝑗 ̅

𝑇𝐶
0.65
⇒  �̅� 

𝑇𝐶
0.65
⇒  ℎ̅ 

𝐾𝐶
0.75
⇒  �̅� 

𝐾𝐶
0.71
⇒  �̅� 

𝐾𝐶
0.68
⇒   𝑖 ̅

𝐾𝐶
0.65
⇒  𝑓̅ 

𝐾𝐶
0.64
⇒  �̅�˄�̅�  

𝐾𝐶
0.58
⇒  �̅� 

𝐾𝐶
0.57
⇒  �̅�˄𝑖 ̅

𝐾𝐶
0.55
⇒  ℎ̅ 

𝐾𝐶
0.54
⇒  �̅�˄𝑖 ̅

𝐾𝐶 
0.53
⇒  �̅�  

𝐺𝑆
0.77
⇒  𝑖 

𝐺𝑆
0.72
⇒  𝑎 

𝐺𝑆
0.67
⇒  𝑒 

𝐺𝑆
0.66
⇒  𝑘 

𝐺𝑆
0.63
⇒  𝑏 

𝐺𝑆
0.59
⇒  𝑎˄𝑒  

𝐺𝑆
0.58
⇒  �̅� 

𝐺𝑆
0.56
⇒  𝑓̅ 

𝐺𝑆
0.56
⇒  𝑗 

𝐺𝑆
0.56
⇒  𝑎˄𝑏 

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 486

111111111111 



By applying Eq. 8 to the data of Table 7, the correlations among 

ABET-EAC SOs pairs can calculated and a correlations graph can 

be depicted as shown in Figure 4, where 0.65 is assumed as a 

minimum confidence for drawing a link between PEOs pairs. This 

threshold value allows each PEO to be linked to at least one PEO. 

In the correlation graph, the thicker the link is, the stronger the 

correlation between PEOs is.  

 

 

Obviously, three SOs clusters appear in the correlation graph. The 

first cluster involves technical skills SOs (a, b, c, e, and k). The 

second clusters involves process skills SOs (d and g), and the third 

cluster involves awareness skills SOs (f, h, i, and j) .    

4. CONCLUSION 
Association rules data mining techniques is proposed to discover 

useful insights on the rules that govern the mapping between 

PEOs and SOs and the correlations among SOs of academic 

programs. The discovered insights are useful for academicians to 

manage academic programs. In addition, a number of interesting 

correlations between PEOs and ABET-EAC SOs and among 

ABET-EAC SOs themselves have been discovered. 
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Table 7: Confidence (SOx  SOy)  and Confidence ( 𝐒𝐎𝐱̅̅ ̅̅ ̅̅    𝐒𝐎𝐲̅̅ ̅̅ ̅̅  ) 

𝒂
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒃
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒄
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒅
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒆
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒇
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒈
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒉
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒊
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

𝒊̅
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒋
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

𝒋̅
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝒌
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚 

�̅�
𝒄𝒐𝒏𝒇
⇒  𝑺𝑶𝒚̅̅ ̅̅ ̅̅  

𝑎
0.76
⇒  𝑏 

�̅�
0.90
⇒  �̅� 

𝑏
𝟎.𝟖𝟓
⇒  𝑎 

�̅�
𝟎.𝟖𝟑
⇒  �̅� 

𝑐
𝟎.𝟕𝟓
⇒  𝑎 

𝑐̅
𝟎.𝟖𝟑
⇒  �̅� 

𝑑
𝟎.𝟓𝟐
⇒  𝑎 

�̅�
𝟎.𝟔𝟒
⇒  𝑎 

𝑒
𝟎.𝟖𝟎
⇒  𝑎 

�̅�
𝟎.𝟖𝟕
⇒  �̅� 

𝑓
𝟎.𝟒𝟎
⇒  𝑎 

𝑓̅
𝟎.𝟓𝟓
⇒  �̅� 

𝑔
𝟎.𝟒𝟖
⇒  𝑎 

�̅�
𝟎.𝟔𝟏
⇒  �̅� 

ℎ
𝟎.𝟒𝟏
⇒  𝑎 

ℎ̅
𝟎.𝟓𝟔
⇒  �̅� 

𝑖
𝟎.𝟒𝟐
⇒  𝑎 

𝑖̅
𝟎.𝟓𝟔
⇒  �̅� 

𝑗
𝟎.𝟒𝟏
⇒  𝑎 

𝑗̅
𝟎.𝟓𝟓
⇒  �̅� 

𝑘
𝟎.𝟕𝟒
⇒  𝑎 

�̅�
𝟎.𝟖𝟐
⇒  �̅� 

𝑎
𝟎.𝟕𝟖
⇒  𝑐 

�̅�
𝟎.𝟖𝟏
⇒  𝑐̅ 

 

𝑏
𝟎.𝟖𝟔
⇒  𝑐 

�̅�
𝟎.𝟖𝟔
⇒  𝑐̅ 

 

𝑐
𝟎.𝟕𝟒
⇒  𝑏 

𝑐̅
𝟎.𝟗𝟎
⇒  �̅� 

 

𝑑
0.49
→  𝑏 

�̅�
𝟎.𝟔𝟗
⇒  �̅� 

 

𝑒
𝟎.𝟕𝟑
⇒  𝑏 

�̅�
𝟎.𝟗𝟎
⇒  �̅� 

 

𝑓
𝟎.𝟑𝟓
⇒  𝑏 

𝑓̅
𝟎.𝟓𝟗
⇒  �̅� 

 

𝑔
𝟎.𝟒𝟔
⇒  𝑏 

�̅�
𝟎.𝟔𝟖
⇒  �̅� 

 

ℎ
𝟎.𝟒𝟎
⇒  𝑏 

ℎ̅
𝟎.𝟔𝟑
⇒  �̅� 

 

𝑖
𝟎.𝟒𝟏
⇒  𝑏 

𝑖̅
𝟎.𝟔𝟑
⇒  �̅� 

 

𝑗
𝟎.𝟑𝟕
⇒  𝑏 

𝑗̅
𝟎.𝟔𝟎
⇒  �̅� 

 

𝑘
𝟎.𝟔𝟗
⇒  𝑏 

�̅�
𝟎.𝟖𝟔
⇒  �̅� 

 𝑎
𝟎.𝟓𝟐
⇒  𝑑 

�̅�
𝟎.𝟔𝟒
⇒  �̅� 

𝑏
𝟎.𝟓𝟓
⇒  𝑑 

�̅�
𝟎.𝟔𝟒
⇒  �̅� 

𝑐
𝟎.𝟓𝟒
⇒  𝑑 

𝑐̅
𝟎.𝟔𝟔
⇒  �̅� 

𝑑
𝟎.𝟓𝟔
⇒  𝑐 

�̅�
𝟎.𝟔𝟒
⇒  𝑐̅ 

𝑒
𝟎.𝟕𝟖
⇒  𝑐 

�̅�
𝟎.𝟖𝟑
⇒  𝑐̅ 

𝑓
𝟎.𝟒𝟓
⇒  𝑐 

𝑓̅
𝟎.𝟓𝟔
⇒  𝑐̅ 

𝑔
𝟎.𝟓𝟐
⇒  𝑐 

�̅�
𝟎.𝟔𝟏
⇒  𝑐̅ 

ℎ
𝟎.𝟓𝟎
⇒  𝑐 

ℎ̅
𝟎.𝟔𝟎
⇒  𝑐̅ 

𝑖
𝟎.𝟒𝟒
⇒  𝑐 

𝑖̅
𝟎.𝟓𝟓
⇒  𝑐̅ 

𝑗
𝟎.𝟒𝟔
⇒  𝑐 

𝑗̅
𝟎.𝟓𝟔
⇒  𝑐̅ 

𝑘
𝟎.𝟕𝟏
⇒  𝑐 

�̅�
𝟎.𝟕𝟔
⇒  𝑐̅ 

𝑎
𝟎.𝟖𝟑
⇒  e 

�̅�
𝟎.𝟖𝟒
⇒  e̅ 

𝑏
𝟎.𝟖𝟔
⇒  e 

�̅�
𝟎.𝟖𝟎
⇒  e̅ 

𝑐
𝟎.𝟕𝟗
⇒  e 

𝑐̅
𝟎.𝟖𝟐
⇒  e̅ 

𝑑
𝟎.𝟓𝟒
⇒  e 

�̅�
𝟎.𝟔𝟐
⇒  e̅ 

𝑒
𝟎.𝟓𝟐
⇒  d 

�̅�
𝟎.𝟔𝟒
⇒  �̅� 

𝑓
𝟎.𝟓𝟓
⇒  d 

𝑓̅
𝟎.𝟔𝟕
⇒  �̅� 

𝑔
𝟎.𝟕𝟓
⇒  d 

�̅�
𝟎.𝟖𝟑
⇒  �̅� 

ℎ
𝟎.𝟓𝟑
⇒  d 

ℎ̅
𝟎.𝟔𝟓
⇒  �̅� 

𝑖
𝟎.𝟒𝟔
⇒  d 

𝑖̅
𝟎.𝟓𝟗
⇒  �̅� 

𝑗
𝟎.𝟓𝟐
⇒  d 

𝑗̅
𝟎.𝟔𝟓
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ABSTRACT
Predictive and data-intensive modeling has rapidly gained
prominence in many research fields over the past decade. In
recent years, the fairness of analytical models has become
an increasingly important question for researchers: might a
model systematically underperform on certain demograph-
ics? Might its application have different impacts across dif-
ferent demographic groups? Recently, these questions have
found their way into educational research as well, where pre-
dictive and statistical modeling is used for such purposes
as predicting course completion, assisting university recruit-
ment, and proactively offering assistance to students. If such
models are potentially unfair, students may remain under-
served or suffer potential harm as a result. In this paper, we
demonstrate two post-hoc assessments of fairness, applied to
existing models predicting student graduation. Our assess-
ments are intended to check for, rather than proactively pre-
vent, algorithmic bias in predictive models. The first assess-
ment investigates whether a selected model is equitable: does
its performance systematically differ for members of differ-
ent demographic groups? The second investigates whether
the decision to use one model for all individuals in a given
dataset is optimal: does using one model for all students
come at a significant loss in per-group accuracy? By assess-
ing fairness systematically, we hope to reduce to the risk of
inequities from predictive analytics in education.

1. INTRODUCTION
As educational research incorporates more automated tools
for analyzing and predicting such factors as student behav-
iors and educational outcomes, the field must grapple with
the ethical question of algorithmic fairness. Do our algo-
rithms, powerful as they may seem, encode and reinforce
existing societal inequalities? Are the predictive tools we
use systematically less accurate for some demographics, and
does the use of these tools risk harming members of those
demographics?

In this work, we assess a set of machine learning models,

trained to predict student graduation at a public, four-year
university, using several definitions of fairness. Our analysis
centers on race and gender, but in principle, can be extended
to include age, international status, or other categorical vari-
ables.

Our investigations are driven by two main research ques-
tions: RQ 1) Are the models equitable? Do they perform
considerably worse on students of particular genders or eth-
nicities? RQ 2) Are the models optimal? Could we achieve
substantially better accuracy by using models specific to par-
ticular genders or ethnicities?

We investigate these questions through comparisons of false
positive rates, false negative rates, and overall accuracy mea-
sures, since these each represent different potential impacts
of these models’ use. The primary intended use of the mod-
els is to aid university advisers, and faculty, and adminis-
trators in structuring student support. This intended use of
the models informs our particular definitions and questions
around the fairness of these models.

2. RELATED WORK
Researchers have utilized a wide range of approaches to
defining fairness. Dwork et al. [4] define fairness as sim-
ilar individuals receive similar predictions (individual fair-
ness). Hardt et al. [7] measures equalized odds, which penal-
izes models for performing well only on the majority of data
points, and equal opportunity, which requires parity between
groups’ predictions only where the ground truth is an “ad-
vantaged”outcome (e.g., “was admitted to college,”“received
a promotion”). Feldman et al. [5] propose measures of group
fairness, where the distribution of errors and impacts should
not vary across groups. There are many approaches to con-
trolling for these, and other, fairness measures, as discussed
in, e.g., [2, 9].

While the exact definitions and approaches to fairness are
quite varied, a common thread is that there are no unam-
biguously “correct” definitions of fairness, or clear ways to
control for all aspects of it. The particular definitions and
measures depend on the specific data, analysis, and use case.

3. FAIRNESS FOR OUR MODELS
We select our measures of fairness based on the intended
applications of the models, and their potential impact. The
models are intended to inform and assist advisers, mentors,
faculty, and university administrators in making decisions
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about student intervention, student support, and university
policies. We focus on the advising and mentoring applica-
tions, as this is is the first intended use for the models.

In this setting, we anticipate a difference in the impacts
of false negative and false positive errors. False negatives
(students on track to graduate who are identified as likely
to not graduate) are likely to result in additional contact
with advisers, and additional assistance being made avail-
able. There is little harm to the student. False positives
(students not on track to graduate, but who are predicted
as likely to graduate) mean a student may not receive as-
sistance from advisers. The potential harm is much greater.
We thus use both false positive and false negative rates as
metrics for fairness, per RQ 1, but we are more concerned
with possible disparities in the false positives.

The overall accuracy of the models may also vary across
our populations. Large variations put certain populations
at higher risk of being systematically underserved due to
lower-quality predictions, and thus less reliable information
being presented to advisers and mentors. Therefore we test
if selecting one model, trained on all students, is optimal, per
RQ 2, by comparing its overall accuracy to the population
specific models.

4. DATA
In this paper, we assess the fairness of models predicting
whether a student will graduate within six years, initially
presented in a conference poster [1]. In this section, we
briefly describe the data on which those models were trained;
more details are available in the original presentation.

The dataset utilized was from a large, publicly-funded, R1
research university in the southern United States. It con-
tains data on 14,706 first time in college (FTIC) undergrad-
uate students, all of whom were admitted in Fall semesters
between 2006-2012 (inclusive), and were enrolled full-time.
The data contains one entry per student, summarizing their
first three enrolled semesters (Fall, Spring, and Summer).
The final feature set covers academic performance (e.g. GPA,
credit hours completed), financial information (e.g. scholar-
ships, unmet need), pre-admission information (e.g. SAT/ACT
scores), and extra-curricular activities (e.g. Greek Life, ath-
letics). A student’s first year has been shown to be an impor-
tant period for determining a student’s likelihood of drop-
ping out [8], which while not quite the inverse of graduation,
is a closely related outcome.

Tables 1 and 2 shows basic descriptive statistics for the
dataset. Some of the populations have very small Ns. We
include these populations in the fairness analyses for com-
pleteness, but we caution against drawing meaningful con-
clusions from them. Similarly, we caution against drawing
conclusions for the Multiple Ethnicities and Foreign popu-
lations, since these are “catch-all” labels, and represent ex-
tremely diverse groups of students.

5. METHODOLOGY
5.1 Model Building
We investigate the fairness of five separate models, each
trained on our dataset to predict whether a student will

Table 1: Basic descriptive statistics of the dataset,
by self-reported ethnicities.

Population N Graduation rate

American Indian 44 27.27%
Asian 2091 61.74%
African American 2092 38.48%
Foreign 296 52.03%
Hispanic/Latino 3805 43.97%
Multiple Ethnicities 499 48.30%
Hawaiian/Pacific Islander 22 54.55%
Ethnicity Not Specified 85 35.29%
White 5772 44.51%
TOTAL 14706 46.15%

Table 2: Basic descriptive statistics of the dataset,
by self-reported gender.

Population N Graduation rate

Female 7613 50.06%
Male 7092 41.96%
Gender Unknown 1 0.00%
TOTAL 14706 46.15%

graduate within 6 years of first enrolling at the university.
Early versions of these models (except Random Forest) have
been presented in poster form [1]: linear kernel Support
Vector Machines (SVM), Decision Trees, Random Forests,
Logistic Regressions, and scikit-learn’s Stochastic Gradient
Descent classifier ( SGD1).

Each model was trained on 80% of the full dataset, with
20% held out for testing. The train-test split was conducted
such that the proportions of students in each demographic
category were as close as possible across the folds, and the
within-group and overall graduation rates were as similar
as possible. Model parameters were selected using 5-fold
cross-validation within the training set. Ethnicity and gen-
der features were omitted when training the models.

5.2 Assessing Equity
We measure the equity of our models via their false positive
and false negative predictions on the held-out testing set.
Each comparison is made using a one-versus-rest approach:
Male versus non-Male, White versus non-White, etc. To
compare false positive and false negative rates, we assign
each student a label of 1 (indicating a false positive/false
negative prediction) or 0 (true positive/true negative). The
populations are compared using a χ2 test on the resulting
binary-valued vectors, with Benjamini & Hochberg’s post-
hoc correction [3] applied within each combination of popu-
lation and fairness metric, across algorithms.

1scikit-learn’s SGDClassifier model uses gradient descent
to construct a hyperplane classifier. We refer to this clas-
sifier, not the general numeric optimization method, in this
paper. See the scikit-learn documentation for further de-
tails: https://scikit-learn.org/stable/modules/sgd.
html
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Table 3: Results of the χ2 tests on false negatives and false positives, by demographic. Differences shown are
the overall rates for students in the listed demographic, minus the overall rates for students not in the listed
demographic. Benjamini & Hochberg [3] corrected p-values are in parentheses; p-values less than 0.05 are in
bold. * = N < 500.

Population DT RF SVM LR SGD

F
a
ls

e
N

eg
a
ti

v
es

American Indian* 0.051 (0.496) 0.036 (0.598) 0.055 (1.652) 0.055 (0.559) 0.055 (0.826)
Asian 0.014 (0.311) 0.000 (0.997) 0.013 (0.880) 0.013 (0.239) 0.013 (0.440)
African American 0.011 (0.729) 0.025 (0.188) -0.001 (1.193) 0.002 (1.423) -0.001 (0.954)
Foreign* 0.009 (0.731) -0.022 (2.226) 0.013 (1.458) 0.013 (0.744) 0.013 (0.972)
Hispanic/Latino 0.020 (0.046) 0.030 (0.007) 0.010 (0.223) 0.013 (0.181) 0.011 (0.186)
Multiple Ethnicities* -0.001 (0.943) -0.006 (0.992) 0.023 (1.066) 0.023 (0.555) 0.013 (0.801)
Hawaiian/Pacific Islander* -0.041 (1.613) -0.055 (2.950) -0.036 (0.831) -0.037 (1.105) -0.036 (0.664)
White -0.030 (<0.001) -0.035 (<0.001) -0.020 (0.006) -0.023 (0.002) -0.020 (0.005)
Female -0.005 (0.565) 0.000 (0.966) -0.019 (0.024) -0.017 (0.030) -0.017 (0.025)
Male 0.006 (0.560) 0.000 (0.974) 0.019 (0.023) 0.017 (0.029) 0.017 (0.025)

F
a
ls

e
P

o
si

ti
v
es

American Indian* 0.103 (0.366) 0.122 (1.290) 0.105 (0.438) 0.108 (0.562) 0.110 (0.810)
Asian -0.024 (1.139) 0.013 (0.496) -0.024 (0.581) -0.018 (0.448) -0.018 (0.592)
African American 0.001 (0.956) -0.037 (0.245) -0.018 (0.602) -0.021 (0.722) -0.012 (0.653)
Foreign* 0.060 (1.078) 0.013 (0.967) 0.046 (0.564) 0.049 (0.778) 0.001 (0.985)
Hispanic/Latino -0.021 (0.304) -0.019 (0.247) -0.019 (0.222) -0.028 (0.346) -0.023 (0.329)
Multiple Ethnicities* -0.024 (0.870) -0.024 (1.253) -0.032 (2.005) -0.019 (0.764) -0.017 (0.656)
Hawaiian/Pacific Islander* 0.030 (0.861) 0.049 (3.794) 0.032 (1.059) 0.035 (1.392) 0.037 (2.057)
White 0.029 (0.038) 0.032 (0.023) 0.040 (0.012) 0.043 (0.010) 0.039 (0.009)
Female -0.018 (0.309) -0.008 (0.711) -0.021 (0.648) -0.020 (0.359) -0.004 (0.753)
Male 0.019 (0.300) 0.008 (0.698) 0.021 (0.627) 0.020 (0.347) 0.004 (0.741)

Table 4: Model scores, trained on all students, eval-
uated against the held-out testing set. Values in
parentheses are the standard error, calculated as in
[6].

Model AUC

Decision Tree 0.798 (0.008)
SVM 0.805 (0.008)
Logistic Regression 0.807 (0.008)
Random Forest 0.800 (0.008)
SGD 0.814 (0.008)

5.3 Assessing Optimality
To assess the optimality of our models (RQ 2), we compare
how much accuracy is gained or lost by building separate
models for each population, based on AUC ROC scores. For
each population in our dataset, we compare the AUC ROC
scores (calculated only on the test set) of the models when
trained on all students to the AUC ROC scores of the models
when trained only on that population.

6. RESULTS
6.1 Model Performance
The overall metrics, evaluated against all students in the
testing set, are reported in Table 4. The models achieve
consistently good performance, with high AUC ROC and F1
scores. These numbers are a good baseline of performance; if
the models’ performance drops or rises considerably for any
demographic, that can be taken as an indication of algorith-
mic bias and the need for population-specific models. AUC
ROC standard errors are computed according to Hanley &
McNeil’s method [6].

6.2 RQ 1: Model Equity
Table 3 shows the results of our investigation into RQ 1.
The majority of the comparisons do not show significance
at p = 0.05 after correction. Notable exceptions are White
students, with consistently higher false positive and lower
false negative rates across all models; Hispanic/Latino stu-
dents, with consistently higher false negative rates for the
tree-based models; and Male students, who have consis-
tently higher false negative rates for hyperplane-based mod-
els (SVM, SGD, and Logistic Regression).

Since the impacts of false positives are likely to be more
harmful than false negatives, we find the consistently higher
false positive rate for White students to be more noteworthy
than the false negative results.

6.3 RQ 2: Model Optimality
Table 5 shows the AUC scores and AUC standard errors
on each population for two models: one trained on the en-
tire dataset and tested only on students in the listed demo-
graphic group (“Whole Population Model”), and one trained
only on students in the listed demographic group (“Popula-
tion Specific Model”). The only instance where the per-
formance differed by more than the standard error is the
Logistic Regression model for Asian students, which saw a
decrease in performance when using the population-specific
model. This indicates that the current models are optimal in
terms of population-specificity: population-specific models
do not gain appreciable predictive power for any population
in the dataset.

Further, this indicates that the trends identified by the mod-
els generalize across populations in the dataset, and thus, the
models’ performance on all students benefits from access to
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Table 5: The results of comparing the AUC ROC scores for models trained on all students (“Whole Popu-
lation Model,” abbreviated “WPM”) versus just one demographic (“Population Specific Model,” abbreviated
“PSM”). AUCs with non-overlapping standard error (SE) intervals are in bold.

DT RF SVM LR SGD
Population PSM WPM PSM WPM PSM WPM PSM WPM PSM WPM

African American AUC 0.788 0.796 0.799 0.804 0.818 0.830 0.805 0.830 0.799 0.830
SE 0.024 0.024 0.023 0.023 0.022 0.022 0.023 0.022 0.023 0.022

American Indian AUC 0.857 0.661 0.679 0.661 0.464 0.661 0.589 0.661 0.589 0.661
SE 0.135 0.182 0.180 0.182 0.187 0.182 0.188 0.182 0.188 0.182

Asian AUC 0.747 0.762 0.729 0.744 0.746 0.769 0.710 0.766 0.753 0.769
SE 0.023 0.023 0.024 0.024 0.024 0.023 0.025 0.023 0.023 0.023

Female AUC 0.795 0.800 0.803 0.798 0.814 0.815 0.812 0.816 0.798 0.811
SE 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

Foreign AUC 0.770 0.712 0.763 0.796 0.677 0.729 0.658 0.729 0.620 0.781
SE 0.060 0.066 0.061 0.057 0.068 0.064 0.070 0.064 0.072 0.059

Hispanic/Latino AUC 0.800 0.799 0.786 0.790 0.810 0.814 0.798 0.819 0.806 0.819
SE 0.017 0.017 0.017 0.017 0.016 0.016 0.017 0.016 0.016 0.016

Male AUC 0.777 0.793 0.796 0.801 0.787 0.791 0.792 0.794 0.790 0.804
SE 0.013 0.012 0.012 0.012 0.013 0.013 0.012 0.012 0.013 0.012

Multiple Ethnicities AUC 0.816 0.818 0.812 0.826 0.809 0.807 0.807 0.797 0.723 0.807
SE 0.043 0.043 0.043 0.042 0.044 0.044 0.044 0.045 0.051 0.044

Hawaiian/Pacific Islander AUC 0.667 0.750 0.750 0.750 0.833 0.750 0.833 0.750 0.417 0.750
SE 0.265 0.239 0.239 0.239 0.201 0.239 0.201 0.239 0.287 0.239

White AUC 0.803 0.805 0.806 0.809 0.803 0.800 0.800 0.802 0.805 0.805
SE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

the full population at training time. However, since the
models primarily identified GPA and student credit hours
obtained as the most important predictors [1], this trend
may be specific to these variables.

7. DISCUSSION AND FUTURE WORK
We have demonstrated an approach to assessing fairness that
derives definitions of fairness directly from the use cases of
the models in question. We find that our models are not per-
fectly equitable, as the term is defined in RQ 1. However,
the differences are generally small (under 5%), and with the
important exception of White students, are not consistent
across all models. We encourage any end-users of models
that display some unfair tendencies to be cautious and mind-
ful of the potential impact. These differences are relatively
small, but it has still not been established what level of un-
fairness should be considered acceptable in a model with
real-life implications. Perfect fairness is ideal, but difficult
to achieve. Our models are, though, very optimal across
groups, in terms of our definition in RQ 2. No model, or
population, saw a meaningful change in per-group perfor-
mance when trained only on one population.

The most important avenue for future work on this subject
is investigating how the implementation of models such as
these (e.g. making them available to advisers) will affect stu-
dent outcomes, and whether the slight unfairness observed
here will translate to real-world differences. The assessment
of fairness we have performed is an attempt to pre-empt
such effects, but is not a substitute for directly measuring
them.
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ABSTRACT 
Research has shown that participating in online discussion 
forums is tied to improved learning outcomes, but in the case of 
Massive Online Open Courses (MOOCs), very few students 
utilize this resource. This paper presents a preliminary 
investigation of demographic differences in the relationship 
between participation (using four different measures related to 
students production in the forum and the responses they receive) 
and course completion, demonstrating the need of further 
research into the potential causes for these differences. 

Keywords 

MOOC, MORF, demographic analysis, gender, race, production 
rules 

1. INTRODUCTION 
As educators seek to better support students in Massive Open 
Online Courses (MOOCs), research has shown that participation 
in MOOC discussion forums is tied to completion rates as well 
as other measures of learning [4, 9, 21, 26]. However, within the 
same body of research, we find that the vast majority of students 
never post even once [20]. 

These low rates of participation are perhaps not surprising. In 
addition to factors that can make it difficult for, say, a working 
adult to commit to a course [13], issues surrounding the social 
practices of both learning and language make the sheer size of a 
MOOC discussion forum difficult for people to navigate [2, 19]. 
Some researchers, concerned about the importance of having a 
social presence (see [22]) in online learning, have even 
suggested that we try to facilitate the community structure by 
encouraging MOOC participants enroll with a cohort of friends 
(e.g., [6]).     

In addition to the social factors that influence motivation, 
encouraging students to enroll with friends may also improve 
students’ opportunities to learn by giving them the opportunity 
to speak (or write) with people who use familiar communication 
practices. For example, we know that cultures differ in terms of 
several language practices that are likely relevant to learning 
contexts, including appropriate manners for giving advice [29], 
request strategies [30], expressing disagreement [31], including 

outsiders in the conversation [14] and even the interpretation of 
silence [10]. We also know that these differences can lead to 
cultural differences in broader interpretations of politeness (e.g., 
[7, 23]), and that sometimes these differences are even found 
across dialects of the same language (e.g., [18]) or across 
demographic groups, especially gender, within the same dialect 
(e.g., [17]). 

Research on demographics in MOOCs has found that they can 
influence the level of student participation. For example, Huang 
et al. [11] found different rates of postings based on nationality 
and gender, with men posting more frequently than women and 
students from some countries posting at much higher rates than 
those from other countries. Likewise, Hodgson & Hui [12] also 
found differences based on nationality, with Chinese students 
posting at higher rates than those from other countries. 

This study builds on these previous findings, exploring the role 
of demographic differences (namely race and gender) within the 
MOOC Replication Framework (MORF) [5]. Specifically, we 
are interested in two questions: 1) How do previous findings on 
forum posting behaviors and their relationship to course 
completion replicate across multiple MOOC sessions when 
broken down by reported gender and race? 2) Are these 
replications significantly different by race and gender? 

2. METHODS 
This research was conducted within the MOOC Replication 
Framework (MORF) [5], a platform designed to enhance large-
scale replication efforts by representing previously published 
findings as production rules. In order to accomplish this, MORF 
uses a simple formalism that was previously employed in work 
to develop human-understandable computational theory in 
psychology and education [3, 16]. This approach allows findings 
to be represented in a fashion that human researchers and 
practitioners can easily understand. 

All findings are converted into if-else production rules following 
the format, “If a student who is <attribute> does <operator>, 
then <outcome>.” Attributes are pieces of information about a 
student, such as gender or race. Operators are actions a student 
does within the MOOC. Outcomes can represent a number of 
indicators of student success or failure including watching a 
majority of videos (e.g., [15, 24])  or publishing a scientific 
paper after participating in the MOOC (e.g., [26]). In the current 
study, we focus on the platform’s most commonly-studied 
student outcome: whether or not the students in question 
completed the MOOC.  

Each production rule analysis returns two counts: 1) the 
confidence [1], or the number of participants who fit the rule, 
i.e., meet both the if and the then statements, and 2) the 
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conviction [8], the production rule’s counterfactual, i.e., the 
number of participants who match the rule’s then statement but 
not the rule’s if statement. For example, in the production rule, 
“If a student started more threads than the session average, then 
they are more likely to complete the MOOC,” the two counts 
returned are the number of participants that started more threads 
than the average and completed the MOOC, and the number of 
participants who started threads less than the average, but still 
completed the MOOC. As a result, for each MOOC, a 
confidence and a conviction for each production rule can be 
generated. 

A chi-square test of independence can then be calculated 
comparing each confidence to each conviction. The chi-square 
test can determine whether the two values are significantly 
different from each other, and in doing so, determine whether 
the production rule or its counterfactual significantly 
generalized to the data set.  

In this study, we tested the replicability of four previously 
published findings on discussion forum posting behavior, which 
can be put into two categories: initiating discussion and 
receiving uptake of discussion. The previously published 
findings can be found in Table 1 as production rules.  These 
production rules use normalized measures of students forum 
activity (i.e., higher or lower than average) to investigate who is 
responsible for starting the most threads, posts more often 
overall, who gets more respondents on their own threads, and 
who posts more responses to others’ threads. 

 
Table 1. Categories of production rules used in the study 

Condition Source 

Initiating Discussion:   
• If the student started more threads than the 

session average (Threads) [4] 

• If the student posts more frequently than the 
session average (Posts) [9, 28] 

Receiving Uptake of Discussion:   
• If the student has more respondents on their 

own threads than the session average 
(Respondents) 

[21] 

• If the student has more responses than the 
session average (Responses) [27] 

Note. The THEN clause of each production rule states, “then 
they are more likely to complete the course and earn a 
certificate.” 

These findings were turned into production rules, and executed 
in MORF against its data store of 100 MOOC sessions, 
comprised of 45 different courses offered by a University on 
Coursera. In integrating across MOOCs, we choose the 
conservative and straightforward Stouffer’s [25] Z-score method 
to combine the results per finding across the multiple MOOC 
data sets, which we used to obtain a single statistical 
significance result across all MOOCs per reported gender and 
race.  

Stouffer’s Z-score method was used to compare resulting Z-
scores across both genders and across the four races included in 
the study: White or Caucasian, Black or African American, 
Asian, and LatinX. In this study, we included only students who 

had reported their gender or their race in Coursra’s optional 
demographics survey. Furthermore, only students from the U.S. 
were included in order to avoid complications of racial/ethnic 
categories that do not always translate in a straightforward 
manner across national boundaries. Table 2 summarizes the 
number of students in each category. 

 
Table 2. Summary of research subjects by race and gender 

categories; all included reported being U.S. students 
Demographic N 

Female 10,813 
Male 14,394 
White or Caucasian (W) 12,802 
Black or African American (B) 1,089 
Asian (A) 5,299 
LatinX (L) 3,960 

 

3. RESULTS 
3.1 Gender Differences 
The relationship between gender and the four discussion forum 
conditions included in this study can be found in Table 3. Each 
row represents the result of testing that condition, or MORF 
production rule, across the full set of MOOCs, reported by 
gender. For example, “Posts” refers to the production rule, “If 
the student’s total number of posts was higher than the session 
average, then they are more likely to complete the course and 
earn a completion certificate.” The Female and Male columns 
list the cumulative Z-scores per reported gender, and can be 
interpreted as how well each rule replicated across MORF’s 
data. The Diff column lists the resulting Z-score when 
comparing whether the Female and Male scores are significantly 
different. 

 
Table 3. Results of production rule analysis and gender 

differences in posting behavior (* p < 0.001) 
Feature Female Male Diff 

Threads 16.36* 26.57* 7.22* 
Posts 19.66* 29.89* 7.23* 
Respondents 15.19* 21.69* 4.60* 
Responses 14.60* 19.29* 3.32* 
 

As seen in Table 3, all four production rules replicated 
significantly across all MOOC sessions in both genders. That 
is, thread, posts, respondents, and responses conditions all 
show positive relationships with MOOC completion. 
Moreover, as the Diff column shows, the positive relationship 
between forum participation and course completion is 
significantly more likely to replicate on men than women 
across all four measures. 

3.2 Racial Differences 
The relationship between race and the four discussion forum 
conditions included in this study can be found in Tables 4 and 5. 
In Table 4, each row represents the result of testing each 
production rule across the full set of MOOCs, broken down by 
reported race. As in Table 3, the Feature column lists the 
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important key words of the rule’s IF statement, and the other  
columns list the cumulative Z-scores per reported race. Like in 
Table 3, these values can be interpreted as significance values of 
how well each rule replicated across MORF’s datasets. Table 4 
shows that all four production rules replicated significantly 
across all MOOC sessions in all reported races included in this 
study. 

 
Table 4. Results of production rule analysis broken down 

by reported race (* p < 0.01, ** p < 0.001) 
Feature White Black Asian LatinX 

Threads  19.57** 4.58** 8.67** 8.64** 
Posts 22.78** 3.59** 9.42** 8.58** 
Respondents 14.73** 3.12* 8.18** 7.11** 
Responses 14.31** 4.27** 8.11** 6.31** 

 
Table 5 reports the differences by race in the resulting Z-score. 
Here, it is important to note that the racial category listed first is 
the category with the higher Z-score value. As the table shows, 
nearly all of the comparisons were statistically significant, with 
notable exceptions found primarily in the comparison between 
Asian and LatinX students (the final column), although the 
difference between LatinX students and Black/African American 
students also had one condition (responses) that was not 
significant. 

 
Table 5. Racial differences in posting behavior; W = White 
or Caucasian, B = Black or African American, A = Asian,  

L = LatinX (* p < 0.01, ** p < 0.001) 
Feature W > B W > A W > L L > B A > B A > L 

Threads  10.6** 7.7** 7.7** 2.9* 2.9* 0.0 
Posts 13.6** 9.5** 10.** 3.5** 4.1** 0.6 

Respondents 8.2** 4.6** 5.4** 2.8* 3.6** 0.8 

Responses 7.1** 4.4** 5.7** 1.4 2.7* 1.3 
 

4. DISCUSSION & CONCLUSIONS 
In order to interpret these results, it is useful to consider the 
semantics of these conditions, two of which (posts and threads 
started) look at the initiation of discussion, measuring a 
student’s production of discussion posts and two of which 
(respondents and responses) measure the uptake a student 
receives from those in his or her cohort. Our results show all 
four production rules significantly replicated across all MOOC 
datasets, and these findings are consistent no matter the 
demographic category considered. 

At the same time, these results show that there are demographic 
differences both in who chooses to post and in whose posts 
receive the most attention. Namely, men are more likely than 
women to complete the course and earn a certificate based on 
initiating discussion and receiving uptake, results which may, in 
fact, influence one another.  

We found the same kind of discrepancies when we looked at 
racial categories. Specifically, White/Caucasian students were 
more likely to succeed in MOOCs based on posting and 
receiving uptake than any other racial category. However, while 
Asian or LatinX students were more likely to succeed than 

Black/African American students based on forum behavior, the 
magnitudes of these differences were smaller than those 
between White/Caucasian students and other categories. Finally, 
Black/African American students were the least likely to 
succeed across all four measures.  

More research is needed to better understand what might be 
causing these communication differences, but this preliminary 
study highlights the importance of examining these differences, 
as it shows they are important factors for predicting student 
success in MOOC platforms. If demographic differences exist at 
this level of analyses, it is likely that sociocultural strategies 
related to politeness or other communication practices are at 
play.  

In future work, we hope to offer more sophisticated analyses of 
these issues, explicating the specific practices that may be 
contributing to these disparities. However, in the meantime, we 
hope this preliminary work serves to demonstrate a potential 
importance of these considerations when trying to support 
online learning. 
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ABSTRACT 
In this paper we explore preliminary applications of augmenting         
transcripts with multimodal data. In a previous study, pairs of          
participants (dyads) learned how to program a robot to navigate a           
maze using a block-based programming language. As the dyads         
completed the task, their transcripts and various multimodal data         
were captured, creating a synced dataset of speech, 3D motion          
capture points, electrodermal activity, heart rate, and eye tracking.         
In this paper, we describe a simple visualization method to more           
easily analyze conversation during collaboration: a “Convergence       
chart” which visualizes changes in biometrics between speakers        
throughout a conversation. These visualizations allow researchers       
to see high level trends in transcripts by using a combination of            
Natural Language Processing (NLP) and physiological data to        
generate new insights on how collaboration changes over time.         
We conclude with how to use these visualizations to create new           
metrics to understand group dynamics. 
 
Keywords 

Data Visualization, Computer Supported Collaborative Learning,      
Natural Language Processing, Biometrics  

 

1. INTRODUCTION 
Transcripts are one of the most common forms of recording          
speech and are a cornerstone of qualitative data analysis. With the           
increase of labeled text data sets and machine learning techniques,          
various data visualization applications have made text and        
conversations easier to analyze. However, transcripts often ignore        
a significant amount of context from conversation such as body          
language, tone, shift in conversation topic, eye movements,        
physiological changes and physical actions. Consequently, most       
transcript visualization methods fail to provide adequate context        
for how conversation changes over time. More importantly,        
because it is becoming easier to collect large multimodal datasets,          
researchers have an open space to improve how we use          
multimodal data to enrich textual analysis.  

  

  

 

2. LITERATURE REVIEW 
2.1 General theoretical Framework 
The theoretical framework for this paper comes from theories of          
collaborative learning, which has been one of the main topics of           
interest in the Learning Sciences over the last decades. In this           
paper, we focus on Roschelle’s [4] framework of convergent         
conceptual change. In this framework, collaboration is seen as the          
process of constructing shared meanings for conversations,       
concepts and experiences. This process has been extensively        
studied from a psycho-linguistic perspective and is referred to as          
grounding [5]. Building a common ground ensures that        
collaborators are on the same page and share a common definition           
of the terms used. From this perspective, grounding allows group          
member to anticipate and prevent misunderstanding. We use this         
framework as a foundation for the visualizations presented below:         
our hypothesis is that convergent conceptual change is punctuated         
by increased levels of synchronization between participants across        
various metrics (e.g., not just in terms of the words used, but also             
in terms of additional text features and multimodal indicators).         
The visualizations below provides a first step toward exploring         
how collaboration unfolds over time through a variety of metrics.  
 

2.2 Augmenting Transcripts with Natural 
Language Processing and Multimodal 
Datasets 
This paper relies heavily on previous work done in Natural          
Language Processing (NLP), conversation analysis, social      
network analysis, data visualization and Multimodal Learning       
Analytics (MMLA) [6]. We discuss the shortcomings and insights         
from related literature and how using multimodal data in         
transcript visualizations can be useful to generate new insights         
about collaborative learning. In particular, previous studies have        
used focused on for evaluating social dynamics in conversations         
with basic NLP data. For example, Viegas and Donath [1] found           
that using simple abstract shapes like circles and rectangles could          
easily reveal underlying patterns in online conversations like        
lurking, inactive users, and people who dominated conversations,        
all of which contributed to creating “a snapshot of an entire           
conversation in one image.” 
 
However, relatively few studies combine NLP and biometric data         
directly into the visualization of dialogue. We propose that         
augmenting traditional data visualization techniques with      
multimodal data can make conversation analysis more efficient        
and form a foundation for future multimodal data visualization for          
use in other fields. In the next section, we describe the           
visualization methods we designed and provide specific examples        
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from the dataset that help us identify metrics that differentiate          
between  productive from less productive groups. 
 

3. METHODS 
3.1 Description of the dataset 

Random pairs of participants with no self-reported prior        
programming or robotics knowledge were tasked with       
programming a robot to solve a series of increasingly complex          
mazes in 30 minutes. Mobile eye-trackers recorded participant        
gaze data, bracelets captured electrodermal activity (EDA), and a         
motion sensor collected movement and position data. Four        
physiological synchrony measures were calculated for movement       
and EDA data: Signal Matching (SM), Instantaneous Derivative        
Matching (IDM), Directional Agreement (DA) and Pearson’s       
Correlation (PC). For a description of these metrics, see [7]. All           
speech and verbal interactions were transcribed and labeled with         
timestamps. Through a series of pre processing techniques, the         
transcripts, gaze data, and EDA data were all aligned along each           
transcript timestamp. In order to compensate for the higher         
frequency of data from the sensors relative to the transcripts, we           
took the average of all of the sensor values from after each            
transcript line began to an ending point based on an estimated           
words per minute (WPM) measurement based on the average         
amount of time each participant spoke. 

We collected three dependent measures: learning gains,       
collaboration quality and task performance. Learning gains were        
measured through a pre and post-test assessing the participants’         
understanding of computational concepts used in the activity.        
Collaboration was assessed on nine scales: sustaining mutual        
understanding, dialogue management, information pooling,     
reaching consensus, task division, time management, technical       
coordination, reciprocal interaction, and individual task      
orientation. Task performance was assessed through the quality of         
the final code produced by the dyad. For more information about           
these metrics, see [7].  

For each of the transcripts, a series of basic linguistic measures           
were taken to serve as a baseline to compare transcripts. We           
hypothesized that certain linguistic features would help guide        
analysis of collaboration, such as word count, for past, present,          
and future verb usage count, singular and plural pronoun usage          
count, question count, and exclamation count.  

 

 

Figure 1: Example of a standard setup for two participants 
learning to program the robot to complete the maze tasks. 

 

To obtain a general overview of the topics spoken for each dyad            
and to add more depth to the visualizations, we ran Latent           
Dirichlet Allocation (LDA), a topic clustering algorithm, on all of          
the compiled transcript lines. In order to clean the data set, we            
removed “stop-words” from each transcript line (e.g. “a”, “the”,         
“and”), and any speech from the facilitator of the experiment. All           
natural language processing was done using the Python Gensim         
and NLTK libraries. The following topic clusters’ top words (TW)          
were calculated along with a possible theme (PT): 
 

1. PT: Analysis . TW: Think, need, get , else, got, really, 
something, block, good, second 

2. PT: Brainstorm. TW: Maybe, see, try, one, put, wait, 
know, want, time, could 

3. PT: Sensors / actuators . TW: Sensor, one, two , 
motor, right, four, greater, talk, three, know 

4. PT: Adjustment . TW: Make, sure, know , yes, 
hundred, start, sense, value, function, sorry 

5. PT: Coding . TW: Turn, right, go, forward, left, want, 
stop, going, need, wall 

 

3.2 Data Visualizations 
To understand how we conversations change relative to biometric         
signals, we created a visualization to study how subjects’         
physiological metrics align with each other with a Convergence         
chart. In order to create the visualizations, we created a custom           
web-based interface that allows us to dynamically manipulate the         
transcript data, compare groups, and adjust the parameters of the          
visualizations.  
 
The basic visualization concept behind the Convergence chart is         
“shifting the conversation” closer to the center as both speakers’          
biometrics begin to align. Below is an image that describes the           
concept of the visualization: 
 

 
Figure 2: Schematic of the Convergence chart. Each line in 

the transcript is represented by a colored block.  
  

As the participants converge towards some biometric, e.g. begin         
to look at the same area of a computer screen (indicating Joint            
Visual Attention), the transcript blocks shift closer to the center. If           
the participants are looking at different areas of a computer          
screen, the transcript blocks will diverge away from the center.          
We chose Joint Visual Attention (JVA) as our primary metric to           
analyze. JVA measures when two participants are looking at the          
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same area at the same time and is significantly correlated with           
collaboration quality [2]. We also used Signal Matching (SM) and          
Directional Agreement (DA) from the electrodermal data as        
convergence metrics [3]. SM and DA capture physiological        
synchrony, i.e., when two participants increase or decrease their         
physiological arousal at the same time. The plot moves closer to           
the center based on how “far away” each speaker is from a            
reference metric. E.g., if the metric is JVA, then each transcript           
block will shift towards the chart center based on how close the            
group’s JVA value at that timestamp is to the average of the            
maximum JVA across all groups . Global measures allow us to          
compare groups relative to a summarized metric. We can also          
choose to observe local metrics where each chart is plotted          
according to the five-number summary of JVA values within each          
group. The reference metric can be any metric that describes the           
state of the dyad, not the individual participants. 
 

 
 

Figure 3: JVA convergence chart for Group 15 (lowest 
collaboration) and Group 8 (highest collaboration). Colored 

by topic distribution.  
 

When we inspect closer into the JVA chart, we can glimpse into            
the topics and specific quotes of the conversation. Because the          
visualization is combined with the colored topic distributions, we         
gain much richer insight into who is speaking when JVA is           
highest, what they speak about, and the surrounding context. 

 

 
Figure 4: Focused transcript analysis from Group 15 and 8, 

respectively. 
 
When we zoom out to observe patterns in larger chunks of the            
conversation, we can see that Group 15’s participants often take          
turns talking about predominantly one topic.  

 

 
Figure 5: Conversation chunk analysis from Group 8.  

 
Similar patterns emerge while analyzing other physiological       
synchrony metrics, like Directional Agreement (DA) and Signal        
Matching (SM) in the charts in Fig. 6. 

 
Figure 6: SM and DA convergence charts, respectively,  for 

Group 15 (lowest collaboration) and Group 8 (highest 
collaboration). Colored by topic distribution. 
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A primary trend emerges from these charts. Even across different          
physiological metrics, more productive groups tend to converge        
towards the center of the chart more frequently than less          
productive groups. Researchers can consequently see      
conversation trends relative to attentional and physiological       
synchrony. These trends imply that finding the most dominant         
topic chunks of a conversation could correlate with or predict          
changes in physiological metrics.  

4. DISCUSSION 
The preliminary results of these visualizations illustrate the        
benefits of augmenting transcripts with multimodal data and topic         
modeling algorithms. In particular, we found that these        
visualizations can distinguish productive groups from less       
productive groups in terms of overall collaboration-related metrics        
on our dataset. The insight for using these graphs as a heuristic to             
analyze collaboration in group is simple: productive, collaborative        
groups’ conversations will converge together more towards       
physiological metrics. With the Convergence chart, we see that         
more productive groups speak about more similar topics during         
periods of high JVA than less productive groups. Productive         
groups behaviors appear more consistent and “focused” during        
periods of high physiological synchrony. We believe these        
observed differences relate much more to broader patterns during         
larger chunks of conversations rather than more granular,        
line-by-line analysis of transcripts. 
 

5. LIMITATIONS 
These visualizations have several limitations. The current methods        
are only applicable to conversations with exactly two people, i.e.          
when dialogue is the primary method of communication. While it          
is possible to extend the metrics produced by the chart into more            
than two dimensions, new visualizations would have to be created          
in order to visualize actions between multiple parties in the same           
conversation. Further, the Convergence chart condense nearly 30        
minutes of dialogue and sensor information into one graphic,         
which makes large or dense conversations hard to view without a           
large display.  

 

6. FUTURE WORK 
Our methods bring up some interesting questions about        
conversation and dialogue that we can hopefully answer with new          
metrics, in particular determining how quickly conversations       
change, what causes change in conversation, and how        
conversations progress over time. 
 
Some ideas for answering these questions involve calculating new         
metrics from the visualizations, including the comparison metric,        
comparison value, and the percent each transcript line converges         
towards the center. Using these newly constructed data sets,         
supervised machine learning models could be created to predict         
how speech and topics could change over the course of these           
conversations based on changes in physiological metrics. In the         
future, we plan on enriching our visualizations and analyses with          
Coh-metrix, which provide more in depth NLP analyses of text          
with measures such as lexical diversity and cohesion. It would          
also be possible to create a general framework for auto-generating          
Convergence charts given multimodal dataset. We will also        
evaluate the visualizations’ effectiveness across several domains. 
 

7. CONCLUSION  
This work provides two significant contributions. First, we        
developed a new visualization method to analyze conversations        
and augment transcripts with multimodal data. We believe that         
researchers can take advantage of these methods to discover         
high-level patterns in other transcripts and textual data sets.         
Second, we showed that these visualizations can potentially serve         
as a baseline for creating new metrics to analyze conversations,          
dialogue, and collaboration. We hope that the work in this paper           
can encourage future work on combining multimodal data with         
textual data visualization to enrich conversation and collaboration        
analysis. We see learning analytics and data mining methods as a           
way to bridge the gap between qualitative and quantitative         
research. There is an opportunity to augment both strands of          
research through multidisciplinary work: computational methods      
can facilitate manual analyses of qualitative researchers, while        
qualitative observations help quantitative researchers provide a       
window into learners’ interactions. In the decades to come,         
computational methods can play a major role in creating synergy          
between qualitative and quantitative research. This paper makes a         
step toward bringing these two strands of research together         
through combining data visualization, Natural Language      
Processing, and Multimodal Learning Analytics.  
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ABSTRACT
Many universities are struggling with high dropout rates. It
is important to recognize at-risk students as early as pos-
sible. In the event that only data of exam results is avail-
able, as much information as possible should be extracted
from this data. Instead of just using the last state of a
student’s passed exams the entire student progress over sev-
eral semesters could be used to build the predictive model.
We propose a new time series representation of the study
progress data and a new distance that we use in combina-
tion with an SVM kernel for the dropout prediction task.
The proposed time series based approach achieves results
similar to those of a non-time series based approach and can
beat it starting from the fourth semester.

Keywords
student dropout prediction, time series distance

1. INTRODUCTION
Many universities are struggling with high dropout rates.
According to the National Center for Educational Statistics,
only about 60% of students who started their undergraduate
studies in 2010 with a standard 4-year study program re-
ceived a bachelor’s degree from the same university within 6
years. In addition, around 80% of the students who started
their studies in 2015 remained in the following year [5]. Es-
pecially in MINT study subjects, the dropout rate at the
beginning of studies is particularly high. In [3], the authors
report that the dropout rate of freshmen in the Electrical
Engineering course is about 40%.

We have a data set of 857 computer science students from a
German university who have been enrolled for at least one
exam and who either have completed their studies with a
bachelor’s degree (421 students) or left their studies (at the
university where they started) without graduation (436 stu-
dents). Students who finished their studies in computer sci-
ence without a bachelor’s degree may also be subject chang-

ers, who have changed their main subject, or have contin-
ued their studies at another university or who have finally
dropped out of their studies. We consider these 436 stu-
dents as dropouts. When we speak of dropout prediction,
we mean the prediction whether the students who have en-
rolled in computer science, for whatever reason, do not suc-
cessfully complete the study at the same university. In Fig.
1 we show the distribution of the 436 dropouts in the first 10
semesters. Most dropouts are in the second semester (about
20%), so that by the end of the 2 semesters (i.e. the first
year) about 25% of all dropouts have abandoned their stud-
ies. By the end of the 4th semester 50% of the dropouts have
abandoned their studies and 80% by the end of the 10th.

Since most dropout students abandon their studies relatively
early, it is important to recognize them as early as possible
in order to start possible interventions. In [3] it is reported
that human monitoring is used to solve this problem. A
large number of students require considerable manual effort
so automatic dropout prediction could facilitate the work.
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Figure 1: distribution of dropouts

For reasons of data protection (GDPR) or other reasons,
universities often have only limited amounts of data about
their students. Since universities are legally required to store
data like results of the exams, this data could be used to
create dropout prediction models. If only data of exam re-
sults is available, as much information as possible should
be extracted from this data. Instead of just using the last
state of a student’s passed exams the entire student progress
over several semesters could be used to build the predictive
models. The Sankey diagram in Fig. 2 visualizes the study
progress of students that dropped out until the end of the
4th semester as well as graduates. Each node in a Sankey
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Figure 2: Sankey diagram showing study progress of graduates and students who dropped out until the forth semester.
Legend: (11) Programming + Calculus I passed (10) Programming passed (01) Calculus I passed (00) Nothing passed

diagram is a combination of exams in a specific semester.
For space reasons, the data in this illustration is only coded
based on the two subjects Programming and Calculus I. In
the caption of the visualization is a legend, which assigns the
binary numbers to their corresponding combination of pass-
ing (1) and failing (0) exams. For example, the notation
1 10 represents those students that only passed Program-
ming in the first semester. The visualization clearly shows
that, based on the passed exam combinations, dropouts and
graduates can have very different paths. This raises the
core question of this study: How to create dropout predic-
tion models based on previous exams, if not only the last
state of passed exams is used, but also the students’ entire
study progress should be included? To do this, we will use
the dynamic time warping distance and another proposed
distance and show how the time series distances can be used
in the kernel of an SVM for dropout prediction.

2. RELATED WORK
Many studies have been published on student dropout pre-
diction using classifiers such as Support Vector Machine
(SVM), Random Forest (RF), CART, C4.5, k-NN and Naive
Bayes [1, 3, 4]. Since the data used varies widely and the
data sets are often not published due to privacy concerns, it
is often difficult to compare the results of different studies.
A recent study [4] compares different strategies to numer-
ically represent the student data. The authors divide the
approaches of the representations for the student dropout
prediction task into 3 areas: 1) Global Feature-Based (GFB)
(features that can be heard from the student of the degree to
which the student belongs); 2) Local Feature-Based (LFB)
(Opting to use features that apply only to a particular de-
gree results); and 3) Time Series (TS) (using the time infor-
mation of the student’s data to enrich the representation).
The authors conclude that TS based approaches are less
well suited. In this paper, we show how to improve a TS
Distance-Based (TS-DB) approach presented in [1], so that
this approach delivers better results.

3. METHOD
In this chapter, it is shown how a student study progress
is transformed into a multivariate time series and how time
series distances can be used to create SVM Kernel in order
to create competitive dropout prediction models.

Let S be the set of all students with at least one exam at-

tempt. Let C = {c1, ..., cn}, n ≥ 1 be the set of exams
that we want to use to create our student representation.
We then define a mapping function ψC

t : S → {0, 1}n that
transforms the data of a student s ∈ S to an n-dimensional
binary vector and differ two notations ψC

t=k and ψC
t≤k.

The difference between ψC
t=k and ψC

t≤k is that ψC
t=k only

shows the information describing which exams were passed
in semester k and ψC

t≤k shows the information describing
which exams were passed between first and k-th semester.
Each value ψC

t (s)[i] ∈ {0, 1} is representing the information
whether an exam was passed or not as visualized in Fig. 3.

ψC
t=k(s) =

[ ︸ ︷︷ ︸
c1 passed in sem. k

0 or 1 ... ︸ ︷︷ ︸
cn passed in sem. k

0 or 1
]

ψC
t≤k(s) =

[ ︸ ︷︷ ︸
c1 passed until sem. k

0 or 1 ... ︸ ︷︷ ︸
cn passed until sem. k

0 or 1
]

Figure 3: Visualization of a coded semester vector

Example: Having a set C of the three exams with c1 = Cal-
culus, c2 = Linear Algebra and c3 = Programming and a
student s who passed Calculus in the first semester, Pro-
gramming in the second and Linear Algebra in the third
semester, the mappings of the two versions of ψC

t would be
as visualized in Fig. 4

ψC
t=1(s) =

[
1 0 0

]
ψC

t=2(s) =
[

0 0 1
]

ψC
t=3(s) =

[ ︸ ︷︷ ︸
c1 c2 c3

0 1 0
]

ψC
t≤1(s) =

[
1 0 0

]
ψC

t≤2(s) =
[

1 0 1
]

ψC
t≤3(s) =

[ ︸ ︷︷ ︸
c1 c2 c3

1 1 1
]

Figure 4: Exemplary visualizations of ψC
t=k and ψC

t≤k

In the following, we will only use the alternative ψC
t≤k be-

cause it works better than ψC
t=k. ψC

t=k was only introduced
because it corresponds to the creation of the time series in [1]
and so we can specify the exact difference in the modelling
of the time series of the two approaches.
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There are different ways to represent a student based on his
previous examinations. A typical option would be to repre-
sent the student using the last state of his or her exam results
ψC

t≤k. Based on this, the distance between two students s1
and s2 could be calculated with d(ψC

t≤3(s1), ψC
t≤3(s2)). In

this case, however, the information would disappear, as how
the study progress of the students looked until then. As you
can see in Fig. 2, student’s study progress can be very dif-
ferent. Assuming that not only the final state of the exam
results, but the complete study progress might have an im-
pact on whether or not a student drops out in the future,
we now define the multivariate time series for students:

Definition 1. Let C = {c1, ..., cn} be a set of selected
exams. Let tij ∈ {0, 1} be the result of exam ci until end
of semester j of a student s. A student time series TC

k (s)
representing the study progress of k semesters is defined by:

TC
k (s) = [ψC

t≤1(s), . . . , ψC
t≤k(s)] =

[t11
tn1

 , . . . ,
t1k
tnk

]

Thus, we can present a student as a temporal sequence of his
completed semesters, each semester carrying different kinds
of information. Let TC

k (s1) and TC
k (s2) be two multivariate

sequences representing the current study progress of the two
students s1 and s2. To compare these two sequences, we
need a similarity measure or a distance d(TC

k (s1), TC
k (s2))

for multivariate time series.

3.1 Time Series Distances
This subchapter shows the Dynamic Time Warping (DTW)
distance and a new proposed distance for student time series.

3.1.1 Multidimensional Dynamic Time Warping
A well-researched distance for univariate time series is the
DTW distance. In [6] the multidimensional DTW distance
has been proposed and its application for the student dropout
prediction in [1]. The following example shows the applica-
tion of the presented model with DTW. Let s1 and s2 be
two students, for whom the data of the first 4 semesters is
available, and let C = {c1, c2, c3, c4} be a set of 4 exams on
which the two student time series (Fig. 5) are based:

︸ ︷︷ ︸
= TC

4 (s1)

[
0
0
0
0

 ,


0
0
1
0

 ,


0
1
1
0

 ,


1
1
1
1


]

︸ ︷︷ ︸
= TC

4 (s2)

[
1
1
0
0

 ,


1
1
1
0

 ,


1
1
1
1

 ,


1
1
1
1


]

Figure 5: Two exemplary student time series

The example is chosen so that both students have the same
status after the fourth semester with respect to exams C:
ψC

t≤4(s1) = ψC
t≤4(s2). The distance d(ψC

t≤4(s1), ψC
t≤4(s2))

for the vectors representing the last state would in this case
be 0. However, if the entire course of study is included, then
the distance would have to be greater than 0. In Figure 6 we
show the calculation of the DTW distance d(TC

4 (s1), TC
4 (s2))

for these two students. By including the time series, the dis-
tance between the two students is no longer 0, although at

the end they have the same results with respect to C. To
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Figure 6: MD-DTW example for 2 students’ time series

calculate the distance of the whole time series, a cumulative
distance matrix (Fig. 6b) is calculated, based on the cal-
culated distances of the pairs of the time units (Fig. 6a).
The values at the index (i, j) of the cumulated matrix are
calculated by a cost function γ, which is based on dynamic
programming and is defined recursively in equation 1. The
last calculated value γ(4, 4) = 5 indicates the DTW distance.

γ(i, j) = d(ai, bj) + min


γ(i− 1, j),

γ(i− 1, j − 1),

γ(i, j − 1)

 (1)

3.1.2 Weighted Semester Distance
Here we present another approach to the distance calculation
of two time series with exam results. Unlike the DTW ap-
proach, only the results of the same semester are compared
here. In addition, the influence of individual semesters is
weighted differently. For two time series TC

k (s1) and TC
k (s2)

we define the dWSD distance:

dWSD(TC
k (s1), TC

k (s2)) =

k∑
i=1

wid(ψC
t≤i(s1), ψC

t≤i(s2))

For k semesters, the weights wi per semester are chosen as

wi = i2∑k
j=1 j2

= i2

1
6
k(k+1)(2k+1)

so that
∑k

i=1 wi = 1 and the

later semesters are weighted more heavily than the first.

3.2 Time Series Kernel
A popular method for binary classification problems is the
support vector machine (SVM). The decision rule formula-
tion of the SVM (with L support vectors) using the kernel
trick for an input vector x∗ that needs to be classified is

given by f(x∗) = signum
([∑L

i=1 αiyiK(x∗, xi)
]
− b
)

. A

well-known and often used kernel is the RBF-kernel and is
defined by: KRBF (x, y) = exp(−γ||x−y||2). An adaptation
of the RBF kernel to the Gaussian DTW (GDTW) [2] kernel
based on the dDTW distance is specified by:

KGDTW (x, y) = exp(−γ dDTW (x, y))

Using the dWSD distance we define the corresponding adap-
tion of the RBF kernel by:

KWSD(x, y) = exp(−γ dWSD(x, y))

The parameter γ must be learned with the training data.
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2nd 3rd 4th 5th

Model Re Pr F1 Re Pr F1 Re Pr F1 Re Pr F1

TS-DB: SVM + GDTW Kernel 0.77 0.74 0.75 0.7 0.81 0.75 0.59 0.84 0.75 0.53 0.88 0.66
TS-DB: SVM + WSD Kernel 0.74 0.75 0.75 0.74 0.83 0.78 0.75 0.81 0.78 0.74 0.82 0.78
LFB: SVM + RBF Kernel 0.73 0.75 0.74 0.73 0.84 0.78 0.72 0.81 0.77 0.72 0.83 0.77
LFB: RF 0.77 0.75 0.76 0.71 0.81 0.75 0.68 0.75 0.71 0.67 0.78 0.73

Table 1: Classification results (Recall, Precision, F1) for student data including exam results up to the end of k-th semester

4. EVALUATION
The evaluation is done on a data set with 857 students.
For each student, the following information about his or her
achievements is available: idCourse, exam status (passed or
failed) and the semester of the exam attempt. We evalu-
ate how well the prediction works using the data available
until the end of the 2nd, 3rd, 4th or 5th semester. The
1st is not considered since no advantages of time series can
be used. For example, if the prediction for data includ-
ing exam results until the end of the 4th semester is evalu-
ated, all dropouts and graduates who have studied at least
4 semesters will be considered. It follows that with increas-
ing semesters, there are fewer and fewer students that can
be used for evaluation since students drop out or graduate
before and cannot contribute to the training and evaluation.

The evaluation is performed 3 times with 10-fold stratified
cross-validation. We use Recall (Re) and Precision (Pr) as
evaluation measures. If as many dropout students as possi-
ble should be found, Recall should be as large as possible.
If it is not very important that all are found, but the re-
sults should be really endangered students, then Precision
should be as high as possible. In addition, the F1 measure
is specified, taking into account both Precision and Recall.

The length of the resulting numerical representation (multi-
variate time series vectors or simple vectors) depends strongly
on the number of courses used since the vectors are created
based on selected courses. In the data set, there are more
than 100 courses. As you can see in Fig. 2, just a few ex-
ams are enough to show differences in the study progress of
the dropouts and graduates. Therefore, we sort all courses
according to the number of students who have enrolled in
them and take 3k courses with the highest enrollment until
k-th semester for the evaluation of students who studied at
least k semesters (e.g., 6 courses with the highest enrollment
until the 2nd semester for students who studied at least 2
semesters). The 3 courses are added per semester, as the
curriculum includes about 3 courses per semester.

In Table 1, we compare the results of the two TS-DB ap-
proaches (numerical representation of a student is TC

k (s))
based on the two SVM kernels kGDTW and kWSD. Addi-
tionally, two LFB approaches (numerical representation of
a student is ψC

t≤k(s)) with the RF and SVM (RBF kernel)
classifiers are evaluated. If only the exam results until the
end of the 2nd semester are used to create the prediction
model, the LFB approach with the RF classifier achieves
the best results in all three evaluation measures. The other
approaches achieve similar or slightly worse results. In the
3rd semester, the TS-DB approach with the WSD kernel
reaches the best Recall and F1 value, whereby the LFB ap-

proach with the SVM classifier achieves a slightly better
Precision value. However, from the 4th semester, the TS-
DB approaches can take advantage and are better in all three
measures. If the Recall or the F1 measure is more impor-
tant, then the proposed WSD kernel is more useful and if
Precision is more important, the GDTW kernel is better.

5. CONCLUSION
Often only the data of the study progress per semester are
available. Since these data are arranged chronologically, we
have shown how the study progress data can be transformed
into a multivariate time series. We presented a new kernel
(WSD) and showed that the TS-DB based approaches de-
liver better results than LF based approaches (using only
the final state of the exam results) from the 4th semester
onwards. In future research, we will not only include the
exam results (passed or failed) in the model but also other
information such as the number of attempts or the grades.
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ABSTRACT
A long line of literature has focused on the problem of se-
lecting a team of individuals from a large pool of candidates,
such that certain constraints are respected, and a given ob-
jective function is maximized. In this work, we extend the
team formation literature by introducing the Guided Team-
Partitioning (GTP) problem, which asks for the partition-
ing of a population into teams such that the centroid of each
team is as close as possible to a given target vector. This for-
mulation allows the team-builder to control the composition
of the produced teams and has natural applications in prac-
tical settings. Algorithms for the GTP need to simultane-
ously consider the composition of multiple non-overlapping
teams that compete for the same population of candidates.
This makes the problem considerably more challenging than
formulations that focus on the optimization of a single team.
In fact, we prove that GTP is NP-hard to solve and even to
approximate. The complexity of the problem motivates us
to consider efficient algorithmic heuristics, which we evalu-
ate via experiments on both real and synthetic datasets.

Keywords
Team Formation, Partitioning

The input of the general team formation problem consists of
a pool of candidates, a set of constraints, and an objective
function. The goal is then to strategically select a group
of individuals from the pool, such that the group respects
all the constraints and also optimizes the objective function.
A long line of literature has addressed different versions of
the problem that ask for the optimization of functions such
as the quality of intra-team communication. Previous work
has also considered a diverse array of constraints, such as
those on the team’s size, the team-builder’s recruitment bud-
get [7], the abilities of students [3, 4], the perfomrnace of the
teams [2, 1], and the compatibility of the team memebrs [5].

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

In this paper, we extend the team formation literature by
introducing an alternative formulation of the problem that
asks for the partitioning of the given pool of candidates into
multiple teams, while allowing the team builder to control
the properties of each team. We refer to this paradigm as
Guided Team-Partitioning (GTP). For instance, consider a
teacher who is trying to partition the students in her class
into groups, such that the distribution of talent and experi-
ence across the groups is balanced. We illustrate an exam-
ple of this scenario in Figure 1. Conceptually, our goal is to
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avoid teams with an unfair advantage or disadvantage. We
refer to (3, 3, 3) as the target vector, which is used to guide
the partitioning task. We refer the interested readers to the
long version of this paper for more examples [6].

1. PROBLEM DEFINITION
In this section, we begin by describing notational conven-
tions that we will use throughout the paper; then we present
the formal statement of the problems that we study. We
start from a simple version of our problem with only one
team. We show that even the simple version is NP-hard
to solve and approximate. Then we move to partitioning
problem with desired centroids. In Subsection 1.4, we de-
scribe our problem, Guided Team-Partitioningand we
show that our problem is NP-hard to solve and approximate.

1.1 Preliminaries
We consider a pool R of n individual experts. Each expert
r ∈ R is associated with a d-dimensional feature (skill) vec-
tor ri, such that ri(f) returns the value of skill f for expert
i. We also consider given a set of target vectors T of k tar-
get points t. The goal is to partition the pool of experts
into k teams such that the cost of this partitioning is min-
imized. The cost for each team Ci, is the distance between
the centroid of that team (mean(Ci)) to its target vector ti.

Cost =

k∑
i=1

D(mean(Ci), ti) (1)

Sanaz Bahargam, Theodoros Lappas and Evimaria Terzi "The
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Algorithm" In: Proceedings of The 12th International Conference
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We quantify the closeness between two vectors τ and t of di-
mension d, using the L2

2 norm of their difference. We denote
this by

D(τ, t) := L2
2(τ − t) =

d∑
i=1

(τ(i)− t(i))2

We define the mean of a set R, consisting of n vectors
r1, r2, . . . , rn as

mean(R) =

∑n
i=1 ri

n

1.2 The CIS Problem
In Characteristic-Item Selection (CIS) problem, the goal is
to find a subset of a universe set, such that the mean of the
subset is as close as possible to a designated point. This
designated point represents the whole set. This intuition is
captured in a formal definition as follows.

Problem 1 (CIS). Given a set R = {r1, r2, . . . , rn}, a
number `, and a designated vector t, find ` points (R`) to
remove from R, such that mean of the remaining points
R \R` is close to target t. More formally,

D(mean(R \R`), t)

is minimized.

Lemma 1. The CIS problem is NP-hard to solve and ap-
proximate.

We refer the interested readers to the long version of this
paper for proofs of the lemmas [6].

1.3 The CP Problem
Given a set of n workers with different skills and a set of k
tasks that need to be done collaboratively with given average
required skill levels for each task, the goal is to form teams
of workers that their mean skill level matches each task the
best. This team formation problem can be considered as one
of the applications of the CP (Characteristic Partitioning)
problem which is formally defined in the following problem

Problem 2 (CP). Given a set R = {r1, r2, . . . , rn} and
target vectors T = {t1, t2, . . . , tk}, partition R into k parti-
tions C1, C2, . . . , Ck such that

k∑
i=1

D(mean(Ci), ti)

is minimized.

Corollary 1. The CP problem is NP-hard to solve and NP-
hard to approximate.

1.4 The Guided Team-Partitioning Problem
For many applications, it is not necessary to assign all the
points in the dataset to teams. For instance, when separat-
ing a workforce into teams so that each team has a specific
level of expertise in each skill, it is acceptable to exclude
some of the workers. In general, having the option to ex-
clude up to a fixed number of points adds flexibility and
can only make the problem easier to solve. We capture this
intuition in a formal problem definition as follows.

Problem 3 (Guided Team-Partitioning). Given a set
R = {r1, r2, . . . , rn}, and target vectors T = {t1, t2, . . . , tk},
and a budget `, find ` points (R`) to remove from the dataset
and partition the rest of the points R \R` into k partitions
C1, C2, . . . , Ck such that Cost =

k∑
i=1

D(mean(Ci), ti)

is minimized.

Corollary 2. The Guided Team-Partitioning problem
is NP-hard to solve and NP-hard to approximate.

This problem is clearly NP-hard, as it contains the CP prob-
lem as a special case (for ` = 0).

So far we have discussed the Guided Team-Partitioning
problem. For a collection of workers R in which each worker
has a proficiency level for each skill, the most natural trans-
lation of the target vectors is the mean of the proficiencies or
the required skills of a given project. For instance, consider
online labor markets such as Freelancer (www.freelancer.
com), Guru (www.guru.com), and oDesk (www.odesk.com)
where employers hire freelancers with specific skills to work
on different types of projects. The required skills listed for
each project in these platforms can be used as the target
vectors. In such a setting, each team should poses a spe-
cific share of expertise across all skills that makes the team
capable of finishing a particular task or project.

2. ALGORITHM
In this section, we describe GuidedSplit; it finds an efficient
solution for Guided Team-Partitioning. We start by pre-
senting algorithms to solve CIS and CP problem and then
we use these algorithms to solve Guided Team-Partitioning
problem.

2.1 Solving The CIS Problem
Although CIS problem is NP-hard to solve and approximate,
we propose heuristic algorithms that work well in practice.

The ConvexOpt Algorithm: We can formulate CIS prob-
lem as a Mixed Integer optimization problem to find a binary

vector x such that mean(Rx) = t subject to
n∑

i=1

x = n− `.

Since solving mixed integer problem is NP-hard and would
require complex algorithms to solve, we instead relax this
problem to a convex quadratic programming by removing
the binary constraints as shown in Algorithm 1. This Con-
vexOpt algorithm forms a nonnegative real-valued vector x
such that D(t,mean(Rx)) (Line 1) is small. Note that the
aim is to find a subset S of length n− ` such that mean(S)
is close to t, in another word ideally, we want n− ` elements
of x to be equal 1

(n−`)
, and the rest be 0 (and Rx = t). This

constraint is implied in Line 4 and 3. The algorithm tries
to find a vector x of real values such that its elements are
between 0 and 1 and the sum of elements of x is at least
n− `. Then we transform this real-valued vector to a binary
vector by replacing the n − ` largest elements to 1 and the
rest to 0. We used CVX package in Matlab to solve this
convex quadratic programming.
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Algorithm 1 The ConvexOpt Algorithm
Input: Input set R, target vector t and number of points to be
removed `
Output: A subset S such that |S| = n− `

1: minimize D(R ∗ x ∗ 1
n−` , t

′)

2: subject to

3: sum(x) ≥ n− `
4: x ≥ 0 and x ≤ 1 and x ∈ R
5: Set n− ` largest values of x to 1 and the rest to 0
6: return S = R(x)

2.2 Solving CP Problem
Our algorithm for the CP problem, which we call the Max
Benefit algorithm, is a polynomial time algorithm that
finds a partitioning of data points R, into k partitions. The
pseudocode of the Max Benefit algorithm is shown in Al-
gorithm 2.

Algorithm 2 The Max Benefit Algorithm
Input: Input set R, target vectors T and number of partitions k
Output: Partitions C

1: C = {}
2: for r in R do
3: j = argmaxi=1...k(D(ti,mean(Ci))−D(ti,mean(Ci

⋃
r)))

4: Add r to partition j, Cj
5: while no convergence achieved do
6: for r in R do
7: h = The partition r belongs to
8: loss = D(th,mean(Ch \ {r}))−D(th,mean(Ch))
9: j = argmaxi=1...k(loss + D(ti,mean(Ci)) −

D(ti,mean(Ci
⋃
{r})))

10: Remove r from partition h and update mean(Ch)
11: Add r to partition j and update mean(Cj)

12: Return C

2.3 Solving the Guided Team-Partitioning Prob-
lem

Let’s assume we are given k partitions (such that mean of
each partition Ci is close to ti) and along with each par-
tition, we are given q points (for all q = 1 . . . `) to be re-
moved from that partition. Now we can develop a dynamic
programming algorithm to optimally identify ` points to be
removed from all partitions. Let B(i, q) denote the bene-
fit of removing the given q points from the ith partition.
The benefit is defined as how much the mean of a partition
will get closer to its designated target. More formally the
benefit of removing points Rq from partition Ci with tar-
get ti is D(mean(Ci), ti) − D(mean(Ci \ Rq), ti). Let also
MBR(i−1, j−q) denote the benefit of removing j−q points
from partitions 1st to (i − 1)th partitions. The final goal is
to find the MBR(k, `), the benefit of optimally removing `
points from first to last (kth) partition. The following dy-
namic programming shows how we decide upon removing
points from partitions optimally.

MBR(i, j) = max
0≤q≤j

{MBR(i− 1, j − q) +B(i, q)}

At this stage, we have the tool to remove ` points from all
partitions. Now we can use Algorithm 2 to find the parti-
tions C and using Algorithm 1, we can find the q points to be
removed from each partition. Putting everything together,
we end up with Algorithm 3 which is an efficient solution
to the Guided Team-Partitioning problem. We call this
algorithm GuidedSplit.

3. EXPERIMENTS

Algorithm 3 The GuidedSplit Algorithm
Input: Input set R, target vectors T, number of partitions k and
number of points to be removed `
Output: Partitions C

1: C= Partition R into k parts using Algorithm 2
2: for Ci in C do
3: for j = 1 . . . ` do
4: B(i, j) = Benefit of removing j points from partition pi

using Algorithm 1

5: for i = 1 . . . k do
6: for j = 1 . . . ` do
7: MBR(i, j) = max

0≤q≤j
{MBR(i− 1, j − q) + B(i, q)}

8: return MBR(k, `) and remove corresponding ` from partitions

In this section, we evaluate our algorithmic solution to the
Guided Team-Partitioning problem. Our datasets and
implementation are immediately and freely available
for download.1. We refer the interested readers to the long
version of this paper description of the datasets and baseline
algorithms, and detailed description of each experiment [6].

3.1 Experimental Evaluation
Having all the datasets and target vectors ready as the in-
put of Problem 3, we compare the efficacy of GuidedSplit
algorithm with the baseline algorithms. We implemented
our algorithm in Matlab and used CVX package to solve
the convex optimization problem in the ConvexOpt algo-
rithm.We compare the cost of our algorithm compare to all
other baselines. This cost refers to the distance from the
mean of each partition to its target vector, see equation 1.
What follows is the detailed description of each experiment.

3.1.1 Effectiveness with respect to number of discarded
points `

The goal of this experiment is to demonstrate how different
algorithms behave with respect to the number of removed
points `, as presented in the definition of Problem 3.

Figure 2 shows the cost (in log scale) versus `. We observe
that our GuidedSplit algorithm consistently outperforms
the baseline algorithms for all target vectors, and the cost
of GuidedSplit is significantly less than all the baselines.
We also observe when all the targets are set to the mean,
the Random algorithm is doing well. This is simply because
a random sample of the data is expected to have the same
mean as the whole data.

An interesting observation is that when targets are equal to
the mean of the dataset, Figure 2(a), as ` increases the cost
of GuidedSplit increases as well. The reason is after find-
ing partitions when ` = 0, GuidedSplit finds near perfect
solution in which mean of each partition is very close to its
target. Removing points from the partition discomposes the
obtained solution and makes the mean of partition far from
its target. We also tried this experiment on other datasets;
the results were similar, and GuidedSplit outperforms in
those experiments as well. However, the algorithms were
more competitive on Skills dataset. Thus due to lack of
space, we only report results on Skills dataset.

3.1.2 Effectiveness with respect to number of parti-
tions k

1https://github.com/sanazb/TeamPartitioning
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Figure 2: Different algorithms on Skills dataset with respect to increasing `. The fixed parameters are k = 5, n = 500 and
d = 10.
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Figure 3: Different algorithms on Skills dataset with respect to increasing k. The fixed parameters are n = 500, ` = 50 and
d = 10.
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Figure 4: Different algorithms on Freelancer, and Guru

datasets.

The goal of this experiment is to demonstrate how the al-
gorithms behave with respect to the number of partitions k.
In these experiments, we show the cost (in log scale) versus
different number of partitions (k = 2, 4, 8, 16, 32) and we
fixed n = 500, ` = 50 and d = 10 on Skills dataset and
n = 502, d =4 and ` = 50 for BIA dataset. In the exper-
iment on BIA dataset, to form fair teams of students with
an equal level of expertise, the targets of partitions are set
to be equal to the mean of the whole dataset. We present
the results in Figure 3(a), Figure 3(b), and Figure 3(c) for
all three different methods of choosing the target vectors
( Random-Sobol, Mean, and Sampling methods) on Skills

dataset and Figure 5 depicts the results on BIA dataset.
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Figure 5: Different algorithms on BIA dataset with respect
to increasing k. The fixed parameters are n = 502, ` = 50,
and d = 4.

3.1.3 Results on the Freelancer and Guru datasets
Guru and Freelancer datasets have a different dynamic com-
pare to other datasets. In these datasets, we can use the
required skills of the projects as the target vectors. Besides,

the projects posted in freelancer and guru, are the tasks
that require a few skills and they can also be completed by
a small team of experts. So we conducted an experiment
specifically for these two datasets which indicates the per-
formance of our algorithm with respect to the number of
points n, the number of partitions k, and the number of
points to remove `.

For this experiment, we used the set of experts as input set
R, and the projects as target vectors T. We tried k =2,
4, 8, 16, 32, and for each value of k, we used k projects at
random. We also set n = k * 5 and ` = k (and selected
n + ` experts as random as the input R). The intuition
behind is due to the inherent nature of projects posted in
Guru and Freelancer; these projects are small projects that
usually do not need more than 5 people to be completed.
By setting n= k * 5 and ` = k, ideally, the size of each team
would be 4. The results in Figure 4(a) and 4(b) illustrate
GuidedSplit algorithm outperforms baseline algorithms on
Freelancer and Guru datasets, and find teams of experts
whose proficiencies are close to required skills of projects.
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ABSTRACT
There is a long history of research on the development of
models to detect and study student behavior and affect.
Developing computer-based models has allowed the study of
learning constructs at fine levels of granularity and over long
periods of time. For many years, these models were devel-
oped using features based on previous educational research
from the raw log data. More recently, however, the applica-
tion of deep learning models has often skipped this feature -
engineering step by allowing the algorithm to learn features
from the fine-grained raw log data. As many of these deep
learning models have led to promising results, researchers
have asked which situations may lead to machine-learned
features performing better than expert-generated features.
This work addresses this question by comparing the use
of machine-learned and expert-engineered features for three
previously-developed models of student affect, off-task be-
havior, and gaming the system. In addition, we propose a
third feature-engineering method that combines expert fea-
tures with machine learning to explore the strengths and
weaknesses of these approaches to build detectors of student
affect and unproductive behaviors.

Keywords
feature engineering, student affect, disengaged behavior, deep
learning

1. INTRODUCTION
The educational data mining community has developed nu-
merous models to detect unproductive student behaviors
and affective states and study how these measures corre-
late with short- and long-term learning outcomes. Estimates
produced by detectors of student affective states and un-
productive behavior, for example, have been found to pre-
dict student standardized test scores [15], whether a student
chooses to attend college [16], and whether they pursue a
degree in STEM [17], and even later pursue a STEM career

[11], from estimates produced from interaction logs collected
as they worked on mathematics problems in seventh grade.
The predictive power of these detectors along with a gen-
eral desire to understand and improve the student learning
process has led to a significant amount of research around
developing these models.

The primary goal of this paper is to compare the two meth-
ods of generating features to predict student affect and un-
productive behaviors. It is also important to consider whether
some models perform better for certain types of features.
Conversely, other simpler models such as a decision tree or
logistic regression require feature engineering or aggregation
in order to incorporate labeled and unlabeled data. Ad-
ditionally, these models would be unable to easily observe
unlabeled data in a semi-supervised learning manner [19].

In this work we re-develop detectors of student affective state
[5], off-task behavior [15], and gaming the system [13], com-
paring new models to previously-developed models, to ad-
dress the following research questions: 1) Which leads to
better model performance (AUC ROC and Kappa), expert-
engineered features or machine-learned features, for detec-
tors of affect and unproductive behaviors? 2) Does combin-
ing expert-engineered features and machine learning-based
feature generation improve model performance for detectors
of affect and unproductive behaviors? 3) Does incorporating
unlabeled data improve model performance for detectors of
affect and unproductive behaviors?

The development of affect detectors within ASSISTments
has improved in recent years. Initial work has explored the
use of expert-engineered features to develop and evaluate de-
tectors through a population validity study [12]. Recently,
a deep learning approach was applied [5], utilizing the engi-
neered features within a recurrent neural network to predict
the four labels of affective state simultaneously over time.

This work utilizes two datasets1 consisting of student inter-
action log data collected within the ASSISTments computer-
based learning platform. The content within the system
consists primarily of mathematics problems for students in
grades 6-8. Students working in the system receive immedi-
ate correctness feedback on each problem with the ability to
make multiple attempts, and have the ability to ask for on-

1All data used in this work is made openly available at the
following link: http://tiny.cc/ML_or_Expert
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demand computer-provided aid in the form of hints or scaf-
folded problems. These interactions and timing information
are the data used to construct most of the expert-engineered
features utilized in this work. The ground-truth labels of
both student affect and off-task behavior were collected us-
ing quantitative field observations following the Baker Ro-
drigo Ocumpaugh Monitoring Protocol (BROMP) [1].

We analyze gaming the system using a data set collected via
text replays [2]. The ground-truth labels of student gaming
were collected using post-hoc examinations of sequences of
student data following a set of criteria outlined in [2].

2. METHODOLOGY
Jiang et al. [10] compared two feature engineering meth-
ods, expert-generated and deep learning-based, for the de-
velopment of affect and off-task behavior detectors within
the Betty’s Brain learning system. This work will test the
generalizability of their findings, explore the strengths and
weaknesses of each method, and explore the incorporation
of unlabeled data during model training.

Each of the models described next were trained and eval-
uated using stratified 10-fold student-level cross validation.
We stratified each fold based on the number of occurrences
of positive labels of each outcome label at the student level
to generate the folds of the cross validation.

2.1 Utilizing Expert-Engineered Features
The first set of models use expert-engineered features to de-
tect each label of student affect, off-task behavior, and gam-
ing the system using methods similar to those implemented
in previous works. The expert features are first generated
using the the raw action-level log data; 92 features are cre-
ated for the affect and off-task data while 33 are generated
for the gaming detectors in alignment with the features used
in previous works. The features are generated to describe
the actions that occur in 20 seconds of observation but also
include neighboring actions that go beyond those 20 seconds
to capture the full context. We apply a Naive Bayes classi-
fier, a REP tree classifier and a Long-Short Term Memory
(LSTM) deep learning network [9] for the gaming, off-task
behavior, and affect detection tasks as these were found to
work well in previous works [13][15][5].

2.2 Deep Learning Models
Unlike the expert-engineered features, the machine learned
feature set uses the raw action logs of each student, ignor-
ing the clips and clip-level features described in the previous
section. For this feature set, a LSTM model is applied over
the raw data to predict each outcome using a set of unin-
terpretable features learned within the hidden layer of the
network. One potential drawback of using a LSTM model
in this way is that it assumes that each timestep in the
given sequence occurs at regular intervals which, of course,
is not the case. Therefore, to reduce the variance of this
interval, a similar practice as was applied to the affect de-
tector model using expert-engineered features. This allows
the model to divide sequences of student actions where long
intervals may occur between subsequent actions; where the
amount of time between two subsequent actions of the same
student is greater than 5 minutes, the sequence is divided
into two smaller sequences to be input into the model.

Each model utilized the same raw action-level log data that
was used to generate the expert-engineered features described
in the previous section. In addition to the interaction de-
scriptors such as response correctness and whether the stu-
dent requested a hint, the knowledge component associated
with each problem was also included as a large 1-hot en-
coded vector in an effort to supply these LSTM models with
the same information with which the expert-generated fea-
tures had access. In addition to these described action logs,
the set of features supplied to the gaming model included an
additional field corresponding to the computed Levenshtein
distance of each students sequence of incorrect responses
(where such sequences of incorrect responses existed) within
each problem as was computed for the expert-engineered
features of this detector. We incorporated this feature to
provide consistency in the information that is exposed to
both the machine learning model and the expert feature-
engineering process, although we acknowledge that the fea-
ture itself is a transformation of the raw responses (i.e. can
be described as an expert feature) and was only found to be
predictive of gaming the system through prior work explor-
ing the development of expert features for this task [14].

Each of the three LSTM models created for each label of
student affect, off-task behavior, and gaming the system fol-
lowed the same general structure comprised of an input layer
feeding into a fully-connected recurrent hidden layer of 200
LSTM nodes, and then feeding into an output layer of ei-
ther 2 nodes (corresponding to a 1-hot encoded positive and
negative indicator of either off-task behavior or gaming the
system) or 4 nodes (corresponding to a 1-hot encoded vector
with one value per observed affective state). The purpose
of the hidden layer is to learn a set of 200 features from the
raw action logs that are predictive of each outcome label.
The commonly applied technique of dropout [18] is applied
between the hidden and output layers of the network in an
attempt to reduce overfitting. In all cases, a softmax acti-
vation function is applied to the output of each model and
trained using multiclass cross entropy.

2.3 Machine-Learned Expert-Inspired
Features

The third feature set proposed for comparison combines as-
pects of both expert-engineered features and machine learn-
ing. Expert features may be able to help guide a machine
learning model to learn better sets of features than either
method individually. In addition, since each set of expert
features were presumably developed with a particular set of
outcome measures in mind, such labels may also be able to
help guide a machine learning model to produce meaning-
ful, albeit uninterpretable, sets of features to detect such
behaviors and affective states.

Specifically, this method utilizes a 2-step training process for
a machine learning model. First, an LSTM model is built
to use the raw action-level logs as input (just as was done in
the previous section for the models utilizing machine learned
features), but in addition to predicting each label, the model
is trained to predict the set of expert-engineered features as
a multi-task learning problem [7]. As the affect and off-task
behavior detectors utilize the same set of action logs and
expert-engineered features, we build one model to read the
interaction logs. This model will predict each of the set of
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Table 1: Comparison of feature sets across each of the detector models with and without co-training.

Outcome Feature Set Model AUC Kappa
Co-Trained*

AUC
Co-Trained*

Kappa

Off-Task
Expert REP Tree .734 .352 .796 .369
Machine Learned* LSTM .657 .073 .657 .073
Machine Learned Expert REP Tree .753 .400 .781 .405

Gaming
Expert Naive Bayes .774 .362 .856 .180
Machine Learned* LSTM .542 -.005 .542 -.005
Machine Learned Expert Naive Bayes .774 .290 .847 .327

Affect
(Collectively)

Expert LSTM .760 .172 .777 .112
Machine Learned* LSTM .695 .041 .695 .041
Machine Learned Expert LSTM .662 .043 .607 .037

Confusion
Expert LSTM .730 .042 .762 .059
Machine Learned* LSTM .666 .042 .666 .042
Machine Learned Expert LSTM .609 .01 .596 .018

Engaged
Concentration

Expert LSTM .775 .281 .791 .289
Machine Learned* LSTM .713 .210 .713 .210
Machine Learned Expert LSTM .671 .188 .611 .090

Boredom
Expert LSTM .775 .148 .783 .178
Machine Learned* LSTM .690 .137 .690 .137
Machine Learned Expert LSTM .677 .041 .613 .005

Frustration
Expert LSTM .761 .054 .772 .050
Machine Learned* LSTM .713 .060 .713 .060
Machine Learned Expert LSTM .689 .019 .609 .026

*All co-training used an LSTM model. Models using the machine learned features all used co-training.

expert-engineered features corresponding with the given set
of actions, the affective state label, and the off-task behavior
label simultaneously. Similarly, for the gaming detector, the
raw actions are supplied as input to a LSTM model that
predicts both the set of expert-engineered features and the
gaming labels. In this way, the hidden layer of the respective
models is regularized to learn a set of features that is both
able to construct the set of expert features (although likely
with some error) as well as predict the outcome labels for
which the features are intended.

Once these LSTM models are trained, the hidden layer is
extracted and used as the third and final set of features com-
pared in this work. This feature set, referred to as“machine-
learned expert-inspired” features, is then supplied as input
to each of the respective models used in previous work.

2.4 Exploring the use of Co-Training
In this work, we use the term “co-training” to describe the
use of both labeled and unlabeled data to inform model es-
timates and the methods differ from that of other works
describing co-trained models [3]. Given the nature of the
observation-based label collection procedure, not all exam-
ples in our data (whether considering actions or clips) has
an associated affect or behavior label. While there are sev-
eral modeling methods that exist to incorporate this unla-
beled data into each model, the already-described LSTM
model inherently allows for this co-training to occur given
its sequential structure. The model uses the current sup-
plied timestep along with a learned-aggregation of previous
time steps in order to better inform each prediction.

3. RESULTS AND DISCUSSION
We compare the results of each set of models within each
of the three outcome measures of affect, off-task behavior,

and gaming behavior using the metrics of AUC ROC and
Cohen’s Kappa. In the case of affect, AUC ROC is cal-
culated using a multi-class variant of the metric [8], while
Kappa is calculated as multi-class Cohen’s Kappa, while the
models of off-task behavior and gaming use an optimized
form of Kappa by learning an optimal decision (0,1) thresh-
old using the training set of each respective fold within the
cross validation. Higher values of either metric are indica-
tive of higher model performance with AUC values at 0.5
and Kappa values at 0 indicating chance performance.

The results of each model is reported in Table 1. Com-
pared to the models utilizing machine learned features, the
expert-engineered features lead to notably higher perfor-
mance across all the outcome labels in regard to both AUC
and Kappa. When comparing the performance of the mod-
els using the machine-learned expert features (our proposed
third feature set), the difference in performance is not as
dramatic, but leans in favor of the expert-engineered fea-
tures leading to superior models. By contrast, the machine
learned expert features led to models that outperform those
using expert-engineered features in regard to off-task behav-
ior in terms of both AUC and kappa and is equal in regard to
detecting gaming in terms of AUC, but appears to perform
less well in detecting student affect.

Despite the small number of cases where the models trained
from expert-engineered features did not outperform the oth-
ers in either AUC or Kappa, these models exhibited consis-
tently high performance in both metrics across all outcomes.
It can further be concluded that co-training led to higher
AUC than the non-co-trained variant of each detector. This,
however, was not always the case in regard to Kappa, where
the co-trained models of gaming and affect using expert-
engineered features exhibited notably lower values.
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4. FUTURE WORK
Among the detectors, it was found in some cases that there
was disagreement between the metrics used; the co-trained
model of affect exhibited higher AUC than the non-co-trained
model, but a lower value of Kappa. Previous work has ex-
plored this case across several commonly-applied metrics [4],
but further work is needed to further explore and leverage
modeling techniques to produce detectors that exhibit high
performance across all these metrics.

The use of the highest-performing models across each of
these detectors can also be used in future research to study
other aspects of student learning. This extends beyond the
already-discussed application in predicting student longer-
term outcomes, and includes the study of other aspects such
as the dynamics and chronometry, studied using affect de-
tectors in prior work [6].

5. CONCLUSIONS
This work investigates whether expert-engineered features
lead to higher performing detectors of student affect and
disengaged behavior as compared to using automatically-
distilled features learned through a machine-learning ap-
proach. We found that the use of expert features led to
the most consistently high-performing models. Using co-
training led to even better models in most cases.

The use of expert-engineering to develop features, while per-
haps more difficult in regard to time, effort, and likely cost,
does appear to lead to greater benefits than simply applying
a machine learning model to automatically distill features
from the raw data, based on the results found in this work.
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ABSTRACT 

This paper explores in depth the suitability of the 2012 Automated 

Student Assessment Prize (ASAP) contest’s essay datasets. It 

evaluates the potential of deep learning and state-of-the-art NLP 

tools in automated essay scoring (AES) to predict not only holistic 

scores but also the finer-grained rubric scores, an area 

underexplored but essential to provision formative feedback and 

uncover the AI reasoning behind AES. For comparison purpose, 

this paper advocates the need for transparency when sharing AES 

processes and outcomes. Finally, it reveals the insufficiency of 

ASAP essay datasets to train generalizable AES models by 

examining the distributions of holistic and rubric scores. Findings 

show that the strength of agreement between human and machine 

graders on holistic scores does not translate into similar strength 

on rubric scores and that the learning made by the machine barely 

exceeds the performance of a naïve predictor. 

Keywords 

Automated Essay Scoring; Automated Student Assessment Prize; 

Deep Learning; Natural Language Processing; Rubrics 

1. INTRODUCTION 
With the soaring development of deep learning and NLP, the 

interest in pushing further the limits of AES and harnessing the 

potential of valuable hand-graded essay datasets has been 

reinvigorated. This effervescence, however, is accompanied by a 

lack of transparency, although involuntary, that sometimes even 

prevent to measure and compare progress made in AES, 

prompting for some protocol on how to report research processes 

and outcomes in this area. This paper assesses the value of one of 

the most used set of datasets to train AES models, the free 

Automated Student Assessment Prize datasets, and sheds light on 

the factors that alter proper comparison between researchers’ 

models. It investigates the capacity of deep learning in pair with 

the extensive range of writing features available nowadays from 

cutting-edge NLP tools to predict both holistic and rubric scores, 

a research orientation barely explored at this time and key for the 

provision of finer-grained formative feedback to student writers. 

2. METHODOLOGY 
The Automated Student Assessment Prize (ASAP) contest was 

launched in 2012 to evaluate the progress in AES and its 

readiness to be implemented across the United States in state-wide 

writing assessments [4]. The Hewlett-Packard Foundation funded 

the Automated Student Assessment Prize contest that was hosted 

on the Kaggle platform to invite as many participants from the 

community of data scientists. Eight essay datasets were collected 

from these state-wide assessments and were graded following a 

thorough scoring process by subcontracted commercial vendors. 

These state-wide assessments were written by Grade 7-10 students 

from six different states. Each essay dataset originated from a 

single state-wide assessment targeting a specific grade (7-10) and 

state. The ASAP contest required participants to develop a model 

that would automatically score all these datasets and measure the 

level of agreement between their developed machine grader and 

the resolved human scores using the quadratic weighted kappa 

(QWK) metric. Both commercial vendors and data scientists from 

academia participated in the contest, and winners were determined 

based on the average QWK on all eight essay datasets. Although 

necessary for contest purposes, this proves not to be an effective 

way to transparently compare and report research processes and 

results given that each essay dataset has a unique setting, such as 

the type of writing construct (persuasive, source-based, 

expository, narrative), which at its turn requires a customized 

approach. Following the publication of the contest outcomes [4], 

warnings [4] came against concluding that AES was actually 

beating human graders just because it merely surpassed the level 

of agreement among human graders. For example, it was 

showcased [4] that AES systems could be fooled by only 

submitting text with the proper number of words, demonstrating 

“how smart” AES really was. Obviously, the ASAP study design 

had some limitations including the fact that none of the essay 

datasets had an articulated writing construct, most essays were too 

short and had on average between 94 and 381 words, suffered 

from a bias in the way holistic scores were resolved, had small 

scoring scales, and most of them did not have any scoring rubric 

[4]. The essay dataset #8 (Grade 10, narrative, mean number of 

words of 622) was the only exception to this and could at least 

test the writing ability of students. This makes the eighth dataset 

promising for machine to learn and provision formative feedback 

to both students and teachers. However, the main shortcoming of 

the eighth dataset is its small sample size, that is, only 722 of the 

original essay samples have been made available to the public. 

This paper continues and extends the work undertaken by [1] in 

which the potential of deep learning in AES is evaluated. Because 

the essay sample size is very small, the latest advances in NLP 

along with a deep neural network (at least three hidden layers) 

were adopted to facilitate the detection of writing patterns instead 

of working directly with the raw text of student writings through a 

sequence model (i.e., a long short-term memory recurrent neural 

network). Hence, each of the 722 essays was processed by the 

Suite of Automatic Linguistic Analysis Tools1 (SALAT). Among 

others, SALAT provides a set of baseline metrics related to word 

                                                                 

1 https://www.linguisticanalysistools.org/ 

 

 

David Boulanger and Vivekanandan Kumar "Shedding Light on
the Automated Essay Scoring Process" In: Proceedings of The
12th International Conference on Educational Data Mining
(EDM 2019), Collin F. Lynch, Agathe Merceron, Michel
Desmarais, & Roger Nkambou (eds.) 2019, pp. 512 - 515

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 512



frequency, text content, and lexical sophistication. The generic 

lexical sophistication metrics include among others 

psycholinguistic word information metrics (e.g., concreteness and 

familiarity), lexical frequency and range metrics (words occurring 

in a wider range of texts) based on large English corpora, and 

syntactic categories (e.g., number of adjectives and nouns). It also 

measures over 400 indices of lexical sophistication related to 

word and n-gram frequency and range, academic language, n-

gram strength of association, contextual distinctiveness, word 

recognition norms, semantic network, and word neighbors. 

Several of these metrics are normed according to the number of 

word or n-gram occurrences found in large corpora of English 

writings and frequency lists. Moreover, SALAT supplies 367 

indices evaluating the syntactic sophistication and complexity of 

English writing, grouped into four categories: 14 syntactic 

complexity analysis indices, 31 indices on clausal complexity, 132 

indices related to phrasal complexity, and 190 syntactic 

sophistication indices. Finally, SALAT comes up with a set of 

over 150 features related to local, global, and overall text 

cohesion. Texts are first lemmatized and grouped per sentence and 

paragraph before computing any cohesion metric. It also employs 

a part-of-speech tagger and synonym sets from the WordNet 

lexical database for the computation of these cohesion metrics, 

which are grouped among five categories: connectives, givenness, 

type token ratio, lexical overlap, and semantic overlap. 

Hence, a vector of 1,463 writing features was generated for each 

essay sample. Because of this huge number of features, [1] 

computed the correlation coefficients using the non-parametric 

Spearman correlation between every writing metric and holistic 

scores. The writing metrics were then sorted by the strength of 

association from strongest to weakest. Several subsets of writing 

metrics containing the most correlated metrics were created, that 

is, vectors with 192, 128, 96, and 64 writing features by essay 

sample were input into a deep neural network. The best results 

were delivered through the 96-feature dataset2, which is re-used in 

this study for rubric score prediction and for comparison with [1]. 

ASAP eighth essay dataset encloses holistic scores resolved by 

adjudication rules applied on the rubric scores of two human 

graders. Each human grader is asked to score the essay as per six 

rubrics and to assign a discrete number between 1 and 6 to each 

rubric. However, holistic scores are derived from only four rubric 

scores (1, 2, 5, and 6) according to the following formula: R1 + 

R2 + R5 + 2*R6. Each rubric score is the sum of the two human 

ratings except for cases in which the human ratings do not 

consistently agree with each other. In such cases, a third human 

rater scores the essay, assigning 1-6 scores to each rubric. The 

rubric scores are then calculated by multiplying the third human 

rater’s ratings by two. This involves that all rubric scores range 

from 2 to 12. However, ASAP only provides individual human 

ratings (1-6). Hence, this research work compiled those resolved 

rubric scores as described above. 

3. ANALYSIS & RESULTS 
The purpose of this study is to investigate the feasibility and the 

benefits of applying automated essay scoring at the rubric level. 

Rubric scores are a form of high-level formative feedback that can 

be provided both to student writers and teachers. Moreover, as 

depicted in Figure 1 [1], accurately predicting essays’ holistic 

scores on a wide scale (i.e., 10-60) when trained with a rather 

                                                                 

2 Project hosted on https://github.com/davidbo57/edm2019 

small sample dataset and an unbalanced score distribution proves 

a daunting task that goes far beyond computing a good “kappa” 

value, as publications subsequent to the ASAP contest continued 

to report. 530 (73.4%) essay scores out of 722 range between 30 

and 40 (40-60%), while 707 (97.9%) essay scores lie between 25 

and 50 (30-80%), leaving to the machine only three essays from 

which to learn high-quality writing (> 80%). 

 

Figure 1. Distribution of holistic scores. 

This paper hypothesizes that holistic scores would be better 

predicted through the prediction of its constituent rubric scores. 

For instance, if the distribution of holistic scores was uniform, 

there would be about 722/51=14 examples per holistic score, not 

much to learn all the intricacies of English writing. On the other 

side, the scale of rubric scores ranges from 2 to 12, implying that 

in the best case there would be 66 essays per rubric score, more 

essays from which to assess a narrower writing competence. 

Figure 2 exhibits the distribution of scores of each rubric. 

 

Figure 2. Distributions of rubric scores. 

Table 1 delineates the agreement levels among rubrics and shows 

that they generally strongly agree with each other. It can also be 

noticed from Figure 2 that the most frequent score within each 

rubric is “8,” suggesting that an AES system could naively predict 

scores of “8” for all rubrics and a holistic score of 40. The 

performance of such a naïve AES system (aka majority classifier) 

is measured by three metrics and reported in Table 2: the QWK, 

the percentage of exact predictions, and the percentage of adjacent 

predictions (off by 1). The QWK measures the level of agreement 

between two raters by controlling for random guessing and by 

penalizing exponentially (quadratic) higher distances between 

pairs of ratings. 

Both supervised classification and regression techniques have 

been leveraged to model rubric scores. Table 3 reports the 

performance of six distinct deep learning architectures trained, 

Table 1. Level of agreement among rubrics (QWK) 

 R1 R2 R5 R6 Avg. 

Rubric 1 - 0.88 0.79 0.68 0.78 

Rubric 2 0.88 - 0.80 0.71 0.80 

Rubric 5 0.79 0.80 - 0.79 0.79 

Rubric 6 0.68 0.71 0.79 - 0.73 
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Table 2. Performance of a naïve AES system 

 R1 R2 R5 R6 Avg. HS 

QWK 0 0 0 0 0 0 

Exact % 40.0 43.1 43.8 34.3 40.3 22.3 

Adj. % 72.0 72.3 74.1 60.0 69.6 26.5 

Avg.=Average of all rubrics combined; HS=Holistic scores 

validated, and tested on the ASAP eighth dataset and its derived 

96-feature dataset [1]. The 722 essays have been randomly split 

into a training set (85% = 614 essays) and testing set (15% = 108 

essays). Although validation results are not reported here, 5-fold 

cross-validation was performed for each architecture, implying 

that the training set was randomly split into a smaller training set 

(80% = 491 essays) and a validation set (20% = 123 essays). 

Furthermore, this study unsuccessfully attempted to replicate the 

results reported by [1], that is, a QWK of 0.80 by running 10 

times the available code. The obtained QWK values ranged 

between 0.51 and 0.74 with a mean of 0.63, suggesting that the 

results reported by [1] were subject to sampling error. Because 

this shuffling of essays among the training, validation, and testing 

sets combined with an unbalanced distribution of essay scores 

highly influence the machine learning and the resulting 

predictions, this study reports performance on the training and 

testing sets as the average of five replications [2] (different 

samplings) instead of picking up the “highest kappa” generated to 

avoid overfitting the AES models to the testing set. 

The first architecture is a classifier selecting the most likely rubric 

score among a set of 11 discrete scores between 2 and 12. The 

second architecture is identical except that it leverages in addition 

a bagging ensemble technique. In other words, each model trained 

per fold during cross-validation makes up a machine grader, 

giving five machine graders, each with its own “expertise,” that 

determine the final rubric score by averaging their predicted score. 

The third architecture is a regressor that computes a single real-

number score (e.g., 7.4398) and rounds it to the nearest integer, 

truncating it to 2 or 12 if the real number falls short or exceeds the 

scale. The fourth architecture is a regression ensemble (bagging). 

The fifth architecture is a regressor that considers the 

interdependencies among rubrics, from which holistic scores are 

derived. Thus, instead of predicting a single rubric score, this 

approach predicts all four rubric scores at once. Then the 

agreement level between the machine and the human graders for 

each rubric is analyzed and reported independently. Finally, the 

sixth architecture employs a bagging ensemble technique on top 

of the fifth architecture to predict rubric scores. Table 4 delineates 

the final hyperparameters of the various architectures. 

4. DISCUSSION & CONCLUSION 
Figure 2 shows that the most frequent score is “8” for all rubrics 

and that all rubrics have similar distributions except for Rubric 6. 

In addition, Table 1 shows that the rubric scores are highly 

dependent on each other, that is, they exhibit consistent agreement 

among them. The QWK values all range from 0.68 to 0.88. In 

particular, Rubric 6 has a slightly lower average agreement level 

with other rubrics (QWK=0.73) than the other rubrics (R1=0.78, 

R2=0.80, R5=0.79), which may account for its slightly different 

distribution. In practical terms, Rubric 6 being about grammatical 

and spelling conventions, this may relate to the intuition that the 

content and ideas, organization, or the sentence fluency of a text 

do not entirely depend on the mechanics of the student’s writing. 

Table 2 reveals that 40.0%, 43.1%, 43.8%, and 34.3% of the 

rubric scores have been given an “8” by the human graders. This 

implies that systematically assigning an “8” to all rubrics would 

“predict” on average exact and adjacent scores 40.3% and 69.6% 

of the times. An awesome performance for a completely naïve 

AES model! Interestingly, the QWK metric proves to be an 

effective indicator to detect random guessing as shown by the 0’s 

in every rubric. It is, therefore, imperative that trustable AES 

models reach exact and adjacent match percentages significantly 

higher than those of this majority classifier. 

By aggregating and selecting the best performance per rubric on 

the testing set, all architectures combined as demonstrated at the 

bottom of Table 3, it can be observed that on average the QWK’s 

lie between 0.48 and 0.55, much lower than the 0.80 QWK 

reported in [1] and the average 0.63 QWK replicated in this study 

Table 3. AES performance on training/testing set 

 R1 R2 R5 R6 

1. Classification 

QWK 0.61 / 0.52 0.69 / 0.52 0.66 / 0.43 0.66 / 0.49 

Exact % 52.2 / 49.2 57.0 / 49.9 53.8 / 44.4 57.5 / 51.0 

Adj. % 86.3 / 81.8 87.8 / 82.0 88.6 / 80.4 86.0 / 76.5 

2. Classification Ensemble 

QWK 0.62 / 0.52 0.66 / 0.51 0.64 / 0.43 0.68 / 0.5 

Exact % 51.4 / 47.3 55.3 / 49.0 52.9 / 43.3 56.7 / 49.7 

Adj. % 88.6 / 82.8 89.3 / 83.5 89.9 / 83.1 88.6 / 78.5 

3. Regression 

QWK 0.85 / 0.41 0.85 / 0.50 0.83 / 0.46 0.85 / 0.55 

Exact % 64.4 / 38.7 66.2 / 40.0 63.2 / 39.8 64.6 / 42.6 

Adj. % 97.6 / 83.5 98.1 / 86.2 98.4 / 85.7 98.5 / 87.7 

4. Regression Ensemble 

QWK 0.81 / 0.41 0.80 / 0.50 0.80 / 0.47 0.82 / 0.55 

Exact % 60.3 / 40.2 58.0 / 39.8 58.8 / 40.6 58.8 / 42.8 

Adj. % 97.1 / 86.8 97.4 / 87.2 98.1 / 86.8 98.3 / 87.7 

5. Multiple Regression 

QWK 0.76 / 0.52 0.77 / 0.48 0.78 / 0.48 0.76 / 0.52 

Exact % 53.9 / 41.8 54.1 / 38.3 54.7 / 39.3 48.8 / 34.1 

Adj. % 94.8 / 85.5 96.0 / 86.8 97.1 / 86.6 96.9 / 88.3 

6. Multiple Regression Ensemble 

QWK 0.72 / 0.51 0.74 / 0.52 0.75 / 0.47 0.72 / 0.52 

Exact % 51.4 / 40.0 52.2 / 39.6 51.9 / 41.3 46.4 / 33.4 

Adj. % 94.0 / 86.1 95.1 / 89.5 96.4 / 86.1 96.4 / 88.6 

Best Performances on Testing Set Combined 

QWK 0.52 0.52 0.48 0.55 

Exact % 49.2 49.9 44.4 51.0 

Adj. % 86.8 89.5 86.8 88.6 
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Table 4. Hyperparameters of deep learning architectures 

 Classification Regression 
Multiple 

Regression 

Layers 96-64-64-32-32-11 96-96-64-32-1 96-96-64-32-4 

Reg Dropout (0.6) Dropout (0.3) Dropout (0.2) 

Opt Adam Adam Adam 

Loss Cat. cross-entropy MSE MSE 

Act Elu, Softmax Elu, None Elu, None 

Epoch 200 500 300 

Batch 128 128 128 

Kernel  Normal Normal Normal 

Layers=Number of layers and number of nodes per layer; Reg=Regularization; 

Opt=Optimizer; Act=Activation function; Kernel=Kernel initialization  

from [1]’s code, meaning that a high agreement level between 

human and machine graders on holistic scores does not 

necessarily translate into an as high level of agreement on rubric 

scores. This may be surprising given the much smaller scale of 

rubric scores. Moreover, deep learning’s best exact match 

percentages range between 44.4% and 51.0%, only 4-11% higher 

than the majority classifier (40.3%). As for adjacent match 

percentages, on average rubric scores fall between 86.8-89.5% of 

the times around +/-1 the actual rubric scores compared to 69.6% 

for the majority classifier. In other words, approximately 39% of 

rubric scores are off by 1 and 12% are off by 2 or more. 

Research works having dealt with models predicting rubric scores 

trained on the ASAP datasets are quite rare. Among the very few 

is a feature-engineered AES system called SAGE [5], which was 

designed and tested using several machine learning techniques: 

linear regression, regression trees, neural network, random forest, 

and extremely randomized trees. The literature shows that SAGE 

appears to be currently the most powerful AES system in terms of 

agreement level (QWK=0.805) on ASAP eighth dataset. SAGE is 

unique in that it calculated for the first time 29 novel semantic 

coherence and 3 novel consistency metrics in addition to 72 more 

traditional linguistic and content metrics. Because these novel 

metrics were directly related to the second rubric (Organization), 

the authors also trained a model to predict the score of that rubric 

and reported a QWK of 0.70. However, it is not specified whether 

the agreement level was assessed using the 1-6 human rubric 

scores or the 2-12 resolved rubric scores. Interestingly, SAGE was 

tested using all the 1,527 [4] original essay samples available 

during the ASAP contest. Since only a subset (722) is now 

available since the contest is over, most research works have 

reported their performance on that subset, thus jeopardizing the 

fair comparison of those AES models against SAGE. Similarly, 

another AES system was implemented using a Common N-Gram 

classifier [3]. Each essay was represented by a set of n-grams, 

made up of either the actual words, stemmed words, or characters. 

The AES system trained two machine graders, both of which 

predicted rubric scores on the 1-6 scale. Table 5 reports the best 

agreement levels per rubric between the machine and human 

graders and between the two human graders as reported by [3]. 

Table 5’s results provide further evidence that high levels of 

agreement between machine and human graders on the ASAP 

eighth dataset’s holistic scores do not translate into similarly high 

agreement levels on the rubric scores, which again questions the 

humanlike “expertise” of AES systems [4]. This also leads to 

conclude that the ASAP eighth dataset, the best that the ASAP 

contest delivered in terms of realistic essays, is clearly insufficient 

to train effective AES models. To counter tentatively the 

imbalance in the distribution of holistic scores, this study 

retrained the six models described earlier and assigned weights to 

the essay samples based on the frequency of essays per holistic 

score as shown in Figure 1. Yet, the performances were inferior to 

those reported in Table 3 and, hence, not reported. 

Table 5. Best QWK results per rubric 

 Rubric 1 Rubric 2 Rubric 5 Rubric 6 

H1 0.482 0.455 0.489 0.454 

H2 0.394 0.377 0.459 0.436 

H1H2 0.523 0.533 0.498 0.532 

H1=1st human grader; H2=2nd human grader; H1H2=Agreement between both graders 

Finally, this paper analyzed the accuracy of the fifth and sixth 

models in predicting holistic scores out of the four predicted 

rubric scores to better explain how they are derived. The two 

models at best yielded on average a QWK of 0.56 and exact and 

adjacent match percentages of 12.5% and 26.8. This performance 

is equivalent or worse than the majority classifier. AES at the 

rubric level seems more challenging than it first appears. 

For comparison purpose, this study was constrained to only 

analyzing the dataset of the 96 most correlated metrics with 

holistic scores as used by [1]. However, next steps should include 

identifying the writing indices that really contribute to each rubric 

score and assessing the size of their contribution. This would 

imply training each rubric model many times, each time randomly 

selecting a new set of writing indices (e.g., 50) and analyzing how 

the rubric model’s performance and the weights of its neural 

network’s very first layers vary as the set of writing features 

change. Moreover, a hybrid feature-based and end-to-end deep 

learning architecture should be explored, combining both writing 

features from NLP tools and the raw texts input into a sequence 

model with an attention mechanism. This would produce very 

fine-grained feedback by not only providing rubric scores but also 

highlighting portions of an essay that contributed to the predicted 

holistic and rubric scores and reporting the suboptimal writing 

indices affecting these text passages, hinting student writers about 

the importance and ways to improve their writing. 
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ABSTRACT 
Determining how to select items for practice is an important task 
for any adaptive training system. Prior work has tried to create 
systems for second language learners (L2) to learn Mandarin tones, 
but such work does not often have a well-determined algorithm to 
choose items for practice. In order to develop a model for adaptive 
practice selection, we designed an experiment and asked L2 
learners on Amazon Turk to finish a series of tone learning trials. 
Using this data we ranked the difficulty level of the stimuli and 
incorporated a quadratic function of difficulty for prior successes 
and failures into the Performance Factors Analysis (PFA) model. 
Results of logistic regression were used to compute the optimal 
difficulty level for each tone. For the four Mandarin tones, the 
optimal difficulty scores were 0.86, 0.75, 0.54 and 0.60, 
respectively. Crossvalidated results showed that the new PFA-
Difficulty model had better performance than the original PFA 
model. While the advantage was not large, the new model allows 
for clear inferences about optimal item difficulty that can be used 
by an adaptive training system to select items for practice.  

Keywords 

Mandarin tone, Difficulty level, Performance factors analysis, 
Adaptive training. 

1. INTRODUCTION 
In Mandarin, there are four lexical tones: Tone 1, a high-level tone; 
Tone 2, rising tone; Tone 3, a low falling or low falling-rising tone, 
and Tone 4, a falling tone.  It is a challenging task for second 
language learners (L2) to distinguish four tones [1,2]. Adaptive 
training system is thought to be an effective tool to train learners to 
acquire new skills by selecting items and adjusting presentation 
orders to address learner variability.  

However, only a few studies have tried adaptive training systems 
for tone learning. Shih et al. [1] roughly selected items based on the 
talker-to-listener distance to control the task difficulty as they 
thought that the speech projected over a greater distance is easier 
while nearer is more difficult. Feiya Li et al. [2] used a hybrid 
training system which combined adaptive training with high 
variability phonetic training to train Japanese learners on Mandarin 

tones. However, they did not provide details of how they selected 
the items or developed the system. 

How to select materials according to learners’ capability is a crucial 
issue. The overall goal of this study was to develop a model for 
adaptive practice selection for Mandarin tone learning. While prior 
work by Pavlik and Anderson has computed optimal practice levels 
[3], this work relied upon a model of spaced practice to justify the 
inverted U-shaped optimal difficult curve that was derived. This 
seems infeasible in the domain of tone learning since spacing will 
always be rather narrow on average with only 4 tones. Another 
option is to select items based on their difficulty level. Research has 
shown that adapting the difficulty of training based on learners’ 
performance can improve the efficiency of training [4]. Similarly, 
Kelley [5] suggested that keeping an appropriate level of difficulty 
can make training effective. If a task is too easy, learners may learn 
very little probably because low levels of mental effort don’t cause 
as much learning. While if the task is too difficult, learners may be 
unable to encode the experience and show weaker learning. Thus, 
the relationship between difficulty and learning is likely similar to 
the Yerkes-Dodson law (often expressed as an inverted-U function) 
which suggests that there is an optimal level of arousal for an 
optimal performance, over or under arousal reduces task 
performance [6]. We hypothesized that students would benefit 
more from example practice in a medium range of difficulty when 
learning tones, the relationship between difficulty and learning is 
also in an inverted-U shape. 

Performance Factors Analysis (PFA) is a student model that traces 
predictions of individual students on knowledge components (KCs) 
using successes and failures [7], which might be helpful for 
developing effective adaptive technologies. KCs are “acquired 
units of cognitive function or structure that can be inferred from 
performance on a set of related tasks” [8]. Each tone can be 
considered as a KC. The original Performance Factors Analysis 
model is as follows.  
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In Equation 1, m is a logit value representing the accumulated 
learning of student i on one or more KCs j. β represents the easiness 
of each KC. s and f track the prior successes and failures of the 
student on each KC. γ and ρ scale the effect of the observation 
counts. Equation 2 shows the standard conversion from logit to 
probability prediction. 

Even though prior successes and failures are strong indicators of 
student learning, tracking the counts of prior successes and failures 
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is meaningless for item selection without some rule for what to do 
with the predictions once they are computed. From the results of 
PFA model, we can know whether correct or incorrect responses 
lead to more learning on each KC, but this can’t be used to select 
items since if the success coefficient is higher than the failure 
coefficient, this implies us to minimize the difficulty and choose 
practices that maximize immediate success. However, the 
pedagogical theories we reviewed suggest that it is misguided. Thus, 
we need to revise the PFA model to capture a curvilinear effect of 
prior practice difficulty of learning. 

To achieve this goal reliable data is needed on the learning 
functions for 4 tones. We designed an experiment to gather data and 
planned to use this data to analyze learning as a function of these 
prior difficulty factors.  

2. METHOD 
2.1 Participants 
325 participants on Amazon Mechanical Turk (MTurk) finished the 
practice. Participants needed to meet the following criteria: be over 
the age of 18, have little knowledge of Mandarin tones and no 
hearing problems, and have successfully completed 100 MTurk 
tasks previously with 95% acceptance. 70 of them were excluded 
because of technical problems. 49 of them were excluded as their 
scores were lower than 0.31, which would mean a 95% likelihood 
of chance performance. 206 participants were used in the analysis 
below (Female = 90, Male =116).  

2.2 Stimuli 
We synthesized varied stimuli with 4 tones, 3 syllables (ma, mo, 
and ya), 3 durations (400ms, 800ms, and 1200ms), 3 expansions 
(1.0, 1.4, and 1.8), and 2 gender voices (male and female). There 
were 216 stimuli. The fundamental frequency (f0) were controlled 
in MATLAB and overlaid onto syllables in PRAAT [9]. 

2.3 Procedure 
We used the Mobile Fact and Concept Training System 
(MoFaCTS) which is a flashcard (one-step drill) learning system 
that can be used to schedule experimental practice [10]. Participants 
needed to finish 216 trials with feedback. For each trial, they 
needed to listen to the tone and choose the correct answer. If the 
answer was correct, the system would show the feedback and then 
immediately went on to the next trial. However, if the answer was 
incorrect, the system would replay the tone and showed the correct 
answer for 6 seconds.  

 
Table 1.  Learning conditions 

Factor Conditions Trials 1-72 Trials 73-216 
Syllable 6 e.g., ma e.g., ma, ya 
Duration 6 e.g., 400ms e.g., 400ms, 800ms 

Expansion 6 e.g., 1.0 e.g.,1.0, 1.4 
Gender 6 e.g., male e.g., male, female 
 

The dependent variable was learners’ correctness on the trials. The 
experiment was a mixed between and within subject design. Tone 
was a within-subject variable while other variables were mixed 
between and within subject variables. Participants were randomly 
assigned to one of the 24 learning conditions (see Table 1). On each 
factor, there were 6 conditions counterbalancing the stimuli 
participants learned. The factors listed in the table did not vary 

while other factors varied. For example, in a condition on syllable, 
participants first learned 72 trials of ma (3 duration×3 expansion
×2 genders×4 tones=72), then they learned another 144 trials 
which randomly mixed the first 72 trials of ma and another 72 trials 
of ya. The goal of this design was to look for both learning from 
repetition of items and transfer to similar items. 

2.4 Statistical Analysis 
To create a model to determine the optimal practice difficulty, we 
incorporated prior practice difficulty into the PFA model to see how 
the difficulty influences learning gains for successes and failures. 
Since we didn’t have a quantitative theory on the exact shape of the 
inverted U relating learning and difficulty, we used the simple 
quadratic equation below because it was computationally tractable 
compared to alternatives. In Equation 3, y represents the effects of 
learning from each item, where x represents the difficulty level of 
the item. 

bxax += 2y  (3) 

Then the new formula of Difficulty PFA model takes the following 
form (see Equation 4). We track the effects of prior difficulty level 
using quadratic equations for both prior successes and failures to 
replace the counts.    
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We have emphasized that keeping an optimal level of difficulty of 
items might be beneficial for learning. The new model can help us 
find at what difficulty level, learners’ performance improves the 
most. To use the new model, we first did logistic regression to 
determine the difficulty of the items (Model 1 below). Then we 
formed the new PFA model (Model 2 below) which incorporated 
the prior practice difficulty and compared it with the original PFA 
model. Following this, we used the coefficients to graph of the 
optimal difficulty level for each tone. All analyses were completed 
in R, with source code available from the corresponding author. 

3. RESULTS 
 

Table 2. Results of logistic regression 

Model Predictors Mean test 
fold R2 

Mean test 
fold RMSE 

Model 
1 

Tone:Duration:Gender: 
Syllable:Expansion 0.1148 0.4604 

Model 
2 

Tone:Duration+ 
Diffeffectcor1:Tone+ 

Diffeffectincor1:Tone+ 
Diffeffectcor2:Tone+ 
Diffeffectincor2:Tone 

0.1872 0.4388 

Model 
3 

Tone:Duration+ 
CF..tonesubcor.:Tone+ 
CF..tonesubincor.:Tone 

0.1841 0.4397 

 

Model 1 (see Table 2, where the R code : indicates interactions) 
was done to get a constant coefficient for all the items to represent 
their difficulty score. The higher the coefficient, the easier the item. 
Model 2 was the new model we created which incorporated prior 
practice difficulty into the Performance Factors Analysis model. 
Tone by duration interaction was used as the intercept to represent 
the prior easiness of the KCs. Diffeffectcor1 is the sum of difficulty 
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scores of prior successes. Diffeffectcor2 is the sum of squared 
difficulty levels of prior successes. Similarly, Diffeffectincor1 and 
Diffeffectincor2 represent prior failures. Their interaction in the 
model with tone means tracking of each of the 4 tones as individual 
KCs. Model 3 was constructed according to the original PFA 
model. CF..tonesubcor. and CF..tonesubincor. tracked the counts 
of prior successes and failures on each tone. In order to assess 
whether the results of the models could generalize to an 
independent data set or not, we did 10-fold cross validation 100 
times for each model and calculated the mean of R2 and RMSE (see 
Table 2). The crossvalidated test fold R2 of Model 2 was larger than 
Model 3, and the crossvalidated test fold RMSE was smaller than 
Model 3 which all indicated that Model 2 had better performance 
than Model 3. 

 
Figure 1. Plots of logit change given the difficulty level for each 
tone. The x-axis represents the difficulty score, and the y-axis 
represents the logit change. Given the difficulty value x, we can 
get y amount of change in logit per trial. 

Our next step was to use Model 2 to infer the optimal difficulty 
level of items for learning. Since logistic regression tracks an 
underlying linearly increasing strength, “the logit”, we decided to 
use this as the quantity we wanted to be maximal for each repetition 
of practice. While more complex questions can be asked, such as 
considering the gain/cost, for this initial work we wanted to show 
only the gain function as a proof of concept that this method could 
be used to create pedagogically significant models. 

From the results of Model 2, we used the coefficients of each 
parameter and computed the logit function increase or decrease as 
a function of difficulty on each tone (see Table 3). Then we plotted 
the functions and found the maximum values of logit change (see 
Figure 1) for the range of difficulty in the data. For Tone 1, the 
change in logit per trial is the largest when the difficulty score is 
0.86, For Tone 2, Tone 3, and Tone 4, the difficulty scores are 0.75, 
0.54 and 0.60, respectively. 

 
Table 3. The function logit change of difficulty level 

Tones Range of 
difficulty (x) The function logit change  

Tone 1 0.519 to 0.940 x*(0.276*x-0.26*(x)2) + 
(1-x)*(-0.27*x+0.19*(x)2) 

Tone 2 0.421 to 0.756 x*(0.19*x-0.20*(x)2) + 
(1-x)*(-0.19*x+0.19*(x)2) 

Tone 3 0.160 to 0.742 x*(0.45*x-0.57*(x)2) + 
(1-x)*(-0.12*x+0.014*(x)2) 

Tone 4 0.211 to  0.800 x*(0.59*x-0.68*(x)2) + 
(1-x)*(-0.13*x+0.017*(x)2) 

 

4. DISCUSSION 
In this study, we collected learners’ Mandarin tone learning data on 
Amazon Turk and found that tone and duration were the most 
important factors predicting learners’ performance, but many 
different factors determined difficulty for items of each tone. Then 
we replaced counts of prior successes and failures with the 
quadratic functions of the difficulty level of prior practice. 
Crossvalidated results showed that the performance of the revised 
“PFA-Difficulty” model was better than the original PFA model. 
Even though the quantitative benefit was not large, it is very 
meaningful for later item selection. Different tones have different 
optimal difficulty levels. For the four tones, the optimal difficulty 
scores were 0.86, 0.75, 0.54 and 0.60, respectively. 

While we show the computation to produce these curves from the 
model coefficients for each tone, it may not be obvious how the 
underlying correctness and incorrectness each show interpretable 
curves as a function of difficulty. Figure 2 shows the correctness 
and incorrectness curves separately for tone 1 (plotted using either 
the 2 correctness coefficients, top, and the 2 incorrectness 
coefficients, bottom). As we can see, only the correctness curve 
(top) has an inverted U-shape individually. This follows the 
“Goldilocks principle” and the zone of proximal development 
theory which all propose that practices should be neither too easy 
nor too hard [11,12]. The result also makes intuitive sense, since it 
is commonly understood that practice needs to match a student’s 
current level of proficiency. 

The incorrectness curve in Figure 2 (bottom) is less intuitive, but it 
helps to remember that PFA’s adaptive nature means that in some 
cases, and for our data here, the coefficient for failure is negative. 
The figure means that when a learner gets it wrong, the penalty is 
monotonically more negative as difficulty is less. This again makes 
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sense since we might expect that if a student gets the easiest items 
for a KC wrong, the proficiency estimate for that KC should be 
adjusted more negatively. 

 
Figure 2. Correctness curve (top) and incorrectness curve 

(bottom) for Tone 1. The x-axis is the difficulty score, and the 
y-axis is the logit change. 

 
The PFA-Difficulty model considered the difficulty level of items 
instead of simply counting. The quadratic function means that the 
relationship between practice difficulty and learning is nonlinear 
[5]. According to this perspective, there should be a point between 
maximum and minimum difficulty where learning is maximal. This 
may be true for multiple reasons, for example, keeping item 
difficulty at an intermediate level could help to maintain learners’ 
motivation and persistence at a higher level [13].   

Our finding in this study is the first step to construct an “optimal” 
adaptive training system. To achieve adaptive training we need to 
constantly adjust the difficulty level of items selected in order to 
keep performance near the pre-defined level [13]. However, the 
analysis we showed used static difficulty predictions, which means 
that the curves we computed are not sensitive to changes in 
performance. In other words, they answer the question of which 
specific item is optimal overall, but they do not say how the choice 
of the optimal item also depends on the change of performance due 
to learning. Intuitively, and in preliminary tests, it seems that we 
need to input learners’ learning rate into the initial model of 
difficulty, so the curves will predict optimal learning as a function 
of performance difficulty (which includes both item difficulty and 
learning) instead of only item difficulty. That is the direction for 
current work which is out of the scope of this preliminary report. 

5. CONCLUSION 
This paper incorporated the prior practice difficulty into the PFA 
model using a quadratic function of the difficulty level and proved 
that the new model was a little better than the original PFA model. 
The new model could be considered an update or a variant of the 

PFA model which could better track students’ learning and provide 
corresponding guidance. It is particularly useful for item selection 
when constructing an adaptive training system since it leads to 
specific predictions about the most optimal item to practice, given 
a set of possible items for some KC. 

6. ACKNOWLEDGMENTS 
The present research was funded by the LearnSphere NSF grant 
#1443068. 

7. REFERENCES 
[1] Shih, C., Lu, H.Y.D., Sun, L., Huang, J.T. and Packard, J., 

2010. An adaptive training program for tone acquisition. 
In Speech Prosody 2010-Fifth International Conference.  

[2] Li, F., Xie, Y., Yu, X. and Zhang, J., 2016, October. A study 
on perceptual training of Japanese CSL learners to 
discriminate Mandarin lexical tones. In 2016 10th 
International Symposium on Chinese Spoken Language 
Processing (ISCSLP) (pp. 1-5). IEEE. 

[3] Pavlik Jr., P.I. and Anderson, J.R., 2008. Using a model to 
compute the optimal schedule of practice. Journal of 
Experimental Psychology: Applied 14, 2, 101–117. 

[4] Landsberg, C.R., Astwood Jr, R.S., Van Buskirk, W.L., 
Townsend, L.N., Steinhauser, N.B. and Mercado, A.D., 
2012. Review of adaptive training system 
techniques. Military Psychology, 24(2), pp.96-113. 

[5] Kelley, C.R., 1969. What is adaptive training?. Human 
Factors, 11(6), pp.547-556. 

[6] Cohen, R.A., 2011. Yerkes–Dodson Law. Encyclopedia of 
clinical neuropsychology, pp.2737-2738. 

[7] Pavlik Jr, P.I., Cen, H. and Koedinger, K.R., 2009. 
Performance Factors Analysis--A New Alternative to 
Knowledge Tracing. Online Submission. 

[8] K. R. Koedinger, A. T. Corbett, and C. Perfetti, “The 
Knowledge-Learning-Instruction framework: Bridging the 
science-practice chasm to enhance robust student learning,” 
Cognitive science, vol. 36, no. 5, pp. 757–798, 2012. 

[9] G. M. Bidelman and C.-C. Lee, “Effects of language 
experience and stimulus context on the neural organization 
and categorical perception of speech,” NeuroImage, vol. 120, 
pp. 191–200, Oct. 2015. 

[10] Pavlik, P.I., Kelly, C. and Maass, J.K., 2016, June. The 
mobile fact and concept training system (MoFaCTS). 
In International Conference on Intelligent Tutoring 
Systems (pp. 247-253). Springer, Cham. 

[11] Halpern, D.F., Graesser, A. and Hakel, M., 25. Learning 
principles to guide pedagogy and the design of learning 
environments. Washington, DC: Association of 
Psychological Science Taskforce on Lifelong Learning at 
Work and at Home. 

[12] Vygotsky, L., 1986. Thought and Language. MIT Press, 
Cambridge, Mass. 

[13] Treleaven, A.J., 2016. Improving reading performance in 
peripheral vision: An adaptive training method (Doctoral 
dissertation, The Ohio State University).

 

519 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

Q) 
Ol 
C 

"' {i 
·o, 
0 
_J 

Q) 
Ol 
C 

"' {i 

Ol 
0 
_J 

"' ~ -
D 

D 

~ -
D 

"' 8 -
D 

D 

8 -
D 

0.6 

D 

"' D -
C/ 
D 

"' D -
q 

D ,.__ 
D -
q 

D 
ro -D 

9 I 

0.6 

0.7 0.8 

Difficulty score 

I I 

0.7 0.8 

Difficulty score 

0 

0 

0.9 

I 

0.9 



Parent as a Companion
for Solving Challenging Math Problems:

Insights from Multi-modal Observational Data

Lujie Chen
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA USA

lujiec@andrew.cmu.edu

Eva Gjekmarkaj
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA USA

egjergji@andrew.cmu.edu

Artur Dubrawski
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA USA

awd@cs.cmu.edu

ABSTRACT
Parents play key roles in forming their children’s trajecto-
ries of development. Parental involvement has been stud-
ied in early grade reading and math facts’ practices. How-
ever, their hands-on engagement with children’s math prob-
lem solving activities, in particular with the goal to develop
higher order problem solving skills and promote persever-
ance behaviors, has not received substantial attention yet.
With the goal to understand the dynamic interplay between
children’s affective and cognitive processes and parents’ sup-
port, we have collected multi-modal data of multiple parent-
child dyads where parents serve as companions for their chil-
dren while working through challenging math problems at
home. In this paper, we report some initial findings with
this data which has been annotated with a combination of
automatic and manual methods.

Keywords
math problem solving, multi-modal learning analytics

1. INTRODUCTION
Different from math practices, non-routine math problems
are those for which no immediate solutions are available.
Whether or not one may eventually solve such a problem
depends not only on the activation of prior conceptual and
procedural knowledge, but also on the mastery of general
problem solving strategies, meta-cognitive skills, as well as
the habit of mind to persevere through impasses or uncer-
tainties.

Though researchers have explored in-school interventions for
supporting development of perseverance [3], and the com-
mon core standard lists mathematical perseverance as one
of the math practice standards since its inception, it comes
however without a clear guideline on how to operational-
ize it in a real-world school environment with constrained
resources.

One alternative answer to that challenge is to look for so-
lutions beyond schools. Parents are typically not trained as
professional educators, however, from daily interactions they
often gain rich insights into their own child’s stable traits
such as personality, interest, self-efficacy and self-control,
which provide valuable information in estimating the child’s
tolerance to frustration - an important parameter to guide
the support.

The ultimate goal of our project is to explore a model of
at-home intervention where parents are motivated to engage
with their own child in solving challenging math problems on
a regular basis. Perseverance habits, though believed to be
malleable, take time and consistency to develop. The main
challenge in implementing effective interventions is thus the
consistency of time investment given the busy schedules of
modern parents. We envision a Fitbit 1-like tracking tool
that can measure and report a child’s exposure to strug-
gle, that can analyze and give feedback on parents’ coaching
strategies, and that can motivate and engage both the parent
and the child by providing data driven analysis to stimulate
ongoing conversation, reflection, and improvement.

As the first step toward this vision, we set out to explore
the feasibility of the envisioned work flow by collecting and
analyzing high resolution observational data of parent-child
dyads at home while they are working on challenging math
problems together. From those baseline data, we aim to de-
velop a suite of relevant metrics and analytical methods that
can facilitate the reflection and improvement for the child
and parent. In addition, we explore the opportunities and
practical challenges for automating the analysis by leverag-
ing machine learning techniques. This paper reports the first
attempt along these lines of investigation.

2. RELATED WORK
Tutorial dialogues with expert tutors have been studied ex-
tensively to identify effective tutoring strategies with more
recent work contextualizing the students’ emotional profiles
[4]. In addition, work has been done to study negative emo-
tions such as confusion and frustration when students are in-
teracting with computer systems [1]. Our work builds upon
those studies, however with a different goal: to model par-
ents as imperfect tutors and help them to become better,
along with their pursuit of promoting perseverance behav-

1https://www.fitbit.com/
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ior in their children via solving challenging math problems
at home. Our work also builds on rich mathematical prob-
lem solving literature. Though those studies mostly focus
on older student population (high school and beyond), their
frameworks of math problem solving are still relevant.

3. STUDY PROTOCOL
Children within age ranges of eight to twelve years old (or
third to sixth grades) and their parents are recruited from a
local community. They meet at least one of the two criteria:
(1) The child shows interest in math problem solving; (2)
The parent is interested in developing math problem solv-
ing skills in his or her own child. The data were collected
at home by parents using a webcam (Logitech 1080P) and
digital pen (Livescribe 2GB Echo Smartpen).

In each session, the child works through one problem and
the parent provides support standing by on the child’s side
as needed. Parents are advised to choose the problems that
are most likely to challenge their children thus inducing a
certain amount of confusion or frustration.

4. DATA SET OVERVIEW
Data from 42 sessions were collected, however, data from
6 sessions were excluded due to child’s limited amount of
exposure to struggles. For the remaining 36 videos, the cu-
mulative duration of is about 307 minutes, with a mean du-
ration of 7.9 minutes per session. The shortest session lasts
about 2.7 minutes while the longest one is about 21 minutes.

We used OpenFace [2] tool to extract features related to the
child’s head movements and rotations (i.e. roll, pitch and
yaw), and eye gaze orientations. In addition, we also used
the FACET tool to extract estimation of 6 basic emotions
as well as confusion and frustration.

We annotate talking episodes for both child (child-talk) and
parent (parent-talk). The annotation is done at the utter-
ance level. In addition, we annotate the child’s eye gazes
which are round trips of child’s head poses and eye gaze
changes toward his or her parent and back. Based on those
annotations of discrete events and intervals, we compute
continuous intensity measures derived from event intervals
smoothed by Gaussian kernels over time. This measure
combines event frequency and duration, so that many short
episodes of talking are equivalent to a few long episodes.

4.1 An Example Session
Figure 1 shows one example session with a subset of fea-
tures (affect estimations for joy, confusion and frustration,
writing speed and eye blinks), together with annotation for
child and parent’s talk and child’s eye gazes (presented as
intensity measures mentioned above). This session lasts for
about 8 minutes. The child was working on a word problem
that requires him to piece together the information from the
problem and reason through it in order to get the answer.
His mother provided moderate amount of support along the
way. Details of the progression are as follows:

• Phase A: The child reads the problem out loud during
the first 17 seconds;

• Phase B: The child jots down some notes on paper
(as seen by spikes in writing speed) and tries to make
sense of the information given, while brief moments of
confusion and frustration are noted. This episode lasts
for about 1 minute;

• Phase C: He continues to reason through the problem,
noted by the decrease of eye blinks during this period
of time, which might be linked to an increase in cog-
nitive load. This episode lasts about 1.5 minutes;

• Phase D: This phase starts with the parent’s sugges-
tion to re-read the problem which results in a mod-
erate amount of intervention where the parent guides
the child through the reasoning process and provides
confirmation from time to time. The child’s eye gaze
occurs concurrently with the interaction. It is worthy
to note that the child exhibits a substantial amount of
persistent confusion and a few brief episodes of frus-
tration. The eye blinks in the first half of the phase are
low suggesting high intensity of thinking. This phase
ends at the 7th minute where the child completed solv-
ing the problem and wrote down the solution.

• Phase E: This is a reflection phase in which the par-
ent suggests an alternative way in solving the problem
using a number line. The child listens attentively as
manifested by the high intensity of concurrent eye gaze
episodes.

It is worth mentioning that the two spikes of joy during
phases C and D are indeed ”false positives”. The child was
in a neutral emotional state while speaking sentences with
phrases such as ”adding eight” which was mistakenly picked
up by the affect detector as smiles, possibly triggered by the
activation of two joy/happiness related facial action units
”cheek raiser”(AU6) and ”lip corner puller” (AU12).

5. RESULTS
In this section, we present preliminary analysis of the data
set, mainly based on the manual annotations of the dialogue
interactions of the parent-child pairs, as well as each individ-
ual child’s eye gaze events. Where necessary, we incorporate
automatically derived features such as the emotional states.

5.1 Parent-child verbal interaction patterns
Figure 2 shows the ratio between the amount of the child’s
talk and parent’s talk summarized at session levels, grouped
by subjects. This ratio is a proxy for the amount of par-
ents’ intervention during the problem solving process. For
example, a session where the child is driving the process
is expected to have a higher ratio whereby for sessions in
which parents take control are likely to have lower ratios.
This is the case for subjects A002 and A003, who are sib-
lings coached by the same parent that tends to spend a large
chunk of time working through problems with the child at
each detailed step. On the contrary, the parent for subject
A004 seats back and allows her child ”struggle”first and only
intervenes as necessary. When intervening, she often gave
high level guidance and brief feedback along the way. Also
of note, there are between-session variations for the same
subject as the case for subject A005. This could possibly be
explained by the varying challenge levels of the problems. If
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Figure 1: An example session illustrating the evolution of emotional profiles (Joy, Frustration and Confusion),
parent and child’s talking episodes, event intensity, writing speed and eye blinks estimation, within the context
of problem solving phases from A to E.
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Figure 2: The ratio between amount of child-talk
and parent-talk per session, grouped by subjects.
The vertical axis is logartithmically scaled.

the problem is relatively easy, the child does not need much
help and the ratio is high, otherwise, parents need to offer
more hands-on help which drives the ratio down.

5.2 Child Gaze Analysis
Gazes are natural ingredients of inter-personal communi-
cations which may carry rich meaning and trigger a vari-
ety of responses. During the problem solving process, the
child may use gazes to express confidence, confusion or frus-
tration, or signal the need for support. Here, we use 524
instances of individual child’s gazes toward their parents
as ”anchoring points” to infer their cognitive and affective
states, as well as the parents’ response patterns. Since gazes

are closely related to the verbal interaction patterns between
the parent and the child, we differentiate gazes that occur
when the child is the driver of the conversation (”talking
gazes”) and those that occur when the parent is talking and
the child is listening (”listening gazes”). However, if we note
that a child looks at his or her parent without any accom-
panying talking episodes, and possibly is waiting for an ap-
proval or a confirmation response from the parent, we then
label those as ”approval gazes”.

5.2.1 Gaze Type Distribution
Figure 3 summarizes the gaze-type distribution by subject.
It is not surprising to see that talking gaze accounts for
the majority of most subjects except for subjects A002 and
A003, which could be attributed to the fact that their parent
was in the ”drivers’ seat”for the majority of time, as revealed
by the child-parent talk ratios in Figure 2. As noted, ”ap-
proval gazes”are relatively rare, and they may be completely
missing for some subjects such as A002, A004 and A005.

5.2.2 Analysis of Talking Gazes
For 295 talking gazes, we further annotate whether the child’s
utterances are displaying reasoning which are suggestive of
deep thinking processes or they are simply reading out loud
the problems or describing the procedures such as solving
an equation. Furthermore, for those talking gazes to which
parents responded within 5 seconds (n=203), we annotate
whether or not the feedback that the parents gave indicated
positive confirmations. Examples of positive feedback are
those with key words such as ”okay”, ”good”, ”yes”, ”you are
right” etc.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 522

0 [[] [gJ [[] [I] 
010 I 

I ' Joy O.OII 

I ' ' ' 000 ' - . : ' • 03 ' 
Frustration 0.2 ' 

0 1 .i ' I _J 
~ --18 

Confusion 10 
08 ---00018 

Child Talk 00010 
0 OOOII ..J. 
00018 

i!! ...! ... ' -Parent Talk 00010 

0 OOOII --~! 
Child Eye 00018 A Gaza 

00010 ' 
0 OOOII 

:1 A A -- --1000 
Writing 

800 
Spead • 0 

1 0 

~ Eye Blink 
08 

(AU45) 
00 

0 2 3 ' "' 5 6 7 6 
Tlme elepeed since session sterts (ln mlnut") 



0

25

50

75

100

A001 A002 A003 A004 A005 A006 A007

Subject ID

G
az

e 
Ty

pe
s 

P
ro

po
rt

io
n 

(%
)

approval listening talking

Figure 3: Relative frequencies of gaze types,
grouped by subjects.
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Figure 4: Proportion of talking gazes where child
displays reasoning.

5.2.3 Whether a Child is Displaying Reasoning?
Figure 4 shows the likelihood that a child is displaying rea-
soning given a talking gaze, aggregated for each subject. As
shown, for subjects A004 and A005, they are more likely
than others to display reasoning. Interestingly, as noted in
Figure 2, those two subjects are the ones with above-the-
average child-to-parent talk ratio. The connection is not
clear however, because these subjects also exhibit a more
mature problem solving personalities, and are thus conduct
more independent thinking, all the while their parents’ de-
cision to stay back forces them to think more on their own.

5.2.4 Whether Parent Gives Positive Feedback?
In Figure 5 we summarize the likelihood of a parent giving
a positive response to the child’s talking gaze, grouped by
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Figure 5: The likelihood of the parent giving posi-
tive feedback when they respond.

subject. We note that the parent for subject A005 tends to
give more positive feedback than others. It may suggest that
the child is progressing nicely or that the parent chose to be
more encouraging than average. Regardless of the reason,
positive reinforcement like this is likely to have a positive
effect on the child’s experience, encouraging them to take
on more challenging problems in the future.

6. DISCUSSION AND FUTURE WORK
In this paper, we reported data collection and preliminary
analyses of 36 sessions of math problem solving by primary
school children obtained from 7 parent-child dyads recorded
at home by parents. We found that even with simple metrics
derived from child and parent talking patterns and eye gazes,
we may probe insights into a child’s problem solving process
when supported by a parent. Specifically, we were able to
obtain session-level estimates of the amount of parents’ sup-
port being offered by looking at the talking patterns. We
were also able to get a deep understanding of a child’s over-
all cognitive processes and emotional experience from a set
of analyses anchored on the child’s gazes. Future work will
take those analyses to the level of moment-by-moment, so
that we could have a better understanding of the dynamic
interplay between parents’ real time decisions in terms of the
timing and the types of support, and the child’s responses
and experiences. Ultimately, the research presented in this
paper will help develop real-time assistance tools for both
the parent and the child, in order to guide both towards
more effective home practice experiences.
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ABSTRACT
We analyze gender differences in performance assessments and
student satisfaction data for nearly 9,000 students enrolled in un-
dergraduate work-integrated learning (WIL) programs in a large
North American university. Our analysis leads to two main find-
ings. First, women receive slightly higher performance appraisals
from their WIL employers. Second, men appear to be more sat-
isfied with their WIL experiences, especially with compensation,
networking opportunities and the ability to make meaningful con-
tributions, while women appear to be happier with the availability
of employer support.

1. INTRODUCTION
The gender gap is Science, Technology, Engineering and Mathe-
matics (STEM) is well-documented: studies have shown that fewer
women obtain STEM degrees and continue with STEM careers.
Some researchers found that work experiences drive attrition more
than other factors [5, 7]. However, as noted by Kauhanen et al.,
[8] while research on gender differences focuses on later career
stages, early career experiences can greatly affect subsequent ca-
reer choices. To fill this gap, we investigate gender differences in
early engineering careers. We observe that work-integrated learn-
ing (WIL), or co-operative (co-op) education, has become part of
undergraduate engineering curricula worldwide. In WIL programs,
students alternate between classroom study terms and work terms.
These work terms correspond to students’ first experiences in the
engineering workplace.

Our analysis is enabled by access to unique datasets, covering a
year of WIL performance appraisals and student satisfaction data
for nearly 9,000 undergraduate engineering students in a large
university. Our main findings are as follows. In terms of per-
ceived competencies, women tend to receive higher performance
appraisals from their WIL employers. In terms of satisfaction, a
focused analysis on a second batch of students suggests that men
appear to be more satisfied with their WIL experiences, especially
with compensation, networking opportunities and the ability to
make meaningful contributions, while women appear to be happier
with the availability of employer support. However, these results

Table 1: Student performance evaluation criteria

1. Interest in Work

2. Ability to Learn

3. Quality of Work

4. Quantity of Work

5. Problem Solving

6. Teamwork

7. Dependability

8. Response to Supervision

9. Reflection

10. Resourcefulness

11. Ethical Behaviour

12. Appreciation of Diversity

13. Entrepreneurial Orientation

14. Written Communication

15. Oral Communication

16. Interpersonal Communication

should be interpreted with caution: they are based on one year of
WIL data from a North American institution, but gender differences
are also influenced by cultural factors.

2. DATA AND METHODS
We analyze one year of WIL performance appraisal and student sat-
isfaction data (September 2015 to August 2016) for 8,956 students
enrolled in engineering or computer science programs (abbreviated
as ENG). At the end of each work term, WIL employers give their
student employees an overall evaluation on a 7 point scale (Unsat-
isfactory, Marginal, Satisfactory, Good, Very Good, Excellent and
Outstanding Performance), and a detailed evaluation on 16 criteria
listed in Table 1, also on a 7 point scale, grouped into Developing
(1-2), Good (3-5) and Superior (6-7), or “N/A” indicating not appli-
cable. The evaluator’s gender is unknown. Additionally, students
rate their employers from one to ten (ten being most satisfied).

The academic programs within ENG are Computer Science and En-
gineering (38% of ENG), and Mechanical (21%), Industrial (9%),
Electrical (8%), Chemical (8%), Civil (7%), Environment (5%),
Nanotechnology (5%) and Biomedical (1%) Engineering. We con-
sider three groups of students: all ENG students, only Computer
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Table 2: Gender breakdown by program

Group Seniority Students % Men % Women

All 8956 77% 23%
ENG Junior 3828 74% 26%

Senior 2144 81% 19%

All 3381 84% 16%
COMP Junior 1523 82% 18%

Senior 693 87% 13%

All 1843 87% 13%
MECH Junior 780 83% 17%

Senior 490 90% 10%

Table 3: Student satisfaction criteria

1. Availability of employer support

2. Opportunities to learn or develop new skills

3. Opportunities to make meaningful contributions at work

4. Opportunities to expand your professional network

5. Appropriate compensation and/or benefits

6. How closely was the work related to your academic program

7. How closely was the work related to the skills you are
developing at university

Science and Engineering students (abbreviated COMP) and only
Mechanical Engineering students (abbreviated MECH). We single
out COMP and MECH since these are the two largest programs in
the dataset. Since we are analyzing students’ work experiences, we
measure student seniority in terms of the number of work terms
completed rather than the academic level: junior students are those
who have completed 0 or 1 work terms and senior students are those
who have completed at least 4 work terms. The sizes and the gen-
der mix of the different populations under study are summarized in
Table 2.

Additionally, we analyze two semesters of data (4,888 students)
from a pilot program run from January to August 2017 to explore
students’ satisfaction with their work terms. In addition to giving
an overall satisfaction score, students provided a score from 1 to 5
(with 5 being most satisfied) for the seven questions listed in Ta-
ble 3. This dataset overlaps with the other 2015/2016 dataset, but
some students from the other dataset have graduated by 2017, and
there are new students who enrolled in Fall 2016 and had their first
work terms in 2017.

We start by comparing the average overall evaluations of men and
women by their WIL employers using the Mann-Whitney test.
Then, for each of the 16 evaluation criteria listed in Table 1:

1. We compare the average scores of men and women using the
Mann-Whitney test,

2. We use a proportion test to compare the fraction of men
and women receiving “Developing”, “Good” and “Superior”
scores,

3. We use a proportion test to compare the fraction of men and
women receiving “N/A”.

We chose the Mann-Whitney test because it is suitable for the Lik-
ert scale used in performance evaluations. Next, to examine dif-
ferences in satisfaction from the student’s perspective, we use the
2015/2016 dataset to calculate average student’s evaluations of the
employers and compare them using the Mann-Whitney test (again,
because of the ordinal nature of the data). We use the same method
on the 2017 dataset to identify significant differences in the seven
specific satisfaction criteria (Table 3). We repeat each analysis on
all, junior and senior students in ENG overall, COMP, and MECH.
We use a P-value of 0.05 for all tests.

3. RESULTS
3.1 Workplace Performance Evaluations
Table 4 shows gender differences in all of ENG in the overall per-
formance rating and in the 16 evaluation criteria. We report results
of the Mann-Whitney test for the differences of means as well as
results of the proportion tests for the fractions of students whose
skills were rated as “Developing”, “Good”, “Superior” and “N/A”
(recall Section 2). Furthermore, Table 5 shows the Mann-Whitney
tests separately for COMP and MECH, and for juniors and seniors.
For statistically significant differences, we report the absolute dif-
ference (for the Mann Whitney test) or the percentage difference
(for proportion tests), and specify M or F to indicate whether the
number was higher for men or for women; hyphens indicate no sta-
tistically significant difference. We omit the proportion test results
from Table 4 as they produced similar trends as the Mann-Whitney
results shown.

We start with the overall performance rating. According to Tables
4 and 5, women receive higher overall ratings in all of ENG and in
MECH, but there is no significant difference in COMP, and there is
no significant difference between any group of senior women and
senior men.

Next, we examine the 16 evaluation criteria. Table 4 shows that in
all of ENG, women are rated more highly (and more likely to be
rated “Superior”) than men on most criteria. Table 5 shows similar
trends for both junior and senior women. On the other hand, all
men and junior men are rated more highly on resourcefulness and
entrepreneurial orientation, but this trend does not persist in senior
men. We see no difference in ability to learn and problem solv-
ing. Furthermore, the percentage of men who received “N/A” for
teamwork, ethical behavior, appreciation of diversity and interper-
sonal communication is significantly higher than the percentage of
women.

Zooming in on COMP, Table 5 shows that all men, junior men and
senior men are rated more highly than women on entrepreneurial
orientation, with other criteria showing no difference (especially
for junior women) or some differences in favour of women (espe-
cially for senior women). On the other hand, there are no significant
differences in entrepreneurial orientation in MECH. Furthermore,
similar to COMP, MECH women are rated more highly than men
on several criteria, especially senior MECH women.

3.2 Satisfaction of Students
Table 6 shows significant differences in students’ overall satisfac-
tion with WIL using the 2015/2016 dataset; we use the same nota-
tion as before. Men appear to be more satisfied in all of ENG and
all of COMP. Breaking down by seniority, senior men in all of ENG
and in MECH give higher satisfaction scores, but other groups do
not show any significant differences.
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Table 4: Statistically significant differences between evaluation scores received by men and women in ENG overall

Row Criteria Mann Whitney
Test of Mean

Proportion test of
Developing (%)

Proportion test
of Good (%)

Proportion test
of Superior (%)

Proportion test of
N/A values (%)

1 Interest in Work F0.08 M0.49 M2.66 F3.17 -
2 Ability to Learn - - - - -
3 Quality of Work F0.12 M0.57 M4.39 F5.08 -
4 Quantity of Work F0.13 M0.66 M4.9 F5.69 -
5 Problem Solving - M0.84 F2.59 - -
6 Teamwork F0.16 - M5.8 F7.02 M0.87
7 Dependability F0.15 - M5.88 F6.25 -
8 Response to Supervision F0.10 - M3.82 F4.37 -
9 Reflection F0.10 M0.51 M3.45 F4.45 -
10 Resourcefulness M0.03 - - - -
11 Ethical Behavior F0.09 - - F5.42 M3.62
12 Appreciation of Diversity F0.11 - M2.68 F8.13 M5.43
13 Entrepreneurial Orientation M0.07 M0.66 F2.46 M3.21 -
14 Written Communication F0.17 - M7.42 F8.21 -
15 Oral Communication F0.09 - M3.59 F3.59 -
16 Interpersonal Communication F0.17 M0.44 M6.11 F6.77 M0.22

Overall Performance Rating F0.08

Table 5: Statistically significant differences between evaluation scores received by men and women

ENG COMP MECH

Row Criteria All Junior Senior All Junior Senior All Junior Senior

1 Interest in Work F0.08 F0.09 - - - - - - -
2 Ability to Learn - - - - - - F0.17 - -
3 Quality of Work F0.12 F0.14 F0.13 F0.12 - - F0.16 - -
4 Quantity of Work F0.13 F0.16 - - - - F0.17 - -
5 Problem Solving - - - - - - F0.19 - -
6 Teamwork F0.16 F0.14 F0.20 F0.16 - F0.29 F0.15 - -
7 Dependability F0.15 F0.15 F0.16 F0.14 - F0.21 F0.17 - -
8 Response to Supervision F0.10 F0.10 F0.14 F0.16 F0.12 F0.21 F0.13 - -
9 Reflection F0.10 - F0.17 F0.11 - F0.26 F0.17 - F0.27

10 Resourcefulness M0.03 M0.04 - - - - - - -
11 Ethical Behavior F0.09 - F0.14 F0.13 - - - - -
12 Appreciation of Diversity F0.11 F0.10 F0.15 - - F0.16 - F0.30
13 Entrepreneurial Orientation M0.07 M0.09 - M0.13 M0.16 M0.26 - - -
14 Written Communication F0.17 F0.14 F0.19 F0.10 - - F0.23 - F0.25
15 Oral Communication F0.09 F0.07 - - - - - - -
16 Interpersonal Communication F0.17 F0.15 F0.23 F0.12 - F0.28 F0.25 F0.19 F0.34

Overall Performance Rating F0.08 F0.12 - - - - F0.19 F0.27 -

Finally, Table 7 shows significant differences in students’ over-
all satisfaction and the seven detailed satisfaction scores using the
2017 dataset. Overall satisfaction is again higher for all ENG men,
but this trend does not carry over to any subgroups. COMP women
(but not senior women in isolation) give higher scores on avail-
ability of employer support, with other satisfaction criteria either
showing no difference or a difference in favour of men. In partic-
ular, men appear more satisfied than women with opportunities to
develop their professional network and do work more closely re-
lated to their academic program. Additionally, junior and overall
ENG men report more opportunities to make meaningful contribu-
tions than women. Senior COMP men’s average scores for receiv-
ing appropriate compensation are 0.23 higher (on a scale of 5) than
senior COMP women’s, which is the highest reported statistically
significant difference of means in this analysis.

4. DISCUSSION AND CONCLUSIONS
In terms of workplace evaluations (Table 4 and 5), we found that
women tend to be evaluated more highly than men. One possible

explanation is that women who decide to purse male-dominated
degrees are likely to be highly qualified; e.g., one study found that
more men than women with low high school mathematics scores
pursue STEM degrees [6]. Specifically, we found that women tend
to be evaluated more highly on written, oral, and interpersonal com-
munication. Similarly, Wang et al. [15] found that girls are more
likely to possess both high mathematical and verbal abilities, and
boys are more likely to demonstrate higher mathematical abilities
relative to their verbal abilities. We also note the higher evaluation
scores women receive on teamwork. A recent report on collabora-
tive problem solving from the Programme for International Student
Assessment (PISA) similarly found that girls outperform boys in
collaborative problem solving in several countries [11]. This dif-
ference suggests the need for further investigation, especially with
the growing awareness of the importance of collaborative efforts,
even in traditionally competitive fields such as STEM [3].

On the other hand, we found that men in computing are perceived
as having a stronger entrepreneurial orientation than women. Re-
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Table 6: Gender differences in overall work term satisfaction: 2015/2016 dataset

All Junior Senior
ENG COMP MECH ENG COMP MECH ENG COMP MECH

M0.12 M0.10 - - - - M0.18 - M0.57

Table 7: Gender differences in overall work term satisfaction and satisfaction with specific aspects of WIL: 2017 dataset

Question All Junior Senior
ENG COMP MECH ENG COMP MECH ENG COMP MECH

Availability of employer support - F0.1 - - F0.1 - - - -
Opportunities to learn or develop new skills - - - - - - - - -
Opportunities to make meaningful contributions M0.09 - - M0.11 - - - - -
Opportunities to expand professional network M0.06 M0.08 M0.13 - - M0.2 - M0.21 -
Appropriate compensation and/or benefits - - - - - - - M0.23 -
Work related to academic program M0.1 - - M0.12 - - M0.11 M0.14 -
Work related to skills developed at university - - - - - - - - -

Overall Satisfaction M0.08 - - - - - - - -

lated work on risk-taking presents conflicting reports on how risk
averse men and women are [10]. There is also recent work that
analyzed STEM alumni and found that the university under study
produced fewer female entrepreneurs [1]. Given the importance of
entrepreneurship in today’s economy, it is interesting to note that
any group, men or women, receive higher evaluations in this area.

In Section 3.2, we discovered gender differences in students’ eval-
uations of their WIL experiences. Men appear to be more satisfied,
especially with opportunities to make meaningful contributions at
work, expanding their professional network, and working on topics
related to what they learned in the classroom. Additionally, senior
men in computing were more likely to report receiving appropriate
compensation than women. These results agree with prior, largely
qualitative, work on gender differences in workplace experiences.
In particular, prior work found evidence of men receiving more op-
portunities (including to network and contribute meaningfully to
their work) and fair compensation [2, 12, 13, 14, 4].

In our analysis of students’ evaluations of their employers, the only
difference in favour of women was in the availability of employer
support, observed mainly in junior women in computing. Assum-
ing that “employer support” is related to “mentorship”, this result
does not fall in line with prior work that found women to receive
less mentoring than their male peers [2, 9]. These differences are
important to examine further as they may impact young engineers’
career trajectories: there is evidence that dissatisfaction over pay
and working conditions can explain the higher rate of attrition for
women in STEM as compared to men [7].
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ABSTRACT 
There are various types of learning aids available to students while 
solving a problem in an online learning platform, Mastering 
Chemistry. Among the learning aids, we investigated two that had 
high usage: Hints and Provided Solutions. The main research 
question was how student learning aid usage differed between 
higher and lower performing students.  To answer this question, we 
explored clustering students by performance metrics into higher 
and lower performers, and then looking at each group’s process as 
they solved a problem. This method can be used to explore 
individual differences at a broad level as to how students go about 
solving problems.  

Keywords 

Learning aids, individual differences 

 

1. INTRODUCTION 
Research on problem solving has provided evidence that children 
and adults can use a variety of strategies for solving problems. 1,2 

These strategy differences result in different paths through the 
problem; for example, some students may choose to attempt the 
problem immediately, others to first request a learning aid, or 
following an incorrect attempt to immediately reattempt vs. to 
request a learning aid before reattempting.  

One influence on strategy differences may be the performance level 
of the student, with higher performing students taking one strategy, 
and lower performers following a different one. For example, prior 
work has shown expert children use their knowledge in a more 
efficient way than novice children.3  

This idea forms the following exploratory questions: How do 
differently performing students use learning aids? Do they have 
different strategies when solving a problem? An online learning 
platform, Mastering Chemistry, offers Hints and Provided 
Solutions as learning aids to students to help them during formative 
assessments. But they can also be used to avoid doing the more 
difficult work of solving a problem oneself.  Higher performing 
students might be more motivated to solve the problem themselves, 
a relationship which could either be characteristic of higher 

performance or lead to higher performance (doing more 
challenging work leads to better memory encoding4). Do higher 
performing students use hint and solutions differently than lower 
performing students?  

 

1.1 Prior work on learning aid timing 
In Mastering Chemistry, students choose when to request learning 
aids.  As previously mentioned, differences in when students 
request a learning aid could either be characteristic of higher 
performance, or it could lead to higher performance. Indeed, a great 
deal of prior work has examined the timing of feedback and its 
effect on learning.5,6,7,8,9,10 In this work, a contrast is usually made 
between immediate feedback, given immediately after a student’s 
response, and delayed feedback, given minutes, hours, or longer 
after a student’s response. There are conflicting results about which 
timing of feedback is more effective for learning5, though it seems 
that delayed feedback may be more effective for high achieving 
students while immediate feedback is more effective for low 
achieving students6. However, timing in terms of receiving 
feedback prior to submitting a response to a problem vs. after 
responding, as well as feedback in a more natural setting in which 
students choose when they receive feedback, has been less studied. 
Thus, this work also takes an initial step toward examining the 
relationships between individual differences in the problem-solving 
process, the timing of feedback before and after submitting a 
response, and student performance.  

 

2. METHODS 
2.1 Sample 
Two semesters in 2017-2018 of a university chemistry course 
taught by a single instructor were chosen for this analysis. The 
course was chosen because all assignments and problems had the 
same course implementation settings, rather than varying 
implementation settings between assignments, so that students’ 
incentives to use available learning aids would not vary as a result 
of the implementation settings. There was a total of 1896 in the 
sample across both semesters, with 946 students in one semester 
and 950 in the other semester.  

 

2.2 Procedure 
This exploratory analysis takes the following approach to answer 
the research questions presented in the previous sections.  First, 
students are segmented into 2 groups, higher and lower performing 
students. Segmenting students was done with k-means clustering 
with the following variables for each student: performance 
(measured by percent correct on first try), persistence (measured by 
percent correct on all problem parts), conscientiousness (measured 
by percent problem parts submitted), and consistency (inverse 
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variability of percent correct on first try). Then, a process analysis 
examines how higher and lower performing students navigate and 
solve a problem, and when in the process they open hints and 
request solutions. The process analysis was carried out using the R 
package bupaR11. Using this package, raw data were transformed 
into event log data, and then mapped to show average transition 
frequencies and transition times between actions, as a student went 
about solving a problem.  Analyses were carried out at the problem 
level.  

 

3. CLUSTERING STUDENTS 
Students were clustered into two pre-defined groups, using the 
following metrics that were expected to be related to performance:  

● performance: percent correct on first try 

● persistence: percent correct on main parts of the problem 

● conscientiousness: percent main parts of the problem 
submitted 

● consistency: inverse variability (1 - scaled variability) of 
percent correct on first try. To correct for variability 
decreasing as the number of attempted problems 
increases (students’ total number of attempts varied),  
consistency was calculated from a random sample of 12 
attempted problems. The inverse was taken so that the 
direction of this metric would be higher for better 
performing students, matching the other metrics. 

 

Figure 1. Plot of groups resulting from k-means clustering 

 

Prior to performing k-means clustering, all variables were scaled to 
have a mean of 0 and a standard deviation of 1. The plot of the 
groups resulting from k-means clustering is shown in Figure 1, and 
the group means are shown in Table 1.  

 

 

Table 1: Group means for higher and lower performers 

 Higher performers Lower performers 

performance 0.573 -0.921 

persistence 0.560 -0.901 

conscientiousness 0.122 -0.196 

consistency 0.304 -0.488 

 

 

4. PROCESS ANALYSIS 
Process maps (Figures 2-5) are shown for higher and lower 
performers, and examining a) relative frequency of actions and b) 
time between actions at different stages in solving a problem. 
Relative frequencies of action were calculated by counting the 
frequency of transitioning from Action A to another action divided 
by the total number of transitions from action A.  Thus, the sum of 
relative transitional frequencies from one action to all others that 
followed should be 1. Because problems in the Mastering learning 
platform are largely designed to be easy (formative assessment), we 
focused only on student process for more difficult problems.  
Specifically, using the problem difficulty metric provided by the 
Mastering learning platform, we excluded problems that fell below 
the median problem difficulty.  

Figure 2. Process map for lower performers 
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Figure 3. Process map for higher performers  

 

 

 
Figure 4. Time between actions for lower performers 

 
Figure 5. Time between actions for higher performers 

 

Examining first the relative frequency of actions at different stages 
of solving a problem (Figures 2-3), it appears that lower performers 
request hints before attempting to answer a problem slightly more 
often than higher performers (17.51 vs. 15.51). However, higher 

performers are more likely to request a hint following a wrong 
response (7.9 vs. 5.9), whereas lower performers are more likely to 
request a solution following a wrong response (1.95 vs. 1.31) or 
following a hint (18.69 vs. 5.95).  Further, higher performers on 
average take more time before requesting a solution following a 
wrong response (3.62 vs. 2.49 minutes) or a hint request (3.45 vs. 
2.06 minutes), suggesting they are spending more time thinking 
over the problem before they request the learning aids. These 
patterns suggest persistent and conscientious behavior by the higher 
performers; namely, the higher performers overall seem to use 
learning aids to solve a problem to completion, rather than simply 
to get the answer and move on to the next problem.  

 

5. CONCLUSIONS 
An exploratory process analysis of learning aid usage revealed 
different patterns of learning aid use by higher and lower 
performers. While students were clustered based on metrics related 
to their responses to problems and not based on any measures of 
learning aid use, the process analysis found patterns of learning aid 
use that are suggestive of persistence and conscientiousness in 
higher performing students. These patterns of use may also lead to 
better learning, as they suggest deeper processing and better 
memory encoding, though it may be that higher performers are 
more highly motivated, which causes both a different pattern of 
learning aid use as well as better performance. Further work 
examining the timing of learning aids in terms of before vs. after 
submitting an incorrect response may disentangle these 
possibilities, as well as provide evidence-based guidance for when 
to make hints and solutions available to students in an online 
learning platform.  
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ABSTRACT
Online educational discussion forums allow learners to ex-
pand their understanding of key concepts through interact-
ing with peers. However, instructor interaction with forums
does not scale well with large and/or busy forums. We in-
troduce graph-based methods for centrality and clustering
using post text and user ID in online educational discussion
forums. We use the centrality methods HITS and PageR-
ank to identify important and central topics on the forums,
and we use the clustering methods Clauset-Newman-Moore
(CNM) and spectral clustering to group posts by topic. We
demonstrate that these methods can be used at scale to iden-
tify important and central topics of discussion that can be
brought to the instructor’s attention.

Keywords
graph-based methods, natural language processing, online
discussion forums

1. INTRODUCTION
Online discussion forums are useful tools for supplementing
both online and in-person learning because they provide op-
portunities to ask questions to instructors remotely and to
discuss class topics with peers. However, discussion forum
management can be arduous and time-consuming. Post top-
ics and categories typically must be assigned manually by
participants or moderators, topic search is often limited to
string matching, and meta-scale metrics on forums and com-
munities are not readily available. Thus, despite the scala-
bility of delivering instruction through online courses such
as MOOCs (massive open online courses), monitoring and
using discussion forums effectively does not scale; rather, in-
structors and course staff must manually keep track of the
forums and attempt to gauge student interest and/or diffi-
culty with course topics.

The structure of these forums, which contain various con-

∗All authors contributed equally.

nected entities such as questions, answers, users, and top-
ics, relates naturally to graph representations. This paper
focuses on using graph constructions of online discussion fo-
rums to develop methods for answering two important re-
search questions: 1) What are the most central topics of
discussion within the forum? 2) How can we assign cate-
gories/topics to individual discussions and posts?

To answer these questions, we introduce a new method for
creating n-gram-based graphs that contain nodes represent-
ing n-gram tokens extracted from posts, connected to nodes
representing users and the posts themselves. This graph con-
struction allows us to model the relationship between the
contents of each post and the greater overall environment of
the discussion forum, including related posts and users. We
then use centrality methods to find the most important top-
ics being discussed in the forum and use clustering methods
to group communities of posts that discuss similar content.

2. RELATED WORK
[1] used network measures from discussion forums as fea-
tures for automatically assigning forum participation credit.
[5] applied social network analysis to discussion forums from
two MOOCs to analyze whether centrality metrics are asso-
ciated with course performance. These approaches give good
baseline methods for graph extraction from educational dis-
cussion forum data. However, the network measures that
they extracted were fairly limited and focused on participant
centrality. We build on their work to explore extraction of
more complex relationships and different entities as nodes.

[8] generalized methods from [4] and presented a robust com-
parative evaluation of different edge weight schemes and cen-
trality measures, as applied to word sense disambiguation.
They developed an unsupervised algorithm that constructs
a graph given a sequence of words and possible labels (word
senses) for each word, where the vertices are labels and the
edge weights are dependency scores between word senses.
Once the graph is constructed, scores are assigned to vertices
using graph-based centrality measures to determine the most
likely set of labels for the sequence. We use the idea that
textual unit similarity can be used as edges in a graphical
representation of a body of text to motivate our construction
of n-gram graphs.
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3. DATASET
We use the publicly available StackExchange dataset1. This
dataset includes all user-contributed content from over 150
StackExchange discussion forums, with detailed information
about user interactions. We use the Posts table for our anal-
ysis and extract the columns Body (the body text of a post),
Id (the ID number of a post), and OwnerUserId (the ID num-
ber of the user who made the post).

We focus on two StackExchange subdomains, Academia and
Statistics (referred to from here as Stats). Academia pro-
vides a moderately-sized dataset for local CPU computation,
with 81,906 posts from 18,640 users. The Stats subdomain
provides a more focused and pedagogical approach for our
problems, as it is larger and more heterogeneous in both user
expertise and topic distribution. However, as the Stats sub-
domain was too large to compute locally, we extracted the
most recent 19,725 posts included in the dataset, which spans
from 2017-12-07 to 2018-05-05 and includes 9,094 users.

4. GRAPH CONSTRUCTION
We create two different n-gram-based graph constructions
to model our two research questions. In order to find the
most central topics of discussion, we model discussion forum
data using an N-gram Graph, where relationships between
n-gram nodes are defined by which users use these n-grams
in posts. Then, to assign categories and topics to individ-
ual discussions and posts, we create a Post Graph, where
relationships between post nodes are defined by containing
similar n-grams in the text body. The specifics of the graphs
are defined below.

4.1 Preprocessing
Since both of our graphs are n-gram-based, we first extracted
the most important n-grams, which we call “top terms”, for
each post in our dataset. To generate these top terms, we
used Tf-idf (term frequency-inverse document frequency)
weighting over all the n-grams in each post body. This
weighting assigns higher importance to the terms in each
post in relation with the frequency of the term in the post
and the scarcity of the term in other posts. We represent
the main topics of discussion for each post by the five terms
with the highest Tf-idf scores. For both the N-gram Graph
and the Post Graph, we create a node for each n-gram that
appears in these five top terms for at least one post in the
dataset.

For the n-gram graphs created from the Academia subdo-
main, we represent each post by the five most important
unigrams, which extracts terms such as “publish”, “mentor”,
and “student”. However, we found that unigrams were not
sufficient to capture important topics of discussion in the
Stats subdomain, as many technical terms are more than
one word in length. Thus, for the Stats subdomain, we in-
stead computed the top terms for each post using the Tf-idf
scores over both unigrams and bigrams, allowing us to ex-
tract top terms such as “bonferroni correction”, “mean”, and
“probability measures”.

1https://archive.org/details/stackexchange

4.2 N-gram Graph
To create the N-gram Graph used to model the most im-
portant topics addressed in the forums, we first modeled the
StackExchange data as a bipartite graph. We created n-
gram nodes as described above and user-id nodes for each
unique author. We drew an edge between a user-id node
and an n-gram node if the user had at least one post where
that n-gram appeared as one of the five “top terms”. This
bipartite graph, which we call the User ↔ N-gram Bipar-
tite Graph, captures the relationship between users and the
contents of their posts.

Using the User ↔ N-gram Bipartite Graph, we then folded
the graph to create an N-gram Graph that contained only
n-gram nodes. In this folded graph, we drew an edge be-
tween n-gram nodes if they shared an edge to the same user
node in the User ↔ N-gram Bipartite Graph. This yielded
a text unit graph similar to those constructed in [4] and [8],
except we use network interactions as edges instead of simi-
larity scores. In the N-gram Graph, n-gram nodes that that
appear in posts by multiple users will have an edge between
them. Thus, n-gram nodes corresponding to terms that are
discussed by many different users will have a high degree.
We then apply centrality methods to identify important and
central topics (n-grams) in our network. We apply this pro-
cedure to create both an Academia N-gram Graph and a
Stats N-gram Graph.

4.3 Post Graph
To create the Post Graph used to determine similarity be-
tween posts based on topic, we again modeled the StackEx-
change data as a bipartite graph. We created n-gram nodes
as well as post-id nodes for each unique post. For each post-
id node, we drew an edge to the n-gram nodes representing
each of its five “top terms”. We call this graph the Post ↔
N-gram Bipartite Graph.

Using the Post ↔ N-gram Bipartite Graph, we folded the
graph to create a Post Graph that contained only post-id
nodes. In this folded graph, we drew an edge between post-
id nodes if they shared an edge to at least one n-gram node.
We then apply clustering methods to group the post-id nodes
into communities defined by their main topics of discussion.
We apply this procedure to create both an Academia Post
Graph and a Stats Post Graph.

4.4 Graph overview
Table 1 contains node and edge statistics for our graphs. We
can see that the Academia graphs are much denser than the
Stats graphs both before and after folding.

5. EMPIRICAL FINDINGS
5.1 Centrality: Identifying Top Topics
5.1.1 PageRank

PageRank [2] is an algorithm used to rank nodes in a graph
by importance. It treats edges as votes and considers each
node to be more important if it has many neighbors. Fur-
thermore, it captures the idea that a “vote” from an impor-
tant node is worth more, and each edge’s vote is proportional
to the importance of the source of its page. We use PageR-
ank on our N-gram Graph to find the most central n-gram
nodes.
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Academia Stats

Graph Nodes Edges
Nodes with
degree 0

Nodes with
degree > 10

Nodes Edges
Nodes with
degree 0

Nodes with
degree > 10

User ↔ N-gram
Bipartite Graph

62,765 347,084 0 9,066 66,086 95,267 0 2,308

Post ↔ N-gram
Bipartite Graph

126,031 409,530 0 5,776 76,717 98,625 0 1,038

N-gram Graph 44,125 46,984,357 0 38,783 56,992 3,674,828 0 32,718
Post Graph 81,906 55,029,806 61 81,500 19,725 567,729 2,586 14,632

Table 1: Summary statistics for bipartite and folded graphs.

5.1.2 Hubs and Authorities
Hubs and Authorities [6] is an algorithm used to estimate
the value of each node’s links to other pages and the value of
its own content. These are respectively calculated for each
node as its hub and authority scores. Hub and authority
scores are defined via mutual recursion: the algorithm itera-
tively updates each node’s hub score to be equal to the sum
of the authority scores of each node to which it points, and
its authority score to be equal to the sum of the hub scores
of each node from which it is pointed. We use Hubs and
Authorities on our User ↔ N-gram Bipartite Graph, with
the observation that the n-gram and user-id nodes are anal-
ogous to hub and authority pages on the web. That is, we
can approximate the value of a user-id node in this graph
via its links to frequent and important topics of discussion,
and we can approximate the value of an n-gram node as its
importance in the forum.

5.1.3 Results
We applied the SNAP2 Python implementations of PageR-
ank and Hubs and Authorities on our graphs, in order to
rank the centrality of all n-gram nodes. We then identified
the highest ranked (i.e., most central) nodes as the most im-
portant topics of discussion in each forum. Table 2 shows the
top ten nodes identified by PageRank (run on the N-gram
Graph) and hub score (run on the User ↔ N-gram Bipar-
tite Graph). Our results show that both centrality measures
identify reasonable important topics at face value.

Academia Stats

PageRank Hub score PageRank Hub score

paper user75368 distribution user8013
student user53 test user173082
phd paper model distribution
research review matrix model
journal student time test
review author correlation time
professor journal variance probability
work supervisor probability sample
author professor sample correlation
letter research series variance

Table 2: Top ten topics by PageRank and hub score.

Furthermore, our results validate our formulation of n-grams
and users as hubs and authorities of the StackExchange net-
work. The nodes with the highest authority scores are all
user-id nodes, and the nodes with top hub scores are all n-
gram nodes, with the exception of the four superusers shown

2https://snap.stanford.edu/

in Table 2. We manually validated that these identified su-
perusers are the users with the top user-generated reputation
score over the time periods observed, suggesting that these
users are indeed seen by the community as valuable contrib-
utors.

5.2 Clustering: Grouping Posts By Topic
Modularity measures how well a given partitioning of nodes
captures separate communities, as compared to a graph with
the same number of edges and nodes with random connec-
tions. Modularity score Q for an unweighted graph G can
be calculated by the expression

Q(G,S) =
1

2m

∑
s∈S

∑
i∈s

∑
j∈s

(
Aij −

kikj
2m

)
where m is the number of edges in G, s ∈ S are groups in the
partitioning S, i and j are nodes, ki and kj are the degree of
nodes i and j, Aij indicates whether i and j are connected.

5.2.1 Clauset-Newman-Moore (CNM)
The Clauset-Newman-Moore (CNM) algorithm [3] finds com-
munities by greedily optimizing for modularity. Starting
with a partitioning of each individual node into its own
community, the algorithm repeatedly joins together the two
communities that would cause the greatest increase in the
modularity score Q, until n − 1 joins have been conducted
and all nodes belong to a single community. At this point,
the algorithm returns the configuration (with a number of
communities between 1 and n−1) that produces the highest
modularity score.

5.2.2 Spectral Clustering
The Normalized Cut Algorithm [7] is a spectral clustering
method for partitioning nodes into communities based on
the eigenvalues of the symmetric normalized Laplacian. The
Normalized Cut Algorithm finds a partition S of the nodes
of the graph that gives the smallest normalized cut value:

NCUTS = cut(S)
vol(S)

+ cut(S̄)

vol(S̄)
.

To partition the graph into k > 2 clusters, we use the Simul-
taneous K-Way Cut with Multiple Eigenvectors modification
to the Normalized Cut Algorithm from [7]. To find the op-
timal number of communities k, we did a search of values of
k from 10 to 1000 and computed the modularity score of the
communities found for each k value. We selected the k value
that gave us the highest modularity score.
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CNM Spectral clustering

Community (top terms)
Percentage of
total nodes

Community (top terms)
Percentage of
total nodes

series | times | group 27.09% feature | dataset | value 42.30%
test | training | validation 23.88% density | normal | parameter 5.26%

distribution | sample | probability 20.43% training | validation | data 1.53%
matrix | model | variables 11.68% network | cost | event 1.25%
size | power | uncertainty 0.81% series | time | time series 1.13%
learning | rate | minutes 0.64% sample | population | mean 1.06%

outliers | bias | percentile 0.49%
distribution | normal

distribution | probability 1.04%

Table 3: Largest communities generated by CNM and spectral clustering

5.2.3 Results
We used the CNM algorithm and the K-Way Cut Normal-
ized Cut Spectral Clustering algorithm on the Stats Post
Graph to cluster posts into communities based on similar
topics of discussion. CNM generates 66 communities with
a modularity of 0.442, and spectral clustering generates 150
communities with a modularity of 0.550. Notably, both al-
gorithms generate community partitions with a modularity
score above 0.3, indicating that significant community struc-
ture can be detected in our graph [3]. As compared with
CNM, spectral clustering produced an optimal partitioning
with a larger number of communities and higher modularity
score, indicating more consistent partitioning.

Table 3 shows the percentage of nodes in the largest commu-
nities found by each clustering algorithm. From this we can
see CNM finds four large communities, each with between
10-30% of total nodes, and all other communities contain
<1% of the nodes. Spectral clustering finds only one large
community that contains 42.30% of the nodes, and more
medium sized communities with around 1% of the nodes.

We represent each community found in the Stats subdomain
by the three most frequent top terms for posts in the com-
munity. Table 3 shows the largest communities generated by
both clustering algorithms, and the representative terms for
each community. We can see that the most frequent terms
that appear in each community are mostly related to one
another.

We find that spectral clustering creates a larger number of
communities (150 vs. 66), a higher modularity score (0.550
vs. 0.442), and more cohesive communities of smaller size.
Thus, we conclude that spectral clustering is more effective
at extracting clusters of posts about similar important topics
for an educational discussion forum.

6. CONCLUSIONS
We demonstrate that graph methods for computing central-
ity and clustering can be used to extract important topics
and users from an online education-focused discussion forum.
Applying our methods across narrow time slices of the dis-
cussion forum could allow for instructors to identify topics
that require immediate attention in real time, while apply-
ing them to a past (archived) offering of the course would
highlight important topics for syllabus revision purposes.

Furthermore, identifying clusters of posts about similar top-
ics allows for automatic link generation between posts within

these clusters, and automatic propagation of instructor in-
terventions to all interested parties. Search functionality for
both instructors and learners could also be improved through
these clusters.

Finally, though n-gram centrality was most salient for the do-
mains we studied, we could similarly compute graph central-
ity to other entities, such as users and posts. Such methods
can be applied to discussion forums that lack a built-in repu-
tation or point system (in StackExchange, user “reputation”
and post “votes”), and instructors could use this information
to identify potential teaching assistants or moderators, or to
allocate course participation grades [1].
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ABSTRACT 
The Next Generation Science Standards (NGSS [14]) emphasize 
inquiry practices that students should master including 
constructing explanations. Most automated methods for scoring 
scientific explanations, however, do not detect the specific 
components involved in constructing explanations in the claim, 
evidence, and reasoning (CER) format, which is commonly used 
in science classes (cf. [12]). In this study, we expanded and 
implemented a data-driven, regular expression-based method to 
automatically score students’ written CER explanations across 
the domains of Physical Science, Earth Science, and Life 
Science in the intelligent tutoring system, Inq-ITS. We then 
investigated the generalizability of our method using a new set 
of testing data. Results of comparisons between human scores 
and automated scores indicated high performance for the 
method when applied to the testing data. Analyses showed that 
the automated scoring for one domain (earth science) had lower 
performance relative to other domains. Overall, the fine-grained, 
data-driven, regular expression-based method yielded high 
accuracy and more reliable scores relative to human scores. 
Implications for scaffolding CER writing are discussed. 

Keywords 

automated assessment, regular expressions, science 

1. INTRODUCTION 
One of the central practices of scientists is constructing 
explanations of scientific phenomenon. As a result, documents 
such as the Next Generation Science Standards (NGSS [14]) 
emphasize that students should master this practice..  Students, 
however, face many challenges when constructing written 
explanations (cf., [12]). It is necessary to support students on 
these difficulties with written explanations in real-time, which is 
when students benefit most from help [6]. Unfortunately, human 
scoring of written explanations can be time consuming and 
subject to rater bias and fatigue [1]. Automated scoring is a 
solution to these challenges by allowing for real-time evaluation 
of students’ competencies on constructing explanations [18]. 
However, most automated methods [2, 7, 10, 11, 13, 17] do not 
detect the specific components involved in CER writing.  

1.1 Automated Assessment of Scientific 
Explanations 
Automated techniques for scientific explanations vary in terms 
of the types of algorithms that are used to score students’ 
writing as well as in the particular aspects of students’ 
explanations that are scored. Methods used to automatically 
score students’ explanations include machine learning 
techniques [13, 10] and natural language processing (NLP) 
techniques [2, 7, 8, 9, 10, 11, 17]. These methods have been 
used to score explanations based on the quality of the scientific 
content of the explanations [2, 7, 10, 11, 13, 17] and the 
argumentative components within the explanations [8, 9]. In the 
present study, we focus on methods that applied the NLP 
method of Regular Expressions (RegEx; [16]) to score study 
writing. 
RegEX [16] involves the application of pattern matching to 
identify the quality of writing and has been frequently applied to 
score students’ open responses. Researchers at the Educational 
Testing Service have applied Regular Expressions to score 
students’ scientific writing for the presence of key concepts 
within conversations [19]. Li et al. [8, 9] applied RegEX in order 
to assess students’ CER explanations in the intelligent tutoring 
system, Inq-ITS [4, 5]. Specifically, Li et al. [8, 9] developed 
fine-grained rubrics that captured various sub-components of 
student CER statements constructed to explain phenomena in the 
domain of physical science. The RegEX when combined with a 
linear regression model had high agreement with human raters 
for each CER sub-component (kappas > .80).  
Overall, it is the use of regular expression with if-then 
algorithms that has shown the best performance in terms of the 
automated scoring of sub-components of explanations in the 
claim, evidence, and reasoning format as implemented within 
the Inq-ITS system [8, 9]. Studies on this method in Inq-ITS to 
date, however, have been conducted only within the domain of 
physical science. Researchers have yet to examine whether this 
automated scoring method would generalize to other domains.  
In the present study, we expand the Inq-ITS automated scoring 
method (i.e., RegEX and if-then algorithms) for CER 
explanations from the domain of physical science to the 
domains of life and Earth science.  

2. METHOD 
2.1 Participants and Sampling Procedure 
2,064 sets of claim, evidence, and reasoning (CER) statements 
(6,195 total statements) were randomly extracted from the 
intelligent tutoring system, Inq-ITS [4, 5]. 1047 sets of CER 
responses were constructed in the domain of physical science 
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(i.e. the Inq-ITS Density Virtual Lab), 481 sets of CER 
responses were constructed in the domain of life science (i.e. the 
Inq-ITS Genetics Virtual Lab), and 536 sets of CER responses 
were constructed in the domain of Earth science (i.e. the Inq-ITS 
Lunar Phases Virtual Lab). These CER explanations were 
written by students in grades 6-8 in middles schools in Oregon, 
Massachusetts, New Jersey, and New Hampshire. Students 
completed Inq-ITS labs during their regularly scheduled science 
class periods (see Table 2 for the number of responses for claim, 
evidence, and reasoning within each driving question in both the 
training and testing data sets). 

2.2 Materials 
Inq-ITS [4, 5] is an inquiry intelligent tutoring system for 
middle school science in the domains of physical, life, and Earth 
science. Inq-ITS has virtual labs (i.e., microworlds; [3]) in 
which students carry out inquiry investigations. Each virtual lab 
has 3-4 different driving questions over the course of four 
inquiry stages (asking questions/hypothesizing, collecting data, 
analyzing and interpreting data, and explaining findings in the 
CER format). All student actions are automatically stored within 
log files and actions in the first three stages are scored using 
educational data mining and knowledge engineering techniques 
(see Sao Pedro et al. [15] for details). Automated scoring of 
students’ CER explanations in the final stage of the lab is the 
focus of the present study. We randomly selected one virtual lab 
topic from each science domain (i.e., physical, life, earth) for 
the present study: Density (Physical Science), Lunar Phases 
(Earth Science), and Genetics (Life Science).  
The Density virtual labs include three driving question 
activities: (1) how the shape of the container affects the density 
of the liquid, (2) how the size of the container affects the density 
of the liquid, and (3) how the type of the liquid affects the 
density of the liquid. The Lunar Phases virtual labs also 
included three driving questions: (1) how the percent of the 
visible Moon illuminated changes, (2) how the duration of lunar 
orbit changes, and (3) how the percent of the Moon facing the 
Sun changes. The Genetics virtual labs included three driving 
question activities: (1) the Mother’s F alleles impact the chance 
of producing the offspring with red fur, (2) the Mother’s L 
alleles impact the chance of producing the offspring with short 
fur, and (3) the Mother’s H alleles impact the chance of 
producing the offspring with horns. The present study focused 
on the automated scoring of students’ written claim, evidence, 
and reasoning responses collected within these virtual lab 
activities (for 9 driving questions in total).  

2.3 Rubrics 
The rubrics used by human raters were based on a modified 
version of McNeill et al.’s [12] rubrics (see Table 1 [8, 9]). 
There were three primary components of the rubric: claim, 
evidence, and reasoning. The claim component consisted of four 
sub-components: independent variable (IV), IV relationship 
(IVR), dependent variable (DV), and DV relationship (DVR). 
The evidence component consisted of three sub-components: 
sufficient evidence, appropriateness of data for the independent 
variable, and appropriateness of data for the dependent variable. 
The reasoning component included five subcomponents: theory 
or scientific principle, connection between data for the IV, DV, 
and DVR and the claim, and explaining how the data support (or 
refute) the claim. This rubric aims to provide more accurate, 
fine-grained data on how students develop explanations within 

the CER framework [8, 9]. Table 1 displays each subcomponent 
of CER for the Shape-Density lab.  

Table 1. Modified rubric from Li et al. [8]  

Component Sub-component Points 
C IV (Shape) 0-1 

IVR (Conditions) 0-1 
DV (Density) 0-1 
DVR (Same) 0-1 

E  Sufficient 0-2 
Appropriate IV (Mass + Volume) 0-1 

DV (Density) 0-1 
R Theory 0-2 

Connection 0-1 
Data IV/IVR 0-1 

DV 0-1 
DVR 0-1 

Note. IV = independent variable. IVR = how IV was changed. 
DV = dependent variable. DVR = how DV was changed. 
The rubrics for each activity were modified based on the 
specific content of each activity. Therefore, the structure of each 
rubric was the same in terms of the sub-components that were 
scored, but the specific expressions that were captured for each 
activity (i.e., IV = shape for the Shape-Density activity) differed 
based on the content of the virtual lab activity. The generation 
of specific rubrics for the three driving questions within each 
microworld took about 10-30 minutes [9]. 

2.4 Human Scoring 
One senior researcher and three research assistants graded 
students’ CER statements. All raters received extensive training 
on how to use the rubrics with practice responses (not included 
in the training or testing set). Raters continued to receive 
training until inter-rater reliabilities on practice responses were 
above kappa of .80. Prior to scoring, the data was randomly split 
into two sets: training data and testing data.  
For the training data, the first activity from each topic was 
scored by two randomly assigned human raters independently. 
Rubrics were reviewed with raters prior to scoring. The inter-
rater reliability was above Pearson correlations of .80 for each 
CER sub-component for each of the first activities for each 
topic, so disagreements were discussed and resolved, and agreed 
upon score were used as the “human scores” for the generation 
of automated algorithms and reliability analyses. The training 
data for the remaining two activities within each topic were then 
each scored by one rater independently. For the testing data (i.e., 
60 sets of CER responses for each activity), two raters were 
randomly assigned to independently score responses for each 
activity. After scoring of the testing data was completed, 
human-human interrater-reliabilities were computed for each 
activity (see Table 2), disagreements between human raters were 
identified and resolved through discussion, and agreed upon 
scores were used for analyses (i.e., human scores).  

2.5 Automated Approach 
In prior studies [8, 9] we manually developed regular 
expressions to detect patterns for each subcomponent of 
students’ claim, evidence, and reasoning (CER) statements 
within the Shape-Density activity based on a corresponding 
rubric used by human raters. In the present study, we kept the 
basic RegEX patterns for each subcomponent for CER, but 
changed the key expressions as concepts changed in different 
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activities. It took approximately 3 hours total to generate RegEx 
for each statement type (C, E, or R) for each activity. The 
structure of Inq-ITS (i.e., enabling students to first construct 
their claim and evidence within interactive widgets before 
writing their claim and evidence) affords identification of the 
types of potential phrases and structures that students may use in 
their CER explanations. 
Phrases that were identified as semantically similar to the 
components outlined in the human scoring rubrics were used as 
the basis for pattern matching in the RegEX. We then used a 
data-drive approach to modify the expressions based on the 
words or expressions that students used in their responses in the 
training data set. For example, the IV in the L Alleles activity in 
Genetics is “L alleles.” When we looked through students’ 
responses though, we found some alternative expressions, such 
as “fur length alleles” and “alleles for hair length.” Thus, we 
modified the original RegEX (i.e., “\b[Ll]\b”) accordingly. We 
then compared the automated scores with the human scores,  
looked through the responses to identify where there was a 
disagreement, noted the variations in the expressions, and then 
modified the RegEX. We repeated this cycle until we achieved 
high performance, with correlations above .95 or even 1.00.  
Implementation of the RegEX in Python allowed for identifying 
whether particular subcomponents were represented in students’ 
statements or not, as well as the accuracy of subcomponents 
included within students’ statements [8, 9]. In particular, the 
presence of components at each level (0 points = incorrect; 0.5 = 
partially correct/present; 0.8 = mostly correct/present; 1 = 
correct/present) is identified and assigned to a corresponding 
sub-component. We then used the generated RegEX and 
algorithms to examine the performance of the RegEX and if-
then algorithms when applied to a testing data set (i.e., 60 
responses from each activity). This study used Pearson 
correlations - a commonly used metric [10] - to evaluate the 
accuracy of the automated scoring. 

3. RESULTS 
We first examined performance of the RegEx at an aggregated 
level (across all data sets), then by topic, and finally by driving 
question within topics. Our analyses revealed that there was 
extremely high agreement for CER between the humans and 
automated computer scores when examining scores aggregated 
across all data sets. The correlations in the training data sets 
were .99 for claims, .98 for evidence, and .97 for reasoning. The 
correlations in the testing data sets were .90 for claims, .94 for 
evidence, and .86 for reasoning.  
There was also high extremely high agreement when breaking 
down claim, evidence, and reasoning scoring by topic (i.e., 
density, lunar phases, and genetics) with all human-computer 
correlations above 0.95 for the training data and all correlations 
in the density and genetics labs above 0.90 for the testing data. 
However, the accuracy of the automated method was relatively 
low for the reasoning component of lunar phases (r = 0.73). It is 
important to look at each activity within each topic of lunar 
phases to understand why correlations were lower for reasoning 
as compared to the other two virtual lab topics. 
Finally, we examined the correlations between human and 
automated computer scores for each activity within each topic. 
For the training data, the results showed that all correlations 
were above 0.95 (see Table 2). For the testing data, all 
correlations were above 0.80 except for the claim for the Lunar 

Phases percent of the visible moon illuminated activity (r = 
0.75) and the reasoning for the Lunar Phases duration of Lunar 
Orbit (r = 0.76). To further understand these discrepancies, we 
conducted fine-grained analyses using confusion matrices for 
the claim sub-components for the percent of the visible moon 
illuminated activity and the reasoning sub-components of the 
duration of lunar orbit activity. 
Table 2. Correlations by virtual lab activity 

Activity CER 
Training Testing 
H-C N H-H H-C N 

Density 
Shape -
Density 
  
  

C 0.99 293 0.97 0.97 60 
E 0.98 293 0.95 0.97 60 

R 0.97 293 0.93 0.86 60 
Amount 
-Density 
  
  

C 0.99 305 0.97 0.95 60 
E 0.95 305 0.94 0.86 60 

R 0.97 305 0.84 0.96 60 
Type -
Density 
  
  

C 0.99 269 0.97 0.97 60 
E 0.99 269 0.98 0.97 60 

R 0.96 269 0.90 0.96 60 
Lunar Phases 
Visible 
Moon -
LP 
  

C 0.95 140 1 0.75 60 
E 0.97 140 0.97 0.95 60 

R 0.98 140 1 0.81 60 
Duration 
-LP 
  
  

C 0.99 115 1 0.91 60 
E 0.99 115 1 0.93 60 

R 0.96 115 1 0.76 60 
Moon 
Facing 
Sun -LP 
  

C 1 101 1 0.95 60 
E 1 101 1 0.89 60 

R 0.98 101 1 0.81 60 
Genetics 
F allele- 
Genetics 
  
  

C 0.99 100 0.90 0.89 60 
E 0.98 100 0.89 0.93 60 

R 0.98 100 0.83 0.88 60 
L allele- 
Genetics 
  
  

C 1 100 0.90 0.91 60 
E 0.98 100 0.90 0.95 60 

R 1 100 0.79 0.94 60 
H allele- 
Genetics 
  
  

C 1 99 0.84 0.93 60 
E 1 99 0.91 0.96 60 

R 1 99 0.87 0.90 60 
Note. C = Claim. E= Evidence. R= Reasoning. H-C = Human-
Computer. H-H = Human-Human. LP = Lunar Phases. 
For the lunar phases visible moon illuminated activity, there 
were several disagreements between the humans and computer 
for the claim sub-components of: the change in the independent 
variable (IVR; r = 0.35) and the dependent variable (DV; r = 
0.48). Further analyses using the confusion matrix for the claim 
IVR scores assigned by the human and computer revealed that 
there were 14 cases where the computer gave credit (i.e., 1 
point) for the presence of the IVR, but the humans did not).The 
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confusion matrix for the claim DV scores assigned by the 
human and computer revealed that there were 10 cases where 
the humans gave students credit (i.e., 1 point) for the DV, but 
the computer did not.   
For the lunar phases duration of lunar orbit activity, there were 
several disagreements between the humans and computer for the 
reasoning sub-components of: theory (r = 0.29), explaining data 
for the DV (Data-DV; r = 0.66), and explaining data for the 
change in the DV (Data-DVR; r =0.74). In terms of the 
reasoning theory scores assigned by the human and computer, a 
confusion matrix revealed that there were 24 cases where the 
computer gave students credit (i.e., 2 points) for theory but the 
humans did not. The confusion matrix for the reasoning Data-
DV subcomponent showed that there were 7 cases where 
humans gave students credit (i.e., 1 point) and the computer did 
not give any credit. The confusion matrix for the Data-DVR 
component showed that the biggest differences in scoring were 
in 4 cases where the computer gave students’ credit (i.e., 1 
point) but the humans did not give any credit. 

4. DISCUSSION 
Overall our findings show that the automated scoring method in 
Inq-ITS is extremely high performing when applied to new data 
across different domains (i.e., physical, earth, and life science). 
In particular, the development of RegEX and if-then algorithms 
using our iterative method was both efficient and effective in 
terms of being able to capture student performance on 
explanations in the CER format at a fine-grained level.  Our 
method therefore extends upon other NLP scoring techniques for 
scientific explanations (i.e., that captured only the linguistic 
quality or content of explanations; [2, 7, 10, 11, 13, 17]) because 
it is able to accurately capture students’ competencies on the 
argumentative components involved in constructing 
explanations in the CER format. In the future, it would be 
valuable to explore other data processing methods and their 
potential for even greater efficiency for scoring written CER.  
The findings of this study are promising in terms of being able 
to accurately assess student performance in real-time in multiple 
domains at a fine-grained level. Specifically, this automated 
method can now be implemented within the intelligent tutoring 
system, Inq-ITS, in order to capture student performance as they 
are constructing their CER explanations. Additionally, this fine-
grained scoring can be used to detect student difficulties with 
particular components of CER statements and, as a result, allow 
for real-time scaffolding at a fine-grained level in real time. 
This automated scoring can also be used to alert teachers at an 
actionable level using Inq-Blotter, our teacher dashboard. 
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ABSTRACT
Liberal arts universities possess a vast catalog of courses
from which students can choose. The common approach
to surfacing these courses has been through traditional key
word matching information retrieval. The course catalog
description used to match on may, however, be overly brief
and omit important topics covered in the course. Further-
more, even if the description is verbose, novice students may
use search terms that do not match relevant courses, due
to their catalog descriptions being written in the specialized
language of a discipline outside of their own. In this work, we
design and user test an approach intended to help mitigate
these issues by augmenting course catalog descriptions with
topic keywords inferred to be relevant to the course by an-
alyzing the information conveyed by student co-enrollment
networks. We tune a neural course embedding model based
on enrollment sequences, then regress the embedding to a
bag-of-words representation of course descriptions. Using
this technique, we are able to predict potentially relevant
words that are not in a course’s description and surface these
words through a real-world recommendation platform.

Keywords
Course search, Inferred keywords, Latent topics, Course2vec,
Skip-gram, Higher education, Recommender systems

1 Introduction
The course catalog is often the first resource consulted by
current and prospective students when wanting to famil-
iarize themselves with and explore the topical offerings of
a university. With many universities offerings thousands
of distinct courses over the span of several years, brows-
ing through the description of each is untenable. Instead,
classical information retrieval (i.e., search) using keyword
matching is now offered at many, but not all, institutions.
A keyword matching approach; however, is only as good as
the words the description contains and the users’ ability to
use query terms that will match. Many course descriptions
can be overly brief, omitting topical terms from the descrip-

Figure 1: Design process for the enhanced search

tion that are nevertheless contained in the course. Further-
more, for novice students, it can be difficult to gauge the
similarity of courses in different departments because of the
superficial differences in how different disciplines describe
the same material.

In this paper, we seek to mitigate the shortcomings of topic
omission and non-standardized keywords across disciplines
in catalog descriptions by leveraging the regularizing power
of machine learned embeddings. We apply neural embed-
ding models to historic sequences of student course enroll-
ments in order embed courses into a space regularized by
abstract features, or concepts, associated with courses. We
then regress from this space to the space of course descrip-
tions in order to add semantics to the course vector space.
These semantics become the keywords which can be added
to an enhanced university course search. Our approach is
closer to the user experience of an information system but
using machine learning techniques more commonly seen in
collaborative-based models. This adding of keywords to an
object could be framed as a form of topic modeling. Motz
et al. [3] provide an approach in this vein most relevant to
ours, in which they use students’ course enrollments as a
signature with which to learn themes of studying using La-
tent Dirichlet Allocation (LDA). We substitute LDA with
the more contemporary machine regularization of skip-gram
models [2] and take the work further by conducting a user
study (N = 75) in which students at a university were asked
to rate relevancy of keywords to courses they had taken, gen-
erated from the embedding model and other baselines (e.g.,
random within and outside of description words). Measuring
the degree to which our model’s inferred keywords correlate
with student perceptions of relevance, the results suggest a
probability threshold above which predicted out of course
description keywords can be chosen and be expected to be
more relevant to students than the random within descrip-
tion baseline. Furthermore, we close the research loop by in-
tegrating this modeling process into a larger design scheme
(Figure 1) leading to the deployment of this enhanced course
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Figure 2: A prototype of the course search feature
before model tuning and user testing

search feature in a live course recommendation system linked
to by the campus’ Office of the Registrar website.

2 Models
Our approach to generating inferred course keywords com-
prises of three fundamental modeling elements: (1) a vector
representation of courses learned from enrollment histories
(2) a bag-of-words representation of course catalog descrip-
tions (3) a model that translates from the enrollment-based
representation to the catalog-based representation. This is
essentially a machine translation, not between languages [1],
but between a course representation space formed from stu-
dent enrollment patterns and a semantic space constructed
from instructors’ descriptions of the knowledge imparted in
each course.

2.1 Course2Vec
The course2vec [4] model involves learning distributed rep-
resentations of courses from students’ enrollment records
throughout semesters by using a notion of an enrollment
sequence as a “sentence” and courses within the sequence
as “words”, borrowing terminology from the linguistic do-
main. For each student s, a chronological course enrollment
sequence is produced by first sorting by semester then ran-
domly serializing within-semester course order. Then, each
course enrollment sequence is trained on like a sentence in
a skip-gram model. In language models, two word vectors
will be cosine similar if they share similar sentence contexts.
Likewise, in the university domain, courses that share sim-
ilar co-enrollments, and similar previous and next semester
enrollments, will likely be close to one another in the vec-
tor space. Course2vec learns course representations using
a skip-gram model by maximizing the objective function of
context prediction over all the students’ course enrollment
sequences.

It is important to stress that our method of producing a
course vector from enrollments (i.e., course2vec) does not
use any course description information. It is based only
on sequences of course IDs, with no natural language used.
The generalizing principal is that patterns of student col-
lective course taking can produce representations of courses
containing abstract concepts of relevance to student course
search. The trick to exploiting this is to associate these ab-
stract concepts with concrete keywords, accomplished by the
translation model, explained in the section after the next.

Table 1: Course Keyword Groups Example
Course: STAT 135 - Concepts of Statistics
Course Description: A comprehensive survey course in
statistical theory and methodology. Topics include de-
scriptive statistics, maximum likelihood estimation, non-
parametric methods, introduction to optimality, goodness-
of-fit tests, analysis of variance, bootstrap and computer-
intensive methods and least squares estimation. The labora-
tory includes computer-based data-analytic applications to
science and engineering.
Model Sorted (All): regression, statistics, random, statis-
tical, estimation
Model Sorted (Description): statistics, statistical, esti-
mation, variance, tests
Model Sorted (Non-Description): regression, random,
real, linear, discrete
Random (Description): course, engineering, includes,
methods, computer-based
Random (All): diverse collection, topics problems, year
credit, planning research, user interfaces

2.2 Bag-of-Words Representation
We represent course catalog descriptions using the simple
but indelible approach of bag-of-words and its variants. To
create a course description vector, the length of the number
of unique words across all items serves as the dimension of
the vector, with a non-zero value if the word in that vo-
cabulary appears in the description. We experiment with
the description vector as binary, tf-idf, as well as a custom
weighting scheme such as tf-bias that controls the granular-
ity of keywords represented.

2.3 Translation Model
Our premise is that there are useful concepts learned in the
embedding of course2vec, but these concepts left in abstract
vector form contain no explicit semantics. To associate the
patterns learned in course2vec with semantics, we apply a
translation from the course2vec vector to its respective nat-
ural language course description vector.

We use a multinomial logistic regression to conduct this
mapping, where the skip-gram based course vectors are used
as input and the corresponding descriptions of every course
as bag-of-word encodings are the multi-hot labels being pre-
dicted. After this model is trained, the probabilities of each
word in the vocabulary belonging to a skip-gram course vec-
tor can be computed by consulting the softmax probability
distribution over the entire vocabulary. Using this probabil-
ity distribution, it is now possible to find the high probability
words predicted based on course2vec which are NOT in the
course description. These words can subsequently serve as
inferred keywords in our enhanced course search.

Logistic regression is used to represent translation between
languages because the spaces being translated to and from
are linear vector spaces (skip-grams have no non-linear ac-
tivations). However, in case the translation between spaces
in the course domain is a non-linear one, we also evaluate
a single hidden layer neural network with non-linear activa-
tion as a candidate translation model in our optimization
experiments.
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Figure 3: Keyword rating form for given course

3 USER STUDY
Through offline model selection based on 144 experiments
attempting to optimize heuristics expected to correlate with
relevancy ratings, we settled on a regression model and cor-
responding hyperparameters that maximized our custom model
evaluation metric. Following the experiment driven model
selection, we follow up with a human judgment evaluation
to better gauge how the model results are aligned with stu-
dents’ perception of relevance. A user study was conducted
during which students were asked to rate keywords belong-
ing to five different groups:

1. Model Sorted (All): Top five overall keywords as pre-
dicted by the model.

2. Model Sorted (Description): Top five words in the de-
scription in order of likelihood as predicted by the
model.

3. Model Sorted (Non-Description): Top five words not
in the description in order of likelihood as predicted
by the model.

4. Random (Description): Five random words from within
the description.

5. Random (All): Five random words across all collective
descriptions.

An example of these keyword groups for a particular course
are shown in Table 1. The Random (All) words represent a
baseline relevancy score. We expect the description groups
to perform much better than this baseline and desire that
the model predicted non-description words are also better
than randomly selected words. The random (description)
group provides the second benchmark to compare our model
sorted non-description group to, quantifying how much value
our enhanced search proposes to add on top of the catalog
description.

3.1 Study Design
Undergraduates were recruited from popular university asso-
ciated Facebook groups to participate remotely in exchange
for a $10 Amazon gift certificate. Study participants logged
into the main AskOski recommender site using their uni-
versity credentials in order to access the survey. Figure 3
shows the rating form for one course with its correspond-
ing unique keywords from each of the five groups randomly
shuffled. We intentionally did not show the description and

Figure 4: Keyword group rank vs relevancy

requested students to not look them up and rate solely on
their experience with the class to prevent bias in keyword
ratings whereby a student may be tempted to simply rate a
word as relevant only if it appeared in the description.

For every keyword, students were asked for their five point
Likert scale agreement with the following statement: This
keyword is relevant to the course, where a score of 1 corre-
sponded with Not Relevant At All and a score of 5 corre-
sponded with Very Relevant. A total of 75 students partici-
pated in our study, rating a total of 8,355 keywords.

3.2 Results
The average student relevancy ratings of keywords from each
of the five groups is shown in Figure 5. All three Model
Sorted groups, and the Random (Description) group, scored
between a 3 (neutral) and 4 (relevant) in keyword relevance.
Selecting keywords at random from the entire vocabulary,
Random (All), scored a 1.836 (below “Not Very Relevant”),
representing students’ lower bound for perception of rele-
vance. All pairwise differences between keyword groups were
statistically significantly reliable at p < 0.005, after apply-
ing a Bonferroni correction for multiple (10) Wilcoxon rank
sum tests, except between Model Sorted (All) and Random
(Description) groups which was not statistically separable
(p = 0.019).

The benefit of the model-based approach in terms of improv-
ing relevance of chosen keywords can be quantified by the
difference in ratings between the random within-description
selection group, Random (Description) - 3.612, and the model-
based within-description selection group, Model Sorted (De-
scription) - 3.916. A breakdown of the proportion of each
rating level by group can be seen in Figure 5. The majority
(51%) of Model Sorted (Description) keywords received a 5
rating (Very Relevant), compared to Random (Description),
for which 42.1% were Very Relevant. Model Sorted (Non-
Description) has a much lower proportion of Very Relevant
ratings (31.5%), but still considerably higher than the Ran-
dom (All) baseline, with 7.3%, and with 62.3% of keywords
in its group receiving the lowest relevancy rating as com-
pared with Model Sorted (Description), that received 20.6%
Not Relevant ratings.
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Figure 5: User study relevancy ratings by keyword group

The way in which student relevancy ratings played out with
respect to the within-group ranking of the keyword based
on model probability is shown in Figure 4. The average rel-
evancy rating (y-axis) by rank (x-axis) is plotted for each
of the three model-based approaches. Since the two random
models do not involve any model probabilities, they also are
not associated with a rank. Therefore, they are represented
in the plot as horizontal lines corresponding to their aver-
ages. The Model Sorted (All) trend shows the highest av-
erage ratings at rank 1, followed by an apparent asymptote
down to just above the average random within-description
level. Differences in ratings between these two at each rank
level are statistically significantly reliable except at ranks 3
and 4. The Model Sorted (Non-Descrip) trend is initially
above Random (Description) at rank 1, but then dips down
and asymptotes to a Neutral average ratings value of 3.

A premised benefit of the predictive model was to surface rel-
evant keywords that are not in a course’s description (Non-
Descrip). If we were to highlight inferred keywords, we
would like to show only keywords that are “better” than
words chosen randomly from the description, or at least
not show words statistically significantly worse. The Model
Sorted (All) ratings are statistically reliably higher than
Random (Description) at ranks 1 and 2. We use this in-
formation to tailor our strategy for when and how many
inferred keywords to display in the production version of
our enhanced course search feature.

3.3 Selecting keywords to display in search
With an improved understanding of the relevancy of the
model’s predicted keywords, we discuss how to leverage this
information towards improving the search feature by updat-
ing our inferred keyword selection criteria. In the proto-
type, the criterion was to always display the top 10 model
keywords, which did not exclude words in the description.
We continue to not restrict the display of keywords from the
description, as showing them could serve the added benefit
of a topic category source for reference. Thus, we choose
Model Sorted (All) as the focus of this analysis.

We leverage the observation that Model Sorted ratings corre-
late with rank to investigate how well the underlying model
probabilities of those words correlate with student relevancy
ratings. If there is a correlation, then the probabilities, along
with a threshold, could be used to dynamically determine
which words should be included as inferred keywords on a
per course basis. To conduct an analysis comparing model

probabilities to user ratings, we normalize these two sets
of ratings using Z-scores and then average them by Model
Sorted rank. We find a substantive correlation between
probability and rank and would like to choose a thresh-
old of probability from Model Sorted (All), such that all
keywords with that probability or above can generally be
expected to produce keywords perceived by students to be
more relevant, on average, than a word chosen at random
from the description. The analysis in the previous section
(Fig 4) found that user relevancy ratings for Model Sorted
(All) were significantly higher than Random (Description) at
ranks 1 and 2. Therefore, we use the probability at rank 2 as
the cut-off. Using this probability cut-off, we find 4.32 total
words on average expected to be displayed for each course,
with 2.33 within-description words and 2.00 non-description
words surfaced on average within these semantics.

4 Conclusion
We explored surfacing novel, searchable semantics of a course
using an embedding of courses informed by course selection
histories, and supported our methodology through a user
study to evaluate the relevancy of these keywords. Our
experiment contributes both methodologically to the use
of embeddings to surface latent semantics and to the de-
sign of data-driven information systems in educational set-
tings. Our process of interface prototyping, followed by of-
fline model optimization, user testing, and incorporation of
study findings into the production software system can also
serve as a design model and guide for other technologies to
tune EDM analyses towards better student experiences.
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ABSTRACT 
This poster/demonstration presents our preliminary efforts to 
explore learning data and model predictions by mapping them into 
objects in a three-dimensional space.  Our work is related to the 
area of visual analytics, where machine learning or other analytic 
techniques are combined with interactive data visualization to 
promote sense making and analytical reasoning. The demonstration 
consists of interactive VRML models generated from the DataShop 
Geometry9697 dataset. The initial results indicate that in spite of 
some limitations the approach allowed to identify from only the 
observations distribution specific knowledge components that 
could be targeted for model refinement.  

Keywords 

Visual analytics; Dimensionality reduction; Closing the loop 
between research and practice.  

1. INTRODUCTION 
The visual inspection of learning curves plays an important role in 
the discovery of anomalies in learning models [1,10]  In principle, 
learning curves exhibit a smooth decrease of error rates as a 
function of the increase number of learning opportunities [11].  
When anomalies are visually detected (flat curves, curve spikes, 
slope increases), they are interpreted has hidden non-obvious 
knowledge components (KC) [2] that need to be made explicit in 
the model.  Model refinements based on either logistic regression 
models or hidden Markov models, assume that refinements take 
place by modifying knowledge component assignments to learning 
items.  However, visual inspection has its limitations, and 
alternative means of exploring alternative model refinements 
through computations and model fitness assessments is an active 
area of research [2].   
However, given the need to close the loop between research and 
practice in order to better embed evidence-based education and 
training, visual analytics might provide an interesting approach to 
explore.  Visual data inspection is a useful operation at the initial 
stages of data analysis to provide insights about regularities, 

oddities, changes, and trends.  But as visual analytics human-in-
the-loop process models suggest [12,13], visual information is also 
important at all stages of data mining refinements [15,16].  
Our work is related to the area of visual analytics, where machine 
learning or other analytic techniques are combined with interactive 
data visualization to promote sense making and analytical 
reasoning [5].  Our exploration of visual analytics for educational 
data mining is preliminary and focuses on initial visual 
representations such as the relationship between: 1) error rates and 
learning opportunities, 2) observed and predicted error rates for 
knowledge components, and 3) observed and predicted error rates 
for knowledge components as a function of learning opportunity 
phases.  The demonstration consists of interactive Virtual Reality 
Modeling Language (VRML) models generated from the DataShop 
‘Geometry Area (1996-97)’ dataset [7] using unsupervised, and 
nonlinear methods.  VRML is simply used as a format to support 
data visualisation, other formats are also possible such as X3D, 
FBX, or OBJ.  The file format for encoding 3D models is 
independent from the mapping method of an original data set of n-
dimensions to a three-dimensions space.  
Prior to displaying the data for visual inspection using VRML, the 
method reduces the multidimensional attribute values of the data 
source to a three-dimension geometric space exposing object 
proximity, known object links, and object clusters.  The method 
seeks distance/dissimilarity preservation between the original high-
dimensional space and a target low-dimensional space, so that any 
relationship found between these patterns and any other external 
variable is due to the existence of interdependencies between that 
variable and the original descriptors [15].  The purpose is to make 
all distances comparable, regardless of how many attributes are 
used. For example, objects 1 and 2 may have 5 attributes in 
common, but 1 and 3 may have 10. Normalizing by the number of 
common attributes eliminates the differences when comparing 
distances computed with different numbers of attributes.   
As an exploratory data analysis method, mapping a data set into a 
three-dimensional space has as a primary objective to reveal 
patterns in the data that could be worth of further investigation.  In 
spite of the fact that visual inspection is not exempt of biases [4], 
the dimensions reduction method ensures that the loss of 
information on all objects pairs similarity distances in the mapping 
from N to 3 dimensions is minimal, preserving the relative 
proportional distances as much as possible.  For the analysis 
performed in the current paper, the three-dimensional space was 
computed using the Sammon’s nonlinear mapping method [14].  
In similarity with t-SNE [9], data points represented in the space 
have to be interpreted in their spatial relationships with the other 
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data points, leaving undetermined the meaning of individual point 
values in relation to the space axis.  One advantage of the mapping 
to three dimensions in comparison to a mapping to two dimensions, 
is the reduction of information loss while preserving visual 
interpretability.  

2. ANALYSIS 
The next sections explore the application of visual analytics 
methods to the representation of relation between: 1) error rates and 
learning opportunities, 2) observed and predicted error rates for 
knowledge components, and 3) observed and predicted error rates 
for knowledge components as a function of learning opportunity 
phases.  The DataShop Geometry9697 dataset [7] is used for the 
analysis, but more specifically the original model which has 15 
knowledge components.  Other models  from the same dataset 
range in number from 1 to 15 with a median of 12 knowledge 
components [8]. 

2.1 Opportunities As Objects 
Figure 1 shows the DataShop learning curve for the opportunities 
averaged over students.  One can easily see that the observations in 
red and the prediction in blue show a reduction of error rates as the 
number of opportunities increases.   
For our first analysis, we were exploring if the 3D modelling 
method would show a similar trend and structure.  The first analysis 
used an input data matrix containing 74 opportunity objects (37 
observations, and 37 predictions) with 15 attributes (knowledge 
components) with error rates as values with some missing data.  
Every opportunity object was linked to its successor (next 
opportunity).  The distances were calculated using the normalized 
Clark distance [3].   

 
Figure 1. DataShop observed and predicted 

error rates for opportunities. 
Figure 2 presents one view of the analysis.  The 3D model shows a 
large dispersion of observation objects (red) as compared to the 
predicted values (bleu).  The specific identification of the object 
(not visible on the figure) coupled with the successor links indicate 
that the most dispersed observations are for the late opportunities.   
Figure 3 shows the same 3D model but with a zoom near the 
collection of prediction objects.  All the of the objects are in close 
proximity to their predecessor and successors, but for the lower 
right, which is the end of the opportunity sequence, capturing the 
sudden variability in the predictions as also visible from the 
DataShop plot (Figure 1).  However, it is interesting to note that the 
learning curve pattern is not clearly visually identifiable from the 
3D model.  The main reason for this limitation is that each 3D 
model object captures the variation of its multiple attribute values 
(average error rates for each knowledge component), while the 

learning curve in Figure 1 reduces this complexity to one measure 
of central tendency (average over all knowledge components).  

 
Figure 2. 3D opportunity objects observed (red)  

and predicted (blue) with error rates for KCs as attributes. 
 

 
Figure 3. 3D opportunity objects observed (red)  

and predicted (blue) with error rates for KCs as attributes. 
(Zoom on predicted values). 

2.2 Knowledge Components As Objects 
The second analysis focuses on knowledge components as objects.  
This input data matrix contains 30 knowledge component objects 
(15 observations, and 15 predictions) with 37 attributes 
(opportunities).  The matrix cells contained error rate values with 
some missing data. Every observed knowledge component object 
was linked to its predicted value.  

 
Figure 4. 3D knowledge component observations (red)  

and predictions (blue).  
The Figure 4 presents the resulting 3D model. A visual inspection 
of the figure shows that observations (red) are more on the outside 
than the predictions (blue), suggesting that overall prediction 
values have more similarity than the observations. The 3D model 
also displays links of various lengths between knowledge 
component observations and predictions, suggesting a good fit for 
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short links.  However, this 3D model does not match learning curve 
anomalies identified with specific knowledge components such as 
the COMPOSITION-BY-ADDITION in the original AFM model 
[8].  In the 3D model, the link between the observation and the 
prediction is not long (bad fit) and none of the nodes stand out of 
the main visual group of objects.  Given that the data suffers from 
student attrition [6], it is possible that either missing values or high 
variability or error rates introduce too much noise and creates too 
much dispersion, so that some of the visual structure is not exposed.   

In order to reduce the noise created by the attrition in late 
opportunities, a new input data matrix was generated by assigning 
opportunities to classes. Error rates values were split using a 
piecewise regression method in three opportunity phases: initial 
(opportunity 1), mastering (opportunities 2 to 7), and attrition 
(opportunities 8 to 37).  This matrix contained 90 knowledge 
component objects which consisted of each of the 15 observed, and 
15 predicted knowledge component error rate values for each of the 
3 opportunity phases.  Every observed knowledge component 
object was linked to its predicted value.  Figure 5 presents a partial 
view of this analysis, leaving out the model the prediction objects.  
In the figure, the red objects correspond to the initial opportunity, 
the green object to the mastery learning efforts, and the blue objects 
to the remaining opportunities.  

The figure indicates a cluster of red objects on the left and another 
one the right.  The identification of these objects indicates that the 
objects on the left correspond to the knowledge components with 
high initial error rates.  However, both the mastery (green) and 
attrition (bleu) objects seem to be distributed evenly in the space.  
The figure also contains directional links going through some of the 
knowledge component objects for which there is at least a shift 
towards the left of the 3D model, indicating a learning curve 
anomaly.  

 
Figure 5. 3D knowledge component observations (KC) with 

initial opportunity (red), early mastery learning 
efforts (green), and late learning opportunities (blue).  Along 

the X axis, it is expected that for a given KC, the order of 
colour from left to right would be red-green-blue.  

Table 1 summarizes the main visual features of the knowledge 
components identified in Figure 5.  A visual inspection of the figure 
indicates that the majority of objects (knowledge components) are 
ordered from left to right in red, green, and blue, which corresponds 
respectively to the classes of initial, mastery efforts, and late 
learning opportunities.  However, some knowledge components in 
the figure break from this pattern, and are labelled with the KC 
names and arrows linking the learning stages.  In agreement with 
other analysis of this dataset [7], the knowledge components 
COMPOSE-BY-ADDITION, CIRCLE-RADIUS, and 
TRIANGLE-AREA have been selected as learning curve 
anomalies and objects for model refinement [2].  Interestingly, the 
identification of potential issues was made possible by only looking 

at the observations without having to inspect individual learning 
curves anomalies.  

CONCLUSION 
This poster/demonstration presented our preliminary efforts to 
explore learning data and model predictions by mapping them into 
objects in a three-dimensional space.  Some limitations were 
obvious with the first analysis of the general learning curve over 
opportunities.  However, the inspection of a knowledge component 
3D model, where learning phases (initial, mastery, attrition) 
allowed to identify from only the distribution of the observations 
some knowledge components that could be targeted for model 
refinement.  The approach seems to be valuable and worth pursuing 
for the combined analysis of learning data and model predictions.  
Future work will consist of looking at students’ performance to see 
if the 3D model compares to AFM student parameter values.  The 
approach could also be applied to visually compare alternative 
models of the same knowledge components set.  

Table 1. Knowledge components with error rates change 
anomaly as identified in Figure 5.   

Knowledge 
component 

Initial to  
Mastery 

Mastery to  
Attrition 

Interpretation 

COMPOSE-
BY-
ADDITION 

Slight shift 
to the right  

Slight shift 
to the left 

No learning. 

CIRCLE-
RADIUS 

Strong shift 
to the left  

Slight shift 
to the right  

Performance 
decrease then 
some learning 

TRIANGLE-
AREA 

Strong shift 
to the left  

Slight shift 
to the right 

Performance 
decrease then 
some learning 

CIRCLE-
DIAMETER 

Strong shift 
to the left  

Strong shift 
to the right  

Performance 
decrease then 
learning 
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ABSTRACT 
Efficient learning experiences require content to dynamically       
match a learner’s skill; this assumes a fast and accurate          
assessment of the learner’s skill and the ability to update content           
accordingly. Effective personalized learning therefore involves      
deriving a performance-predictive mapping between behavioral      
and environmental factors. Once learned, this relationship can be         
used to generate new content and to update skill estimates based           
on the learner’s interactions in an adaptive system. To provide          
proof of concept: 
(1) We develop a fast-paced driving video game where the player           
skillfully navigates a cluttered environment comprising obstacles       
and collectibles. Game content is generated procedurally and        
player behavior is recorded in the game—this provides an ideal          
test-bed for a method aiming to learn such a         
performance-predictive mapping. 
(2) Using blurred occupancy maps of the game’s segments, we          
generate risk-weighted trajectory profiles for each user and        
segment of the game. Here, we show that these profiles can be            
used in a regression model to predict in-game performance both          
within and between game segments. Additionally, these profiles        
themselves reveal a trade-off between in-game rewards and risks. 
Successful identification of predictive environmental units within       
the game provides insight into the mapping between        
environmental features and performance, while facilitating the       
process of procedurally generating new, appropriate content in our         
adaptive system. We show that rapidly assessed measures of risk          
are highly predictive of both driving performance and reward rate,          
providing proof-of-concept evidence for the feasibility of a        
personalized adaptive learning system for this game.  
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1. INTRODUCTION 
A central topic in modern educational research is to determine          
how best to personalize learning experiences. While mismatched        
content can lead to inefficient learning, boredom, frustration, and         
disengagement, well adapted content may lead to Flow state, and          
learning efficiency [1]. Personalized learning systems require a) a         
performance evaluation mechanism— in order to measure the       
impact of content features on learner performance—and b) an         
adjustment mechanism— that determines content updates     
depending on the performance evaluation [2]. Hence, personalized        
learning systems require the derivation of a       
performance-predictive mapping between learner’s performance     
and content features. Such a mapping is particularly challenging         
to derive for complex environments with continuous, real-time       
user interactions. 

We aim to develop a framework to investigate solutions for          
real-time performance evaluation and content adjustment in a        
complex environment. Such a framework requires the ability to         
generate content procedurally with complete control over the        
content features. It must also be able to provide continuous          
interactions between content and user, support the data collection         
related to these interactions, and must be accessible and engaging          
to a wide audience. We use a driving video game as the learning             
environment because it fulfills all of these requirements. In         
addition, driving requires motor control, which is a well         
characterized domain for understanding general principles of       
human learning on a computational and biological basis, [3] and it           
has been used for cognitive training [4]. A driving game might           
seem unrelated to traditional educational settings (e.g., math        
quiz); yet, we believe that it provides a fertile ground for research            
on personalized learning and has the potential to transfer to          
situations that are more typical in education. 

To make the analogy to education clearer, we treat the          
procedurally generated driving tracks as being composed of a         
sequence of segments, each of which presents a navigation         
problem. Segments tap navigation knowledge, and we assume        
there is a low-dimensional knowledge space that covaries with         
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measurable features of the segments, and performance on these         
segments. Our goal is to show how to use player performance to            
the parse the environment into segments predictive of differences         
in performance, then use the features of these segments to learn           
which aspects of the procedural generation system most affect         
segment “difficulty”. The end result is an online segment-wise         
performance evaluation mechanism that uses segment feature       
information to predict difficulty, and uses observed performance        
to estimate skill.  

In complex learning environments, like in this driving game,         
quantifying difficulty needs to integrate performance with respect        
to all task objectives; because players must simultaneously reduce         
the risk of crashing while maximizing collectibles, we model         
difficulty as having risk and reward components. In general, tasks          
with multiple objectives should manifest trade-offs, which makes        
simple performance assessments inappropriate. Thus,     
simultaneous assessment of risk scores and reward rates are         
essential for investigating the validity of an adaptive system         
framework that we wish to implement. 

1.1 Adaptive System 
The flow of the proposed online adaptive system is shown in           
Figure 1. In the learning environment (here, the driving game),         
content is procedurally generated, varying key parameters which        
affect difficulty. This new content is processed to identify         
performance predictive features of the content by creating a risk          
prediction map. This map can be used to predict user performance           
on content and identify ahead of time which sections of the map            
are likely to be predictive of success (e.g., acquiring collectibles,          
avoiding collision). After the user interacts with the content,         
feedback about risk (e.g., proximity to obstacles) and reward (e.g.,          
observed collection rate) is used to update the user’s skill estimate           
in the trade-off space. In this paper, we focus on proof of concept             
in generating, within the context of driving video game, the risk           
prediction map and validating its relationship with performance        
on our segments. 

 

Figure 1. Flowchart of the full adaptive system. Game content          
is generated by specifying parameters for a generative process.         
These features have a relationship to the content’s difficulty, and          
when learned, provide a prediction of performance. After        
presentation, interaction statistics are calculated and the estimate        
of the individual’s skill is updated. The skill estimate is used to set             
new environment parameters, Θ. To learn the relationship        
between content features and performance, the intermediary       
relationship between interaction statistics and both performance       
and content features must be observed.  

2. METHODS 
2.1 Game Design 
We developed a fast-paced driving video game where the player          
has to skillfully navigate a vehicle through a cluttered         
environment comprising various obstacles and collectibles (see       
Figure 2). The vehicle moves forward at a constant speed and the            
player controls its translational movement by pressing the right or          
left arrow keys in order to acquire collectibles (by running into           
them) and to avoid the obstacles which delimit a path to follow.            
Colliding with an obstacle causes the vehicle to reset at an earlier            
point on the path with no speed; speed then gradually ramps up            
over the course of 3 seconds before reaching its constant value.           
During gameplay, the player’s inputs, trajectory, collectibles       
collected and collisions are recorded. 

The content of the game (i.e., the path to follow, the distribution            
of obstacles and collectibles, and the visual aesthetics) is         
generated procedurally. The driving space is composed of a         
sequence of independent segments, separated by buffer zones        
which contain no obstacle or collectible. Each segment is         
generated from a procedural sequence of user inputs describing a          
timeline of keys (left, right) being pressed and released, for a           
given duration—this ensures that in principle the segment can be          
successfully driven. This sequence of virtual user inputs can be          
characterized by its variability (i.e., change in duration and         
direction across inputs), and its pacing (i.e., number of inputs over           
time) and is used to compute the corresponding reference         
trajectory that a player should follow, taking into account the          
physical characteristics of the vehicle such as mass, drag and          
thrust. Obstacles are then placed around this reference trajectory.         
The minimal distance between obstacles and trajectory defines the         
narrowness of the segment. The minimal distance between        
obstacles defines the ambiguity of the path—when the distance is          
small the correct path is perceptually salient and there is low           
ambiguity as to where to drive; when the distance is big it            
becomes unclear which path to take (see Figure 2). Finally,         
collectibles are placed directly on the reference trajectory, at         
critical points of each turns. 

Figure 2. Subjective (top) and bird-eye (bottom) view for         
representative portions of each segment (obstacles in black,        
collectibles in orange). Each segment represents a distinct        
statistical profile of our generative game design. A video of the           
game can be found here: https://youtu.be/gRSX_cOh5-4  

2.2 Reward Rate Scores 
To quantify a player’s performance on the task of acquiring          
collectibles for a given segment we use the reward rate score           
which is defined as: 

𝜆 = (c/t) / (C/T) 
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Where C and T are parameters of the segment and c and t are              
behavioral data. Specifically, C is the total number of collectibles          
on a segment and T the fastest possible completion time of that            
segment; c is the number of collectibles acquired by the player           
and t is the players’ actual completion time. Therefore, 𝜆 is a            
proportion between the rate at which the collectibles were         
acquired (i.e., c/t) and the highest possible rate for that segment           
(i.e., C/T). 

2.3 Risk Scores 
We postulate that an individual’s ability to achieve a high reward           
rate score (𝜆) is a function of their ability to acquire collectibles            
while avoiding obstacles. To quantify the individual’s interactions        
with the environment, we compute a risk statistic for their          
trajectory. This statistic is a function of both features of the           
environment and the user’s behavior. We compute a risk score for           
each observed player trajectory through the segment, which        
weights the trajectory by its distance to nearby obstacles at each           
time point, monotonically resembling the risk of collision. Since         
collectibles are placed along the reference trajectory used to         
generate the segment, they reside along points where this function          
will be low, while space occupied by obstacles and near obstacles           
is high. 

A vectorized bird’s eye map of each segment (see Figure 2,           
bottom) can be used to generate a risk profile for each measured            
trajectory. Since risk of collision should drop off continuously         
with the distance between the vehicle and obstacles, a gaussian          
kernel was convolved with a filtered map containing only         
obstacles to generate the risk heat map. Then, for each point in a             
player’s trajectory, the corresponding risk value on the map is          
found in order to construct a risk profile for that trajectory. That            
is, the risk value of every point in the trajectory. Averaging the            
risk values across the trajectory provides a unique  Risk Score. 
2.4 Pilot Study Design 
For this pilot study, we generated one track that was composed of            
five different segments; the exact same track was presented to all           
participants. We generated segments that allowed us to span the          
space of relevant generative parameters and provided enough        
samples in terms of observed trajectory length. The first segment          
is a succession of identical, wide, long turns with no gap between            
obstacles. Subsequent segments are designed to explore various        
combinations of features (i.e., different values of narrowness,        
pacing, ambiguity, variability) and are expected to be of         
increasing difficulty, culminating with the last segment where        
perfect performance is only achievable for an expert player.         
Table 1 illustrates the parameter choices for these five segments. 
 

Table 1. Qualitative descriptions of each segment. 

 segment 
1 

segment 
2 

segment 
3 

segment 
4 

segment 
5 

Narrowness low medium medium high high 

Pacing low medium medium high high 

Variability low low medium high high 

Ambiguity low low high low high 

2.5 Data Set 
Seven participants played the driving game one to seven times,          
resulting in 28 sessions with a unique trajectory for each of the            
five segments; it takes a minimum of 26 seconds to complete a            
single segment and the longest observed completion time was 138          
seconds (on segment 5). The main role for this preliminary dataset           
is to serve as a testbed for exploring the relationship between the            
risk scores of a trajectory and the individual’s performance in          
environments generated procedurally from a set of parameters.        
This understanding contributes to the development of an analysis         
pipeline whereby these relationships could, in a future step, be          
exploited by an adaptive difficulty algorithm. 

2.6 Analysis 
To assess the relationship between risk and reward scores, we          
looked at a)the relationship between a single segment’s risk score          
and performance and b) the relationship among segments to see          
whether information from one segment generalizes to other        
segments. Normally, a regression model predicting a rate would         
use a Poisson link, however, since the data collected fell mostly in            
the middle (linear) region of possible values, a log-linear model          
was used instead, with the log transforming the data to better fit            
normality assumptions. 

Cross-segment predictions could be informative for an adaptive        
system which aims to predict performance on one segment from          
the performance on a previous one. The risk scores of each of the             
5 segments for each of the 28 sessions were compiled into a            
matrix (28 sessions x 5 segments) for fitting linear regression          
models for each segment where the output variable is the          
log-transformed reward rate score (𝜆) for each attempt on the          
segment. We fit the relationship between the risk scores one or           
multiple segments and the reward rate score of each segment,          
giving five models with five possible predictors each.        
Additionally, we look at the specific within-segment cases. 

The model search space for cross-segment fits is defined by all           
combinations of the main effects of risk score for each segment           
(25 = 32 possible models per segment). The best-fit model of the            
reward rate score on each segment was selected using an          
exhaustive branch-and-bound search algorithm with Mallow’s Cp       
criterion [5]. In the case of gaussian linear regression, Cp values           
are equivalent to AIC. This procedure is functionally similar to          
lasso regression by forcing some parameter coefficients to be 0 by           
not including them when they do not contribute to the fit. Thus,            
five within-segment relationships and five between-segment      
models are considered. 
 

3. RESULTS 
Linear fits of the relationship between reward rate on a segment           
and the mean risk score for that segment is shown in Figure 3. We              
see that overall, the reward-rate is negatively associated with the          
risk score, characterizing a trade-off. Additionally, this tradeoff        
varies between segments, with some segments producing different        
ranges of both reward-based performance and risk-based       
performance. The coefficients of the risk scores of one segment in           
the best fit model of the reward rate of another segment is shown             
in Figure 4. Notably, the risk scores of segments show stronger           
relationships with the reward rates of segments with more similar          
features and difficulty (Table 1). 
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Figure 3. Difficulty is captured through risk-reward trade-off        
functions. The relationship between the mean risk score on a          
segment and the log of the normalized reward rate. Each datapoint           
represents one trajectory through a segment. The slope shows a          
trade-off between risky behavior and reward-rate, such that        
incurring additional risk negatively affects the rate at which         
collectibles are acquired. The slopes present a distinctive notion         
of difficulty—higher slopes are more challenging in the sense that          
there is less leeway for trajectory error to preserve performance.          
Note that the average performance per segment does not capture          
this more fundamental trade-off. In an adaptive system, we target          
the relationship between segment attribute statistics and the slopes         
and intercepts of the risk-reward trade-off functions.  

 

Figure 4. Difficulty varies smoothly with task statistics. Matrix         
showing the coefficients of risk scores in best fit models for           
cross-segment predictions of reward rates. Each ij- cell represents        
regression coefficient for predicting reward success on segment j         
from the risk profile in segment i. 
 

4. DISCUSSION AND FUTURE WORK 
Our results demonstrate a fundamental trade-off in difficulty in         
our driving game, and that difficulty is directly related to the           
underlying task generative parameters. Moreover, segment-wise      
performance is predictive of performance on new segments,        
indicating that there is some lower-dimensional space that        
indicates skill across racing segments. The simple linear models         
(shown in Figure 3) and best-fit linear models (shown in Figure 4)            
suggest that in our virtual environment the analysis of the risk           
profiles of player trajectories on some segments is informative of          
a reward rate-based performance measure on the same and other          
segments (R2 range from 0.58 to 0.74). While measuring reward          

rate is slow during online gameplay, measuring risk is fast and           
relatively easy. This analysis demonstrates we can predict both         
using only risk scores, which is important during real-time         
assessment.  

Given our ability to diagnose performance, we can incorporate our          
results into a full adaptive system by using the predicted skill to            
adjust difficulty. This can be incorporated directly, for instance by          
having a library of segments that are adaptively selected based on           
their predicted difficulty for a given user. To incorporate the          
procedural generation aspect of the game we can sample the          
generative parameter space to predict this difficulty tradeoff in a          
hierarchical model. This can close the loop on the adaptive system           
in Figure 1, by adjusting segment generation based on risk          
assessment. 
 

5. CONCLUSION 
We proposed a framework which makes use of the relationship          
between features of procedurally generated content and individual        
performance to generate novel content. Using a modest sample of          
pilot data collected from a custom-designed driving game, we         
show that a risk statistic adequately summarizes the interactions         
between a player and segments of the game. The relationship          
between these variables reveals a tradeoff between performance        
and risk in the task. Using this statistic, which can be computed            
easily online, predictions about performance both on current task         
and future tasks can be made. In generating an operating adaptive           
system, the next step will be to learn a model of the relationship             
between environmental features and these summary statistics to        
facilitate the adaptive generation of content. 
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ABSTRACT 
The present study seeks to improve our understanding of how 
learners interact with assignments in an interactive online learning 
platform, Revel. First, a means of visualizing learner pathways 
through assignments is proposed. This tool is then used both to 
inform choices regarding feature extraction and to interpret the 
result of applying cluster analysis to those features. Results suggest 
that characteristic ways of interacting with the online platform 
include: completing assignments while largely following the 
designed sequence of activities, completing assignments while 
deviating more from the sequence, and stopping work before 
completion of the assignment. 
Keywords 

interactive learning environment, visualization, cluster analysis, 
partitioning around medoids, k-mediods 

1. INTRODUCTION 
Traditionally, active engagement in higher education courses 
requires learners to spend time reading sections of an assigned 
textbook. Reading material can reinforce what is taught in class, but 
learners may be discouraged from reading when the text is difficult 
to access and is not engaging. The present study explores learner 
behaviors in an interactive online learning platform, Revel. With 
Revel, learners are given assignments to be completed before class 
so that they can arrive to class better prepared to learn. Typically, 
an assignment covers one chapter, broken into sections. These 
assignments alternate between learning objects (texts, videos, 
interactives, etc.) and assessment objects (writing prompts, 
multiple choice questions, etc.). The assessment activities help the 
learners to check their understanding. At the end of a chapter, the 
learners are presented with a more summative assessment of the 
content. 
Though learners within a class will typically see the same online 
assignments, they likely will not engage with the assignments in the 
same way. The present study seeks to improve our understanding 
of how learners may differentially interact with online assignments. 

First, a means of visualizing learner pathways through assignments 
is proposal. This tool is then used both to inform choices regarding 
feature extraction and to interpret the result of applying cluster 
analysis to those features. In the end this approach should indicate 
several characteristic ways in which learners work through the 
online assignments. 

2. SAMPLE 
Six introductory psychology classes were taught at the same 
university. In each class, thirteen assignments were administered 
with the online platform, and these assignments were similar but 
not identical between classes. In total there were 761 learners who 
altogether submitted 8,341 assignments in the online platform.  

3. METHODS 
3.1 Data 
The stream of learner interactions within the online platform was 
extracted from the platform database. Each interaction may be 
characterized by the type of object involved and the type of action 
performed.  
The thee object types are: 

• learning objects: the texts, videos, interactives, etc. that 
make up the instructional aspects of the chapter 

• section assessment objects: questions posed to the learner 
following a small set of learning objects 

• chapter assessment objects: summative questions posed 
at the end of the assignment 

The two actions types are: 
• view: the learner accesses a learning object or accesses an 

assessment object without answering it 
• answer: the learner provides an answer to an assessment 

object 
The assessment objects are multiple choice questions, which may 
be attempted up to three times. Three points are awarded for correct 
responses to section assessment objects, while five are awarded for 
chapter assessment objects. A one-point penalty is applied to 
reattempts. Instructors are encouraged to incorporate assignment 
scores into the course grade to bolster learner engagement. 

3.2 Visualization of pathways 
A learner’s pathway through one assignment may be depicted 
visually. Figure 1 provides an example. In the figure, the actions a 
learner takes are displayed as connected points, arranged along the 
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x-axis in the ordered that the learner took them. The shape of the 
points indicates the type of action: circles for answering and 
triangles for viewing. The sequence of objects for the assignment 
is given in the y-axis, and the colored horizontal ribbons divide the 
plot region according to object type: lighter blue for learning 
objects, darker blue for section assessment objects, and green for 
chapter assessment objects. 
The example pathway in Figure 1 shows that this learner started by 
accessing a couple of learning objects two to three times each. Then 
the learner answered nine section assessment objects in sequence, 
skipping over several learning objects as they did so. Following 
that, the learner backtracked to review many of the objects they 
previously encountered without providing new answers to the 
assessment objects. Next, the learner backtracked again, viewing 
some of the learning objects they previously skipped before 
continuing on through the assignment in sequence. 

3.3 Feature Extraction 
Reviewing several example pathways as in Figure 1 informed on 
what features should be extracted from the stream of interactions. 
Based on this review, the following features were extracted for the 
8,341 assignments submissions: 

• sections_viewed: the percentage of learning objects the 
learner viewed 

• sections_repeated: the percentage of learning objects the 
learner viewed more than once 

• section_items_answered: the percentage of section 
assessment objects the learner answered 

• section_items_repeated: the percentage of section 
assessment objects the learner answered more than once 

• chapter_items_answered: the percentage of chapter 
assessment objects the learner answered 

• chapter_items_repeated: the percentage of chapter 
assessment objects the learner answered more than once 

• skip_aheads: the percentage of transitions between 
objects in which the learner moved forward in the 
sequence skipping over one or more objects 

• go_backs: the percentage of transitions in which the 
learner went to an earlier object in the sequence 

3.4 Clustering of pathways 
Cluster analysis is performed to determine what typologies may 
exist for student pathways through the online assignments. The 
Partitioning Around Medoids [1] (PAM) algorithm, also known as 
k-mediods clustering, is employed for this purpose. PAM is similar 
to k-means clustering [2], but rather than define clusters by means, 
it defines clusters by their most representative observation 
(mediod). An advantage of PAM is that it is more robust to outliers 
than k-means clustering. 
For both PAM and k-means clustering, it is necessary to prespecify 
the number of clusters k. Clustering methods are commonly used in 
exploratory analysis where k is not known in advance. The choice 
of k may be made by trying several values and selecting the one 
that maximizes some criteria. The criteria used in the present study 
is the average silhouette width [3], which provides a measure of 
how well each observation fits with its assigned group, ranging 
from zero to one. Averaging this across the dataset provides an 
overall index of the goodness of fit that may be used to select an 
optimal k. 

4. RESULTS 
The PAM algorithm was applied for values of k ranging from 1 to 
7 on standardized (mean-centered and divided by the standard 
deviation) features, using Euclidean distance as the dissimilarity 
measure. The average silhouette width was maximized at .24 for k 
= 3 groups. This value for average silhouette width is considered 
low and suggests a somewhat weak structure regarding the clusters. 
Focus will be given to the three-group solution because the greatest 
support was observed for it. The groups, numbered one through 
three, consisted of 2,852, 4,832, and 657 observations respectively. 
Figure 2 presents the (unstandardized) feature values for the 
representative observations of the groups.  
Looking to Figure 2, Group 1 may be characterized as viewing 
about half of the learning objects, answering about half of the 
section assessment objects, and answering all or nearly all of the 
chapter assessment objects. This group also tended to view learning 
objects more than once, and often skipped ahead or went back in 
the sequence of objects. For convenience of interpretation, this 

Figure 1. Example pathway. 
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group may be labeled wanderers, as they engaged with most of the 
objects but not in an orderly sequence. 
Group 2 is similar to Group 1 in terms of the number of objects 
viewed and answered, but Group 2 less often skipped ahead or went 
back in the sequence. Their pathway through the assignment was 
more linear, and for this reason Group 2 may be labeled arrows. 
Group 3 is characterized as viewing fewer learning objects, 
answering fewer section assessment objects, and answering few or 
no chapter assessment objects. Given that the chapter assessment 
objects appear at the end of the assignments, these points suggest 
that this group quits assignments part way through. In light of this, 
Group 3 may be labeled incompleters. 
A feature of the PAM algorithm is that each cluster is formed on 
the basis of a representative observation. Similar to the 
visualization for the example pathway shown earlier in Figure 1, it 
is possible to visualize the three representative observations as 
shown in Figure 3. (Note that the three observations are not 
associated with the same assignment and so have different numbers 
of objects depicted in the figure.) Naturally, the subplots in Figure 
3 mimic the preceding characterizations of the groups; the wanderer 
proceeded through the assignment in a more erratic path than the 
arrow, and the incompleter stopped work part way through. 

5.  DISCUSSION 
In the present study, a means of visualizing learner pathways 
through the online assignments was developed and subsequently 
used to guide in feature selection and interpretation for a cluster 
analysis. The results of the analysis suggest that learner pathways 
may be characterized as wanderers, arrows, or incompleters, with 
these group memberships encapsulating how much and how 
orderly assignments were completed. Future research may 

investigate the relationships between group membership and 
outcomes such as course performance. 
The result of a cluster analysis will naturally be a function of the 
features included, and so it must be considered that if different 
features were extracted for these data, then the clusters revealed 
would also differ. Further, given that the value for average 
silhouette width for the selected clustering scheme indicated weak 
structure, it is likely that an improved set of features could be 
devised. A better feature set could include information about the 
correctness of answers to assessment objects, the amount of time 
spent on the different types of objects, or when the work is done in 
relation to the due date. Future research may investigate these 
additions.  
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Figure 2. Feature values for the representative observations. 
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Figure 3. Representative pathways for the three groups. 
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ABSTRACT
Applications that adopt peer instruction and active learning
make use of short student answers as a learning opportunity:
they take some answers as topics of discussion in class, or
select answer rationales from peers to foster self-reflection
on the learner’s own rationale to a question. However, ex-
perience with these applications reveals that some answers
are irrelevant, inappropriate, or could even be offensive, and
must therefore be filtered out. Automatic identification of
these rationales is the topic of this research. We introduce
an easy-to-implement approach based on standard text clas-
sification techniques, namely bag of words and vector space
models, and show its effectiveness for filtering irrelevant an-
swers.

Keywords
Student response systems, Short answer grading, Vector space
model

1. INTRODUCTION
Contemporary student response systems (SRS) [4, 2] al-
low students to provide free-text answers to short open-
ended questions. These open-ended questions better enable
teachers to capture student’s higher level of understanding
than close-ended questions [8]. Answers to open-ended ques-
tions can serve for in-class discussion and feedback, such
as in Socrative [6]. They also serve in out-of-class peer-
instruction, as in DALITE [1] where other student’s answer
rationals are presented to students to nurture self-reflexion
on a student’s own rational.

However, experience with SRS shows that a small propor-
tion of the answers given by students are inappropriate and
should not be presented to their peers. Filtering out these
answers by reading through them is a daunting task. For
example, with over 100k answer rationals currently in our

own system, DALITE, the task is highly demanding. With
answers that are shown in-class, as with Socrative, pre-
screening would take up too much teacher attention and
would not scale well to large classes. An automatic means to
filter unwanted answers is therefore paramount to such SRS.
The goal is to identify student answers that are deemed ir-
relevant or inadequate for in-class discussion or for inducing
student self-reflection on the topic.

This problem is similar to spam-filtering to the extent that
it is a binary classification to filter undesired answers, but
it also draws from the problem of automatic short answer
grading to the extent that desired answers are related to a
topic and to a specific question. While the topic of auto-
matic short answer grading dates back to the 1960’s and is
still an active field of research (see [3, 5, 10] for some recent
advances), we propose an approach to filter unwanted stu-
dent answers that relies on a simple Bag of Words (BOW)
method to classify undesired answers from relevant ones.

2. PROPOSED FILTERING METHOD
Building on the idea that a binary relevant/non-relevant
classification is the goal and on the principle that correct
answers will dwell on a specific topic, the proposed method
rests on the principle that irrelevant student answers will
contain words that are unrelated to the ones of the relevant
answers. In that respect, an irrelevant answer is expected to
be close to orthogonal to all other answers in a vector space
model [11].

Examples of non-relevant answers are, for eg.:

Books for sale
idk (for “I do not know”)
I think thats what it is because i am guessing
Who knows, man. It’s gotta be constant
four more years!
.
a (for choice a)

As can be seen, answers are often very short, but not al-
ways. They are sometimes humorous or sarcastic, or simply
expressions of frustrations or disengagement. But they are
characterized by a vocabulary that is unrelated with the
questions domain: physics and ergonomics in our two cor-
puses. Yet, the vocabulary used is generally non-specific to
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the domain of the question, which is the assumption behind
the proposed approach.

To measure the general orthogonality of an answer, we aver-
age the cosine of each answer with all other answers. Given
a document-term matrix of n student answers (documents)
by t terms, An×t, the average cosine of answers di in cor-
pus D is defined as:

cosD(di) =

∑
j∈D |cos(di, dj)|

|D|

where |D| is the corpus size and |cos(di, dj)| is the absolute
value of the cosine between answers di and dj .

To create the term-document matrix, An×t, we apply the
common practice of word stemming and spell correction.
The tm1 package is used for this purpose [7]. The term-
document matrix is also transformed using the standard TF-
IDF calculated from the corpus.

2.1 Answer relevance classification
The next step is to use the average cosine, cosD(di), to de-
termine if an answer is relevant or not.

We can see from Figure 2 that the distribution of the average
cosine for relevant and non-relevant answers is bimodal. Fig-
ure 2’s distribution corresponds to a single corpus, but both
corpuses show the same bimodal pattern. This observation
leads to a simple approach to determine the non-relevant
answers based on clustering.

Given that non-relevant answers are a small portion of all
answers and their average cosine is always lower than the
large majority, they tend to cluster around and above 0. We
explored the k-means clustering algorithm on the average
cosine dimension and find that for values between 2 and
10 clusters, the lowest cluster leads to a relatively stable set
of answers. Therefore, the cluster with the closest value to 0
is considered as the non-relevant set of answers. For this
study we chose the value of 4 for the number of clusters.

3. DATA SETS
Two corpuses are used in this study. They cover two con-
texts of use and, to a certain extent, two extremes cases: a
small data set with multiple valid open text answers, and a
larger data set of rationals to a specific answer choice in a
multiple-choice question.

The first corpus is small and representative of the context
where answers must be filtered in real-time as they come
in. The second corpus is from a peer learning environment
where filtering can be conducted off-line. The objective of
this environment is to avoid presenting self-reflective ratio-
nales that are non-relevant. The first corpus is typical of
Socrative whereas the second one is from DALITE. Another
factor that differentiates the two corpuses is students were
anonymous in the first context whereas they were not in
DALITE.

1https://cran.r-project.org/web/packages/tm/tm.pdf

Figure 1: Corpus 1: usability issues with an MP3-
CD player device.

Table 1: Inter-judge agreements

Corpus 1 Corpus 2

Number of non-relevant texts
found by Judge 1 11 286

Number of non-relevant texts
found by Judge 2 10 297

Inter-judge agreement (Kappa) 95.0 % 97.0 %

Corpus 1. The first corpus is a small set of answers to
a single question: “What are the usabilty issues with the
CD-player device”. The device is shown in Figure 1 and
has a fair number of problems over many dimensions, from
guidance [9] to requirements engineering. The question was
proposed to a class of approximately 150 students and the
students answered through the Socrative application. Since
there are multiple good answers, the answers often reported
multiple issues with the devices. Answers were segmented
into single-issue texts by two teacher assistants. Inter-judge
reliability was computed using Cohen’s Kappa statistic for
two judges who classified answers as relevant or not. As
shown in Table 1, the inter-judge agreements are nearly per-
fect.

Corpus 2. The second corpus contains a much larger num-
ber of student answers and covers eight questions. Segmen-
tation of answers into issues addressed is not relevant in this
context. The answers are taken from a college-level physics
class.

General statistics on the two corpuses are reported in Ta-
ble 2.
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Table 2: Corpus statistics

Corpus 1 Corpus 2

Questions 1 8
Answers 71 2054
Students 90 367

Non-relevant answers ratio 12.7 % 13.8 %

Table 3: Answer filtering results
F1 scores

Method Corpus 1 Corpus 2
Average Cosine 0.842 0.839
3-words rule 0.250 0.797

4. RESULTS
Figure 2 shows the distribution of average cosines for rel-
evant and non-relevant answers. The non-relevant answers
do have an average cosine that is generally close or equal
to 0.

The F1 classification results of the experiments are reported
in Table 3. F1 scores are calculated considering non-relevant
answers as Positives, since the filtering aims to recall non-
relevant as opposed to relevant answers (note that using
relevant answers as Positives would give different scores).

The results are broken down by the methods described and
compared with a simple baseline that is actually used in
DALITEwhich consists in classifying answers that contain
3 words or less as irrelevant.

5. CONCLUSION
We propose a simple-to-implement, unsupervised approach
to filter out undesired short and open student answers. Un-
desired answers typically occur in student response systems
such as peer learning environments, for eg. DALITE, or in
classroom app., for eg. Socrative. The approach is intended
to be effective in a context where some answers are collected,
but they are not labeled and no correct answer is provided
either. Moreover, the approach is intentionally tested with
a small dataset because this is also often to be expected in
practice. It is compared with a trivial rule based on the num-
ber of words that, while parsimonious and effective, misses
some undesired answers.

Results show that the approach improves on the simple rule,
in particular for Corpus 1 which corresponds to the Socra-
tive context and where the rule performs poorly. A smaller
improvement is found for the peer learning environment of
Corpus 2. Moreover, the F1 score shows that not all irrele-
vant answers are filtered.

Nevertheless, the simplicity of the approach makes it an at-
tractive means to address the undesired answer filtering issue
in practice.

Figure 2: Histogram of average cosines for relevant
and non-relevant student answers.
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ABSTRACT 
Many existing studies analyzing log data from online learning 
platforms model events such as accessing a webpage or problem 
solving as simple binary states. In this study, we combine quality 
information inferred from the duration of each event with the 
conventional binary states, distinguishing abnormally brief events 
from normal or extra-long events. The new event records, obtained 
from students’ interaction with 10 online learning modules, can be 
seen as a special form of language, with each “word” describing a 
student’s state of interaction with one learning module, and each 
“sentence” capturing the interaction with the entire sequence. We 
used second order Markov chains to learn the patterns of this new 
“language,” with each chain using the interaction states on two 
given modules to indicate the interaction states on the following 
two modules. By visualizing the Markov chains that lead to 
interaction states associated with either disengagement or high 
levels of engagement, we observed that: 1) disengagement occurs 
more frequently towards the end of the 10 module sequence; 2) 
interaction states associated with the highest level of learning effort 
rarely leads to disengaged states; and 3) states containing brief 
learning events frequently lead to disengaged states. One advantage 
of our approach is that it can be applied to log data with relatively 
small numbers of events, which is common for many online 
learning systems in college level STEM disciplines. Combining 
quality information with event logs is a simple attempt at 
incorporating students’ internal condition into learning analytics.  

Keywords 

Markov chains, online learning modules, log data analysis 

1. INTRODUCTION 
Understanding and predicting students’ learning behavior by 
mining the log files of online and computerized learning systems 
has been the focus of a significant body of research in educational 
data mining. For example, many studies have modeled student 
learning as a chain of ordered events such as opening a page, 
viewing a video, or solving a problem [8, 9]. Events are often 
represented by a binary variable, e.g. whether the student accessed 
a webpage or answered a problem correctly [8, 14]. While 
describing events using binary variables can significantly reduce 
the complexity of the data, doing so can remove important 

information from event logs. One indicator of the quality of an 
event is its duration. For example, abnormally short problem-
solving attempts have been associated with either random guessing 
due to low test-taking effort [4] or answer copying [1]. In two 
earlier studies [6, 7], we demonstrated that learning events can be 
separated into “Brief” (B) and “Normal” (N) categories by applying 
a mixture model clustering algorithm using the time-on-task data 
alone, since other measurements such as the number of practice 
problems answered are highly correlated with time-on-task.  

We combine duration-based categorical quality labels such as 
“Brief” or “Normal” with conventional binary event states, such as 
“Pass” or “Fail,” to analyze the log data obtained from students’ 
interaction with 10 Online Learning Modules (OLMs). OLMs are 
a form of online instructional design in which students progress 
through learning modules in a pre-determined order [5–7]. Students 
are required to attempt the assessment problems at least once before 
accessing the accompanying learning resources in each OLM. The 
restrictive structure of OLMs has major advantages for data 
analysis, providing more accurate estimations of duration 
information. Assessments and learning events are closely coupled 
on each module; the OLM structure itself improves the 
interpretability of log data events.  
We combine the event logs with categorical quality labels to form 
a simple artificial language. Each event, such as “Brief Pass” or 
“Normal Fail,” becomes part of a “word” that captures students’ 
interaction with either the assessments or the learning components 
of a module. Four such “words” form a “phrase” that describes a 
student’s state of interaction with one section of the OLM, and each 
10 word “sentence” corresponds to a student’s interaction with the 
entire OLM sequence. Can we gain insight into the patterns in 
students’ learning behavior by understanding the underlying 
“grammar” of this artificial language? Are there certain 
combinations of words in these phrases that are frequently followed 
by other words which indicate that the student is either disengaged 
or highly engaged with the learning from the OLM sequence? We 
answer these questions by utilizing a second order Markov chain, a 
common technique used in natural language processing.  

The Markov model can be trained using a relatively small number 
of events from a student population of approximately 250, owing 
to the increased information by introducing the quality labels. This 
advantage is critical for modeling student learning behavior for 
many STEM disciplines, where solving one problem can take 5 to 
10 minutes. A typical weekly online homework assignment of 10 
problems may only generate 30 to 50 major events. We demonstrate 
that it is possible to construct a Markov model using log data from 
10 OLMs for a college physics class of approximately 250 students. 
The resulting Markov chains are visualized to reveal combinations 
of states that lead to states associated with either disengagement or 
high levels of engagement in following modules. Engagement is a 
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complex concept that has different definitions depending on 
context and measurement [2]. We adopt a pragmatic definition of 
engagement to indicate that students spent a normal or extended 
amount of time (and likely cognitive resources) on consecutive 
modules, emphasizing the cognitive and behavioral aspect of 
engagement, bearing similarity to the definitions proposed by 
Miller [11] and described by Motz, et al. [12].   

2. METHODS 
2.1 Structure of OLM and OLM Data 
Data analyzed in this study were collected from student interaction 
with 10 OLMs assigned as homework to be completed over a period 
of two weeks in a calculus-based college physics class. Students 
were not required to finish the entire sequence in one session, but 
the modules must be completed in the order given. As described in 
detail in several earlier papers [5–7], each OLM consists of an 
assessment component (AC) and an instructional component (IC). 
Students are required to attempt the AC at least once before being 
able to learn from the IC and can make additional attempts after 
interacting with the IC. Most interactions with each OLM can be 
divided into three stages: Pre-Learning: attempting the AC once or 
twice before accessing the IC, Learning: interacting with the IC 
after one or two initial failed AC attempts, and Post-Learning: 
making additional attempts on the AC after learning from the IC. If 
a student passes the AC during the Pre-Learning stage, they will not 
have the following two stages as the student will immediately 
proceed to the next OLM. 

2.2 Combining Quality Labels with Events 
For each Pre-Learning and Post-Learning stage, students’ 
interaction with the AC is captured by the attempt outcomes: 
“Passing” (P) or “Failing” (F). The quality of each attempt is 
estimated from the duration of the attempt, 𝑡, which is classified 
into three categories: “Brief” (B:  𝑡 < 40 s), “Normal” (N:  40 s ≤
𝑡 < 180 s), and “Extensive” (E:  𝑡 ≥ 180 s). These cutoffs were 
determined based on a mixture-model clustering method applied to 
log-transformed attempt duration data [7]. Combining the quality 
categories with the attempt outcomes results in six different states: 
BF, BP, NF, NP, EF, and EP. The EF and EP states are only 
assigned to the Post-Learning stages, since there were significantly 
fewer attempts with 𝑡 ≥ 180 s in the Pre-Learning stages, and it 
was less clear whether those longer attempts resulted from longer 
problem-solving time or students leaving the system. Previous 
work explains these categories and cutoffs in detail [7]. 

For the Learning stage, students’ interaction with the IC was 
modeled as a single learning event described by a binary variable.  
The duration of the learning event is classified as “Brief” or 
“Normal” according to cutoffs determined for each module by a 
mixture-model clustering analysis of learning time distribution [7]. 
An isolated “Brief” category does not necessarily imply that the 
event is of lower quality. Brief learning can result from a student 
having a high level of incoming knowledge and only needed to 
quickly view the learning resources to answer the problem. In a 
small number of cases, students made 3 or more failed attempts on 
the AC before accessing the IC or kept attempting the AC until all 
attempts were used up without accessing the IC. Those cases are 
classified as “Other.” In even fewer cases, due to a corrupted log 
file or other system glitch, some students were able to proceed to 
the next module without finishing the current module. Those cases 
were classified as “NAOther,” making a total of 28 possible states, 
listed in Table 1.  

Table 1: All possible interaction states. D: Disengaged. E: 
Highly Engaged. See section 2.2 for other acronym definitions. 

State Rank Indication State Rank Indication 
NAOther 0 D BF-N-EP 14 E 

Other 1 D NP- - 15 E 
BP- -  2 D NF-B-BF 16  

BF-B-BF 3 D NF-B-BP 17  
BF-B-BP 4 D NF-B-NF 18  
BF-B-NF 5  NF-B-NP 19  
BF-B-NP 6  NF-B-EF 20  
BF-B-EF 7  NF-B-EP 21  
BF-B-EP 8  NF-N-BF 22  
BF-N-BF 9  NF-N-BP 23  
BF-N-BP 10  NF-N-NF 24 E 
BF-N-NF 11  NF-N-NP 25 E 
BF-N-NP 12  NF-N-EF 26 E 
BF-N-EF 13 E NF-N-EP 27 E 

2.3 Defining States Associated with Either 
Disengagement or High Engagement 
It is difficult to estimate the level of engagement associated with a 
state, and the same state can be observed from students with 
different levels of engagement, though there are several states that 
are more likely to be associated with either a very low or a very 
high level of engagement with the learning process. For example, 
“Brief” learning events are more likely than “Normal” learning 
events to come from students who skimmed through the content 
[7]. Students displaying consecutive “Brief” events on the same 
module, such as in state BF-B-BF, are more likely to be disengaged 
with the learning process.  

Consecutive “Normal” or “Extensive” events are more likely to 
come from students who are highly engaged with learning. While 
individual “Extensive” events may be caused by a student leaving 
the computer without exiting from the module, it is much less likely 
that three such events occur on the same module. We assumed that 
states with three consecutive “B” labels or BP- - are more likely 
associated with disengagement. BP - - is included because “Brief” 
problem solving occurs in under 40 s, which likely resulting from 
a guessing attempt, or answer copying event [7].  States with three 
consecutive “N” or “E” labels or NP- - are likely associated with 
higher engagement. We did not distinguish between productive and 
unproductive engagement; failed attempts are also included in high 
engagement states. There are two exceptions to these rules: First, 
the “Other” state is classified as “Disengaged,” since most engaged 
students should at least look at the instructional resources after two 
failed attempts. Second, the BF-N-EF and BF-N-EP states are 
classified as highly engaged, since it is possible that the student 
quickly decided that the assessment problem was too difficult and 
immediately engaged in the learning process.  

2.4 Training of the Markov Model 
We define four sequential states to be a “phrase,” a balance between 
model accuracy and available computational power. Phrases are 
analyzed in the context of the modules in which they occurred. Ten 
states are defined as a “sentence” and each student contributed a 
ten-state sentence to the text corpus. The Markovify Python library 
[10] was used to parse the text corpus. We utilized second order 
Markov chains because student interaction on a single module is 
unlikely to adequately indicate the complexity of their subsequent 
behavior. The Markov model was used to build second order 
Markov chains for every combination of initial states in  modules 1 
and 2, modules 6 and 7, and modules 7 and 8. The Markov chains 
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were used to investigate student behavior as they progressed 
through the modules and to infer how changes in behavior can be 
related to student engagement levels. 

3. RESULTS 
3.1 Outcomes of Second Order Markov Chain 
For a given pair of states on the two input modules, we use the 
Markov model to return the probability of observing states in the 
two following modules. We consider a chain as “probable” if the 
probability of the last two states adds up to more than 100%. On 
average, 0.2% of all chains generated are considered probable. The 
three cases for which we ran the Markov model are listed in Table 
2, along with the number of probable chains in each case. Those 
three cases are of particular interest because a previous analysis of 
the data [7] revealed that more students have lower levels of 
engagement in modules 3, 8, 9, and 10.  

Table 2: Combinations of input states for modules (M1-M10) 
which were analyzed in this study. 

Case Input Predict 
All 

chains 
Probable 

chains 
Disengaged 

chains 

Highly 
Engaged 
chains 

I M1+M2 M3+M4 55664 169 3 66 
II M6+M7 M8+M9 45472 65 18 15 
III M7+M8 M9+M10 72912 108 31 16 

3.2 Markov Chains Leading to Consecutive 
Disengaged or Highly Engaged States 
We are interested in chains that could indicate engagement or 
disengagement with the learning process. We consider a student 
disengaged from the learning process if their interaction states are 
indicative of disengagement on the last two modules in a chain. If 
a student’s interaction states are associated with high engagement 
on the last two modules, the student is considered as highly 
engaged. The number of chains that lead to consecutive disengaged 
or highly engaged states on the last two modules are listed in Table 
2. Other chains are not included in this analysis because the relation 
between engagement and the states on the last two modules were 
not as clear as the chains included. We plot all the chains indicating 
disengagement or high engagement for each of the three cases in 
Figure 1. In each case, the 28 interaction states are arranged 
according to the order listed in Table 1. 

This ordering groups states according to similarities in Pre-
learning, Learning, and Post-Learning stages, listed from low to 
high in the order of “B,” “N,” and “E” in quality labels. States with 
passing events are assumed to be of higher engagement than those 
with failing events. States associated with disengagement are 
placed at the bottom and states associated with high engagement 
are placed at the top, except for states 13-15 in Table 1. For states 
near the middle of the pack, the ranking does not reflect the learning 
effort required for each state, as it is difficult to estimate the level 
of effort required by 11: BF-N-NP compared to 19: NF-B-NP.  

 
Figure 1: Probable chains that lead to consecutive disengaged states (red) or highly engaged states (blue). Darker lines indicate 

where multiple chains overlap; blue and red zones highlight states associated with disengagement or high engagement, respectively. 

Figure 1A (M1-M4) shows significantly more chains leading to 
highly engaged states on M3-M4 over disengaged states.  On M1, 
those chains started from either a variety of states above NP- -, or 
from Other and NAOther. On M2, most of the chains concentrated 
on three states: 25: NF-N-NP, 15: NP- -, and 1: Other. While 25 
and 15 were highly populated states in the original text corpus, state 
1 was scarcely populated for M2; very few students were 
consistently disengaged on both M3 and M4, which appear early in 
the learning sequence and cover less difficult concepts. Figure 1B 
(M6-M9) shows there were almost an equal number of chains 
leading to either engagement or disengagement on M7 and M8. 
Most of the chains leading to disengagement passed through one of 
the states between 15 and 24 on M7. More than half of those chains 
started in states 2 and 3 on M6. Several chains leading to high 
engagement started with high effort states on M6 and passed 
through Other or NAOther on M7. Every chain (except one) 
starting from or passing through one of the top three states (25-27) 
led to high engagement, and every chain starting with disengaged 
states led to disengagement on M8 and M9. Figure 1C (M7-M10) 
shows there were more chains leading to disengagement over 

engagement on M9 and M10. The chains leading to disengagement 
started at a variety of states on M7, and forms two groups on M8. 
The first group passes through disengagement between states 0 and 
4, and the second group passes through states between 15-21. Most 
of the high engagement chains either started from state 26 on M7 
or passed through state 27 on M8. 

4. DISCUSSION 
By comparing Figure 1A-C we identify four common patterns. 1. 
Disengagement happens late: chains leading to disengagement 
occur much more frequently on later modules in the sequence. This 
type of behavior is expected since the difficulty of the modules 
increase towards the end, yet each module is worth the same 
amount of course credit. Therefore, students had less incentive to 
devote effort on the harder modules. 2. Disengagement-free 
states: states 25-28 are seemingly “immune” to chains leading to 
disengagement. In all three cases, only two of those chains pass 
through these states, while most of the chains leading to high 
engagement involve those states on at least one input module. 
Students who spend an extensive amount of effort on one module 
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are more likely to be more persistent, especially on difficult 
modules towards the end. 3. Disengagement “hot zone”: states 15-
24 (the white area between two blue bands in Figure 1) seem to be 
a “hot zone” for chains leading to disengagement in all three cases, 
especially when the state appeared on the second module in the 
sequence. Those states have a “Brief” label on either the learning 
stage or the post-learning stage. A brief event in the learning and 
post learning stages could indicate subsequent disengagement 
behavior more effectively than a brief event in the pre-learning 
stage. 4. V-shaped high engagement chains: several chains 
leading to high engagement started with states beyond 15 and 
passed through either Other or NAOther on the second module, 
forming a V-shape on Figure 1C. Even highly engaged students 
may occasionally display disengaged states on certain modules. It 
also may suggest that the two “other” states are not always 
associated with disengagement as previously thought. These 
patterns can be valuable for development of an intelligent and 
personalized learning system that recommends different learning 
resources to appropriate student populations [13]. The patterns can 
also help instructors prioritize efforts in improving the OLMs. 
There are several caveats to be investigated and addressed in future 
studies. Only three pairs of modules were analyzed. Whether the 
patterns observed are general to all modules or specific to the 
selected cases can be answered by analyzing every pair of input 
modules. We adopted a narrow definition of engagement; students 
spent an expected or extended amount of time completing each 
component in a single module. This definition is appropriate for the 
purposes of the current study, but the relation between time-on-task 
and engagement should be investigated. The current Markov model 
“predicts” student behavior based on their interaction states in 
preceding modules, but students’ decisions to engage or disengage 
from learning involves complex metacognitive processes 
influenced by multiple external factors (knowledge, instructional 
condition, metacognitive skills, and emotional states) [3]. We can 
achieve more accurate outcomes by including more factors that 
influence students’ metacognitive processes. This study utilizes 
simple labels obtained from clustering algorithms on time-on-task 
data. Future studies should investigate the validity of those labels, 
and to find new and better-quality indicators for the existing events 
and new events in other learning systems. 

We relied on the restrictive structure of OLMs, providing a regular 
and simple data structure and allowing for straightforward 
interpretation of interaction states. Events and quality labels used 
to generate the artificial language can be obtained from essentially 
any online learning platform, and more sophisticated Markov 
models are capable of learning languages with many more 
irregularities. An extension of this work will be to investigate how 
the current method can be modified and applied to more common 
learning systems that are more accessible to the average instructor. 
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ABSTRACT
Discussion forums can be a rich source to analyze students’
questions but it can be challenging to find relevant categories
of questions. We considered here students’ posts from the
discussion forum of four editions of a same French MOOC
on Project Management. We extended a coding scheme to
annotate questions based on their content (course vs. non
course) and trained 3 stages of an automatic annotation
model. Then we studied the correlation between the na-
ture of the questions asked and students’ performance and
self-regulation. The results are promising and reveal, for the
minority of students active on forums, the possibility to use
this feature to better estimate their performance and some
of their self-regulation skills based on questions they ask.

Keywords
Student’s question, discussion forum, coding scheme, self-
regulation, student’s performance, MOOC

1. INTRODUCTION
Students’ questions play an important role in the learning
process and are meaningful for both learning and teaching
science [4]. The need for students to ask questions, or to
point out errors in the course, are as salient in distance e-
learning as they are in a classroom setting, thus emphasizing
the importance of discussion forums in online learning and
in MOOCs in particular [1]. Forums are not only a place
for socialization, but also a place where learning happens,
as learners post questions, opinions, and concerns, which are
viewed, rated and answered by fellow learners and/or teach-
ing staff. Therefore, we conducted analyses to explore the

nature of questions asked by students in a MOOC forum and
particularly tried to see the relationship between those ques-
tions and students’ performance and self-regulation skills.
More particularly, we wanted to answer to the following re-
search questions:

(RQ1) Is it possible to reliably annotate questions extracted
from MOOC forum posts according to a fine-grained multi-
level coding scheme?

(RQ2) Is there a relationship between the nature of the ques-
tions asked on a MOOC and the students’ performance and
mastery of self-regulated skills?

2. STATE OF THE ART
Studying discussion in MOOC forums is still an ongoing
topic of research. Zeng et al. [11] identified the confusion
messages by using discussion forum posts derived from large
open online courses. Sentiment analysis of MOOC forums
discussions can also help in identifying the dropout behavior
from students’ posts [10].

Researchers have studied students’ questions in a variety of
educational settings, such as classroom [3], tutoring [7] and
online learning environments [9]. Graesser and Person [7]
developed a taxonomy of questions asked during tutoring
sessions to be used for automatic question generation. Al-
though their taxonomy could be relevant to our work, some
categories included high quality ’deep-reasoning questions’
and are associated to patterns of reasoning which are diffi-
cult to identify automatically.

We also investigated how self-regulated learning (SRL) was
used to analyze students’ interactions in online environments.
Dettori et Persico [6] used a taxonomy of indicators of SRL
to analyze directly what kind of students are self-regulated
from their messages. Bouchet et al. [2] characterized stu-
dents via clustering according to their interactions with an
intelligent tutoring system fostering SRL.
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Table 1: Descriptive statistics of the 4 MOOC ses-
sions considered (registration, messages and suc-
cess)

Session GDP5 GDP6 GDP7 GDP8
Students reg. 17579 23315 19392 24603
Answered to quiz 1 4842 7537 5951 7998
Bas. certif. obtained 2282 3900 2393 4526
Adv. certif. obtained 503 697 559 589
Nb of posts 7655 10597 12224 14072
Nb of unique posters 2087 4717 3504 4760

3. CONTEXT AND DATASET
We consider in this paper four datasets made of forum mes-
sages posted in four different sessions (5 to 8) of the same
biyearly French MOOC on project management called GDP
(French acronym for project management) held in 2015 and
2016. The MOOC allows participants to obtain a basic cer-
tificate (15-25 hours estimated workload), and an advanced
one (35-45 hours). Therefore for each participant we can
determine two final grades and whether one, both or none
of the certificates were obtained. The forum is organized
around threads created by the pedagogical team to answer
to technical or administrative issues, about homework or
course content, etc. Table 1 provides some basic statistics
on the forum usage and number of students registered.

Additionally, participants to the MOOC are invited to fill
an optional (only 0.25% bonus points for filling it) research
questionnaire after 2 weeks in the MOOC which included 21
psychometrically evaluated questions evaluating their SRL
skills in an online setting [5] using 7-point Likert scales along
4 dimensions: (1) cognitive and metacognitive strategies, (2)
procrastination, (3) context adaptation, and (4) peer sup-
port. We filtered out the participants who failed to answer
to embedded attention check questions (e.g. ”answer 5 here”)
to increase the reliability of the data considered.

4. QUESTION CODING SCHEME
To identify the nature of students questions in the forums,
we considered a sample of 500 messages from the 4 sessions,
randomly divided into 3 sub-samples (200/100/200). We
applied 4 categorization steps to define a coding scheme as
proposed in another context by Harrak et al. [8].

The raw corpus contains unstructured and noisy messages
from students (e.g. a message can contain several questions,
opinions, answers to issues not course related, etc.). We first
filtered out the messages from the instructors, those that are
a reply to other ones (i.e. not the root messages) and the ex-
plicitly non-course related topics (e.g. thread dedicated to
technical issues). The messages were then segmented into
several questions (using Python library NLTK) and anno-
tated according to their content. The course-based ques-
tions were annotated with the coding scheme from [8] (sum-
marized in upper Table 2) which consists in 4 independent
dimensions: a mandatory main one (dimension 1), and 3
optional ones (dimensions 2 to 4). For instance, a question
could be a request to re-explain the way something work by
providing another example (tagged as Ree on dimension 1,
Exa on dimension 2, Man on dimension 3, and nothing on
dimension 4, i.e. vector [Ree,Exa,Man,0]). The non-course
related questions were then annotated according to newly

Table 2: Coding scheme for course-based students’
questions (Dim 1 to 4, adjusted from [8]) and for
non-course related questions (Dim0)
Code Question category Description

Dim1-4: Course-based questions
Dim1: question type

Ree Re-explain / redefine Ask for an explanation already
done in the course material

Dee Deepen a concept Broaden a knowledge, clarify
an ambiguity or request for a
better understanding

Ver Validation / verification Verify or validate a formulated
hypothesis

Dim2: explanation modality / question subject
Exa Example Example application

(course/exercise)
Sch Schema Schema application or an ex-

planation about it
Cor Correction Correction of an exercise in

course/exam
Dim3: explanation type

Def Define Define a concept or term
Man Manner (how?) The manner how to proceed
Rea Reason (why?) Ask for the reason
Rol Roles (utility?) What’s the use/function
Lin Link between concepts Verify a link between two con-

cepts, define it
Dim4: verification type

Mis Mistake / contradiction Found potential error in
course/teacher’s explanation

Kno Knowledge in course Verify knowledge
Exp Expected knowledge Verify expected information in

exam or quiz (assessment)
Dim0: Non-course related questions

Soc Socialization Social questions
Adm Administrative issues MOOC administration: regis-

tration, certificate, etc.
Exa Exam/ quiz Ask for assessment modality:

notes, format, etc.
Tec Technical issues Detect a technical problem and

ask for solution
Res Ressources not found Ask for not found ressources
Too Tools Ask for tools for a task
Pha Phatic Question that has no real value

or information

defined dimension 0 (cf. lower Table 2). Two human anno-
tators made separate independent annotations on each di-
mension, and their agreement was evaluated using Cohen’s
Kappa. First the kappa was calculated for the agreement
on whether a segment was a question or not (κ = 0.85) and
then on explicit questions only (κ = 0.96). Then agreement
was calculated for the topic of the question (course vs. non-
course, κ = 0.85). Finally, kappas were calculated for dim1
to 4 (κ1 = 0.70, κ2 = 0.61, κ3 = 0.69, κ4 = 0.57) for course
questions and for dim0 for non-course questions (κ = 0.58).

5. AUTOMATIC ANNOTATION
To annotate the set of questions asked by the students, a
semi-automatic tool based on rules and keywords manually
weighted was used in prior work to annotate automatically
the questions. Although effective (average kappa of 0.70),
many questions were not annotated by this tool [8], which
led us to develop another automatic tool using machine
learning techniques trained on the corpus of questions.
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Table 3: Kappa values between automatic annota-
tion and the reference manual annotation

Classifier SVM DT GLM GBT K-NN NB RI
(1) 0.60 0.91 0.91 0.91 0.80 0.54 0.91
(2) 0.66 0.40 0.62 0.51 0.33 0.47 0.43
(3) - 0.28 0.35 0.37 0.22 0.21 0.11
(4) - 0.61 0.63 0.68 0.27 0.07 0
(5) - 0.30 0.09 0.39 0.05 0.03 0.37
(6) - 0.50 0.56 0.54 0.14 0 0.26
(7) - 0.48 0.45 0.47 0.19 0.07 0.35

(-): Not suitable for non binary data

We performed the classical preprocessing steps on the train-
ing sample of 1307 segments (500 messages) manually anno-
tated: tokenization, stemming, punctuation removal (except
for ’?’) and stopwords (non-meaningful words) removal. We
then extracted all the unigrams and bigrams and counted
their occurrences in that sample. Each of the 1307 segments
was represented by a binary word vector (’1’ if the word is in
the segment, ’0’ otherwise). We finally reduced the number
of keywords extracted (high number of keywords compared
to the number of segments) to keep the most important and
significant ones using a feature selection technique (remov-
ing less frequent and correlated unigrams/bigrams).

We designed a 3-stage annotator to identify segments with
questions, course vs. non-course related questions and the
nature of those questions. Overall, 7 classifiers were trained
to annotate a segment respectively: (1) into question/non-
question; (2) into course/non-course related questions; (3)
for non-course related questions, according to dim 0; (4-7)
for course-based questions, according to dim 1 to 4. For each
classifier we trained models using different machine learning
techniques with a 10-fold cross-validation: Support Vector
Machine (SVM), Generalized Linear Model (GLM), Gradi-
ent Boosted Trees (GBT), Decision Tree (DT), K-NN, Naive
Bayes (NB) and Rule Induction (RI), each with various val-
ues of hyperparameters. For each classifier, the input was
the words vectors representing the segments in terms of key-
words, and the label to predict was the value associated to
the segment in that dimension. Classifiers (1) and (2) took a
binary values and each of the other classifiers took nominal
values (varying from 3 to 7, according to the dimension).

We then calculated the Kappa values between the predic-
tions from the classification models and the ground truth
values from the manual annotation (cf. Table 3). The entire
corpus of segments of messages was annotated by the tech-
niques with the highest performance for each classification.

6. RELATIONSHIP BETWEEN QUESTIONS,
SUCCESS AND SELF-REGULATION

6.1 Data coding
To study the relationship between question type and success
and self-regulation, we coded for GDP8 students who posted
on the forum the number of segments categorized as :
- an explicit question (NbQ)
- not a question or an implicit one (NbNQ)
- a non-course question (NbQ-NC)
- a non-course question corresponding to a socialization (NbQ-

NC-Soc), an administrative issue (NbQNC-Adm), an exam

(NbQ-NC-Exa), a technical issue (NbQ-NC-Tec), a ressource
not found (NbQ-NC-Res), a tool issue (NbQ-NC-Too) or
a phatic (NbQ-NC-Pha),

- a course question (NbQ-C),
- a course question about a reexplanation (NbQ-C1-Ree),

a request to go deeper in a concept (NbQ-C1-Dee), or a
verification (NbQ-C1-Ver)

- a course question requesting an example (NbQ-C2-Exa),
a schema (NbQ-C2-Sch), or a correction (NbQ-C2-Cor),

- a course question asking for a definition (NbQ-C3-Def),
the way to proceed (NbQ-C3-Man), the reason for some-
thing (NbQ-C3-Rea), the role of something (NbQ-C3-Rol),
or the link between two concepts (NbQ-C3-Lin),

- a course question asking for a verification regarding an ap-
parent mistake (NbQ-C4-Mis), knowledge from the course
(NbQ-C4-Kno) or whether something is expected to be
learned or not for the assessment (NbQ-C4-Exp).

In addition to those variables relative to the questions asked,
we also have for each student :
- four SRL scores, measured by a questionnaire [5]. Al-

though the authors average the 4 individual scores into
an overall SRL score (with procrastination coded in a re-
verse manner), we believed they captured different facets
of SRL which could individually be associated to differ-
ent question asking behavior. Therefore we defined for
each student their lack of procrastination score (ScoNPr),
their context score (ScoCtx), their strategy score (ScoStr)
and their peer support score (ScoPee). Each score is an
average of 5 to 6 questions, between 1 and 7,

- two performance scores for the basic/advanced MOOC
track (ScoBas and ScoAdv), a value between 0 and 100.

6.2 Correlation analysis
Method: We calculated for each question variable (NbQ-
*) its Pearson correlation coefficient (r) with each of the
self-regulation and performance variables (Sco∗).

Results: 286 students posted at least one message with a
segment containing an explicit question. The results (not
all detailed here) reveal that asking explicit questions (on
the basic [p = .012, r = .148] and the advanced tracks
[p = .000, r = .237]), and questions on a topic relevant to
the course (on the basic [p = .010, r = .153] and the ad-
vanced tracks [p = .000, r = .253]), is a behavior positively
correlated with the performance. The questions the most
strongly positively correlated to performance are the ones
to check one’s understanding (Ver) regarding a theme of the
course (p = .000, r = .292) or a skill one is expected to
master for the final exam (p = .000, r = .282).

123 students among those who posted at least one message
with an explicit question had also filled the SRL question-
naire. The results (summarized in Table 4) reveal that pro-
crastination is not correlated with any particular type of
question. It is however logically negatively correlated with
the score in the basic (r = −.349) and advanced (r = −.372)
tracks of the MOOC, i.e. students who procrastinate have
lower scores overall. The context facet of SRL is positively
correlated only with the number of messages not containing
a question (NQ). The two other facets are more interesting,
as the students who self-report being good at using cogni-
tive and metacognitive strategies (such as note-taking) while
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ScoNPr ScoCtx ScoStr ScoPee

Cat. r p r p r p r p
NQ −.064 .480 .178 .049∗ −.137 .131 .259 .004∗

Q −.064 .485 .056 .541 .169 .061 .247 .006∗

NC −.104 .254 .123 .174 −.161 .076 .212 .019∗

NC-Soc −.095 .295 .081 .376 −.107 .239 .198 .028∗

NC-Adm −.058 .520 .162 .074 .018 .840 .258 .004∗

NC-Exa −.090 .322 −.006 .951 −.216 .016∗ .078 .392
NC-Tec −.060 .513 .023 .802 .001 .995 .155 .087
NC-Res .067 .459 .138 .128 .039 .665 .166 .067
NC-Too .007 .939 .103 .257 .016 .858 −.050 .584
NC-Pha −.018 .844 .079 .385 −.226 .012∗ .093 .307
C −.028 .761 .005 .958 −.143 .115 .222 .014∗

C1-Ree n/a n/a n/a n/a n/a n/a n/a n/a
C1-Dee −.040 .660 .075 .407 −.001 .987 .219 .015∗

C1-Ver −.020 .660 −.022 .805 −.179 .048∗ .196 .030∗

C2-Exa .005 .957 .123 .174 −.123 .174 .068 .487
C2-Sch n/a n/a n/a n/a n/a n/a n/a n/a
C2-Cor −.105 .247 .038 .675 −.045 .619 .118 .193
C3-Def .005 .957 −.130 .151 .135 .136 .055 .547
C3-Man −.089 .329 .111 .221 −.002 .984 .187 .038∗

C3-Rea −.068 .457 .140 .123 .024 .796 .222 .014∗

C3-Rol n/a n/a n/a n/a .n/a n/a n/a n/a
C3-Lin −.009 .918 .117 .197 −.067 .459 .076 .406
C4-Mis −.112 .216 −.063 .491 −.067 .460 −.048 .599
C4-Kno −.009 .919 −.048 .597 −.176 .052 .191 .034∗

C4-Exp −.024 .795 .097 .288 −.136 .135 .169 .062
n/a: no segment annotated with this code

Table 4: Correlation between the question types and
the four SRL scores

learning online are asking less question about the organiza-
tion of the final exam, less phatic questions and less verifi-
cation questions. Thus it seems that being more organized,
maybe when they watch the video or go through pages of
contents, they have a lesser need to verify information prob-
ably already mentioned somewhere. As for students who
self-report being good at interacting with others to learn in
a more efficient manner, logically they post more messages
(both questions and non-question), which can be related to
the course or not. When analyzing the nature of the ques-
tions they ask, they socialize more with others and ask more
administrative questions. They also tend to ask very practi-
cal questions about the course about how to perform a task
or the reason some concept is working that way.

7. DISCUSSION AND CONCLUSION
We have shown it is possible to annotate not only messages
from a MOOC forums, but individual questions within some-
times long messages. Segmenting messages allows to dis-
tinguish finer-grain intent of the student, using an adapted
coding scheme for both course and non-course related ques-
tions. This result opens the way to automatically tagging
MOOC posts, for instance to help the pedagogical team to
quickly know the intent of the messages that have not re-
ceived a reply yet. Another interesting aspect is the fact that
the nature of the questions asked within the messages pro-
vides information on some aspects of students’ level of self-
regulation (their tendency to interact with others for learn-
ing and their use of cognitive and metacognitive strategies).
It is also worth noting that some of the patterns found here,
such as the fact that students who ask verification questions
tend to succeed overall better than others, are consistent
with previous results in a different context [8].

Some limits include: the topic of the MOOC which hin-
dered the classifiers performance with its low technical vo-
cabulary (words overlap between the content and context of
the course) and the average kappa values obtained for the
classifiers which can reduce the impact of some correlations
observed, correlation values which are themselves never ex-
tremely high even when p < .05. Finally, as always with
results relative to MOOCs forum, they are only used by a
minority of active learners. Future directions involve consid-
ering some messages excluded here (messages that are not
root in the thread, technical or socialization threads which
could fit in the non-course coding scheme), and consider-
ing forums from MOOCs on different themes to build up a
larger corpus of messages, to try to improve the annotator
performance.
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d’apprentissage autorégulé en ligne. In 2e Colloque
international e-Formation des Adultes et Jeunes
Adultes, Lille, France, 2018.

[6] G. Dettori and D. Persico. Detecting Self-Regulated
Learning in Online Communities by Means of
Interaction Analysis. IEEE Transactions on Learning
Technologies, 1(1):11–19, 2008.

[7] A. C. Graesser and N. K. Person. Question asking
during tutoring. American educational research
journal, 31(1):104–137, 1994.

[8] F. Harrak, F. Bouchet, V. Luengo, and P. Gillois.
Profiling Students from Their Questions in a Blended
Learning Environment. In Proc. of the 8th Int. Conf.
on Learning Analytics and Knowledge, LAK ’18,
102–110, New York, NY, USA, 2018. ACM.

[9] H. Li, Y. Duan, D. N. Clewley, B. Morgan, A. C.
Graesser, D. W. Shaffer, and J. Saucerman. Question
Asking During Collaborative Problem Solving in an
Online Game Environment. In Intelligent Tutoring
Systems, LNCS, 617–618. Springer, Cham, 2014.

[10] M. Wen, D. Yang, and C. P. Rosé. Sentiment Analysis
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ABSTRACT 

To address the changing landscape in educational assessment, the 

National Assessment of Educational Progress (NAEP) transitions 

to digitally-based assessments (DBAs). DBAs permit the 

collection of data about how students progress through 

assessments, which was not feasible with paper-based 

assessments. The exploration of process data is a relatively new 

field, with most current studies focusing on response time 

analyses. This study will incorporate other process data 

information, such as the frequencies and durations of support 

functions used related to students’ cognitive processes. Using data 

from one released block of the NAEP 2017 Mathematics 

Assessment for Grade 8, this study aims to provide an 

understanding of how students’ use of support functions (e.g. 

drawing and highlighting) are related to response time (RT) and 

mathematics achievement. 

Keywords 

Process data, Digitally-based assessments, NAEP, Support 

functions. 

1. INTRODUCTION 
The study of response processes was explicitly stated as one 

source of validity evidence in the 2014 Standards for Educational 

and Psychological Testing [1]. Response processes are the actions 

or thought processes that test takers demonstrate when engaging 

with assessments. Think-aloud protocols, interview sessions, eye-

tracking technology, and response time procedures are all 

common ways of capturing such processes. Since the advent of 

large-scale, digitally-based assessments (DBAs), the recording of 

item response time (RT) has resulted in an increased number of 

research studies investigating a wide range of topics, such as the 

development of psychometric models [7, 8], modeling of response 

speed and accuracy [3], student motivation [11], and the 

relationship between response time and item- and person-level 

factors [6]. 

Yet, exploration of specific functions and their relationship with 

item response time (RT) has been sparse. With the availability of 

process data, students’ use of support functions such as drawing, 

and highlighting have also been recorded. The collection of this 

ancillary data in modern assessments can lead to potential 

advances in the type of research normally reserved for assessment 

data. To our knowledge, there has not been a study focusing on 

use of support functions, in the context of a digitally-based 

mathematics assessment. However, literature in other contexts 

(e.g. classroom assessments for reading and science subjects) has 

highlighted the connection between students’ support-related 

cognitive processes and better learning outcomes [2, 4, 9]. 

Undergirded by the cognitive theory of multimedia learning [7], 

the effectiveness of drawing (i.e. learner-generated representation 

of provided material) was confirmed [10]. Similarly, students’ 

navigation behavior (i.e. selection of task-relevant hypertext 

pages) was found to be the key to understanding the variation in 

student comprehension of digital texts [4], while students’ 

highlighting behavior was found to play a role in encoding and 

organizing information [5]. 

For the current study, response processes are defined as the 

actions that students demonstrate, using available digital tools 

when responding to test items on NAEP. NAEP is the largest 

nationally representative assessment of what America’s students 

know and can do in various subject areas. NAEP is administered 

to 4th, 8th, and 12th grade students, every two years in various 

subjects. Specifically, the following research questions will be 

examined in the present study:  

1) How often do students display support functions in the 

NAEP mathematics assessment? How do support 

functions differ by item type? 

2) What is the relationship between support functions and 

RT? 

3) Can distinct groups of students with unique patterns of 

support functions be identified? 

4) Do clusters, (i.e., identified groups), have a relationship 

with any prominent observed variables? 

a. What is the prevalence of male and female 

students in these clusters? 

b. What is the prevalence of different 

race/ethnicity groups in these clusters? 

c. What is the prevalence of different ELL and 

IEP status in these clusters? 
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d. Is there a difference in mathematics 

performance between clusters? 

2. METHODS 

2.1 Data 
The current study used a single block of items (i.e., Block MC) 

that was recently released from the NAEP 2017 Grade 8 

Mathematics assessment. The block included 25,300 8th grade 

students. The sample was selected using a two-stage, stratified 

random-sampling design, with schools selected in the first stage, 

and students selected in the second stage. The assessment was 

administered to students using a balanced-incomplete-block 

spiraling design, in which test booklets for each student contained 

two of 15 blocks of cognitive items. The maximum amount of 

time students could spend on each block was 30 minutes. Students 

with extended time accommodations and interrupted sessions 

were excluded during the data cleaning process in the current 

study. 

The focused block comprised six item types and a total of 15 

items: a) two multiple-choice (MC) items, b) three composite 

constructed response (Composite CR) items, c) two multiple-

selection (MS) grid items, d) five matching items, e) one zone 

item, and f) two fill-in-the-blank items. Each item produced 

student actions captured in the process data. There were nearly 13 

million instances of actions produced from 37 unique functions 

(e.g. drawing, highlighting, and navigating).  

2.2 Analysis 
To examine the relationship between support functions, item 

response time (RT), and mathematics achievement, a preliminary 

list of support functions was created based on data collected in 

NAEP 2017 Grade 8 Mathematics process data. After a 

descriptive exploration, 12 out of 37 functions were selected to be 

included in the study (Table 1). Student response time per item 

was calculated, and results were aggregated to get the total 

response time for each student. The relationships were explored 

for all support functions and time usage via descriptive methods. 

To identify heterogeneous use of support functions in preliminary 

analyses, students were clustered based on their use of support 

functions via a model-based clustering approach that identifies 

heterogeneity in the population based on the observed data (e.g., 

Everitt, 2005), using the EM algorithm for maximum likelihood 

estimation. Subpopulations were modeled separately, and the 

overall population was modeled as a weighted sum of those 

subpopulations using finite mixture models. NAEP scale scores 

for each examinee are reported as a set of 20 plausible values 

(PVs) that represent a distribution of possible scores and apply to 

students from measured population groups. Instead of individual 

student scores, plausible values describe the situation where true 

scale scores describing the underlying performance for each 

student are unknown. To examine student performance, we used 

plausible values (PVs) at the theta scale as predicted ability based 

on the performance across two blocks (instead of per block).  

3. Results 

3.1 Support Functions in NAEP Mathematics 
To address RQ1, we explored how often students displayed 

support functions in the NAEP grade 8 mathematics assessment. 

Frequencies of the actions were calculated overall and per item 

type. The overall frequencies for the 12 support functions are 

presented in Table 1, together with the percentage of students who 

used the support function at least once.  

Table 1 shows that students displayed varied use of support 

functions. For example, functions related to screen orientation, 

such as vertical item scroll and focusing were used at least once 

by almost all students. The navigation function was used by 75% 

of students, while functions like draw and highlight were used 

much less often by 52% and 19% of students, respectively.  

However, some of the support functions were expected to be used 

more frequently for specific types of items. Therefore, the 

percentage of students that used each function at least once per 

item type was also examined (see Figure 1).  

As expected, Figure 1 shows that some of the functions were only 

available (or used) for specific item types. For example, Focus 

(i.e., Receive Focus and Lose Focus) was only activated for 

composite constructed response and fill-in-the blank items, as this 

Table 1. Frequency Use of Support Functions 

Support 

Function Description Frequency 

Percent of Students Used 

Function at Least Once 

Draw Student finished drawing with the scratchwork draw tool 900597 52 

Vertical Item 

Scroll Student scrolls an item which has a vertical scrollbar 557856 99 

Receive Focus When a response entry field in a discrete item receives focus 521631 99 

Lose Focus When a response entry field in a discrete item loses focus 509976 99 

Click Progress 

Navigator 

When the Student selects a tab in the Progress Navigator for discrete 

items 191521 76 

TextToSpeech Recorded when the student turns test to speech/read aloud more on or off 161829 30 

Erase When the Student finishes erasing with the Scratchwork Erase tool 88205 33 

Equation 

Editor Button When the Student selects a button in the Equation Editor tool 83993 38 

Highlight 

When the Student finishes highlighting with the Scratchwork Highlight 

tool 58972 19 

Clear 

Scratchwork 

When the Student selects the Clear Scratchwork button of the 

Scratchwork tool 37723 34 

Open Equation 

Editor 

When the Student selects the Equation Editor button to toggle the 

Equation Editor tool on 20669 40 

Horizontal 

Item Scroll 

Recorded when the Student scrolls an item which has a horizontal 

scrollbar 3414 3 
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function was associated with text entry. 

 

Figure 1. Percentage of Students Using Support Functions by 

Item Type. 

Similarly, equation editor was used for the same types of items 

but by much fewer students (15% for CompositeCR and 31% for 

Fill-In-Blank). The difference between Open Equation Editor and 

Equation Editor Button showed that some of the students opened 

the editor but did not click on anything in the editor for GridMS 

items. Figure 1 also shows that students used the navigation 

function the most on constructed response items. These items 

were probably more difficult or required more input from 

students, which is why students used navigation more on these 

items. 

Although Draw and Highlight were used by less students, for 

those that did use the tools, results showed that they were used 

across all item types. To understand the use of the Draw tool, this 

finding will be connected with how much time students spent on 

this support function. For all other functions, some variation was 

observed in the percent use of support functions by item types, 

signaling that students may be using the support function features 

in different ways. 

3.2 Support Functions and Total RT 
To address RQ2, we explored the relationship between support 

functions and total response time (RT). We first calculated the 

frequency of the use of the support functions for each individual 

student by item. A summary of the frequency of each support 

function is presented in Table 2. For total RT, we summed the 

time spent across all items. 

Table 2. Distribution of Support Function Frequency Use 

Interpretation  1st 

Q. 

Mdn Mean 3rd 

Q. 

Max SD 

Draw 0 # 35.6 50 1290 63.7 

Vertical Item 

Scroll 
10 20 22.1 30 200 15.6 

Receive Focus 10 20 20.6 30 190 12.4 

Lose Focus 10 20 20.2 20 190 11.8 

Click Progress 

Navigator 
# # 7.6 10 100 8.9 

TextToSpeech 0 0 6.4 # 570 21.8 

Erase 0 0 3.5 # 490 10.7 

Equation 

Editor Button 
0 0 3.3 # 850 13.1 

Highlight 0 0 2.3 0 350 9.8 

Clear 

Scratchwork 
0 0 1.5 # 140 3.9 

Open Equation 

Editor 
0 0 0.8 # 20 1.3 

Horizontal 

Item Scroll 
0 0 0.1 0 240 2.5 

# Rounds to zero. 

As noted in Table 2, not all students used the support function 

tools. Therefore, the minimum number of the action frequency is 

zero for all functions. Table 2 further shows that individual 

students vary with the use of support functions.  

Next, we explored the relationship between the use of support 

functions and total response time. As an example, we selected the 

drawing function (which was used by half of the students) and we 

explored the total response time between two groups of students: 

a) those that did not use the drawing tool and b) those that used 

the drawing tool. Figure 2 shows that after 22nd minute, there 

were more students who used the drawing tool than those who did 

not. A similar result was found for the highlight function. These 

results suggest that on the latter portion of the block, there are 

more students who use these tools, possibly because of a higher 

concentration of difficult items where support functions would be 

useful.  

 

Figure 2. Total Response Time Used by Student Groups: Used 

or Not Used Drawing Tool. 

3.3 Clustering Support Function Behavior 
To address RQ3, we also explored if it was plausible to cluster 

students based on their support function behaviors (i.e., 

frequency). For this purpose, we standardized all support function 

frequencies (if students did not use a function at all, they have 

value of zero). We used only 10 of the support functions for 

clustering (we excluded Lose Focus and Open Equation Editor as 

they have almost the same function as Receive Focus and 

Equation Editor Button, respectively).   

Our preliminary exploration led to a 3-profile solution via a 

model-based clustering algorithm. Figure 3 shows the clustering 

results for all students. The first extracted profile was represented 

by hardly any use of support functions. The second extracted 

profile was a composition of Receive Focus, Equation Editor 

Button, and Vertical Item Scroll, which provided evidence of 

students’ monitoring processes operationalized by navigating [4] 

and modifying equations. The third extracted profile was a 

composition of Highlight, Draw, Erase, and Clear Scratchwork, 

which provided evidence of students’ cognitive processes where 

they construct mental representations of the test content [7,10]. 

These results suggest that students’ use of support functions can 

be classified into meaningful profiles, which are potentially 

related to different aspects of cognitive processes.  
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Figure 3. Profiles of Student Support Functions. 

To address RQ4, we examined the profiles to see if they had a 

relationship with any prominent observed variables such as 

gender, race/ethnicity, ELL, and IEP status. Profiles were also 

examined to see if there were any performance differences. 

For all observed variables and performance, there were no 

substantial differences between profiles, except in the case of 

gender, where there were more female students in profile one (no 

support function use) compared to male students. 

Table 3. Distribution of Demographics by Profile 

Profile Profile 1 Profile 2 Profile 3 

Gender 

Male (%) 34 56 50 

Female (%) 66 44 50 

Race/Ethnicity 

>1 Race, not Hispanic (%) 3 ‡ ‡ 

African American, not His 

(%) 

16 17 16 

Amer Ind/Alsk Nat (%) 2 ‡ ‡ 

Asian, not Hispanic (%) 5 ‡ 5 

Hispanic of any race (%) 22 21 20 

Native Ha/ Pac Island (%) 1 ‡ ‡ 

White, not Hispanic (%) 52 51 53 

ELL 

No (%) 94 94 94 

Yes (%) 4 ‡ ‡ 

Formerly ELL (%) 1 ‡ ‡ 

Performance 

Mean PV -0.002 -0.001 0.050 

Median PV -0.024 -0.016 0.030 

‡ Reporting standard are not met (too few cases). 

4. CONCLUSIONS 
Process data helps us to extract more information about how 

students interact with available digital tools when responding to 

test items in digitally-based assessments. By exploring process 

student support functions, this study helps a variety of 

stakeholders, understand student cognitive processes when taking 

mathematics assessments. This would allow researchers to better 

understand the actual use of support functions by certain groups 

of students (e.g., those performing at the below basic level). 

Interestingly, the majority of students did not use the available 

support functions, which may be due to unfamiliarity with 

technology and could lead to a cold start (where students did not 

have enough information and time to learn the system tools). In 

all, process data on student support functions is an under-

researched area with promise, and our study attempts to fill the 

research gaps in this field. 
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ABSTRACT
In this paper we investigate writing style development among
Danish high school students. More than 10K students with
more than 130K essays are analyzed. Writing style itself is
often studied in the natural language processing community,
but usually with the goal of verifying authorship, assessing
quality or popularity, etc.
In this work, we analyze writing style changes over time,
with the goal of detecting global development trends among
students, and identifying at-risk students. We train a Siamese
neural network to compute the similarity between two texts.
Using this similarity measure, a student’s recent essays are
compared to their first essays, and a writing style develop-
ment profile is constructed. We cluster these student profiles
and analyze the resulting clusters. We evaluate clusters with
respect to writing style quality indicators, and identify op-
timal clusters, showing significant improvement in writing
style, while also observing suboptimal clusters, exhibiting
periods of limited development and even setbacks.
Furthermore, we identify general development trends be-
tween students, showing that as students progress through
high school, their writing styles deviate, leaving students less
similar when they finish high school, than when they start.

Keywords
Student clustering, Writing style analysis, Siamese Neural
Network, Educational Systems

1. INTRODUCTION
One of the most essential skills, learned during the course
of primary, secondary and high school, is writing. While
the main focus of primary school are on basic writing skills,
high school will be more focused on improving the linguistic
writing style of a student, i.e. the quality of the written text
as perceived by the reader. While the definition of quality
in linguistic writing style is discussed [7], several measures
are correlated to writing style being perceived as good, for
instance use of vocabulary, sentence structure and readabil-

ity [5]. Our main focus is writing style development through
the course of high school, while writing style quality will
have a secondary role. We consider data from Danish high
schools, consisting of Danish essays, and investigate the gen-
eral development patterns among the students during the
three years of study. The data is supplied by MaCom1, the
company behind the learning management system Lectio,
used by 90% of Danish high schools. We identify patterns
among thousands of students across different classes and in-
stitutions, allowing us to provide teachers with new insights,
which the data available to the teacher might not show.

Our method allows for identifying students with deviating
writing style development, or sudden significant changes in
writing style, which could indicate cheating. Furthermore,
we compute several text quality measures for the different de-
velopment profiles, in order to determine whether a profile
indicates improvement. Our approach is based on methods
from authorship verification; we use a Siamese neural net-
work for learning a writing style similarity measure. Using
this measure, we generate and cluster writing style develop-
ment profiles. The found clusters are then analyzed, in order
to determine optimal and suboptimal development patterns.
Our analysis of the MaCom data shows, how writing style
changes during high school, supporting conclusions from the
literature. [1, 2, 9]. While this paper presents a case study
of the data from MaCom, the methods used for analysis
are of independent interest, and not specific to the Danish
language or high school.

Writing style analysis, has been studied in the natural lan-
guage community for many years. Typically, the analysis of
writing style is used as a middle link for tasks such as au-
thorship verification [6,8,9], in which the claimed author of
a text must be verified based on available previous work by
said author. Some studies investigate the quality of writing,
for instance prediction of popularity of news articles [10],
or the quality of scientific articles [3]. Few studies consider
development of writing style as the main objective, e.g. [1]
which considers the change of writing style of two famous
Turkish writers. Finally, several studies related to writing
style have been conducted using the data available from Ma-
Com. [2] investigates temporal aspects of authorship attri-
bution while [9] applies neural network based authorship
verification methods to the data.

1The data set is proprietary and not publicly available
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2. METHODS AND SETUP
We describe in this section our method for tracking writ-
ing style development among students over time. Below, A
denotes the set of students, α ∈ A denote a single student
with texts t ∈ Tα, while T = ∪α∈ATα denotes the entire cor-
pus of texts. As we wish to compare writing style between
different essays, we need a writing style similarity measure
s : T × T → [0, 1], which will be further utilized in the
analysis. Primarily, we focus on determining development
patterns by generating a writing style development profile
Pα for each student α. These profiles are then clustered and
analyzed with respect to different measures for text quality.
Finally, we also explore how the similarity between random
students change depending on their current progress through
high school. This is done by sampling random pairs of texts
t1 ∈ Tα, t2 ∈ Tβ and computing their similarity. We then
consider how the similarity changes depending on if α and
β are in the same grade or not.

We utilize a Siamese neural network for computing the sim-
ilarity s(t1, t2) between two texts t1 and t2. We considered
several different architectures, using different input channels
(e.g. char, word, part of speech tags), testing each option
using a validation set. The optimal architecture was found
to be the same as used in [9], which was evaluated on the
same data set. The architecture uses only character level
input. The texts are first encoded in the encoding part of
the network, consisting of a character embedding (dimension
5), followed by two parallel convolutions (kernel size 4 and 8
with 500 and 700 filters respectively) and global max pool-
ing layers, producing an encoding of size 1200. Encodings
for t1 and t2 are then passed to the decider part of the net-
work, which first computes the absolute difference between
the encodings, before applying four 500 neuron dense layers
using the ReLu activation function and a dropout rate of
0.3. Finally, a softmax layer with two neurons produces the
final output.

The writing style profile Pα for student α is then computed
by first determining their initial writing style. This is done
by considering the early work of a student, consisting of the
first m essays. Pα then consists of a chronologically ordered
sequence of similarities, between any t ∈ Tα and these m
essays:

pi =
1

m

m∑
j=1

s(ti, tj),

where ti denotes the i’th text handed in by the student.
Note, that p1, p2, ..., pm are not independent, and thus we
exclude the first m − 1 texts, and re-index such that pj =
pi−m+1. Furthermore, for each text, we let τj denote the
time in months since tm was written, i.e. the time since p0,
with τ0 = 0. Now, the final profile becomes the sequence
consisting of pairs (τj , pj) of length |Tα| −m+ 1.

These profiles are now clustered using a slightly modified k-
means clustering. Before clustering, for each profile Pα, an
approximate profile P̂α is constructed by interpolating val-
ues between any two consecutive pairs (τj , pj) and (τj+1, pj+1),

in intervals of 0.05 months. Thus P̂α becomes a vector
P̂α ∈ [0, 1]`α consisting of similarities for every 0.05 month,
with length `α.

Data set #students #texts #Sim
Ttrain 5418 70432 934720
Tval 989 12997 173536

Tanalyze 3688 47666 N/A
Total 10095 131,095 1108256

Table 1: Data set overview.

These approximate profiles are then clustered. The cluster-
ing is complicated by profiles having variable length: P̂α has
length `α depending on τ|Tα|−m+1 (the time span between
tm and tTα), specific to α. Hence, distance computation used
in the clustering algorithm is modified slightly; we compute
the distance dist(P̂α, P̂β) between two profiles P̂α and P̂β
by computing the Euclidean distance between the prefixes
of length ` = min {`α, `β} of the two profiles:

dist(P̂α, P̂β) = distE(P̂α[1...`], P̂β [1...`]),

where distE denotes the Euclidean distance, and v[1...n] de-
notes the prefix of length n of vector v.

Similarly, when computing centroid Cr for cluster Cr, profile
P̂α contributes only to the `α first entries of Cr. Thus, with

Cjr =
{
P̂α|P̂α ∈ Cr, `α ≤ j

}
, the j’th entry of Cr is then

computed as:

Cr[j] =
1

|Cjr |

∑
P̂α∈Cjr

P̂α[j]

where v[j] denotes the j’th entry of vector v.

The clustering is initiated by selecting k profiles at random
as the initial clusters, and then continually reassigning pro-
files and recomputing centroids for clusters. Having reas-
signed the profiles, the cluster error EC is computed as the
average distance between any profile and the centroid of its
cluster. The algorithm iterates until the change in EC is
sufficiently small (EC ≤ 10−6), or until a set number of
maximum iterations (100) is reached.

Selecting the number of clusters k is an inherent problem in
all unsupervised learning tasks. We use the so called elbow
heuristic which relies on looking at how the error decreases
with the number of cluster and pick at the ”elbow” in the re-
sulting curve. For each of the resulting clusters, we compute
a few statistics and writing quality indicators, such as noun
and verb phrases (the ratio between nouns/main verbs and
sentences respectively) [5], and the simple measure of Gob-
bledygook (SMOG) grade [4] (which estimates the grade level
required for understanding the text).

3. EXPERIMENTS AND RESULTS
The data consists of around 130K essays by approximately
10K students, with an average length of about 6K char-
acters. The data set was cleaned by removing very short
(≤ 400) and very long (≥ 30, 000) texts, in order to get rid of
invalid essays (blank hand-ins, garbled texts, etc.). Proper
pronouns were substituted with placeholder tokens and the
first 200 characters of each text were removed, in an effort to
remove any data identifying the real author of the text, that
could be picked up by the neural network and lead to over-
fitting. Finally, authors with less than 5 texts were removed.
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Figure 1: Plot of similarity curve, SMOG grade (incl. 90% intervals), noun/verb phrases (solid/dashed
respectively) and average length (in words) for each cluster. The cluster size is given in parenthesis.

The resulting set is partitioned into two author disjoint sets:
Tnetwork and Tanalyze, used for training the network and per-
forming the clustering respectively. Tnetwork is further split
into author disjoint training and validation sets, Ttrain and
Tval. The sizes of the sets are given in Table 1.

For training and evaluating the network, problem instances,
consisting of pairs of texts, are constructed from Ttrain and
Tval. A positive sample is created by selecting two texts
from the same author, while a negative sample is created by
sampling two texts from different authors. A 50:50 balanced
data set is generated in this way2. The number of instances
(Sim) is shown in Table 1. The network is implemented using
TensorFlow, and optimized for cross entropy using the Adam
optimizer, using Tval for early stopping. For the clustering,
each data point of Tanalyze simply consists of a single student
and their texts, including meta data such as time of hand-in.

The profiles are constructed using m = 2. k = 5 is deter-
mined to be optimal using the elbow method and considering
k = 2, 3, ..., 9. Thus we obtain five clusters: C1, C2, C3, C4,
and C5, with a cluster error of EC = 0.01407. The curves rep-
resenting the clusters (including cluster sizes and 90% distri-
bution intervals) are shown in Figure 13. The SMOG grade,
the noun and verb phrases, and the average text length (in
words) are also plotted. Furthermore, we sample two mil-
lion random pairs of texts with random (different) authors,
and compute the similarity for these samples, obtaining an
average of 0.3470. This average is also plotted in Figure 1,
while the similarity with respect to time is plotted as a heat
map in Figure 2.

2We assume all claimed authors in the data to be the real
authors; a few students may use ghostwriters or plagiarism,
in which case some labels will be wrong.
3When visualizing and inspecting the clusters, we consider
data until 30 months, as only few students are active longer.

4. ANALYSIS AND DISCUSSION
We start the analysis by considering the individual clusters
found. When analyzing the clusters, three properties are
important: the initial value of the curve describes the simi-
larity between the second text of a student and their initial
writing style, the shape of the curve describes the rate of
change in writing style, and the total change describes how
much the writing style has evolved. Furthermore, we will
consider the mentioned indicators of writing style quality.

Across all clusters, the number of words written increases
(with the exception of C5), and the increase seems to be cor-
related with the corresponding decrease in similarity. Fur-
thermore, students in all clusters appear to be improving
with respect to the quality metrics on average. While pos-
itive, some clusters see a smaller increase than others, in-
dicating that these clusters represents suboptimal develop-
ment profiles.

C1 and C2 both represent students with a fairly large total
change in writing style, and with a fairly high initial similar-
ity. Both clusters also exhibit a large increase in the quality
indicators (SMOG and phrases). The main difference is the
rate of change of similarity; students in C1 appear to change
more rapidly in the first months before stagnation occurs,
while students in C2 appear to change more gradually. From
a learning perspective, the development of students in C2
seems superior. However, in terms of end result, it appears
the writing quality of students in both clusters improves the
same amount.
C3 exhibits an interesting development pattern, in which the
writing style appears to not only stagnate, but actually re-
vert back, i.e. the similarity increases after the first year.
This could be an indication of acquiring bad writing skills
and ’unlearning’ them again, or it could be an indication of
learning new writing skills, but forgetting them again. In
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Figure 2: Heat map showing the average similarity
between different authors, depending on how long
time the two authors have been in high school.

any case, it seems the development is suboptimal. This is
further supported by the smaller increase in quality indica-
tors compared to C1 and C2.
Considering the total development of students in C4, the re-
sult appears similar to C3. Students only see a limited total
change in both similarity and quality indicators. However,
compared to C3, students do not appear to revert back, but
rather exhibit a slow development. Compared to clusters C1
and C2, the development still appears suboptimal.
Finally, C5 appears to be quite distinct from the other clus-
ters, with a higher-than-average initial similarity and SMOG
grade, and the smallest total change in similarity among the
clusters. The high initial SMOG grade indicates that C5
contains initially strong students (wrt. writing), while the
small change in similarity and SMOG grade (compared to
C1 and C2) indicates stagnant development; this could be an
indication, that schools do not manage to properly encour-
age/teach students, who are initially strong.

In summary, C1 and C2 appear optimal, while C3 and C4 ap-
pear suboptimal. While the development of C5 seems sub-
optimal, the students are initially strong, and thus not as
much a point of concern, as in C3 and C4. Looking at the
number of cluster members, we see that C3 and C4 are the
largest individually, indicating that quite a few students are
exhibiting suboptimal writing style development. However,
the majority of students are located in C1, C2 and C5, indi-
cating optimal (or at least not at-risk) development through
high school.

Figure 2 explores the similarity between different students
across time spent in high school. As mentioned, the average
similarity between random students is 0.3470.

The plot shows students starting out similar in writing
style and then becoming less similar as time passes. Sur-
prisingly, a first year student and a third year student are
equally or more similar in writing style on average, com-
pared to two different students in their third year. This
might be explained by an initially small space of possible
writing styles, which grows as students are educated. One
might expect some writing styles would diminish or even dis-
appear, but apparently, more new and diverse writing styles
develop. While education is sometimes accused of destroy-
ing individuality and/or creativity, these findings indicate

the opposite, at least in regards to writing style.

5. CONCLUSIONS
We presented a method for analyzing writing style develop-
ment, by training a Siamese neural network to compute a
writing style similarity measure, and using this measure to
construct and cluster writing style development profiles.
An analysis was performed on a data set consisting of Dan-
ish essays from Danish high school students. Five clusters
were found. Using noun/verb phrases and SMOG grade,
two were determined to exhibit suboptimal development,
indicating students possibly at risk. Furthermore, we saw
how students become less alike during high school, as their
writing styles diverge and become more individual.
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ABSTRACT
In blended learning, it is meaningful to obtain data on and
understand the nature of the usage of web-based teaching
materials by individual students and by whole classes in
progress. For this purpose, a system called MCTA1, which
can detect the behavior of students’mouse cursors on web-
based teaching materials in real time and visualize the anal-
ysis results, was developed. MCTA1 provides functions that
collect specific granularity as subsections and visualize the
result of analysis in real time. Through the application of
this system in real classes, particularly in programming prac-
tice lessons, it became clear that the behavior of the mouse
cursor was an effective source of information for determin-
ing how individual students and whole classes actually use
the web-based teaching materials. This paper describes an
outline of how the MCTA1 system works. The analysis of
students’usage under the actual conditions of each sub-
section is shown using a Lorenz curve and Gini coefficient.
Additionally, the result of the analysis of the web brows-
ing order route of each subsection is shown using Ward’s
clustering method.

Keywords
Mouse Cursor Tracking, Learning Feature, Quality Improve-
ment, Lorenz Curve

1. INTRODUCTION
With the spread of education via electronic mediums , un-
der various specialized fields, studies on the learning style
[1], the effects of the education method utilized [2], and the
operability of these systems have been actively conducted.

In order to improve the quality of the content of the web-
based teaching materials, it is important to analyze exactly
how the students use these teaching materials in their classes.
In blended-type education, it is necessary to grasp informa-
tion on the usage of web-based teaching materials under real

conditions and determine the students’usage of these ma-
terials during actual classes in progress. In this situation,
collecting the mouse cursor tracks is considered one of the
effective means for determining their actual usage of the
web-based teaching materials. Therefore, a system called
MCTA1, which can detect the behavior of students’mouse
cursors on web-based teaching materials in real time and
visualize the analysis results, was developed. Since the sys-
tem does not hang from the load that normally results from
using special instruments on students, it can collect more
precise data on the students ’natural state. The quality of
web-based teaching materials can be considered to consist
of three components (curriculum composition, structure of
web-based teaching materials, and lesson planning). The
structured design of each quality component was drafted,
and web-based teaching materials were constructed [3].

These materials have been used in blended learning sessions
that use the e-learning system. The average number of mem-
bers in a class is 25. Each session runs for 90 min, and each
subject is performed over 14 sessions. The students who
take the class belong to a department of liberal arts and
are assumed not to have much knowledge of mathematical
science and information science.

In this paper, a system that can detect the behavior of
a student’s mouse cursor is introduced. The action data
from each subsection of the web-based teaching materials
pages, which have been developed and implemented, were
also discussed. Furthermore, the effect of analyzing the stu-
dents’unique behavior via the segmentation granularity of
the learning log is also described.

2. RELATED STUDIES
When LA research is roughly classified, it consists of the
evaluation of the collection processes of (1) study data, (2)
analysis, and (3) analysis result. From the point of view of
detecting student behavior, learning the history data from
the learning management system (LMS) as a collection of
data in (1) above, the discovery of digital data, such as
mouse cursor behavior [4]. facial actions [5], eye tracking [6]
has been studied using surveys of self-reported data. More-
over, in order to estimate it as an analysis (2) of the above,
or the above-mentioned analysis result (3), various visual-
ization techniques have been proposed. In a research on
the learning style and actions of a student, most of the ex-
periments applied limited experimentation and evaluation.
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Figure 1: Web page composition and mouse cursor trackings.

These experiments were also performed in a restricted en-
vironment. There are few studies in real classes with con-
ditions of continuous evaluation. Many analyses on the be-
havior of individual students have been conducted, but these
studies often included only a few students and were limited
by a lack of visualizations of group behavior.

When browsing a web page, the searcher tends to follow
the mouse cursor with their eyes in order to easily click on
the link of interest on the web page [7]. Based on this, the
method of detecting the action of a mouse cursor is employed
by this research. The system then detects whether the cursor
would be in the position of a particular subsection based on
the coordinate information built from the actions of many
mouse cursors. The design and mounting were performed
such that the automatic collection of continuous data could
be realized, and a complete analysis of a student’s features
was conducted.

Section 3 describes the requirements for the functional en-
hancement of learning log collection, the system design of
the action detection of a mouse cursor, and the mounting.
Section 4 shows the system applied to a real classroom ses-
sion and the effect of the feature analysis based on the learn-
ing log, subdivided according to the mouse cursor behavior
data.

3. MECHANISM OF MCTA1
The web-based teaching materials used in real classes some
pages consists of a menu, which contains the links to each
section, and a section that is composed of several subsec-
tions.

At the top of each section, the subsection link is shown. Each
indication range next to the subsection list is distinguished
with a subsection number xy (x = 0 ∼ 9, y = 0 ∼ 9). Here,
x shows the right and left domain, and y shows the top and
bottom domain. Whenever the mouse cursor moves from
one subsection to another, the numbers of the subsections
that the cursor moves over in the process are sequentially
collected automatically. The mechanism that collects both
the subsection numbers and the time that a mouse cursor
has been in existence has been developed.

Figure 1 is an example where the web-based teaching mate-
rials are comprised of five sections, and Subsection00 and a
part of Subsection01 are displayed first. The shadowed area
in the middle of Subsection01, Subsection02, Subsection12,
and Subsection03 is shown. The arrow in Figure 1 is a trace
of the mouse cursor tracks moved [Subsection00] → [Sub-
section01] → [Subsection02] → [Subsection03] → [Subsec-
tion12] → [Subsection01]. The y-axis direction is collected
as the data“ 012321,”and the x-axis direction is collected
as“ 000010.” At the same time, the time spent in each
subsection is collected automatically.

The analysis and its visualization in real time are enabled
by detecting the coordinate information, showing the action
of a mouse cursor per subsection. The subsection of the
middle position is only passed if the scroll bar is used and
the trace data of the mouse can be collected sequentially.
In addition, even if multiple windows such as when multiple
tabs or separate windows are open are used alternately, the
data can still be accurately collected.

4. VISUALIZING LEARNING FEATURE
By using mouse cursor tracking data, the distribution differ-
ence of the browsing subsections is validated. The data also
allows checking of whether the browsing distribution of the
web-based teaching materials does not result in a difference
when the unique features of each student are analyzed. Here,
a Lorenz curve and the Gini coefficient are used to evaluate
the inequality of page browsing as a statistical value. In
fact, these are commonly used statistics to express inequal-
ity, such as with income in economic science. As the Gini
coefficient approaches 0, the Lorenz curve approaches the
complete equality line, and the equability becomes high. As
the Gini coefficient increases, the Lorenz curve keeps away
from the complete equality line, income disparity decreases,
and the equability decreases. The Lorenz curve, the com-
plete equality line, and the Gini coefficient were used to an-
alyze the reference time of each subsection of the web-based
teaching materials.

The possibility of referring to each subsection equally be-
comes high, so that the Gini coefficient calculated from the
accumulation reference time of web-based teaching materials
approaches 0. In a blended-type educational setup, the stu-
dents are expected to follow the footsteps to the subsection
which the teacher is explaining and likely to refer to the said
subsection. Therefore, the closer the Gini coefficient is to 0,
the higher the possibility that the students are wandering
around to another subsection. The higher the Gini coeffi-
cient, the lower the equability of the subsection reference.
One subsection is more likely to be intensively referenced.

To determine the students’usage situation, clustering was
then performed on the patterns of the browsing orders of the
subsections. Ward’s hierarchical agglomerative clustering
method was adopted because it tended to be easy to clearly
classify into a cluster.

4.1 Visualization using Lorenz curve
A Lorenz curve, represented by the values along the y-axis,
is the cumulative relative frequency of the browsing time
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(a) Level 2. (b) Level 5.

Figure 2: Lorenz Curve (Level)

(a) Session 2. (b) Session 13.

Figure 3: Lorenz Curve (Session)

of subsections, with its x-axis being the cumulative relative
frequency of the browsing number of subsections used to
visualize the inequality of the browsing time distribution.
First, the browsing distribution according to each student’s
level, i.e., degree of subject achievement, was compared.

Based on achievement in the applied subject, the five steps
for gauging the student’s levels were evaluated, and a group
division was carried out. The level is a five-step evaluation
based on the number of tasks achieved for 38 subjects.

The Lorenz curve for level 2 is shown in Figure 2(a), and
for level 5 is shown in Figure 2(b). Here, level 5 implies the
level with the highest degree of subject achievement. The
Gini coefficient was 0.45 at level 2 and 0.44 at level 5; there-
fore, the difference was not so apparent. Next the browsing
distribution according to each lesson was compared. The
browsing time distributions of the contents of the web-based
teaching materials for all students of the 2nd session and the
13th session are indicated in Figure 3(a) and Figure 3(b), re-
spectively. The Gini coefficient for the 2nd session was 0.41
and for the 13th session was 0.60. Compared with the first
session time, the Gini coefficient tends to increase. This
demonstrates that the inequality of the browsing distribu-
tion becomes high. Therefore, it is shown that the possibility
of perusing one’s subsection is high toward the second half
of a lesson.

4.2 Time series display of Gini coefficient
The time series transition of the Gini coefficient in Figure 5
is a graph in which the session extends in the x-axis direction
and Gini coefficient is set to the y-axis direction. The lower
the Gini coefficient, the higher the browsing homogeneity.
This shows that various subsections are browsed uniformly.
The higher the Gini coefficient, the higher the uniformity.
This shows that a few subsections are browsed intensively.

Figure 4: Patterns of browsing order.

The Gini coefficients of students from all levels except level
1 do not fluctuate very much. Particularly during the sec-
ond half of the term (Sessions 8–14), the Gini coefficient of
the levels 4 and 5 students maintain a relatively static state
in a location for which it is high. In the first half of the
term, the students browse not only the same subsections as
the teacher, but other subsections as well. Therefore, the
browsing distribution can encounter an inequality fluctua-
tion for a short while. It later turns out that as the second
half of the term progresses, the students become more con-
centrated in one subsection while browsing.

The level 2 students follow the teacher’s browsing transition
to the subsection, similar to what the level 5 students do
in the first half of the term (Sessions 1–7). However, after
Session 8, the homogeneity of the students’subsection brows-
ing becomes much higher, and it seems to become clear that
they browse various subsections, including past subsections,
in addition to the subsections that the teacher browses.

In addition, the figure representing the time series of the Gini
coefficient can be shown in real time. The teacher is able to
confirm the non-homogeneity of the browsing distribution
and adjust the speed of the teaching progress by returning
to past subsections and lectures. Furthermore, it becomes
useful in thinking about web-based material contents and
the relocation of subsections.

4.3 Browsing order and route
Next, to clarify the students’features, representing their
browsing behaviors, their browsing routes to each subsection
were analyzed.

4.3.1 Patterns of browsing order
The students’mouse cursor tracks to each subsection are
classified into the following four patterns. The pattern of
where the mouse cursor came from and where it was moved
to can be classified into the following four types (see Figure
4):
(a) IN before : Move from one subsection to the target
subsection in the same section
(b) IN over : Move from one section to the target subsec-
tion
(c) OUT before : Move from the target subsection to an-
other subsection in the same section
(d) OUT over : Move from the target subsection to an-
other section

4.3.2 The graph of each cluster feature
According to these attributes, clustering is performed and a
dendrogram is constructed by Ward’s hierarchical agglom-
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Figure 5: Transition of the Gini coefficient of each session (each student level).

Figure 6: Characteristic of the clustering result.

erative clustering method. In Figure 6, when height is set to
750, number of clusters is set to four. To confirm the four
clusters’features, stacked graphs were created. According to
the list of subsections of each cluster, the following features
were clarified:
Cluster1 : Students browse repeatedly through various
subsections without following the composition order of the
subsection. It occurs in the subsection concerned with the
beginners’tasks in the first half of the term.
Cluster2 : Like in“Cluster1,”students browse repeatedly
through various subsections without following the composi-
tion order for the subsection. However, the subsection is
browsed more times than in“Cluster1.”It is also occurring
in the subsection concerned with basic tasks in the first half
of the term.
Cluster3 : Students transferred from the subsection with-
out following the order of subsection composition and trans-
ferred to the next subsection according to a composition
order. It is occurring in the subsection concerned with the
high difficulty level tasks in the second half of the term.
Cluster4 : Students transferred from the subsection ac-
cording to a composition order and transferred to the other
subsection without following the order of subsection compo-
sition. Like in“Cluster3,”it is occurring in the subsection
concerned with the high difficulty level tasks in the second
half of the term.
Classifying subsections seems to help with the reconstruc-
tion of the web-based teaching materials so that students’
understanding can be increased in stages.

5. DISCUSSION
Visualization using Lorenz curve, the time series transition
of the Gini coefficient and the graphs of the clustering meth-

ods can be leveraged for information to support the class
as the lessons progress. In addition, it was found that the
results of the clustering of students’transition route is use-
ful information for reviewing reconstruction, rearrangement,
and speed adjustment of class progress, as the quality model
of web-based teaching material.

6. CONCLUSION AND FUTURE WORK
A system to collect mouse cursor behavior automatically
has been designed and developed. In addition, it has been
applied to an actual class. Learning logs have also been col-
lected. Furthermore, a system that can visualize in real time
the progress of a lesson using the learning log has been de-
veloped. It was found that it is possible to clearly capture a
student’s learning activities. A learning log of the subsection
units has been accumulated every semester since the 2015.
A quality evaluation model of web-based teaching materials
needs to be established by analyzing additional learner fea-
tures (e.g., the students’ learning style) and applying them
to a mathematical model.
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ABSTRACT
Finding the perfect job that takes into account someone’s
skills and ambitions is an overwhelming challenge for many
freshly graduated students. At the same time, companies
struggle to hire employees fulfilling their requirements. Ide-
ally, a successful match of students and jobs includes the
preferences of both sides. This paper proposes a reciprocal
recommender system matching graduating students and job
offers. To construct a common representation space for the
items of the recommendation, the course descriptions from
the curriculum are used as a linking factor. Further, Latent
Dirichlet Allocation (LDA) is used to extract topics from
the course and job descriptions, forming the latent repre-
sentation space. Next to providing job recommendations,
curricula gaps can be discovered and thus the students can
be better prepared for a future career. The algorithm is
tested on data from a Data Science bachelor programme.
Results show that a reciprocal matching of graduating stu-
dents and jobs generates recommendations with precision
and recall up to 0.7. The approach yields promising results
for such system to be implemented as a job recommender
system on university level or as a stand-alone system for
graduating students.

Keywords
reciprocal recommender systems, job matching, Latent Dirich-
let Allocation, discovering curricular gaps

1. INTRODUCTION
In recent years, most of the recruiting process has been
shifted to online job portals and professional social net-
works, such as LinkedIn. Many graduating students feel
overwhelmed by the available quantity and struggle to find
a position that fits the curriculum of their degree, as well
as the skills and interests developed during their studies.
Moreover, employers are reluctant to employ freshly gradu-
ated students since they lack knowledge about the curricu-
lum content and the skill sets of possible candidates. Many

degrees fail to address the requirements of job positions and
often have gaps in the curricular, which make it difficult for
students to start their career.

Job matching is a complex problem, as the employee can-
didate should fulfil the employer’s requirements and the job
should realise the candidate’s ambitions. The situation is
comparable to a dating scenario. The aim is to match stu-
dents and jobs reciprocally, taking into account preferences
from both sides. To do so, this paper proposes a reciprocal
recommender system, matching graduating students and job
offers based on the students’ study curricula. To construct
a common latent representation space, a probabilistic top-
ics model is used, extracting topic distributions from the
curriculum course and job descriptions.

The remainder of the paper is organised as follows: Sec-
tion 2 presents related work in the domain of reciprocal
recommenders and job recommender systems. In Section
3, the data and the proposed method used for generating
recommendations are presented. After, in Section 4, the ex-
periments are discussed and evaluated. Finally, Section 5
concludes the paper and presents future work.

2. RELATED WORK
Reciprocal recommenders are a class of recommender sys-
tems that consider the preferences of both items which are
part of the recommendation, a match occurs when both sides
benefit from a recommendation. The most significant re-
search in the field has been done in social matching, espe-
cially online dating[1, 8] but also study buddy matching[9].

The process of recruitment has been shifted to an online
environment. Thus, there is a high demand for sophisti-
cated recommender systems. Yao et al. [7] propose a hy-
brid recommender system, taking into account user profiles
and interactions. Their recommendations are based on a di-
rected, multi-relational, weighted graph, whose structure is
provided by the interactive features of a job seeking web-
site. iHR+ is a mobile reciprocal job recommender system
[10], which divides the information of job seekers into two
categories: self-description and preference features. Recom-
mendations are generated using the cross-similarity among
these features. Similar to the approach presented in this pa-
per, Ding et al. [5] focus their reciprocal job recommender
system on current graduating students. Their system takes
historical student information, as well as the preference of
employers and students into account. Using the grading in-
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formation of former and current graduates, they determine
candidates (in terms of employers and students) similar to
comparable students.

In the domain of generating recommendations using prob-
abilistic topic models, Apaza et al. [2] propose a content-
based recommender system for online courses. They use
LDA to derive topic distributions as descriptive feature vec-
tors for the courses. Combining this with the students’ his-
toric grading information, they are recommending courses
to students with weaknesses.

This paper focuses on matching graduating students with
jobs. The common latent representation space is formed
by the course and job descriptions. The students’ grading
information is used as a preference and strength indicator.
Thus, there is no intermediate step explicitly stating the
preferences for both sides of the recommendation. Devel-
oping a job recommender system based on topics derived
from course and job descriptions is new in the domain of
reciprocal recommenders.

3. PROPOSED METHOD
3.1 Data
The data used for the recommendation has to describe three
items: the jobs, the courses, and the students.

The job offers were scraped from indeed.com, to obtain re-
alistic data. indeed.com is a job search engine. It obtains
its entries from multiple sources, such as company websites,
postings created on indeed.com itself or job boards. The
target positions were derived from alumni data. The key-
words “junior” or “entry-level” made it possible to identify
job offers suitable for freshly graduated bachelor students.
Further, the scraping was limited to job offers in the English
language, to ensure comparability with the course descrip-
tions. Eventually, 103 job offers were collected, suitable for
someone with a Bachelor degree in Data Science.

The programme’s student guide provides a course descrip-
tion for each course in the curriculum. They are phrased
according to the Dublin Descriptors, which provide infor-
mation about the content and structure of a course, as well
as the competences acquired in a course.

Overall 72 student grading data points were used. It was
obtained from two sources: anonymised student information
from 2011 to 2015 (44 students) and grading information
from 28 current students in their final year. All the grades
are in the range from 1 to 10.

3.2 Recommendation Algorithm Description
An overview of the recommendation algorithm is displayed
in Figure 1. In summary, first, the student grades are nor-
malised. Then, a Latent Dirichlet Allocation (LDA) model
is trained and applied on a corpus consisting of the job post-
ings and course descriptions. The resulting topic distribu-
tion matrices are used to compute a similarity matrix of the
jobs and courses. Combining the similarity matrix and the
normalised student grades, a score is computed, allowing to
generate ranked recommendation lists for students (recom-
mending jobs) and jobs (recommending students).

Figure 1: Pipeline of the recommendation algorithm

3.2.1 Normalising Student Data
To obtain successful matches for all students, the grading
information needs to be normalised. Examiners grade in
different ways. This grading bias is removed, by subtracting
the mean in the course dimension from each datapoint. The
aim of using the grades is identifying strengths and interests
of the students. To obtain a “strength profile” per student,
the mean in the student dimension is subtracted from each
datapoint. Lastly, the grades which have a missing value are
replaced with zeros. Students did not attend the course and
thus they should have a zero weight for the final score.

3.2.2 Applying LDA and Constructing Similarity Ma-
trix between Courses and Jobs

Topic models are statistical models for discovering abstract
topics that appear in a corpus of documents. In the appli-
cation, Latent Dirichlet Allocation (LDA) is used. It was
introduced by Blei et al. in 2003 [4]. The model is based
on the assumption that each document is a combination of
topics and each topic is a probability distribution over words
[3]. From a set of documents and a fixed number of topics,
LDA returns a set of words associated with each topic with
a probability. Applying the trained model to a document
gives a probability distribution for the topics.

To compare the course descriptions and job postings, feature
descriptors for the text documents need to be constructed.
Assuming that each course description and job offer includes
a certain set of topics and there is a set of relevant words
describing the topics, a probabilistic topic model (LDA in
this case) can be used to describe the topics of the docu-
ments. The model is first trained on the corpus consisting
of the course and job descriptions. 12 is chosen as the num-
ber of topics for the algorithm because content analysis of
the topics showed this was the optimal number.

The result of applying the trained LDA model to the corpus
is a feature vector per document, expressing the probability
of each topic. The vectors are combined in two matrices,
one describing the courses and one describing the jobs. The
cosine similarity is used as similarity measure. The resulting
similarity matrix gives the similarity for each course and job
respectively.

3.2.3 Calculating Score and Ranking Recommenda-
tions

The final score for each student and job combination is a
matrix multiplication. The courses are the linking factor
between the students and jobs. Thus, the score is calculated
by multiplying the normalised grades per course of each stu-
dent with the similarity matrix of courses and jobs. This is
formalised by Equation 1.

scores,j =

M∑
c=1

grades,c ∗ simj,c (1)
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where s is the student, j is the job and c is the course. M is
the number of courses. As the final recommendations, the
jobs with the top k scores for each student (ranked), and
the students with the top k scores for each job (ranked) are
recommended.

4. EXPERIMENTS AND RESULTS
An appropriate evaluation of the recommender system re-
quires the deployment of the system and feedback from stu-
dents and recruiters. In this case, it is only possible for a
part of the students. Prabhakar et al. [9] propose mea-
sures to evaluate a reciprocal recommender system using
the available data. Next to evaluating the experiments us-
ing the proposed measures, recommendations generated by
deploying the algorithm were sent to the 28 current final
year students to obtain qualitative feedback.

4.1 Evaluation Metrics
A successful reciprocal recommendation includes the prefer-
ences of both sides. Thus, it can be said that “Student y is a
successful (reciprocal) recommendation for job x (out of the
k-total), if and only if, job x is also in the recommendation
list of student y.”. The same holds for the job recommenda-
tions to students. Based on this logic and the precision and
recall measure modified by [9] we can formalise precision and
recall as follows:

Px =
Nx

k
,Rx =

Nx

N∗x
(2)

where Px is the precision for student/job x, Rx is the recall
for student/job x, Nx is the number of successful recommen-
dations for student/job x (as defined before), k is the total
number of recommendations generated and N∗x is the num-
ber of jobs/students that have x in their recommendation
list. The total precision and recall of all recommendations
can be computed using the following formulae:

P =
1

M

M∑
i=1

Pi, R =
1

M

M∑
i=1

Ri (3)

where Pi and Ri are the precision and recall respectively
for student/job i (as defined previously) and M is the total
number of students/jobs.

The results of the recommendation system are two recom-
mendation lists, one recommending jobs to students and one
recommending students to jobs. Precision and recall are first
calculated separately for the students (PS , RS) and the jobs
(PJ , RJ), thus per recommendation list. For the final mea-
sure, the mean is computed.

Another measure proposed by Prabhakar et al. [9] is the
Discounted Cumulative Gain (DCG). Originally, it has been
developed for the field of information retrieval to measure
the quality of rankings [6]. It was adapted by Prabhakar et
al. to measure rank alignment or reciprocity [9]. A perfect
rank alignment and thus an indicator for a good reciprocal
system is described by: “For all students/jobs i, present at
position j in the recommendation list of job/student u, if u is
also present at the same position j in the recommendation
list of i”. Dividing it by the number of successful recom-
mendations ensures that all values are in the range [0, 1]. If
there are no successful recommendation for student/job u,
the gain is 0. The formula is defined as:

Figure 2: Precision graph, including the standard
deviation.

Figure 3: Recall graph, including the standard de-
viation.

DCG =
1

M

M∑
u=1

∑k
j=1 guij

S
(4)

where M is the number of students/jobs, S is the number
of successful recommendations, j is the rank and guij is the
gain of job/student i (at position j) for student/job u. The
gain is given by:

gui =
1

1 + |diffui|
(5)

where diffui is the difference in ranks of student i in the
recommendation list of job u and job u in the recommenda-
tion list of student i. The same holds for job i and student
u. Thus, the gain is 1 when the rankings between a student
and a job are the same; otherwise, the gain is discounted.
As before, the DCG is calculated separately for students
(DCGS) and jobs (DCGJ). Then, the mean is computed.

4.2 Quantitative Results
The recommender system is evaluated on the data described
in section 3.1. The recommendations are ranked according
to their score and the top-k [5,10,15,20,25,30] jobs/students
are recommended. Because of the LDA topic model, there
is some randomness involved in the process. 50 runs of the
experiments are conducted and precision, recall and DCG
scores are recorded. The results are averaged across the
runs, for each top-k recommendations. The precision, recall
and DCG graphs are shown in Figures 2, 3 and 4. The
standard deviation is displayed as a stability indicator.

Precision and recall increase with the number of recommen-
dations given. Giving more recommendations increases the
probability of successful recommendations. The low vari-
ance shows that the results are reliable. Reaching a pre-
cision score of 0.657 and a recall score of 0.705 with k=30
recommendations indicates that most matches generated by
the system are successful.
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Figure 4: DCG graph, including the standard devi-
ation.

The decreasing value of the DCG with recommendations
given can be explained by the increasing difference in ranks
in the recommendation list. The peak at k=10 (DCG score
0.221) indicates that a number of 10 recommendation is opti-
mal to provide students and jobs with the most rank aligned
recommendations. In the case of a job recommender system,
a successful recommendation is more important than rank
alignment. Thus, precision and recall scores provide a better
insight into the quality of the recommender system. Overall,
the precision and recall measures show that the reciprocal
approach generates successful recommendations, matching
students and jobs effectively.

4.3 Qualitative Results
The 28 last year students who gave access to their data were
provided with their top 10 recommendations and were asked
to re-rank them. To analyse the results, the DCG was used,
as a measure of rank alignment between the original and
re-ranked rankings. The DCG score for comparing the orig-
inal and re-ranked entries with each other is 0.472. Since all
items are represented in both lists, the DCG score is an av-
erage of the gain of all recommendations for all participants.
Thus, a DCG score of 0.472 indicates that on average, each
posting was re-ranked 1 or 2 rankings below or above its
original ranking (since 1

2
> 0.472 > 1

3
). Some change in the

ranking was to be expected because some of the job offers
were similar to each other. The result supports that the
order of the recommendations was appropriate.

The students were also asked to give qualitative feedback on
their recommendations. The overall feedback received from
the students was positive. Most reported that they received
interesting input for future career perspectives. However,
one drawback revealed by the feedback is the limited possi-
bility of expressing interests and ambitions. Incorporating
this information in the recommendation algorithm is a fu-
ture direction.

5. CONCLUSION AND FUTURE WORK
This paper proposes an algorithm that matches graduating
students and jobs reciprocally, simplifying the overwhelming
job search for graduating students and allowing employers
to recruit graduated students more effectively. It was shown
that the system can be deployed to generate successful em-
ployment couples. The items of the recommendation are
solely represented by the academic information from the stu-
dents and the descriptions of the jobs. Courses are used as a
linking factor, a common representation space for academic
courses and jobs was established using LDA. Finally, quan-

titative results, based on measures introduced by Prabhakar
et al. [9], show that the reciprocal approach is an appropri-
ate way to generate successful matches. The feedback from
students in their final year showed that the results could
be used for career inspiration, however, a way to express
preferences is desired.

The work presented in this paper provides many opportuni-
ties for further experimentation and improvement. Course
preferences from the student side could be included to rec-
ommend jobs that better fit the ambitions and interests of
the students. Moreover, feedback from the employer per-
spective could lead to new insights on how to enhance the
algorithm to better match the recruiters’ needs. The re-
sults could be used to discover curricular gaps in the study
programmes. Some job descriptions might include topics
which are not addressed by the courses. Tackling these is-
sues would lead to students better prepared for the business
world and its requirements. The implementation of the al-
gorithm was limited to one programme. More (real-life) ex-
periments would be useful to evaluate further and improve
the system. Long term deployment of the algorithm within
a suitable platform would lead to advanced conclusions.
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ABSTRACT 
Student retention is a major challenge at American universities with 

the average six year graduation rate hovering around 59%.  Among 

minority students the graduation rate drops to 46% for Blacks and 

55% for Hispanics.  Low graduation rates not only impact the 

financial well-being of individuals but the economy as a whole.  

Thus, improving student retention, in particular, minority student 

retention, is of paramount importance at institutions of higher 

education.  This paper describes a machine learning approach to 

predicting minority native and transfer student dropout using a 

dataset from a four year Hispanic serving institution in the north 

eastern region of the United States with a large percentage of 

minority students.  The results of the study show that standard 

machine learning models can predict minority transfer student 

dropout with a high degree of accuracy of 97% and minority native 

student dropout with an accuracy of 81%.  The features that were 

most important in predicting minority transfer student dropout were 

SAT scores, and college cumulative GPA, while high school GPA 

and college cumulative GPA were the top predictors for minority 

native student dropout.  This study demonstrates that educational 

institutions can use cost effective off-the-shelf standard machine 

learning models to achieve a high degree of accuracy in predicting 

minority student dropout.  The high prediction accuracy achieved 

helps in reliably identifying at-risk minority students and providing 

them with necessary interventions to support their academic 

success. 

Keywords 
Dropout prediction, Minority student retention, Machine learning 

models, At-risk students 

1. INTRODUCTION 
Student retention is a major challenge at American universities with 

the average 6 year graduation rate hovering around 59% [14].  

Graduation rates vary with institutional selectivity [18]; the 

situation being particularly grave at institutions with open 

admission policies where the 6 year average graduation rate is at a 

meager 32% [14].  There is substantial variation in the graduation 

rates by race and ethnicity.  African American students had the 

lowest six year graduation rate at 46% while Hispanic students’ 

graduation rate is at 55% [14].  Transfer student graduation rates 

are also low at 42% [14].  Thus, improving student retention, 

particularly for minorities, is of paramount importance at 

institutions of higher education. 

A critical factor in increasing student retention is the ability to 

accurately identify at-risk students, so that relevant interventions 

can be provided.  But, there is a paucity of literature focused on 

predicting minority student dropout and even less literature that 

considers native and transfer students separately, taking into 

account their individual characteristics.  Minority students’ 

graduation rates are among the lowest and they have different 

characteristics, needs and face different challenges in college.  

Hence analyzing and modeling their dropout rate separately is 

warranted.  It would also be informative to model the transfer and 

native students separately as these students have different 

characteristics and different graduation rates.  Such an analysis 

could be used to identify, target and customize interventions 

differently to minority transfer and native students and hence lend 

better support for their success in college. 

This paper describes a machine learning approach to predicting 

minority college student dropout, treating native and transfer 

students separately.  The objective of this paper is not to build an 

esoteric novel machine learning model hitherto not seen in the 

literature, instead, we aim to show the effectiveness of standard off-

the-shelf machine learning models in predicting minority student 

dropout.  To the best of the authors’ knowledge this study is one of 

the first to employ machine learning techniques to build separate 

models to predict minority transfer student and native student 

dropout taking into account the unique characteristics of each.  

Thus, this study contributes to the literature by demonstrating that 

standard machine learning models can achieve a high degree of 

accuracy in predicting minority student dropout by taking into 

account the different characteristics of native and transfer students.  

This high prediction accuracy can then be used to reliably identify 

at-risk students and provide them with the necessary intervention 

to support their success.  This study also contributes by giving 

readers an idea of which machine learning models work well in this 

domain, what data preprocessing is needed and what features have 

good predictive power.  Further, this study contributes to student 

retention practice as it demonstrates that easy to implement and cost 

effective off-the-shelf machine learning models can achieve a high 

degree of accuracy in identifying minority students at risk of 

dropping out. 

2. LITERATURE REVIEW 
Research on student attrition has traditionally been based on 

surveying student cohorts and following them to assess drop out.  

These surveys contributed to the building of theoretical models of 

student retention, the most famous of them being the Tinto model 
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[17].  These survey based research have been criticized for being 

too specific to an institution and hence not generalizable [6].  An 

alternative to survey based research is to use the data that most 

higher education institutions routinely collect about their students.  

This type of research based on institutional databases has been 

shown to be comparable to survey based research [4].   

There are numerous factors that affect student retention.  Tinto [17] 

highlights academic difficulty, adjustment problems, lack of clear 

academic goals, lack of commitment, inability to integrate with the 

college community, uncertainty, incongruence and isolation as 

factors involved in student dropout.  Tinto’s theory of student 

integration posits that past and current academic success are crucial 

factors in determining student attrition and many studies have 

found high school GPA and SAT scores to have a strong effect on 

student retention [18].  Declaration of major and number of credit 

hours taken during the first semester have been used as proxies for 

institutional and goal commitment. 

Transferring from one educational institution to another also has an 

impact on retention rates.  Factors affecting transfer student 

academic success and persistence include issues regarding 

institution support [9, 23], financial factors [7], student goals [11] 

and familial support [1, 10]. 

When it comes to minority students Moffat [13] found that SAT 

scores were not a strong predictor of student success for Black 

students.  A key challenge to success minority students face in 

predominantly white institutions is a sense of alienation due to 

underrepresentation [15].  Hoffman [10] found that student 

satisfaction and success can be strongly linked to cocurricular 

involvement for minority students. 

Research on using machine learning techniques to predict student 

attrition is still in its infancy.  Delen [8] and Thammasiri [16] used 

several machine learning methods such as support vector machines 

and neural networks to model freshmen student attrition and found 

that support vector machines performed best, reaching a prediction 

accuracy close to 80%.  Lauria, Baron, Devireddy, Sundararaju, 

and Jayaprakash [12] used demographic and course related data to 

show that support vector machines performed better than decision 

trees at predicting at-risk students. 

This study uses many of the factors impacting student retention 

identified in the literature to build machine learning models to 

predict student attrition.  Factors unique to transfer students, as 

identified in the literature, are used to build specific models to 

predict transfer student dropouts. 

3. CONCEPTUAL FRAMEWORK 
The study is broadly based on the models of student retention 

developed by several researchers, one of the earliest and popular 

being that of Tinto [41].  Tinto’s model suggested that student 

success is determined by the degree of academic and social 

integration.  Other popular models of student retention include 

Bean’s student attrition model [2, 3] which takes the employee 

turnover approach suggesting that students dropout for similar 

reasons as employees leave an organization and the Cabrera, Nora 

& Castenada [6] model which integrates the Tinto and Bean 

models.  Based on these models several studies have identified 

factors that impact student dropout.  High school GPA, SAT scores, 

number of credit hours taken during the first semester, declaration 

of major, aid based on academic achievement and student loans are 

among the factors that are predictive of student dropout. 

Our study attempted to collect data on various factors based on the 

theoretical models and the predictive factors that have been 

identified based on them and use them as features in our machine 

learning models. 

4.    METHODOLOGY 

4.1 Data 
This study used five years (2011 – 2015) of minority student data 

from a regional Hispanic serving four year college in the north 

eastern region of the United States.  The university is an urban 

university catering to a largely minority population (80% 

minorities).  The university accepts a large number of transfer 

students from the local community colleges and other institutions.  

The overall four year graduation rate at the university was around 

55%, with the graduation rate among transfer students at 61% and 

native students at 45%.  Table 1 presents some descriptive statistics 

of the dataset. 

Table 1: Descriptive Statistics 

Native Students  Transfer Students  

Number of students 3897 Number of students 4703 

Female 58% Female 65% 

Male 42% Male 35% 

Hispanic 55% Hispanic 48% 

African American 30% African American 34% 

Asian 11% Asian 15% 

Other race 4% Other race 2% 

Mean age 19 Mean age 28 

Mean GPA 2.50 Mean GPA 2.99 

Mean SAT Math 450 Mean SAT Math 413 

Mean SAT English 430 Mean SAT English 390 

 

We define a student to have dropped out if he/she does not enroll 

in the year following the last semester of enrollment.  Based on this 

definition we constructed a binary indicator variable to indicate 

whether a student has dropped out or not.  Both the transfer student 

and native student dataset had about 35% dropouts. 

4.2 Features 
Table 2 shows the features that were used in the machine learning 

models. 

Table 2: Features 

Features used for both native and transfer students 

Age 

Gender 

Race 

High School GPA 

Gateway Math Status (gateway math course is 

required or not) 

Gateway English Status (gateway English course is 

required or not) 

Math placement (Has student completed the 

developmental math requirement) 

English placement (Has student completed the 

developmental English requirement) 

Cumulative GPA 

Trend in the GPA over the semesters enrolled 

(Increasing, Decreasing, Stable) 

SAT Math 

SAT English 

Difference between credits taken and credits earned 
Community involvement (Student belongs to clubs 

and other student organizations or not) 
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Has student declared major (yes or no) 

Additional features used only for transfer students 

Difference between number of college credits applied 

for transfer and accepted for transfer. 

Marital status 

Highest degree earned prior to transfer 

The features we used broadly fell into the following categories: 

student achievement, performance and progress, community 

engagement and demographics.  We engineered several of the 

features from the raw data.  From the raw data on GPA we extracted 

a feature indicating the trend in the GPA.  From the credits taken 

and credits passed data by semester, we computed the difference of 

total credits taken and passed.  The raw data also had information 

on clubs and other community activities that the student 

participated in.  From this we created a binary variable indicating 

whether the student participated in community activities or not.  For 

the transfer students we used additional features more relevant to 

them.  Since the mean age of the transfer students (28 years) was 

much larger we used marital status and highest degree earned as 

features in the transfer student models. 

4.3 Analysis 
Student retention data sets are typically imbalanced as the number 

of dropouts is usually much less than the number that don’t.  Our 

dataset was imbalanced with around 35% of dropouts. If the data is 

imbalanced the standard classifiers have a bias towards the larger 

majority class.  One approach to correcting this imbalance is to 

preprocess the data in order to balance it out and then build the 

model.  This approach uses various techniques to either oversample 

the minority class or undersample the majority class or a 

combination of both.  Synthetic Minority Oversampling Technique 

(SMOTE) is a popular and robust technique that uses a combination 

of oversampling the minority class and undersampling the majority 

class which results in better classifier performance [6].  We tried 

various techniques to correct the imbalance and found the SMOTE 

technique to yield the best results.  Hence our study used SMOTE 

to correct the imbalance.   

We used the features described above and imbalance corrected data 

to build the following machine learning models: Naïve Bayes, 

Logistic Regression, Decision Tree, Support Vector Machine, 

Random Forest, Extreme Gradient Boosting (XGBoost), and a 

Voting Ensemble model.  We chose these models as they are 

popular classification models some of which have been used in the 

extant literature.  The ensemble model XGBoost has been shown to 

have high performance in numerous datasets in different domains.  

The Voting Ensemble is a stacked ensemble model consisting of all 

of the other models mentioned above.  All of the above models were 

built using 75% of the data for training and 25% for testing and 

using a 10 fold cross validation to avoid overfitting. 

5.    RESULTS 
The prediction results of the models we trained above are shown in 

Table 3.  Accuracy is a good and intuitive performance measure for 

balanced datasets.  Since we have corrected the imbalance in our 

dataset prior to building our models, we have reported Accuracy as 

our measure of performance for the models.  The AUC measure and 

the F1 score were very close to the accuracy measure, so, we have 

not reported them here, but the information is available on request. 

Table 3: Dropout Prediction Results 

Model Accuracy 

 Native Student Transfer Student 

Naïve Bayes 71.3% 40.2% 

Support Vector 

Machine 

79.9% 81.2% 

Logistic Regression 78.8% 81.4% 

Random Forest 79.0% 97.0% 

Extreme Gradient 

Boosting 

81.3% 97.1% 

Voting Ensemble 80.9% 97.4% 

Table 4 shows the features ranked by importance.  We have only 

reported the features that had a score of greater than 1% as the rest 

have negligible predictive power. 

Table 4: Features Ordered by Importance 

Native Students Transfer Students 

Feature Score Feature Score 

Cumulative GPA 0.135 SAT English 0.261 

High School GPA 0.103 SAT Math 0.191 

SAT English 0.100 Cumulative GPA 0.149 

SAT Math 0.097 Age 0.093 

Difference credits 

taken and earned 

0.095 Difference credits 

taken and earned 

0.063 

Age 0.074 Difference credits 

accepted and 

applied for transfer   

0.047 

Gateway English 

Status 

0.051 GPA trend 0.043 

English placement 0.046 Community 

involvement 

0.031 

Community 

involvement 

0.046 Declared major 0.025 

GPA trend 0.046 Developmental 

Math 

0.021 

Developmental Math  0.031 GPA trend 0.021 

Gender 0.021 Gender 0.013 

Race 0.013 Highest degree 0.010 

6.    DISCUSSION 
This study demonstrates how standard machine learning models 

can be used to predict, with a high degree of accuracy, students at-

risk of dropping out.  To the best of our knowledge this is one of 

the first studies to focus on predicting minority student dropout and 

in particular minority transfer and native student dropout using 

standard machine learning techniques.  The high prediction 

accuracies achieved in this study demonstrates the effectiveness of 

standard machine learning models for predicting undergraduate 

minority student dropout.  Reliable identification of at-risk students 

can help in providing timely interventions to support the student’s 

success and thus increase student retention.  Any educational 

institution can adopt the approach demonstrated in this study with 

relative ease.  A discussion of the various classifiers and the feature 

importance follows. 

The Naïve Bayes classifier, as expected, performed the worst on 

both the native student and transfer student dataset.  In the native 

student dataset the Extreme Gradient Boosting (XGBoost) model 

performed the best reaching an 81% accuracy.  In the case of 

transfer students again the XGBoost, Random Forest and the 

Stacked Voting Ensemble all reached a very high 97% accuracy 

rate.  This very high accuracy rate was indeed surprising as we did 

not expect to be able to achieve such high performance.  All of these 

models performed much worse without imbalance correction, thus, 

pointing to the importance of correcting for imbalance in this 

domain.  The results also show that different models perform better 

between native and transfer students with different features being 
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important, stressing the importance of modeling these student 

bodies separately. 

For native students their college GPA and high school GPA seemed 

to be the strongest predictors of dropout.  This is consistent with 

prior literature and the conceptual framework we based the study 

on.  The other factors that had reasonably good predictive power 

were SAT scores and the difference between credits taken and 

earned.  For transfer students the SAT scores were the strongest 

predictors with college GPA being the next strongest.  Surprisingly 

High school GPA did not seem to have any impact on transfer 

student dropout prediction, unlike in the case of native students.  

This is inconsistent with the literature that has found high school 

grades to be good predictors of college success [5,15].  One 

potential explanation could be that the transfer students in our 

sample are older and thus far removed from high school and hence 

the high school GPA does not have much predictive power. 

Another surprising result was that race did not have much 

predictive power for both the native students and transfer students.  

Given the racial gap in graduation rates, even among Black, 

Hispanic and Asian students, we expected to find some relationship 

between race and dropout, but found none.  Similarly gender did 

not have much predictive power either.  Community involvement 

was a fairly strong predictor of dropout for both the native and 

transfer students.  This is consistent with the theoretical models of 

student retention used in our conceptual framework that highlight 

student engagement as a key factor in college success. 

There are several limitations to our current study.  The performance 

results that we have obtained are specific to our sample and caution 

should be exercised in generalizing them.  However, our results do 

give readers and researchers an idea of the possible accuracy that 

can be achieved by using standard machine learning models to 

predict minority student dropout and what features are important.  

Also, our results can be very informative for institutions with a 

similar minority student profile as ours.  Another limitation is that 

we have not considered any financial aid data, and other factors not 

related to academic achievement such as personality traits etc.  

These are all avenues for further research that we are currently 

pursuing. 

7. CONCLUSION 
The results of our study demonstrate that standard machine learning 

techniques can be effective in predicting minority student dropout 

with a high degree of accuracy.  We also show that different models 

perform better between transfer students and native students thus 

reinforcing the importance of modeling these two student bodies 

separately. 

The practical implication of this study is that it demonstrates that 

educational institutions can use their existing databases that contain 

routine student data and standard off-the-shelf machine learning 

models to accurately predict at-risk minority students.  This is a cost 

effective way for institutions to identify at-risk students so that they 

can devote their resources to offering interventions aimed at 

retaining them. 
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ABSTRACT
dAFM introduced a neural network implementation of the
Additive Factors Model, allowing backpropagation to be used
to learn or improve an expert Knowledge Component model.
This neural approach learned continuous weights correspond-
ing to item to KC associations. In this work, we extend
dAFM to support learning of binary item to KC associa-
tions by employing a modification of backpropagation from
the literature, called BinaryConnect.

1. INTRODUCTION
An association of items to knowledge components (KC),
known as a Q-matrix, is a necessary prerequisite for many
models of cognitive estimation used in the educational data
mining community and in practice in intelligent tutoring sys-
tems [3]. Additive Factors Models (AFM) have been used to
refine a Q-matrix by searching through the space of opera-
tions (e.g., merge and split) using an expert KC model and
other factors of items [4]. Recently, a neural networks ap-
proach to modeling and fitting the Q-matrix was introduced
which uses backpropagation and stochastic gradient descent
to refine the Q-matrix as represented by as a weight coeffi-
cient matrix between the item input layer and a hidden layer
in the network. This approach, called dAFM [5], results
in continuous valued associations between items and KCs.
While continuous values in a Q-matrix may open up inter-
esting new interpretations of partial associations, this fuzzy
association is not standard. To produce standard binary as-
sociations, the weights could be rounded to 1 or 0. This
was done in the original dAFM paper but always resulted in
accuracy worse than the continuous valued Q-matrix, and of-
ten times performed worse than using the original expert Q-
matrix. In this paper, we implement a binary weight learn-
ing procedure into the fitting process and demonstrate that
this approach achieves accuracy better than the original Q-
matrix and rivaling that of the continuous valued Q-matrix.

2. RELATED WORK
Several variants on binary weight learning in neural net-
works have been introduced in the machine learning litera-
ture. The primary motivation of these approaches has been
to reduce memory size and speed up neural network training,
with embedded systems applications in mind. BinaryCon-
nect [1] is one approach that stochastically samples binary
weights based on real-values in the forward and back prop-
agation and then updates the weights. Binarized Neural-
Networks [2] constrain not only weights but also activations
to between 1 and -1, which reduces the model size and re-
places multiplication with a logical operation. The XNOR-
Net [6] approach introduced an extra scaling layer to ap-
proximate the parameter and activation by a binary tensor
and a scaling factor. Shayer et al.[7] introduced a probabilis-
tic training method, the LR-nets (Local reparameterization
networks),which trains the binary weights by introducing a
good smoothing approximation and then using its deriva-
tive.

As BinaryConnect is an established method and our objec-
tive was to get binarized weights in a single specific layer
instead of binarizing all weights and activations, we choose
BinaryConnect for its simplicity, abundance of public code,
and good fit to our task of binarizing Q-matrix learning
within dAFM.

3. BINARY CONNECT
BinaryConnect proposes two ways to binarize weights. One
is a deterministic sign function, which assigns 1 if the weight
is bigger than 0 otherwise assigns -1.

wb =

{
+1 if w >0,

−1 if otherwise.
(1)

The other one is to stochastically assign +1 with probability
p and -1 with probability 1-p with a ’hard sigmoid’ function.

wb =

{
+1 with probability p = σ(w),

−1 with probability 1− p.
(2)

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)) (3)

During the SGD training of binary connect, weights are only
binarized in the forward pass and gradient computation, and
the float versions of the weights are updated. This is because
the real-valued weights are needed in the updating process
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in SGD.

4. BINARY DAFM
Our goal is for the associations between questions and knowl-
edge components (KC) to be represented by the more inter-
pretable binary instead of continuous weights; accordingly,
we implement BinaryConnect into dAFM and describe the
technical implementation in this section. Considering the
real meaning of the associations, we constrain the weights
to 1 and 0 instead of 1 and -1. The binary weight learning
adapted to dAFM is as follows:

Algorithm SGD training with BinaryConnect in dAFM.
C is the cost function and binarize() and clip() are the
functions that binarize and clip weights.

Require: previous weights in the QK layer WBqk, Qk
layer,the layer before the QK layer–the step input layer
,bt−1:bias and learning rate η.
Ensure: updated parameter wt and bt
1.Forward propagation:
WBqk ←− binarize(Wqkt−1)
compute QK knowing step input,WBqk,b
2.Backward propagation:
get the Qjk layer’s activations gradient ∂C

∂(qk)

compute ∂C
∂(step input)

knowing ∂C
∂(qk)

and WBqk

3.Parameter update:
compute ∂C

∂(WBqk)
and ∂C

∂(QK)
and step input

Wqkt ←− clip(Wqkt−1 - η ∂C
∂(WBqkt−1)

)

bt ←−bt−1 - η ∂C
∂(bt−1)

Programatically, this translated to the following modifica-
tions to the dAFM code, including definition of a Binary-
Dense neural network layer and Binarization function:

if binary=="False":
Q_jk = TimeDistributed(Dense(skills,

activation="linear",
kernel_initializer=self.f(Q_jk_initialize),
use_bias=False,trainable=qtrainable),
trainable=qtrainable, name="Q_jk")(step_input)

else:
Q_jk = TimeDistributed(BinaryDense(skills,

activation="linear",
kernel_initializer=self.f(Q_jk_initialize),
use_bias=False,trainable=qtrainable),
trainable=qtrainable, name="Q_jk")(step_input)

BinaryDense layer

self.w = self.add_weight(shape=(input_dim, self.units),
initializer=self.w_initializer,
name="w",
regularizer=self.w_regularizer,
constraint=self.w_constraint)

self.binary=binarize(self.w, H=self.H)
output = K.dot(inputs,self.binary)

Binarize function

def binarize(W, H=1):
Wb = H * binary_tanh(W / H)
return Wb

def round_through(x):
rounded = K.round(x)
return x + K.stop_gradient(rounded - x)

def _hard_sigmoid(x):

x = (0.5 * x) + 0.5
return K.clip(x, 0, 1)

def binary_tanh(x):
return round_through(_hard_sigmoid(x))

In our binary dAFM Model implementation, we integrate a
Keras implementation1 of a BinaryDense layer. Specifically,
we manage the backpropagation of the binarized weights and
update the real-valued weights using the tf.stop gradient()
function.

5. RESULTS
Results of dAFM models’ predictions using a 30% test set
hold-out on our four primary datasets are shown in Table
1. The AFM model represents the baseline standard model
with its expert Q-matrix. The Binary dAFM model (hard
sigmoid) represents the model that uses the hard sigmoid
function and Binary dAFM (sign function) represents the
model that use the sign function to binarize. The RMSE
is reported on the model’s prediction of the correctness of
student first attempt responses to items in datasets from the
Cognitive Tutor and ASSISTments.

We can observe that the original dAFM model with contin-
uous valued Q-matrix associations beats the original expert
KC model (AFM) in all datasets, a result observed in the
original paper. We can also observe that the hard signmoid
variants of Binary dAFM performed better than the sign
function variant in three of the four datasets. Addition-
ally, the hard sigmoid Binary dAFM performed better than
the original AFM model in all datasets, a departure from
the rounded approach which performed worse than AFM
on the majority of datasets. In one case, with ASSIST-
ments 2012-2013, the Binary approach even bests contin-
uous valued dAFM, scoring a substantially lower RMSE of
0.4339 compared to 0.4443. We conclude from these observa-
tions that the BinaryConnect approach to binarized weight
learning is an effective alternative approach to continuous
Q-matrix association representation with neural networks.

5.1 Replication
1. Clone the github repository.

1 git clone https://github.com/CAHLR/dAFM.git

2. Enter into dAFM directory using following command.

1 cd dAFM

3. Execute the src/main.py script using python after spec-
ifying the input values. It will train on a specified portion
of the dataset serving as the training set and evaluate the
average root mean square error on a specified validation set
portion. By Passing different values as arguments, different
datasets and models can be trained and evaluated.

1 python3 src/main.py --dataset G0 --dataset_path
2 G0/Geometry96-97 --user_id ’Anon Student Id’ --
3 problem_id ’question’ --correctness ’test’ --sk
4 ill_name ’KC (Original)’ --dAFM fine-tuned No --
5 save_model False --binary True

See the github README for additional options
1https://github.com/DingKe/nn playground
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Table 1: Results of the Expert KC model (AFM), continuous dAFM (dAFM), and Binary dAFM models
(hard and sigmoid and sign function variants). Response prediction error metric is RMSE.

Dateset AFM dAFM Binary dAFM(hard sigmoid) Binary dAFM(sign function)
Geometry 0.4355 0.4016 0.4263 0.4303

ASSISTments 09-10 0.4777 0.4594 0.4608 0.4596
ASSISTments 12-13 0.4504 0.4443 0.4339 0.4367

CogTutor Bridge 06-07 0.3698 0.3655 0.3656 0.3702
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ABSTRACT 
To overcome space and time limits in education environment, 
online education is becoming increasingly crucial. Most online 
education is based on video lectures. Video-based lectures are 
delivered to the learner through the language of the instructor. 
Hence, the language (word) of the instructor affects learners 
during the video discourse. In this study, we examined the 
effectiveness between emotional (positive and negative) and non-
emotional (neutral) words for learning effectiveness on online 
education based on video lectures. The results indicated that 
learners remember emotional words better than non-emotional 
ones. If educational content based on video lectures is 
implemented using emotional words, then it will improve the 
learning effectiveness in online education through video lectures. 

Keywords 

Video Lecture, Online Education, Gamification, Short-Term 
Memory 

1. INTRODUCTION 
The scale of online education service market is gradually 
expanding at present because of the development of technology 
and interest in education. The demand for online education is also 
increasing as education transcends regional and temporal 
boundaries. An example of these phenomena is massive open 
online course (MOOC). MOOC refers to online learning that 

allows anyone to enroll in free courses on a large scale without a 
restriction in the number of students. In 2008, MOOC offered 
educational opportunities to learners and allowed them to take 
lectures from prestigious universities online [1]. 

Online education services, such as MOOC, facilitate learning 
through video lectures; thus, learners acquire knowledge by 
watching the video lectures [2,3]. In such an environment, 
determining whether the learner has actually watched the video 
lecture or not is important. This problem is a considerably 
challenging task because we can monitor the learner based only 
on a limited range of data, that is, the interaction between the 
learner and computer. 

The common technique in addressing this issue is to assess 
whether the learner is watching the video lecture by solving the 
relevant quizzes or simply checking the playing time of the video. 
The method of judging whether a learner watches a video lecture 
through quizzes can evaluate the learner’s understanding level. 
However, constructing relevant quizzes and completing these 
quizzes are time consuming for both the instructor and learners, 
respectively [4]. Moreover, the sharing of quizzes among learners 
may lose its original purpose. Hence, the method of checking the 
playing time of the video is not an accurate evaluation technique 
because it recognizes that the learner has watched the video even 
when the learner is performing other tasks or is absent. Through 
the short-term memory, we can assess whether learners watch the 
video lecture or not. Therefore, in this study, we developed a 
short-term memory judge system. 

This short-term memory judge system determines whether or not 
a learner has watched the video lecture through cognitive 
processing based on the frequency effect of the word used in the 
video lecture. In this work, we consider that emotional words can 
improve a learner’s memory better than non-emotional ones; 
hence, we analyzed the effectiveness of emotional words. The 

 

 

Jaechoon Jo, Yeongwook Yang, Gyeongmin Kim and Heuiseok
Lim "A Comparative Analysis of Emotional Words for Learning
Effectiveness in Online Education" In: Proceedings of The 12th
International Conference on Educational Data Mining (EDM
2019), Collin F. Lynch, Agathe Merceron, Michel Desmarais, &
Roger Nkambou (eds.) 2019, pp. 591 - 594

591 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



results indicated that even in the short-term memory judge system, 
learners remember emotional words better than neutral ones. 

The paper is organized as follows: Section 2 presents research 
related to this study; Section 3 describes the short-term memory 
judge system; Section 4 discusses experimental evaluation; and, 
finally, Section 5 provides a conclusion as well as notes on future 
research. 

2. RELATED WORK 

2.1 Learning Judge System 
Online education services are based on video lectures, and various 
studies have been conducted to enhance learning experience in 
self-directed learning environments. Jang (2011) analyzed the 
learning attitudes of e-learning students through 
electroencephalogram (EEG) and provided feedbacks according to 
the learner’s learning attitude. He also examined the correlation 
between the learning attitude and EEG to improve the learning 
efficiency of students. Consequently, distinguishing when to 
concentrate on learning and when not is possible. Another 
limitation is that actual EEG equipment is necessary and is 
influenced by the surrounding environment [5]. Lee (2009) 
developed a platform to gage the response speed to voice and 
visual stimuli, assessed the language performance effectively, and 
applied it to improve learning. The platform concurrently 
measured the speed and accuracy for language processing. Hence, 
speed and accuracy were observed to enhance language learning 
[6]. Kim (2014) analyzed the patterns of thousands of learners 
watching online video lectures and determined the dropout and 
interaction peak. Accordingly, the high dropout rate was noticed 
in videos with long playback time. Hence, video playback time 
can be an important factor affecting the learning outcome [7]. 
Mills (2011) analyzed how mind-wandering occurs during 
learning using an intelligent tutoring system. The result of the 
experiment indicated that an average of 11.5 mind-wandering 
occurred with an interval of 2 min [8]. Given that mind-wandering 
frequently occurs in an online education environment, 
automatically detecting the occurrence of this event is also crucial. 
Various studies and methods have been conducted and proposed 
to enhance learning effectiveness in an online education 
environment. However, they remain remarkably challenging 
because the learning effectiveness can be assessed based only on 
very limited data, that is, the interaction data between the learners 
and computers only. 

2.2 Emotional Words 
Research on the memory between emotional and neutral words 
has been conducted in the field of cognitive psychology. 
Kensinger & Corkin (2003) and Ochsner (2000) reported that 
emotional words are easier to be recalled than neutral words 
[9,10]. Another research was conducted in the field of natural 
language processing to classify whether sentences have a positive 
or negative meaning through emotional words [11]. Esuli and 
Andrea et al. (2007) proposed SentiwordNet to efficiently 
categorize the positive and negative meaning of words [12]. In 
this work, we evaluated the difference of memory retention 
between emotional and neutral words using the short-term 
memory judge system. We also utilized the existing Korean 
Emotional Word Dictionary to distinguish the difference among 
positive, negative, and neutral words [13]. 

3. SHORT-TERM MEMORY JUDGE 
SYSTEM 
The short-term memory judge system can automatically detect 
whether mind-wandering occurs in video lecture-based online 
education. To detect the short-term memory, the system 
determines whether mind-wandering occurs while the learner is 
watching the video lecture. To assess whether mind-wandering 
occurs, we applied the word frequency effect theory of cognitive 
psychology. The word frequency effect indicates the difference in 
cognitive responses between high- and low-frequency words. The 
theory is that a difference in cognitive responses exists between 
the words that people actually know and the words they do not 
recognize. The system judges the short-term memory by 
calculating the learner’s word recognition response through a 
word game. The word game spontaneously generates high-
frequency words of the video lecture viewed by the learner and 
words not set in the video lecture. Moreover, the learner can 
actually see a randomly displayed word from the automatically 
generated word set in the word game and selects the correct 
answer. Figure 1 shows developed word game UI. 

 

 
Figure 1. Word Game UI 

 
The short-term memory judge system is automatically determined 
as Pass or Fail based on the correct word rate and response rate in 
the word game. According to cognitive psychology, the speed of 
recognizing words that people know is between 0.7 and 1.2 s. 
Therefore, the existing cognitive response rate theory was applied 
as a criterion for the detection. Considering that the word game is 
implemented in web environment, 0.3–1.7 s is set as the word 
recognition response criterion, which was added with 0.4–0.5 s 
[14]. 

4. EXPERIMENTAL EVALUATION 
4.1 Dataset 
To verify the idea of this study, data were collected using short-
term memory judge system from 576 students who take the 
university major courses in Korea. The data contain user 
information, video lecture information, frequent words, response 
time, and correctness information. By using the response time and 
correctness rate, we determined whether or not the learner has 
actually watched the video lecture. The number of video lectures 
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used in the system is 77, and the number of words used is 17,592 
(Table 1). We classified the emotional words into positive and 
negative and classified non-emotional words into neutral. These 
date data have a total of 3,158 positive, 3,283 negative, and 
11,151 neutral words [13]. Generally, considering that neutral 
words are more common than emotional ones, the sum of the 
neutral words is much higher than the emotional words in this 
data set. The list of positive, negative, and neutral words is 
presented in Table 2. The total number of the gathered data is 
47,517. 
 
Table 1. Data sets of the positive, negative, and neutral words 
# of data sets # of users # of contents # of words 

47,517 576 77 17,592 
 

Table 2. Example of positive, negative, and neutral words 

Positive Negative Neutral 
Happy 
Thanks 
True 
Joy 
Positive 

Destroy 
Fight 
Difficult 
Lie 
Unhappy 

Office 
Research 
Drama 
Bank 
Apartment 

 

4.2 Analysis & Results 
We have calculated the average response time and correctness of 
each emotional word to analyze the effectiveness of emotional 
words using the short-term memory judge system. High 
correctness value indicates that the learner memorizes the word 
well from the lecture, whereas the low response time denotes that 
the learner rapidly responded to the word. The calculated results 
are presented in Table 3. 

Table 3. Average of correctness and response time per 
emotional word 

 Correctness (%) Response Time 
(ms) 

Positive 0.811 919.7 
Negative 0.688 924.2 
Neutral 0.519 898.3 

 

The interpretation of the calculated results should consider both 
the correctness and time. Correctness is the highest with a positive 
word of 0.811. The negative word has lower correctness than the 
positive word but is better than the neutral word. Meanwhile, the 
neutral word has the lowest score of 0.519. Response time is the 
fastest with the neutral word at 898.3ms and slowest with the 
negative word at 924.2ms. However, it can be interpreted that 
around 900ms are word recognition time according to cognitive 
psychology. 

The analyzed result indicates that emotional words are better 
remembered by learners than non-emotional words. Alternatively, 
constructing video-based education content with emotional words 
can enhance learning effectiveness because it reflects the learner’s 
memory better than that with non-emotional words. 

5. CONCLUSION 
To examine the effectiveness of emotional information of words 
by using the short-term memory judge system, we have analyzed 
the data based on emotional information of words applying the 
data gathered from the system. Finally, we can confirm that 
emotional (positive and negative) words have more influence on 
learners than non-emotional (neutral) words. When we construct 
an educational content based on video lecture through emotional 
words, we conclude that this method can promote considerably 
effective learning. 

Our future work includes constructing a system that introduces 
word emotional information to the short-term memory judge 
system and analyzes the effectiveness of word emotional 
information profoundly through experimentation. 
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ABSTRACT
For many forms of e-learning environments, the system’s
behaviors can be viewed as a sequential decision process
wherein, at each discrete step, the system is responsible for
deciding the next system action when there are multiple ones
available. Each of these system decisions affects the user’s
successive actions and performance and some of them are
more important than others. Thus, this raises an open ques-
tion: how can we identify the critical system interactive de-
cisions that are linked to student learning from a long trajec-
tory of decisions? In this work, we proposed and evaluated
Critical-Reinforcement Learning (Critical-RL), an adversar-
ial deep reinforcement learning (ADRL) based framework to
identify critical decisions and induce compact yet effective
policies. Specifically, it induces a pair of adversarial policies
based upon Deep Q-Network (DQN) with opposite goals:
one is to improve student learning while the other is to hin-
der; critical decisions are identified by comparing the two
adversarial policies and using their corresponding Q-value
differences; finally, a Critical policy is induced by giving op-
timal action on critical decisions but random yet reason-
able decisions on others. We evaluated the effectiveness of
Critical policy against a random yet reasonable (Random)
policy. While no significant difference was found between
the two condition, it is probably because of small sample
sizes. Much to our surprise, we found that students often
experience so-called Critical phase: a consecutive sequence
of critical decisions with the same action. Students were
further divided into High vs. Low based on the number of
Critical phases they experienced and our results showed that
while no significant was found between the two Low groups,
the High Critical group learned significantly more than the
High Random group.

Keywords
Reinforcement Learning, Critical Decision, Deep Q-Network,
Adversarial Reinforcement Learning

1. INTRODUCTION
Intelligent Tutor Systems (ITSs) are a type of highly inter-
active e-learning environment which facilitates learning by
providing contextualized feedback and step-by-step support
to individual students [4, 14]. These step-by-step behaviors
can be viewed as a sequential decision process where at each
step the system chooses an action (e.g. give a hint, show an
example) from a set of options. During tutoring, the system
makes a series of decisions to provide adaptive instructions.
Some of the decisions might be more important and impact-
ful than others. This raises a major open question: How
can we identify the critical system interactive deci-
sions that are linked to student learning especially in
a long trajectory of decisions? For example, in our ITS,
the tutor makes more than 400 sequential decisions during
training.

Reinforcement Learning (RL) offers one of the most promis-
ing approaches to data-driven decision-making applications
and RL algorithms are designed to induce effective policies
that determine the best action for an agent to take in any
given situation so as to maximize some predefined cumula-
tive reward. A number of researchers have studied the appli-
cation of existing RL algorithms to improve the effectiveness
of ITSs [2, 13, 12, 3]. However, relatively little work has been
done to analyze, interpret, and explain RL-induced poli-
cies. While traditional hypothesis-driven, cause-and-effect
approaches offer clear conceptual and causal insights that
can be evaluated and interpreted, RL-induced policies are
often large, cumbersome, and difficult to understand. In
this work we propose to induce compact RL policies that
highlight key or critical decisions by taking advantage of
the structure of the domain and the structure of our in-
duced policies by leveraging the conditional independence
relationships among the state features.

We propose Critical-RL, an adversarial deep reinforcement
learning (ADRL) based framework to induce compact poli-
cies that make critical decisions. By inferring critical deci-
sions we can identify which tutor actions are minimally nec-
essary for the tutoring process to be effective, which holds
great implications for systems research. Additionally, in-
ference of critical relationships is one of the central tasks
of science and it is one of the most challenging topics in
many disciplines, particularly in the areas where controlled
experiments are comparatively expensive or even impossi-
ble. In this work, we propose a general framework that
fully integrates automatic critical inference and standard
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reinforcement learning in an ITS setting. We expect that
our framework can be spread to other similar domains for
related critical tasks.

2. RELATED WORK
2.1 Applying RL to ITSs
Prior work has applied a variety of RL approaches to in-
duce pedagogical policies to improve the effectiveness ITS
[1, 6, 15, 10]. For example, Beck et al. [1] applied tem-
poral difference learning on simulated students to induce a
policy that would minimize student time on task. Results
showed that the policy group indeed spent significantly less
time than the non-policy group. Shen et al. [13] applied
MDP to induce a pedagogical policy aimed at improving
students’ learning performance. Results showed that the
induced policy was significantly more effective than a ran-
dom baseline policy for certain learners. Mandel et al. [6]
applied a POMDP based approach to induce a pedagogical
policy targeted at improving students’ learning gain. The
RL-induced policy was then compared with an expert pol-
icy and a random baseline policy. Results revealed that the
RL-induced policy significantly outperformed the other two.
Wang et al.[15] applied a variety of deep RL approaches on
simulated students to induce pedagogical policies that would
improve students’ normalized learning gain in an educational
game. Simulation results suggested that deep RL policies
were more effective than linear model based RL policies.

To summarize, prior work has shown that RL induced poli-
cies can lead to improved student learning/behavior as com-
pared to baseline policies. However, prior work has mainly
focused on inducing effective policies from pre-collected data
or simulated student, but put relatively less effort to identify
the exact part that makes them effective.

2.2 Deep Reinforcement Learning (DRL)
Recent advance in deep learning has allowed RL to work in
complex interactive environments which was often imprac-
tical in before. Recent work showed that RL can induce
effective policies for a variety of tasks, such as game playing
[8, 9], robotic control [5, 19], recommendation generation
[17, 16] and also ITS control [15, 10]. However, all of the
state-of-art RL algorithms focused on inducing effective poli-
cies. None of them considered interpreting, explaining and
identifying critical decisions from RL induced policies.

2.3 Exploiting Q-value Difference
Some prior work has exploited the Q-value difference be-
tween actions to simplify the decision-making process/problem.
For example, Mitchell et al. [7] relied on the Q-value dif-
ference to select features for RL. They proposed a Q-value
difference based policy evaluation metric, which was then
used to guide feature selection for RL. Zhou et al. [18] re-
lied on Q-value difference to reduce the policy space. More
specifically, they applied weighted decision tree with post-
pruning to extract a compact set of 529 rules from a full set
of 3706 rules. During the extraction, each rule was weighted
by the Q-value difference between two alternative actions
and thus increased the carry-out likelihood of more impor-
tant decisions. Results showed that the full RL policy and
the compact DT policy together were significantly more ef-
fective than a random policy and there is no significantly

difference between the full RL policy and the compact DT
policy.

In sum, prior studies have used Q-value difference to mea-
sure action importance and results suggest that it is an effec-
tive measure. However, prior work used Q-value difference
to reduce the feature space or the policy space, but we used
it to reduce the decision space.

3. METHOD
3.1 Adversarial Reinforcement Learning
Adversarial Reinforcement Learning (ARL) is a category of
RL which can induce a pair of policies for opposite goals.
In our application, an Original Policy was induced using
the original rewards and an Inversed Policy was induced
using the inversed rewards, which is the negative value of
the original rewards. We expect these two policies to have
opposite goals, one to help student learn while the other to
hinder them learn.

3.2 Deep Q-Network (DQN)
Deep Q-Network (DQN) is a RL algorithm that uses a deep
neural network to approximate the Q-value function. The
neural network takes a state as input, which is represented
as a numerical vector, and outputs its estimation of the Q
values for all possible actions. During training, the neural
network is updated recursively following the Bellman equa-
tion shown below until converge.

Qi+1(s, a) = Es′∼ε[r + γmax
a′

Qi(s
′, a′)|s, a] (1)

where γ is a discount factor, ε is the environment and Qi

is the action-value function at the ith iteration. DQN is
a model free approach that it is focused on estimating the
action value functions from the interactions with the envi-
ronment without constructing a model of the environment.
Also, it is an off-policy approach that the new policy is in-
duced based upon the historical data generated by an alter-
native behavior policy.

3.3 Identifying Critical Decision
Once the adversarial policies are induced, critical decisions
are identified following two rules: 1) given the state, the
two policies make opposite decisions and 2) the decision is
important for both policies.

For a given state, rule one is tested first. If the two policies
make the same decisions, it is not critical. Otherwise, rule
two is tested. In order to measure the importance of the
decision for each policy, we calculate the absolute Q-value
difference between the two alternative actions: ∆Q∗(s) =
|Q∗(s, a1) − Q∗(s, a2)|. If this difference is greater than a
threshold, the decision is considered important for the cor-
responding policy. In this paper ,we set the threshold to be
the median Q-value difference for all decisions in our training
data set.

3.4 Critical Policy Induction
In tutoring, our ITS provides students with the same 12
problems in the same order. Among them, the first and the
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eighth problems are fixed to be problem solving where the
students is required to solve all the steps. For the rest 10
problems, the policies decide whether to elicit the next step
from the student or to directly show the student how to solve
the next step.

Thus, we induced 10 pairs of adversarial policies, one for
each problem. Each pair of the adversarial policies con-
sist of two policies: an original policy and an inversed pol-
icy. The original policy was induced using the original re-
wards while the inversed policy was induced using inversed
rewards. Other than the rewards, all other parts of the data
were identical, such as state representation and transition
samples.

In order to find the best policy, for each problem, we im-
plemented two different types of neural network: Recur-
rent Neural Network (RNN) and Long Short Term Mem-
ory (LSTM) to induce the adversarial policies. The policies
were then evaluated using Per decision importance sampling
(PDIS)[11] and the better one was selected. Once the adver-
sarial policies were induced, whether a decision was critical
or not during tutoring was determined following the two
rules mentioned in section 3.3.

Finally, the Critical policy is carried out partially in that
if a decision is critical, it will be carried out; otherwise,
the decision will be made randomly. More specifically, for a
given state, the adversarial policies are queried to determine
whether the decision is critical. If it is, the decision made
by the original policy will be taken; otherwise, a random
decision will be taken.

4. EXPERIMENT SETUP
In order to evaluate the critical-RL induced policy, we con-
ducted a classroom study comparing the Critical policy with
the Random policy. The participants of this study were un-
dergraduate students enrolled in the Discrete Mathematics
class at the Department of Computer Science at NC State
University in 2018 Fall. In this study, all students were re-
quired to complete 4 phases: 1) pre-training, 2) pre-test, 3)
training on Pyrenees tutor, and 4) post-test. Pyrenees tutor
is a web-based ITS for probability, which covers 10 major
principles of probability such as the Complement Theorem
and Bayes’ Rule. During the experiment, all students in
both two conditions studied the same materials, received
the same questions in pre-test, trained on the same tutor,
examined the same questions in post-test. The only differ-
ence was the policies used in the tutor.

In this study, 120 students were randomly assigned to the
Critical condition and the Random condition. Due to prepa-
ration for final exams and the length of the study, 96 student
completed the study. 3 students performed perfectly in the
pre-test were excluded from our subsequent statistical anal-
ysis. The final group sizes were: N = 50 (Critical) and N
= 43 (Random). We performed a Chi-square test of the re-
lationship between students’ condition and their completion
rate and found no significant difference between the condi-
tions: χ2 (1) = 2.55, p = 0.11.

5. RESULTS
Table 1 shows the mean and standard deviation (SD) of the
post-test score, learning gain (LG) and total training time
for the Crucial and Random condition. Contrast comparison
analysis showed no significant difference between the two
conditions on all three measures. Please note that although
the Critical condition appeared to outperform the Random
condition on learning gain (0.05 vs. 0.03), such difference
was not significant (p = 0.50). One of the possible reasons
is that the group size was not large enough to demonstrate
significance. A post hoc power analysis revealed that a total
sample of 1544 students was required to detect significance
at .05 on small effects (d=.14), with 80% power using a
contrast.

Table 1: Critical vs. Random
Measure Critical Random P value

Post 0.71 (0.19) 0.71 (0.20) 0.91
LG 0.05 (0.18) 0.03 (0.14) 0.50
Time 121.6 (37.7) 116.3 (30.47) 0.46

Since the Critical policy was partially carry-out where only
critical decisions were made following the optimal policy, we
conducted an inspection into the relation between the num-
ber of critical decisions made and student learning. Through
analyzing the student-system interactive logs, we found that
critical decisions were always appeared in groups and each
group of consecutive critical decisions had the same action.
This is aligned with existing learning theory that the learn-
ing process is a continuous process. Student can stay in the
same learning state during several steps but this continuous
learning state is hard to be represented by current features.
In other words, in the same learning state, the agent will con-
tinuous giving same actions to the student until he moves
to next learning state. So, we defined Critical Phase as a
period of consecutive critical decisions executions with the
same action according to the Critical policy.

In order to analyze the impact of critical phase, we divided
students into High vs. Low groups by a median split on the
number of critical phases they experienced. For the Random
condition, as the execution of decisions were partially agreed
with the Critical policy, we ignored the actual decision and
only focused on the Critical policy’s decision. Thus, we
had four groups based upon their critical phase number and
policies: High-Random (n=20), Low-Random (n=23), High-
Critical (n=27), Low-Critical (n=23). A two-way ANOVA
analysis using policies {Critical, Random} and critical phase
{High, Low} as two factors and the student’s learning gain
as the dependent measure showed a significant interaction ef-
fect F (1, 89) = 7.163, p = 0.009. Subsequent contrast analy-
sis revealed that the High-Crucial group (M = 0.098, SD =
0.2) significantly outperformed High-Random group (M =
−0.011, SD = 0.16): t(89) = 2.360, p = 0.02. However,
such difference was not significant between the Low-Crucial
group (M = 0.001, SD = 0.13) and Low-Random group
(M = 0.067, SD = 0.12) : t(89) = 1.42, p = 0.16.

In terms of time on task, a two-way ANOVA analysis on
condition and critical phase number showed a main effect
on critical phase number: F (1, 89) = 5.579, p = 0.020 in
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Figure 1: Comparison of Learning Performance

that the High group (M = 127.51, SD = 36.34) spent sig-
nificantly more time on task than the Low group (M =
110.56, SD = 30.51). The results suggest that students ex-
perienced more critical phases are more likely to spend more
time on task.

6. CONCLUSION
In this study, we proposed Critical-RL to identify critical
pedagogical decisions in an ITS. Based on the ADRL frame-
work, we induced a Critical policy which gives optimal ac-
tion on critical decision points but randomly select actions
on others. We empirically compared the Critical policy with
a baseline Random policy in a classroom study for real stu-
dents. Although there’s no significant difference between the
two conditions, we found the existence of Critical phase, a
consecutive sequence of critical decisions with the same ac-
tion. We then divided students into High vs. Low groups
based on the number of Critical phases they experienced.
Results showed that while the two Low groups were not
sensitive to pedagogical policies, the High-Critical group
significantly outperformed the High-Random group. This
suggested that for certain students, the Critical policy is
significantly more effective than the Random policy.

In the future, we plan to analyze the difference between
states in critical and non-critical phase. Through analyzing
the critical state, we hope to align critical decision with ex-
isting learning theory and further generalize our method to
other domain.
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ABSTRACT
This paper deals with adaptive learning technologies that
fit the individual learner’s needs. Thereby, recommender
systems play a key role in supporting the user’s decision
process for an efficient and effective item selection. Activity
data have been collected from students using course mate-
rials available online. The courses provided access to the
course materials via a novel web application. This app also
presented learning recommendations to make the content
selection more efficient and effective. The paper focuses on
the Smart Learning Recommender System which utilizes a
novel knowledge-based filtering approach. The algorithm
transfers multi-contextual activity data into time-dependent
user models. The resulting relevance scores represent the
individual user’s need to learn specific learning objects at a
particular point in time of the course. In comparison to the
evaluation results of other educational recommender systems
on the same datasets, the introduced approach produces the
most precise time-sensitive recommendations.

Keywords
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1. INTRODUCTION & RELATED WORK
Recommender Systems are designed for users who lose track
of the vast quantity of items available and thus need assis-
tance with their item selection [14]. This paper presents a
recommender systems (RSs) for educational closed-corpus
settings, which means that the learning environment adapts
to the learners’ needs within a self-contained course [13].
The user interface offers content recommendations at par-
ticular points in time that fit with the current needs and the
contextual situation of individual course participants. The
most important task of the recommender system is to sup-
port learners in achieving their personal learning goals. An

”appropriate” recommendation in this context aims at mak-
ing learning more efficient and effective by supporting the
content selection process [15].

Most researchers borrow traditional Content-based Filter-
ing and Collaborative Filtering algorithms and, at least par-
tially, adapt them to the domain of Technology Enhanced
Learning instead of directly applying the same approaches
[3]. Bauman and Tuzhilin [1] categorized educational rec-
ommender systems either as ”knowledge enhancing” which
aims at broadening the knowledge to new topics or as ”reme-
dial” which aims at filling identified knowledge gaps of pre-
viously studied items. Closed-course RSs, such as the one
introduced in this work, aim at solving both issues. They as-
sist the learners in reaching their personal or course-specific
goals which require new topics to be learned and the con-
solidation of already acquired knowledge. An exhaustive lit-
erature review on recommender approaches for curriculum
planning and the prediction of appropriate item sequences
in courses is presented in [7].

The remainder of the paper is structured as follows: Section
two introduces the overall Smart Learning Recommender
with the time-dependent learning need and the Top-N scor-
ing, followed by the determination procedure for optimal
factor weights. Section four presents the results of different
evaluations. Finally, this paper ends with a description of
its limitations and a conclusion.

2. SMART LEARNING RECOMMENDER
The Smart Learning Recommender (SLR) presented in this
paper is utilized by the Smart Learning Companion App [8] –
a mobile web application1 that was used by about 600 learn-
ers from different institutions so far (until February 2019).
Thereby, the web app is the only entry point for students
to access courses, learning objects, and lecture dates as well
as to get recommendations for the next best contents to be
learned and triggers the tracking of all relevant user interac-
tions. A course is usually structured in learning units which
themselves contain low-level learning objects (LO) that can
be texts, exercises, videos and so on. The hierarchy however
can have more levels. The content creators and teachers
provide a lot of metadata on each low-level LO based on
the Learning Resource Meta-data Specification (LOM), the

1Smart Learning Companion Application:
https://smartlearning.fokus.fraunhofer.de/

Christopher Krauss, Agathe Merceron and Stefan Arbanowski
"Smart Learning Object Recommendations based on
Time-Dependent Learning Need Models" In: Proceedings of The
12th International Conference on Educational Data Mining
(EDM 2019), Collin F. Lynch, Agathe Merceron, Michel
Desmarais, & Roger Nkambou (eds.) 2019, pp. 599 - 602

599 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



Question and Test Interoperability Specification (QTI) and
the Common Cartridge Specification (CC). Among others,
the metadata include attributes on prerequisite LOs, infor-
mation on the exam relevance of an item, on the typical
learning time and on the learning objectives. Interactions
with all items are stored as Experience API (xAPI) state-
ments.

The educational recommender system aims at identifying
the learning need of a user u for an item i. The learn-
ing need is a score that takes the currently approximated
knowledge and other related properties (time of the lecture,
prerequisites, etc.) as well as the required amount of knowl-
edge into account. The user-item-pair is presented by a rel-
evance score rscoreu,i having the value from 0 to 1, where
0 indicates the lowest relevance and 1 indicates the high-
est possible relevance. The relevance score defines a time
and context dependent value and is expressed as a time de-
pendent function: The relevance function rfu,i(t) of user u
for item i is derived from several sub-functions rfu,i,x(t) of
individual factors x1, ..., xn, as a function of time t, each rep-
resenting another context (cf. [6]). A detailed description
of the factors, including the mathematics, can be found in
[7]. All factors are in the range of [0,1] and represent the
learning need. The considered factors per user, item and
time are:

1. Self-assessments: A student can explicitly define his
/ her knowledge level at particular points in time on a
1 to 5 stars scale

2. Interaction with items: This factor indicates how
much of the available material for a learning object
was accessed by a student

3. Processing time of an item: This factor indicates
how long the student learned a learning object. It is
0 when the student needed exactly the intended time
and between 0 and 1 if he /she needs more or less time
as defined in the metadata

4. Performance in exercises: The percentage of wrong
answered questions represents the relevance of the ex-
ercise factor

5. Fulfilled prerequisites: The more a student learned
the underlying learning objects, the higher the rele-
vance score of the subsequent items

6. Lecture times: The lecture times factor indicates the
timely relevance of a learning object for face-to-face
lectures

7. Item relevance for the course goal: learning ob-
jects that are more relevant for exams show a higher
relevance score than optional contents – in terms of a
constant value defined in the Learning Resource Meta-
data Specification.

8. Collaborative learning need: The relevance func-
tions of similar users on this learning object are taken
into account in order to offset underestimations and
bad learning plannings for the current user.

9. Human memory and forgetting effect: After learn-
ing an object, the gained knowledge will slowly de-
crease over time. After each learning iteration, the
forgetting factor is set to 0 and then slowly increases
again.

For the calculation of recommendations, all single-factor func-
tions are weighted. The weighted average of all factors de-
scribes the total learning need of item i for that user u and
is calculated as

rfu,i(t) =

∑n
x=1(wx ∗ rfu,i,x(t))∑n

x=1 wx
(1)

Here wx is the weight of a single factor x in {x1, ..., xn} and
n is the number of factors (cf. [6]). The overall recommen-
dation engine analyses the current learning need values of
the requesting student for all items in the course. Thereby,
the model of the SLR can be created offline: The relevance
functions are computed at regular intervals by processing
all existing user-item-time-triplets. When a user requests
recommendations, the relevance scores for all items are cal-
culated on demand by considering the current time value
for t. Afterward, the items are sorted by their learning need
value. The result is a Top-N list of items beginning with the
highest relevance scores that represent the most important
learning units or learning objects for the student that needs
to be learned at that time.

3. TIME-DEPENDENT WEIGHTS
In order to evaluate the ideal weights for different factors at
various points in time that will lead to the most appropriate
recommendations, different methods have been analyzed –
from equal weights, over manual adjustments, up to linear
models that calculate appropriate weights per course week.
At the beginning of the development of the Smart Learn-
ing Recommender, the weights were set to a value of 1 in
order to have a starting point from which to present rec-
ommendations to learners. The method that generates the
weights which leads to the highest precision values is real-
ized with the help of an Artificial Neural Network (ANN).
RapidMiner2 is used with a neural network for regression
problems that contains just one hidden layer. One input
vector represents a user–item–time triplet. The input vec-
tor comprises n + 1 input features which are the n factor
relevance values of the SLR (per user, item and time). Ad-
ditionally, the first input value per node is set to a value of
one, which makes it a node-specific bias. The node’s out-
put ok is the predicted value (e.g., the overall learning need)
for the user–item–time triplet. The training values for the
output are 1 if this item i has been accessed by the user u
in the last week before the split t and 0 if not. The node’s
output is calculated as:

ok = ϕ((

n∑
x=1

rscoreu,i,t,x ∗ nwx,k) + bk). (2)

In contrast to the actual intention of an Artificial Neural
Network, where the predicted output values ok are of in-
terest, the approach in this work targets the determined
weights of the trained nodes. Thereby, each of the nodes

contains a weight vector
−−→
NW k. This weight vector has the

same number n + 1 of dimensions as the ANN has as input
features (where the first weight represents the bias bk). The
activation function ϕ is a sigmoid function which is common
for ANNs that aim at solving linear problems. The resulting
weights fit the requirements of the SLR weighting formula
presented in Formula 1. If the hidden layer contains more
than one node, the weights per factor x are averaged accord-
ing to the node’s bias bk which results in a final weight wx

2RapidMiner. See: https://rapidminer.com/
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Figure 1: Comparison of the evaluated approaches including the Smart Learning Recommender (each given in the best setting);
left: Average precision per course week; right: Timeliness values given in minutes per course week.

of factor x:

wx =

∑K
k=1 nwx,k ∗ bk∑K

k=1 bk
. (3)

K is the number of all nodes in the hidden layer. The de-
termined weight wx for each factor is subsequently applied
to the factor weight algorithm of the Smart Learning Rec-
ommender given in Formula 1. An exhaustive description of
the approach is presented in [7]. With a sample of 50 nodes,
the ANN reaches the highest average precision that is 0.4%
better than the precision of other linear models and even
10.9% more precise than the utilization of equal weights.

4. EVALUATION
We compared the Smart Learning Recommender approach
to four other approaches. The first recommender system
is the basic Slope One algorithm as Collaborative Filtering
(CF)-baseline as introduced by Lemire et al. [12]. Lemire
et al. considered this approach only theoretically for Tech-
nology Enhanced Learning (TEL) [11] and it has only been
rarely applied in education contexts as mentioned by Ver-
bert et al. [16]. The second algorithm extends the Slope One
approach with time-weights [5]. This time-based algorithm
is applied in the context of Technology Enhanced Learning
for the first time. Another Item-based Collaborative Filter-
ing approach, the Time-based Recommender Approach for
Lecture Materials (TBRA) [4], is based on time-dependent
item similarities for the recommendation of study materials.
The actual algorithm of presenting similar items has been
adopted in this work to fit the recommender’s goal and the
evaluation approach. The fourth algorithm is, besides the
SLR also a novel one. It generates personalized learning
paths based on the activities of classmates and the previous
interactions of the concerned learner [10]. The next items
on the predicted learning path are, therefore, considered as
Top-N recommendations.

For training and testing, we used activity data that we col-
lected in a particular face-to-face university course with 99
students. The self-designed learning web app gave access to
the course materials which comprised 1,006 learning objects
grouped into 106 learning units (for more details see [8]).
Thereby, a single learning object has a typical learning time

of, at the most, five minutes. A learning unit groups ten
learning object (LO) items on average. We collected 44,421
xAPI statements which represent the item accesses of the
99 students. Instead of a traditional n-fold cross-validation,
we used an extension of the ”increasing time-window” cross-
validation of Campos et al. [2] and a new measurement
value, the timeliness [9], that presents the average timespan
when a recommended relevant item has been accessed after
its recommendation. In contrast to precision and recall, the
timeliness measure must be as low as possible.

In the context of all evaluated recommender systems, the
Smart Learning Recommender performs best on average re-
garding precision. Precision is the fraction of relevant items
among the items of the Top-N list. Figure 1 visualizes the
precision and timeliness of all evaluated approaches – each
given in the best setting for the Top-3 recommendations for
the university course. As seen on the precision chart on a
weekly basis, the SLR (green line) is more scattered than
the Learning Path algorithm that shows a worse but more
stable trend. Regarding timeliness, the Learning Path algo-
rithm still outperforms the Smart Learning Recommender.
However, the Smart Learning Recommender also shows low
timeliness values that are the second best on average which
means that the recommendations are also very time accu-
rate.

In a second experiment, we analyzed the effect of different
learning patterns on the precision: Thereby, more precise
recommendations have been obtained using only the most
33 most active learners, and not – as initially expected –
the most successful learners (who completed the exercises
most successfully on average). The SLR algorithm reaches
a precision of 0.800 on average (compared to the previous
value of 0.583 with all students). Of course, this is only an
artificial setting, because the SLR cannot forecast the most
active users at an early point in time and, more importantly,
the recommender system should provide recommendations
for all users – not only for the most active or most suc-
cessful users. However, this indicates the potential of the
algorithm, as the Smart Learning Recommender aims at rec-
ommending items for all users based on favorable patterns.
These patterns might be, for instance, the activity patterns
of the most active users. We also applied the SLR algorithm
on activity data of two other courses – an optional online-
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only course with 28 learners at another university and an
adult education blended learning course that regularly reoc-
curs with eight craftsmen each. All courses show an effect
of the cold-start phase with lower precision values at the
beginning. On average, the two new courses reach almost
similar high precision values of 0.818 (for the online-only
course) and 0.815 (for the craftsmen’s course). This con-
firms the findings of Verbert et al. [16] that the precision
results of educational recommender systems highly depend
on the dataset selection and, thus, implicitly on the course
setting and the course participants.

5. LIMITATIONS & CONCLUSION
The Smart Learning Recommender introduces a relevance
score that represents a numerical value indicating the need
for learning (implicitly the knowledge gap) of a learner. This
learning need is modeled through different factors and the
resulting recommendations are presented in particular cate-
gories – such as ”Exercises where you received weak results”,
”Things you might have forgotten” or ”Please wrap-up these
learning objects”. The weights of the context factors are not
static. The SLR shows that precision can be increased dra-
matically when modeling context factor weights over time.
Thereby, the weights are determined on a weekly interval to
understand the best composition. A dynamic weighting at
every point in time allows for the generation of the most pre-
cise Top-N list. Due to the evaluation settings, time weights
have only been analyzed at weekly intervals. We determined
the most appropriate weights based on the most recent activ-
ities of the current user. Since the algorithm can also assign
a weight of 0 to the factors, it is not counterproductive to
consider as many factors as possible. However, other factors
that additionally provide useful information about the need
for learning still need to be investigated in the future.

The evaluations have been conducted in a simulation en-
vironment – with historical real-world data but in the ab-
sence of presenting the recommendations of all evaluated al-
gorithms to real-world learners. Thus, the effect of the user
interface and its usability have not been compared for the
different approaches. Since these aspects have a huge im-
pact on general user acceptance and user perception of the
system as a whole, they require further experiments. While
the different algorithms were evaluated with the help of a
novel evaluation framework, the results can only indicate
their various levels of appropriateness for the self-collected
activity data. In general, the approaches should work simi-
larly well on other datasets that offer the same kind of user,
item and activity information. However, this has not yet
been investigated.
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ABSTRACT 

We study content recommendation in an online learning 

environment for mathematics (N=77, 4th-5th grade student). We 

compare an expert teacher’s recommendation to that of a neural 

network algorithm, implementing collaborative filtering ranking. 

We do so using a double-blind randomized controlled experiment. 

We find that when the difficulty of the teacher's sequence of 

recommendation was overall increasing, the teacher was superior 

to the algorithm regarding students’ performance. Taken together, 

our findings indicate on how the algorithm and the expert teacher 

can benefit from each other. 

Keywords 

Content sequencing, neural network, collaborative filtering. 

1. INTRODUCTION 
Designing a learning process that is characterized by increasing 

task difficulty is a desired goal, for keeping learners challenged, 

motivated and engaged. Meeting this goal is also a matter of 

personalization. In some contexts of computer-based learning—

e.g., in intelligent tutoring systems—such a personalization has 

been in practice for many years [1], [2]. In other e-learning settings, 

as well as in traditional classrooms, this is still a great challenge.  

Personalization requires tailoring future content, based on past 

engagement with materials, and based on the difficulty of the 

materials. One of the most common approaches to do so is 

collaborative filtering [3]. We implement a novel adaptation of 

collaborative filtering, by ranking questions in order of their 

subjective "difficulty" to the student, with the latter defined based 

on different aspects of similar students' behavior while engaging 

with past questions. This method has proven superiority over other 

personalization algorithms [4]. Following that, we ask whether an 

expert teacher can do the same. 

In order to conduct a fair comparison between human and computer 

recommendations, we used a double-blind randomized controlled 

study (RCT). RCTs have been underused in educational research 

[5]. Despite a recent boom in its use in computer-based educational 

settings [6], conducting double-blind RCTs in authentic classroom 

environments is still a rarely-met challenge. 

2. METHODS 

2.1 Population 
Participants were 77 students in 4th-5th grades from a public school 

in a metropolitan area in Israel, 2 classes in each grade-level. In 4th-

grade, there were 22 boys, 24 girls; in 5th-grade – 12 boys, 19 girls. 

The expert teacher (third author) teaches mathematics in that 

school. She has 18 years of experience in teaching and about a 

decade of experience in incorporating technology in classroom. She 

is also well-familiar with the learning environment used here. 

2.2 The Learning Environment System 
We used a commercial online learning environment which includes 

game-based applets for K-12 school mathematics (per the request 

of the company, we do not mention its name). Each applet—

consisting of a few problems that each allows multiple attempts—

is aimed at a specific sub-content, usually focusing on a specific 

skill (e.g., identify fractions, make fractions, name fractions, 

compare fractions, etc.). Applets usually require some interaction 

from the learner (e.g., dragging and dropping visual elements) and 

give them feedback upon submitting a solution. We focus on the 

topic of fractions. 

2.3 Data, Definition of Difficulty  
We computed the absolute measure of difficulty for each applet 

based on historic data collected from students using the online 

learning environment. As each student can interact more than once 

with each applet, we used only the first attempt of each student with 

each applet. After preprocessing and cleansing of the data, each 

student-applet interaction contains the following tuple: <student id, 

applet id, score, start time, time spent on applet>. This dataset 

includes 563,735 rows, documenting 15,000 Israeli students who 

used 978 applets during 9/17-6/18. 

For calculating the absolute difficulty of the applets used for our 

intervention, we sorted them based on their average score 

(according to the historic data), and used average time spent as a 

tiebreaker. Based on this ranking, we then divided the applets to 
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three equally-sized groups: levels 1 (easiest) to level 3 (most 

difficult). We did so for each grade-level separately. 

2.4 Research Process 
Data collection was done during December 2018-January 2019. 

2.4.1 Partition to Research Groups 
Partition to Algorithm/Teacher groups was based on a pen-and-

pencil pre-test scores. Students were ordered by their score, and 

were assigned to Algorithm/Teacher groups, alternately. 

2.4.2 Phase I Data Collection (Baseline) 
During phase I, which served as a baseline data collection, all 

students of the same grade-level were assigned with the same set of 

10 applets, in the same order. These applets were chosen by the 

expert teacher, based on the class syllabus. The students worked 

individually at the school's computer lab, with the teacher and part 

of the research team present but not intervening or helping them at 

any point. Students had about 90 minutes to complete the full set, 

and most students indeed did so; those who did not finish on time, 

came to the lab at a later time to complete the set. 

The Teacher and Algorithm groups demonstrated similar behavior 

in Phase I activity, when measuring percentage of problems 

correctly answered on the first complete run of the applet and the 

time spent on the first complete run of the applet (see Table 1). 

Table 1. Comparing the research groups' activity in Phase I 

Grade Group Mean (SD) % 

Corr. Prob. 

Mean (SD) 

Time Spent 
4 Algo. (N=21) 0.76 (0.15) 210.47 (48.60) 

Teacher (N=25) 0.74 (0.20) 235.26 (94.33) 

t-value t(44)=0.45¥ t(37.12)=1.15†¥ 

5 Algo. (N=15) 0.79 (0.22) 149.20 (41.50) 

Teacher (N=16) 0.88 (0.17) 142.36 (33.73) 

t-value t(29)=1.21¥ t(29)=0.51¥ 
† Levene's Test was significant ¥ Not significant 

2.4.3 Constructing the Recommendations 
Log files from Phase I were collected, preprocessed and analyzed. 

The performance of the students in Phase I served as input to the 

algorithm and teacher for selecting the applets for phase II. Both 

the computer and the teacher were given the same pool of pre-

chosen applets (12 for grade 4, 20 for grade 5) from which they 

could assign 10 applets for Phase II. This set was focused on 

continuing learning and practicing fractions. 

Both the teacher and the algorithm produced their 

recommendations for the full cohort of the participants. In order to 

ensure the teacher's "blindness", she was not allowed—at any stage 

of the experiment (in-class activities, report-examining, or 

recommendation-making)—to connect students with their system 

id; she was also not involved in the pre/post-test writing or grading. 

Algorithm's Recommendation. We base our personalized 

recommendation on the NCFR algorithm output (Section 3.2) and 

then adapt it to our Phase II pool of applets. For each student, we 

place a sliding window in the middle of her or his ranking, and 

move this window one applet towards the less/more difficult 

applets, according to the their Phase I performance (one step for 

each SD below/above average of their grade-level, respectively). 

Teacher's Recommendation. The teacher was presented with a 

table summarizing score and time spent for each student on each 

applet. Examining it, she decided to divide the students (in each 

grade-level) to three level-groups (“weak”, “intermediate”, 

“strong”), and to assign a different sequence of 10 applets to each. 

2.4.4 Phase II Data Collection (Intervention) 
Each student was assigned with the applets they were 

recommended with, in accordance with their research group. 

Working conditions for students were the same as in Phase I. 

2.4.5 Post-test 
A few days after Phase II, the students took a pen-and-paper post-

test on the material covered by Phase II. We observed no 

differences in post-test scores between the two groups. In grade 4, 

the average score (on a scale of 0-26) for the Algorithm group was 

18.48 (SD=6.82) and for the Teacher group – 18.28 (SD=6.42), 

with t(44)=0.1, at p=0.92. In grade 5 (on a scale of 0-25), the 

average score for the Algorithm group was 17.00 (SD=7.52) and 

for the Teacher group – 18.06 (SD=6.27), with t(29)=0.43, at 

p=0.67. 

3. RECOMMENDATION ALGORITHM 

3.1 Problem Definition 

In this section we define the relative measure of difficulty used by 

the algorithm to personalize applets to students. We consider an e-

learning setting with a group of students 𝑆 and a set of questions 𝑄. 

The “difficulty ranking problem” includes a target student 𝑠𝑖 ∈ 𝑆, 

and a set of questions 𝑇𝑖 ⊂ 𝑄, for which the algorithm must predict 

a difficulty ranking over 𝑇𝑖. 

The input to the problem includes: (1) A set of students 𝑆 ; (2) A 

set of questions 𝑄 ; (3) For each student 𝑠𝑗 ∈ 𝑆, a partial ranking by 

difficulty over a set of questions 𝐻𝑗 ⊂  𝑄. We assume a personal 

difficulty ranking over questions for each student. We compute the 

personal difficulty ranking by ranking questions according to 

studnets’ first attempt score, breaking ties by time spent. 

For every student 𝑠𝑗 ∈  𝑆 there are two disjoint subsets 𝐻𝑗 , 𝑇𝑗 ⊂  𝑄, 

where the difficulty ranking of 𝑠𝑗  over 𝐻𝑗 is known. For a target 

student 𝑠𝑖 ∈  𝑆, 𝐻𝑖 represents the set of questions that the target 

student 𝑠𝑖 has already answered (i.e., student’s history), while 𝑇𝑖 is 

the set of questions for which a difficulty ranking is needed (i.e., 

target questions). The task is to leverage the known rankings of all 

students 𝑠𝑗  over 𝐻𝑗 in order to compute the required difficulty 

ranking over 𝑇𝑖 for student 𝑠𝑖. 

In order to preserve the temporal order of events, we split the data 

to train and test sets; for each student, we sort his/her interactions 

by start time, then split the sorted interactions by taking the first 

70% of the interactions as the train set and the remaining 30% of 

interactions as the testing test set. 

3.2 Neural Collaborative Filtering Ranking 

Our Neural Collaborative Filtering Ranking (NCFR) approach is a 

hybrid model based on two different fields: collaborative filtering 

and information retrieval. We apply the multi-layer neural network 

representation detailed in [7] to our domain. Figure 1 shows the 

network architecture, where the input is two one-hot encoded 

vectors that index student-question identity. These vectors are fed 

into two separate, fully connected embedding layers that output 

dense vectors which are a latent representation for the student and 

question (similar to latent factor models in collaborative filtering). 

The dense vectors are concatenated and fed into a multi-layer, fully 

connected neural architecture, mapping the latent vectors to a 

difficulty prediction score that depends on both student and 

question. The final output layer is the predicted difficulty score �̂�. 
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The training process of our model, Learning to Rank (LTR), is 

adapted from similar tasks in information retrieval [8]. Our network 

optimizes a LTR pairwise loss function, predicting the subjective 

difficulty of one question over the other for each given student. A 

forward pass of the network computes the probability that question 

𝑞𝑖 is more difficult than question 𝑞𝑗 for student 𝑠 . We separately 

predict the difficulty score �̂�(𝑠, 𝑞𝑖) and �̂�(𝑠, 𝑞𝑗), using the network. 

The probability that question 𝑞𝑖 is harder than question 𝑞𝑗 for 

student 𝑠 is: �̂�(𝑠, 𝑞𝑖 , 𝑞𝑗) = 𝜎 (�̂�(𝑠, 𝑞𝑖) − �̂�(𝑠, 𝑞𝑗)). 

Where 𝜎 is a sigmoid function. For example, when the score for 𝑞𝑗 

and 𝑞𝑖 is the same, the model is fully agnostic (each question is 

harder with probability 0.5). 

The objective function to minimize for NCFR is the binary-cross-

entropy, and its optimization can be done by performing stochastic 

gradient descent (SGD): 

𝐿 = −(𝐼(𝑠, 𝑞𝑖 , 𝑞𝑗)  ∗ log �̂�(𝑠, 𝑞𝑖 , 𝑞𝑗) + (1 − 𝐼(𝑠, 𝑞𝑖 , 𝑞𝑗))

∗ log(1 − �̂�(𝑠, 𝑞𝑖 , 𝑞𝑗)))  

Where 𝐼(𝑠, 𝑞𝑖 , 𝑞𝑗) (i.e., the indicator function) is 1 when question 

𝑞𝑖 is more difficult than question 𝑞𝑗 for student 𝑠, and 0 otherwise. 

We use Copeland’s pairwise aggregation method [9] to convert the 

pairwise difficulty predictions for all students to a ranking over the 

target question set, using the same procedure as Segal et al. [4]. 

 

Figure 1. Neural network architecture (adapted from [7]) 

4. FINDINGS 

4.1 Overall Difficulty in Phase II 
We examine the difficulty of the teacher's assignment to "weak", 

"intermediate" and "strong" group of students based on the data 

collected in Phase I. Calculating averages of the teacher's 

recommended applets for each group, we get an increasing value 

from the "weak" to the "intermediate" and from the "intermediate" 

to the "strong" groups. (As we compare averages of 10 numbers in 

each case, we do not run statistical analyses for significance.) This 

indicates an overall alignment between the teacher's evaluations 

of the applets' difficulty level and their absolute difficulty 

measure. Findings are summarized in Table 2. 

Table 2. Average difficulty of teacher’s group-based sequences 

Grade "Weak" "Intermediate" "Strong" 

4 1.9 2.1 2.4 

5 1.4 1.8 2.5 

We now compare between the teacher's and the algorithm's 

recommendations' difficulty for Phase II. We calculate for each 

student the average of difficulty across their 10 recommended 

applets, then calculate the average across students. Overall, the 

teacher, compared with the algorithm, recommended more 

difficult applets. These differences are statistically significant, 

although denote a small effect size (see Table 3). 

Table 3. Comparing difficulty of recommendations 

Grade Avg. (SD) 

Teacher 

Avg. (SD) 

Algorithm 
Paired 

t-test 

Effect 

Size† 

4 (N=46) 2.17 (0.21) 1.96 (0.11) 9.32*** 0.05 

5 (N=31) 2.02 (0.44) 1.77 (0.18) 3.84** 0.13 
** p<0.01, *** p<0.001, † Cohen's d 

4.2 Difficulty along Phase II 
For comparing between recommended sequences that may differ 

from each other by their applets and/or by the applets’ order, we 

refer to each student’s 10 ordered learning opportunities (LOs). 

This approach has been repeatedly taken in the EDM community. 

We examine the difficulty of the LOs by averaging difficulty for 

each LO separately (across students), comparing between the 

teacher’s and the algorithm’s recommendations. For grade 4, the 

algorithm’s recommendation is characterized by an overall 

increased difficulty level along the LOs, while the teacher’s 

recommendation has an overall opposite trend. This is supported by 

calculations of the linear trend for both vectors, with m=0.13 for 

the algorithm, and m=-0.13 for the teacher. 

For grade 5, we observe an overall increasing trend in both cases; 

linear trend calculations result with m=0.15 and m=0.07 for the 

algorithm and the teacher, respectively. See Figure 2. 

 

 

 

Figure 2. Phase II Recommendations’ difficulty (grade 4 – top, 

grade 5 - bottom), teacher (dark) and algorithm (light) 

We also evaluate level of agreement between the teacher’s and the 

algorithm’s actual recommendations, using AP correlation [10], 

which measures similarity between two different orders; we apply 

this measure for the overlapping of each student’s two 

recommendation sets. For grade 4, the average AP correlation is 

0.42 (SD=0.12, N=46). We also note that the average size of the 

overlapping subset is 6.22 (SD=0.87). For grade 5, the average AP 

correlation is 0.75 (SD=0.22, N=31), with an average overlapping 
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subset size of 5.19 (SD=0.79). These are in line with the 

abovementioned findings: where both recommendations 

demonstrate increasingly difficulty (grade 5), we observe high 

alignment between the recommended sets, while where there are 

opposite trends (grade 4), the level of alignment is much lower. 

4.3 Students’ Actual Behavior 
For each LO, we calculate the average score across each research 

group. As may be seen in Figure 3, in grade 4 there is no clear 

advantage to either the teacher (N=25) or the algorithm (N=21) 

groups, while in grade 5, there is an overall advantage for the 

teacher group (N=16) over the algorithm group (N=15). 

Considering the findings reported in the previous section, we may 

infer that when the algorithm’s and the teacher’s 

recommendations align – the teacher has an advantage over the 

algorithm; in contrary, where the algorithm’s and the teacher’s 

recommendations do not align – neither the teacher nor the 

algorithm demonstrates an advantage over the other. Note that 

due to small sample sizes, we do not run statistical analyses here. 

 

 

Figure 3. Phase II scores for grades 4 (top), 5 (bottom), 

comparing teacher (solid) and algorithm (dashed) groups 

5. DISCUSSION 
In this study, we compared between difficulty level of personalized 

recommendations of an expert teacher and a novel algorithm, in the 

context of elementary school mathematics. We find that the teacher 

had overall recommended more difficult applets than the algorithm. 

However, students in the teacher group did not achieve lower than 

their peers in the algorithm group. Therefore, we may suggest an 

improvement to the algorithm—and o educational software at 

large—i.e., enabling more difficult tasks, in order to maximize 

students’ engagement and learning within their zone of proximal 

development [11]. 

Additionally, we show that the teacher did not always recommend 

an increasingly difficult sequence of applets, while the algorithm—

by its very nature—did so indeed. When such a trend was observed 

in the teacher’s recommendations (grade 5), the teacher 

demonstrated superiority over the algorithm regarding students’ 

performance during intervention (Phase II). This may be a result of 

the teacher considering additional parameters to the ones 

considered by the algorithm; for example, familiarity with the 

topics and with the content of the applets (it is our plan to interview 

the teacher regarding her thought process while personalizing 

applets). This, again, may be taken as a point of improvement to the 

algorithm. On the other hand, this finding highlights the superiority 

of objective, data-based difficulty level of the applets, which 

probably incorporates—"unconsciously", though this term is not 

appropriate for a machine—other applet characteristics, such as 

animation, interactivity, narrative, etc. Taken together, these 

findings indicate on how the algorithm can benefit from the expert 

teacher’s experience, and vice versa. 

The differences in the teacher's recommendations for grade 4 and 5 

could be explained by the different pool sizes from which she could 

choose applets for the intervention phase (the pool for grade 4 was 

smaller than that of grade 5). We plan on replicating this study with 

larger pools, as well as with other grade-levels and more topics. 
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ABSTRACT 

The increasing capabilities of intelligent tutoring systems (ITS) 

that collect student interaction data while learning mathematics at 

the middle school level have enabled researchers in educational 

data mining (EDM) to develop models that predict student career 

choice. Current research focuses on feature selection techniques 

that provide essential features in predicting the target variable. 

However, the factors that affect the prediction performance of an 

algorithm at a sample level could be studied in depth as they 

influence the overall performance of an algorithm. In this study, 

we analyze the influence of various attributes collected by the 

ASSISTments online learning platform on the performance of 

machine learning algorithms in predicting student career fields. 

Initially, we adopt a feature selection technique based on 

correlation, ID-ness, stability, and Missing values to determine 

useful attributes and then apply machine learning algorithms to 

classify student field. The trained models will be used to extract 

the supporting and contradicting attributes that influence the 

prediction performance of an algorithm. The results showed that 

the affect state confused played a significant role in supporting 

Non-STEM prediction, and boredom played a substantial role in 

contradicting STEM predictions while gaming the system 

influences both STEM and Non-STEM predictions. This 

proposed study facilitates researches in the field of EDM with 

factors that influence the development of efficient models in 

predicting STEM and Non-STEM careers.   

Keywords 

STEM Career, Factor Analysis, Feature Selection, Educational 

Data Mining, Affect State. 

1. INTRODUCTION 
Investigating factors that influence student interest in STEM 

fields at middle school level supports researchers to develop 

methods that help to focus on areas that empowers their interest in 

STEM as a career choice. The increasing adaptation of learning 

technologies like Intelligent tutoring services (ITS) and Massive 

open online courses (MOOC) at school level supports researches 

in the field of educational data mining (EDM) to predict student 

career choices based on their interaction [6]. With the 

advancement in the design and capabilities of these systems to 

collect student interaction data, affect data and knowledge data, 

different models were developed to understand and predict factors 

that influence student interest in the STEM field [7].  Social 

cognitive and career theory (SCCT) show evidence that learning 

and knowledge pattern at a younger age influences student STEM 

career [5]. The student interest in mathematics during middle and 

high school years improve their self-efficacy and performance 

which can be an influential factor for STEM major enrollment 

[6,10]. Affective engagement and behavioral models developed 

earlier showed relationship with choice of majors and college 

attendance. 

An earlier study on predicting student career choice from 

interaction and affect state data showed a negligible effect of 

affect state in predicting student career [11]. This study extracts 

features related to knowledge states based on student problem-

solving abilities and skills that were used to predict their fields. 

Although this study discusses the influence of various predictors 

on predicting student knowledge states, their approach is to 

average samples in student log instead of utilizing available 

comprehensive data.  These predictors were then subject to feature 

engineering and feature selection techniques to incorporate them 

in algorithm training and testing that improves prediction 

performance. However, even with the careful selection of 

predictors following reliable methods the performance of trained 

algorithms in predicting new student samples is not high. In our 

study, we incorporate feature engineering and feature selection 

methods to train and test multiple machine learning algorithms 

and analyze predictors that support and contradict prediction 

made by these algorithms. This type of factor analysis will 

develop an understanding of predictors on classification 

algorithms. 

In this study, we adopt a feature selection technique based on 

stability, ID-ness, and correlation (Pearson) measures of attributes 

[4]. We developed three categories (Safe, Moderate and Unsafe) 

of features based on these measures. Features that fall in the safe 

and moderate categories were then used to evaluate different 

machine learning algorithms. The highly supporting and 

contradicting features for each sample in the dataset were 

identified based on neighboring attribute weights that utilizes 

correlation as an identification factor. The local linear relation 

between attributes is highly influential in prediction compared to 

the non-linear global relationship [2]. Analysis of features that 

support and contradict predictions related to STEM, Non-STEM 

predictions facilitates to understand the importance of each 

feature on individual class prediction. 
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2. DATASET 
This study adopts the ASSISTments dataset provided during 

Educational Data Mining (EDM) competition in 2017. 

ASSISTments platform captured US middle school student 

interaction data from 2004 to 2007 school years [7,9]. This 

dataset consists of 1709 student’s system interaction data. These 

students were requested to participate in a survey conducted to 

record post-high school career achievement. This survey provided 

the career choices of 591 students. In this, 466 students belong to 

Non-STEM field, and 125 students belong to STEM field. 

3. METHODOLOGY 
This study mainly focuses on three aspects; initially, we perform 

feature selection then evaluate machine learning models and 

extract predictors that support and contradict predictions. Figure 

1. shows the complete methodology of this study. 

3.1 Feature Selection 
Feature selection technique based on correlation, stability, ID-

ness and missing value of an attribute was adopted [4].  

Correlation in this study considers the linear correlation between 

attribute and target column. The percentage of ID-ness implies the 

percentage of different values present in a column. For instance, 

an attribute with incremental values can have an ID-ness of 100%. 

Stability is the measure of constant values in an attribute. Stability 

is zero if there are no similar values where stability is 100 percent 

of all the values are the same in an attribute. Missing value 

measure is the percentage of values missing in a attribute. We 

categorized these attributes into three categories based on the 

measures mentioned above.  

The unsafe category consists of attributes that have more than 

70% missing values, or the column is an ID column which is 

decided based on the ID-ness value, or stability more significant 

than 90 percent or correlation less than 0.0001 percent or higher 

than 95 percent. This study removes the attributes from the dataset 

as they diminish the performance of algorithms. The moderate 

category consists of attributes that have an ID-ness value of 85%, 

or correlation less than 0.01%, or correlation more significant 

than 40%. Attributes that fall in this category will have minimal 

impact on the predictions. This study included these attributes for 

analysis. This category consists of attributes that have low ID-

ness, the correlation between 0.01 and 40 %, no missing values 

and stability less than 90%. Attributes in this category profoundly 

positively impact prediction. 

3.2 Model Validation 
We adopt the RapidMiner data science platform to train and test 

chosen predictive models [3]. In this study, we evaluated five 

machine learning models that differ based on their principles. We 

chose gradient boosted tree (GBT), Deep neural network (DL), 

AutoMLP(Multilayer perceptron) random forest (RF) and logistic 

regression (LR). We discuss model hyperparameters in below 

subsection. All the algorithms were evaluated using five-fold 

cross-validation method on features selected from the above 

method. 

3.2.1 Models and Hyperparameters 
1. Gradient Boosted Tree: Gradient boosted tree algorithm 

is a sequential learning algorithm in which a subsequent 

tree learns from the weak predictors of a previously 

built tree. The tree adopted in this study has a maximum 

of 20 trees, maximal tree depth of 20 and a learning rate 

of 0.1. 

2. Random Forest: A random forest is an algorithm that 

works based on ensemble learning principle. This 

algorithm can combine different models developed 

based on the bagging method. We obtained optimal 

settings for this algorithm with a maximum of 100 trees 

and a maximal depth of 10 per tree. 

3. Logistic Regression: Logistic regression method is for 

classification problems as it predicts the probability of 

each class and classifies based on the probability values. 

We adopt the standard settings for this model. 

4. AutoMLP: A multilayer perceptron is a feed-forward 

neural network that consists of multiple hidden layers in 

training a neural network. The AutoMLP algorithm can 

set the optimal learning rate and hidden layers during 

training. This algorithm works on stochastic 

optimization and genetic algorithms. This algorithm 

trains small ensemble methods in parallel with different 

hyperparameter settings like hidden units and learning 

rate which are validated to find the best setting. 

5. Deep Neural Network: A deep neural network is an 

algorithm that can work with different activation layers, 

learning rates and optimizers. In this study, we adopt a 

four-layer (input, hidden_1, hidden_2, and output) fully 

connected deep learning network that has 250 hidden 

units in each layer. We set the learning rate at 1.0E-5 

and use rectifier activation function. The regularization 

parameters were auto-adjusted based on the training 

performance of the algorithm 

3.3 Confidence Calculation 
In this study, we adopted a confidence-based method that 

calculates the confidence value ranges between 0 and 1 of student 

prediction based on the actual and predicted label over all their 

samples. We extract the cross-validation predictions of each 

algorithm to calculate the confidence of each student and then 

label their choice of field as STEM or Non-STEM. If the student 

prediction confidence over all samples is greater than 50 percent, 

then the prediction is the same as the actual label. If the student 

prediction confidence is less than 50 percent, then the prediction 

is opposite to the actual label of the student. 

Figure 1: Architectural flow of student career prediction 

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 608

Interaction 
with ASSISTments Log Feature Selection Predictive Models 

-1-~ 
[QuJ 

-) 
Predictions 

Supporting 
r-+ Predictors ....J"""---'~---' 

Cont radicting 
Predictors 



3.4 Predictor Explanation 
This purpose of this study is to understand the factors that 

influence STEM and Non-STEM predictions. For this purpose, 

we utilize "explain predictor" operator from RapidMiner to 

understand the purpose as mentioned above. This method creates 

neighboring data points for each sample in a dataset and 

calculates local correlation values to identify the weights of each 

attribute.  The predictors that support and contradict are classified 

based on the local correlations and weights calculated for each 

attribute for every sample. The words "supporting" and 

"contradicting" refer only to the predicted value which might be a 

accurate or inaccurate prediction. The linear relationship between 

attribute and prediction locally is highly influential; even the 

attributes are nonlinear globally. 

4. RESULTS 

4.1 Cross Validation Performance 
This study adopts a cross-validation method to evaluate five 

machine learning algorithms. Table 1 below shows the cross-

validation performance of predictive models built on safe and 

moderate features categorized by feature selection method. 

Gradient boosted tree that learns sequentially from weak learners 

performed better compared to other complex models like deep 

learning. The performance (AUC, Kappa, and RMSE) of 

predictive models evaluated on with safe and moderate features 

show a slight improvement compared to the performance of 

models based on High impact features. 

Table 1: Cross Validation performance of machine learning 

models on feature selected data with safe and moderate 

features. 

Algorithm AUC Accuracy 

(%) 

Kappa RMSE 

Gradient 

Boosted 

Tree 

0.999 98.83 0.964 0.116+/- 

0.002 

Deep 

Learning 

0.674 58.19 0.150 0.388 +/- 

0.001 

AutoMLP 0.623 79.89 0.048 0.396 +/- 

0.002 

Random 

Forest 

0.635 79.63 0.004 0.398 +/- 

0.000 

Logistic 

Regression 

0.588 79.58 0 0.400 +/- 

0.000 

 

The confusion matrices for STEM and Non-STEM predictions for 

591 students were developed based on a confidence cutoff value 

at 0.5. The below-mentioned table 2 are confusion matrices with 

Recall and precision scores calculated. As observed earlier GBT 

and DL does better with high class precision and recall values 

compared to AutoMLP, RF and LR which were unable to predict 

STEM classes. 

4.2 Explain Predictions 
The main focus of this study is to understand the predictions made 

by the adopted machine learning algorithms. For this purpose, we 

extract all the supporting and contradicting attributes and present 

top six in below Tables 3 and 4 for both accurate and inaccurate 

predictions. These supporting and contradicting algorithms were 

classified based on the local Pearson correlation values obtained 

by calculating the correlation between the attribute and prediction 

made. One should be careful in interpreting support and 

contradict predictors. For instance, a supporting predictor for a 

sample with accurate prediction (Actual Label = Predicted Label) 

means that this predictor acted positively on predicting actual 

label whereas a supporting predictor for inaccurate prediction 

(Actual Label ≠ Predicted Label) means that this predictor acted 

negatively for this prediction. This explanation is similar for 

contradicting predictors, where the contradicting predictor has 

negative effect on accurate predictions and positive effect on 

inaccurate predictions. 

Table 2: The below tables shows the confusion matrices with 

their class recall and precision values for all five machine 

learning algorithms adopted in this study. 

Gradient 

Boosted Tree 

True ST True NS Class 

Precision (%) 

Pred. ST 124 0 100 

Pred. NS 1 466 99.79 

Class Recall 

(%) 

99.20 100  

 

Deep 

Learning 

True ST True NS Class 

Precision (%) 

Pred. ST 95 226 29.60 

Pred. NS 29 240 89.21 

Class Recall 

(%) 

76.61 51.50  

 

Table 3: Supporting and Contradicting predictors related to 

GBT model  

Accurate Prediction Inaccurate Prediction 

Supporting Contradicting Supporting Contradicting 

NumActions sumRight RES_GAMIN

G 

NumActions 

timeGreater10

SecAndNext

ActionRight 

totalFrAttemp

ted 

totalFrAttemp

ted 

timeTaken 

original sumTimePerS

kill 

frPast8Wrong

Count 

sumTimePerS

kill 

frPast5HelpR

equest 

frPast8Wrong

Count 

hintCount sumRight 

correct totalFrSkillO

pportunities 

totalFrSkillO

pportunities 

totalFrPastWr

ongCount 

manywrong RES_GAMIN

G 

totalTimeByP

ercentCorrect

Forskill 

Ln 
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Table 4: Supporting and Contradicting predictors related to 

Deep Learning model  

Accurate Prediction Inaccurate Prediction 

Supporting Contradicting Supporting Contradicting 

totalTimeByP

ercentCorrect

Forskill 

NumActions NumActions timeTaken 

timeTaken totalFrAttemp

ted 

totalFrAttemp

ted 

sumRight 

endsWithScaf

folding 

attemptCount frPast8Wrong

Count 

hintCount 

sumRight totalFrSkillO

pportunities 

frTotalSkillO

pportunitiesS

caffolding 

endsWithScaf

folding 

correct frPast8Wrong

Count 

attemptCount hint 

sumTimePerS

kill 

frTotalSkillO

pportunitiesS

caffolding 

totalFrSkillO

pportunities 

frPast5HelpR

equest 

5. DISCUSSION 
This study explores the importance of feature selection and 

investigates the local linear correlation of predictors on predictions. 

Affect states, knowledge traces, and clickstream records were 

studied extensively to understand their impact on model 

predictions. We observe that the "NumActions" has a high impact 

on overall accurate predictions of GBT but adversely effects Deep 

Learning algorithm, this might be due to the differences in the 

statistical background of algorithms and their regularizations 

functions. Now in case of accurate STEM prediction made by GBT 

model, attempts and clickstream records support the prediction 

whereas affect state boredom and disengaged behavior off-task acts 

negatively on accurate STEM predictions. Affect state confused has 

a high positive influence in predicting Non-STEM class and 

disengaged behavior gaming also supports an accurate prediction of 

this class. Affects states impact on deep learning algorithm seems 

to be negligible as most of the predictions depend on knowledge 

states and clickstream records. Gaming the system has negative 

impact on STEM career prediction and overall predictions. A 

previous study by San Pedro et al. also found this relationship 

between gaming the system and Non-Stem students during their 

major selection [9]. One reason for the pattern mentioned above 

might be related to students turning from boredom to off-task 

which negatively impacts STEM choice [1].  

Previous studies suggested a high correlation between carelessness 

and STEM students [6,8]. In this study, the impact of Average 

carelessness attribute available in this dataset is investigated to 

check the model performance based on its presence and absence. 

With the inclusion of average carelessness, the performance metrics 

of the GBT model increased. From the predictor explanation, we 

observe that the Average carelessness has a high impact on accurate 

STEM predictions. This predictor importance is in line with 

previous studies that proved the importance of carelessness in case 

of students opting STEM fields [6,10]. One limitation of this study 

is related to the use of clickstream data which depends on multiple 

factors like time spent on the system, the number of questions 

answered which may vary when considering different sets of 

students that work on the platform during different periods. 

Another limitation is the generalizability of this study as the dataset 

analyzed is from a single platform (ASSISTments), and the 

predictor relevance are model specific. 

In our future work, we focus on developing feature selection 

techniques based on the useful predictors and develop models that 

efficiently and effectively predict their choice based on their middle 

school year data. 
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ABSTRACT
Massive open on-line courses (MOOCs) often rely on video
as the prime choice of media content. Given their impor-
tance, it is no surprise that many studies that focus on
the way students engage with the videos within the MOOC
emerged in recent years. A methodology is introduced for
the detailed analysis of student video watching patterns and
compared with a prevailing approach. The method encodes
video interaction sequences in a vector space model that de-
fines distance measures between them. A pattern is defined
as a centroid of sequences. We apply the method and con-
duct a study of how students interact with videos by analyz-
ing interaction patterns across different videos. Within this
method, the analysis of the influence of video on patterns is
framed as a classification task based on Support Vector Ma-
chine (SVM), Boosted Tree (GBM) and nearest neighbour
approaches. The results reveal there is a significant differ-
ence in the patterns of interaction across videos. It demon-
strates the usefulness of the methodology in comparison with
a simpler and common approach.

Keywords
MOOC, video watching event traces, analytics, clickstream,
video feature, student traces, video event.

1. INTRODUCTION
In contemporary versions of MOOCs, videos play a signifi-
cant role in the delivery of the course content. Videos often
represent the main channel for teaching in MOOCs, and pos-
sibly for distance learning environments in general (see for
eg.[3, 9]). Video interaction events such as play, pause, seek,
and stop, characterize how a student listened to a video.

While we find a substantial amount of research to determine
factors relating to videos that impact student engagement
and learning efficiency, we still find relatively few studies on
how students interact with videos themselves, beyond sim-
ple aggregations of video watching events. This study adds
a contribution to fill this gap by introducing a methodology

to study such patterns based on sequences, and by apply-
ing it to uncover differences in interaction patterns across
videos. To test this methodology, we investigate whether
videos induce student interaction patterns. In other words,
could a specific video has its own “signature” in terms of
video watching pattern?

2. RELATED WORK
We first review the work that relates to the methods of an-
alyzing student logs of video watching sessions, and in par-
ticular the basics of the feature based video analysis.

2.1 Student interaction patterns
Video interactions can be obtained from logged events, and
we can distinguish between two approaches of analyzing such
logs, namely those that preserve sequential information of
interaction sessions, and those that extract features from
events and eliminate time, or ordering information.

For example, characterizing video interactions in terms of
total watch time, total pause duration, percent completion,
video speed, etc., obliviates the order or the timing of the
corresponding events. The alternative approach is to char-
acterize a video interaction as a sequence of events, or activ-
ities [4, 11]. The former characterization, we refer to as
feature-based, retains numeric features or Boolean factors
that can be used to predict variables of interest such as en-
gagement, learning style, etc. In the later characterization,
sequence-based, interactions are time-ordered sequences be-
tween which we can measure distances. Our approach falls
into this second category and will be exposed later.

An instance of the feature-based approach that extracts in-
formation from video interaction sessions is the highly cited
study of Guo et al. [5]. Their study is conducted over a
very large sample of MOOCS and student sessions. They
found that multiple factors associated with videos can affect
student engagement, as measured by the length of watching
time and the students’ willingness to complete an assessment
activity.

Another interesting finding of Guo et al. [5] is that tutorials
are often watched multiple times and for longer periods than
lectures. This finding hints that some videos can induce a
watching pattern.

In a similar vein, Bhat et al. [2] found that slight changes in
how the teacher is depicted in a video can influence engage-
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ment in terms of the proportion of video watched, which is
another instance of a feature-based analysis.

Moving on to the sequence-based interaction analysis, the
Sinha et al. [11] study is particularly relevant and original.
Instead of using raw events such as pause and play, they
also look at pairs and n-tuples of events. They develop an
n-gram based encoding of video watching events and use sub-
sequences of events in addition to individual events. They
attempt to use levels of n-gram interaction and predict en-
gagement, identify arousal states, and likeliness of dropout.
Their approach reaches a good level of prediction accuracy
with a Kappa score that ranges between 0.5 and 0.9 for the
different predictions. A similar approach has also been ap-
plied to problem solving student log data [10].

Other instances of sequence-based interaction analysis have
been conducted over data from student usage logs of differ-
ent learning applications [4, 7, 6]. These approaches use a
distance measure, generally the minimum edit distance, or
Levenshtein distance, to cluster sessions. The sequences of
events are transformed into sessions of activities represented
by vectors. Each unit of the vector represents a time dura-
tion and corresponds to an activity. The clustering of such
vectors yields a synthetic view of the different types of ses-
sions.

The current approach is inspired from the sequence-based
interaction approaches and uses a distance measure between
watching sessions. However, the similarity among sessions is
not based on the Levenshtein distance, or edit-distance. In-
stead, it defines a vector space model. Furthermore, a class
label is represented by a point in that space corresponding
to the prototypical sequence of the class label. We introduce
later the means by which a prototypical sequence of interac-
tions can be defined and demonstrate how it can identify the
watching pattern of each specific video. Before, we describe
the basics of the feature based video encoding.

2.2 Feature based video encoding
Our approach is compared to the feature based encoding
approach. As mentioned, this is a common approach to de-
tect unique of patterns and predict factors of interest such
as student engagement level, in-video dropout, and course
completion or dropout [11]. Below is a summary of the six
video watching features we track.

1. Video length: Student interaction can be affected by
the length of the video. Some studies have shown that
shorter videos are much more engaging [5], thus one of
the characteristics of student video interaction is the
length of the video.

2. Length of time that student played the video:
This is the total amount of time that the student play
a video, including if the student plays the same section
of the video more than once. In general, this feature is
expressed as a percentage of video play time compared
to the video length.

3. Number of times that the student paused and
where the student paused in the video: Frequent
or long pauses may reveal aspects of a video, such as

its level of difficulty, as has been found in some studies
[8].

4. Number of times that the student seeks the
video backward: The backward seeks for a student
show how replaying some part of a video is important
or the importance of those video sections in the process
of student learning.

5. Number of times that the student seeks video
forward: The forward seek indicates the level of dis-
engagement of the student by skipping sections of the
video. For Li et al. [8] either infrequent watching or
skipping large sections of the video suggested that the
video was perceived to be of a higher level of difficulty.

6. Number of times the student stopped the video:
In general, the stop event occurs at the end of the video
though the student can stop the video at any time.

3. METHODOLOGY TO ENCODE AND
CLASSIFY VIDEO INTERACTIONS

In this section, we introduce the method used to encode and
classify video interactions that allows a comparison of en-
coded sequences in terms of distance. Akin to other studies
[1, 11, 4], this distance-based approach lends itself to clus-
tering of sequences, but our aim differs from these studies
in that we wish to use a labelled data approach. In this
study, we will use the videos as the target labels of interest
to demonstrate the methodology. The proposed encoding al-
lows a characterization of a video based on a set of instances
of watching interaction sequences.

3.1 Video interaction encoding
The general principle is to characterize the video by a pro-
totypical representation, which we will name the video cen-
troid, and by which a distance from a student’s video in-
teraction sequence can be computed. This will allow us to
compute a distance from a student interaction sequence to
each of the different video.

In order to achieve such representation, we expand the origi-
nal sequence of single events by using a vector representation
of events. An event is defined as a vector of 5 types of events.
For example, a sequence of four events,
s = {(play)1, (play)2, (pause)3, (stop)4}
out of a set of six event types that also includes seek for-
ward/backward events, is represented as:

s = [e1, e2, e3, e4] =


play play pause stop

play 1 1 0 0
pause 0 0 1 0

seek backward 0 0 0 0
seek forward 0 0 0 0

stop 0 0 0 1


Now, assuming we have a set of n sequences, s, where each
sequence is composed of m events (|s| = n and |s| = m), we
define the centroid of this set as s = [e1, e2, ..., em] where ei

is defined as

ei =


∑n

j=1 ei,1,j/n
...∑n

j=1 ei,5,j/n
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Figure 1: Representation student i’s interaction with a video
of length of n seconds
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A more complex example of a student i sequence of interac-
tion with a video of length n seconds can be represented as
in figure 1. In this example, the student uses seek actions to
navigate, and therefore some parts of the sequence contain
more than a single play event at a given time.

3.2 Centroid based classification
The centroid of a set of sequences is defined as a prototypical
sequence and represents a class. In the experiment below,
this set will be the sequences of interactions of a video. Each
event of that class sequence contains averages of the 5 types
of events. This allows to define the distance between an
individual sequence, s, and a prototypical sequence, s, as
the Euclidean (Frobenius) norm of the difference between
the two matrices: ‖ s − s ‖, since both s and s can be
considered as matrices.

To determine the extent to which the prototypical sequence
of each video is representative and discriminating, we can
use SVM, Boosted Tree and a nearest-neighbour approach
to classify sequences on the four same length videos, as ex-
plained below.

4. EXPERIMENTS
We apply the methodology described in the last section on
the question of whether videos induce different patterns of
interaction. The question is framed as a classification task:
given a set of interaction sequences of a video, determine the
corresponding video.

Our study uses the traces of an online course of McGill Uni-
versity in Montreal in the edX platform that had a substan-
tial number of registered students (Table 1). The course
Body101x was given by Professor Ian Shrier in the autumn
2015 and winter 2016. We have access to the traces of both
sessions.

Session autumn 2015
Nb. Students 30,640
Nb. videos 138 + 1 live
Nb. Students honor 10,424
Nb. Students passed 970

Table 1: Course and video information

While the whole course contains 139 videos, we retain 4 sets
of 4 videos of them for this study, based on the criteria that
in each set the duration of videos are the same (within 8 to
10 minutes). The choice of using a subset of same duration
is meant to avoid a bias due to duration: since video dura-
tion can induce specific patterns and since duration can vary
across the videos, selection of same duration videos avoids
this potential bias.

For the purpose of comparing the proposed sequence-based
approach with the simpler feature-based approach, we repli-
cate the classification task using feature-based approach (sec-
tion 3.2). The features are represented as a vector contain-
ing the mean proportion of each event: For each video, the
events proportions of pause, play, etc., are computed. Clas-
sification of a given interaction sequence into one of the
4 videos is done using SVM, Booted Tree and a nearest-
neighbours approaches, akin to the sequence approach.

5. RESULTS
The results of the classification are shown in table 2. The
methodology we used is compared with the features-based
approach described above. The results show that the sequence-
based approach is substantially better than the feature-based
for classifying videos. They suggest that the sequence-based
method of analyzing video traces yields more precise repre-
sentations of interaction patterns than the feature-based, at
least when applied to the task of characterizing interactions
with different videos. This is demonstrated by a classifica-
tion task, where video interactions are encoded in a vector
space model and a given video is classified by SVM, Booted
Tree and a nearest-neighbour approaches, where centroids
represent the classes, namely the videos.

6. CONCLUSION
The results show that the sequence-based method has the
advantage of providing a more precise encoding of a set of
individual student interactions into a“pattern”than the sim-
pler aggregation of feature variables that is often used in
studying student interaction traces with videos, or student
traces in general. It allows the definition of labeled clus-
tered, the video styles in our case, that contrasts with stan-
dard unlabeled clustering which requires the often difficult
interpretation of the clusters.

7. LIMITATIONS
The conclusion that videos induce different interaction pat-
terns among students is limited to a single course. While
the number of videos in this course is substantial and the
MOOC attracted a large number of students over two years,
we cannot rule out that other factors than videos induced
the difference in interaction patterns. However, we did rule
out the possibility that this is linked to a presenter biased, by

613 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

I I I I I I I I I I I I 



Classifier : SVM Boosted Tree Nearest Neighbour
Approach: Sequence Feature Sequence Feature Sequence Feature

Accuracy 0.45 0.30 0.43 0.41 0.39 0.25
Balanced Acc. 0.61 0.51 0.62 0.60 0.57 0.50
Precision 0.55 0.34 0.46 0.48 0.44 0.06
Recall 0.43 0.21 0.64 0.40 0.36 0.25
F1 0.44 0.27 0.45 0.42 0.34 0.10
Kappa 0.23 0.02 0.23 0.18 0.13 −0.02

Table 2: Accuracy of tenfold cross validation runs of four videos of same length using feature-based approach and the proposed
sequence-based method.

running the classification task over presenters, and the find-
ing that the predictions are substantially lower than for the
videos. Nevertheless, we did not go over all other possible
covariates that could induce a bias.

To a lesser extent, the demonstration that the sequence-
based method of characterizing interactions is more precise
than the feature-based is also limited to the sample of this
study. However, it is harder to find a reasonable explanation
that a covariate is responsible for the higher accuracy of the
sequence-based approach. We therefore consider this finding
more reliable, albeit still requiring further investigation to
bring greater confidence in the findings.
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ABSTRACT
Automated learning systems allow educators to scale up
their efficacy, while personalized systems retain the ability
to customize to the individual student. A core issue in devel-
oping such adaptive learning systems is to understand how
different items (e.g., math exercises) relate to one another,
and to exploit this understanding to predict performance on
an item. Data-driven approaches aim to discover latent con-
cepts through embeddings that predict similarity between
items, typically using only performance data or item data,
but not both. While these embeddings are meant to uncover
latent concepts (e.g., associativity in mathematics or chem-
istry), they are better construed as representing topics that
reflect the similarity structure in performance or item fea-
tures. One major difficulty is that embedded concepts may
differ only in presentation and not in substance. For exam-
ple, when learning about numbers, young children struggle
with different representational formats (e.g., finger counts,
Hindu-Arabic numeral) despite the underlying concept be-
ing the same (e.g., “3”). By incorporating item informa-
tion that allows structured similarity comparison between an
item’s content and representational format, we can begin to
parse out what aspects lead to behavioral differences. Here
we develop a deep learning framework for learning concept
embeddings that integrates behavioral and item-features to
better factorize embeddings into content and presentation.
This allows us to fully represent the complexity of the items
space, while still extracting scientifically-useful results from
the analysis.

Keywords
education testing, item similarity, deep learning, concept
discovery

1. INTRODUCTION
Personalized learning systems use student performance to
assess their current knowledge in order to present appropri-

ate questions; understanding item similarity helps in this in-
ference process [6]. When the goal is to predict performance,
this similarity measure should most likely correspond to the
abilities or skills the items are meant to test (e.g., whether
a student knows multiplication or not). Data-driven dis-
covery methods for similarity are needed for larger sets of
items [1]. There are many ways to measure similarity [6],
however all require that items be represented in the same
feature space. This means that one of the most important
decisions in computing similarity is the choice of input data,
because it determines the meaning of the discovered simi-
larity [7]. Having a rich input feature space which correctly
corresponds with the intended application maximizes dis-
covery of relevant relationships. For instance, if a user can
struggle with either an item’s content or presentation, then
features relevant for both are necessary to determine which
impacts performance.

Importantly, raw features can be projected into a latent or
embedded representational space. This is the common ap-
proach for topic modeling in text analysis [3], which finds la-
tent ‘topic’ representations for documents and words. Typ-
ically these embeddings are discovered using either perfor-
mance or item data, but not both. Using both types of data
appropriately is challenging because the method of discov-
ering the embeddings must respect the structural relation-
ship between item features and performance data, and the
structure in the item features themselves. To understand
the similarity in educational concepts, we want to represent
item similarity in terms of how the item features interact
with performance data. This is because educational con-
cepts refer to not just intrinsic aspects of the item, but the
way that different learners interact with and represent them.

An example that illustrates the difficulty of discovering such
embeddings in education is in number representations. Adults
can easily switch between various representational formats
of numbers (e.g., Hindu-Arabic numerals to mathematical
concepts, finger counts to roman numerals, etc) to make as-
sessments [8]. By contrast, young children struggle with
some representational formats, which can greatly impact
their ability to perform on an otherwise simple problem.
This is similar to creating representations that respect the
’style vs. content’ distinction [9], in that the latent represen-
tation must correspond to the structure that is hypothesized
in the data.
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The difficulties in estimating similarity are partly due to
the complexity of item features. We demonstrate this using
Mathemarmite (mathemarmite.lu), an educational game de-
signed to teach children numeracy. Mathemarmite requires
children to appropriately count using different representa-
tions (e.g., digits, fingers) (see figure 1). Each item re-
quires selecting the right number of each ingredient to mix
together, with the ingredient count represented in various
ways. Trials are structured hierarchically, as a single“recipe”
can include multiple representations at once with varying
count. In other words, each item can have multiple “sub-
items” that must be completed in any order for successful
item completion. This produces an added complexity where
any method we develop must deal with both variable num-
ber of features and permutation invariance [10]; the order of
the items completed is arbitrary.

Figure 1: A standard trial in the educational
game Mathemarmite. Children change the visuals
of the monster (on the right) by correctly follow-
ing recipes on the scroll. Ingredients from the shelf
can be placed in the cauldron, with correct number
of each ingredient shown on the recipe using vari-
ous numeric representations (here tick marks and a
die). Item features include the number of lines, line
representation, and number of ingredients per line.
Mathemarmite uses an adaptive difficulty system, to
keep users engaged at their skill level.

Here we develop a deep learning approach towards discover-
ing similarity in Mathemarmite. Our approach is similar to
partial least squares [2], in that we find a directed latent
space representation where item similarity is constrained
based on similar performance. It is also similar to work
by [11], who develop a dynamic key-value memory network
(DKVMN) which learns a concept embedding for items, and
models an evolving knowledge-state of a learner. A similar
memory-augmented neural network approach in educational
systems was used by [4]. These approaches use long short-
term memory (LSTM) networks to compress a user’s history,
along with attention-based mechanisms to compute similar-
ity among items. We limit ourselves to a non-dynamic sys-
tem, given the data size we are working with. Our approach
focuses on user-independent concept space (see figure 2), at-
tempting to find a similarity score across users.

Figure 2: Item features vj and vi are used to predict
performance on item j by embedding them in a sim-
ilarity space C. The similarity score cij is used along
with performance on problem i to predict problem
j. This constrains the similarity space to finding
scores that are similar in terms of their impact on
performance.

2. METHODS
2.1 Datasets
We present results using one simulated dataset and one col-
lected educational game dataset (i.e., Mathemarmite). The
Mathemarmite dataset is based on 4961 trials from 140 users
(after cleaning to remove users with less than 5 trials and
users who are not in the target demographic i.e., remove
adults). The simulated dataset is constructed to mimic the
structure of the Mathemarmite dataset, based on the as-
sumptions of the similarity network (e.g., figure 2). That
is, we generate 5 latent “concepts”, represented as 5 Gaus-
sian spheres in concept space (each 5d), and sample item
concepts from them. Items are then transformed to produce
observed features using simple random linear projection ma-
trices, and then these latent concepts determine performance
based on a cosine similarity between the concept latent space
and the item’s concept space score, where the latent spaces
are weighted based on user performance. If a user is good
at a concept, and there is high overlap between that con-
cept and the item’s latent score, then the user has a high
performance. We generate 5000 samples from this dataset
for 5 users each (25000 items) for training. We also compare
training performance on one user versus on all users, refer-
ring to them as “Multi user simulated data” and “Single user
simulated data”.

2.2 Targeted similarity network
2.2.1 Network Architecture

Here we develop a deep learning framework for learning
concept embeddings that integrates behavioral and item-
features (see figure 3). We construct a targeted similarity
network that learns an embedded representation for simi-
larity comparison, based on item performance. We attempt
to learn a similarity space for item features vi by learning
a predictive model p(ri|vi, vj , rj) = σ(cij × rj), that is we
want to predict the performance of problem i from problem
j and the similarity between the two (where σ is a sigmoid
function).

Categorical features are embedded into a linear space, using
a learned embedding matrix E1. We then employ a deep
set architecture to deal with permutation invariance in the
subproblems. Consider an item that involves a series of sub-
problems to be solved, each of which can be solved in any
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Figure 3: Top: Network feature embedding compo-
nent, where embedded features are then passed into
the main network. Features are processed through
these steps, separating line features to deal with per-
mutation invariance, and then concatenated with
side features. Bottom: Main network embedding,
where features are embedded into a similarity space
and similarity scores between all items are computed
for prediction.

order. We can then consider the problem P to be com-
posed of subproblems pk, and side features s. Therefore:
Pi = {p1, p2, . . . , pm, s}, where the indices k of the subprob-
lems may be swapped, and m is variable across problems
(i.e., the number of sub-problems can vary, such that Pi

might include only a single subproblem). Each subproblem
has an associated feature vector of length l. As mentioned
above, each subproblem has one categorical feature labeled
ak, we embed with the same matrix (note pk = [ak, zk] with
non-categorical zk features). To model the permutation in-
variance, we use sum-decomposition via latent space as in
[10], to produce a single vector per problem that represents
the combined influence of all subproblems.

Each problem also has a vector of side features, which in-
cludes a feature coding the number of subproblems. The
decomposed subproblems are then concatenated with the
side features to produce an overall item feature set, which
we label xi for problem i. We can describe this initial fea-
ture embedding process with the set of functions (see figure
3):

âk = ET
1 ak for each ak in Pi (1)

vi = σ(summ(ET
2 P̂i)) (2)

xi = [vi, si] (3)

where âk are the embedded categorical features for each sub-
problem and E2 is the linear weights for the sum-decomposition
(size l by e2 latent space). The sum is down the same di-
mension as the stacked feature vectors, such that vi is length
e2. Then we compute item similarity by projecting the em-
bedded feature matrix X to the similarity space S, and take
the cosine similarity of S with itself: Item performance is
them predicted off of the similarity score and other item’s
performance (represented -1 or 1 for incorrect, correct), and
passed through a sigmoid function. Items with high simi-
larity are then predicted to have similar performance, while
those with low similarity are not. Since our interest is in

Table 1: Final AUC Test Scores
Model Dataset AUC Score

Network Single-user sim ∼ 0.999
Network Multi-user sim 0.998
Network Mathemarmite 0.518

Subject average Mathemarmite 0.762
Item average Mathemarmite 0.541

the similarity space itself, we allow all items in a batch to
predict the performance of all other items, by adding their
prediction.

S = σ(WTX) (4)

C = sim(S) (5)

R̂ = CR (6)

Where R is a batch-size square matrix of the response vec-
tor copied down the rows. sim(S) computes the similarity
score of all items using positive cosine similarity, sim(s) =

relu(ŜŜT ) where Ŝ = S
||S|| . This allows C to take on the in-

terpretation of item by item similarity matrix where Cji (jth
row and ith column) being the i → j similarity for predic-
tion. The final prediction is then made by summing across
R̂ column space (ignoring the diagonal i → i similarity),

that is
∑

i R̂ji to produce a vector of predicted j responses
when passed through a final sigmoid output.

3. RESULTS
All network experiments are coded using Pytorch. Networks
are trained using Binary Cross Entropy loss. Hyperparam-
eter selection is done via cross-validated AUC scores on 100
runs, finding an embedded similarity space of 7 for Mathe-
marmite and 5 for both simulated datasets. We then train
these networks on 500 runs (epochs) with those parameters
using a 20% train-validation split (split trials selected at
random), showing both train and validation AUC scores in
figure 4.

We also compared against two baseline models: predicting
performance off of each subject’s average performance, and
predicting performance off of each items’s average perfor-
mance (leaving out the given trial in both cases). Final
AUC test scores are shown in table 1.

Note that AUC of 0.5 is by chance with 1 being perfect,
so the Mathemarmite dataset is just above chance perfor-
mance.

3.1 Visualization
The significant value of this network is in being able to con-
struct a similarity space to compare the items, and then
interpret the resulting space. To visualize the space, we use
t-SNE [5], which allows us to project the similarity weights of
items down to a 2D space for visualizing clusters. As shown
in figure 5, we are able to reconstruct our latent concept
space in the simulated dataset using the network (single-
user). Similar projection exists for multi-user dataset.
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Figure 4: AUC scores across training epochs. Black
line indicates chance performance, while dashed line
is baseline prediction in the Mathemarmite dataset
(average subject performance).

Figure 5: Recovered latent spaces in simulated data
(single user). Colors correspond to arbitrary latent
concept.

While we do not have ground truth for the Mathemarmite
dataset, we can still perform the same visualization. How-
ever, given our final performance score, we cannot directly
interpret the resulting space, and it is therefore not a mean-
ingful latent concept space.

4. CONCLUSION
In this paper we developed a novel network for learning a
similarity space for educational test data, and applied it to
simulated and real data. Given that the performance on the
simulated dataset is high, the network is able to reconstruct
the latent space of items appropriately, given the assump-
tions of the underlying data generative process. However,
the network does not perform well on the collected dataset.
Given that we can predict line performance using a stan-
dard logistic regression model (AUC at ∼ 0.65, where line
features predict line performance), item features are infor-
mative of line performance, and therefore item performance
(recall that items are made of multiple lines). A possible
issue with the Mathemarmite dataset is that we intermix
different users, with high variability across users. Given the
adaptive algorithm that underlies Mathemarmite, only play-
ers with higher performances will attempt otherwise harder
problems, making it more difficult to separate user and item
relations.

An important limitation of our current model is it does not
incorporate individual user differences in terms of the found
similarity space, therefore it cannot account for changes in
a user performance as well (i.e., due to learning); our net-
work cannot learn what it cannot represent. An alternative
is to incorporate user-level features, and structure the net-
work in a bilinear fashion, much like standard item response
theory. In other words, expert users likely have a different
concept space than novice users. Future work involves de-
veloping a network that instead allows multiple similarity
spaces across users. Such additional complexity should cap-
ture the underlying structure of the Mathemarmite dataset
and lead to insights on number representational space.
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ABSTRACT 

In this paper, we propose and evaluate a decision support system 

(DSS) to predict the topic of discussion forum posts among 

categories: Social, Concept, Assignment, and Others, in Massive 

Open Online Courses (MOOCs). The DSS uses two supervised 

machine learning (ML) models- Logistic Regression and 

Multinomial Naïve Bayes to output: two most-likely categories 

with associated prediction probabilities, and a surety indicator 

(High, Medium, or Low) of prediction. We evaluated the DSS on 

manually-labelled discussion posts from two programming related 

MOOCs offered on different platforms and the ML models being 

trained on the same and different course. Our results indicate that: 

a) the prediction performance of DSS is better when trained on 

labelled data from the same course, b) when trained on data from 

another course, the DSS performs better if training data is sampled 

to reduce the bias in distribution of categories, and c) providing the 

two most-likely categories is helpful for indicating the smaller 

categories that are usually difficult to predict by ML models. This 

DSS can help instructional teams to better manage the MOOC 

discussion forum and learners to easily navigate and find relevant 

posts.   

Keywords 

MOOC Discussion Forum, Text Classification, Machine Learning, 

Decision Support System, Logistic Regression, Naïve Bayes 

1. INTRODUCTION 
Discussion forums are the primary medium of social interaction in 

MOOCs and have been found to help improve learners’ 

understanding of course material as well as provide a community 

learning experience in an online environment [1]. Involvement of 

instructor and teaching assistants can encourage learner 

participation and improve quality of discussion [2]. However, 

managing the discussion forum of a large MOOC can be 

challenging for the instructional team due to large number of 

participants and multiple ongoing threads. Similarly, for learners, it 

can be difficult to navigate through and find relevant posts. A DSS 

that can organize the discussion forum posts topic-wise and 

highlight posts that require attention can be very helpful.  

Some MOOC platforms, such as EdX, ask users to input the topic 

of discussion by selecting from a predefined list of topics when 

creating a discussion post [4], but this approach relies on users to 

correctly input the topic and having an exhaustive list of predefined 

topics ready. Earlier studies have examined various approaches for 

addressing the issue of unorganized MOOC discussion forums [3], 

such as: (a) classifying content related discussion forum posts using 

machine learning for models trained on same course and different 

course [5]–[8] (b) identifying user posts that need instructor 

attention using supervised machine learning models [1] [9], (c) 

analyzing discussion posts using topic modelling [10], and (d) 

identifying question related threads and their potential answers in 

discussion forum [11].  

Previous studies have used different levels of categorization of 

MOOC discussion posts, such as, “content-related” and “non-

content related” [7], relatively broader categories such as “Course 

material”, “Course Logistics”, and “General (all other types)” [10], 

or more specific set of categories such as “Content”, “Other 

Coursework”, “Social/affective”, “Technology”, “Policies” and 

“Other” [12]. There are various advantages and challenges 

associated with very broad or very specific categories of discussion 

posts in terms of informativeness and prediction capability of 

machine learning (ML) models. While very broad categories can be 

easily predicted by ML models, there can be multiple sub-

categories within each of the broad category. On the other hand, 

very specific categories are more informative, but predicting them 

accurately using ML can be challenging due to issues such as 

imbalanced data distribution among categories and very few 

training cases of smaller categories. Depending on the purpose of 

classification and availability of training data, an optimum set of 

categories should be determined. 

2. PROPOSED SYSTEM 
The DSS combines the prediction outputs of two classical ML 

models- Multinomial Naive Bayes (MNB) [13] and Logistic 

Regression (LR) [14] to predict the category of discussion based on 

the first post of a discussion thread, as shown in Figure 1. 

 
Figure 1: Schematic diagram of proposed DSS 

We selected these two ML models as they both have been widely 

used for text classification, are scalable, and output the probability 
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of prediction along with the predicted category- which is an 

important component of the proposed DSS, that has been similarly 

used in healthcare and other domains [15], [16], [17]. The 

prediction probability is informative to the end-user as it indicates 

the confidence in predictions. The DSS prediction probability- 

Prob_DSS(Category) for each category is derived by averaging its 

prediction probabilities outputted by the LR and MNB models. The 

DSS outputs two most-likely categories along with their 

corresponding Prob_DSS(Category) based on largest and second 

largest Prob_DSS(Category) values.  

The DSS also outputs a model surety indicator- DSS_Model_Surety 

that can assume values High, Medium, and Low based on following 

conditions: a) if predictions of LR and MNB do not agree, then 

Low, b) if MNB and LR predictions agree and Prob_DSS_Max (i.e., 

maximum Prob_DSS(Category) among all categories) < 0.5,  then 

Medium, and c)  if MNB and LR predictions agree and 

Prob_DSS_Max >=0.5, then High. The threshold for 

Prob_DSS_Max was set to 0.5 as it meant that both LR and MNB 

predicted that category with relatively high confidence. This 

threshold can be changed depending on the number of categories 

and objective of DSS. As shown in Figure 1, the DSS uses a 

strategy for providing training data to the ML models depending on 

availability of manually-labelled data from same course. This 

process is also discussed later in the paper.  

3. METHODS 
We used manually annotated discussion forum posts from two 

computer programming related MOOCs offered on different 

platforms, both with approximately 4800 enrollees, referred to as 

FL and EdX in the rest of the paper. FL, titled “R for Data Science”, 

was offered on the FutureLearn platform in Spring 2017 and had 

about 900 discussion threads with multiple posts in each thread.  

EdX, titled “JAVA Programming”, was offered on EdX in Summer 

2017 and had about 300 discussion threads.  

For assigning categories to each thread, three researchers 

independently coded a sample of 100 threads and then compared 

and refined the emergent themes. Using the refined themes, they 

independently assigned codes to a different sample of 50 comment 

threads and reconvened to finalize the themes that describe the 

main content of threads. These themes were: Social (introductions, 

reasons to take the course, expectations, experience etc.), Concept 

(questions and comments about course content covered in lecture 

videos or readings), Assignment (discussion related to 

assessments), and Other (course policy, website issues, other 

technical issues, general feedback, and anything that did not fit in 

remaining categories). Using this coding scheme, all discussion 

threads for both courses were analyzed such that each thread was 

assigned a code by two researchers. Any disagreement was 

reviewed by all three researchers and a consensus was achieved.  

We used Sensitivity and Positive Predictive Value (PPV) as the 

prediction performance measures for individual categories:  

Sensitivity = True Positives / (True Positives + False Negatives) 

PPV= True Positives / (True Positives + False Positives) 

For evaluating the overall performance, we used the measures 

WAvg-Sen (the overall Sensitivity, which is weighted by the size 

of the category), UAvg-Sen (simple average of Sensitivity across 

all categories, that does not account for category size), and UAvg-

PPV (simple average of PPV across all categories). For 

classification purposes, we used only the first posts of the 

discussion thread, as done by [5], because the primary topic of 

discussion is usually set by the first post of the thread, although it 

can sometimes change later on. This approach can also help the 

instructional team in prioritizing their responses to questions. We 

implemented the MNB and LR models using the machine learning 

package WEKA [18] and its LIBLINEAR library [19] for L2-

Regularized Logistic Regression model. We preprocessed the text 

by deleting non-alphanumeric characters and removing stopwords 

using the Rainbow [20] stopword list in WEKA. We conducted 

following set of experiments for performance evaluation: 

Experiment 1: We first evaluated the baseline performance of the 

ML models when trained on data from same course. We used the 

10-fold cross validation method to calculate the Sensitivity and 

PPV of LR and MNB models for both courses- FL and EdX.  

Experiment 2: We then examined the performance of ML models 

trained on data from a different course on a different platform in a 

similar area. We used the entire data from one course as the training 

set and the entire data from another course as the prediction set 

resulting in following combinations of training and prediction (test) 

sets: Train: EdX, Test: FL and Train: FL and Test: EdX. 

Experiment 3: FL and EdX had significantly different distribution 

of categories, which can lower the prediction performance of ML 

models when trained on data from another course. We examined 

the performance of ML models with modified training sets having 

similar distribution of categories as prediction set by under-

sampling cases from high-frequency categories. We did not aim to 

match the exact distribution of the prediction set; our idea was to 

reduce the bias in the distribution of categories at a broader level. 

The composition of original (FL and EdX) and modified training 

sets (FL-Mod and EdX-Mod) is shown in Figure 2. The resulting 

combinations were: Train: EdX-Mod, Test: FL and Train: FL-Mod 

and Test: EdX. 

 
Figure 2: Distribution of categories in training datasets 

Experiment 4: Both courses were divided into random non-

overlapping training (80% data- EdX-train and FL-train) and 

prediction sets (remaining 20% data – EdX-test and FL-test). The 

performance of ML models and DSS were examined on:  

(a) training data from same course, i.e., following combinations- 

Train: EdX-train, Test: EdX-test, Train: FL-train, Test: FL-test. 

b) training data from another course sampled to have similar 

distribution of categories, i.e. following combinations- Train: EdX-

Mod, Test: FL-test, Train: FL-Mod, Test: EdX-test.  

4. RESULTS and DISCUSSION 

Experiment 1: The 10-fold cross validation results of LR and 

MNB models on FL and EdX are presented in Figure 3. 

 
Figure 3: Prediction Results of 10-fold Cross Validation 

As shown in Figure 3, both ML models had similar overall 

prediction performance (columns WAvg and UAvg) for EdX and 
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FL. Among different categories, performance for the larger 

categories, i.e., Social and Assignment for EdX, and Social for FL 

was relatively better than smaller categories. We can see a larger 

gap between the WAvg (Sen and PPV) and corresponding UAvg 

for FL, which is probably due to the heavily imbalanced 

distribution of categories in FL, with 63% cases belonging to a 

single category- Social. It is also to be noted that the prediction 

performance of Other is lowest in both the courses. It may be due 

to the catch-all nature of definition of the category Other i.e. posts 

that are not classifiable in any other category, which can lead to a 

mix of different kinds of posts in this category and increases the 

chances of misclassification. 

Experiments 2 and 3 results are presented in Figure 4. 

 
Figure 4: Prediction performance of ML models when trained 

on data from another course with different sampling methods 

As shown in Figure 4, the prediction performance of ML models 

was considerably better when they were trained on the modified 

training sets as compared to entire data from another course, most 

noticeably in case of Test: EdX-test, with Train: FL and Train: FL-

mod, possibly because FL data distribution was more skewed. 

Experiment 4: First, the performance of ML models for training 

sets from same and another course are presented in Figure 5. 

 
Figure 5: Prediction performance of ML models when trained 

on same and different course  

As shown in Figure 5, both ML models yielded similar overall 

prediction performance with training data from same course 

(WAvg-Sen range 0.76-0.79), which was considerably better than 

training data from another course -- about 10% better WAvg-Sen 

for Train: EdX-Mod and Test: FL-test, and about 20% better 

WAvg-Sen in case of Train: FL-Mod and Test: EdX-test. It is to be 

noted that neither LR nor MNB model always performed better 

than the other. Therefore, it is advantageous to use predictions 

made by both ML models in the DSS for robustness-- which was 

also evident in our results. The prediction performance of DSS’ top-

prediction is presented in Figure 6. From Figures 5 and 6, we can 

observe that the DSS performed better than the individual ML 

models (on both WAvg and UAvg) when trained on data from 

another course. For training on data from same course, the DSS 

performed close to the better-performing ML model.  

 
Figure 6: Prediction performance of DSS’ top-prediction  

The smaller categories- Other and Concept were most difficult to 

predict for ML models as well as DSS (top-prediction) even with 

training data from same course. In order to address this issue, we 

designed the DSS to provide top-two predictions to users with 

associated probabilities. The intuition behind this approach was: for 

the cases corresponding to smaller categories, the second most-

likely category would indicate the correct category. 

Top-2 Predictions: The above intuition was validated by analyzing 

the top-two predictions of the DSS as shown in Figure 7.  

 
Figure 7: Results for DSS Top-1 and Top-2 predictions 

We observed considerable improvement in Sensitivity of the 

smaller categories (Other, Concept, and Assignment) between Top-

1 and Top-2 predictions. Sensitivity for Top-2 predictions were 

calculated by counting cases in prediction set as ‘True-Positive’ if 

the manually assigned category was among DSS’ top-2 predictions. 

Model Surety: As mentioned before, the Model Surety is 

determined based on ML model agreement and DSS_Prob_Max 

value. In Table 1, for conditions where the ML models were trained 

on data from different courses, we present the distribution 

(Minimum, Maximum, and Average) of DSS_Prob_Max values for 

different scenarios where the LR and MNB models agree or 

disagree, and if the predictions were correct or not. In Table 1, 

column N indicates number of cases in test set for each criterion. 

Table 1: Range of DSS_Prob_Max for different scenarios 

 

As shown in Table 1, when the model predictions agreed (case ids 

C1 and C2) the chances of the prediction being correct were higher 

64% (23/36 cases) for EdX-test, and 75% (98/130 cases) for FL-

test, as compared to when model predictions did not agree- 45% 

(10/22 cases) for EdX-test and 42% (13/31 cases) for FL-test. It is 

also to be noted that the average DSS_Prob_Max values were 

considerably higher when the ML models agreed and the 

predictions were correct, as compared to other scenarios. This 

means that when the DSS would indicate High Model Surety, it is 

likely to give highly accurate predictions. This is also demonstrated 
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in the results presented in Table 2, where we show the overall DSS 

prediction performance (Top-1 and Top-2 predictions) for different 

Model Surety values when the ML models were trained on data 

from another course. In Table 2, column N represents number of 

cases for each criterion, TP indicates True Positives, and %Correct 

indicates proportion of correctly predicted cases, i.e., TP/N. 

Table 2: DSS prediction performance at diff Model Surety  

Data Model  
Surety 

N Top-1 Top-2 

Train Test TP %Correct TP %Correct 

EdX-Mod FL-test High 122 96 0.79 106 0.87 

Med 8 2 0.25 2 0.25 

Low 31 13 0.42 17 0.55 

FL-Mod EdX-test High 28 21 0.75 24 0.86 

Med 8 2 0.25 5 0.63 

Low 22 10 0.45 15 0.68 

 

As shown in Table 2, when the Model Surety was High, %Correct 

was substantially higher than when the Model Surety was Med or 

Low. It is also to be noted that there were fewer cases (N) with Med 

surety as compared to Low surety because when the ML models 

disagreed, then DSS_Prob_Max was likely to be less than 0.5.  

5. CONCLUSIONS 
In this study, we proposed a machine learning based DSS to predict 

the broad category of MOOC discussion forum thread based on its 

first post and provide explanatory output to users. Based on the 

preliminary evaluation of the DSS, we can conclude that the DSS 

would perform better when manually annotated data from previous 

runs of the same MOOC is available. Annotated data from a similar 

course can also result in reasonable performance if training data 

sampling is done to remove the bias in data distribution, and, if 

possible, match the distribution in prediction set. The results also 

indicated that by providing the top-2 predictions, the DSS can 

tackle the issue of poor prediction accuracy of smaller categories 

by ML models. Because of the simple underlying ML models, the 

DSS is very scalable and can be easily integrated into any existing 

MOOC platform with suitably customized user interface. The 

proposed DSS would be helpful in organizing discussion forums 

better and thus improving learner participation. Future work can 

examine topic models for estimating the distribution of categories 

in unlabeled data, including other ML models in the DSS, and 

conducting user studies on its utility and usability in MOOCs.  
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ABSTRACT
In this paper we propose a hybrid architecture combining
Deep Neural Network architectures with expert’s knowledge
to automatically evaluate socio-moral reasoning maturity.
Socio-moral reasoning represents a key ability to sustain
efficient adaptive social interactions. In the proposed so-
lutions, expert knowledge is first computed using NLP and
information retrieval techniques and then added to the DNN
architecture using the attentional mechanism. It uses pre-
annotated textual data and a coding scheme (SoMoral) ap-
plied by experts in psychology. State-of-the-art text classi-
fication algorithms (Support Vector Machine, Naive Bayes,
etc.) achieved very low results in our context in contrast to
LSTM and CNN (when combined with expert knowledge).
Our solutions were compared to four models: a CNN-only
model, an LSTM-only model, a CNN and an LSTM models
where the expert knowledge is concatenated directly with
the data (instead of using attention). Experiments show
that our models can accurately predict the level of socio-
moral reasoning skills. Our findings suggest the need for hy-
brid neural networks that integrate prior expert knowledge
(especially when it is necessary to compensate the strong
dependency - of deep learning methods - on data size or the
possible unbalanced datasets).

Keywords
Convolutional Neural Networks, Long Short Term Memory,
Socio-Moral Reasoning skill, Serious Game, Learner Model,
Expert Knowledge, Hybrid Neural Networks.

1. INTRODUCTION
Socio-Moral Reasoning (SMR) is a socio-cognitive construct
essential for decision-making, as well as social interaction
adaptation. It is commonly defined as ”how individuals
think about moral emotions and conventions that govern
social interactions in their everyday lives” [1]. Being able
to predict and diagnose one’s socio-moral reasoning skill
level (or ability) is a key step for quantifying peoples’ so-

cial functioning and can be used to identify those at risk
for maladaptive social behaviour. This diagnosis could help
orient people towards appropriate services or provide ad-
equate support to improve this skill’s development. The
Socio-Moral Reasoning Aptitude Level (So-Moral)[4] task
is a computer-measured walkthrough in which children and
adolescents are presented with visual social dilemmas from
everyday life. They are then asked to verbalize how they
would react in this situation, justifying their answer. The
participants’ answers are recorded verbatim in transcripts
that are subsequently scored manually by experts using a
moral-maturity coding scheme inspired by the Kohlberg’s
theory of moral development [7]. Verbatims are short or
long text containing at least one sentence. Each socio-moral
reasoning rating was well documented by experts using an-
notated data. The goal was to put together these two kinds
of data to build an accurate model for the automatic pre-
diction of reasoning skill level. Using annotated data only
would not give us good results in this context. Therefore
we propose a hybrid model that combines expert knowledge
with DNN (Deep Neural Networks) architectures (especially
CNN and LSTM) using the attentional mechanism [11] for
predicting the level of SMR skill of an individual based on
his justifications when solving socio-moral dilemmas. The
developed solution extends the learner/player model in a
serious game called LesDilemmes [13].

2. RELATED WORK
Deep learning architectures are data-driven techniques, there-
fore their performance is strongly dependent on the amount
and the quality of the data. However, many contexts have
only a limited amount of data while providing prior expert
knowledge. Towel et al. [14] defined hybrid learning tech-
niques as ”methods that use theoretical knowledge of a do-
main and a set of classified examples to develop a method
for accurately classifying examples not seen during train-
ing”. By doing so, a hybrid learning system should learn
more effectively than systems that make use of only one of
the information sources. There exist very little research fo-
cusing on the combination of the a priori expert knowledge
and deep learning architectures. Among them, Towel et al.
[14] (which might be the first paper to discuss this mat-
ter) proposed a hybrid system called KBANN (Knowledge-
Based Artificial Neural Networks). It maps expert knowl-
edge, represented in propositional logic, into neural networks
and then refines this reformulated knowledge using back-
propagation. Coro et al. [3] combined Neural networks
(NN) with simulated expert knowledge. Zappone et al. [16]
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Dufresne "Hybrid Deep Neural Networks to Predict Socio-Moral
Reasoning skills" In: Proceedings of The 12th International
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recently did the same by combining expert knowledge and
Artificial Neural Networks (ANN) in order to optimize wire-
less communication networks.

In the educational domain, a priori expert knowledge is usu-
ally available and generally used to build Intelligent Tutor-
ing Systems (ITS). In other domains, expert knowledge can
be available through books or previously built models (such
as rules-based models). We believe that this a priori ex-
pert knowledge, sometimes acquired over decades of intense
research, cannot be dismissed and ignored. In the present
paper, in particular, we put forth an approach that uses at-
tentional mechanism and capitalizes on the availability of
(possibly simplified or inaccurate) theoretical models in or-
der to reduce the amount of empirical data to use and the
complexity of deep artificial training neural networks. To
our knowledge no research has proposed to combine a priori
knowledge with deep learning architecture using the atten-
tional mechanism as of yet. Moreover, no research in the ed-
ucational data-mining domain has yet focused on this matter
despite the availability of expert knowledge. We applied the
proposed solution to the automatic detection of socio-moral
reasoning skill level of learners (players) in a serious game.

3. CONTEXT
One of the objectives underlying the development of the pro-
posed model is to implement the automated scoring mecha-
nism in a serious video game called LesDilemmes [13]. It is a
first-person serious game which aims to assess and train the
social reasoning skills of the player. Through this work, we
aim to build an effective model of the socio-moral facet of
the learner/player. The level of socio-moral reasoning skill
of an individual is determined from its verbal justifications
provided when solving the dilemmas. This involves the im-
plementation of a model for automatic measurement of this
level during the game. We have a dataset of verbatims com-
ing from the SoMoral experimentation already annotated by
experts and a description (a paragraph with key concepts)
associated with each different level (or class) of maturity
(skill). This paper describes a machine learning model that
can accurately assess the socio-moral reasoning skill level of
a player based on his verbatim.

The original So-Moral task includes five different levels of
socio-moral reasoning skill[1] : (1) Authoritarian-based con-
sequences, (2) Egocentric exchanges, (3) Interpersonal Fo-
cus, (4) Societal Regulation and (5) Societal Evaluation.
Transition levels (i.e. 1.5, 2.5, 3.5, 4.5) are used to account
for verbatims that provide elements of two reasoning stages
and show a sequential progression from one stage to another.
Occasionally, a verbatim is assigned to two different closed
levels (1 being the maximum deviation) when two indepen-
dent experts annotate the data for rater reliability purposes.
A first convolutional neural network has been proposed to
automatically detect the socio-moral reasoning skill. Despite
the high accuracy reported (92 %) [13], the model where not
able to predict when a person has a socio-moral reasoning
level of 2, 3 or 5. All the predictions where either levels 1 or
3 due to the unbalanced dataset. This paper addresses this
issue in order to ensure the accuracy of the learner model
for a better support of the learning process in the serious
game.

4. THE PROPOSED HYBRID ARCHITEC-
TURES

4.1 Expert Knowledge
Expert knowledge represents the proficiency shown by ex-
perts in a particular domain. In the educational domain,
expert knowledge is generally available. For example, in [12],
expert knowledge was used through a Bayesian network to
predict logical reasoning of students. There are many ways
to make the expert knowledge usable by a computer. A well-
known approach consists in building a rule-based system [5,
2]. In our context, where we only have access to description
(in textual form) of each of the levels, we employed two dif-
ferent techniques related to IR (Information Retrieval) and
NLP (Natural Language Processing): the Word Movers’ Dis-
tance (WMD) [8] to compare the meaning of texts, n-grams,
and stemming to test whether verbatim contain those spe-
cific elements extracted for each level. For each verbatim
the WMD calculation provided us with a vector of length 5
where each entry is the similarity between the verbatim and
the description of the corresponding socio-moral reasoning
skill level. The values range between 0 and 1. For each ver-
batim, the n-grams provided us with a vector of size 5 where
each entry represents the number of n-grams and synonyms
of each level found in the verbatim. We finally applied the
softmax function to the resulting vector which was added to
the one generated by the WMD method.

4.2 Hybrid Architectures
Neural networks (NN) are able to learn any function that
maps inputs to outputs. They are particularly salient when
there is a lot of data available. Neural networks often per-
form well when compared to other machine learning algo-
rithms. According to LeCun and his team [9], deep learning
allows computational models composed of multiple layers of
processing (e.g. neural networks) to learn data representa-
tions at multiple levels of abstraction. There exist several
deep-learning architectures. However, we will focus here on
LSTM and CNN, as they were proven well suited for text
classification [17].

Neural Networks are layered graphs with the output of one
node feeding into one or many other nodes in the next layer.
Their inner architecture makes it difficult to incorporate do-
main knowledge to the learning process [10]. Our solution is
to constrain the model to pay attention to what the expert
knowledge says about the current input x. It aims to incor-
porate the expert’s final prediction about the input rather
than how the expert knowledge is processed. Since attention
[15] is a memory-access mechanism, it fits well in this con-
text where we want the model to have access to the expert
knowledge during learning, as its memory. In other words,
the DNN will ”consult” the expert before taking the final de-
cision. Attention mechanism equips a neural network with
the ability to focus on a subset of information. The impor-
tance the DNN model will accord to what the expert said
is computed (learned) through attentional weights (Wc and
Wa). Wc represents the weights measuring the importance
of the expert knowledge and the learned features to the final
prediction vector. Wa corresponds to the weights calculat-
ing the importance of each feature learned by the DNN on
each feature of the expert knowledge. Thus, the model will
focus on what the expert knowledge says before taking any
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decision. By integrating the expert knowledge in the DNN
using the attention, the model iteratively processes the a
priori knowledge by selecting relevant content at every step.
To present our approach, we will consider the LSTM model.
However, this can also be applied to the CNN as well. In
the original attentional mechanism, the attentional vector
is computed from the target hidden state ht and the input
hidden state (which is replaced by the vector representing
the expert knowledge). Given the hidden state ht of the
LSTM, and the expert-side context vector cet , we employ a
concatenation layer to combine the information from both
vectors to produce the attentional hidden state at as follows:

at = tanh(Wc[c
e
t ;ht]) (1)

Please note that ht could be the hidden state of the last cell
of the LSTM or the hidden states of all the cells. For the
CNN, ht represents the output that has been flattened. The
attentional vector at is then fed through the dense layer of
the model to produce the predicted socio-moral reasoning
skill level. Now, the expert-side context vector is computed
as follows :

score(es, ht) = h
′
t · es ·Wa + b

αt,s =
escore(es,ht)∑s
j=1 e

score(ej ,ht)

ce =
∑
s

αt,s · es

(2)

Where es (s=5) is the current socio-moral reasoning skill
level (normalized) computed from the expert knowledge and

h
′
t = softmax(ht). es is a vector of length equals to the

number of levels (5 in our case) and each entry represents
the predicted probability by the expert that the verbatim
belongs to each of the classes. We applied the softmax
function to ht to have a fair comparison with es. Score
is a content-based vector [11] which computes the correla-
tion (alignment score) between the expert knowledge and
the features learned by the network : how well the expert
knowledge and the features learned from data are aligned.
The model assigns a score αt,s (vector of size 5 in this case)
to the pair of feature at position t and expert knowledge
(es,ht), based on how well they match. The set of αt,s are
weights defining how much of each expert knowledge features
should be considered for each output (final prediction). Our
code for this attentional-based a priori expert knowledge is
publicly available on github 1.

5. EXPERIMENTS
In order to empirically evaluate the proposed solution, we in-
vestigated six different models: a CNN (cnn-only), an LSTM
(lstm-only), a CNN where expert knowledge was concate-
nated to the features learned (cnn-expert), an LSTM where
expert knowledge was concatenated to the features learned
(lstm-expert) and finally the proposed models cnn-expert-
att (a CNN where expert knowledge was concatenated to
the features learned + knowledge-based attention) and lstm-
expert-att (a LSTM where expert knowledge was concate-
nated to the features learned + knowledge-based attention).
We used the same parameter initialization for all the mod-
els. Adam [6] was used as the optimizer with a learning rate

1https://github.com/angetato/Combining-DNN-With-
Expert-Knowledge-ToPredict-Socio-Moral-Reasoning-Skills

Figure 1: Final model for predicting socio-moral rea-
soning skill level. Each sub model is specialized for
the prediction of levels specified between parenthe-
sis. Each model is either LSTM or CNN combined
with expert knowledge and the attentional vector.

Figure 2: The proposed hybrid architecture using
LSTM (left) or CNN (right) for the prediction of
socio-moral reasoning level.

set to 0.001. The algorithms were implemented using Keras2

and the experiments were done using the built-in Keras mod-
els, making only small edits to the default settings. The
dataset consists of a benchmark of 731 verbatims (written
in French) manually annotated by experts. Verbatims are
not equally distributed between classes (unbalancing data).

5.0.1 Proposed Models:
The models take as input the verbatims that have been pre-
processed (tokenization, text to sequence, etc.) and vec-
tored. The vectors are then passed to the embedding layer.
In figure 2 (left), the embedding vectors are passed to the
LSTM layer (note that we have only considered the output
of the last cell). The expert knowledge and the output of
the LSTM are then passed to the expert knowledge-based
attention. The attentional vector is merged with the expert
knowledge and the output of the LSTM. The concatenation
is passed to the last layer for the prediction. This process
is the same for the CNN (see figure 2(right)), except that
the knowledge-based attention layer takes as input the ex-
pert knowledge and the result of the pooling operation ap-
plied to the output of the CNN. To evaluate the added value
of this knowledge-based attention, we have considered two
similar models (cnn-expert, lstm-expert) to those shown in
figures. However, those models do not have the knowledge-
based attention layer. They are used as a comparison with
the proposed solutions.

5.1 Results
2https://keras.io/
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All the models have been trained on 80% (with 20% as vali-
dation data) of the data and tested on the remaining 20 %.
The results are shown in table 1. As we can see, models
that take into account expert knowledge perform well for
the prediction of classes with few samples compared to oth-
ers with no expert knowledge (f1score for classes 2, 4, and
5). This is due to the fact that experts do not need data
to make decisions because their decisions are based on their
own knowledge. This suggests that, incorporating expert
knowledge to neural models improves the classification even
when the dataset is unbalanced. Also, even if there is not a
huge amount of training data, the models are still capable
of better generalize on unseen data.

Table 1: Overall precision, recall, f1score and accu-
racy of all the models.
Models Precision Recall f1-score Acc
Expert-Only 0.47 0.40 0.38 0.40
cnn-only 0.58 0.53 0.49 0.53
lstm-only 0.42 0.43 0.42 0.43
cnn-expert 0.62 0.62 0.62 0.62
lstm-expert 0.54 0.53 0.51 0.53
cnn-expert-att 0.67 0.65 0.63 0.65
lstm-expert-att 0.59 0.60 0.58 0.60
Final Model 0.72 0.75 0.73 0.75

6. CONCLUSION
We have proposed a model able to predict with over 75%
accuracy the socio-moral reasoning skill level based on tex-
tual verbatim and a priori expert knowledge. In particular,
we proposed a simple but efficient way to integrate expert
knowledge into deep neural networks architecture using the
attentional mechanism. Our proposed model is also intended
to help experts on the annotation of verbatims. Results were
very promising. Contrary to the state-of-the-art techniques
in text classification, the solution we proposed achieves best
results in our context. This is mainly due to the deep struc-
tures that can learn useful features from data and also the a
priori knowledge that can leverage unbalanced data. Based
on theoretical arguments and numerical evidence illustrated
in the present work, it is possible to conclude that the a
priori expert knowledge provides unique insights to comple-
ment and improve DNN data-driven approaches. It is our
hope that this paper will spur the interest of our research
community, towards developing efficient ways of combining
neural networks architecture with theoretical prior knowl-
edge. The work presented in this paper has introduced a
simple approach towards this direction, which, however, only
represents the tip of the iceberg.
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ABSTRACT
The National Exam of Students Performance (ENADE), or-
ganised by the National Institute of Educational Studies and
Research Anisio Teixeira (INEP), aims to evaluate the per-
formance of undergraduate students in relation to the syl-
labus, as also skills and competencies acquired during their
academic training. The result of this evaluation is consid-
ered to be a part of a grade for undergraduate programmes
and is also used to assess the general quality of Brazilian
higher education. The main goal of the present research is
to understand the relationship between the curricular com-
ponents associated with the questions of the ENADE exam.
We investigate the existing bias in the students’ answers
that may reveal a tendency towards specific fields, possi-
bly resulting in better scores for certain programmes. Open
data for the last two years of ENADE for the Information
Systems (IS) undergraduate programmes were collected and
pre-processed by using data techniques for cleaning, trans-
forming and normalisation. In order to measure the bias
in the probability distributions of question answers, the in-
formation theory framework was applied. Our experiments
revealed structures among questions by conditional entropy.
Such structures may suggest underlying relationships be-
tween questions, not only for those of the same subject but
also for questions on dependent subjects. Our findings show
that some questions may give an advantage over at most
15.2% on other questions.

Keywords
entropy, analytics, bias selection, higher education

1. INTRODUCTION
Instituted by Brazilian Federal Law, the National Exam of
Students Performance (ENADE) aims to evaluate and ob-
tain a diagnosis on the quality of the undergraduate pro-
grammes in Brazil [1]. This evaluation consists of the appli-
cation of a national exam for a sample of students from all
Brazilian undergraduate courses, which verifies their knowl-

edge with regard to the programmatic contents foreseen in
the national curriculum guidelines, and the development of
fundamental skills and competencies associated with profes-
sional qualification.

Since 2004, ENADE has been organised by the National In-
stitute of Educational Studies and Researches Anisio Teix-
eira (INEP), an Institution linked to the Brazilian Ministry
of Education (MEC). The exam occurs once a year, but each
area of knowledge is evaluated once every three years.

ENADE provides the following instruments to carry out per-
formance evaluation: (1) a test exam for the first and final
year students of each undergraduate programme; (2) an im-
pression questionnaire, to collect students’ opinions regard-
ing the physical aspects of the test exam, such as size; and,
(3) a socioeconomic questionnaire that focuses on identifying
the students’ social and economic profile.

The national test exam has two components: (a) questions
about general training, common to all areas; and, (b) spe-
cific training questions, relative to each knowledge area. The
questions regarding general training, as a whole, correspond
to 25% of the final exam mark, while the specific questions
have a weight of 75%. The score of the specific exam com-
ponent is split into 15% of the discursive part, which is a
simple arithmetic mean of all essay questions; and 85% of
the multiple choice part, which is proportional to the num-
ber of correct answers, since all the multiple choice questions
have the same weight.

The result of ENADE test exams is essential for advancing
the Brazilian higher education system as it provides quality
indicators for monitoring undergraduate programmes, being
used for establishing and evaluating public policies for higher
education [7]. Additionally, all ENADE data are publicly
available on the INEP open data website, providing a very
rich source of information about higher education in Brazil.

In this context, the present work seeks to investigate ENADE
data in order to analyse information bias and the underlying
knowledge structures from the students’ scores. We propose
a methodology to address these issues by using a informa-
tion theory framework. We also investigate, with the use of
information measures, possible underlying patterns among
curricular components that may introduce bias into the final
scores. The intuition behind this idea is to prevent favouring
specific curricular components by avoiding mutual informa-
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tion shared between groups of questions. Our hypothesis lies
in that the underlying knowledge structures are connected
through the questions in such way that the final scores are
biased towards particular curricular components, instead of
those foreseen in the national curriculum guidelines.

We focused our analyses on the ENADE data of the un-
dergraduate programmes in Information Systems (IS). The
choice of IS programmes was due to our expertise and ex-
perience, which allow us to analyse the quantitative results
from our prior knowledge of the area. Our analyses were
carried out on the ENADE data for the 2014 and 2017 edi-
tions. These are the two most recent editions with available
data1. In these two years, Information Systems was consid-
ered as an independent area by MEC, while in the previous
editions it was a part of the Computer Science area.

The research questions addressed by this work are the fol-
lowing: (Q.1) Is there any bias in students’ answers that
could lead to favouring certain undergraduate programmes
over others? (Q.2) Is there any overrated curricular com-
ponent due to underlying dependence structures across the
exam questions? (Q.3) If the bias exists, which would be
the areas with this possible advantage?

2. RELATED WORK
ENADE results along different years have been reported
as an important quality indicator of undergraduate pro-
grammes in Brazil [5]. Studies have reported a certain im-
balance in the curricular components behind the questions,
favouring certain areas over others in the ENADE tests for
the Physics [3] (reconstructs the Reference Matrix of the
exam), Psychology [4] (applies a blueprint tool to evalu-
ate the exam content validity), and Physical Education [2]
(conducts qualitative approach to study the contents of the
exam) undergraduate programmes.

To the best of our knowledge, there are no studies in the
literature that aim to identify possible bias in the ENADE
test, nor studies that use information theory to measure the
amount of information between ENADE’s questions.

3. DATA
We collected the microdata, composed of individual records,
from ENADE exam conducted in the years 2014 and 2017.
Data collection was performed through the INEP website2.
The microdata file is accompanied by a dictionary of vari-
ables, a user manual, the socioeconomic questionnaire and
inputs for the R and SAAS programs.

The data of the 2014 edition consists of 154 variables and
481,720 undergraduate students from 33 knowledge areas.
The 2017 edition contains 150 variables and 537,436 under-
graduate students from 44 areas. These variables concern
the course, the student, the institution of higher education,
the questionnaires that come with the exam, and the stu-
dents’ performance.

1ENADE’s was first applied for the Information Systems
undergraduate programmes in 2005; since then it has been
reapplied every three years.
2http://inep.gov.br/microdados

From the both databases, we extracted the information of
the undergraduate students of Information Systems Edu-
cation who answered the multiple choice questions of the
specific component. The discursive questions were not con-
sidered, there being a lot of subjectivity in the score.

The variable of interest extracted is a sequence of characters,
per student, representing the score of each multiple choice
question within the specific component. Each character is
a code, 0 for get it wrong and 1 for score. Codes 8 or 9,
showing respectively, annulment by the commission and an-
nulment by the index of discrimination, were disregarded.
We also ensured that all students answered all questions re-
moving observations where the selected variable was zero or
different in size from the total number of questions. After
that, the 2014 edition was composed of 13,253 students; that
of 2017, of 11,980 students.

The structure of the data was better organised to facilitate
analysis. A Boolean matrix was constructed from the vari-
able of interest, with rows representing the students and the
columns corresponding to each question. The dimension of
2014 edition matrix was 13, 253 × 19, while for 2017 was
11, 980×22. Although the multiple-choice specific questions
of ENADE are 27 in all, in both editions there were voided
questions.

4. METHODS AND METHODOLOGY
Our approach for investigating the possible dependencies of
knowledge and competence structures in the ENADE exam
was based on the Information Theory framework. The mo-
tivation was the strong mathematical and statistical theory
[6] that supports the empirical results. The principles of
Information Theory have been widely applied to many dif-
ferent fields such as telecommunications, physiology, linguis-
tics, and physics [8]. Our interest is particularly in informa-
tion measures and dependencies.

4.1 Information Theory
Information Theory studies the quantification, storage and
communication of information. It was originally introduced
in a 1948 paper by Claude E. Shannon titled The Mathe-
matical Theory of Communication, in which the author was
interested in the amount of information that a communica-
tion channel would be able to transmit.

The main measure of information theory is the entropy (“H”).
Entropy is a quantification measure of uncertainty [8], given
by the following equation3:

H = −
∑
i

pi ∗ log(pi), (1)

where pi indicates the probability of each result of a dis-
crete random variable. Note that entropy corresponds to a
function of the distribution of the random variable; referring
only to its probabilities, regardless of the values it takes.

In addition to entropy, information theory also has mea-
sures that deal with a pair of random variables. The joint

3In the present work, we used log base 2. However, other
bases could be used, such as 3, 4, 5, 6, 7 or 10. The base
change can be made by Hb(X) = (logba) ∗Ha(X).
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entropy H(X,Y ) quantifies the amount of information asso-
ciated with the random variables X and Y taken together;
the conditional entropy H(X|Y ) denotes the amount of in-
formation that a random variable X holds regardless of the
amount of information held by Y. Finally, the mutual infor-
mation I(X;Y ) describes the amount of information that a
random variable X contains about the other variable Y [8].

We adopted the conditional entropy as being the measure of
dependence between two variables, given by equation 24:

H(X|Y ) =
∑
y∈γ

p(y)H(X|Y = y). (2)

4.2 Proposed Methodology
We have proposed a methodology consisting of the steps
described next and in Algorithm 1.

Algorithm 1: Pseudocode of proposed methodology

input← Students’ answers from ENADE;

M ← Conditional Entropy Matrix(input);
M ← Min Max Normalisation(M);

G← Graph From Adjacent Matrix(M);
G.nodes← Entropy(G.nodes) >= 0.99;
G.links← G.links < 0.4;

output← G;

The thresholds 0.99 and 0.4 are empirical, by filtering for
very high entropy questions and for an acceptable minimum
value of conditional entropy between questions.

(a)Conditional entropy matrix: we developed a func-
tion for calculating the conditional entropy of each pair of
random variables. This allows us to look into the relation-
ship between questions of different areas and identify possi-
ble areas that significantly contribute to the score of others.
As input, this function receives the Boolean matrix from
the pre-processing phase and as output, generates a square
matrix, question by question (dimensions 19 × 19 for 2014;
22× 22 for 2017), where each element in row i of column j
corresponds to the conditional entropy of question qj , since
question qi is known. Data was normalized by Min-max
normalisation5 [9], since the values were very close to each
other. The diagonals were taken as 1.

(b)Graph construction: the conditional entropy matrix
was taken as an adjacency matrix to construct a directed
graph with the objective of simplifying the visualisation of
dependencies. Each node of the graph represents a ques-
tion and each relationship weight represents the conditional
entropy between them.

(c)Node filtering: we select the questions with the high-
est entropy values (between 0.99 and 1). This prevents pos-
sible bias in our analysis generated by extremely easy or
extremely difficult questions, given that the resulting ques-
tions have approximately 50% chance of success; therefore,
they can’t be considered easy (it’s already known that the

4This equation can be decomposed into equation
H(X|Y ) = −

∑
y∈γ

∑
x∈χ p(x, y)log p(x|y), which is the one

used in the methodology.
5Min-max normalisation is given by x′ = x−min(x)

max(x)−min(x) .

vast majority of students are going to score) or difficult (it’s
known that the vast majority of students are going to get
it wrong). For 2014, questions 10 and 13 were not included
since they only relate to one question each, being isolated
from the others. In 2017, there were questions with high
entropy not selected because we also apply a relationship
filter, to be discussed next.

(d)Relationship filtering: a filter was applied to remove
the relationships holding the lowest conditional entropy val-
ues (between 0.4 and 0). Thus, we are asserting the force
of the influence that the random variable Y exerts on X.
For instance, the question X solely holds an entropy close
to 1. But its entropy is close to 0 after question Y is known,
even when the latter question has exactly the same profile
as question X. The final graph only contains high entropy
nodes and low conditional entropy relationships.

Table 1: Advantage quantification per question from the
2014 edition. The highest gains are highlighted in yellow.

X Y H(X|Y ) P (X = 1) P (Y = 1) P (X = 1|Y = 1) %G
24 27 0.056 0.467 0.527 0.501 7.4%
24 28 0.056 0.467 0.557 0.499 7.0%
15 28 0.084 0.469 0.557 0.501 6.9%
24 25 0.087 0.467 0.552 0.498 6.9%
15 32 0.126 0.469 0.515 0.502 7.2%
24 32 0.141 0.467 0.515 0.499 7.0%
15 11 0.162 0.469 0.482 0.503 7.4%
24 11 0.196 0.467 0.482 0.499 6.9%
15 25 0.219 0.469 0.552 0.497 6.0%
32 27 0.266 0.515 0.527 0.562 9.2%
11 27 0.272 0.482 0.527 0.554 14.8%
27 28 0.279 0.527 0.557 0.583 10.6%
25 27 0.323 0.552 0.527 0.596 7.9%
25 11 0.331 0.552 0.482 0.599 8.6%
24 15 0.333 0.467 0.469 0.493 5.7%
28 25 0.351 0.557 0.552 0.617 10.8%
15 24 0.359 0.469 0.467 0.495 5.7%
25 32 0.367 0.552 0.515 0.593 7.5%
28 27 0.399 0.557 0.527 0.616 10.6%

Table 2: Advantage quantification per question from the
2017 edition. The highest gains are highlighted in yellow.

X Y H(X|Y ) P (X = 1) P (Y = 1) P (X = 1|Y = 1) %G
35 27 0.049 0.548 0.508 0.631 15.2%
19 27 0.053 0.46 0.508 0.516 12.2%
23 26 0.059 0.455 0.491 0.506 11.0%
23 35 0.109 0.455 0.548 0.498 9.3%
19 35 0.212 0.46 0.548 0.505 9.7%
30 27 0.26 0.547 0.508 0.618 13.1%
19 26 0.29 0.46 0.491 0.506 10.0%
27 35 0.313 0.508 0.548 0.585 15.2%
23 30 0.314 0.455 0.547 0.487 7.0%
26 35 0.333 0.491 0.548 0.548 11.5%
23 19 0.352 0.455 0.46 0.49 7.7%
35 26 0.383 0.548 0.491 0.611 11.5%

5. RESULTS AND DISCUSSION
Our results show that the two 2014 and 2017 ENADE edi-
tions presented groups of highly connected questions from
strongly related areas of knowledge. In both cases, the con-
ditional entropy allowed us to highlight the underlying de-
pendence structures of the curricular components behind the
questions. Such structures can be represented by a graph,
in which the questions are the nodes and the edges indicate
the dependence relationships.

Figure 1a depicts the resulting graph based on the 2014 edi-
tion of ENADE. You will see that questions 11, 15, 24, 25,
27, 28 and 32 are nearly all directly or indirectly related to
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(a) Graph for 2014
ENADE edition.

(b) Graph for 2017
ENADE edition.

Figure 1: Graphs for 2014 and 2017 ENADE editions.

the area of Software Engineering, the only exceptions being
questions 11, 15, and 28. Question 11 is about Probability
and Statistics, but is quite intuitive, demanding only logical
reasoning, while the question background still relies on soft-
ware operation. Besides, this question has more influence on
the others than the opposite. Question 15 is about Funda-
mentals of Systems and Databases, requiring awareness of
differences between Online Transaction Processing and On-
line Analytical Processing systems subject (very related to
Software Engineering). Finally, Human-computer interac-
tion is the main subject of question 28, addressing Usability
with Software Requirements Specification (strongly depen-
dent on Software Engineering). We may therefore conclude
that our methodology was able to identify the questions in
the 2014 ENADE edition that require knowledge and com-
petences related to Software Engineering.

In order to highlight the importance of the dependence re-
lationships, Table 1 describes, for each edge of the graph in
Figure 1a, the percentage of advantage gain (G) for scor-
ing a question, given the correct answer of another. This
measure consists of the percentage of the conditional prob-
ability P (X|Y ) over the prior P (X). As one should note,
question 27 influences the largest number of questions (a to-
tal of 5) and also provides the greatest advantage gains (a
total of 3) for many questions. As a result, students who
correctly answer these questions are more likely to get, at
least, three other questions right. Undoubtedly, there are
underlying relationships that tie question 27 to the others.
This leads us to support the hypothesis of bias in the stu-
dents’ responses, favouring the area of Software Engineering
and the ones closely related.

The same scenario can be clearly verified in the 2017 edi-
tion. Consequently, there is also a group of interconnected
questions with very close contents. Note that questions 19,
23, 26, 27, 30 and 35 are all highly associated to Software
Development area, even though questions 19 and 27 are not
directly connected to it. The content behind question 19
is Graph theory and its area of knowledge is Operations
research, a discipline that deals with the application of ad-
vanced analytical methods to solve problems and help to
make better decisions. Although this is a mathematical ap-
proach, this area is still very tied to programming (the pro-
gramming area is one of the essential bases in Software De-
velopment); Question 27 is about Knowledge management,
yet the question addresses the use of Tacit and Explicit
Knowledge in the different phases of Software Development.

Similarly to Table 1, Table 2 was reproduced for the 2017
edition graph. It reports the influence of questions 26, 27
and 35 on each other, and on others quite clear. Scoring
question 35 leads to higher chances of scoring 26, which in
turn increases the chances of correctly answering questions
23 and 19; and question 27, brings an advantage for scor-
ing questions 19 and 30. Overall, by answering question 35
correctly, there will be four other questions more likely to
score. Thus, we believe that there is also a bias in the 2017
edition, favouring Information Systems programmes, or stu-
dent profiles, with focus on Software Development.

6. CONCLUSIONS
Our methodology has successfully identified potential knowl-
edge dependence structures through mutual information be-
tween questions. The adoption of information measures has
proven to be very helpful, providing good level of interpreta-
tion to reveal underlying dependence structures. However, a
limitation of our work is to deal with deeper and more com-
plex underlying structures, which require multilevel analyses
and different strategies to visualize and evaluate relation-
ships between questions.
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ABSTRACT
Most formal educational practices based on the classroom,
imparts skills and knowledge at scale, by adopting the model
of a factory. Here, the focus is on creation of formal pro-
cesses, mass production of measurable outcomes, and stan-
dardization. Curricula and educational practices are de-
signed for a hypothetical “average” student, having “aver-
age” abilities. However, recent advances in individualization
have found vast discrepancies between individual traits and
group averages. Designing models based on group averages,
are usually ineffective when the individual is the target ben-
eficiary. This research proposes Evidence Based Competency
Model as a mechanism for providing individualized learning
experiences. Here, the term evidence, refers to informal data
generated by the learner, pertinent to the learning process.
Individual models are built for each learner, based on their
learning activities. These models are clustered to observe
similarity in learning patterns among the individual learn-
ers. This study also shows significant variability from the
“average model”, validating The Myth of Average.

Keywords
Evidence, Average Model, Individualization, Evidence Based
Competency Model, Learning Process

1. INTRODUCTION
The objective of education is to create empowered individ-
uals that are capable of problem solving, upholding their
individuality, and possessing an ability to acquire relevant
competencies in their area of interests. Standardization of
learning practices based on the classroom, has lead to uni-
form teaching and assessment practices without regard to
how disparate individuals behave, learn, develop and apply
their knowledge.

The classroom model is able to provide pedagogical solu-
tions at scale by addressing the needs of a hypothetical “av-
erage” individual. However, research on individualization

have shown that, as the number of dimensions of concern
increase, the probability of finding an individual who is av-
erage on all dimensions rapidly diminishes to zero. This is
popularly called The Myth of the Average [1]. A uniform
model based on statistical averages does not capture the
patterns of variability among individual learners [2]. Each
individual has different interests, disposition, contexts and
styles to learn different topics.

One of the emerging approaches towards standardizing ped-
agogy models, is to focus on learning outcomes. The Out-
come Based Education (OBE) [3] model focuses on learner’s
ability to produce specific, measurable outcomes as part of
the learning process. The emphasis on visible outcomes,
discounts the holistic nature of education comprising of a
number of tacit elements and OBE is also considered to be
strongly rooted in behaviorist learning practices, that are
incompatible with other learning cultures like constructivist
education [4].

In this work, we show that data generated during the learn-
ing process, referred to as evidence, can be used to reason
about the underlying competency. We also show that one
single average model to predict the state of the competency
cannot be used and we need to build separate models for
learners, hence validating the Myth of Average, discussed in
more detail, in [5].

The use of activity data, rather than assessments and out-
comes, for determining learner’s latent competency levels,
have been addressed for specific activities in [6, 7]. The
focus here has been to correlate different types of learning
activities like watching video or learning by doing activities,
to their implication on learning [8].

In this work, we don’t focus on any specific learning activity
and follow a generic approach to collect any kind of learning
data and use machine learning techniques to correlate char-
acteristics of activity data with data from outcomes and for-
mal assessments. We focus on activities involving learners
consuming resources like videos, text books, articles, docu-
ments in the current implementation of the model.

2. EVIDENCE MODELING
The term “evidence” is contrasted with “outcomes” as fol-
lows: outcomes refer to assessment data collected from for-
mal testing environments, where the learner is fully cog-
nizant of being assessed and has explicitly prepared for the
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same. In contrast, evidence pertains to data collected on
an implicit, continuous basis on any activity of the learner
pertaining to the competency in question. Existing meth-
ods of determining the underlying competency of a learner
through formal assessments and visible outcomes, has its
own issues [3, 4]. There is a need for models that uses ev-
idences, based on the learner’s activities and maps these
learners to their competencies.

We propose a model that explores the activity data of the
learners, generated while achieving the competency. The
data, collected implicitly in a continuous fashion, is modeled
to map the learners to their competencies.

Evidences can be considered analogous to an observation
that an individual makes, in the classroom through interac-
tion or silent observation of reactions, which contains signifi-
cant insights. An offline system like a classroom is unable to
gather data for each individual during the learning process,
but when learning happens in a Technology Assisted Learn-
ing Environment(TALE) [9], data is continuously captured
by the platform. Technology augmentation can happen in
various ways – like sensors and RFID tags to record atten-
dance, recording and analysis of students’ classroom activi-
ties like questions, discussions, etc. We want to focus on the
evidences, so that we dont have to rely only on the formal
assessments to determine the competency of the learner.

A competency model based on evidences can also be used to
identify anomalous cases where the outcomes state that the
individual has the competency while the evidence indicates
a lack of competency, or vice-versa. A teacher can only
analyze such cases and address them appropriately. The
model based on evidences, acts as a way of aiding the teacher
in teaching and evaluating process.

Newer learning domains like training drivers to learn a par-
ticular language that would improve their communication
skills, may not have standardized competency models to aid
in pedagogy and assessments. In such cases, models based
on evidences would help to map the learners to their com-
petencies.

The main challenge is to create an evidence model for col-
lecting data, and to argue for the completeness of the evi-
dence. Learning may happen outside of the evidence gath-
ering, and different kinds of learning activities may require
different kinds of evidences to reason about them.

In order to address the above challenge, we adopt a least-
biased model for evidence modeling, and treat each form of
evidence as equally important in the input feature vector.
All forms of evidences collected are then given as input to a
machine learning algorithm to find the best possible indica-
tors for the outcomes based on assessment scores.

3. EXPERIMENTS AND INITIAL RESULTS
The activity data used to build models is collected from
a large, open online learning platform, implemented across
several schools in the US, Gooru.org1. The platform has
aggregated open learning resources for various courses, pro-

1http://gooru.org/

vided by content creators, curators and instructors. The
learning resource can be a document, video, audio, puzzles
or any content used to obtain the competency. Learners
enroll to various courses.

A course is organized into several competencies, where a
competency is seen as the basic unit of learning. Each com-
petency may have several learning resources mapped to it.
Students consume learning resources and whenever they are
ready, give assessments to earn a score. Instructors evaluate
the assessments and provide their feedback in the form of
scores. The scores indicate the status of the learner with re-
spect to the competency. The learning resources are mapped
to competencies for various courses like Maths, Science, En-
glish and Social Science in the K-12 curriculum 2.

The activity data collected for a (learner, competency) pair,
is divided into collections and assessments. Collections are
resources used during the learning process, while assess-
ments act as indicators of learning. In the platform, a learner
is said to have achieved a “completed” status for a compe-
tency if one gets more than 80% in the respective assess-
ments. The platform does not award a “fail” status to the
learner. The learner keeps attempting assessments multiple
times until the learner gets 80% or more. The status is then
set to“completed”, else the status is marked as“in-progress”.

Whenever a learner consumes a resource to learn a con-
cept, an event is logged in the system with the details of
the resource, time of the event, learner details and type
of event(started consuming the resource). The same pro-
cess is repeated when the learner finishes consuming the re-
source with a stop event. The events are captured for all
the courses. Individuals consume various resources mapped
to the same competency and at the end give assessments to
get a particular status for that competency.

Using these activity data we have built a model to determine
the outcome of the competency based on the evidences.

3.1 Experiment 1
We built a Support Vector Machine (SVM) [10] classifier to
test a hypothesis. Our hypothesis is as follows: Ht: The
time spent on learning resources, the total number of re-
sources consumed by learners, can predict the outcome for
the underlying competency.

The features identified are total time spent on resources,
average time spent on resources and number of resources
used for acquiring the corresponding competency. The users
were given a completed or in-progress status based on their
assessment scores. That serves as the ground truth for our
model.

The dataset has 28000 (user,competency) pairs with their
corresponding evidences. This data was divided into 80-20
split randomly for training and testing the SVM model re-
spectively. We built a single SVM model for all learners and
their competencies in all courses. We classified the data us-
ing linear, polynomial, sigmoid and radial basis kernel func-
tion. The data was not linearly separable. The radial basis

2https://en.wikipedia.org/wiki/K-12/
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kernel function was found to be the best kernel function
to classify the data in terms of Accuracy, Precision and F1
score as shown in Table 1.

Kernel functions Accuracy Precision F1 score
Radial basis 82.43% 68.79% 51.13%

Linear 78.39% 53.65% 40.30%
Polynomial 78.83% 56.25% 37.91%

Sigmoid 68.84% 30.68% 30.37%

Table 1: Performance metrics comparing the kernels

The accuracy measure of the SVM model using the radial
basis function states that using total time spent, average
time spent on the resources and number of resources, we
can significantly predict the outcome of the underlying com-
petency. The outcomes are determined by the scores of the
assessments, which was not used as feature to build the mod-
els. This shows that evidence can be used as an alternate
way to model the outcome of the underlying competency.

The same model was made to classify all the competencies
of a random individual learner, the accuracy of the average
SVM model varied between 30% to 100% for different learn-
ers . The “average learner” model computed above, was not
effective in determining the outcome of a competency of an
individual learner. This indicates that we cannot use one
single aggregated model on all individuals. Models must
consider personalization i.e., we need to build individual
models for each users and aggregate the models based on
common properties.

To do this, we require significant amount of data for each
learner. So, instead of aggregating time spent on resources
at a competency level as total time, we looked at time spent
for each resource and aggregated the data separately for each
learner in the next experiment.

3.2 Experiment 2
In this experiment, we used data from each activity event
and modeled the time spent on each resource mapped to a
particular competency. Using the start and the stop time,
we computed the time spent on each resource and we also
observed that some individuals consumed the same resource
again. Based on this, we formed our second hypothesis: Hu:
There is a large variance among the individual models built
for each learner based on their learning activity data.

We wanted to observe the consumption of resources and the
time spent on those resources, could predict the outcome of
the corresponding competency for that individual learner.
We also wanted to observe if the models built for each indi-
vidual learner had common properties and could be merged
to a single model or there is a large variance among them.

The amount of time spent on each resource is stored as a
vector for each (learner,competency) pair, the length of the
vector is the number of resources and the order of the vector
tells the order in which the resources were consumed. The
length of the vector varied for each (learner,competency)
pair. To build individual learner models and compare them,
we require equal number of features for all pairs of (learner,
competency).

To achieve this we transformed the time spent on resource
vector, to a matrix in the following way. We computed the
range of total time spent on (resource,competency) pair by
all learners. This value varied from 10 seconds to 46000 sec-
onds. After observing this distribution, we decided to have a
time frequency of 100 seconds and computed the cumulative
sum of resources consumed by the learner at each frequency
i.e. 100th second, 200th second etc. We populated 460 time
frequency columns. We arrived at this time frequency value
of 100 seconds by dividing the maximum total time and time
frequency.

For example, if the learner has consumed 2 resources for
a competency code “3”, spending 90 seconds on first re-
source and 170 seconds on second resource then the column
0(time 100) will have the value 1, column 1(time 200) will
have the value 1 as the learner has not finished consuming
the second resource by 200 seconds, column 2(time 300) has
the value 2 and rest of the columns till column 459(time 460)
will have the value 2 indicating that the user consumed max-
imum 2 resources. Fig. 1, shows the subset of the data
passed to the model for a single user, where code refers
to competency code and rest of the columns are the evi-
dences for that competency code for a single learner. The
row containing code value 3, shows the corresponding result
of example mentioned above. The features also includes nor-
malized total time spent on resources and normalized aver-
age time spent on those resources for a particular (compe-
tency, learner) pair.

Figure 1: Data passed to the classifier with cumu-
lative frequency of resources with respect to time,
total time and average time as features.

SVM model with linear kernel was used to classify the data.
Learners who had more than 30 competencies in any course
and with any status (completed or in-progress), were se-
lected for analysis. There were 42 learners who satisfied
that criteria and individual SVM models were built for those
learners. Individual learner’s data was divided into 80-20
split randomly for training and testing respectively. The
models for each learner gave an accuracy between 80% to
100%. The accuracy was calculated from the confusion ma-
trix generated for each individual model according to the
formula mentioned in 3. Each model generated a coefficient
vector of length 462. We also built a single model compris-
ing the activity data all these 42 learners and called this the
“average-model”, as detailed in Experiment 1, for compari-
son.

All the 43 vectors of coefficients for the 43 models popu-
lated were clustered using the K-nearest neighbor clustering
algorithm4 to observe any similarity among these models.

3https://en.wikipedia.org/wiki/Evaluation of binary classifiers
4https://en.wikipedia.org/wiki/K-
nearest neighbors algorithm/
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The Euclidean distance between the data points (models)
was used as a measure to cluster the models. To find the
appropriate number of clusters, Elbow method5 was used
to find the optimal number of clusters. The summation
of distance between that specific cluster against the clus-
ter centroid was computed and plotted for various number
of clusters, between 1 and 43 where 43 was the total num-
ber of models. The graph in Fig. 2 shows the variance in
the sum of the squared distance between clusters against the
number of clusters.

Figure 2: Elbow method showing the variance of
number of clusters and their distances

Using the variance in the Elbow method, we found the opti-
mal number of clusters to be 6. This says that the 43 models
including the average model can be clustered into 6 clusters,
and there are some common properties among these models.

Fig. 3 shows the distribution of 43 different models includ-
ing the average model into 6 different clusters. The blue
point refers to individual learner models and the red point
indicates the “average learner” model.

Figure 3: Distribution of individual learners models
and average model into 6 clusters

We see that the individual models don’t cluster with the
average model. For this dataset, the average model does
not represent any individual learner. This validates our hy-
pothesis that there is large variance among the individual
models built for each learner based on their learning activ-
ity data and hence validates “The Myth of the Average”. It
also shows that we need not build one model for each indi-
vidual which would make it extremely difficult to map new

5https://en.wikipedia.org/wiki/Elbow method (clustering)

learners to their competencies. We find that there are some
common properties among the learners which can be used to
find the best model for each learner. We need to determine
those common properties in the future and provide better
learning experiences to each individual learner.

4. CONCLUSION
We proposed an Evidence Based Competency Model, that
uses data generated during the learning process by learners
to find the outcome of the competency. The experiments
shows that having a single average model can be tuned to
get a higher accuracy, but does not represent any individ-
ual. This presses the need to consider individual learner’s
variance and not rely on statistical averages to map learn-
ers to their competencies. This also says that we cannot
provide each learner the same learning experience and can-
not validate their underlying competencies through uniform
evaluation mechanisms like outcomes. This research shows
initial results towards that direction.
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ABSTRACT 

Intelligent Tutoring Systems for online learning need to design 

their cognitive and student models to analyze every student's 

dynamic knowledge state and factorize the cognitive process for 

solving each online exercise into the latent skill sets. In this paper, 

we present the Automatic Temporal Cognitive (ATC) model, a 

unified and integrated framework to automatically discover a 

multiple-dimensional cognitive model and formulate a student 

model over longitudinal student data. This framework enables us to 

trace the dynamic change of multi-dimensional skills including 

skill improvement and forgetting for the student learning process. 

Moreover, based on the framework, we can automatically build the 

cognitive model through student performance data to describe the 

latent skill vector (aka Q-matrix) for educational content. 

Experimental results confirm that our unsupervised approach is 

better than the traditional method in public datasets.  

Keywords 

Cognitive model; Student model; ATC framework, Skills 

dimension determination. 

1. INTRODUCTION 
Over the past decade, intelligent tutoring becomes increasingly 

important in online education to offer personalized and adaptive 

learning experience for massive scale of students. An essential 

question about building intelligent tutoring systems for online 

education is how to develop the cognitive model of educational 

contents and student model from student response data in online 

education platforms[1]. A typical application scenario is 

personalized learning path recommendation where an intelligent 

tutoring system must infer the latent multi-dimensional skill vectors 

of every student from a temporal sequence of student interactive 

events. It often needs both cognitive model and student model to 

trace dynamic change in a student’s skill and plan the personalized 

learning route. 

Traditionally, the cognitive model and student model of an 

intelligent tutoring system must be designed in multiple steps: First, 

domain experts specify an original cognitive model in the form of 

Q-Matrix[2, 3] through the process of Cognitive Task Analysis 

(CTA)[4]. Second, based on the Q-Matrix that specifies the 

association among latent skills and education contents, researchers 

can design the student model using different kinds of modelling 

frameworks such as IRT[5], Bayesian Knowledge Tracing 

(BKT)[6]. Third, the parameters of the student model must be fitted 

with student response data. The above cycle has its limitations 

because the subjective specification of the Q-matrix may not be 

reliable and could possibly result in insufficient model fitting and 

inaccurate estimation of the latent cognitive skills of students. 

Recently, data-driven methods have been proposed to 

automatically or semi-automatically discover the cognitive models. 

They can be regarded as the further step to validate and refine the 

expert-designed cognitive model. But current methods for 

discovering cognitive models are restricted in that they cannot 

handle longitudinal data. On the other hand, the popular student 

models such as Item Response Theory (IRT) model and Learning 

Factors Analysis (LFA)[7] only evaluate student ability at the 

moment when they take examinations or exercises. They don’t 

consider the dynamic change in student ability with their 

interactions with education contents. Knowledge Tracing (KT) can 

model students' changing knowledge state during their skill 

acquisition process. But the conventional KT model doesn't support 

multi-dimensional skill model and must work with other algorithms 

to perform Q-Matrix discovery.  

In summary, the existing frameworks for cognitive models and 

student models are not well integrated to effectively deal with 

multi-dimensional and longitude learning data generated by 

personalized online learning systems. In this paper, we propose the 

Automatic Temporal Cognitive Tracing framework aiming to build 

the following models from student learning data: (1) dynamic 

multi-dimensional student model with the forgetting factor (2) 

multi-dimensional cognitive model. The student model can 

describe the forgetting factor in the multi-dimensional skill levels 

during the student learning process. The cognitive model can 

automatically discover the skill set (aka Q-matrix) that include the 

latent skill vector for educational content. The ATC framework 

seamlessly integrates both models and enables us to estimate 

dynamic student ability and Q-matrix. The major contributions of 

our paper include: 

(1) Propose a dynamic student model including students’ 
skill acquisition and skill forgetting. 

(2) A fully automatic approach to discovering a cognitive 
model for educational contents. 

The paper is organized as follows: Section II describes the current 

research on student model and cognitive model. Section III 

introduces the automatic temporal cognitive framework in detail. 

In section IV, we introduce the datasets for experiments. Section V 

shows experimental results in different datasets and situations. 

Finally, sections VI gives the conclusion and discusses future work. 
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2. RELATED WORK 

2.1 Conjunctive Factor Model and Automatic 
Cognitive Analysis 

Researchers have introduced performance factor analysis models 

such as Conjunctive Factor Model(CFM) [7] to build student model 

and support automatic cognitive discovery[8]. CFM is essentially a 

parametric IRT model to model the item responses given the latent 

Q-Matrix. Eq(1) defines the probability for student i to get item j 

right, where  𝜃𝑖  represents coefficient for proficiency of student i, 

𝛽  is skill difficulty coefficient vector, 𝛾  is skill learning rate 

coefficient vector and 𝑇𝑖𝑘 is the number of practice opportunities 

for student i to learn the skill k.  

 𝑝𝑖𝑗 = Pr(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝜷, 𝜸) = ∏(
𝑒𝜃𝑖+𝛽𝑘+𝛾𝑘𝑇𝑖𝑘

1 + 𝑒𝜃𝑖+𝛽𝑘+𝛾𝑘𝑇𝑖𝑘
)𝑞𝑗𝑘

𝐾

𝑘=1

 (1) 

The Q-Matrix in the CFM model has to be explicitly defined before 

it can be fitted in learning data. To extend the capability of the CFM, 

Matsuda[8] introduces  a machine learning workflow for automatic 

discovery of skill models from online course data. The framework 

consists of three major steps: feature extraction, cognitive skill 

model construction and model search. The step of feature extraction 

attempts to calculate a candidate Q-matrix using a combination of 

NMF and K-means clustering method. The step of model 

construction and model search work together to make further 

exploration on the skill dimension and find the best Q-matrix and 

student model at the same time. The step of model construction 

proposes new Q-matrix candidate by splitting and merging skills in 

the initial Q-matrix, and the step of model search tries to fit the data 

with the Q-matrix candidate and student model in the form of CFM 

or other model families.  

The enhanced CFM model with cognitive discovery still has its 

limitation. As an extension of classic IRT model, the CFM model 

doesn’t describe the dynamic change of the student proficiency. 

Although its parameters contain the skill learn rate, it doesn’t 

explicitly model the improvement of a student’s skill vectors or the 

forgetting factor in his learning process. 

2.2 Knowledge Tracing and Multiple-Skill 

Extension 
Bayesian Knowledge tracing (BKT) was presented by Corbett and 

Anderson [6]; it uses a Hidden Markov Model (HMM) to track 

students’ knowledge states over time. It divides the target 

knowledge into several skills, and each skill designs several 

assessments. But an issue with the conventional BKT model is that 

it can only track student mastery of single cognitive skill and 

doesn’t support assessment of item difficulty.  

Recent research development on BKT models focus on multiple-

Subskill Extension in BKT modelling. Brenes[9] extended the KT 

model and proposed Dynamic Cognitive Tracing which is a fully 

automatic approach to discover a cognitive model and student 

model of longitudinal student data. In his later work, Gonzalez-

Brenes proposed Feature-Aware Student Knowledge Tracing 

(FAST)[10] to incorporate different skill features, such as subskills, 

problem’s difficulty and student ability as parameters in KT model. 

Each parameter could be expressed in logistic regression for 

modeling the guessing and slipping probability with the skill 

features. Similarly, Yanbo[11] restructures the classic KT model 

using logistic regression over each step’s subskills to model the 

transition probability including learning and forgetting for overall 

knowledge required by the step. All these feature-based extensions 

of BKT must rely upon experts to predefine the skill and subskill 

features without providing any automatic Q-matrix discovery 

method. 

2.3 Item response theory 
Item Response Theory (IRT) is a framework for modeling student 

responses on a set of assessments. The model is used to describe 

the relationship between the proficiency of a student and the 

likelihood of correctly answering a test item. It assumes that student 

proficiency is invariable in a test, and all the test items are 

measuring the same potential trait. In the two-parameter IRT model, 

the probability of the student s correctly answering the question q 

is given by: 

 𝑝𝑠𝑞 = 𝑓 (𝛼𝑞(𝜃𝑠 − 𝛽𝑞)) (2) 

We selected 𝑓(𝑥) = Φ(𝑥) , where Φ(𝑥)  is the cumulative 

distribution function of the standard normal distribution. This 

model is known as the two-parameter ogive model. 

Despite of the recent progress in the research of cognitive modeling 

for ITS, most modeling frameworks haven’t presented an 

integrated and automatic solution that can tackle with the longitude 

student data and accurately describe the temporal development of 

individual students. TABLE I summarizes the status of the major 

proposals in the research community. 

The major objective of the ATC framework is to present a unified 

modelling framework to address the above issue. From TABLE I, 

one can see the framework incorporates multi-dimensional and 

dynamic skill vector as well as the potential forgetting factor in the 

extended IRT system to describe the temporal learning sequence 

from student interaction events with educational contents. 

Moreover, the ATC employs the CFM model and Bayesian 

optimization to quickly identify the dimension range of latent skills, 

and perform its own IRT based statistical inference to calculate the 

optimal skill vectors. 

 

TABLE I Comparison among CFM, KT, CDM and ATC framework 

 
Multi-Dimension 

Skill 

Temporal Skill 

Development 

Modeling Forgetting 

Factor 

Automatic Q-Matrix 

Discovery and Refinement 

CFM Yes Yes No No 

Knowledge Tracing Yes Yes Yes No 

CDM Yes No No Yes, Statistical Inference 

ATC with IRT Yes Yes Yes 
Yes, Dimension Discovery 

+ Statistical Inference 
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3. Automatic Temporal Cognitive Framework 
The ATC framework presents a temporal probabilistic model 

describes dynamic student multi-dimensional skill level and the 

skills required for educational contents. Eq(3-4) represent the IRT 

function based skill embedding that projects a vector of multiple-

dimensional latent skills into the a specific exercise: 

𝑞𝑠𝑖𝑡 =
�⃗⃗� 𝑠𝑡 ∙ �⃗⃗� 𝑖
‖�⃗⃗� 𝑖‖

− ‖�⃗⃗� 𝒊‖ (3) 

𝑝
𝑠𝑖𝑡

= 𝑃𝑟(𝑅𝑠𝑖𝑡 = 1|�⃗� 𝑠𝑡, 𝒍 𝒊, �⃗� 𝑖) = ϕ(𝑞
𝑠𝑖𝑡

) (4) 

Where 

⚫ ϕ  is the logistic function convert a value to a probability 

between zero and one. 

⚫ �⃗⃗� 𝑠𝑡 is the vector which represents the ability of each skill of 

student s at the timestep t. 

⚫ �⃗⃗� 𝑖 is the vector which represents the required skill level of 

exercise i. 

⚫ 𝒍 𝒊 is the vector that represents the ability augmenter that a 

student can obtain after finishing question or education 

content i. 

⚫ 𝑹𝒔𝒊𝒕 is the result of the response of student s on question i of 

the timestep t. 

⚫ 𝒑𝒔𝒊𝒕 is the probability of the student s has a correct response 

on exercise i at timestep t. 

According to Eq(3) and (4) , the probability that the student s gives 

a correct response to the exercise i depends upon his ability �⃗⃗�  and 

the exercise’s required skill level �⃗⃗� . We selected an exercise which 

requires two skills to plot the relationship between the student 

ability vector (�⃗⃗� 𝑠) and the probability of correct response (𝑝
𝑠𝑖

). 

Figure 1 shows that the probability of correct response increases 

along with an increase in each element of the student ability vector. 

The figure also shows that the probability increases more quickly 

with changes in location parallel to the skill2-axis than changes 

parallel to the skill1-axis. The different increase rate corresponds to 

the difference in the �⃗⃗� 𝑖 parameters. 

 

Eq(5-7)define a nonlinear dynamic system for hidden learning 

states of every student. They capture the temporal change between 

consecutive learning states and the skill improvement factor as well 

as the forgetting factor: 

𝜃𝑠(𝑡+1),𝑛~𝑁(𝜇
𝑠(𝑡+1),𝑛, 𝜎

2) (5) 

𝜇𝑠(𝑡+1),𝑛 = (𝜃𝑠𝑡,𝑛 + 𝑙𝑖,𝑛 ∗ ϕ(𝑞𝑠𝑖𝑡)) ∗ 𝑓𝑠𝑡,𝑛 (6) 

𝑓𝑠𝑡,𝑛 = 𝑒𝑥𝑝 {− [
1

1 + 𝜃𝑠𝑡,𝑛
∗ 𝑟 + 𝛽] ∗ Δ𝑡} (7) 

⚫ 𝜽𝒔𝒕,𝒏 means the able of the n-th skill in the dimension of �⃗⃗� 𝑠𝑡. 

⚫ 𝒍𝒊,𝒏 represents the value of the n-th dimension of the vector 𝒍 𝒊. 
⚫ 𝒓 and 𝜷 are two parameters to fit. 

⚫ 𝒇𝒔𝒕,𝒏 is the forget coefficient of student s from timestep t to 

timestep t+1. 

⚫ 𝚫𝒕 is the interval between timestep t and timestep t+1.  

Eq(5) assumes that latent skill 𝜃𝑠(𝑡+1),𝑛at the moment t+1 

follows the gaussian distribution with the mean 𝜇𝑠(𝑡+1),𝑛depending 

upon the nonlinear transformation of  𝜃𝑠𝑡,𝑛 on the previous moment. 

Eq(6-7) defines the transformation function that describes both 

knowledge acquisition and exponential forgetting factor in student 

learning process over the problem-answering sequence. Eq(7) 

indicates the forget coefficient is primarily determined by the 

current skill level of the student s and the time interval between two 

adjacent problem-answering events.  

We estimated the model parameters for the ATC model by 

maximizing the following objective function: 

𝑳(𝛚) = 𝑳𝒐𝒈𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 = ∑ ∑ 𝐥𝐨𝐠𝑷(𝑹|�⃗⃗� 𝒔𝒕, 𝒍 𝒊, �⃗⃗� 𝒊, �⃗� 𝒔𝒕)𝑻𝒔𝓢  (8) 

Where ω is the model parameters, 𝒮 is the collection of all the 

students, 𝑇𝑠 is the collection of all the answer timesteps of student 

s. We use Stan[12] to quickly implement a prototype of the ATC 

model. Stan is a state-of-the-art platform for statistical modeling 

and high-performance statistical computation. It’s easy to specify 

log density functions in Stan’s probabilistic programming language. 

Given the nonlinear nature of the ATC model, it is impossible to 

utilize EM method which is commonly used for linear space state 

models. Therefore, we employed HMC (Hamiltonian Monte Carlo) 

sampling in training the parameters of the ATC model according to 

the maximum likelihood goal. 

4. Experiments 

In our experiments, we choose area under the ROC curve (AUC) as 

the performance metric to measure the discriminative ability of the 

student model. Our experiments compared the following models: 

• Model A: Non-negative Matrix Factorization and 
Conjunctive Factor Model (CFM). We combine both 
models to predict the probability of correct answer. 

• Model B: ATC model without temporal skill improvement 
and forgetting factor. 

• Model C: ATC model without the forgetting factor. 
The experiments include two public datasets[13] and one simulated 
dataset. The public dataset was collected from Open Learning 
Initiative online course of biology from 2012 to 2014 include 5186 
students and 4831 unique steps. We select chapter Cells and Gene 
from the entire dataset. 

1) Dataset Cells: selected from chapter Cells and 
Chromosomes includes 68 students and 34 questions.  

2) Dataset Gene: selected from chapter Gene Expression 
includes 99 students and 27 questions. 

3) Simulated dataset: simulated data generated by model B 

Figure 1 Probability of correct response for an exercise 

with given �⃗⃗� 𝒊( 𝒂𝟏 = 𝟎. 𝟒𝟒𝟕,𝒂𝟐 = 𝟏. 𝟒𝟓𝟗) 
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4.1 Comparison of different models 
The experimental results on the public datasets are summarized in 

TABLE II. It shows that the ATC model achieves the best AUC 

performance and its AUC is 17% higher than that of Model B in the 

dataset Cell. Model C achieves the best AUC and its AUC is 18.8% 

higher than that of Model B in the dataset Gene. It should be noted 

that the Model C without forgetting factor demonstrates better 

performance that the ATC model in the dataset Gene. We compared 

the total interval of two dataset and found that the datasets Gene has 

a shorter interval in the problem-answering sequence. The 

difference in the studying interval may contribute to the strength of 

the impact of the forgetting factor, which could explain why the 

ATC has slightly worse performance that Model C. Moreover, the 

Model A with the combination of Non-negative Matrix 

Factorization and CFM has worse performance than our ATC model 

in both datasets. 

4.2 Comparison in different amount of data 
We compare the performance of our model in different data sizes 

with a changing sequence length and student number with the ATC 

model. Based on the dataset Cell, we run two groups of experiments: 

(1) In the first group of experiments, we change the sequence length 

of every student and keep the constant number of students. We 

choose seven datasets with the data size ranging from 800 to 2800 

(under the same student number). (2) In the second group of 

experiments, we increase the number of student and keep the 

sequence length unchanged. We choose six datasets with the student 

number ranging from 20 to 70. 

Figure 2 plots both experimental results. One can see that the AUC 

performance has an increasing tendency with the increase in the 

sequence length. It usually means that a longer problem-answering 

sequence can demonstrate dynamic of students' skill in a more 

accurate way. Furthermore, the increase in student number may 

slightly affect the performance of the ATC model and in some cases, 

it may even lead to degrade in the AUC performance.  

These findings suggest further investigation should be made about 

the robustness of the ATC model on different lengths of problem-

solving sequences and student number. Note that both factors can 

increase the number of parameters in the ATC model to be trained. 

Thus, more training experiments are needed to avoid possible 

overfitting or underfitting for the increase in complexity of the ATC 

model. Currently, the HMC process of training the ATC model is 

slow due to the large number of the model parameters. We are 

studying more efficient model training method for the ATC model 

to make sure that the model can be comprehensively evaluated in 

different datasets.  

CONCLUSION 
In this paper, we purpose an Automatic Temporal Cognitive model 

to trace student dynamic multidimensional ability and determine 

the related skill sets for educational contents in personalized 

learning system. This model regards the cognitive Q-Matrix as part 

of the model parameters and introduces nonlinear transmission 

functions to define student skill augmentation and forgetting 

factor.  Experimental results confirm that our ATC approach is 

better than the traditional methods such as the combination of Non-

negative Matrix Factorization and CFM. Moreover, the ATC 

model with skill improvement and forgetting factors tend to 

outperform the same multidimensional baseline model without 

these new features. 
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Models Dataset Cells Dataset Gene 

AUC Loglikelihood AUC Loglikelihood 

Model A 0.830 -347.664 0.662 -335.666 

Model B 0.742 -1594.142 0.270 -1162.372 

Model C 0.753 -9199.437 0.867 -4897.249 

ATC model 0.872 -2902.272 0.793 -2322.128 

 

 

 

TABLE II  Prediction performance of ATC and other models 

 
Figure 2 AUC of the ATC model  
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ABSTRACT 

This paper investigates the potential of using an automated system 
for capturing students’ body postures, location, and gestures in a 
makerspace as a means to quantify their affective states. In this 
study, Kinect sensors captured students’ behavior in a fabrication 
lab over period of a 13-weeks semester, recording nearly half a 
million observations from 16 students enrolled in a class. Weekly 
surveys were conducted to serve as a ground truth for the students’ 
affective states. Results from the survey were then analyzed in 
conjunction with the Kinect data to validate the setup of an 
automated system. Our preliminary findings suggest that our multi-
sensor system is able to make a first step toward estimating 
students’ levels of challenge, engagement and frustration. We 
conclude by describing how this kind of automated system provides 
a promising methodology for instrumenting makerspaces and 
supporting student learning in open-ended learning environments. 

Keywords 

Makerspaces, Open-ended Learning Environment, 
Instrumentation, Learning Analytics, Monitoring Tools 

1. INTRODUCTION 
Over the last decade makerspaces have garnered a great deal of 
attention given their potential for student’s success in STEAM 
(Science, Technology, Engineering, Arts, and Mathematics) 
education [5]. The open environment, digital fabrication tools, and 
the community aspect of these spaces result in cultivating a growth 
mindset and creativity, which are often more effective than 
traditional learning experiences. Makerspaces typically involve 
person-to-person interactions and discussions throughout the 
development of an idea, design, and implementation, along with 
learning about modern tools such as 3D printers. More important 
from an educational perspective, those spaces support the 
development of important 21st skills such as problem solving and 
critical thinking.  
A challenge within these largely open-ended learning 
environments, however, is the ability to measure those skills 

quantitatively and assess the effectiveness of pedagogical practices. 
A nascent field of research, Multimodal Learning Analytics 
(MMLA; [3]), proposes to use multimodal sensors to capture fine-
grained information about students’ learning trajectories. The 
ability to capture and track student behaviors can: 1) lead to a better 
understanding of the development of these skills; 2) inform 
instructors and facilitators of student’s behavioral performance; 3) 
provide students with formative assessments; and 4) overall, 
discover new ways of supporting students’ learning in open-ended 
learning environments. 

2. RELATED WORK 
In this section, we provide a rationale for studying the affective 
states of challenge, engagement and frustration from the 
perspective of Flow Theory and review related work on 
Multimodal Learning Analytics.  

2.1 Flow Theory 
Csikszentmihalyi (1990)’s flow theory [6] matches skill level of 
students and given challenge of tasks in order to reveal the affective 
states of students during their learning. 
Since instructors would naturally avoid low challenge tasks that 
will not add value to students’ learning, the concerned affective 
states for our study would only include flow and frustration. Flow 
is a multi-faceted construct that includes factors such as high levels 
of student engagement and distortions in the experience of time. 
The detection of engagement and frustration could be accomplished 
relatively straightforwardly using sensors that read body language 
and facial expression, but the recognition of flow state by sensors 
require further work that goes beyond the intended scope of this 
study. Therefore, for the purpose of this study, student engagement 
is employed as a crude approximation for flow, and student 
frustration is studied to inform instances when the challenge of the 
assigned tasks reaches above the skill level of the students. 

2.2 Multimodal Learning Analytics 
Over the last decade, the rise of the Maker Movement has 
motivated much research towards understanding the effectiveness 
and benefits of incorporating “making” activities in education. As 
research within these complex learning spaces continues, the 
approach of data collection is shifting from manual observation to 
more automated methods enabled by technological advancements 
and capabilities such as multimodal sensing capabilities.  

The field of Multimodal Learning Analytics [3] has gained 
popularity over the last decade as a way to identify meaningful 
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metrics (or multimodal cues; [4]), that can be leveraged to deepen 
our understandings of students’ states in such environments. 
Currently, most of MMLA research has been applied within a 
computerized learning context, controlled experiments (i.e., 
Randomized Control Trials; [1]) or formal learning environments 
(i.e., classrooms). For example, in a hands-on learning activity, 
Schneider & Blikstein (2015) used unsupervised machine learning 
algorithms on Kinect data and identified prototypical body postures 
indicating cycles of cognition and action - which were positively 
correlated with participants learning gains [9]. Using non-invasive 
methods, such as the Kinect sensor, to track a person’s motion 
allows for practical implementation of assessing individuals’ 
affective states, while preserving a natural environment.  

Given that non-verbal cues such as body postures hold important 
information about mental states [8], this could allow motion 
tracking sensors to analyze students’ affective states, such as 
perceived challenge of the tasks, levels of engagement and 
frustration. To our knowledge, the fusion of MMLA and the 
makerspace development is currently underexplored. 

3. OVERVIEW 

3.1 Course Curriculum 
Over the course of fifteen weeks, the research team collected 
motion sensor data and survey responses of sixteen graduate 
students enrolled in a hands-on digital fabrication course. The 
course aimed to teach students the usage of modern fabrication 
technologies and their application to educational contexts. Students 
were responsible for implementing prototyping designs and 
building educational toolkits with the use these fabrication tools 
and associated software. Students were tasked with weekly 
assignments, either independently or in pairs, and asked to record 
their experiences after each assignment in a weekly survey. 

3.2 Makerspace Setup 
The makerspace was equipped with two Kinect v2 sensors to 
capture human motion within the space. The sensors were placed 
on opposing ends of the makerspace lab. Both sensors were 
connected to a Django server, where the Kinect data was stored. 

3.3 Research Questions 
• RQ1: At the group level, does this system accurately 

measure the levels of challenge, engagement and frustration of the 
class in the makerspace? 

• RQ2: Can we detect individuals’ levels of challenge, 
engagement, and frustration using the Kinect data? 

4. METHODS 
4.1 Survey Data 
The survey data provides a ground truth to our analysis. In defining 
the survey, we leveraged prior studies conducted on interactions 
and learning in makerspaces, as well as surveys used by schools, 
universities and public libraries to assess the impact of making on 
students’ learning. Making in fabrication labs has been described 
as offering “visceral design experiences”, allowing for 
unprecedented levels of frustration, engagement and excitement 
experienced by students [2]. Thus, understanding participants’ 
level of frustration, challenge, or even enjoyment of making 
assignments is key to validating such claims.  

4.2 Kinect Data 
We used two Kinect sensors to collect motion and posture data in 
the makerspace. Motion detection and tracking was possible by the 
embedded IR sensor within each Kinect sensors. For this study, the 
collected Kinect data included upper limb joints and binary values 
(e.g. left hand raised).   

Cleaning and Labeling Kinect Data: In order to explore levels of 
frustration and engagement for an individual (RQ2), we needed to 
label the bodies in the room with the corresponding student. We 
collected face images generated by the Kinect sensors to solve the 
issue of person re-identification. To accomplish this labeling, we 
used an open-source face recognition algorithm: OpenFace, which 
produced an accuracy of 88% on average.  

Standardizing the Kinect Data: The first step of pre-processing the 
joint data was to translate all 3-dimensional coordinate points to a 
reference system. Further data cleaning was facilitated using a 
video generation script that rendered videos of the makerspace next 
to a top-down mapping of the makerspace (Fig. 1).  

 
 

Deduplicating the Kinect Data: Further data pre-processing 
consisted of deduplicating skeletons referencing the same person in 
the makerspace. Detecting duplicates was accomplished by finding 
head joint overlap within a given timeframe. The duplicate 
skeletons were then averaged or discarded given the similarity of 
the skeletons and location in respect to the Kinect sensors. 

Generating features from the Kinect Data: Building on prior work 
[1; 7], we generated features from the Kinect data to capture 
students’ levels of challenge, engagement and frustration. Based on 
the relative positioning of each skeletal joint, it is possible to 
generate meaningful features that can provide us with a basic 
understanding of the participants’ body language (see Table 1):  

Table 1. A few exemplar features generated from Kinect Data 

Features No. of 
features Description 

Joint 
Movement 7 Average of joint displacement 

between timeframes 
Joint Angles 4 Average of joint angle 

Lean 2 
Average of body lean. Lean 

Left/Right or toward (forward) / 
away (back) from Kinect #1 

Self - Touch 8 Average proximity between different 
joints vs. head; and joints vs. hand 

 

In summary, the overall approach involved 1) collecting and 
cleaning the Kinect data, 2) generating features from skeletal joints, 

Figure 1. View of Kinect skeletons in space 
 
. 
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3) detecting body language using features, and 4) mapping affective 
states of students. 

5. RESULTS 
RQ1:  Can we detect levels of challenge, engagement and 
frustration of the class? 
Fig. 2 shows a summary of the survey responses over all weeks, 
which indicates a parallel trend between levels of challenge and 
frustration, while levels of engagement consistently over a rating of 
4. Because there seems to be a ceiling effect on the engagement 
measure, we focus on the detecting levels of frustration and 
challenge. Levels of challenge and frustration were very similar to 
each other (Fig. 2), which suggests that students experienced both 
at the same time. After generating correlation matrices between the 
survey and Kinect data, our results show that levels of challenge 
and frustration are highly correlated with body leaning and certain 
self-touch metrics (Fig. 3). On the other hand, aggregate levels of 
engagement did not show significant correlations with any of the 
generated Kinect metrics.  

 

 

 

 

 

 

 

 

In order to further determine the key Kinect features that are 
associated with levels of challenge, engagement and frustration, we 
used decision trees to find the optimal combination of predictors. 
We focus on students’ levels of frustration, since it overlaps with 
levels of challenge, and engagement suffered from a ceiling effect. 
We split the dataset into four quartiles and use a decision tree 
classifier to predict if the class was not frustrated (1st quartile), 
somewhat frustrated (2nd quartile), mildly frustrated (3rd quartile) 
or highly frustrated (4th quartile). Fig. 4 shows the resulting 
decision tree:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A decision tree used to predict levels of frustration. 

Not surprisingly, the classifier is able to perfectly predict levels of 
frustration for each week of the semester. What interests us, 
however, is which combination of features is used to make this 
prediction. As found above, “hand to shoulder” was able separate 
the 1st quartile (no frustration) from the other quartiles. “Hand 
raised” separated the 4th quartile (high frustration) from the other 
quartiles. Finally, the time spent in the makerspace separated the 
2nd and the 3rd quartiles (somewhat / mildly frustrated).  

RQ2: Can we detect levels of challenge, engagement and 
frustration of individual students? 
The quantification of this metric is similar to that of RQ1, however, 
rather than aggregate measures, individual measures were analyzed 
after we identified Kinect data using a face recognition algorithm. 
Table 3 describes significant correlations between survey responses 
and Kinect metrics (defined in Table 1) for each individual. Table 
3 shows that students express levels of engagement, frustration and 
challenge differently, and Table 2 summarizes the patterns found in 
Table 3. While some of these indicators are overall positively 
correlated with our dependent measures (e.g., hand movement / 
agitation, time spent in the makerspace) or negatively correlated 
with them (e.g., head to elbow, head to shoulder, head to hand), 
other indicators can be negatively correlated for some students and 
positively correlated for others (for example, shoulder angle is 
positively associated with frustration for Zoe and negatively 
correlated with frustration for Ann).  

Table 2. Summary of correlation patterns found between 
individuals 

 

 Positive Negative 

Challenge 

Total time spent in the 
space, elbow and 
shoulder agitation, 
hand-to-elbow pose, 
and body leaning 

Shoulder angle, head-
to-elbow, head-to-
shoulder, and head-to-
hand 

Frustration Raising the hand Head-to-elbow and 
elbow angle 

Engagement Hand agitation and 
raising the hand Body leaning 

 
 

 

 

Figure 2. Survey summary of aggregate levels of 
engagement, challenge, and frustration 

 
. 

 
 

Figure 3. Survey and Kinect data showing that levels of 
engagement, challenge, and frustration are significantly 
correlated with self-touch metrics * p≤0.01; ** p≤0.001. 

 
. 

 
 

hand to shoulder ≤ 20.764
gini = 0.74

samples = 10
value = [3, 2, 2, 3]
class = 1st quartile

Hand Raised ≤ 14.112
gini = 0.653
samples = 7

value = [0, 2, 2, 3]
class = 4rth quartile

True

gini = 0.0
samples = 3

value = [3, 0, 0, 0]
class = 1st quartile

False

Actual Time ≤ 232.643
gini = 0.5

samples = 4
value = [0, 2, 2, 0]
class = 2nd quartile

gini = 0.0
samples = 3

value = [0, 0, 0, 3]
class = 4rth quartile

gini = 0.0
samples = 2

value = [0, 2, 0, 0]
class = 2nd quartile

gini = 0.0
samples = 2

value = [0, 0, 2, 0]
class = 3rd quartile
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Table 3. Cells show significant correlations for levels of 
frustration (F), challenge (C) and engagement (E) for every 
student. Orange: Students who expressed mid to high levels in 
F & C, but shared low levels of E; Red: Students who expressed 
high levels in all F, C & E. 

 Dan Ken Sue Bea Ron Zoe Ann Amy Mia 
actual 
time 

  0.87C   0.76F 
0.79C 

   

agitation 
elbow, 

shoulder 

  0.72C 0.98E  0.88F 
0.75C 

   

agitation 
hand 

  0.74C 
0.96E 

0.96E  0.89F 
0.80C 

   

agitation 
head 

   0.99E  0.91F 
0.77C 

   

angle 
elbow 

 -0.77E    0.77F 
0.72C 

-0.74F 
-0.81C 

  

angle 
shoulder 

 -0.77E    0.77F 
0.72C 

-0.78F 
-0.62C 

-0.72C  

angle 
head 

 0.75F 
0.73C 
-0.91E 

       

hand-to- 
elbow 

     -0.75C 0.69C 
-0.85E 

  

hand-to-
shoulder 

0.70E      -0.71F  -0.78F 

head-to-
elbow 

 0.78E   -0.66C  -0.78F 
-0.78C 

-0.75C 0.74C 

head-to-
shoulder 

    -0.78C  -0.70F 
-0.68C 

-0.81C 0.75C 

head-to- 
hand 

-0.64C   -0.89C   -0.77F 
-0.76C 

 -0.71E 

lean 
left/right 

0.74C    -0.66F 
-0.67C 

0.87F 
0.88C 

   

lean 
forward/

back 

 -0.85E    -0.91E    

Raised 
hand 

    -0.71E 0.87F 
0.71C 

  0.93E 

 
6. DISCUSSION 
Our data indicates that the use of motion sensors can potentially 
capture affective states in open-ended learning environments. Our 
findings provide some initial evidence that high correlation 
between levels of challenges and frustration is a signal that the 
course assignments may be above the skill levels of students; and 
frustration of the entire class can be approximated using self-touch 
gestures. Additionally, levels of engagement were high throughout 
the semester, which is not surprising given the nature of the class. 
Thus, it was difficult to find indicators of engagement from the 
Kinect data. Furthermore, these indicators vary across students. In 
sum, the correlation between the survey measures and the Kinect 
data suggest that this multi-sensor system can detect key affective 
states to inform students’ learning trajectories within an open-
environment such as the makerspace.  

Our preliminary findings suggest that our multi-sensor system is 
able to make a first step toward estimating students’ levels of 
frustration via affective states. Another contribution of this paper is 
to highlight the role of individual differences when using this kind 
of monitoring tools. For a multimodal sensor system to be accurate 
and successful in supporting teachers and students, it has to take 
into account these individual differences in ways of experiencing 
the space. 

7. CONCLUSION 
Because makerspaces have gained so much popularity over the last 
decade, it is becoming increasingly important to design rigorous 
ways of studying them. The multi-sensor system described in this 
paper makes a first step toward an effective semi-automated 
methodology for instrumenting makerspaces. While these findings 
rely on simple measures, they pave the way for more complex data 
collection and data analysis techniques. 

The implementation of such multi-sensor systems in open-ended 
learning spaces has the potential to 1) attain a better understanding 
of pertinent skill development; 2) provide students with formative 
assessments; 3) inform instructors and facilitators of student’s 
behavioral performance; and 4) discover new ways of supporting a 
student’s learning overall. As our understanding of a classroom is 
constantly being redefined, Multimodal Learning Analytics [3] can 
certainly assist with optimizing the use of these evolving and varied 
learning environments. 
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ABSTRACT 

Rich streams of fine-grained activity data are generated by many 

game-based learning environments. These data can be mined 

unobtrusively to assess student learning and potentially foster 

tailored feedback and scaffolding. Stealth assessment frameworks 

are more commonly seen in constrained virtual environments with 

clear goals and markers of progress; these diagnostic/formative-

feedback strategies are more difficult to implement in open-ended 

environments with a larger range of potential activities and more 

variation in problem-solving strategies. This study investigates the 

potential for using a long short-term memory network (LSTM)-

based model to enable stealth assessment in an immersive virtual 

world for learning. We investigate how well these temporally-

sensitive models can predict learning gains on a pre-post survey, as 

well as predicting the quality of a student-generated concept map. 

This method is applied to log file data from a middle school science 

curriculum based on an open-ended immersive virtual environment. 

Results indicate that the LSTM-based model outperforms support 

vector machine and random forest models and can accurately 

predict performance without knowing pre-scores. This deep 

learning approach is promising for stealth assessment and 

formative feedback in open-ended virtual environments. 

Keywords 

Stealth assessment, immersive virtual world, deep learning, 

recurrent neural network, LSTM. 

1. INTRODUCTION 
Technology-enhanced learning opportunities through game-based 

learning and assessment are becoming more common in 

classrooms, and these novel forms of teaching require a rethinking 

of how to assess student learning across digital and physical spaces 

[1]. With an increased research focus on how game-based learning 

can promote 21st century skills [2], scholars and developers of 

virtual environments are more frequently considering how difficult-

to-measure constructs like problem solving and scientific reasoning 

can be taught and evaluated. Structured simulations have been used 

for decades in science to model and explore difficult to perceive or 

manipulate phenomena [3,4] but these tools are typically isolated 

as specific laboratory experiments and are not embedded in 

authentic frameworks. More complex and less structured 

environments designed for inquiry learning offer chances for social 

interaction and participation in the practices of science [5]. 

Unlike traditional summative assessment of student work, stealth 

assessment can be employed in virtual settings to diagnostically 

gauge student competency across a variety of constructs without 

interrupting immersion and learning [6]. Within the framework of 

evidence-centered design, virtual tasks are designed to generate 

logged actions that can act as evidence for a competency model of a 

certain construct [7]. This type of formative assessment has been 

applied to a variety of epistemic games as well as games for 

learning [8] and can provide a foundation for developing feedback 

mechanisms and dynamic scaffolding to students [9]. This 

approach to assessment and feedback generation encounters 

challenges when applied to open-ended virtual environments. 

This study presents several ways of using recurrent neural networks 

trained on student logged actions over time in an open-ended 

virtual environment for learning in order to predict student learning 

across several constructs as well as the quality of a student-

generated concept map. The effects of temporality in the data and 

the impact of including pre-survey measures are explored. 

2. LITERATURE REVIEW 
Well-designed educational games and computer-based simulations 

engage and excite learners while offering a chance to interact with a 

dynamic virtual world [10]. Virtual environments have been used 

effectively in science education to foster inquiry and learning not 

only of content, but also of the fundamental frameworks and 

practices of science [13]. Game-driven intelligent tutoring systems 

and game-based assessments have driven the field to consider the 

role games and assessments have in case-based teaching [14], how 

higher-order inquiry skills can be assessed in science [15], and how 

traditional psychometrical considerations do or do not apply to 

these new tools [16]. 

Stealth assessment and educational data mining of virtual worlds 

have been applied successfully to a variety of science-oriented 

games and curricula. In-game actions of students correlated 

significantly with pre-post content assessments [17]. Other work 

explored how tool use and completion of specific content generates 

multiple potential pathways students take in successfully 

completing tasks [9]. Determining implicit understanding of 

science concepts based on observed strategic moves in game-based 

assessments is also possible, although it still typically requires 

significant human coding [19]. 
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More researchers are exploring the applications of deep learning 

techniques to stealth assessment. Min et al. proposed the 

DeepStealth framework, which showed stacked denoising 

autoencoders could significantly outperform traditional machine 

learning methods in predicting student gains during a game-based 

learning curriculum [20]. LSTM-based models seem well-suited to 

the task of stealth assessment, outperforming comparable models 

in stealth assessment with no hand-engineering of features [21]. 

These models can also be combined with unsupervised learning 

techniques to identify problem-solving behaviors in learners and to 

predict learning gains [4]. 

Many of these techniques, however, do not work for more open-

ended environments. Akram et al. note that their clustering 

approach, “is not appropriate for analyzing ill-defined problems 

where players are not bound to certain actions” [4]. In less strictly-

defined learning environments, there is no set series of challenges 

to tackle or sub-goals to accomplish in service of a defined goal. 

Instead, users are free to revisit and repeat aspects of the world, do 

things in whatever order they see fit, and generally proceed in more 

erratic ways. 

3. RESEARCH QUESTIONS 
This study attempts to answer the following research questions: 

1. Can team learning gains in the EcoXPT curriculum be 

accurately predicted from their logged trace actions? 

2. What impact do the survey features have on the ability to 

predict learning gains? 

3. How important is the temporality of data for the LSTM-

based models? 

4. Can the quality of teams’ final concept maps be accurately 

predicted from their logged trace actions? 

4. ECOXPT CURRICULUM 

4.1 Overview 
The EcoXPT virtual world is the foundation of a twelve-day 

ecosystem science curriculum designed for use in middle school 

science classes [12]. Students work in small teams (2-3 students 

with one device) to explore a virtual pond ecosystem and its 

watershed, talk to non-player characters in the virtual world, collect 

data about water quality, and conduct authentic experiments. This 

inquiry-based curriculum teaches ecosystems science, scientific 

inquiry, and complex causality. There are no specific quests given 

or sub-tasks assigned, and no one “correct” answer is expected 

from teams. Many static scaffolds are built into the virtual world, 

but feedback is not based on the teams’ actions. 

4.2 Dataset 
The data for this study was collected as part of two larger studies 

comparing EcoXPT to an earlier immersive world-based 

curriculum developed by our team. After cleaning, logs from 320 

teams of students from 16 different teachers were analyzed. All 

schools in this sample are urban/suburban public middle schools 

located in the northeastern United States. Logged records of 

student actions containing no identifiable information were stored 

during every session in a PostgreSQL database. 

During this study, participating students completed a pre-post 

survey with six constructs: affective dimensions, ecosystem science 

content, understanding of causality, correlation versus causality, 

experimental methods, and epistemology. As a final deliverable 

and representation of each team’s conclusive understanding of the 

complex causal web of interactions that lead to the fish dying, a 

causal concept map tool is used to show how factors in the 

ecosystem affect each other. Students drag nodes onto a board and 

connect the nodes with arrows indicating the direction of causation. 

Prior work has automatically analyzed student concept maps to 

evaluate overall structure, inclusion of correct and incorrect claims, 

and the types of evidence used by claim [11].  

5. METHODS 
Our main aim is to evaluate how well teams’ in-world actions can 

predict gains on our surveys as well as the quality of their concept 

maps. These logged actions contain meaningful temporal 

relationships, as these series of interactions represent problem-

solving and exploratory strategies teams employed during the 

curriculum. Like other recent work on modeling temporal 

dependencies in log file data, we use a classifier model based on a 

LSTM. We also utilized more traditional classifiers that do not 

account for the temporal relationships in our data: a support vector 

machine (SVM) and a random forest (RF) model. In order to move 

beyond pre-post assessment and towards stealth assessment, 

several different versions of our features were used. One version 

contained only pre-test information, the second contained only 

logged actions, and a third feature set contained both. This allowed 

us to estimate the importance of the temporal dependencies the 

LSTM-based model leverages and showed how much more 

predictive power those models afford.  

5.1 Data Pre-processing 
This paper focuses on gains in three of the six total constructs: 

ecosystem science content, understanding causality, and 

experimental methods. Students completed the surveys as 

individuals, so average team pre- and post-scores were calculated 

for all teams in the study. As done in [4], survey performance was 

divided into low, medium, and high performers by setting 

thresholds at tertile values. This creates roughly balanced classes 

and allows simple interpretation of all survey constructs. Team 

concept maps were scored for accuracy according to a rubric 

designed by an ecosystem science expert [11] that separates claims 

made by students into core claims essential for understanding the 

complex causality of the ecosystem, tangentially related claims, and 

incorrect claims.  

To reduce the dimensionality of the data, we binned our 68 events 

into six coarser-grained meta-categories that encompassed the 

range of different activity types available in the EcoXPT virtual 

world [18]: explore, collect, analyze, experiment, hypothesize, and 

tutorial. After classification, these categories were one-hot encoded. 

Combined with one-hot encoded tertile assignments for student 

pre-scores on the survey constructs, this resulted in nine features 

for use in classification. For the random forest and support vector 

machine models, cumulative counts of the one-hot encoded meta-

categories were calculated. Each team thus had one observation of 

nine features. The LSTM model uses a three-dimensional tensor 

with dimensions of [samples, time steps, features]. 

5.2 Classifiers 
We utilized the sci-kit learn package for Python to train random 

forest and SVM classifiers on our data and Keras for the LSTM-

based model. Two-thirds of our teams were randomly selected to 
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act as a training set, while the remaining third of teams act as the 

test set. 5-fold cross-validation was used to tune hyperparameters. 

As a baseline, the most common label for all classes for each 

survey or concept map was assigned to all teams. Grid search with 

5-fold cross-validation was used to optimize the regularization 

parameter of the SVM model for each of our feature sets. As with 

the SVM model, grid search with 5-fold cross-validation was used 

to optimize the number of trees used.  

Due to the lengthy training time of recurrent neural networks, 

LSTM hyperparameters were chosen initially based on those from 

similar literature [21, 4] then tuned by hand. Our final LSTM-

based model was kept intentionally simple to reduce overfitting on 

a small sample of team logs. A single bidirectional long short-term 

memory layer with three neurons was used along with a dropout of 

0.75 to both the input and recurrent connections. This layer output 

to a fully connected layer with a softmax activation that made the 

class assignments. The model utilized the Adam optimizer with a 

categorical cross-entropy loss function. The models could train for 

up to a maximum of 100 epochs. 

6. RESULTS 

6.1 Predicting Post Scores 
The accuracies of our baseline classifier as well as our three 

classification models for three survey constructs are summarized in 

Table 1. The highest accuracy for each construct is in bold.  

Table 1. Accuracy of classifiers when predicting post-score on 

three survey constructs. 

Classifier Content Causality Methods 

Baseline 36.1% 35.1% 38.1% 

SVM 63.2% 73.4% 69.4% 

RF 61.2% 75.5% 68.4% 

LSTM 68.8% 78.6% 73.5% 

 

It is likely that this dataset’s use of pre-determined meta-

classifications is more likely to yield higher accuracy for all models 

as this feature engineering step reduces dimensionality and imparts 

domain knowledge in the feature set. We attempted to use less-

constrained feature sets as inputs for the LSTM-based models but 

issues of overfitting, training time, and limited memory capacity 

were limitations for the current analyses.  

6.2 Importance of Survey Features 
We investigated the effectiveness of using solely our logged user 

activities by constructing a partial feature set that omitted team 

pre-survey data. The performance of our LSTM-based model on 

both feature sets is shown in Table 2. 

Table 2. Performance of LSTM-based model when predicting 

content post-score with and without pre-score information. 

Features Accuracy Precision Recall F1 Score 

Only logs 50.5% 0.255 0.505 0.339 

Combined 68.8% 0.742 0.687 0.637 

 

The inclusion of the pre-survey performance features improves 

model accuracy by roughly 17%. This indicates that a large amount 

of predictive power in the model comes from the logged features. 

6.3 Predicting Concept Map Quality 
Using the quality of student-generated concept maps as a target 

variable allows us to use solely data from the virtual world as both 

target and predictor variables. The performance of our three 

classifiers is reported in Table 3. 

Table 3. Performance of classifiers when predicting concept 

map quality. 

Features Accuracy Precision Recall F1 Score 

SVM 37.9% 0.392 0.379 0.371 

RF 43.9% 0.462 0.455 0.442 

LSTM 48.5% 0.339 0.485 0.399 

 

6.4 Importance of Temporality 
In order to assess the importance of the order of logged actions for 

making accurate predictions, a new deep learning model was fit 

that did not have any recurrent layers and where connections do not 

form a cycle to learn from previous sequences. A feedforward 

neural network consisting of two fully connected layers with six 

hidden units each and “relu” activation was trained to accomplish 

the same concept map quality prediction task described in Section 

6.3. This model’s accuracy was able to match that of the random 

forest (43.9%) but could not match that of the LSTM network. 

7. DISCUSSION 
The LSTM-based models consistently outperform their the highest 

performing SVM and RF models as well as the majority class 

baseline. These performance differences are like those reported in 

similar deep learning stealth assessment models [21]. While a 

small amount of feature engineering based on expert content 

knowledge is done here to reduce dimensionality of the feature set, 

automated methods of doing so in the future could remove even 

this barrier to fully automatic stealth assessment of open-world 

environments. These classifications can act as formative 

assessments for teachers to direct their attention during 

implementation of the authentic scientific inquiry curriculum to 

students who most need help. Additionally, fail-soft interventions 

could be included in the program itself that trigger based on 

patterns in the longitudinal record of teams’ actions.  

Our small sample size might lead to low accuracy. Our current 

analysis also ignores the role of the class and teacher that teams are 

assigned to. Ongoing work in our group on teacher fidelity of 

implementation shows that teachers vary significantly in the 

amount and quality of support offered to their classes. Our current 

concept map scoring metric is a work-in-progress, and we may be 

able to triangulate our concept map scoring methods with observed 

learning gains to ensure that our dependent variable is an accurate 

representation of team understanding of causality.  

The techniques presented here are a first step toward applying deep 

learning stealth assessment techniques to an open-world immersive 

virtual environment for learning. Future work will take a more fine-

grained look at logged events with a focus on exploring how 

actions within the different experimental tools might afford a better 

assessment of student understanding of causality. Employing 

concept coding strategies via unsupervised methods to classify 

different types of maps may allow for more automation and 

increased generalizability of this method. Teams enter free 

response text as reasoning to justify their claims in the concept map 

and these data have not yet been analyzed. Natural language 
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processing techniques may lead to a deeper understanding of how 

teams use causal reasoning when making claims. 

8. CONCLUSION 
This study successfully applied deep learning techniques from 

games for learning literature to open-ended environments for 

learning. Using data collected from several implementations of a 

multi-week virtual environment-based curriculum, we evaluated 

several popular classifiers in the educational data mining literature 

and showed that a LSTM-based model consistently outperformed 

them. These models can operate unobtrusively while teams make 

their way through the curriculum. Classifications regarding the 

capabilities of teams across several different constructs can inform 

interventions administered directly through the virtual world or flag 

certain teams for the classroom teacher to follow up with. Future 

work will involve further optimization and regularizations of the 

model to improve performance as well as training the assessor on 

other versions of the logfile data with different grain sizes. 

9. ACKNOWLEDGEMENTS 
This work is supported by the National Science Foundation 

through Grant 1416781 and the Cheng Yu Tung Research 

Innovation Fund. The opinions expressed are those of the authors 

and do not represent views of the National Science Foundation. 

10. REFERENCES 
[1] Crisp, G.T., 2014. Assessment in next generation learning 

spaces. In The Future of Learning and Teaching in Next 

Generation Learning Spaces, 85-100. Emerald Group 

Publishing Limited. 

[2] Qian, M. and Clark, K.R., 2016. Game-based Learning and 

21st century skills: A review of recent research. Computers in 

Human Behavior, 63, 50-58. 

[3] Wieman, C.E., Adams, W.K. and Perkins, K.K., 2008. PhET: 

Simulations that enhance learning. Science, 322, 682-683. 

[4] Akram, B., Mott, B., Min, W., Boyer, K.E., Wiebe, E. and 

Lester, J., 2018. Improving Stealth Assessment in Game-

based Learning with LSTM-based Analytics. In K.E. Boyer & 

M. Yudelson (Eds.), Proceedings of the 11th International 

Conference on Educational Data Mining, 208 – 218. 

[5] Barab, S.A., Sadler, T.D., Heiselt, C., Hickey, D. and Zuiker, 

S., 2007. Relating narrative, inquiry, and inscriptions: 

Supporting consequential play. Journal of science education 

and technology, 16(1), 59-82.  

[6] Shute, V.J., 2011. Stealth assessment in computer-based 

games to support learning. Computer Games and 

Instruction, 55(2), 503-524. 

[7] Mislevy, R.J., Almond, R.G. and Lukas, J.F., 2003. A brief 

introduction to evidence‐centered design. ETS Research 

Report Series, 1-29. 

[8] Rupp, A.A., Gushta, M., Mislevy, R.J. and Shaffer, D.W., 

2010. Evidence-centered design of epistemic games: 

Measurement principles for complex learning 

environments. The Journal of Technology, Learning and 

Assessment, 8(4). 

[9] M. Cheng, L. Rosenheck, C. Lin, and E. Klopfer. 2017. 

Analyzing gameplay data to inform feedback loops in the 

Radix Endeavor. Computers & Education, 111, 60–73. 

[10] Squire, K., 2011. Video games and learning: Teaching and 

participatory culture in the digital age. New York, NY: 

Teachers College Print. 

[11] Reilly, J., Kamarainen, A., Metcalf, S., Dede, C. and Grotzer, 

T. 2019. The Importance of Time and Sequence on Learning 

in Mobile Augmented Reality. Paper presented at the 92nd 

Annual International Conference of NARST. 

[12] Dede, C., Grotzer, T.A., Kamarainen, A. and Metcalf, S., 

2017. EcoXPT: Designing for deeper learning through 

experimentation in an immersive virtual ecosystem. Journal 

of Educational Technology & Society, 20(4), 166-178. 

[13] Nelson, B. C., Kim, Y., Foshee, C., & Slack, K. (2014). 

Visual signaling in virtual world-based assessments: The 

SAVE Science project. Information Sciences, 264, 32-40. 

[14] Gómez-Martín, M.A., Gómez-Martín, P.P. and González-

Calero, P.A., 2004, September. Game-driven intelligent 

tutoring systems. In International Conference on 

Entertainment Computing, 108-113.  

[15] Clarke-Midura, J. and Dede, C. 2010. Assessment, 

technology, and change. Journal of Research on Technology 

in Education, 42(3), 309-328. 

[16] Mislevy, R.J., Oranje, A., Bauer, M.I., von Davier, A.A., Hao, 

J., Corrigan, S., Hoffman, E., DiCerbo, K. and John, M., 

2014. Psychometric considerations in game-based assessment. 

In Technology and Testing: Improving Educational and 

Psychological Measurement. 

[17] Shute, V.J., Ventura, M. and Kim, Y.J., 2013. Assessment 

and learning of qualitative physics in newton's 

playground. The Journal of Educational Research, 106(6), 

423-430. 

[18] Reilly, J. and Dede, C. 2019. Differences in Student 

Trajectories via Filtered Time Series Analysis in an Immersive 

Virtual World. In Proceedings of the 9th International 

Conference on Learning Analytics & Knowledge, 130-134. 

[19] E. Rowe, R. Baker, J. Asbell-Clarke, E. Kasman, and W. 

Hawkins. 2014. Building automated detectors of gameplay 

strategies to measure implicit science learning. In Proceedings 

of the 7th International Conference on Educational Data 

Mining, 337-338. 

[20] Min, W., Frankosky, M.H., Mott, B.W., Rowe, J.P., Wiebe, 

E., Boyer, K.E. and Lester, J.C., 2015, June. DeepStealth: 

leveraging deep learning models for stealth assessment in 

game-based learning environments. In International 

Conference on Artificial Intelligence in Education, 277-286. 

[21] Min, W., Frankosky, M.H., Mott, B.W., Wiebe, E.N., Boyer, 

K.E. and Lester, J.C., 2017, June. Inducing stealth assessors 

from game interaction data. In International Conference on 

Artificial Intelligence in Education, 212-223. 

 

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 646



Balancing Student Success and Inferring Personalized
Effects in Dynamic Experiments

Hammad Shaikh
University of Toronto

hammy.shaikh@mail.utoronto.ca

Arghavan Modiri
University of Toronto

modiri.arghavan@gmail.com

Joseph Jay Williams
University of Toronto

williams@cs.toronto.edu

Anna N. Rafferty
Carleton College

arafferty@carleton.edu

ABSTRACT
Randomized controlled trials (RCTs) can be embedded in
educational technologies to evaluate how interventions affect
student outcomes and how effectiveness varies with charac-
teristics like prior knowledge. But RCTs often assign many
students to ineffective conditions. Adaptive algorithms like
contextual multi-armed bandits (MABs) could change how
students are assigned to conditions over time, offering the
potential to both evaluate effectiveness for subgroups of stu-
dents and direct more students to interventions that are ef-
fective for them. We use simulations to compare contextual
MABs to traditional RCTs and non-contextual MABs. Con-
textual MABs improve outcomes for each subgroup; in con-
trast, non-contextual MABs may help one group of students,
such as those with high prior knowledge, while hurting an-
other. Because both MAB algorithms adaptively assign con-
ditions based on prior students’ results, both recover biased
estimates of condition effectiveness. However data collected
from a contextual MAB is still nearly as good for inferring
the optimal assignment policy as from an RCT.

1. INTRODUCTION
Randomized controlled trials (RCTs, sometimes known as
A/B testing in software) can identify both how effective an
intervention is overall and whether its effectiveness varies
systematically based on individual characteristics of stu-
dents (as in, e.g., [2]). Yet, RCTs may assign many stu-
dents to ineffective conditions. Adaptive experiments can
help by adjusting condition assignments based on their effec-
tiveness for previous students. Multi-armed bandit (MAB)
algorithms have been explored as a way of conducting such
adaptive experiments in educational technologies [8, 11].

We explore the impact of MAB algorithms when there are
participant-treatment interactions with different optimal con-

ditions for subgroups of learners. For instance, students with
lower prior knowledge benefit more from concrete versus ab-
stract examples, while the opposite holds for students with
higher prior knowledge [2]. Contextual MABs have the po-
tential to learn how effective conditions are for individu-
als [7]. These algorithms estimate condition effectiveness as
a function of features, such as prior knowledge. We propose
using contextual MABs to conduct personalized experiments
that assign students to conditions based on their character-
istics and simultaneously estimate how these characteristics
impact the (differential) effectiveness of the conditions.

However, collecting data via contextual MABs has the po-
tential to introduce biases: unlike in an RCT, condition as-
signment is dependent on an individual’s characteristics and
the assignments and outcomes of previous students. When
conducting experiments using non-contextual MAB algo-
rithms, the latter feature can bias the measured effectiveness
of conditions, skewing the results of hypothesis tests [5, 9].

In this paper, we explore the tradeoff between maximizing
how many students receive the most effective version of a
technology for their individual learning needs and estimat-
ing the effectiveness of different versions of a technology. Us-
ing simulations, we compare three ways to assign students
to experimental conditions, such as the different versions of
an educational technology: uniform random assignment as
in a typical RCT, a non-contextual MAB as in [11], and a
contextual MAB that adaptively personalizes based on stu-
dent characteristics. We consider scenarios in which a single
feature, such as a student’s prior knowledge, impacts what
condition leads to the best outcome for the student, and
examine cases where there is also an overall main effect of
condition (i.e., averaged across all students, one condition is
better than the other) versus cases where there is only an
interaction effect between the student feature and the con-
dition. Specifically, we investigate the following questions:

1. When does a contextual MAB assign more students to the
most effective condition for them than the other policies,
and how does this vary over the course of the experiment?

2. To what extent is there bias in the estimates of condition
means for different subgroups? How does this impact the
probability of inferring the optimal policy from the data?

We find that contextual MAB improves student outcomes
compared to a typical RCT or non-contextual MAB. Fur-
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thermore the RCT is only slightly better than the contex-
tual MAB in inferring the optimal policy. However both
MABs introduce some bias: this manifests in the estimation
of the participant-treatment interaction effect for contextual
MABs, versus the main effect for non-contextual MABs.

2. CONTEXTUAL MAB ALGORITHMS
MAB algorithms are used in online decision-making scenar-
ios in which a system must repeatedly choose an action in
an effort to maximize reward. Initially, the relation between
reward and actions is unknown to the system. A contex-
tual MAB algorithm is used if an action’s reward depends
on both the action itself and the features of the data point
(i.e., the context). Throughout this paper, we consider the
following example of an educational experiment as a contex-
tual MAB problem: students complete a homework activ-
ity, and are assigned to one of two experimental conditions:
video or text hints. The experimental conditions are actions,
and the reward is the student’s score on the next homework
activity. The effectiveness of text versus video hints is not
known at the outset, and may vary according to the stu-
dent’s prior knowledge: low versus high. The system learns
this relationship over time. More formally, for each student
i with prior knowledge Xi, the system assigns a condition
ai and observes the resulting homework score Ri. To assign
a condition to student i + 1, the system uses the student’s
prior knowledge Xi+1 and the outcomes of all previous con-
ditions assigned to students 1, . . . , i. The optimal policy for
assigning a student to a condition is the policy that chooses
the action a∗ with the highest expected reward based on
the student’s prior knowledge: a∗i = argmaxa E[Ri(a) | Xi],
where Ri(a) refers to the reward (e.g., homework score) for
student i as a function of the chosen action.

Contextual MAB algorithms must balance exploring what
actions are effective based on the feature value(s) and ex-
ploiting information learned from the past action choices.
Most contextual MAB algorithms, including Thompson Sam-
pling [1] which is used in this paper, seek to minimize cu-
mulative average regret : mean regret after n students is

1

n

n∑
i=1

E[Ri(a
∗
i ) | Xi]− E[Ri(a

actual
i ) | Xi],

where aactuali is the actual action chosen for student i. In
this paper, we focus on parametric contextual bandits where
the expected reward E[Ri(a) | Xi] is modeled as a linear
regression function. In our example, assume we formulate
the low or high prior knowledge of student i with Xi = 1
or Xi = 0, respectively. Then, we can use the following
regression equation to describe the reward function:

E(Yi|Di, Xi) = β0 + β1Di + β2DiXi, (1)

where Di is 1 if student i is assigned to text hints and 0
for video hints. Note that we assume the contextual feature
does not impact the outcome to simplify the exposition of
our results. A primary benefit of this linear model is that
each parameter represents a quantity of practical interest to
researchers. For instance, β0 = E(Yi|Di = 0, Xi = 0) is the
average achievement for students with high prior knowledge
who received a video hint, and β1 is the effect on achieve-
ment for text hints relative to video for students with high
prior knowledge. Finally, β2 is the differential benefit of re-

ceiving text hints for low prior knowledge students relative
to students with high prior knowledge.

In this paper, we use Thompson sampling [1], which stochas-
tically selects an action based on its probability of being
the optimal action. Thompson sampling periodically esti-
mates the regression equation (equation 1) using regularized
Bayesian regression. We assume a conjugate normal-inverse
gamma N-Γ(0, I, 0, 0); the prior corresponds to L2 regular-
ization (i.e., ridge regression), penalizing large coefficients.

3. RELATED WORK
MAB algorithms have been used in past work to conduct
experiments within educational technologies, such as identi-
fying the most effective explanations in an online quiz [11].
Contextual MAB algorithms have also been used in person-
alized intelligent tutoring systems in which the algorithm
selects problems with appropriate difficulty level based on
the students’ profile [3]. In this paper we add to this liter-
ature by exploring the trade-off between assigning a higher
proportion of students to their optimal intervention while
also learning how the impact of a intervention varies across
contextual features of students, similar to the exploration
in [9] for non-contextual MABs.

Within the MAB and contextual MAB literature, identi-
fying differences among actions (here, experimental condi-
tions) and reliably measuring the degree of difference is an
active area of research. In situations where user features are
likely to have high impact on outcomes and there are many
actions, randomized experiments can be impractical due to a
combinatorial explosion of possibilities [6]. That work shows
contextual MABs can be effective in high dimensions, moti-
vating some of the current work. Several MAB algorithms
have been proposed that change the loss function to increase
measurement accuracy [5] or increase the chance of correctly
identifying causal effects [10], and other work has developed
MAB variants that correct for biases in estimated effects
by re-weighting the data [4]. Our research builds on this
prior work by detailing the extent of the measurement bias
in a standard contextual MAB algorithm and investigating
bias due to use of a non-contextual MAB when participant-
treatment interactions are present, such as a student’s prior
knowledge influencing condition effectiveness.

4. INVESTIGATING MAB IMPACT
In simulations, we investigate the effectiveness of adaptive
experiments using a MAB versus a standard RCT both in
terms of average student outcomes and for evaluating the rel-
ative effectiveness of different conditions. When designing
an adaptive experiment, the researcher must decide whether
participant-treatment interactions should be included by de-
ciding whether to use a contextual or non-contextual MAB
algorithm. We explore the consequences of incorrectly using
a non-contextual MAB in a situation where condition effec-
tiveness is dependent on student’s prior knowledge. We pre-
dict that contextual MABs will be most effective at assigning
students to the best condition for them, and even when the
non-contextual MAB recognizes that one condition is on av-
erage more effective than another, the contextual MAB will
learn this more quickly. However, it’s likely that both types
of MAB algorithms may overestimate effect sizes, consistent
with biases in experiments without contextual effects [9].
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4.1 Simulation Framework
All simulations assume a sample of 1000 students. This is
the size of a very large university classroom or the num-
ber of active users in an average MOOC; we also report
on results after 250 students, corresponding to a somewhat
smaller university class. We assume a binary condition Di =
I(i in treatment group) and a single binary contextual vari-
able Xi. The binary contextual variable of our study follows
a Bernoulli distribution with P (Xi = 1) = 0.5. Such binary
variables are common in educational contexts, such as when
representing a student’s prior knowledge as below or above
the median student. Outcomes (reward) are generated using
a linear regression model that estimates the reward of pro-
viding two groups of students (low versus high prior knowl-
edge, differentiated by Xi = 1 versus Xi = 0) with a video
or text hint (Di = 0 or Di = 1):

Yi = β0 + β1Di + β2Di ×Xi + εi,

where β = (β0, β1, β2) are the parameters of interest and
εi ∼ N(0, 1). We set V (ε) = 1 so that the regression
coefficients approximate Cohen’s d effect sizes. We con-
sider the case with cross-over interaction where the opti-
mal condition for each contextual group is different from
the other one. In this settings, two distinct scenarios are
covered; 1) Context-only: No main effect averaged across
groups for text versus video hints, but the main effect within
each contextual group is prominent (outcome generating
model: Yi = 0 + 0.3Di − 0.6DiXi + εi). 2) Main-plus-
context: There is an average main effect in addition to
the main effect for each group (outcome generating model:
Yi = 0 + 0.3Di − 1.2DiXi + εi).

For each scenario, we compare three policies: uniform ran-
dom sampling, non-contextual and contextual multi-arm ban-
dits. Non-contextual MAB does not contain a term that in-
cludes X, while contextual MAB includes this term (eq. 1).
All results average 2500 repetitions of each simulation.

After the data are generated using one of the three assign-
ment methods (e.g. uniform, non-contextual MAB, or con-
textual MAB), we fit an ordinary least squares (OLS) re-
gression with terms for both effect of D and the interac-
tion between D and X (the true outcome generating process
shown in equation 1). Then for each treatment assignment
policy and outcome generating scenario, we evaluate the i)
Regret of action (difference in rewards between the optimal
action and the assigned action), ii) Proportion of students
assigned to the optimal condition for them, iii) Bias of co-
efficients of the fitted model (mean of estimated coefficients
across simulations minus the corresponding true value), and
iv) Proportion of simulations in which the OLS fitted model
implies the true optimal policy.

4.2 Simulation Results
Context-only: No Main Effect. When there is no main
effect, only the contextual MAB improves student outcomes.
After only 250 students, the contextual MAB assigns an av-
erage of 77% of students to their optimal condition (Table 1).
Because the non-contextual MAB cannot differentiate be-
tween individual students, both the non-contextual MAB
and uniform random policy assign about 50% of students to
their optimal condition.

Figure 1: The cumulative regret at each iteration (left). The biases
of the coefficients of the OLS model fitted on the generated data
up to the specified user iteration (right). Outcome are generated by
the model Yi = 0 + 0.3Di − 1.2DiXi + εi and averaged across 2500
repetitions.

The contextual MAB’s adaptive assignments leads to sys-
tematic differences between the estimated model and the
true data-generating model: the relative effectiveness of re-
ceiving text hints (D = 1) for students with high prior
knowledge (X = 0) compared to lower prior knowledge
(X = 1) is incorrectly estimated. After 1000 students, the
estimate of β2 is roughly 19% lower than its true value. Ran-
dom variation in outcomes combined with the algorithm’s
adaptivity cause this overestimation of the effect size (β2 < 0

and Bias(β̂2) < 0): the algorithm is more likely to stop as-
signing students with low prior knowledge to text hints when
its benefit is below, rather than above, its expected value.
Although bias is present, the resulting fitted model implies
the correct optimal policy in 99% of repetitions.

Both the non-contextual MAB and the uniform random pol-
icy assign half of students to each condition, independent of
prior knowledge, so both recover estimates of the effects that
are quite close to the truth. However, the non-contextual
MAB has more variance than the uniform random policy
in its condition assignments, resulting in noisier estimated
effects as reflected in the standard errors.

Main-plus-context: Main effect and larger effect for
one subgroup. When there is both a main effect overall
and a differential effect based on a student’s prior knowl-
edge, all three assignment methods differ in the degree to
which they direct students to a more effective condition and
in the biases in their estimates of the effects. As shown
by lowered regret in Figure 1 (left), both MAB algorithms
achieve better average student outcomes over the uniform
random policy. Contextual MAB assigns students to condi-
tions that are beneficial for them based on the feature value.
However, non-contextual MAB cannot differentiate its pol-
icy based on students’ prior knowledge. Since the overall
main effect is negative (video hints are better than text hints
on average), the non-contextual MAB learns to assign more
students to videos over time. In smaller samples (left of Ta-
ble 1), 82% of students with low prior knowledge are assigned
to their best condition whereas only 18% of students with
high prior knowledge are assigned to text hints although it
is most beneficial for them. Thus, if heterogeneous effects
are present, experimentation using a non-contextual MAB
policy can be systematically worse for some students than
the uniform random policy.

As in the context-only scenario, the contextual MAB over-
estimates the value of text hints for students with lower prior
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Table 1: Assignment to Treatment Policies and Quantities of Interest

Participants 1 to 250 Participants 750 to 1000
Simulations Metrics Uniform Non-Contextual MAB Contextual MAB Uniform Non-Contextual MAB Contextual MAB
Crossover Effect Only
Yi = 0.3Di − 0.6DiXi + εi

Regret 0.1497 0.1501 0.069 0.1503 0.1498 0.0071

Prop. optimal action 0.5 0.5 0.77 0.5 0.5 0.98
Prop. optimal action (X = 0) 0.5 0.49 0.76 0.5 0.49 0.99
Prop. optimal action (X = 1) 0.5 0.51 0.78 0.5 0.51 0.96

β1 = 0.3
β2 = −0.6

Bias(β̂1) = E(β̂1)− β1
−0.0019
(0.0032)

−0.0095
(0.0061)

−0.0193
(0.0046)

−0.0004
(0.0016)

−0.009
(0.0043)

−0.0003
(0.0021)

Bias (β̂2) = E(β̂2)− β2
−0.0014
(0.0036)

−0.0019
(0.005)

−0.1093
(0.0073)

−0.001
(0.0018)

0.0011
(0.003)

−0.1142
(0.0052)

Prop. of repetitions optimal
policy is inferred

0.9388 0.7964 0.8904 1.0 0.918 0.9924

Regret 0.2995 0.203 0.0703 0.2991 0.155 0.0039
Main and Crossover Effect
Yi = 0.3Di − 1.2DiXi + εi

Prop. optimal action 0.5 0.5 0.83 0.5 0.5 0.99

Prop. optimal action (X = 0) 0.5 0.18 0.73 0.5 0.02 0.99
Prop. optimal action (X = 1) 0.5 0.82 0.93 0.5 0.98 1.0

β1 = 0.3
β2 = −1.2

Bias(β̂1) = E(β̂1)− β1
−0.0017
(0.0031)

−0.1336
(0.0082)

−0.0467
(0.0051)

0.0013
(0.0016)

−0.1153
(0.0065)

−0.0089
(0.0022)

Bias(β̂2) = E(β̂2)− β2
0.0021

(0.0036)
0.0376
(0.009)

−0.1163
(0.0096)

0.0011
(0.0018)

0.0195
(0.0072)

−0.1445
(0.008)

Prop. of repetitions optimal
policy is inferred

0.9704 0.7516 0.9168 1.0 0.8 0.992

Notes: Standard errors for the biases of coefficients are shown in parenthesis.

knowledge (β1 + β2 < 0 and Bias(β̂1 + β̂2) < 0 in Table 1).
The non-contextual MAB instead underestimates the effec-
tiveness of text hints relative to video hints for students
with high prior knowledge (β1 > 0 and Bias(β̂1) < 0). Both
patterns of bias occur because of the combination of random
variation in outcomes combined with adaptive sampling, and
the difference stems from whether the adaptive sampling is
sensitive to contextual features. Prior work shows that less
effective conditions tend to be underestimated by MABs,
which usually leads to overestimation of effect sizes [5, 9].
Our results demonstrate that when heterogeneous effects are
present but a non-contextual MAB policy is used, underes-
timation of the value of a condition that is worse on average
can lead to either underestimation or overestimation of ef-
fect sizes for subgroups of students. When a condition is
worse on average but better for some students, such as our
text hints for students with high prior knowledge, the size of
the effect for those students will be underestimated (β1 > 0

and Bias(β̂1) < 0). The size of the effect of condition for
the other students, such as our low prior knowledge stu-
dents, will then tend to be overestimated (β1 + β2 < 0 and

Bias(β̂1 + β̂2) < 0).

5. CONCLUSION
In this paper we focus on a scenario in which the impact of
a binary condition assignment (text versus video hints) on
a continuous student outcome depends on a binary contex-
tual feature (low versus high prior knowledge). We find that
assigning students to conditions using a contextual MAB
significantly reduces regret relative to traditional RCTs and
non-contextual MAB. Although adaptive, personalized ex-
perimentation can help more students benefit from exper-
imental interventions and does accurately recover the di-
rection of effects, the estimated differences of personalized
effects across student subgroups will be biased. However
for contextual MAB the presence of bias does not signifi-
cantly impact the probability of inferring the optimal policy
relative to a traditional RCT. Future directions include eval-
uating the effectiveness of methods to correct for the biases
documented here, and using contextual MABs in real ed-
ucational technologies to conduct adaptive experiments in
settings where personalized treatment effects are expected.
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ABSTRACT
The research area of analyzing log file trace data to build
academic performance prediction models has tremendous
potential for pedagogical support. Currently, these learner
models are developed from logs that are composed of one
intermixed stream of data, treated in the same manner re-
gardless of which platform (mobile, desktops) the data came
from. In this paper, we designed a correlational study using
log data from two offerings of a blended course to investigate
the effects of the variables, derived from the use of varying
platforms, on the prediction of students’ academic success.
Given that learners use a combination of devices when en-
gaging in learning activities, it is apparent that weighing the
logs based on the platform they originate from might gen-
erate different (possibly better) models, with varying pri-
ority assigned to different model features. For instance,
our results show that the overall frequency of course ma-
terial access is a less powerful indicator of academic perfor-
mance compared to the frequency of course material access
‘from mobile devices’, probably due to the benefits asso-
ciated with ubiquitous any-time access available to mobile
learners. Thus, the primary goal of this study is to bring
to light the potential for improvement of prediction power
of models after considering the learner’s platform of access,
within the learning analytics community and the fields of
user modeling and recommender systems, in general.

Keywords
Learner Models, Learning Success, Learning Analytics, Mo-
bile Learning

1. INTRODUCTION
The performance prediction models use students’ logs from
various learning activities that are available for measure-
ment such as logging in, reading files, viewing posts, posting
discussions and accessing feedback. However, research has

provided evidence suggesting not all activities (features) are
equally effective as predictors of outcomes [3]. Moreover,
research has also suggested that not all the learning activi-
ties are performed using a single technological modality [4,
6] but are often interleaved between devices such as mobile
and desktop. In other words, depending on the utility and
preference for a modality, the predictive power of learning
indices (variables describing the frequency and/or quality of
interaction with the LMS tool) in a regression model could
be positively or negatively impacted. Building upon these
inferences, we further posit that acknowledging the differ-
ences in the source of the log trace data used for modeling
and predicting academic success, would promote increased
accuracy of prediction models and explain anomalies. This
hypothesis is supported by the results from a recent study
[5] where the authors found a significant impact of the stu-
dents’ adopted platforms (and patterns of usage) for various
learning activities on the final course grade.

The review of the literature reveals that the performance
prediction models draw benefits from the students’ ‘event-
driven logs’ [1] from various learning activities that are avail-
able for measurement in a web-based learning management
systems (LMSs) such as logging in, reading files, viewing
posts, posting discussions and accessing feedback; all of which
provide early indicators of student academic performance
[8, 9, 2]. These logs, however, are composed of one inter-
mixed stream of data, treated in the same manner regardless
of which modality (mobile, desktops) the data came from.
As a rule of thumb, the data concerning each predictor ac-
tion, such as posting discussions and viewing course videos
– actions that more often than not, emanate from differ-
ent modalities and last for different durations – is generally
pooled across all modalities. For instance, the frequency of
access to course material from desktops, mobiles and tablets
is typically used in the predictive model as one cumulative
count measure i.e. course material access, counting all oc-
currences of course material access in the log file. This is
done mainly due to the lack of awareness regarding the util-
ity of technological context or merely to facilitate ease of
data processing. Either way, the omission of technological
modality variables in a model has potential to, at minimum,
discard some useful information and as a result lower the
prediction accuracy of the model, or more critically, cause
serious threat to its interpretation. Thus, the primary aim
of this paper is to create awareness of the role of modalities
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in predictive analyses of academic performance.

The exploration of the impact of modalities on predictive an-
alytics is justified and highly recommended since: (a) learn-
ing activities are often completed by students using multiple
modalities, used either sequentially or simultaneously [4, 7],
and (b) identification of modalities that are ill-aligned to a
task is important as they could undermine knowledge con-
struction and may lead to unintended consequences in aca-
demic outcomes [5]. This paper thus investigates the useful-
ness of a modality-inclusive learner model, over and above
a generalized model, for predicting learner success (opera-
tionalized by academic performance).

2. METHODOLOGY
2.1 Study Design
The study follows a correlational design as it investigates the
effects of the variables derived from the trace data from dif-
ferent modalities, on the prediction of student’s academic
success, operationalized via percent mark - a continuous
variable ranging from 0% to 100%. The data was collected
over two semesters (Fall 2017 and Fall 2018) from two sub-
sequent offerings of the same course. The course lasted
13 weeks and had a combined enrolment of 165 students
(83+82). The course used blended delivery, utilizing the
university’s learning management system (LMS) to support
learning activities and students’ overall schoolwork. In ad-
dition to the web-browser versions of the LMS (desktop/
laptop/ mobile), students had access to the mobile app ver-
sion provided by the LMS vendor. Upon comparison of the
features and functionalities offered by the two versions, no
apparent differences were revealed. In the next section, we
describe the various kinds of variables that were derived from
log files.

2.2 Feature Engineering from LMS trace data
To investigate the effect of modality on different types of
commonly included learning-related activities and their traces
in the online courses, we selected 10 features (5 counts + 5
time spents for each activity) for inclusion in our analyses as
predictors of academic success. Variables derived from the
LMS trace data include information about the usage of the
following tools/features: syllabus, course material (lecture +
tutorial slides and instructor provided supplementary mate-
rial), assignments, feedback on the assignments and calen-
dar. Table 1 contains the types and total counts of learning
actions, categorized into activities, captured by the LMS.

Table 1: Breakdown of activities and access (in
terms of the number of actions) from different
modalities.

Activity Desktop Mobile Tablet

Assignments 15,929 2,474 23
Calendar 1,734 4,687 43
Course Material 24,850 1,279 147
Submission Feedback 1,954 2,968 6
Syllabus 1,952 155 8

Next, for each student we extracted the number of times
and the time spent on using a particular feature by aggre-

gating individual operations such as adding student’s as-
signment views across all four assignment tasks to compute
count assignment. We call these variables LMS features.
Each of these variables was split up further to account for
the platform used to access that particular feature. For in-
stance, in addition to having total number of assignment
views for a student, we compute three more variables - mo-
bile views, desktop views and tablet views- which indicate
the respective number of course logins from each of the three
main modalities. We call such variables Modality features.

The trace data for both LMS and modality features were
initially collected as continuous variables. However, tablets
were not used by many students, and therefore variables
accessed from tablets were dichotomized into the Accessed
and Did not access categories. Additionally, highly skewed
variables were transformed using Box-cox transformations to
correct their skewness. If the skewness still persisted, they
were transformed into categorical variables and the cut-offs
were decided arbitrarily to best represent the data.

2.3 Statistical Analyses
For each of the ten learning features introduced in Section
2.2, two regression models (Figure 1) were built using (a)
LMS action variable, i.e. LMS feature (Model 1: simple
linear regression), and (b) LMS action variable with infor-
mation on modality source, i.e. Modality features (Model
2: multiple linear regression), to assess the importance of
the platform source of the log data for predicting student
percent marks. For each of the ten features, a change in
R2 from Model 1 to Model 2 is calculated to present the
percentage of variability in student percent mark explained
by Modality features over and above the LMS features. To
ascertain whether the change was statistically significant, an
ANOVA analysis using F-test of the statistical significance
of the increase in R2 was conducted.

Figure 1: Feature selection for the two models.

3. RESULTS AND DISCUSSION
The results of the regression models featuring the associa-
tions between students’ use of features from logged data –
calculated cumulatively vs. partitioned based on the modal-
ity – and student course grades are presented in Table 2,
along with the subsequent model comparisons using ANOVA
analyses (columns 5-6 in Table 2).
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Table 2: The association between the variables of students’ use of the LMS and Modality features and ln (log
natural) student course grades: results of multiple linear regression models.

Activity (a) Measure (m)
Model 1
R2 ×100
(p value)

Model 2
R2 ×100
(p value)

F-value p-value Modality features β Coefficients

Syllabus count 1.4% (p = 0.12) 3.9% (p = 0.03) 3.16 0.041 Desktop Accessed 6-15 times vs. up to 5 times
Desktop Accessed more than 15 times vs. up to 5 times
Mobile Accessed 1-2 times vs. Did not Access
Mobile Accessed more than 2 times vs. Did not Access

12.36
31.86

-23.11
-8.35

time spent 0% (p = 0.56) 1.4% (p = 0.18) 2.59 0.078 Desktop Accessed (20, 40] hours vs. up to 20 hours
Desktop Accessed more than 40 hours vs. up to 20 hours
Mobile Accessed (0, 2] hours vs. Did not Access
Mobile Accessed more than 2 hours vs. Did not Access

38.90
4.90

-12.89
-16.08

Assignment count 7.3% (p <0.001) 11.5% (p <0.001) 2.92 0.023 Desktop Accessed 51-80 times vs. up to 50 times
Desktop Accessed 81-100 times vs. up to 50 times
Desktop Accessed more than 100 times vs. up to 50 times
Mobile Accessed 1-10 times vs. Did not Access
Mobile Accessed 11-20 times vs. Did not Access
Mobile Accessed more than 20 times vs. Did not Access

40.43
66.56
73.53
-10.91

6.54
7.24

time spent 9.5% (p <0.001) 13.4% (p <0.001) 8.20 0.004 ln assignment time Desktop
Mobile Accessed up to 1 hour vs. Did not Access
Mobile Accessed (1, 2] hour vs. Did not Access
Mobile Accessed more than 2 hours vs. Did not Access

0.71
17.39

60.31
5.13

Submission Feedback count 2.9% (p = 0.03) 8.8% (p <0.001) 6.18 0.002 Desktop Accessed 11-20 times vs. up to 10 times
Desktop Accessed more than 20 times vs. up to 10 times
Mobile Accessed 1-10 times vs. Did not Access
Mobile Accessed more than 10 times vs. Did not Access

26.55
55.08

3.28
0.66

time spent 3.2% (p = 0.01) 5.1% (p = 0.005) 4.21 0.041 ln submissionfdbk time Desktop
ln submissionfdbk time Mobile

4.68
0.98

Calendar count 1.4% (p = 0.50) 1.9% (p = 0.92) 0.16 0.976 Desktop Accessed 1-10 times vs. Did not Access
Desktop Accessed more than 10 times vs. Did not Access
Mobile Accessed 1-10 times vs. Did not Access
Mobile Accessed more than 10 times vs. Did not Access

-8.11
1.63

-0.06
1.48

time spent 0.5% (p = 0.80) 2.1% (p = 0.74) 0.85 0.468 Desktop Accessed (0, 30] hours vs. Did not Access
Desktop Accessed (30, 60] hours vs. Did not Access
Desktop Accessed more than 60 hours vs. Did not Access
Mobile Accessed (0, 30] hours vs. Did not Access
Mobile Accessed (30, 60] hours vs. Did not Access
Mobile Accessed more than 60 hours vs. Did not Access

-8.35
-7.79
-4.39
12.17

-13.44
9.91

Course Material count 0.3% (p = 0.20) 1.6% (p = 0.18) 1.52 0.198 Desktop Accessed 51-100 times vs. up to 50 times
Desktop Accessed more than 100 times vs. up to 50 times
Mobile Accessed 1-5 times vs. Did not Access
Mobile Accessed more than 5 times vs. Did not Access

46.43
41.59
-10.24

0.85
time spent 1.9% (p = 0.04) 0.7% (p = 0.24) 0.01 0.989 ln material time Desktop

Mobile Accessed (0, 10] hours vs. Did not Access
Mobile Accessed more than 10 hours vs. Did not Access

11.50
0.29
5.74

Based on our results of the multiple regression models, we
can confirm that the choice of modality for a particular ac-
tivity in a learning environment plays an important role in
the overall model fit and subsequent modal interpretation.
The significant ANOVA results imply that an increased pro-
portion of variability in student course grades can be ex-
plained if the activity measures are calculated across modal-
ities (Model 2) instead of using one cumulative measure
(Model 1).

Interestingly, there was a notable difference in the impact
(positive or negative) on the students’ course grades ex-
plained by the type of modality – desktop vs. mobile – used
to perform the activity. For example, the results of the mul-
tiple linear regression analyses performed on the time spent
on syllabus access indicated that the mobile access was a
significant predictor of student learning outcome whereby
course grades of students who used mobile phones for sub-
stantive duration (1-2 hours) to access the syllabus were
about 13% lower than those of their counterparts who did
not spend any time accessing the syllabus from the mobile
phone modality (β= −12.9, p = 0.04). On the contrary,
looking at the time spent on viewing the course assignments,
the mobile phone modality reflected a positive association
with course grades and explained a greater amount of vari-

ance, such that the course grades of students who used mo-
bile phones to view the assignments for 1-2 hours were about
60% higher than those of their counterparts who did not use
the mobile phone modality at all (β= 60.3, p = 0.01).

More importantly, the impact of these modalities in explain-
ing the overall fit was not consistent across activities in the
learning environment, both in their presence and magnitude.
That is to say, some modalities may or may not play a role
in determining student’s course grade depending upon the
activity performed using the modality. For instance, the du-
ration of time spent on a desktop for viewing the assign-
ments was a significant predictor of student course grades
whereby a 10% increase in time spent resulted in around
7% increase in student course grades. On the contrary, the
same modality was not significant at all when the activity
involved engaging with the course material. However, the
desktop modality was again found significant for the sub-
mission feedback activity where this effect was seven times
larger compared to assignment viewing i.e. a 10% increase
in time spent on engaging with the feedbacks on assign-
ment submissions resulted in around 47% increase in stu-
dent course grades.
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4. LIMITATIONS FUTURE WORK
Since the feature space in our study is high-dimensional and
could easily include interactions and non-linear effects, our
immediate next steps involve comparison of machine learn-
ing classification methods to test the same hypotheses thor-
oughly. To further broaden the discussion, there are in fact
many features that can be computed from trace data and
that are used in the prediction models. As we saw im-
provements in the ‘crude’ features that we investigated, it
is conceivable that we can see improvement in other derived
features and therefore improve fidelity of the models.

Furthermore, it would also be interesting to devise, using a
bigger participant pool and diverse activity pool, the most
optimal learner model comprising a combination of highly
explanatory LMS and Modality features from various learn-
ing activities as predictors. This, in turn, would require
knowledge of several activities in a learning environment
for which, modality features can explain more variance in
learning outcomes compared to standard cumulative LMS
features.

Our methodology involved tracking user interaction with the
LMS and this may raise a concern about the extent to which
our results were dependent upon the activities targeted in
the LMS and the design of the LMS (both browser and app)
itself. The types of activities included in our study are quite
common in instructional design and usually captured in the
same way, thereby rendering good generic results. However,
there might be variances in how learning activities are struc-
tured and presented in LMS and some LMS can offer even
more fine grained tracking to see the influence of modality
features from various other activities on the learning out-
comes.

5. CONCLUSIONS
Taking up the research on use of mobile and desktop devices
in learning environments and its ramifications on learning
outcomes one step further, in this paper we looked at how
modalities used by students for carrying out learning-related
activities in the LMS, could act as powerful indicators of
academic success. We designed separate prediction models
using measures (e.g., counts and time spent) of activities in
the learning environment aggregated across (a) all log data
and (b) each individual modality in the log data. We ob-
served that acknowledging a learner’s modality context – i.e.
a dynamic entity constructed by the learner through inter-
action with the learning management system from desktop
and mobile devices – led to improvements in the accuracy
of models.

To further illustrate the significance of these improvements
in predictive power, statistical analyses confirmed the im-
provements to be significant for most of the predictor mea-
sures assessed in this study. While the magnitude of im-
provements may not be of particular interest, the major
take away from the study is that interpretations and sub-
sequent interventions based off of generalized learner mod-
els may be improved by utilizing modality-inclusive models,
since modalities contribute differently to the learning pro-
cess depending on the activity they are used for. Further,
the significance of this research lies in the simplicity of the
method by which the modality of access for a learning ac-

tion/activity can be readily available through capturing the
‘user-agent’ from the students’ log data and the potential
high impact it has on the prediction process.

The major highlights from the paper include:

1. Tracing the modality source of log data improves ac-
curacy of learner models

2. Some modalities are better predictors of learning out-
comes than others

3. Magnitude of outcome variance explained by modality
differs based on the activity

4. Direction of outcome variance explained by modality
differs based on the activity
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ABSTRACT
This study investigates how we can understand students’ ac-
tual status in C programming exercises from their learning
activity logs. In a face-to-face course of C programming ex-
ercise, it is hard for a teacher to see who are in trouble from
their apperance. It is not always true that typing some-
thing means he or she is making some progress. Therefore
it is important to identify, or possibly even predict, students
having difficulty from their activity patterns. Most of the
prior work paid attention to only trial-and-error activities,
such as compile results and execution errors. However, it
tends to be overlooked that knowledge acquisition process
is also worthy of attention. When a student encounters a
compile error, they usually read textbooks to seek a solu-
tion. It is considered to be useful for the task whether he or
she has an ability to find appropriate pages for error resolu-
tion. In this paper, we propose a method to predict whether
a student can resolve errors or not. Based on students’ ac-
tivity logs collected from our programming environment and
e-book system, we conduct experiments to show and discuss
the prediction performance.

1. INTRODUCTION
The C programming language has many obstacles, such as
relatively complex syntax and confusing messages of compile
errors. In C programming courses, students are required to
overcome those hurdles as well as to learn how to solve prob-
lems computationally. Especially, because error messages
are not necessarily straightforward, students are sometimes
led to irrelevant pages of textbooks and get confused. Such
learning experiences perhaps lower their motivation to learn,
and therefore teachers need to intervene to help students in
such situations. However, not all students ask their teachers
or friends when they have a tough issue, and it is hard for
teachers to distinguish students in trouble from ones with-
out problems by physical appearance. Hence data-driven

approaches have been considered for identifying such at-risk
students.

Blikstein [1] and Helminen et al. [4] performed a kind of
offline analysis of students’ behaviors. On the other hand,
a realtime-oriented analysis was performed by Fu et al. [3].
They proposed a dashboard system for teachers to grasp the
current status of all students in real-time fashion. However,
none of them considered the knowledge acquisition process.
Helminen et al. [4] addressed the process where students
struggle to resolve errors. However, in their study, only lim-
ited activities, e.g. selecting, ordering, and indenting code
fragments, are analyzed, and activities such as referring ex-
ternal learning materials are not considered.

For understanding students’ learning processes, it is signif-
icant to know how students search learning resources for
necessary information and acquire knowledges. We believe
students have to learn how to resolve errors by themselves,
and intervention by teachers should be controlled. Hence
we have to care how much effort was made by a student to
obtain necessary knowledges for resolving errors. Although
we could quantize such efforts to some extent by observing
how they use their textbooks during programming exercises,
only a limited number of studies focused on students’ trial-
and-error and knowledge acquisition in learning processes of
programming languages.

Toward automatic and real-time detection of students in
need of help, in this paper, we analyze error resolution pro-
cesses in which students struggle to resolve compilation er-
rors with course materials in a programming exercise course.
Furthermore, we try to predict whether they can successfully
resolve errors or not in early stage of error resolution pro-
cesses. Toward this end, we employ both compilation logs
and page view logs of e-textbooks, and characterize compi-
lation errors in relation to exercise questions and individual
students.

2. METHODS
2.1 Error Resolution Processes
The C Programming Language belongs to the compiled lan-
guagegs, which need a compile process ahead of executing a
program. In the compile process, a compiler program trans-
form input source code into a machine code. The process
involves a lot of checks and many problems are found as er-
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Figure 1: An example of a timeline. A timeline
may consist of three types of events: failure com-
pile event, success compile event, and e-book page
reading event.
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Figure 2: An example of an error resolution process
found in a timeline. Every ERP starts with a failure
compile event, but does not necessarily end with a
success compile event.

rors before running a program. Errors found in this step
could be typically divided into syntax errors and linker er-
rors. The former type of errors requires a student to modify
their source code so that it follows the syntax of C lan-
guage. In the latter case, it usually occurs because of miss-
ing libraries and one need to specify required libraries on the
command line (or a compiler’s configurations). In this study,
we call such a process as an error resolution process (ERP),
and analyze how students resolve such errors by themselves
during exercises.

A sequence of a student’s activities is called a timeline. A
timeline consists of events, and we consider three kinds of
events in this study: failure compile event, success compile
event, and e-book reading event. The first two types occur
when a student compiles his or her source code. If a compile
finishes without printing any messages on a screen, we con-
sider it is a success compile event. On the other hand, it is
considered as a failure compile event if a compiler outputs
some messages. An e-book reading event indicates a student
started to read a page of an e-book.

These concepts are illustrated in Figure 1. The figure shows
a sequence of eight events from left to right. Every complie
events are associated with a problem that a student try to
solve. Identifiers of problems are shown at the top right of
each event. For this example, one of the possible interpreta-
tions of the timeline is as follows; a student were working on
the problem 1 and compiled their program for it; however,
they got an error from the compiler, and then they rewrite
a program according to textbooks and tried again; unfortu-
nately, it did not work well, and he or she abandoned the
problem and began the problem 2; they compiled another
program, and it successfully finished.

We more precisely describe an ERP based on a timeline. An
ERP is a contiguous subsequence of a timeline; an ERP al-
ways starts with an failure compile event, and it can include
only compile events associated with the same exercise prob-
lem. For example, Figure 2 shows two ERPs within a time-
line. Since the timeline does not involve another problem in

(1) Resolved

f1 s1

(2) Abandoned
(a) Switched to another problem

f1 s2

f1 f2

(b) End of Class

f1 r

Figure 3: Possible cases of ERPs whose result could
be either resolved or abandoned.

this case, we can simply identify ERPs as longest contigu-
ous subsequences starting with a failure compile event and
containing at most a single success compile event at the end
of the subsequence. Another example is shown in Figure 1
which consists of all except the last event.

While several scenario could be considered for ERPs, we
simply consider two kinds of outcome from an ERP: resolved
and abandoned. Figure 3 shows examples for both cases. A
resolved ERP ends with a success compile event associated
with the same problem as the ERP’s initiating failure com-
pile event. An abandoned ERP could finish with either an
e-book event or a failure compile event. The latter type
of ERPs appears when a student switch a current exercise
problem to another or a class is over.

2.2 Predicting Outcomes from ERPs
It might be an important information for teachers whether a
student’s ERP will end up with resolved or abandoned state.
We consider the prediction of the outcome from an ERP in
early stage of the process. To characterize EPRs, we employ
n-gram features. Firstly, we obtain a textual representation
of an ERP. In the representation, every event is notated as
a single letter. In this paper, we use s for a success compile
event, f for a failure compile event, c for an event of reading
e-textbooks especially for the programming course, o for an
reading event but for other course materials. Furthermore,
we also encode gaps between events with - which denotes a
gap of just 10 seconds. Any gaps less than 10 seconds are
ignored. For example, a gap of 24 seconds is notated as --.

N-gram features are then extracted from the text representa-
tion of a timeline. As there are five letters in the representa-
tion, an n-gram feature vector will be a 5n-dimensional vec-
tor. For example, if we use 3-gram-based features, a student
is represented as a 125-dimensional vector. In this study, we
combine 1- to 4-gram feature vectors into a single feature
vector, i.e. 51 + 52 + 53 + 54 = 780-dimensional vector, and
use it for making prediction.

Students’ first actions are considered important; for exam-
ple, an expert will read error messages carefully, fix prob-
lems, and then recompile the program while a beginner will
just repeat the compile or read many pages of textbooks
seeking for a solution. We expect such differences are cap-
tured by n-gram representations of the first t minutes.

In our experiments, we targeted only ERPs longer than
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Figure 4: The distribution of durations of error res-
olution processes.

Table 1: Hyperparameters adjusted.
Hyperparameter Candidates
criterion gini, entropy
max depth 1, 2, 3, 4, 5, 6, 7, 8
max features sqrt, log2, None

2t minutes. If we use the first t minutes for predicting the
outcomes of ERPS whose durations are less than 2t min-
utes, it means that we use more than a half of information
to predict the final status of ERPs. That is why we exclude
ERPs shorter than 2t minutes in this study.

We set t = 5 in our experiments. There are 29,216 ERPs in
our dataset. Figure 4 shows the distribution of the durations
ERPs took. The number of ERPs which only took less than
or equal to 10 minutes was 25,886 (88.6%), and the number
of our target ERPs was 3,330 (11.4%).

For the prediction, we employ random forest classifiers as a
classifier. Random forests are one of the ensemble learning
algorithm based on bagging technique and random selection
of features [2]. This is one of the most popular classifiers
not only in educational datamining community but also in
wider data science community. It is known that the classifier
is robust even when each dimension of feature vectors has
different scales. Therefore, we simply apply random forests
to n-gram feature vectors without normalizing them.

We use the implementation of random forest classifier in-
cluded in scikit-learn package [6] in this study. Basically,
we use the default values of the library for the classifier’s
hyperparameters except for ones shown in Table 1 and the
number of estimators which was set to 100. We optimize
these parameters by a grid search algorithm, whose imple-
mentation is also provided by scikit-learn. The candidate
values for these parameters are shown in the table.

2.3 Data Collection
The course we target is the introductory courses for C pro-
gramming language in our university. Primarily, all fresh-
men students takes the course. The class is composed of
lectures and coding exercises. There are about 20 classes for
the course for each year, and almost all of the courses are
taught by different teachers. Although it is not enforced, we
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ROC fold 0 (AUC = 0.57)
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ROC fold 2 (AUC = 0.60)
ROC fold 3 (AUC = 0.60)
ROC fold 4 (AUC = 0.55)
Chance
Mean ROC (AUC = 0.57 ± 0.03)
± 1 std. dev.

Figure 5: The ROC curve obtained from 5-fold cross
validation.

have a set of standard course materials, and they are used
in almost all classes.

In exercise, we use the compiler program “gcc”, from the
GNU compiler collection. The compiler program is modi-
fied from the original version so that it can record students’
learning logs. More precisely, when it is executed, it saves
given commandline arguments, the contents of given source
files, and the output of the compiler as well as the time
and student IDs. Since a commandline and source code are
available as logs, we can reproduce what a student tried and
what he or she obtained as a result. From those learning
logs, we reconstruct compile events in timelines.

We also utilize students’ learning logs on our own web-based
e-book system BookRoll [5]. All the course materials are
available on the system, and therefore we can collect stu-
dents’ learning logs about how student utilized those text-
books during exercises. Students’ actions, such as flipping
pages and adding highlights, on the system are collected im-
mediately as events occur. In this study, we only focus on
page-flipping events collected for our analysis.

3. RESULTS & DISCUSSION
We evaluated our prediction performance using AUC met-
ric, which stands for area under the ROC curve, combining
with 5-fold cross validation. The hyperparameter values ob-
tained by the grid search algorithm were criterion=gini,
max_depth=6, max_features=sqrt, n_estimators=10. Fig-
ure 5 shows the five ROC curves obtained during cross val-
idation and the mean ROC curve computed from them.

Table 2 shows the average performance scores with four eval-
uation metrics. According to the table, we cannot say the
perfromance is good. Althogh the recall value is relatively
high, precision value (especially in the test phase) is low.
AUC value for the test phase is better than the chance rate,
it is not good enough for practical use.
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Table 2: Cross validation result. Values are aver-
aged over five folds.

Metric Value
AUC (test) 0.566
F1 (test) 0.698
Precision (test) 0.598
Recall (test) 0.844
AUC (train) 0.684
F1 (train) 0.740
Precision (train) 0.640
Recall (train) 0.882

4. CONCLUSION
Focusing on students’ error resolution processes, we pro-
posed a predction method for outcomes from those process.
We encode event sequences into texts, and characterize them
using n-gram features. From our preliminary analysis, the
proposed method could not show a good performance while
it has a little bit better performance than the chance rate.

Future work include improvement of the feature representa-
tion of timelines and further analysis on the characteristics
of student’s activities and abilities.
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ABSTRACT
Vygotsky’s notions of Zone of Proximal Development and
Dynamic Assessment emphasize the importance of person-
alized learning. In this work, we introduce a novel adaptive
learning engine named E-gostky that builds on these con-
cepts. E-gotsky creates a machine-learning-based skipping
policy that presents students with questions which will chal-
lenge, but not overwhelm them, keeping students in their
Zone of Proximal Development. We evaluated our engine
in a real classroom environment, including hundreds of stu-
dents from several elementary schools. Our results show that
using E-gostky can significantly reduce the time required to
reach comparable performance. Specifically, in our experi-
ment, it took students who were using the adaptive learning
engine 17% less time to reach a similar level of mastery as of
those who didn’t. Moreover, students made greater efforts
to find the correct answer rather than guessing, and class
teachers reported that students showed higher engagement.

Keywords
Personalized learning path, e-learning, Adaptive learning,
Zone of Proximal Development

1. INTRODUCTION
In the early 1930s, Lev Vygotsky conceptualized the idea of
Zone of Proximal Development (ZPD), and laid the founda-
tions for the concept of personalized learning [14, 4]. ZPD
is defined as “the distance between the actual developmen-
tal level as determined by independent problem solving and
the level of potential development as determined through
problem-solving under adult guidance, or in collaboration
with more capable peers” [14, pg. 86]. In other words, it
refers to what a learner can do with assistance, but cannot

∗This work was done while the author was with Microsoft

do independently. According to Vygotsky, concrete growth
can only occur in the ZPD, and the learning is most effective
when the support is matched to the needs of the learner.
However, creating a personalized learning environment is
challenging in traditional classrooms, where the teacher is
outnumbered by the students. Using modern technology in
classrooms supports the teacher in ways that can allow ef-
fective personalized learning [5].

Many e-learning systems contain a large set of exercises1

such that the students moves in a linear order between ex-
ercises. However, content served in a non-adaptive manner
will under-challenge some students, and over-challenge oth-
ers. In view of Vygotsky’s theory, it can be said that the
problem stems from the fact that each student has a differ-
ent ZPD at a given point in time. The method proposed
here tries to mitigate this problem using a quantitative in-
terpretation of the ZPD concept, translating it to a data
driven algorithm which supports the delivery of personalized
learning content. The method utilizes an adaptive learning
engine, named E-gostky, that can move forwards or back-
wards through linearly structured content to find the next
exercise which will be at the right level of difficulty, keeping
the student within her ZPD.

To identify whether a task will keep a student within her
ZPD, we use another core concept of Vygotsky’s theory:
Dynamic Assessment (DA). The goal of DA is to assess the
potential for learning, rather than a static level of achieve-
ment, by prompting students to use their minds and assis-
tance in problem solving. By dynamically evaluating stu-
dents’ progress, we adapt the served content according to
the learning potential of the student at the current time
and on the current topic.

To test our method, we used content that was developed by
pedagogical experts at the The Center for Educational Tech-
nology (CET) in Tel-Aviv, Israel, to serve elementary school
students while learning fractions. When comparing the stu-
dents who learned the content in its original form to students
who learned using E-gostky, we found that students in both
groups achieved comparable performance, yet to reach this

1The terms “exercise” includes also other activities such as
watching instructional videos.
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level of mastery, students on the adaptive track required sig-
nificantly less time (∼ 17% less time on average)- time which
can be used for other educational activities. Furthermore,
the qualitative feedback provided by teachers suggests that
students using E-gostky were more engaged and eager to
learn. One of the teachers reported that “using the skipping
engine (E-gostky) ... motivated them to learn, think longer
before answering, and use the aids to answer correctly”.

In this document we present the summary of the results. A
more comprehensive description of the study and the results
can be found at [13].

2. BACKGROUND AND RELATED WORK
The Zone of Proximal Development (ZPD) plays a key role
in the method we propose. The ZPD was introduced by Vy-
gotsky with the goal of identifying the psychological func-
tions (and related social interactions) that are needed for
transitioning to the next age period, and to assess the cur-
rent status of a child’s maturing functions [4]. The ZPD
provides a framework to evaluate learners’ abilities, known
as Dynamic Assessment (DA) [4, 8] which focuses on mea-
suring the learning potential for future development [8]. A
dynamic test is based on teacher assistance, where guidance,
feedback and adaptive delivery of assistance are embedded
in the evaluation procedure itself [4]. While originating from
a developmental theory, many benefits of implementing the
ZPD and DA concepts in educational applications have been
demonstrated, such as increased motivation and higher per-
formance [12, 15].

Our work also relates to past research on using historical
data to sequence content for students, a problem that at-
tracted many researchers [6, 11]. For a more comprehensive
literature review see [13].

3. METHODS
The adaptive learning method we propose consists of two
components: (i) Dynamic Assessment - this component pre-
dicts students’ performance in proposed exercises (ii) Se-
quencing Policy - this component is a policy in which given
the predictions made by the Dynamic Assessment, assigns
the next exercise by deciding which exercises are in the cur-
rent ZPD of the student.

The Dynamic Assessment component is built on features
learned by Random-Forests models [3] such as student his-
tory, offline exercise metadata and online student-exercises
features. These features are then used to predict for each
student-exercise pair, two factors: (1) Time To Success (TTS)
- how much time will the student spend until she finds the
correct solution to the exercise, and (2) Correct at First At-
tempt (CFA) - the probability that the student will solve
the exercise correctly in her first trial [9, 10]. These pre-
dictions are then used to define a policy that is designed
to keep students in their Zone of Proximal Development by
ruling whether an exercise should be skipped. The skipping
policy considers an exercise too easy for a student if she can
solve it correctly and relatively fast (see Figure 1). More
precisely, if the predicted CFA is above a certain threshold
and the predicted TTS is below another threshold, then the
policy rules the exercise as “below” the ZPD, thus too easy,
and recommends skipping it. Similarly, the policy will skip

(a) Non-bonus exercises. (b) Bonus exercises

Figure 1: The Zone of Proximal Development by CFA and
TTS predictions. (a) demonstrate the stipulated ZPD and
the skipping policy for regular (non-bonus questions), while
(b) represents it for bonus questions.

a bonus exercise that is too challenging by the predictive
models, to prevent the overwhelming of struggling students.

In addition, we adjusted E-gostky to handle “bad skips” (i.e.
exercises that the policy would have skipped but the stu-
dent had a hard time solving, meaning, not correct on the
first attempt or took longer than the average time to solve
the exercise). If a student does not solve correctly at first
attempt an exercise that followed a skip, E-gostky sends her
backwards in the curriculum, to the exercise that would have
been presented, if there were no skips.

The policy also respects signals from content providers. For
example, the content provider can flag an exercise as manda-
tory, in which case the exercise will be served to all students.
Also, to improve future decisions and restrain the engine
from making too many skips, with a certain probability, an
exercise will be served to the student even if the policy de-
scribed above suggests that it should be skipped.

To configure features the system uses at run-time, thresh-
olds used for the skipping policy and the DA models were
learned using offline data. This data was collected during
the previous school year when 714 students were learning us-
ing the same content, but without the adaptive engine. We
also used this data for the offline validation of the skipping
policy, where we found that in comparison with other skip-
ping policies (such as random skips and uniformly skipping
after n consecutive successes), the chosen policy can save
more time for the student while making fewer “bad skips”.
During the offline evaluation, the thresholds of the system
and the number of candidate exercises to skip were empir-
ically selected. Tuning these parameters allowed adjusting
the boundaries of the predicted ZPD. See [13] for more de-
tails about the methods used.

4. THE EDUCATIONAL CONTENT
The content was developed by pedagogical experts in the
Center for Educational Technology (CET), with the goal of
teaching fractions to 4th grade students. A learning path was
provided, which is termed as the“baseline path”, designed by
pedagogical experts. The content includes exercises, inter-
wined with interactive explanations and aids, and quizzes
that are administered at the end of each section and used to
assess mastery. A student can make as many attempts as
needed to solve an exercise, and proceed to the next one.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 660

Correct@ l" attempt Correct @ l" attempt 

stay skip skip stay stay stay 

stay stay skip skip stay stay 

stay stay stay skip skip stay 



5. IN-CLASS EXPERIMENT
The methods described above were implemented as a web-
service that operates as follows. When a student solves an
exercise, a request for the next exercise is sent from the
content delivery system. E-gostky predicts the CFA and
TTS for the following exercises and the policy is used to
choose the next exercise to serve. The student is notified of
the number of exercises skipped.

This service was deployed as part of an experiment including
412 students from 18 classrooms from 8 schools. Unfortu-
nately, in 4 of the 8 schools, the data collected was invalid
for the statistical analysis. This left 4 schools and 213 stu-
dents for analysis purposes. The analysis considered the first
two sections of the educational program where 60% of the
students were using E-gostky and the rest were using the
baseline approach as designed by the content provider.

6. EXPERIMENT RESULTS
In what follows, we compare the performance of students
who learned using E-gostky, with those who learned with
the baseline path. To control the classes’ effect, we con-
ducted a two-way ANOVA test. In cases where the assump-
tions to this test were not met, we used a Man-Whitney-U
two-tailed test to compare both groups within each school
separately and then used Bonferroni correction to get a cor-
rected p-value for the entire test.

Total time spent. The total time spent is the sum of
the time that the student spent on all of the exercises she
was asked to solve. Students using E-gostky finished the
exercises of the first two parts of the educational program
17% faster than the students in the baseline path (p-value =
0.025).

Time to solve an exercise. Students on the baseline path
used less time on individual exercises but the difference is
not statistically significant (p-value = 0.086).

Success Rate at First Attempt. In non-quiz questions,
students’ success rate in the adaptive path was significantly
lower (p-value = 0.010) than that of the baseline students.

These results show that the E-gostky system worked as ex-
pected: skipping exercises that are likely to be answered
correctly and fast to keep the students in their ZPD.

Quiz grades. To investigate E-gostky’s effect on students’
performance, we compared the students’ average scores in
two quizzes given to the students after completing the first
and second units of the learning material. For quiz 1, the
grades of the baseline group were higher, and this differ-
ence was borderline significant (p-value = 0.049) while in the
second quiz there were no significant differences (p-value =
0.386). Since the groups were assigned randomly, it might
be possible that the BL and ADL groups were not bal-
anced. Hence, we evaluated the improvement rate between
the quizzes. The adaptive group’s mean improvement was
higher, but only borderline significantly (p-value = 0.06).

A paired t-test was used to compare the probability to suc-
ceed on each question for each school separately. In both
quizzes, the baseline path students’ grades were significantly

higher (p-value = 0.008 \ 0.002 for the 1st \ 2ndquiz). How-
ever, when excluding School 4 from the analysis, the grade
differences for quiz 1 are not significant (p =.108). This is
not true for quiz 2 where in that case, the differences remain
significant (p = .008).

The fact that the improvement rates are better for the treat-
ment group (non significant) while the quiz scores are some-
what better for the control group may imply that the as-
signment of students to the treatment conditions was biased.
Moreover, since some statistical tests show the differences in
the scores to be significant while other tests do not, suggests
that the differences, even if existent, are not big and may be
controlled by tuning the skipping policy.

Guessing Rates. To compare guessing rates, we first set
a time-limit threshold (see [13] for further details on the
threshold selection). Questions which were answered faster
than this threshold were regarded as guesses. Students us-
ing E-gostky guessed on average 25% less compared to the
students in the baseline path. We found that both the
treatment and the school had significant effects (p-value <
0.0001 in both cases), while the interaction effect was non-
significant. The lower guessing rates in the adaptive path
indicates that the students using E-gostky were more en-
gaged, as suggested by previous studies [7].

6.1 Qualitative Results
Feedback from the teachers and students was gathered by
face-to-face meetings or by phone interviews. The feedback
reports reveal that the students enjoyed the overall experi-
ence of learning via a computerized environment. Besides
that, they expressed special interest in working with the
adaptive engine.

Engagement and motivation. The students reported
that learning with E-gostky, which they nicknamed “the
skipping engine”, was more engaging and motivating, as two
of the students mentioned, “I thought longer before answer-
ing each question, ... then I succeeded more and it skipped
more questions for me...”, “it gave me motivation to con-
tinue and I started to be more accurate...”. This behavior
was noticed by teachers: “There are children who came to
class even in their free time”.

Confidence and Self-efficacy Another important aspect
of E-gostky is the immediate feedback the student received.
It made them more confident about their proficiency and
future success. “...It gave me a feeling that I know the ma-
terial and that I can succeed each and every time”, “... it
gave me more confidence as I was advancing and the feeling
that I have a better understanding of the material”.

Usage of aids. Another effect of E-gostky was that to
achieve more skips, the students showed a higher usage of
aids to increase their accuracy in solving exercises. As one
of the students reported, “...I used the lab more often and
then I succeed more and then I got more skips”.

7. DISCUSSION
The results show that students using E-gostky made simi-
lar progress between quizzes as did students in the control
group. With that said, E-gostky saved ∼ 17% of the time
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for the students that were using it. The time saved, which
is about 1/6 of the time reserved for working with this e-
learning system, can be used by teachers for other learning
activities.

It might seem counter-intuitive at first glance that the stu-
dents on the adaptive track spent more time on each exer-
cise while their total time spent is smaller, but this is the
result of E-gostky skipping over many easy exercises that
the student would have solved fast. As Vygotsky’s theory
suggests, these exercises do not contribute to the learning
process since they are not in the ZPD.

Another benefit of E-gostky is that the positive feedback
students receive dissuades students from guessing, and mo-
tivates them to be accurate and as a result, further enhances
learning [1, 2].

There are some limitations to the experiment we conducted.
We see differences in the scores achieved in the first quiz
between the groups. These differences are influenced by
one particular school in which the differences are signifi-
cant. However, we learned, by interviewing the teachers
after the experiment, that some of them did not fully un-
derstand the adaptive mechanism and thought that exercises
were skipped by mistake. This confusion was also reported
in students’ feedback: “At first I thought it was a bug in the
software, so I went backwards to do skipped questions...”, “In
the beginning I thought there was something wrong with the
system, so I went back to the questions it skipped...”. We
also note that some statistical tests indicate differences in
the performance of the baseline group and the treatment
group. However, there are indications that these differences
may be due to biased assignments of students to the groups.

It is hard to distinguish between the contribution of exercise
selection and the contribution of the notification students
received about skipped exercises. Students learned that by
providing accurate answers, the system will skip over ex-
ercises and this was considered as positive feedback. We
conjecture that both factors contributed to the positive re-
sults of our system. However, quantifying the contribution
is beyond the scope of this study.

8. CONCLUSIONS
We developed an adaptive learning engine, E-gostky that re-
lies on Vygotsky’s Zone of Proximal Development. E-gostky
uses machine learning models to skip content in the learn-
ing curriculum by dynamically assessing the learning poten-
tial of the student at the current time. It was evaluated
in a large-scale field experiment and compared to a base-
line path which was built by domain experts. Results show
that students using E-gostky maintained comparable per-
formance while spending 17% less time, guessed less and
reported higher engagement and motivation.

9. ACKNOWLEDGMENTS
We thank the Center for Educational Technology (CET) in
Tel-Aviv for their contribution to this study.

10. ADDITIONAL AUTHORS
Additional authors: Galit Lukin (MIT, email: glukin@mit.edu)
and Daniel Sitton (Microsoft, email: dsitton@microsoft.com).

11. REFERENCES
[1] R. S. Baker, A. T. Corbett, K. R. Koedinger, and

A. Z. Wagner. Off-task behavior in the cognitive tutor
classroom: when students game the system. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 383–390. ACM,
2004.

[2] J. Beck, M. Stern, and B. P. Woolf. Using the student
model to control problem difficulty. In User Modeling,
pages 277–288. Springer, 1997.

[3] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[4] S. Chaiklin. The zone of proximal development in
vygotsky’s analysis of learning and instruction.
Vygotsky’s educational theory in cultural context,
1:39–64, 2003.

[5] L. Darling-Hammond. No child left behind and high
school reform. Harvard Educational Review,
76(4):642–667, 2006.

[6] Y. B. David, A. Segal, and Y. K. Gal. Sequencing
educational content in classrooms using bayesian
knowledge tracing. In Proceedings of the sixth
international conference on Learning Analytics &
Knowledge, pages 354–363. ACM, 2016.

[7] E. Joseph. Engagement tracing: using response times
to model student disengagement. Artificial intelligence
in education: Supporting learning through intelligent
and socially informed technology, 125:88, 2005.

[8] J. P. Lantolf and M. E. Poehner. Dynamic assessment
in the classroom: Vygotskian praxis for second
language development. Language Teaching Research,
15(1):11–33, 2011.

[9] P. M. Moreno-Marcos, P. J. Muñoz-Merino,
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ABSTRACT
We present and evaluate a machine learning based system
that automatically grades audios of students speaking a for-
eign language. The use of automated systems to aid the as-
sessment of student performance holds great promise in aug-
menting the teacher’s ability to provide meaningful feedback
and instruction to students. Teachers spend a significant
amount of time grading student work and the use of these
tools can save teachers a significant amount of time on their
grading. This additional time could be used to give person-
alized attention to each student. Significant prior research
has focused on the grading of closed-form problems, open-
ended essays and textual content. However, little research
has focused on audio content that is much more prevalent
in the language-study education. In this paper, we explore
the development of automated assessment tools for audio re-
sponses in a college-level Chinese language-learning course.
We analyze several challenges faced while working with data
of this type as well as the generation and extraction of fea-
tures for the purpose of building machine learning models
to aid in the assessment of student language learning.

Keywords
Audio Analysis, Automatic Grading, Machine Learning

1. INTRODUCTION
Learning proper pronunciation is an essential aspect of learn-
ing to speak a new language. Almost all standardized lan-
guage tests involve a section where the person being eval-
uated is expected to speak out loud; these verbal tests are
used to assess student skill and knowledge of pronunciation,
fluency, and the correct usage of vocabulary. In the previous
years, computer-assisted pronunciation teaching (CAPT) has

gained attention and has been commercialized such as Pear-
son, SRI, and ETS [6]. Language learning is a common part
of many educational systems, and language classes often in-
volve assignments which are related to speaking tasks. This
gives us, as researchers and developers of tools to aid in the
teacher assessment of students, an opportunity to collect and
utilise language students’ audio responses. The audio data
of language learners are rich data-sets which provide insights
about how well students are acquiring language skills based
on the pronunciations and quality of speech. These data-
sets may also identify problem areas where a student may
be in need of improvement. However, collecting this data
can be challenging because the data is not commonly stored
uniformly and all in one place. Since oral tests are given in
class, recording and storing this data would add an overhead
to the teacher’s responsibilities. Additionally, this process
can occur more efficiently. The students are all evaluated
for on similar measures like the standardized exams that
test pronunciation and fluency. By automating the process
of grading students, we can both help learners self-evaluate
their progress and provide tools to teachers who tradition-
ally grade students by listening to audio files (a task that can
be very time consuming considering the number of potential
students a teacher may have in a single class). The grading
systems which have been researched previously are usually
for more closed-form responses. Open ended responses, such
as essays or explanatory, answers are a more challenging task
to automatically grade, but there has been growing research
on developing automated assessment tools for such tasks [5].

This paper presents an exploratory analysis representing an
initial step toward developing automated assessment tools
for language learning audio responses. In this paper, we
explore the development of automated graders of student
audio responses from a Chinese language class. We seek
to address the following research questions: 1.By employing
models of varying complexity, are we able to automatically
grade student audio responses better than a simple major-
ity class baseline model? 2.Does a recurrent deep learn-
ing model outperform a static decision tree model in regard
in predicting student grades? 3.Which features extracted
from student audio responses provide the greatest impact
on model performance in predicting student grades?
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2. RELATED WORK
Automatic speech recognition systems have been the focus
of several works over the past three decades. Some of this
notable research has been conducted on the use of Auto-
matic Speech Recognizer (ASR) technology for automatic
speech scoring and the evaluation of pronunciation quality
(cf. [7]). With Deep Learning improving the performance
of many tasks, it has been widely used in the Automatic
Speech Recognition and Scoring tasks [4]. Many states have
begun to use computer-based English Learning Proficiency
(ELP) assessments, which has led to a growing interest in
automated scoring of spoken responses to increase the ef-
ficiency of scoring. However, there is a dearth of systems
which grades foreign language learners. In this paper we
plan to focus on Chinese learning Undergraduate students.

3. DATASET
The data-set is collected from a Chinese language class for
undergraduate students in a university located in the North-
East region of the United States. The data collected consists
of 63 distinct students from 3 classes run between 2017 and
2019. All of these classes were taught by the same instruc-
tor. The data is comprised of 60 audio recordings which
includes audio responses from 3 different prompts. The av-
erage length of the audio is approximately 2.5 minutes. All
work is submitted through an institute-hosted learning man-
agement system from which the teacher then downloads all
the files in order to listen and grade each student’s work. In
our data-set, the teacher followed a rubric when assessing
each student that is reported in Table 1

3.1 Pre-processing
A series of pre-processing steps were applied to the raw au-
dio responses for use in this work. Among the 60 responses,
in 12 cases, responses included multiple students speaking; it
is likely that permission was given to these students to work
collaboratively on the assignment. In 2 of these cases, a sep-
arate grade was given to each student present in the record-
ing while in the remaining 9 cases, the students involved were
given the same score. We observed that the grades in these
2 cases where the score differed did not vary more than 1
point (on a scale of 11, from 0-10 inclusively), and therefore
we aggregated each of the responses and grades into a sin-
gle instance by averaging the two scores. The other 9 cases
were left as individual samples, leaving us with the afore-
mentioned 60 distinct responses for use in our models.For
the feature extraction step (described in the next section),
we further need to convert our audio data in a mono-channel
format. The data we collected contains stereo data (i.e. it
contains a separated right and a left channel). To convert
each response to a mono signal, we took the average of the
two channels of the stereo data.

Grading Components Percentage
Rich Content 40%
Grammar and word usage 20%
Accuracy of tones and pronunciation 20%
Fluency 20%

Table 1: The grading rubric used to assess student
audio responses.

4. METHODOLOGY
Our methodology includes feature extraction and building
models for predicting teacher-provided grades for student
audio responses. We compared two non-linear models to a
simple baseline. While the grade labels were provided on an
11-point scale (0-10), this scaling is non-linear due to non-
uniformity across the grades (the average grade was 7.41).
Since few of the assignments were graded on different scales,
a min-max scaling was used to transform all the scores into
a scale of 0-10.

4.1 Feature Extraction
Audio feature extraction is performed to transform the au-
dio signals recorded in the .wav files into a representation
which can be used for machine learning. The features used
are extracted using the PyAudioAnalysis library; this is a
python-based library which is exclusively used for audio data
feature extraction. We use the default parameters of 50 mil-
liseconds and 25 milliseconds for the window size and step
amount respectively. With these parameters, the feature ex-
traction function split the input signal into short windows
(frames), leading to a sequence of short-term feature vectors
at regular intervals within the signal. The number of win-
dows varied for each of the signals based on the length of
the audio file. The features extracted for use in this work
are briefly described in Table 2. For each time window, we
extracted the 34 features, where several of the features de-
scribed in Table 2 are described using a multi-valued numeric
vector indicated through the Feature ID column.

4.2 Deep Learning Model
The sequential and temporal aspects of audio data makes
the application of a recurrent deep learning model an ap-
propriate choice for developing automated assessment tools.
Specifically, we utilize a Long Short Term Memory (LSTM)
[3] network, as it is designed to model complex temporal
relationships within sequential data. This model observes a
sequence of time steps (e.g. frames of audio as described in
the Feature Extraction Section) and is trained to produce
a single value corresponding to the estimated grade for the
student response. Due to the number of features and length
of each student response, we chose a network structure with
3 hidden layers. The input of the model is represented as
a sequence of 34-valued vectors corresponding with the ex-
tracted features, which is then passed to a LSTM hidden
layer of 50 nodes, before being passed through 2 additional
fully connected non-recurrent layers of 100 units each. An
output layer of a single node is used corresponding with the
grade of the student, treated as a regression rather than a
classification task. We chose this structure to prevent the
network from overfitting due to the long sequences (i.e. by
using a smaller LSTM layer), but providing enough depth
in the model to learn feature representations from each se-
quence; exploring additional model structures is planned for
future work. The LSTM looks at each frame and provides
an estimated grade for it, but is only updated and evaluated
on the final frame of the sequence. We applied a 5-fold cross
validation on the data-set and measure performance using
RMSE and Spearman correlation.

4.3 Decision Tree Model
To contrast the deep learning network, we also compare a de-
cision tree model which has the capacity to learn non-linear
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Feature ID Feature Name Description
1 Zero Crossing Rate The rate of sign-changes of the signal during the duration of a particular frame.
2 Energy The sum of squares of the signal values, normalized by the respective frame length.

3 Entropy of Energy
The entropy of sub-frames’ normalized energies.
It can be interpreted as a measure of abrupt changes.

4 Spectral Centroid The center of gravity of the spectrum.
5 Spectral Spread The second central moment of the spectrum.
6 Spectral Entropy Entropy of the normalized spectral energies for a set of sub-frames.

7 Spectral Flux
The squared difference between the normalized magnitudes
of the spectra of the two successive frames.

8 Spectral Rolloff
The frequency below which 90% of the magnitude distribution
of the spectrum is concentrated.

9-21 MFCCs
Mel Frequency Cepstral Coefficients form a cepstral representation where the
frequency bands are not linear but distributed according to the mel-scale.

22-33 Chroma Vector

A 12-element representation of the spectral energy where the bins represent the 12

equal-tempered pitch classes of western-type music (semitone spacing).
34 Chroma Deviation The standard deviation of the 12 chroma coefficients.

Table 2: The 34 Features extracted from the audio along with its description.

relationships between the features and teacher-provided grades,
but does so in a non-sequential manner. As such, we needed
to aggregate the audio features into a single vector that de-
scribes the response as a whole as input to the model. We
took the average across each of the 34 features across each
response and used it to predict the teacher-provided grade.
We applied a decision tree regressor using the CART algo-
rithm [1]. Similar to the deep learning model, we evaluated
the model using a 5-fold cross validation using measures of
RMSE and Spearman correlation. Within each training fold
we optimized it for it’s depth using the training data.

4.4 Baseline Method
We compare each the LSTM model and decision tree model
to a simple baseline using a majority class model. For this
method, we take the average grade provided by the teacher
and use this as a prediction for every sample. It can be used
to evaluate how well our models perform in comparison to
a model that incorporates no audio information.

5. RESULTS
We report model performance using measures of RMSE,
a measure of prediction error, and Spearman correlation
(Rho). The performance of each of our models in predicting
the audio response grades is reported in Table 3. From this,
it can be seen that both models outperform the baseline
model in regard to RMSE, but only the LSTM model ex-
hibited positive correlation. These results demonstrate that
the LSTM is the superior model, although the values sug-
gest that there is still room for improvement. As the grade
labels follow a 10 point scale, the best RMSE of 2.728 ex-
hibited by the LSTM suggests that it is, on average, over-
or under-predicting the true grade of the student by just un-
der 3 grade points. Despite this room for improvement, the
results do suggest that both the LSTM and decision tree
models are learning from the data in potentially different
ways. We further explore each of these models through an
ablation study.

6. ABLATION STUDY
In this experiment, we perform an ablation study where we
run a model with all the features and iteratively remove

Model RMSE Rho
Majority Class 3.323 -
Decision Tree 2.807 -0.076

LSTM 2.728 0.163

Table 3: Audio Grade prediction: average 5-fold
RMSE and R2 score for the models

each to observe impacts to model performance. Changes in
model performance as a result of removing a feature can be
used then as a measure of feature importance in determining
the grade of the student. Table 4 reports the results of this
study across both the LSTM and Decision Tree models. The
rows in the table are sorted to reflect the features of highest
impact found in regard to changes in RMSE for the LSTM
model as this was the highest performing model across both
metrics.

In regard to the decision tree model, the 3 features which
cause the largest drop in RMSE are Energy of the wave,
MFCC features, and Spectral Centroid. With respect to the
Spearman corelation metric, the top three correlated fea-
tures are the Chroma features followed by the Zero Cross-
ing Rate and MFCC features. In the LSTM model, the 3
features which cause the largest decrease in the RMSE are
the 12 Chroma features, the Energy Entropy, and the Zero
Crossing Rate feature. However, comparing the Spearman’s
correlation measure (rho) does not follow the same trend
as the RMSE. In the case of LSTM, most of the models
have a rho value more than the model with all the features.
This may suggest overfitting within the model, particularly
as some of the features similarly lead to improvements in
RMSE when removed.

7. DISCUSSION
As can be seen from the decision tree model as well as the
LSTM model, the energy related features has a significant
impact on the evaluation of the pronunciation. In [2] it was
shown that ‘formants‘ are bands of energy around a particu-
lar frequency which characterizes different resonances of the
vocal tract and it helps understand pronunciation of vow-
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LSTM Decision Tree
Feature Removed Delta RMSE Rho Delta RMSE Rho

Chroma 0.118 0.172 0.217 0.162
Entropy of Energy 0.076 0.18 0.143 0.074

Zero Crossing Rate 0.042 0.149 0.132 0.121
Spectral Centroid 0.042 0.148 0.226 0.072

Spectral Spread 0.04 0.189 0.205 0.085
Spectral Rolloff 0.028 0.206 0.136 0.107

Spectral Entropy 0.025 0.217 0.132 0.121
Chroma Deviation 0.018 0.208 0.059 0.076

Energy -0.011 0.19 0.361 -0.025
Spectral Flux -0.016 0.242 0.151 0.11

MFCC -0.18 0.161 0.314 0.132

Table 4: Ablation Study results from the LSTM and Decision Tree model
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Figure 1: The Waveform from an audio of a stu-
dent answer along with the predictions by the LSTM
model at each window.

els. The second feature that has an impact in the decision
tree is the MFCC feature. The MFCC features accurately
characterizes the envelope of the short time power spectrum
which manifests the shape of the vocal tract. Hence it makes
sense that it influences the pronunciation score. However,
the LSTM model seems to understand MFCCs differently
and hence, the removal of these MFCC features seem to
having a improvement in the model. Further analysis on
the MFCC features can help us understand why this is the
case. The Chroma feature provides information related to
the 12 musical octaves. Both the LSTM and the decision
tree model seem to show an increase in the RMSE when
these features are removed.

A benefit of the sequential structure of the LSTM model is
its ability to illustrate the development of its grading esti-
mates over the audio response. From moment-to-moment,
a grade estimate can help to indicate sections of the audio
response that suggest a high grade (e.g. well-pronounced
words) and sections that suggest a low grade (e.g. poor pro-
nunciation or areas of silence); an example of this is illus-
trated in Figure 1. In this figure, the bottom image depicts
the wave form of a student audio response while the top
figure illustrates the LSTM estimate over the length of the
response. Such a report could help teachers to identify sec-
tions of audio where the student may be in need of additional
aid.

8. CONCLUSION AND FUTURE WORK
Based on the results we plan to follow the following steps
for the future. First, exploring additional model architec-
tures may lead to more accurate assessment tools. Second,
we plan on incorporating contextual knowledge since 40 per-
cent of the grade includes content. Converting the audio to
text and extracting text-related features could potentially
provide more understanding of the evaluation of the audio.
And finally, using LSTMs the scores for each segment of au-
dio can be graded and we plan on using it to aid students in
self-assessment and to help teachers learn where their stu-
dents need further aid. This work is an initial step toward
the development of automated assessment tools designed to
aid language learning students and teachers. We hope that
further in-depth analyses of different combinations of the
features will better help understand these relationships.

9. REFERENCES
[1] L. Breiman. Classification and regression trees.

Routledge, 2017.

[2] V. Fridland, K. Bartlett, and R. Kreuz. Do you hear
what i hear? experimental measurement of the
perceptual salience of acoustically manipulated vowel
variants by southern speakers in memphis, tn.
Language variation and change, 16(1):1–16, 2004.

[3] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[4] K. Kyriakopoulos, K. M. Knill, and M. J. Gales. A
deep learning approach to assessing non-native
pronunciation of english using phone distances. In
Proceedings of the Annual Conference of the
International Speech Communication Association,
INTERSPEECH, volume 2018, pages 1626–1630, 2018.

[5] K. Taghipour and H. T. Ng. A neural approach to
automated essay scoring. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 1882–1891, 2016.

[6] S. M. Witt. Automatic error detection in pronunciation
training: Where we are and where we need to go. Proc.
IS ADEPT, 6, 2012.

[7] K. Zechner, D. Higgins, X. Xi, and D. M. Williamson.
Automatic scoring of non-native spontaneous speech in
tests of spoken english. Speech Communication,
51(10):883–895, 2009.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 666

0 

' 
•· 
, 

0 

,J 1,,JO l OOf l".<lt, X •OU )~fY.l 

ill~'~-•~,~ •~•1~1~ 



A Meta-Learning Augmented Bidirectional Transformer
Model for Automatic Short Answer Grading

Zichao Wang
Rice University

Houston, TX 77005
jzwang@rice.edu

Andrew S. Lan
University of Massachusetts

Amherst
Amherst, MA 01003

andrewlan@cs.umass.edu

Andrew E. Waters
OpenStax

Houston, TX 77005
aew2@rice.edu

Phillip Grimaldi
OpenStax

Houston, TX 77005
phillip.grimaldi@rice.edu

Richard G. Baraniuk
Rice University & OpenStax

Houston, TX 77005
richb@rice.edu

ABSTRACT
We introduce ml-BERT, an effective machine learning method for
automatic short answer grading when training data, i.e., graded
answers, is limited. Our method combines BERT (Bidirectional
Representation of the Transformer), the state-of-the-art model for
learning textual data representations, with meta-learning, a train-
ing framework that leverages additional data and learning tasks to
improve model performance when labeled data is limited. Our in-
tuition is to use meta-learning to help us learn an initialization of
the BERT parameters in a specific target subject domain using un-
labeled data, thus fully leveraging the limited labeled training data
for the grading task. Experiments on a real-world student answer
dataset demonstrate the promise of ml-BERT method for automatic
short answer grading.

1. INTRODUCTION
We consider the problem of automatic grading for short answer
questions that require students to provide concise textual responses.
Figure 1 shows an example of short answer questions. The peda-
gogical benefits of these questions over multiple-choice questions
have been studied and validated by [11]. Unfortunately, manually
grading short answer questions is labor intensive, rendering it ex-
tremely challenging to administer these questions in large-scale ed-
ucational settings.

In this paper, we aim to advance the state-of-the-art in automatic
short answer grading. This problem can be viewed as a super-
vised (machine) learning problem where we would like to grade
(classify) answers as correct or incorrect given a dataset of answers
and their grades (labels).1 A method capable of reliably grading
short answer questions gives instructors more freedom in choosing
the form of assessments in large-scale educational settings where

1We will use “grade” and “label” interchangeably throughout the paper.

Question: What is a difference between saturated and unsat-
urated fats?

Answer: Saturated fats have no double bonds whereas un-
saturated fats have at least one double bond

Figure 1: A sample question and correct student answer in their
raw textual form taken from a high school biology class.

manual grading is unfeasible. In practice, however, the number
of graded answers is very limited since manual grading is labor-
intensive. This constraint makes training a classifier for automatic
grading a highly challenging task. Thus, it is desirable to develop
a method that can effectively leverage the ungraded answers to
learn a representation of the answers and achieve satisfactory per-
formance with only a few graded answers. This feature is valu-
able for instructors in large-scale educational settings because they
would need to manually grade only a few answers, which saves
them time and effort that are better allocated to other pedagogical
actions. Therefore, in this work, we focus on this particular sce-
nario where we only have access to a limited number of graded
answers.

A number of prior works have demonstrated the effectiveness of
machine learning methods in automatic grading [2, 8, 9, 10]. As
a high-level summary, a typical method first converts textual data
composed of questions and answers to some vector representations
and then uses them to classify an answer as correct or incorrect. In
our problem setting, however, this method for automatic short an-
swer grading faces two major challenges. First, we need a model
capable of producing high quality representations of textual data
that captures the information in both the question text and the an-
swer text, which is essential for the classifier to make its decision.
We note that learning a representation of textual data has been a
challenge not only for short answer grading but also for the broader
field of natural language processing (NLP). Second, since the num-
ber of graded answers is limited, we need a specialized training
procedure that enables the classifier to remain effective using only
a limited number of labels. We note that this procedure is important
because a number of prior works, e.g., [4], have demonstrated that
regular training procedures may result in poor results when labeled
data is limited. For example, we have merely less than 20k labeled
answers whereas related classification tasks such as sentiment anal-
ysis have over 1 million labeled examples [5], which contributes to
the success of machine learning models on those tasks.
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To tackle the first challenge and learn textual data representations
efficiently and effectively, we resort to BERT (bidirectional en-
coder representation of the transformer), the state-of-the-art model
for text. Since BERT achieves the best results to date in a wide
range of benchmark NLP tasks, we develop our method on top of
it. To tackle the second challenge and fight the scarcity of labeled
data, we resort to meta-learning, an emerging training procedure
that searches for a good initialization of the model parameters by
using unlabeled data to optimize additional objectives that are un-
related to the target task. Previous studies [4, 7] have shown that
parameter initialization is critical for the success of neural network
models including BERT; Thus, the meta-learning procedure helps
us to find a better initialization of the model parameters and quickly
adapt to new tasks with only limited labeled data.

1.1 Contributions
We propose ml-BERT, a meta-learning method that augments the
bidirectional encoder representation of the transformer (BERT)
model for automatic short answer grading with limited labeled an-
swers. Our method consists of two learning phases. First, in the
meta-learning phase, we optimize for an initialization of BERT pa-
rameters using unlabeled data. We carefully choose data from a
specific educational domain to use in the meta-learning phase such
that it is closely related to the questions in the short answer grad-
ing task. This choice ensures that the meta-learned initialization
builds a good representation of the domain and is highly useful to
the subsequent short answer grading task. Second, in the regular
learning phase, we optimize BERT parameters for the short answer
grading task using limited labeled training data, starting from the
meta-learned parameter initialization in the previous phase. Experi-
mental results on a real-world dataset consisting of student answers
to a set of questions in high school biology shows that the proposed
ml-BERT method is more effective than regular BERT and several
other baseline methods when labeled data is limited.

The rest of the paper is organized as follows. Section 2 details
our ml-BERT method. Section 3 presents experimental results on
a real-world student answer dataset and discusses the key findings.
Finally, Section 4 summarizes our work and proposes future re-
search directions. This paper is a truncated version; for more de-
tails including background on BERT and meta-learning, exhaustive
literature review and additional experimental results, please refer to
the long version of this paper on ArXiv with the same title.

2. METHOD
In this section, we describe ml-BERT, our novel training procedure
that augments BERT with meta-learning for short answer grading.
The ml-BERT training procedure consists of two learning phases,
namely, the meta-learning phase and the regular learning phase. In
the meta-learning phase, we optimize for an initialization of BERT
parameters that ultimately leads to better short answer grading per-
formance. In the regular learning phase, we optimize for the BERT
parameters using labeled short answer dataset to further improve
the model performance on short answer grading.

Key to the success of ml-BERT is the choice of datasets and tasks
in the meta-learning phase for learning parameter initialization.
We choose language modeling and next sentence prediction as our
meta-learning tasks. We use a dataset that includes textbooks, ques-
tion texts, and correct student answer texts for the language model-
ing task and a dataset that includes textbooks for the next sentence
prediction task. The specific choice of the above data depends on
the educational domain. For example, we would choose relevant

biology textbooks if the task is to grade answers to biology related
questions. Intuitively, the language modeling task helps us learn an
initialization that captures the nuances of the language usage spe-
cific to each educational domain. The next sentence prediction task
helps us learn an initialization that captures the logic flow under-
lying the textbooks from which questions are asked. Initialization
learned from the above tasks and data is thus informative to the sub-
sequent short answer grading task because it contains some knowl-
edge of whether an answer uses appropriate language and whether
an answer is logically related to its associated question and the spe-
cific educational domain.

Below, we first formally define the target task which is short answer
grading. We then describe the two meta-learning tasks and their
datasets. Finally, we present the full ml-BERT training procedure.

Target task: short answer grading. This is a supervised learn-
ing problem that we explicitly train the model to perform well on.
The training dataset for short answer grading consists of N exam-
ples {qi, ai, yi}Ni , where qi and ai are text segments represent-
ing question and student short answer, respectively, and yi is a bi-
nary variable indicating whether the answer is correct or incorrect.
The learning objective is to correctly classify each answer given the
question. We use the negative log-likelihood loss to measure this
objective:

LT = − 1

N

N∑
i=1

log p(yi|ai, qi) (1)

where p(yi|ai, qi) is modeled by a composition of functions in-
cluding BERT mapping f (1)(·) of the first “[CLS]” token (see
Section 2.1 of the long version of this paper),2 a fully connected
layer g : RM → R, and a sigmoid function σ(·):

p(yi|ai, qi) = σ
(
g
(
f (1) (ai, qi)

))
.

In practice, in order to obtain a single textual input for BERT, we
append all tokens of each answer ai to all tokens of its associated
question qi, append “[CLS]” and [SEP]” respectively at the be-
ginning and end of the concatenated token sequence, and separate
the answer and question tokens with “[SEP]”.

Meta-learning task #1: language modeling. This is an unsuper-
vised learning problem. The dataset D1 = {si}N1

i=1 consists of a
collection ofN1 sentences si taken from text corpora specific to the
educational subject. Each sentence is represented by a sequence of
Ji tokens: si = {wj}Ji

j=1 (see Section 2.1 of the long version of
this paper).

During training, we randomly replace a portion of all tokens in each
sentence with the special token “[MASK]” and ask the model to
predict these masked tokens. We set the portion of masked tokens
to 15% for each sentence. Performance of token prediction is mea-
sured by negative log-likelihood loss L1 as:

L1=−
1

N1

N1∑
i=1

∑
wik

log p(wik|w1,. . ., wik−1, wik+1,. . ., wJi) (2)

where wik represents the kth masked token in the ith sentence.
The conditional probability distribution is modeled using the com-
position of BERT mapping f(·), a linear layer gi : RM → RV

2In BERT, we obtain the sentence representation by quering the
embedding of this “[CLS]" token.
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Table 1: Statistics of the dataset for each task. Note that the short
answer grading dataset consists of only labeled answers which rep-
resents less than 10% of all available answers.

tasks #examples #average tokens
Short answer
grading

495 questions
18143 answers

17.88 per question
12.31 per answer

Masked language
modeling 78684 sentences 19.08 per sentence

Next sentence
prediction 21052 sentences 25.54 per sentence

that maps every BERT encoded token into a vector of dimension V
which is the size of the vocabulary, and a softmax function:

p(wk|w1, · · · , wk−1, wk+1, · · · , wJ) = softmax (g1(f(s̃)))

where we drop the example index i for notation simplicity. s̃ de-
notes the input sentence with the kth token replaced by the mask
which indicates which token the model should predict.

We note that there are other strategies for language modeling with
BERT. Conventionally, one models language by predicting the next
token in the input sentence given all previous tokens [6]. We
choose this masked prediction strategy for language modeling be-
cause of its superior empirical performance than the conventional
approach [3].

Meta-learning Task #2: next sentence prediction. This is an
unsupervised learning problem. The dataset D2 = {si, ŝi, zi}N2

i=1

consists of N2 pairs of sentences sampled from textbook chapters
specific to the educational subject of the short-answer questions.
We sample the sentence ŝi such that half of the time it is the next
sentence of si and half of the time it is a sentence from a random
location in the textbook. zi is a binary variable indicating whether
ŝi is the next sentence of si. We use negative log likelihood L2 to
measure model performance on next sentence prediction:

L2 = − 1

N2

N2∑
i=1

log p(zi|si, ŝi) (3)

where the conditional probability is modeled by the composition
of BERT mapping f (1)(·) of the first “[CLS]” token, a fully con-
nected layer g2 : RM → R, and a sigmoid function σ(·):

p(yi|si, ŝi) = σ
(
g2
(
f (1) (si, ŝi)

))
.

The ml-BERT training procedure. Model parameter update ac-
cording to ml-BERT proceeds as follows. In the meta-learning
phase, we update the BERT parameters by alternating between the
two tasks until we reach a pre-specified stopping condition. In the
regular learning phase, we initialize the BERT parameters from the
meta-learned parameter initializations in the previous phase and up-
date the parameters using the labeled short answer dataset until we
reach a pre-specified stopping condition. In both phases, we per-
form parameter update using gradient descent optimizers. The ex-
act choice of the optimizer is flexible; we use the customized Adam
optimizer for BERT outlined in [3]. The proposed ml-BERT pro-
cedure is simple to implement and effective in practice, which we
demonstrate in the next section.

3. EXPERIMENTAL RESULTS
We now demonstrate the effectiveness of our method using real-
world data. We first introduce various model and training settings

and then explain our results in detail. Code for our experiments can
be shared upon request.

Dataset and pre-processing steps. We collect real-world short
answers from semester-long biology classes that use the OpenStax
Biology textbook.3 Table 1 summarizes the key statistics of the
dataset. Notably, only about 10% of the answers are graded; we use
only the graded responses as training data. Heaping the power of
the vast number of ungraded responses is left for future work. We
perform an 80/20 training/validation split independently for each
question. We also discard questions in the training set with less than
20 labeled answers, 10 for each label, and questions in the valida-
tion set with less than 4 labeled answers, 2 for each label. This is to
ensure we have well-balanced training and validation splits of the
dataset. For the language modeling task during meta-learning, we
use all textbook text, questions, instructor-authored answers asso-
ciated with the OpenStax Biology textbook. For the next sentence
prediction task, we only use the textbook text.

The textual data is minimally pre-processed. We first turn all texts
to lowercase. For BERT, we use the WordPiece tokenizer to process
the input text into a sequence of tokens. For other baseline models,
we use a bag-of-words (BoW) representation of textual data, which
involves a more complicated pre-processing pipeline including to-
kenization, lemmatization and stop word removal.

Hyper-parameters. We adapt the standard BERT model configu-
ration and training setup. We use BERT’s customized Adam opti-
mizer with a learning rate of 3 × 10−5. Training lasts 10 epochs
with a batch size of 32. Each question-answer pair is limited to 128
word pieces; shorter ones are padded and longer ones are truncated.
Most of the setup information is available in the official BERT code
release.4

Baseline models. We compare ml-BERT with four baseline meth-
ods: 1) baseline BERT without meta-learning, 2) Random Forest,
3) K-Nearest Neighbors and 4) logistic regression. The baseline
BERT model has the same hyper-parameter setup as BERT with
meta-learning. We use default settings in the python sklearn
package for the remaining three models. In addition, logistic re-
gression is the best linear classifier among those that we tested;
therefore we use logistic regression as the representative linear clas-
sifier baseline.5

3.1 Quantitative Analysis
Table 2 compare the classification accuracy and F1 score of ml-
BERT to that of the four baseline models on the validation set.
We clearly see ml-BERT improves both classification accuracy and
F1 score compared to the baseline models. Note in particular
that BERT without meta-learning only achieves comparable per-
formance with random forest, but with meta-learning it is able to
outperform all baseline models. This suggest that in the limited
labeled answer scenario, meta-learning has the potential to lift the
model performance further.

To get a fine-grained performance analysis, We compare the per-
formance of ml-BERT and BERT on questions of different levels
according to Bloom Taxonomy. Bloom Taxonomy [1] categorizes

3
https://openstax.org/details/books/biology

4
https://github.com/google-research/bert

5Recall that K-Nearest Neighbors and Random Forest are nonlinear
classifiers.
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Table 2: Evaluation accuracy and F1 score comparing ml-BERT
with various baselines.

Models eval. acc. eval. F1
Logistic Regression 71.39% 0.723
K Nearest Neighbors 72.74% 0.735
Random Forest 77.82% 0.768
Baseline BERT 77.80% 0.788
ml-BERT 80.17% 0.815

Figure 2: Grading accuracy per Bloom level comparing ml-BERT
to BERT. We see improved accuracy across questions with different
Bloom’s levels.

questions into 6 distinct levels where higher level indicates more
cognitive load required to answer a question. We can thus use
Bloom levels as rough difficulty measure of the questions. Figure 2
summarizes the classification accuracy for each bloom level. We
see that ml-BERT outperforms BERT in grading questions across
all bloom levels, most significantly at Bloom level 5. This can be
explained by the benefit of meta-learning which learns language
patterns and logical relations in the specific educational subject that
helps grade these “difficult” questions with higher accuracy.

3.2 Influence of Each Meta-Learning Task
We investigate the effect of each of the meta-learning tasks on the
quality of the learned representations of text. Specifically, we com-
pare ml-BERT using both learning tasks with ml-BERT using only
one of the learning tasks. We summarize the comparison in Table 3.
Results suggest that, overall, both tasks contribute to the quality of
the learned representations. We emphasize that, even with only one
of the meta-learning tasks, ml-BERT is able to adapt to the short
answer grading task and achieve better performance compared to
baseline BERT. This observation highlights the the importance of
using task-specific data and tasks in the meta-learning phase. More-
over, it also suggests that ml-BERT has potential in further improv-
ing its performance as we incorporate more tasks specific to the
target educational domain, which we leave for future work.

4. CONCLUSIONS AND FUTURE WORK
We have introduced ml-BERT, a method to augment the state-of-
the-art text embedding model BERT with meta-learning to improve
its performance on automatic short answer grading. In the first
phase of ml-BERT, we use meta-learning to learn an initialization
of BERT parameters by training language modeling and next sen-
tence prediction tasks on data specific to the relevant educational
domain. In the second phase, we further optimize the model param-
eters using limited labels on the correctness of the short answers.
We experimentally validate the effectiveness of ml-BERT on real-
world student answers collected in high school biology classes.
Both quantitative and quantitative results demonstrate that the pro-
posed method is promising.

Table 3: The impact of each of the two meta-learning tasks on grad-
ing accuracy. We see that the best results are achieved when we use
both meta-learning tasks. We also observe that using either one of
the meta-learning tasks already leads to improvement over baseline
BERT.

Conditions eval. acc. eval. F1
ml-BERT
- Without masked language modeling 79.12% 0.805
- Without next sentence prediction 78.63% 0.793

5. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive feedback
and Shashank Sonkar for helpful discussions. This work was par-
tially supported by Bill and Melinda Gates Foundation, Arthur &
Carlyse Ciocca Charitable Foundation, NSF grants IIS-17-30574
and IIS-18-38177, and DOD Vannevar Bush Faculty Fellowship
(NSSEFF) grant N00014-18-1-2047.

6. REFERENCES
[1] P. Armstrong. Bloom’s Taxonomy, 2014 (accessed Mar. 4,

2019).
[2] S. Burrows, I. Gurevych, and B. Stein. The eras and trends of

automatic short answer grading. Int. J. Artificial Intell. in
Edu., 25(1):60–117, Mar. 2015.

[3] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv e-prints, 1810.04805, Oct
2018.

[4] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta
learning for fast adaptation of deep networks. In Proc. Int.
Conf. Mach. Learn., volume 70, pages 1126–1135, Aug.
2017.

[5] A. Go, R. Bhayani, and L. Huang. Twitter sentiment
classification using distant supervision. CS224N Project
Report, 2009.

[6] D. Jurafsky and J. H. Martin. Speech and Language
Processing (2nd Edition). Prentice-Hall, Inc., 2009.

[7] Q. V. Le, N. Jaitly, and G. E. Hinton. A Simple Way to
Initialize Recurrent Networks of Rectified Linear Units.
ArXiv e-prints, 1504.00941, Apr. 2015.

[8] M. Mohler and R. Mihalcea. Text-to-text semantic similarity
for automatic short answer grading. In Proc. Conf. Eur.
Chapter Assoc. Comput. Linguistics, pages 567–575, Mar.
2009.

[9] M. A. Sultan, C. Salazar, and T. Sumner. Fast and easy short
answer grading with high accuracy. In Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics: Human
Language Technol., pages 1070–1075, Jun. 2016.

[10] N. Suzen, A. Gorban, J. Levesley, and E. Mirkes. Automatic
Short Answer Grading and Feedback Using Text Mining
Methods. arXiv e-prints, 1807.10543, Jul. 2018.

[11] A. Waters, P. Grimaldi, A. S. Lan, and R. G. Baraniuk.
Short-answer responses to stem exercises: Measuring
response validity and its impact on learning. In Proc. Conf.
Edu. Data Mining, pages 374–375, Jun. 2017.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 670

>- 0.8 
u 
~ 
:, 0.6 u 
u 
<t 
., 0.4 
"' ~ 
~ 0.2 
<t 

0.0 

- ml-BERT - BERT 

Bloom 1 Bloom 2 Bloom 3 Bloom 4 Bloom 5 



Deep Hierarchical Knowledge Tracing

Tianqi Wang
University at Buffalo

Buffalo, NY
twang47@buffalo.edu

Fenglong Ma
University at Buffalo

Buffalo, NY
fenglong@buffalo.edu

Jing Gao
University at Buffalo

Buffalo, NY
jing@buffalo.edu

ABSTRACT
Knowledge tracing is an essential and challenging task in
intelligent tutoring systems, whose goal is to estimate stu-
dents’ knowledge state based on their responses to questions.
Although many models for knowledge tracing task are de-
veloped, most of them depend on either concepts or items as
input and ignore the hierarchical structure of items, which
provides valuable information for the prediction of student
learning results. In this paper, we propose a novel deep hier-
archical knowledge tracing (DHKT) model exploiting the hi-
erarchical structure of items. In the proposed DHKT model,
the hierarchical relations between concepts and items are
modeled by the hinge loss on the inner product between the
learned concept embeddings and item embeddings. Then
the learned embeddings are fed into a neural network to
model the learning process of students, which is used to
make predictions. The prediction loss and the hinge loss are
minimized simultaneously during training process.

Keywords
knowledge tracing, hierarchical structure modeling, deep
learning

1. INTRODUCTION
Knowledge tracing is an essential and challenging task in
intelligent tutoring systems. The goal of knowledge tracing
task is to estimate the mastery state of a specific knowledge
component based on students’ responses to items. In other
words, knowledge tracing aims to predict the correctness of
a student’s response to the next item according to all the
previous response records.

In order for a student to answer an item correctly, he/she
needs to master the concepts related to this item first. For
example, a student can provide correct responses to both
“1 + 1” and “28 + 36”, which illustrates that this student
may master the general concept of addition. Some existing
knowledge tracing models [1, 8, 9] are proposed to predict
the students’ performance only based on general concept in-
formation of items. A common drawback of such models is

that they ignore the differences among different items even
under the same general concept. In fact, if a student knows
how to solve the items related to the concept “Addition of
Two Integers”, this student may correctly answer “28 + 36”
but make a mistake when answering a harder item “285 +
361”. In addition, the learning gains of answering differ-
ent items related to the same concept are different. Cor-
rectly solving a more complex item indicates a higher gain
towards the desired knowledge states than that obtained by
solving an easier one. To distinguish and model the dif-
ferences among items, Item Response Theory model [10] is
proposed, which directly uses items as the input to estimate
a student’s ability. However, students may visit these online
platforms very infrequently and only attempt on a small sub-
set of items. Therefore, for each item in the dataset, only a
small number of attempts are made, which leads to the issue
of data sparsity. On such sparse data, existing knowledge
tracing models, for example, Item Response Theroy [10],
that takes items as input may have limited performance.
Deep knowledge tracing [9], which applies RNN to predict
the performance of students, has shown improved prediction
performance in knowledge tracing, but it requires a large
amount of data for training. Such models would suffer more
from the data sparsity issue.

To handle the data sparsity issue and better distinguish
items, we propose a novel deep hierarchical knowledge trac-
ing (DHKT) model, which can leverage the hierarchical in-
formation between items and concepts. Specially, DHKT
learns the embeddings of items and concepts and models
the relations among items and concepts by calculating the
hinge loss of the inner product of the embeddings. The main
contribution of this work can be summarized as follows: We
propose a novel DHKT model by leveraging the hierarchi-
cal structure between items and concepts into the state-of-
the-art deep knowledge tracing model. Experimental results
show that the DHKT model learns meaningful representa-
tions and outperforms the state-of-the-art baselines.

2. METHODOLOGY
In this section, we first introduce how to model the students’
learning process using a deep learning framework, and then
illustrate how to incorporate the concept-item graph into
the model.

2.1 Problem Formulation
We denote the set of students as K. For a student k ∈ K
interacting with the system t times, the interactions are de-
noted as Xk = {xk,1, xk,2, ..., xk,t}. In this work, the inter-
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Conference on Educational Data Mining (EDM 2019), Collin F.
Lynch, Agathe Merceron, Michel Desmarais, & Roger Nkambou
(eds.) 2019, pp. 671 - 674
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actions specifically refer to the students’ responses to corre-
sponding items. xk,t = (ik,t, yk,t) is a tuple representing the
item ik,t ∈ I attempted by student k at time t, where I rep-
resents the set of all items, and yk,t ∈ {0, 1} represents the
correctness of the response. yk,t = 0 indicates an incorrect
response and yk,t = 1 represents a correct one.

These items are related to different knowledge concepts,
which are the more general representations of the items. The
set of knowledge concepts is denoted as C in this work. The
relations between items and concepts are annotated by ex-
perts. We denote the mapping matrix, i.e., the concept-item
graph, as Q ∈ {0, 1}|C|×|I|. If qm,n = 1, which means the
item n is related to the concept m; otherwise, qm,n = 0.

With the above definitions, the knowledge tracing task can
be formulated as a binary sequence prediction problem:
Given a series of interactions Xk = {xk,1, xk,2, ..., xk,t},
xk,t = (ik,t, yk,t) of a student k, the next item ik,t+1 ∈ I
and the concept-item mapping matrix Q, our goal is to pre-
dict the value of yk,t+1 representing if student k will answer
the new given item ik,t+1 correctly based on the current
knowledge state hk,t of the student.

2.2 Model Student Learning
We use dense embeddings instead of one-hot encoding as
the input of the DHKT model. These dense embeddings
can be automatically learned from the training dataset. To
distinguish the difference among items related to the same
concept and preserve the concept-level information, the con-
catenation of item embedding and concept level embedding
is employed to represent an item in the DHKT model.

Let eik,t ∈ Rd denote the embedding of the item ik,t, where
d is the dimension of the embedding. Since one item ik,t can
be related to more than one concept, we use the average em-
beddings of all the concepts related to ik,t as its concept-level
embedding eck,t . Mathematically, the concept-level embed-
ding for the item ik,t is defined as:

eck,t =
1

|Ck,t|
∑

cm∈Ck,t

ecm , (1)

where Ck,t denotes the set of concepts related to item ik,t,
|Ck,t| is the number of such concepts, cm represents a con-
cept in Ck,t, and ecm is the embedding of the concept cm.

The new hierarchical representation of the item ik,t can be
described as the concatenation of item and concept embed-
dings:

vk,t = eik,t ⊕ eck,t , (2)

where vk,t ∈ R2d and ⊕ denotes vector concatenation.

To jointly represent the item and the correctness of student
k’s response, we introduce ak,t ∈ R4d as:

ak,t =

{
vk,t ⊕ 0 yk,t = 1
0⊕ vk,t yk,t = 0

, (3)

where 0 ∈ {0}2d is the zero-vector. ak,t is the input when
we model the process of student learning.

In the student learning process, the current knowledge state
of a student is highly correlated with the previous knowledge
state and the learning gains from the new materials. Thus,
the student learning process can be modeled by Long Short-

Term Memory network [3] as:

gk,t = σ(Wiak,t + Uihk,t−1 + bi),

fk,t = σ(Wfak,t + Ufhk,t−1 + bf ),

ok,t = σ(Woak,t + Uohk,t−1 + bo),

rk,t = fk,t ⊗ rk,t−1

+ gk,t ⊗ tanh(Wcak,t + Uchk,t−1 + bc),

hk,t = ok,t ⊗ tanh(rk,t),

(4)

where h denotes the dimensionality of hidden state vec-
tor. gk,t, fk,t,ok,t, rk,t,hk,t ∈ Rh are the activation vec-
tor of the input gate, forget gate, output gate, the mem-
ory cell and the hidden state vector of student k at time t.
Wi,Wf ,Wo,Wc ∈ Rh×2d and Ui,Uf ,Uo,Uc ∈ Rh×h are
weight matrices, bi,bf ,bo,bc ∈ Rh is the bias vector which
need to be learned during training. ⊗ denotes element-wise
product. The σ(·) and tanh(·) denote the Sigmoid and Hy-
perbolic Tangent function seperately.

The correctness of a student’s response to an item is depen-
dent on both the current knowledge state of the student and
the characteristics of the item. Thus we use the concatena-
tion of student k’s current knowledge state hk,t outputted
by the LSTM and the representation of item ik,t+1 that de-
notes the characteristics of the item, i.e., vk,t+1, to make
prediction. The concatenated vector is fed into a fully con-
nected layer to obtain a summary vector sk,t, and then this
vector is fed into a Sigmoid activation layer to calculate the
probability of correctly answering item ik,t+1 by student k.
The process can be represented as:

sk,t = tanh(Wfc(hk,t ⊕ vk,t+1) + bfc),

pk,t+1 = σ(Wssk,t + bs),
(5)

where Wfc ∈ Rds×(h+2d), Ws ∈ Rds , bfc ∈ Rds and bs ∈
R1 are the weight matrices and biases to be learned, and ds
denotes the dimension of the summary vector. pk,t+1 is the
probability that student k can answer item k + 1 correctly.

2.3 Hierarchical Structure Constraint
In fact, there exists a concept-item graph between items
and concepts. The concept-item graph provides us with the
grouping information of the items. The items related to the
same concept can be considered as belonging to the same
group. They should be similar with other items within the
same group, while dissimilar with items in other groups. At
the same time, the concept should capture the characteris-
tics of all items related to it and can approximately represent
all these items.

Based on the above analysis, we introduce a hinge loss which
tries to maximize the margins among different groups to
model the hierarchical structure of items. We apply the
embeddings of concepts to represent the general group char-
acteristics of all the items related to the concept. When
deriving the representations of items and concepts, we keep
the item similar to its corresponding concepts, and on the
contrary, make it far away from other concepts. Thus, the
hinge loss between an item n and a concept m is defined as

lm,n
h =

{
max{0, 1− eT

inecm} qm,n = 1
max{0, 1 + eT

inecm} qm,n = 0
, (6)

where ein and ecm are the embeddings of the item in and
concept cm, and qm,n is an indicator in the item to concept
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mapping matrix Q indicating whether the item n is related
to concept m. qm,n = 1 indicates that item n is related to
concept m, while qm,n = 0 means that item n is not related
to concept m.

2.4 Loss Function
The objectives of the proposed model are two folds: One is
to make accurate predictions of students’ responses, and the
other is to learn meaningful embeddings of items. Based on
these two objectives, in the training stage, we need to mini-
mize the prediction loss and the hinge loss simultaneously.

For student k answering item ik,t at time t, the prediction
loss lk,t can be modeled with the binary cross-entropy:

lk,t = −(yk,t log(pk,t) + (1− yk,t) log(1− pk,t)), (7)

where pk,t is the probability that student k can answer item
ik,t correctly and yk,t is the correctness of the response of
student k at time t.

The total loss can be represented as the weighted sum of the
total prediction loss and the total hinge loss:

L =

|K|∑
k=1

tk∑
t=1

lk,t + α

|C|∑
m=1

|I|∑
n=1

lm,n
h , (8)

where tk is the total number of questions that a student k
attempted, and |K| is the number of students. |I| and |C| are
the number of items and concepts in I and C respectively.
lm,n
h is the hinge loss defined in Eq. 6. α is a hyper-parameter

to balance the weight of prediction loss and hinge loss.

3. EXPERIMENTS
In this section, we present the experiments that evaluate the
proposed DHKT model on knowledge tracing task. These
experiments are performed on three real-world datasets.

3.1 Datasets
The ASSIST091 and ASSIT122 datasets were collected from
the ASSISTments tutoring system [2]. In the experiment,
we use skill builder dataset. In the preprocessing, we remove
all duplicated records and the records without a skill id or
without a skill name and the records without a {0, 1} value of
the “correctness” attribute. In addition, we also remove the
students with a sequence length less than three. After pre-
processing, there are 3,991 students, 227,156 records, 13,876
items and 96 concepts in the ASSIST09 dataset. The AS-
SIST12 dataset contains 270,66 students, 2,541,201 records,
45,716 items and 245 concepts after preprocessing.

The Statics dataset3 was collected from a college-level engi-
neering statics course [5]. This dataset includes transactions
from two different modes: tutor mode and assessment mode.
Since the transactions from assessment mode for the same
student have the same timestamp, we cannot determine the
order of these transactions. Thus, only the transactions from
tutor mode are included in the experiment. Also, we remove
the students with less than three transactions. After prepro-
cessing, there are 317 students, 137,711 records, 987 items

1https://sites.google.com/site/assistmentsdata/
home/assistment-2009-2010-data
2https://sites.google.com/site/assistmentsdata/
home/2012-13-school-data-with-affect
3https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=507

Table 1: Overview of the Three Datasets.
ASSIST09 ASSIST12 Statics

# of students 3,991 27,066 317
# of items 13,876 45,716 987

# of concepts 96 245 280
# of records 227,156 2,541,201 137,711

attempts per student 57 94 434
items per concept 145 187 4
attempts per item 16 56 140

attempts per concept 2,366 10,372 492

and 280 concepts. The statistics of the three datasets are
shown in Table 1.

3.2 Baselines and Experimental Settings
To evaluate the effectiveness of the DHKT model, we com-
pare the DHKT model with the state-of-the-art knowledge
tracing models, including Item Response Theory (IRT) [10],
Hierarchical Item Response Theory (HIRT) [10], Perfor-
mance Factor Analysis (PFA) [8], Bayesian Knowledge Trac-
ing (BKT) [1] and Deep Knowledge Tracing (DKT) [9]. IRT,
HIRT, which is a Bayesian extension of IRT by considering
the hierarchical structures between concepts and items, and
PFA make predictions based on the logit function. BKT
models the sequence of responses and makes predictions
based on the Hidden Marcov Model. DKT applies RNN to
model the response sequence and make predictions. To eval-
uate the effect of incorporating concept-item graph in deep
knowledge tracing, the variations of the proposed DHKT
model: EDKT, Fine-grained EDKT and DHKT-, are also
compared. These variations share the same network struc-
ture with DHKT, but they are different in terms of the in-
put and the value of α. EDKT and Fine-grained EDKT
use the item embedding and the concept embedding as the
input seperately and α = 0. DHKT- is the reduced model
of DHKT where only the item embedding is used as input
in Eq. (2). In the ASSIST datasets the skill id is consid-
ered as the concept and the problem id is considered as the
item. In the Statics dataset, the problem name is the con-
cept and the step name is the item. The PFA, BKT, DKT
and EDKT take concepts as input while IRT, Fine-grained
EDKT and DHKT- take items as input. The concept-item
graphs are constructed according to the relations between
items and concepts and are used by HIRT and DHKT.

We split each of these datasets into training and testing
datasets on student level. For each dataset, we randomly
select 20% of the students as the testing dataset and keep
80% of the students as the training dataset to learn the
parameters. We randomly select 20% of the training stu-
dents for validation. The training and testing datasets for
all the models are the same. For training the DHKT model,
batch size is set to 32, and the number of epochs is set to
100. The hidden state dimensionality h is set to 100. The
hyper-parameters are tuned on the validation datasets. We
tune the embedding dimensinality and the balance param-
eter α using grid search. The candidate values for embed-
ding dimensinality d are {25, 50, 100}, and α’s in Eq. (8) are
{0.001, 0.01, 0.1, 1}. The loss function is optimized by Adam
algorithm [4], which is a gradient-based optimization algo-
rithm based on adaptive estimates of lower-order moments.
We set the learning rate to 0.01. To avoid the expload-
ing gradient problem, gradient norm clipping strategy [7] is
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Table 2: AUC Values on the Three Datasets.
Model ASSIST09 ASSIST12 Statics
IRT 0.6891 0.7317 0.8249

HIRT 0.6912 0.7234 0.8251
PFA 0.7040 0.6706 0.7705
BKT 0.6722 0.6141 0.7318
DKT 0.7483 0.7346 0.7736

EDKT 0.7513 0.7310 0.7823
Fine-grained EDKT 0.7342 0.7428 0.8251

DHKT- 0.7780 0.7677 0.8311
DHKT 0.7866 0.7747 0.8333

adopted at the threshold of 20. We use dropout with a prob-
ability of 0.6 to alleviate the overfitting issue.

The Area Under ROC Curve (AUC) is used to evaluate the
performance of all the models, in which ROC curve plots
true positive rate versus false positive rate in a binary clas-
sification task. For each model, we run five times with ran-
dom initialization and report the average AUC. The AUC
of the testing dataset is calculated using the model with the
highest validation AUC value among 100 epochs.

3.3 Results
The AUC values for different models on all three datasets
are shown in Table 2. The proposed DHKT model achieves
the highest AUC on all the three datasets. The reduced
model DHKT- cannot beat DHKT, but it still outperforms
all other baselines on the three datasets. The improvement
from Fine-grained EDKT to DHKT- demonstrates the ef-
fectiveness of incorporating the concept-item graph. The
difference in the performance between DHKT and DHKT-
indicates that exploiting general level information is useful
in deep knowledge tracing.

3.4 Embedding Visualization
We use t-SNE [6] to visualize the learned embeddings of
items by DHKT in a 2-D space to qualitatively assess the
intepretability of the representations. For comparison, we
also plot the learned item embeddings on the three datasets
of the Fine-grained EDKT. The color of the dots represents
the concept related to the items.

The learned embeddings are shown in Figure 1. Fig-
ure 11(a), 1 1(b) and 11(c) show the learned item repre-
sentations of DHKT on ASSIST09, ASSIST12 and Stat-
ics, and Figure 11(d), 1 1(e) and 11(f) show the learned
item representations of the Fine-grained EDKT model on
corresponding datasets. Compared with the items mixed
together learned by Fine-grained EDKT, the item embed-
dings learned by DHKT are well separated and more con-
sistent with the hierarchical structures on the ASSIST09
and ASSIST12 datasets. On the Statics dataset, although
some clusters are mixed with each other, the representa-
tions learned by DHKT are much better than that learned
by Fine-grained EDKT. In addition, the prediction perfor-
mance of DHKT is better than that of Fine-grained EDKT
on the three datasets, which demonstrates the importance
of meaningful item representations for knowledge tracing.

4. CONCLUSIONS AND FUTURE WORK
In this work, we propose a novel deep hierarchical knowl-
edge tracing model by incorporating the hierarchical struc-
ture of items. The proposed model not only improves the
performance of knowledge tracing task, but also provides

(a) (b) (c)

(d) (e) (f)
Figure 1: Item representations learned by DHKT
and Fine-grained EDKT.

meaningful representations of items. The item representa-
tions learned by the proposed model are consistent with the
hierarchical structure of the items. The superior predic-
tion performance indicates that the hierarchical structure
of items plays an important role in deep knowledge trac-
ing, and meaningful representations can help improve deep
knowledge tracing performance.

We plan to investigate how to apply multi-level hierarchi-
cal structures in knowledge tracing and how to recommend
learning materials and items to students based on their
knowledge state in the future.
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ABSTRACT
While automated essay evaluation techniques have dramat-
ically reduced instructors’ grading burden, they fall short of
providing instructors with the rich qualitative insights into
students’ sense making process that a careful read of essays
can afford. In this study, we demonstrate how word embed-
ding techniques can serve as a complement to automated
scoring, providing instructors with valuable near-time in-
sight into how their students are conceptualizing targeted
lesson concepts. For this study, we use a post-test essay as-
sociated with two Web-based Inquiry Science Enrivonment
(WISE) units that provides instruction about how the sun
causes increases in temperature. We create word2vec models
fit to students’ c-rater scored essay responses at each score
level of a rubric designed to assess students’ integrated un-
derstanding of targeted concepts. Using cosine similarity,
we identify, with statistically reliability, the ideas that stu-
dents at each score level of the rubric used in relation to the
concepts targeted in the essay prompt. Our instructor inter-
view reveals the validity of the results in providing insight
into students’ ideas, differentiated across understanding lev-
els.

1. INTRODUCTION
In the domain of science, new science education reform ef-
forts, like the Next Generation Science Standards (NGSS),
call for students to both coherently understand and commu-
nicate complex science ideas[6]. Consequently, essays that
assess students’ developing knowledge of complex science
ideas could increase the validity of assessment in science
classrooms[6]. Concomitant with the call for increased use of
essay assessments is the need for machine-based techniques
to quickly and reliably analyze student essays in order to
provide instructors with qualitative insights about how their
students are developing and connecting complex science con-
cepts.

Advances in the field of natural language processing (NLP)
have given rise to automated essay evaluation (AEE) tech-

niques that help instructors meet the challenges of essay
scoring. However, there is still the need to develop effec-
tive techniques to assess and support students’ comprehen-
sion of complex ideas expressed in their essays[9]. In order
for instructors to provide targeted support based on their
students’ developing ideas, they need to have the qualita-
tive insight that comes from reading the essays. Without
it, instructors are left in the dark regarding the different
ways their students make sense of the targeted concepts be-
ing assessed by the essay item. Even though instructors
may have access to the exemplars used to train AEE mod-
els, the distance between the exemplar responses and that
of their students can leave instructors guessing about the
true nature and quality of their students’ understanding. In
this study, we describe the development and evaluation of
word2vec models that augment the value of automated scor-
ing by analyzing and comparing the conceptual connections
that students in different scoring categories express in their
essay.

2. BACKGROUND
Research in the field of teaching and learning has shown
students’ ability to develop an integrated understanding of
complex ideas, such energy transfer and transformation, is
influenced by how well their instructors notice and under-
stand their ideas[8]. Therefore, to support students in com-
municating integrated understanding of complex ideas, it is
important to develop machine-based analyses that provide
teachers opportunities to see, understand, and respond to
student ideas.

2.1 Auto-scored Student Essays
In partnership with Educational Testing Services (ETS),
we have previously used the c-rater algorithm to score stu-
dent essays from various assessment items in Web-based In-
quiry Science Enrivonment (WISE) units[2]. The student
responses used to train the c-rater model were human-coded
using a rubric based on the Knowledge Integration (KI)
framework[4]. The KI framework supports students to sort
through their ideas to develop an integrated understanding
of normative science concepts[3]. Since the rubric used to
score the essay assessment items in the units prioritizes the
links that students make between normative science ideas,
the c-rater generated scores reflect the extent to which stu-
dents’ ideas are normative and linked.

To support instruction based on students’ ideas, we cre-
ate skip-gram models[5] of students’ c-rater-scored essay re-
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sponses. In doing so, we were able to augment automated
essay feedback and, thus, provide instructors with quantita-
tive information regarding the correctness of students’ ideas
and qualitative information regarding the connectedness of
their ideas.

2.2 Science Content Knowledge
The WISE units used in this study were designed to sup-
port students in developing an integrated understanding of
how energy from the sun is transferred and transformed and
how those processes cause an increase in temperature. The
assumption is that students at each score level conceptu-
alize and connect these science ideas differently. Since the
word2vec models encode the semantic meaning of the words
as vectors, we can, for example, analyze the way students
scoring at the level of 2 conceptualize ”temperature” as com-
pared to how students at a level 5 conceptualize ”tempera-
ture”. Using cosine similarity, we can provide teachers with
a list of the words that their students have conceptually con-
nected to the target lesson concept (e.g. temperature).

Given this potential, we conducted this study to address the
following research questions:

1. Can we develop a skip-gram model from pre-scored es-
say responses to reliably extract the differential ways
students develop and conceptually connect complex
science ideas?

2. Do the skip-gram models generate results that are ped-
agogically informative (i.e. support teachers to notice,
understanding, and respond to their students ideas)?

3. METHODOLOGY
3.1 Offline Model Development (RQ1)
Student essay responses were prepared for skip-gram devel-
opment using standard Python libraries, pywsd and NLTK
were used to perform basic NLP techniques (i.e. abbrevi-
ation expansion, case-adjustment, punctuation and symbol
exclusion, lemmatization, and stopword modification and re-
moval)[1]. Skip-gram models for student responses at the
KI rubric score levels (range 2-5, four total) were developed
using the gensim library[7]. Model hyperparameters were
adjusted to produce cosine similarity results to the various
target words that a content-expert validated as conceptually
relevant to the prompt. To extract the meaning of a word as
used and understood by the student rather than its conven-
tional meaning, we created the word vectors from the study
datasets rather than using pre-trained vectors.

3.2 Classroom Evaluation (RQ2)
To determine the efficacy and utility of our skip-gram models
to support teacher noticing of student ideas, we conducted a
semi-structured interview of the high-school physics instruc-
tor whose students’ essay responses generated the model re-
sults referenced during the interview.

3.3 Datasets
The dataset used in the offline development and evaluation
of the skip-gram models consisted of student text responses
to the explanation portion of the following post-test essay
assessment item:

Let’s think about how global warming happens.
On a COLD day, Akbar walks to his car that is
parked in the sun and has not been driven for a
week. Predict the temperature inside the car:

• Colder than the outside air

• Warmer than the outside air

• Exactly the same as the outside air

Explain your answer:

The students of four sixth grade science teachers from two
Bay Area middle schools (N=497) generated their responses
to this prompt after engaging the WISE Global Climate
Change unit (https://wise.berkeley.edu/project/24751). In
this unit, students learned how solar radiation from the sun
can be absorbed, transformed into heat energy, and trapped
by greenhouse gases as infrared radiation, which leads to
increased temperature.

Student responses were, on average, 34 words long and were
human-coded, from 1 (low) to 5 (high), using a KI rubric.
Responses received a score of 1 if they were off-task or ir-
relevant, and, thus, were excluded from the model develop-
ment dataset. Responses that included normative but un-
connected ideas about the transformation of solar radiation
to heat received a score of 3. Responses that connected one
or more normative ideas about the transformation of solar
radiation to heat received a score of 4 or 5, respectively. The
distribution of scores were as follows: Score 2 = 243; Score
3 = 92; Score 4 = 42; Score 5 = 23.

The dataset used in the classroom evaluation of the skip-
gram models consisted of student text responses to the same
essay prompt used for the offline model development and
evaluation (see above). The students of a ninth grade physics
instructor from a Bay Area high school generated their re-
sponses (N=155) before and after engaging the WISE Solar
Ovens unit, which focused on designing, building, and test-
ing a solar oven (https://wise.berkeley.edu/project/24537).
In this unit, students learned about the same energy cycle
described in the sixth grade unit, and then explored how dif-
ferent designs influence that energy cycle and temperature
change in a solar oven.

Student responses were, on average, 30 words long and were
scored using a c-rater algorithm based on the same KI rubric
used for the model development dataset. Similarly, responses
received a score of 1 if they were off-task or irrelevant and
were excluded from the dataset. The distribution of scores
were as follows: Score 2 = 82; Score 3 = 46; Score 4 = 22;
Score 5 = 3. Due to sparseness of responses at the score level
5, a skip-gram model was not created for this score level.

4. RESULTS
4.1 Offline Model Development (RQ1)
We chose ”heat” and ”temperature” as target words for our
model evaluation, since the essay used in this study was de-
signed to assess students understanding of how solar radia-
tion and infrared radiation cause an increase in temperature.
Our initial cosine similarity results from the four skip-gram
models appeared to be consistent with our content expert’s
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Table 1: The cosine similarity results for the target word ”temperature” of the skip-gram models associated
with each score level using the development dataset. The vocabulary size of each model is in parentheses.

Temperature
Score = 2 (105) cos sim Score = 3 (55) cos sim Score = 4 (62) cos sim Score = 5 (58) cos sim

become 0.999 get 0.998 inside 0.985 get 0.987
reason 0.999 into 0.994 get 0.985 glass 0.981
colder 0.999 become 0.987 glass 0.981 inside 0.981
inside 0.999 glass 0.986 into 0.969 become 0.976

time 0.996 inside 0.977 become 0.968 into 0.961
get 0.995 particle 0.967 travel 0.967 car 0.935
hot 0.995 may 0.933 radiation 0.955 bounce 0.906

warmer 0.993 bounce 0.932 bounce 0.922 pass 0.87

Table 2: The most similar words and associated p-values for the target word ”heat” of the skip-gram models
associated with each score level using the development dataset. The vocabulary size of each model is in
parentheses.

Heat
Score = 2 (105) p-value Score = 3 (55) p-value Score = 4 (62) p-value Score = 5 (58) p-value

outside <1.0E-6 outside 2.42E-04 car 1.13E-04 car 0.009
inside <1.0E-6 inside 0.012 air 0.007 glass 0.009

temperature <1.0E-6 air 0.049 glass 0.045 infrared 0.009
cold <1.0E-6 energy 0.049 radiation 0.045 energy 0.042

air <1.0E-6 get 0.049 turn 0.045 day 0.042
warm <1.0E-6 into 0.049 light 0.042

get 3.58E-06 warm 0.049 solar 0.042
sun 0.039 trap 0.049

expectations regarding the ways that students are different
scoring levels would connect ideas related to ”temperature”
(see Table 1). However, these initial results were not repro-
ducible from one model run to the next, in terms of exact
words and relative cosine similarity rank. The top 8 results
for each model within a given run displayed patterns con-
sistent with the content expert’s expectations, albeit with
variable reproducibility.

We used distribution probability to establish the statistical
reliability of our model results. Specifically, we used hy-
pergeometric and binomial distribution test, respectively, to
determine the probability that any given word in the model’s
vocabulary would appear in the top 8 cosine similarity re-
sults and do so consistently enough to yield a p-value < 0.05.
We ran each model 12 consecutive times on a random sam-
ple of the essay responses, where the number of responses
in the sample equaled the total number of responses in the
dataset.

Using the development dataset, we generated a statistically
reliable list of the words based on the model results for the
target word ”heat” (see Table 2). Examination of this list
revealed conceptually meaningful differences across the scor-
ing levels, as confirmed by the content expert and physics
instructor. These model results indicate a typical progres-
sion of student ideas when they are beginning to understand
the mechanism of how solar radiation transforms to heat.

4.2 Classroom Evaluation (RQ2)
To investigate the alignment of the model results with the
instructor’s expectations of the conceptual connections that

Table 3: The most similar words for the target word
”temperature” of the skip-gram models associated
with each score level using the classroom dataset.
The vocabulary size of each model is in parentheses.

Temperature
Score = 2 (92) Score = 3 (68) Score = 4 (62)

become get inside
reason into get
colder become glass
inside glass into
time inside become
get particle travel
hot may radiation

warmer bounce bounce

students at each score level would make, we presented the
instructor with the cosine similarity results from each model
for the target word ”temperature” (see Table 3). Although
the statistical reliability for the model results had not yet
been established, we asked the instructor to interpret the
results for each individual model and cross-comparatively.
The instructor commented that the results from the model
resonated with her expectations of what a developed under-
standing looks like and what a still-developing understand-
ing looks like.

Furthermore, we asked the instructor when and how she
might use the information provided by our models. She in-
dicated that she would use a tool like this as a formative as-
sessment to see what her students’ ideas were while instruc-
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tion was still ongoing. She went on to say that she could use
the information from the models to inform her instruction,
and that it would help her to decide if she needed to have
a whole class conversation, do a demo, or show a video to
support her students in sorting and integrating their ideas
towards normative understandings.

5. DISCUSSION
5.1 Typical Classroom Datasets
The ability to support teaching and learning by developing
unsupervised models using essay response data has histor-
ically been stymied by the need to train these models on
large datasets (i.e. hundreds of responses)[9]. Since our aim
was to provide instructors with specific, rather than gener-
alizable insight into student thinking, we were able to use a
small dataset with as few as 23 responses in a scoring cat-
egory to train our skip-gram models. Our models demon-
strate that the data generated from one instructor’s teaching
load (i.e. 4 class periods of 30-40 students) may be sufficient
to provide meaningful insight into student thinking. There-
fore, using their small-scale data, instructors with relatively
small class sizes (e.g. K-12 teachers, liberal arts instructors,
or seminar leaders) can benefit from the insight afforded by
word embedding models.

By training the models for specific instructor-student con-
texts rather than for general use across all instructors, we
can give instructors insight into how their group of stu-
dents are understanding the target lesson concepts. This
subpopulation-specific insight affords instructors the abil-
ity to tailor their instruction based on the ideas held by
their students rather than on the population-level concep-
tions provided by large-scale research. Armed with such
nuanced insight, instructors can feasibly engage in knowl-
edge integration-based instruction in which they attend to
and build on students’ ideas.

5.2 Capitalizing on Essay Assessments
Education reform efforts that call for students to commu-
nicate their understanding of complex ideas have identified
essays as valid and effective learning assessments[6]. The
results from this study highlight the ability of word embed-
ding models to help instructors capitalize on the affordances
that essays have for revealing how students conceptualize
and connect complex ideas.

The automatically generated c-rater scores allow the teacher
to know which students hold at least one normative idea
(score 3) and which can make normative conceptual links
(scores 4 and 5). However, this does not provide them with
information about what these ideas are or of the other po-
tentially productive, but non-normative ideas their students
are holding. The conceptual connections shown by our mod-
els give an indication of the ideas, both normative and non-
normative, that students are holding as they answer the es-
say question. Therefore, the output from our models aug-
ments the instructional value of autoscored essays by provid-
ing instructors with statistically reliable, qualitative insight
with which to see, understand, and respond to student ideas.
Since the models are developed from essays at each score
level, upon viewing the results, an instructor can identify
a potential learning progression and how to support their

students in further developing an integrated understanding
of the complex ideas.

6. CONCLUSION AND NEXT STEPS
The results from this study provide clear next steps toward
supporting teaching and learning. First, we need to deter-
mine the most effective means of displaying the model results
and develop an interface through which instructors can view
the results and explore various conceptual connections. Our
partner instructors have expressed that their confidence in
computer model results is linked to the extent to which they
understand how the model generates the results. Therefore,
it is our research priority to develop a model that both gen-
erates meaningful results and can be easily explained. Sec-
ond, the utility of the results in supporting student learning
needs to be further validated by evaluating student outcomes
based on targeted instructor interventions.

Although the essays used in this study were from the science
domain, there is broad application for the technique to other
domains, as the only prerequisite is that the text responses
be precategorized, either by scoring or other means.
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ABSTRACT
Discussion forums are the primary channel for social interac-
tion and knowledge sharing in Massive Open Online Courses
(MOOCs). Many researchers have analyzed social connec-
tions on MOOC discussion forums. However, to the best
of our knowledge, there is little research that distinguishes
between the types of connections students make based upon
the content of their forum posts. We analyze this effect by
distinguishing on- and off-topic posts and comparing their
respective social networks. We then analyze how these types
of posts and their social connections can be used to predict
the students’ final course performance. Pursuant to this
work we developed a binary classifier to identify on- and off-
topic posts and applied our analysis with the hand-coded
and predicted labels. We conclude that the post type does
affect the relationship between the students and their clos-
est neighbors or community members clustered communities
and their closest neighbor to their learning outcomes.

Keywords
MOOC, social network analysis, forum participation

1. INTRODUCTION & BACKGROUND
Social interactions are an essential component of learning.
Peer collaborators in courses provide support by engaging
in informal advising, sharing “institutional knowledge”, and
engaging in the co-construction of knowledge [6]. Students
who lack strong social connections are more prone to feel-
ing lost or discouraged in a course and are more likely to
drop out[12]. This issue is of particular interest in Mas-
sive Open Online Courses (MOOCs), which seek to scale
classroom instruction to hundreds or even thousands of stu-
dents supported by a single instructor. Prior researchers

have shown that students in MOOCs do form community
structures and that those structures are correlated with their
learning [7, 4, 1, 11]. Brown et al. [1], for example, found
that students connected to peers with a similar course per-
formance.

While prior research has shown that students form stable so-
cial structures in MOOCs, the impact of those connections
on students’ performance has not always been consistent.
Jiang et al. analyzed an algebra MOOC, and found that at-
tirbutes of the students’ social network were correlated with
the students’ final grades, but they found no relationship
between the same variables in a different MOOC on finance
[4]. Houston et al. likewise examined the forum activities
that were most strongly associated with final grades in three
different MOOCs and found that the addition of social cen-
trality and similar features had no impact on their predictive
models [3]. This inconsistency may be explained by the fact
that the types of discussions students have and their rele-
vance can change from class to class and that prior analyses
have focused primarily on the overall social structure and
not the content of the discussions. Though the peer commu-
nication features in MOOCs are intended to foster content
engagement, many of the most active discussion-topics are
often social conversations, critiques of the class videos, or
exchanges of career advice [8]. Prior researchers have devel-
oped automated detectors to classify these posts into on- and
off-topic comments and to evaluate the relative proportion
of relevant discussions to learning outcomes [5, 10].

Our goal in this study is to examine how the topical content
of forum discussions affects students’ social relationships,
as well as how they connect to their learning outcomes by
addressing the following question: Does the type (on- or off-
topic) of conversation affect the relevance of students’ social
networks to their learning outcomes?

2. DATA
For our analysis, we used data from a MOOC on“Big Data in
Education” provided by The Teachers College at Columbia
University and hosted on the Coursera (BDE 2013) and EdX
(BDE 2015) platforms in 2013 and 2015 respectively. This
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Proceedings of The 12th International Conference on
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was offered as an 8 week course that includes material from
a graduate-level course on educational data mining and the
analysis of big data in education. This curriculum intro-
duces students to basic data collection and data analysis
methods such as visualization and clustering. The course
offers weekly lectures in the form of videos and individual
assignments or quizzes which contribute to students’ final
grade (grade scale from 0 to 1). The students learn how
and when to do educational data mining and learning an-
alytics on data. The course was structured around weekly
lecture videos and individual quizzes. The students’ final
course grade is a composite score based upon these quizzes.
In the 2013 class, 1380 students completed at least one quiz,
778 students made at least one post or comment on the dis-
cussion forum producing a total of 603 discussion threads
consisting of 4259 posts in total. In 2015, 320 students com-
pleted at least one quiz, 519 students produced 625 discus-
sion threads with a total of 2056 posts. We manually an-
notated all of the posts and comments separating them into
on- and off-topic entries after removing non-English posts
from the dataset. Table 1 includes summary information
about the number of students who received 0 or non-0 grades
and posted on- or off-topic posts from both offerings of the
course. Table 2 shows the number of posts and threads (de-
fined by the starter post) of each type in each course.

Content 0 grade non-0 grade Total

BDE 2013
on-topic 156 377 533
off-topic 187 220 407

BDE 2015
on-topic 58 83 141
off-topic 51 44 95

Table 1: Demographic of students grade and content

Content Post Thread

BDE 2013
on-topic 2845 405
off-topic 1388 380

BDE 2015
on-topic 1050 151
off-topic 1006 367

Table 2: Number of on- and off-topic posts and
threads

Tables 1 and 2 shows that in both courses, the students were
more likely to take part in the on-topic discussions than
the off-topic ones, especially for those who received non-0
grades. However, in 2015, we observed that though the on-
& off-topic post counts are close to each other, the number
of threads started with off-topic posts were smaller. This
may be due to the fact that the EdX platform includes an
optional private chat room for users, logs which we did not
have access to.

3. METHODS
Prior researchers have shown that students’ final grades are
strongly related to those of their closest classmate or ’Best
Friend’ (BF) in traditional classroom [2]. This relationship
also holds in online courses [11] and is also true for stu-
dents’ neighbors in a community structure [1]. In contrast
to general assumptions the students are not always connect-
ing with others who need help or people who share a goals
or background but with people at their same level of perfor-

mance, in this study, we used exactly the same network gen-
eration approach as in our prior work [11] to build the social
network graph and to evaluate the relationship between stu-
dent communities and their final grades. And applied the
Girvan-Newman algorithm with the “natural cluster num-
ber” approach described in [1] to identify coherent commu-
nities. We then applied the Kruskal-Walls(KW) test to eval-
uate the correlation between clusters and performance.

In this approach, we treat forum participants as nodes, and
we construct arcs between the individuals as weighted edges
based upon their individual communications. In this ap-
proach we add a directed arc from the author’s node to nodes
representing the authors of all the comments that precede
it in the thread. All of the forum contributors in the thread
will be connected to one another. As the average thread
length of our two datasets are 6.8 and 3.1 respectively, we
developed this approach based upon the assumption that
participants read the whole thread before they post any com-
ments. Thus, we consider each reply to be an indication of
an implicit social connection between forum participants.
Once the raw directed graph has been constructed we mod-
ify the graph by eliminating all isolated nodes and merging
the parallel edges to get a weighted undirected graph.

4. RESULTS
Table 3 shows the order (number of nodes) and size (num-
ber of edges) of the graphs that we obtained for the different
content types and student groups (with/without 0 grade stu-
dents) at the end of week-2. As we have established in prior
work, the second week is considered the most important cut-
off point for students to stay in or drop out of a course and to
form their social networks [11]. We can observe that, in both
courses, including the 0 grade students, students preferred
to participate more in off-topic conversation than on-topic.
According to the number of nodes and edges by the end of
week-2, for an on-topic network, the edges still increase in
frequency after week 2; however, for the off-topic posts, the
social network has already formed at this time point. This
suggests that the off-topic discussions may have been con-
fined to a stable set of threads that only grew longer, or were
confined to the same stable set of chatty people. Further-
more, for the non-0 students, they were more likely to start
conversations for on-topic content, than the 0 students. One
potential explanation for this is that students who did not
plan to obtain a certificate, and who registered for free, par-
ticipated in conversations such as introducing themselves to
each other at the beginning of the course and then lost in-
terest in the course. Another interpretation is that some of
the students worked in spurts at the beginning but dropped
out because the course did not fit their schedule over time.
Our ongoing analysis of the forum content has shown that
a number of the posts are also about early issues, such as
course logistics and software. These issues became less rel-
evant as the course progressed. Irrespective of the cause,
the social structures are well established for off-topic discus-
sions early enough that instructors should be able to provide
advice early enough to the students who have lost interest
early on.

Table 4 shows the number of students and the average fi-
nal grade for each group of students with/without 0 grade.
We found that students who participated in both the on-
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Content Node* Edge* Grade Node Edge

2013
on-topic 392 2185

with 0 508 3778
non-0 367 2713

off-topic 356 9483
with 0 429 10389
non-0 234 1884

2015
on-topic 182 637

with 0 199 721
non-0 111 332

off-topic 370 1044
with 0 392 1112
non-0 98 95

Node*: Number of nodes at the end of week 2
Edge*: Number of edges at the end of week 2

Table 3: Graph order and size

and off-topic discussions received the highest average grade
in the course. Students that only participated in off-topic
discussions received the lowest final grade when compared
to others. These results indicate that not only is sharing
knowledge about course content is important, but partici-
pating in non-course content also has an impact on their
learning process.

We also examined the growth rates of the number of posts,
users and new threads as time progressed. We defined a new
thread as being on- or off-topic based upon the head post
that initiated it. For BDE 2013, on-topic posts and new
threads increased over the whole course period, while off-
topic posts appeared primarily at the beginning of the course
before declining sharply. As for new users, they came in at
the beginning to talk primarily on off-topic content, but new
users were more likely to make on-topic conversation after-
wards. However, for BDE2015, we observed that all three
elements in the on-/off-topic social networks grew mono-
tonically at a similar rate and that the number of new off-
topic threads and users was always more than the on-topic
ones. One of the potential reasons could be that students
discussed course content topics in the private chat-room,
rather than in the public forum. As one example, at the end
of the BDE2013 course, there were 55,179 registered users,
yet the final course social interaction graph contained only
778 participants, including 1 instructor and 2 teaching assis-
tants. Some of the forum participants did not complete any
quizzes, or even attempt to obtain the certificate, but still
chose to engage in on- and off-topic discussions with others.
On the other hand, some of the students who worked hard
on the course did not contribute to the forum at all. There
were 1,381 students who received a non-0 final grade; 934 of
which did not post in the forum at all, while 304 zero final
grade students did. It is conceivable students only posted
when they faced particular difficulties, or that they sought
help elsewhere as participation in the course forum was not
a necessary condition for completion.

4.1 Social Interaction Analysis
As part of our analysis we also replicated the Best-Friends
comparison as used by Brown et al. Here we identified each
student’s closest neighbor in the course, excluding members
of the teaching staff, and then calculated a direct correlation
between their grades and those of their best friends. Since
the data was non-normal, we used Spearman’s Rank Cor-
relation Coefficient as a non-parametric test for association
[9]. Our results are shown in Table 5.

Content Grade BF Comm

BDE 2013
on-topic

with 0 0.96 <0.05
non-0 <0.05 <0.05

off-topic
with 0 0.98 <0.05
non-0 <0.05 0.08

BDE 2015
on-topic

with 0 0.24 <0.05
non-0 <0.05 <0.05

off-topic
with 0 0.06 <0.05
non-0 0.38 0.30

Comm: KW test for community - grade

Table 5: Social connection correlation with content

Table 5 shows that the relationships between students’ grades
and those of their best friends were consistent between the
traditional courses studied by Fire et al. [2] and MOOCs,
but not immediately. Our results show that MOOC stu-
dents, except those who did not submit any assignments,
performed similarly to their closest peers.

5. CONCLUSION & DISCUSSION
In this paper, we distinguished posts and comments into
on-topic (course relevant) and off-topic(non-course relevant)
before analyzing students’ social activities and their final
grades. Interestingly, we drew a different conclusion from
our previous work. In the BDE2013 dataset, including 0
grade students, we found no correlation between the stu-
dents’ closest ’best friend’ and their performance, while the
clustered community structures were significant related to
their to performance. When we break this down into on-
and off-topic networks respectively we found that there was
a significant correlation with the community structure and
grade for on-topic posts. For the off-topic, by contrast, only
a moderate relationship was observed. For the BDE2015
non-0 students, the off-topic connection was not relevant to
their performance. This is also shown by the average cluster
grades for each group. This supports our original argument
that the off-topic discussions may be confusing the social
network analyses.

Additionally, Students who showed up in both the on- and
off-topic discussions received the highest grade, higher than
those that focused on the on-topic discussions alone. Stu-
dents only made off-topic discussion received the lowest grades
overall. Thus although participation in the on-topic discus-
sion facilitated the students’ learning, chatting with their
peers on random topics was also relevant to their learning,
albeit weakly. Additionally, according to Table 3, for all
of the students, the off-topic graph was much bigger than
the on-topic graph, while for the non-0 grade students, they
were more likely to post course content topics than random
chat. Thus, we conclude that, for the non-0 grade students
who focused their efforts on finishing quizzes, passing the
course, and receiving a certificate, participation on the fo-
rum helped them improve their grade and keep them from
dropping out. By contrast, when we consider all of the stu-
dents, including those with a 0 grade, the behavior of their
closest peers does not seem to have affected them consis-
tently. One possible explanation for this may be that 97%
of the students received a 0 grade.
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on-topic off-topic only in on-topic only in off-topic in both on/off-topic

2013
with 0

students 508 429 299 220 209
grade 0.51 0.38 0.44 0.16 0.61

non-0
students 367 234 195 62 17

grade 0.70 0.69 0.67 0.58 0.74

2015
with 0

students 199 392 100 293 99
grade 0.33 0.14 0.26 0.05 0.40

non-0
students 111 98 49 36 62

grade 0.59 0.54 0.53 0.38 0.64

Table 4: Average grades for students in different social interaction

Moreover, as prior studies have shown the students formed
the bulk of the social structures by the end of week 2. We
found that 91% of the the off-topic connections had been
formed by then. For the on-topic social network by con-
trast, only 57% of the connections had been formed by week
2. This highlights one of the limitations of prior work that
conflated these social structures and it highlights the crucial
importance of distinguishing posts by content. We observed
different results for the BDE2015 dataset. This class had
less proportion of on-topic discussions than BDE2013. This
may be due in part to the fact that the edX platform pro-
vides support for private a chatrooms which students and
instructors may use for side discussions. We were unable to
access that data and it may be the case that much of the
relevant communications were carried on there.

Discussion forums are widely used in MOOCs to support
knowledge co-construction, but the connections between on-
line social interaction and learning outcomes is still subject
of some debate. As our study has shown the social network
structures can be used for information provided we focus
on the important on-topic discussions. And, as we have
also shown it is possible to use trained models to support
this classification, even ones that are trained in part across
course offerings. Thus these findings highlight the critical
importance of analyzing forum post content when exploring
the relationship with learning outcomes; and to draw con-
clusions carefully when we work with datasets of this type.

In future work we plan to evaluate the impact of auto-
matic classifiers and guidance, both for students and instruc-
tors, on students’ course performance, topic comprehension,
dropout, and their final grades. This kind of help, we argue,
will help students and instructors to manage the course con-
tent more effectively and will thus increase student engage-
ment, reduce dropout, and improve other student outcomes.
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ABSTRACT
Deep learning based knowledge tracing model has been shown
to outperform traditional knowledge tracing model without
the need for human-engineered features, yet its parameters
and representations have long been criticized for not being
explainable. In this paper, we propose Deep-IRT which is
a synthesis of the item response theory (IRT) model and
a knowledge tracing model that is based on the deep neu-
ral network architecture called dynamic key-value memory
network (DKVMN) to make deep learning based knowledge
tracing explainable. Specifically, we use the DKVMN model
to process the student’s learning trajectory and estimate
the item difficulty level and the student ability over time.
Then, we use the IRT model to estimate the probability
that a student will answer an item correctly using the esti-
mated student ability and the item difficulty. Experiments
show that the Deep-IRT model retains the performance of
the DKVMN model, while it provides a direct psychological
interpretation of both students and items.

Keywords
Knowledge tracing, item response theory, deep learning.

1. INTRODUCTION
Generally, the knowledge tracing task can be formalized as
follows: given a sequence of student’s historical interactions
Xt = (x1,x2, ...,xt) up to time t on a particular learn-
ing task, it predicts some aspects of his next interaction
xt+1. Question-and-answer interactions are the most com-
mon type in knowledge tracing, and thus xt is usually rep-
resented as an ordered pair (qt, at) which constitutes a tag
for the question qt being answered at time t and an answer
label at indicating whether the question has been answered
correctly. In many cases, knowledge tracing seeks to predict
the probability that a student will answer a question qt+1

correctly given the sequence Xt, i.e., P (at+1 = 1|qt+1,Xt).

Many mathematical and computational models have been

developed to solve the knowledge tracing task. These mod-
els can be grouped into two categories [3]: (1) a highly struc-
tured model whose parameters have a direct meaningful in-
terpretation, e.g., Bayesian knowledge tracing (BKT) [2] and
performance factors analysis (PFA) [4]; (2) a highly complex
but general-purpose model whose parameters are difficult to
interpret, e.g., deep knowledge tracing (DKT) [5] and dy-
namic key-value memory network (DKVMN) for knowledge
tracing [9]. The former category typically provides more in-
sight besides the prediction result, while the latter usually
performs better without requiring substantial feature engi-
neering by humans. To the best of our knowledge, there has
not yet been a model that is highly complex and general-
purpose, yet simultaneously explainable. Therefore, it is
appealing to devise a model that inherits the merits of these
two categories.

In this paper, we propose deep item response theory (Deep-
IRT) to make the deep learning based knowledge tracing
model explainable. The Deep-IRT model is inspired by the
Bayesian deep learning [7] and is a synthesis of a deep learn-
ing model and a psychometric model. Specifically, the Deep-
IRT model utilizes the DKVMN model [9] to process input
data and return psychologically meaningful parameters of
the IRT model [6]. The DKVMN model performs feature en-
gineering job to extract latent features from student’s histor-
ical question-and-answer interactions. Then, the extracted
latent features are used to infer the difficulty level of and
the student ability on each KC over time. Based on the
estimated student ability and the KC difficulty level, the
IRT model predicts the probability that the student will an-
swer a KC correctly. By formulating the knowledge tracing
task with both the DKVMN model and the IRT model, we
are getting the merits from these two models. The Deep-
IRT model benefits from the advance of deep learning tech-
niques, e.g., capturing features that are hard to be human-
engineered. On the other hand, we empower the explainabil-
ity by introducing a well-known psychometric model which
can be easily understood by many people.

2. DEEP ITEM RESPONSE THEORY
The Deep-IRT architecture at time t is visualized in Fig-
ure 1.1 Firstly, the knowledge state of each latent concept

1The detail working mechanism of DKVMN can be found
in [9]. In summary, at time t, the DKVMN model first
receives a KC qt, then predicts the probability of answering
qt correctly, and eventually updates the memory using the
question-and-answer interaction (qt, at).
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Figure 1: Network architecture for the Deep-IRT model. The model is drawn at time t only. The blue
components describe the process of getting the attention weight, the green components describe the process
of updating the value memory and the red components describe the process of making a prediction. The ⊗
and ⊕ represent element-wise multiplication and addition, respectively.

in the DKVMN model can be exploited to calculate the stu-
dent ability. Specifically, when the DKVMN model receives
a KC qt, it forms the feature vector ft during the influence.
As ft is the concatenation of the read vector rt and the KC
embedding vector kt, it contains information of both the stu-
dent’s knowledge state on qt and the embedded information
of qt. We believe that the ft can be used to infer the student
ability on qt by further processing ft via a neural network.
Similarly, the difficulty level of qt can be elicited by passing
the KC embedding vector kt to a neural network. Using a
single fully-connected layer, we express these two networks
as follows:

θtj = tanh(Wθft + bθ), (1)

βj = tanh(Wβqt + bβ), (2)

where θtj and βj can interpreted as the student ability on
the KC j at time t and the difficulty level of the KC j,
respectively. W and b are the parameters of the neural
networks. Here, we use the hyperbolic tangent to be the
activation function for both networks such that both outputs
are scaled into the range (−1, 1). Then, these two values
are passed to the item response function to calculate the

probability that a student will answer the KC j correctly:

pt = σ(3.0 ∗ θtj − βj), (3)

where σ(·) is the sigmoid function. The output of the stu-
dent ability network are multiplied by a factor of 3.0 for a
practical reason [8]. For example, if we do not scale up the
student ability, the maximum value that can be obtained is
σ(1− (−1)) = σ(2) = 0.881.

3. EXPERIMENTS
3.1 Datasets
We employ four public datasets and one proprietary dataset
in our experiment. For the public datasets, we used the
processed data that provided by Zhang et al. [9]. The infor-
mation of these datasets is summarized in Table 1.

ASSIST2009 and ASSIST2015 are provided by the AS-
SISTments online tutoring platform and have been used in
several papers for the evaluation of knowledge tracing mod-
els. Statics2011 is obtained from an engineering statics
course. Synthetic is the simulated dataset provided by
Piech et al. [5]. FSAI-F1toF3 is a dataset provided by the
Find Solution Ai Limited and is collected via an adaptive

Table 1: The summary of datasets.

Dataset # students # skills # questions # interactions Sequence length Correct rate

ASSIST2009 4,151 110 26,684 325,637 78.45± 155.86 65.84%
ASSIST2015 19,840 100 N/A 683,801 34.47± 41.39 73.18%
Statics2011 333 156 1,223 189,297 568.46± 370.30 76.54%
Synthetic 2000 5 50 100,000 50.00± 0.00 58.83%
XXXX-F1toF3 310 99 2266 51,283 165.43± 163.65 46.69%
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Table 2: The average test results of the evaluation measures, as well as their standard deviations, from 5
trials are reported. As the PFA model can be learned by a closed-form solution, the learned parameters and
thus its performance are the same in every trail. Therefore, the standard deviation is not reported for the
PFA model.

Dataset
PFA DKVMN Deep-IRT

AUC Acc Loss AUC Acc Loss AUC Acc Loss
ASSIST2009 59.68 69.24 7.08 81.61 ± 0.06 77.01 ± 0.04 5.29 ± 0.01 81.65 ± 0.02 77.00 ± 0.06 5.30 ± 0.01
ASSIST2015 52.85 73.37 6.13 72.94 ± 0.06 75.18 ± 0.03 5.71 ± 0.01 72.88 ± 0.07 75.14 ± 0.02 5.72 ± 0.01
Statics2011 64.99 79.85 4.64 83.17 ± 0.11 81.57 ± 0.05 4.24 ± 0.01 83.09 ± 0.12 81.56 ± 0.04 4.24 ± 0.01
Synthetic 61.68 65.20 8.01 82.97 ± 0.06 75.58 ± 0.07 5.62 ± 0.02 82.98 ± 0.07 75.61 ± 0.04 5.61 ± 0.01
FSAI-F1toF3 54.52 54.57 10.46 68.40 ± 0.89 63.40 ± 0.15 8.42 ± 0.03 68.69 ± 0.28 63.43 ± 0.24 8.42 ± 0.06

learning tablet application called 4LittleTrees2.

3.2 Results
The model performance of the experiment is shown in Ta-
ble 2. In addition, we also include PFA model [4] in Table 2
as a baseline model for reference.

All in all, the DKVMN and Deep-IRT models have a similar
performance. We conduct two-tailed independent t-tests on
each dataset and each evaluation measure between the Deep-
IRT model and the DKVMN model. We found that the
difference between their performance is not significant for
majority of the datasets (with p-value > 0.1). Although
we cannot claim that their performance is, more or less,
the same based on the large p-value, this result, however,
might imply that the Deep-IRT model potentially retains
the performance of the DKVMN model.

4. GOING DEEPER IN DIFFICULTY LEVEL
To evaluate the KC difficulty estimated from the Deep-IRT
model, we compare the difficulty level learned for the FSAI-
F1toF3 dataset with four other sources. The reason why we
use the proprietary dataset is that we have the individual
questions’ difficulty level provided by the publisher. Each
question is associated with a difficulty level in {1, 2, 3} which
represents easy, medium and hard, respectively.

The second source of difficulty level is calculated according
to the item analysis [1]. The difficulty level of the item
analysis is the percentage of students who answer a question
correctly in a test environment. Yet, to be consistent with
interpretation with other models, we adopt the percentage
of students who answer a question incorrectly. Furthermore,
as our dataset is not collected from a test environment, a
student can answer a same question multiple times. Thus,
we only adopt the student’s first attempt when calculating
the difficulty level. Moreover, we only consider the question
on which at least 10 distinct students has answered.

The third source of difficulty level is learned by the one-
parameter IRT model. We also use the student’s first at-
tempt, only, on a question to learn the IRT model for the
sake of avoiding multiple attempts on the same question.
Moreover, we adopt σ(θi−βj) to be the item response func-
tion when learning the IRT model.

Lastly, we trained a PFA model to extract the difficulty level

2More information about the 4LittleTrees can be found on
https://www.4littletrees.com/.

in a knowledge tracing setting, rather than a test environ-
ment setting. In other words, we use the entire student’s
learning trajectory to learn the question’s difficulty level.

Since there are more than two thousands questions in this
dataset, we only evaluate a set of questions that belong to a
subset of skills. This subset contains five skills that consti-
tute around a fifth of the interactions in the FSAI-F1toF3
dataset, and has in total 131 questions. These skills are
“Significant Figures”, “Approximation and Errors in Mea-
surement”, “Index Notation”, “Laws of Indices” and “Poly-
nomials”. We visualize the difficulty level obtained from
different sources in a pairs plot in Figure 2 with the Pearson
correlation r stated in the lower triangular part of the pairs
plot. The positions in the pairs plot are ordered according
to the evaluation setting and the complexity of getting the
difficulty level.

The pairs plot reveals that the difficulty level learned from
the Deep-IRT model aligns with most of the other sources
with a strong correlation, except for the difficulty level pro-
vided by the publisher. Moreover, it is observed that the
more similar the models’ evaluation setting and complexity
are, the higher the Pearson correlation is between the mod-
els. For example, the Pearson correlation between the diffi-
culty level from the item analysis model and the IRT model
is 0.96, while the Pearson correlation between the item anal-
ysis model and the Deep-IRT model is 0.56. Furthermore, it
is observed that the difficulty level provided by the publisher
is moderately correlated to the one obtained from the item
analysis model (0.40) and the IRT model (0.39), but weakly
correlated to the one obtained from the Deep-IRT model
(0.08). Thus, it would be interesting to examine whether
the difficulty level inferred from the Deep-IRT model would
be more accurate than other traditional models.

5. CONCLUSION
In this paper, we propose the Deep-IRT model which em-
powers the deep learning based knowledge tracing model
with explaniability. Experiments show that the Deep-IRT
model retains the performance of the deep learning based
knowledge tracing model while simultaneously being able to
estimate the KC difficulty level and the student ability level
over time. Moreover, the difficulty level estimated by the
Deep-IRT model aligns with the difficulty level obtained by
other traditional methods, e.g., the IRT model and the item
analysis. Thus, it potentially provides an alternative way to
estimate KC’s difficulty level by utilizing the entire learning
trajectory, rather than the traditional educational testing
environment.
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ABSTRACT
Adaptive learning systems aim to learn the relationship be-
tween curriculum content and students in order to optimise
a student’s learning process. One form of such a system
is content recommendation in which the system attempts
to predict the most suitable content to next present to the
student. In order to develop such a system, we must learn
reliable representations of the curriculum content and the
student. We consider this in the context of foreign language
learning and present a novel neural network architecture to
learn such representations. We also show that by incorpo-
rating grammatical error distributions as a feature in our
neural architecture, we can substantially improve the qual-
ity of our representations. Different types of grammatical
errors are automatically detected in essays submitted by
students to an online learning platform. We evaluate our
model and representations by predicting student scores and
grammatical error distributions on unseen language tasks.

1. INTRODUCTION
In general the adaptive learning approach has been shown
to lead to improved learning outcomes for student users of
educational platforms [4, 8, 10]. However, there remains a
question of what is the best methodology to construct rep-
resentations for students and tasks. Previous approaches
manually engineer features to construct representations [7].
These features are usually tuples of a knowledge component
(e.g. differentiation, fractions in the case of maths) and stu-
dent outcome (i.e. whether or not the student demonstrated
understanding for that knowledge component through com-
pleting the task). A task may contain multiple knowledge
components. Whilst this approach is highly interpretable,
in the domain of language learning, it is difficult to clearly

divide the tasks into knowledge components. Furthermore,
in the recently popular paradigm of deep learning, we have
seen that training representations through neural networks
have yielded state-of-the-art results in the space of image
recognition, and various natural language tasks.

Motivated by this, we propose a methodology of automati-
cally developing high quality representations of students and
tasks in a language learning context. Having reliable student
and task representations in place facilitates work on down-
stream tasks such as curriculum learning and recommender
systems for language learning.

Representations are derived from a novel neural architecture
and real student data collected through the Write & Im-
prove1 (W&I) assessment and feedback platform for learners
of the English language. [13].

Our best-performing model incorporates grammatical error
distributions detected by ERRANT [3] as a feature and
achieves mean squared error (MSE) of 1.195 on score pre-
diction, an absolute value of 1.093 on a scoring scale of 0-13.

2. WRITE & IMPROVE
On W&I, students are prompted to input a short text of at
least 25 words in response to a given question. Once they
have completed the task, the W&I automarker assigns each
text an integer score s between 0 and 13. The system also
automatically provides a grade on the CEFR scale2 along
with feedback on grammatical errors detected in the text.
Table 1 outlines how integer scores are mapped to the CEFR
scale. Currently all users of W&I move through the curricu-

Table 1: Student scores mapped to CEFR levels

A1 A2 B1 B2 C1 C2

1-2 3-4 5-6 7-8 9-10 11-13

1https://writeandimprove.com
2The Common European Framework of Reference for Lan-
guages

Ahmed Zaidi, Andrew Caines, Christopher Davis, Russell Moore,
Paula Buttery and Andrew Rice "Accurate Modelling of
Language Learning Tasks and Students Using Representations of
Grammatical Proficiency" In: Proceedings of The 12th
International Conference on Educational Data Mining (EDM
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Figure 1: Task score prediction system architecture.
Dotted lines and boxes are optional features and net-
work connections.

lum in an unguided and independent fashion. An intelligent
tutoring system would instead guide students from task to
task in order to personalise their learning experience and
improve their level of performance. In order to do that we
must learn reliable student and task representations.

We obtained application logs of user activity from the past
two years – a total of 3+ million essay submissions by 300k
account holders. We filtered the data for users who had
submitted at least 10 submissions. We also had a record of
the questions (‘prompts’) users responded to and the scores
assigned to their texts by W&I’s auto-marker.

3. LEARNING STUDENT AND TASK REP-
RESENTATIONS

Our primary goal was to predict student scores on a given
language learning task based on our representations of stu-
dents and tasks in W&I. Secondary to that, we check the
quality of our student representations by predicting the gram-
mar error distribution of a given student-task tuple. In what
follows we describe the data, evaluation metrics and models
used in this work.

3.1 Model Architecture
The architecture of our neural system can be seen in Figure
1. The neural network takes as an input a user id u and
task id t which are taken as indices in the user embedding
layer U and task embedding layer T respectively. u ∈ Nu
where Nu is the number of unique users in the W&I dataset.
t ∈ Nt where Nt is the number of unique tasks in the W&I
dataset.

We optimise our system and learn a user embedding matrix
U and task embedding matrix T by minimising the mean
squared error (MSE) of our predicted score s and the target
score ŝ.

We introduce an auxiliary objective to predict the difficulty
β of each task t, referenced as tβ . The ground-truth labels
for task difficulty (beginner, intermediate, advanced) are ob-
tained from the meta-data of each task in the W&I dataset.

3.2 Feature Set
In addition to the score s, the W&I dataset contains prompts
and answers in natural language as well as metrics on whether

submission k is the highest scoring submission by user u. We
incorporate these additional features into the architecture of
the model in order to evaluate their impact on the quality
of user and task embeddings.

3.2.1 Answer and Question Embedding
We obtain a vectorised form of each student response and
question using 300-dimension word2vec embeddings3 pre-
trained on the Google News corpus [5]. Our embeddings are
an additive compositional model where the final embedding
is a sum of every word in the question or answer. Whilst
this model is not state-of-the-art for distributional seman-
tics, Mitchell & Lapata [6] show that the additive model can
yield results comparable to more sophisticated models.

3.2.2 Metric embedding
The metric embedding is a 2-dimensional vector. The first
dimension is a binary value for whether the score for the
submission was the highest score on task t for user u. The
second dimension is a binary value for whether the score for
the submission was the highest score across all W&I tasks
for user u.

3.2.3 Grammar error embedding
A student’s grammatical proficiency plays a vital role in de-
termining how well they perform on a particular task. As
we do not know of any system that identifies appropriate use
of grammar, we focused on understanding what grammat-
ical structures the student struggles with. This was done
by running ERRANT [3], an automated error detection and
correction system, in order to identify grammatical errors in
the student’s essay.

For each submission k, we constructed a 47-dimensional vec-
tor, one dimension for each of the error types observed in the
W&I dataset. Each dimension stored the number of times
that error type appeared in the student’s essay submission.

< ek >=< f1
k , f

2
k , . . . , f

47
k > (1)

– where ek is the grammar error embedding e for submis-
sion k, and fnk is the frequency of errors for error type n in
submission k.

3.3 Mean score baseline
Our baseline system for predicting s for user u on task t is
to calculate the mean of observed scores by all users for that
task. We refer to this baseline as mean score.

3.4 Evaluation
We identify two approaches to evaluating our system and
the quality of our learned user and task representations: 1)
score prediction; and 2) grammar error prediction.

3A word2vec embedding is a 1×x dimensional dense vector
that represents a word semantically.
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Table 2: Score prediction (MSE) and grammar em-
bedding prediction (cosine) results for the top 8 best
performing feature combinations (error: grammar
error embedding; ques: question embedding; ans:
answer embedding; metric: metric embedding).

Model MSE Cosine

mean score (baseline) 1.913 -
error+ques+ans+metric 2.254 -0.385

ques+metric 1.942 -0.402
ans+metric 1.951 -0.414

error+metric 1.350 -0.426
ques 2.028 -0.403
ans 2.014 -0.412

error 1.761 -0.410
metric 1.907 -0.393

3.4.1 Evaluation of score predictions
To evaluate the performance of score prediction we use mean
squared error (MSE) in common with other works in this
field, using global computation where all data points are
treated equally [9].

3.4.2 Evaluation of grammar embedding predictions
In order to further evaluate the quality of the learned user
and task representations, we also introduce an additional
evaluation task of predicting the distribution of grammar
errors for a user u on a task t.

This was done by building a network that takes as an input
the user ~u and task ~t from the pre-trained embedding U and
T and predicts the grammar embedding ~g. Our dataset for
grammar error prediction was created by extracting the last
submission k of every user u. This was to ensure that the
system is predicting the distribution of errors for the users
at their most recent knowledge state.

We optimise our system by minimising the cosine proximity
of the predicted grammar vector ~g and the target grammar

vector ~̂g.

4. RESULTS
Table 2 summarises the results of our system. We compare
the effectiveness of various features in the prediction of a
user’s score s on a task t which is evaluated by MSE. We
include the top 8 MSE values on the score prediction system
and their corresponding cosine value from the grammar error
prediction model.

We find that incorporating question and answer embeddings
do not provide any performance improvement in terms of
MSE beyond the baseline model. The metric embedding
provides marginally better results than the baseline with an
MSE of 1.907. The grammatical error embedding provides
substantial improvements beyond both the baseline and the
metric embedding with an error of 1.761. The best perform-
ing system incorporates both grammatical error embedding
and metric embedding, reducing the MSE to 1.350.

Table 3: Performance across various student and
task representations sizes (Nh)

Model Nh MSE Cosine

error+metric 3 1.350 -0.426
error+metric 5 1.297 -0.431
error+metric 16 1.245 -0.415
error+metric 32 1.195 -0.433

Figure 2: t-SNE of 300 randomly sampled student
representations classified by different levels of profi-
ciency

Table 3 shows the model that provides the lowest cosine
proximity to the target grammatical error vector (i.e. best
system) was error+metric, which is consistent with the low-
est MSE for the score prediction system.

In order to interpret the relevance of cosine proximity we
conducted a Pearson’s correlation test between the MSE val-
ues from the score prediction system and the cosine proxim-
ity scores from the grammar error prediction system. The
results show a 0.7883 Pearson’s correlation with a p-value of
0.0201 which is statistically significant at α < 0.05.

Figure 2 shows a t-SNE [12] of 300 randomly sampled stu-
dent representations learned by our best performing score
prediction system. The students are classified by their pro-
ficiency which has been determined by observing the most
frequent task level attempted in their five most recent sub-
missions. Qualitatively, the results from the plot are promis-
ing as the advanced and intermediate users, whilst present
throughout the plot, are more concentrated towards the top
right (higher level of language proficiency). Beginner stu-
dents, on the other hand, are more concentrated in the bot-
tom left. This suggests that the embeddings constructed
from our model provide context on the language abilities of
the student.

5. DISCUSSION
The results in Table 2 show that incorporating grammar
error embeddings provides a reliable signal to learn well-
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formed student and task representations. Furthermore, Ta-
ble 3 identifies the optimal size for student and task repre-
sentations by training the system using various configura-
tions and evaluating both the MSE and cosine. Larger em-
bedding size performed better than the smaller embedding
sizes up to our experimental maximum of 32 dimensions.
However, making the embedding size too large would result
in what is known as ‘overcomplete’ which in turn causes the
model to simply memorise the correct response instead of
learning discriminative features [2].

In real terms, an MSE of 1.195 represents a root mean
squared error of 1.093 on a scale of 0 to 13. This means
that on average we stay within the bounds of a CEFR level
when predicting student proficiency which seems sufficiently
robust for real world application.

Grammar errors highlight the weaknesses of the student as
opposed to their strengths. Therefore, instead of learning
the upper-bound of a student’s ability, we are learning the
features for the lower-bound. The results of the model also
suggest that there is a correlation between the types of er-
rors students make on task t and the score they achieve on
said task. This enables the model to learn latent features
within the student and task representations which in turn
can be used to reliably predict the student’s score on a future
unseen task.

The importance and value of the signal provided by gram-
mar errors in determining student ability and thus creating
quality representations can be further highlighted by Fig-
ure 3. The bar-chart shows a comparison between beginner
and intermediate students, where the values in x-axis are
the various error types in ERRANT and the values for the
y-axis are the normalised difference of the frequency for each
error type between the two groups of students (positive bars
indicate greater frequency of that error type for interme-
diate students). We can observe that certain errors such
as M:VERB:TENSE (highlighted in orange) are more frequent
with intermediate students. This is not surprising as begin-
ner students tend not to experiment with verb tenses but
rather focus on using verb tenses that they are comfortable
with. Intermediate students are more likely to learn verb
conjugation rules and over-regularise to introduce variation
in sentence structure. However, over-regularisation usually
results in increased number of verb tense errors [11, 1]. This
is then corrected once students reach an advanced level of
proficiency where they can account for the irregular verb
tenses.
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ABSTRACT
Cognitive diagnosis aims to analyze the status of knowledge
mastery of student and is thus very important for person-
alized education. The existing methods mostly depend on
the empirical Q-matrix from domain experts. However, the
knowledge points in Q-matrix are unavoidably overlapping,
leading to the weak performance on the practical applica-
tions. In this paper, we propose a novel model for student
knowledge diagnosis, called Sparse Factor Learning (SFL).
SFL learns a meta-knowledge dictionary from student re-
sponse data of test questions, where the knowledge struc-
ture of any entity (e.g., student, question or others) is a
sparse linear combination of dictionary atoms. Our method
has three innovations for cognitive diagnosis: learning laten-
t nonoverlapping meta-knowledge, sparely representing the
entities, and removing the bias noise for guessing and slip-
ping. To verify our method, we collected the response data
from the final exam of C language program of internation-
al class and then conducted the experiments for knowledge
diagnosis, student grouping and response prediction.The ex-
periment results show that SFL works effectively and results
in decent performance. Besides,it delivers that student who
favors mathematics and physics can achieve higher score.All
codes and data set can be available on our website.1

Keywords
Personalized education,Sparse factor learning,Cognitive di-
agnosis Student modeling,Student grouping

1. INTRODUCTION
In recent years, educational data mining (EDM) is an emerg-
ing research field which seeks to develop methods for explor-
ing response data of learners. Researchers in this field aim
to discover the true knowledge structure of learners to offer
learners accurate assistance. Cognitive diagnosis,a hotspot

∗Corresponding author
1http://www.nwpu-bioinformatics.com/.

issue in EDM research,explains the mental processes that
are triggered when test items are solved[2, 5].

Recent progress has been made on applying machine learn-
ing algorithms to mine true and latent knowledge structure
of learners. These existing cognitive diagnosis methods pro-
pose a probability model reflecting learner response data. In
contrast to rule-based approaches, machine learning-based
models promise to be rapid and inexpensive to deploy. How-
ever,latest research proposes “abstract concepts” [1] which
are unavoidably overlapping,leading to the intricate results.
In addition,it cannot analyze unseen data.Therefore, accu-
rate teaching problem still remains an open issue.

In this paper, motivated by recent progress, we present S-
FL, a new model to best distinguish learner using their
nonoverlapping knowledge structure. This model defined
as knowledge learning is designed as sparse representation
for student response,which is analogous to dictionary learn-
ing [6].We first observe the data yij = 1 or 0 depending
on whether learner j answers question i correctly or incor-
rectly. SFL model learns the latent nonoverlapping meta-
knowledge spaces of certain course and can also represen-
t the real knowledge structure of learners by optimizing a
novel objective function. Furthermore, the sparse represen-
tation of learners in the meta-knowledge dictionary can be
obtained. After that, we cluster learners who have the same
meta-knowledges according to this sparse representation and
predict whether a learner can response the question correct-
ly. More specifically, our contributions are listed as follows:

• We tackle the weakness of traditional educational mod-
els which focus on Q-matrix given by experts. Howev-
er,the acquisition of the Q-matrix is not easy anytime.
Our model still discover essential knowledge structure
without Q-matrix.

• We propose a data-driven method called SFL to ex-
plore the correlation between inseparable meta-knowledge
and learner from student response data. SFL removes
the bias noise for guessing and slipping.This model pro-
vides natural explanatory power in learning process.

• We apply SFL model to real-world teaching work. We
collect more complete data form Northwestern Poly-
technical University University and draw more mean-
ing educational conclusion from data.

Yupei Zhang, Huan Dai, Yue Yun and Xuequn Shang "Student
Knowledge Diagnosis on Response Data via the Model of Sparse
Factor Learning" In: Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019), Collin F.
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(eds.) 2019, pp. 691 - 694
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The rest of paper is organized as follows. In Section 2, we
formally put forward to our targeted issue and mathematical
model. Section 3 details the algorithm of our SFL model.
Simulation and real data experimental results are presented
in Section 4. Finally, conclusions are given in Section 5.

2. METHODOLOGY
In this section,we formalize our problem in detail, and pro-
pose new method termed Sparse Factor Learning.

2.1 Model for Learner Response Data
In this section, we set forth the definition of meta-knowledge.
Meta-knowledge is virtual and inseparable atom that learner
cannot master.It is believed that all questions and learner
knowledge structure consist of these meta-knowledges.

In this problem, we have N learners that answer Q question-
s. As shown in Figure 1, we are provided with the data Y
from the response of learners over a collection of questions,
where yij = 1 or 0 indicating correct or not of the learner
j at the question i, respectively. In Figure 2, the matrix D
denotes the relationship between the collection of question-
s and meta-knowledges where the coefficient dij indicates
the associate degree of the i-th question over the j-th meta-
knowledge point. By the way, we denote the correlation
between meta-knowledges and learners by matrix X. Usual-
ly, the data is often polluted by subjective respondence. We
therefore consider this educational case by assuming that
the i-th learner has guessing and slipping rate on the j-th
question by wij . Thus, we represent observed data over the
dictionary in terms of DX + W. Our problem could be de-
fined as follow:
Problem Definition 1: Given the learner response data,
i.e. binary matrix Y = [y1,y2, ...,yn] ∈ RQ×N , the pri-
mary purpose of our sparse factor learning framework is :
(1) learning the overcomplete basis D = [d1,d2, ...,dk] ∈
RQ×K , where we assign K >> Q to obtain association be-
tween knowledge latent attributes and questions; 2) obtain-
ing the sparse representation matrix X = [x1,x2, ...,xn] ∈
RQ×N which reflects the connection between meta-knowledges
and learners; (3) estimating the bias matrix W which is a
sparse bias matrix.

2.2 The Proposed model
Since real data is binary data, SFL model can be formulation
as the following equation shows:

Y = sign(DX + W) (1)

where yij ∈ {0, 1} is the result of learner j at question
i. Utilizing the model (1) and the given observations of
question-learner responses Y, our goal is to estimate the
factors D,X,W. To solve problem, we exploit these obser-
vations as prior information: (1) Meta-knowledges are gen-
erally large and overcomplete.(2) Questions are linear com-
bination with meta-knowledges.(3) Each column of matrix
X is sparse and matrix W is sparse.

3. ALGORITHM
Under the prior information, we propose a new method
dubbed Sparse Factor Learning (SFL) and solve this prob-
lem using ADMM framework[3].

Figure 1: question-learner response.

Figure 2: question i involves meta-knowledge j

3.1 Problem Formulation
To estimate D, X,and W, we minimize the objective func-
tion as follow:

minimum
D,X,W

∑
i,j

∥∥∥yij − sign(dTi xj + wij)
∥∥∥2

F

subject to ‖di‖2 ≤ 1, ‖xj‖0 ≤ s, ‖W‖0 ≤ k
(2)

Complied with prior information (3), we impose sparsity on
each vector xj . We constrain ‖xj‖0 ≤ s to limit maximum
number of nonzero coefficients. Unfortunately, these con-
straints lead to an NP problem. Hence, (2) cannot be solved
efficiently in practice. In order to arrive at an optimization
problem that can be solved with a reasonable computation-
al complexity, we relax the sparsity constraint ‖xj‖0 ≤ s in
(2) to L1-norm constraint as in [1]. Because the function
sign(x) is not a continuous derivable function, we then use
sigmoid(x).

sign(x) ≈ sigmoid(x) =
1

1 + e−x
(3)

By introducing Lagrange multipliers, our objective function
can be reduced into:

min
D,X,W

‖Y − sigmoid(DX+W)‖2F + λ

M∑
j=1

‖xj‖1 + β‖W‖1

(4)

where regularization terms
∑M
j=1 ‖xj‖1 and ‖W‖1 induce

sparsity on each vector xj and matrix W, and parameters
λ > 0 and β > 0 are to control the sparsity level.

3.2 The Sparse Factor Learning Algorithm
Inspired by most of dictionary learning algorithm which fix
one variable updating another variable , SFL adopts an al-
ternating optimization approach named alternating direc-
tion method of multipliers (ADMM) to solve (4). We intro-
duce an auxiliary variable J in order to make the objection
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function of (4) separable. The optimization problem can be
rewritten as follows:

min
D,X,W

‖Y − sigmoid(DX+W)‖2F + λ

M∑
j=1

‖xj‖1 + β‖W‖1

s.t.W = J

(5)

The augmented Lagrangian function of problem (5) is

L(D,X,W,J,M) = ‖Y − sigmoid(DX + W)‖2F + λ

M∑
j=1

‖xj‖1

+ β‖J‖1+ < M,W − J > +
µ

2
‖W − J‖2F

(6)

where M is Lagrange multiplier and µ > 0 is a penalty
parameter. The variables are updated alternately by mini-
mizing its corresponding problem with fixing other variables.
The iteration stops when the convergence conditions are ar-
rived. The detailed procedure of solving the proposed SFL
problem is described in Algorithm 1.

Algorithm 1 Sparse Factor Learning

Input: Data Matrix Y
Parameter: D = 0,X = D−1Y,W = 0,λ = 0.03,β = 0.4
Output: Dk+1, Xk+1, Wk+1

1: while not converged (k = 1, 0, · · · ) do
2: fix the others and update J

Jk+1 = max{Sβ
µ

(Wk +
1

µ
Mk)

fix the others and update W:

Wk+1 = Wk − α
∂L(Wk)

∂Wk

3: fix the others and update X [4]by:

xj = BIHT(yj,D)=HM(xk+DT(yj−sigmoid(Dxk+W)))

4: fix the others and update D by:

dk+1 = dk − β
∂F (dk)

∂dk

5: update the multipliers:

Mk+1 = Mk + µk(Wk+1 − Jk+1)

µ can be a constant value.
6: check convergence

‖Y − sigmoid(DX + W)‖2F
‖Y‖2F

< ε

7: End while.

4. EXPERIMENTS
In this section, we validate SFL on real-world educational
data sets.We conduct the two practical experiments: student
grouping and response prediction. Meanwhile, we compare
SFL with SPARFA method which is a pioneer work. All
experiment codes are implemented by MATLAB R2018a.

NPU-C Dataset: Student data used to test our model is
collected form Northwestern Polytechnical University across
students in international class who entered the C Language
Program final exam in December 2018. First, we collected
the response of students of 20 objective questions and the
answers to these questions are only right or wrong. The
dataset contains two elements: 0 for incorrect answer and 1
for correct answer which is collected by thirty-nine students
at twenty questions. Second, to collect the background in-
formation, we made a questionnaire with twenty question-
s containing gender, age, English and Math grade of Col-
lege Entrance Examination, their favorite subjects, and so
on.Here, there is no missing data in the response matrix.
More details can be found in our website.

4.1 Student Grouping on Our Data
After obtaining the sparse representation of all students, we
utilize k-means and spectral clustering to group the student
who has same knowledge structure. We use Jaccard distance
as metric and measure our results employing Dun Validity
Index (DVI) and Compactness Index (CP), defined as follow:

DVI=

min
0<m6=n<k

{
min

∀xi∈Ωm,∀xj∈Ωn

‖xi − xj‖
}

max
0<m≤k

{
max

∀xi,∀xj∈Ωm

‖xi − xj‖
} (7)

The numerator computes the minimum distance between
each pair of clusters, while the denominator calculates the
maximum distance between all pair of two elements in a
cluster. That is,the bigger DVI value corresponds the better
cluster.

CP=
1

k

k∑
i=1

(
1

|Ωi|
∑

xi∈Ωi

‖xi − wi‖
)

(8)

where k means the number of cluster and wi represents the
central point corresponding to a certain cluster. The term
in bracket is to compute the distance between each point
and its central point.Thus, the smaller CP value delivers
the better cluster.

We vary the different number of clusters {2,3,4,5} and record
our results in Table 1 and 2. From Table 1 and 2, we can con-
clude that our model obtains better clustering performance
than using original data directly and the SPARFA. Besides,
we choose to use k-means and spectral clustering methods
to gather the response data into three clusters. We use DVI
evaluation to measure the results and list our results in Ta-
ble 3 and 4. Table 3 and 4 illustrate that using original data
or SPARFA method is not good comparing to SFL method.
In addition to these cluster indicators, we draw conclusion-
s form our data (see more in our website): (1) The first
group indicates that students who is good at Mathematics
and more like Mathematics and Physics will achieve better
grades than others in general. (2) The second group shows
that students of being weak on Mathematics and Physic-
s seem to be weak on C Language Programming. (3) The
third cluster contains many complex reasons depending on
their learning. We observed that exercise and study hard
after class have a great effect on the final grades.
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Table 1: Cluster results using DVI metrics
2 3 4 5

Original 0.427 0.302 0.333 0.316
SPARFA 0.119 0.119 0.132 0.135

SFL 0.545 0.536 0.535 0.536

Table 2: Cluster results using CP metrics
2 3 4 5

Original 1.9271 2.0438 1.9905 2.2603
SPARFA 1.1932 1.9995 2.5085 2.8598

SFL 0.83842 0.82933 0.80897 0.80996

Table 3: Comparisons using different protect cluster
method with CP.

Original SPARFA SFL
K-means 2.044 2.000 0.829
Spectral 0.180 0.1653 0.162

Table 4: Comparisons using different cluster method
with DVI.

Original SPARFA SFL
K-means 0.462 0.382 1.991
Spectral 0.302 0.119 0.494

4.2 Student Response Prediction
For predicting the responses of a student at questions, we
here determine the responses on two factors: the knowledge
structure of student composed of few meta-knowledge points
and the meta-knowledge involved in questions.

In this experiment, we vary different data sets of different
size from {5,10,15,25,35,39}. For each data set, we hold out
one of the learner responses as testing set, and train SFL on
the rest to acquire the question-metaknowledge matrix D
and the metaknowledge-learner matrix Xtrain to obtain the
above two factors. Because the size of our data is small, we
hence use leave-one-out (LOO) validation to achieve more
effective evaluations. To obtain more stable result, we run
20 times to achieve the average values shown in Figure 3.
In addition, we use the neighborhood classifier for predic-
tion on original data and the SPARFA method to predict
student response. We observe that the performance of all
of algorithms generally improves as the data size increases.
Moreover, the error rate of using original data is not reduced
much, and Figure 3 suggests that the error rate of SPARFA
method is not reduced much when dataset is small. Gener-
ally, the average result of our method performs better. This
indicates that our model is more effective.

5. CONCLUSION
In this paper, we remedy the shortcomings of traditional cog-
nitive diagnosis model by proposing a data-based method,
called Sparse Factor Learning (SFL) model. SFL has three
innovations.First, we exploit the natural concept named meta-
knowledge and test paper,questions and knowledge points
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Figure 3: Student Response Prediction.

from field experts can be thought as a linear combination
with the meta-knowledges. In addition, using the meta-
knowledges dictionary, we can have a clear representation
of student response data.Second, it is believed that learn-
er can master limited meta-knowledges from one course,and
hence we have a sparsity constraint on learner-knowledge
matrix.Third, we remove the bias noise of guessing and s-
lipping.Experiments on our practical data show that SFL is
effective and has good generalization ability for prediction.In
future, we will test our method using more data and design
a reasonable strategy for missing data.
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ABSTRACT
The analysis of the collaborative learning process is one of
the growing fields of education research. In this paper, we
present a new method to automatically evaluate the collab-
oration level of students in groups using computer vision
techniques. Instead of single-time solicitation techniques
such as self-reported questionnaires to evaluate the collabo-
ration, we evaluate the entire process of the collaboration by
analyzing image data captured from groups. We use object
detection techniques such as Mask R-CNN method to pro-
cess our data. This process is based on detecting people and
other objects from pictures and video clips of the collabo-
rative learning process, then evaluating the performance of
students in the interactive learning and textbook settings
using these collaborative indicators. Two collaborative indi-
cators are related to the team’s proximity and time on task.
We tested our approach to evaluate the group-work collabo-
ration in a controlled study of 33 teams while performing an
anatomy muscle painting intervention. The results indicate
that our approach successfully recognizes the differences of
collaborations among teams of treatment and control con-
ditions, F(1,33) = 11.42, p < 0.005. This work may offer im-
plications for automated quality prediction of collaborations
among human-human interactions in group-work scenarios.

Keywords
Collaborative learning, collaborative learning analysis, Mask
R-CNN, object detection

1. INTRODUCTION
Collaborative learning is a widely-used education pattern
featured by small group interaction and team-based evalu-
ation metrics. Typically two or more participants are as-
signed in the same group and work for a common pur-
pose, which encourages them to learn via teamwork [6]. Re-
searches in the past few years have shown that compared
with individual learning or lecture-based learning, collabora-
tive learning as an active learning approach can increase stu-

dents’ learning motivation and improve knowledge retention.
However, it is undeniable that these benefits only work on
the well-formed teams with respectful members which have
efficient collaborative activities during the learning process.

In early attempts to analysis collaboration, researchers ei-
ther established effective collaborative learning models or
built reasonable standards for judging the collaborative learn-
ing process based on self-reported survey data or collabora-
tion system data. However, those data were collected from
class attendance, quizzes scores, and reports which could not
directly reflect participants’ interaction during the learning
activities. The ideal data should reflect the students’ actions
and emotions during the process, which could be recorded
via images or videos. Also considering the learning-based
methods, tremendous data can make the model general.
On the other hand, there is no objective measurement to
automatically evaluate the process of collaboration while
students performing group work. One possible evaluation
method is defining new criteria using the features extracted
from the image or video records.

For image and video data analysis of group-work quality
identification, we introduce a new object detection approach
to extract useful features such as identifying participants,
and objects in the scene. In this study, our goal is using
object detection to detect participants and their locations
from the image data and then recognize collaborative ac-
tions from these proximity features. We use a pre-trained
Mask R-CNN (Region-based Convolutional Neural Network,
[5]) with the COCO dataset [7] as our object detection ap-
proach. We evaluated the usefulness of the Mask R-CNN
object detection method in identifying collaborations in a
tangible, muscle painting activity.

2. CASE STUDY
We conducted a between-subjects study while performing
anatomy learning intervention (muscle painting) in a large
laboratory course of General Biology in spring 2018 at Johns
Hopkins University. Students worked in pre-assigned teams
to complete the muscle painting activity. During the mus-
cle painting activity, pairs of students collaborate to paint
twelve muscles of their body using painting supplies. The
first student plays the role of a model, while her teammate,
as a painter, locates the major upper-limb muscles using the
human anatomy diagram in the lab manual [8], and then
paints her upper limb. Afterwards, students switch roles,
and the upper limb painter becomes a model for the lower
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limb. The painting activity was upgraded for the treatment
group by using mobile tablet devices instead of the textbook
for visualizing the musculoskeletal system. Figure 1 shows
two settings of the case study during the muscle painting
activity.

Figure 1: Case study setup for participants in pairs
to complete the painting activity using either (a)
textbook, or (b) tablet.

There was a workstation for each laboratory room to capture
videos and photos so that students’ team performance can
be recorded during the painting activities.

The study was approved by the Institutional Review Board
(Protocol HIRB00005021), and oral informed consent was
obtained from each participant before the case study com-
menced. After consent, students entered the painting activ-
ity room with their teammates and completed the painting
task. All students completed pre and post questionnaires
before and after the intervention.

3. DATASETS
Image data. Image data is the pictures and video clips
captured from the muscle painting scene every ten-seconds
(Figure 3(a) shows one of the snapshots from the scene).
Only group members and the tools they used for painting
activity were captured in the image data.

Approximately 2000 images was captured in total from 33
teams. Based on different time spent on the painting activ-
ities, data for each team had about 25 to 200 images. Each
image file was also timestamped for further time on task
analysis.

COCO dataset. COCO dataset is a large online open-
source dataset and contains photos of 80 easily recognized
common objects categories with instance-level segmentation
mask, including person, bottle, book, and cellphone [7].

Survey data. Survey data was collected online, generated
by the Qualtrics application, towards all participants before
and after completing the painting activities. There were two
questionnaires in this study. Pre-questionnaire consisted of
demographic questions and a pre-test. Post-questionnaire
was composed of questions about participants’ user experi-
ence during collaboration study, including the preference of
being a painter or a model, the level of engagement in the
activity, and a post-test. This data set will be used in our
future work.

4. ANALYSIS OF COLLABORATION
4.1 Object Detection
Object detection is a computer technology related to com-
puter vision and image processing that deals with identifying
the instance of semantic objects of a certain class in digital
images and videos [10]. It can do both localization and clas-
sification. One object detection strategy is to localize each
object with a bounding box and do classification on each
bounding box area [9]. Thus, object detection methods can
help instructors detect participants and extract useful fea-
tures for analysis from the raw images.

Mask R-CNN approach. Mask R-CNN approach uses
the Region Proposal Network (RPN) stage to generate bound-
ing box for each candidate object and uses a more accurate
module RoIAlign to extract features from each box and show
the bounding-box regression and classification [5] (see Fig-
ure 2). By feeding the input image, a CNN feature extrac-
tor is able to extract image features which are called feature
maps. Then a CNN RPN will create Region of Interests
(RoI) which are the candidate object regions generated by
RPN and ranked based on their score (how likely is the can-
didate object region could contain an object). Then the
N = 300 regions with the highest scores are kept. Each
of them will be warped into fixed dimension by RoIAlign
and feed into three parallel branches: two Fully Connected
(FC) layers as Faster R-CNN make classification and bound-
ary box prediction and two additional convolution layers to
build the binary masks. The top 100 detection boxes are
kept and form a 100 × 80 × 28 × 28 tensor, where 80 repre-
sents the number of classes in the COCO training dataset,
and 28× 28 represents the size of each predicted mask. The
resized masks and the bounding boxes can be overlaid on
the original input image as a transparent layer.

Using a pre-trained neural network by COCO dataset [1], we
are able to apply Mask R-CNN to automatically detect par-
ticipants, and their locations from the collaborative learning
activities image data as shown in Figure 2. In our imple-
mentation, we focused on the following features of the object
detection results (Figure 3(b)): image file name, category
name, bounding box coordinates and the confidence score
for each object. These features are the key points for col-
laborative learning analyses in our muscle painting scenario.
We detected the participants with person confidence score
≥ 0.9.

4.2 Collaboration Metrics
To evaluate students’ performance during our collaborative
learning process, we defined two indicators: Level of col-
laboration, and Time on Task. Level of collaboration is
formulated by Overlapping area and ratio.

Level of Collaboration. In muscle painting activity, col-
laboration was crucial in terms of how closely the partici-
pants work together. Especially close physical distance or
proximity, and the amount of time students work together to
perform the task was part of the learning process. We mea-
sured this factor using Mask R-CNN approach and named it
level of collaboration. Once again, we want to highlight that
our assumption may only fit for tangible work-group activi-
ties like muscle painting with pairs of students, and may not
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Figure 2: The Mask R-CNN framework for object detection.

Figure 3: Collaborative learning using tablet in
painting activity (a) original image data, and (b)
object detection using Mask R-CNN.

be generalized to other types of group-work activities which
need distributed task allocations.

Figure 4: The overlapping ratio is equal to the over-
lapping area divided by the smaller participant area.

Overlapping Area and Ratio for Level of Collabo-
ration. The idea for computing overlapping area and ra-
tio came from how close two participants were during the
painting activity. Since there are lots of body contacts be-
tween painters and models while collaboration study, their
bounding boxes may overlap. Using the coordinates of the
bounding boxes of the person instance, we calculate the over-
lapping area (if their bounding boxes do not overlap at all,
the overlapping area and ratio will be zero) and the area
for each participant (see Figure 4). The overlapping ratio is
equal to the overlapping area divided by the smaller partic-
ipant area. The reason for comparing the overlapping area
with the smaller participant area is to eliminate the bias that

one participant may have a larger box than the other. For
each group, compute the mean of all the overlapping ratio
in the object detection results as the level of collaboration
value.

Time on Task. We also calculated the time that students
dedicated to performing the collaborative painting task. Pre-
vious work [2] shows that increased time on task is a strong
predictor of knowledge retention. Un-engaged students just
finish the activity in the minimum possible time. In this
case, we consider time on task as one of the indicators of
student engagement as well. The longer time they spend,
the better the collaborative performance they have. This
indicator is computed by the file names of the image data
and the number of images for each group (aka time-stamped
file information).

Since the treatment group use the mobile learning technol-
ogy [4] during the muscle painting activity, we hypothesize
that teams of students who use the tablet have better collab-
orative performance than the control group. In comparison
to the control group who use the textbook, students in the
treatment group collaborate more with each other within
proximate distance and they may spend more time on task
in the collaborative activity.

5. RESULTS
Participants. Total of 66 (39 Female) students in 33 teams
participated in this study. 17 out of 33 pairs were in the
treatment group (14 Female), and 16 pairs were in the con-
trol group (25 Female). A summary of the results from these
participants is reported in Table 1.

Level of Collaboration. Among 33 teams, we calculated
level of collaboration using the aforementioned method, and
compared the treatment group versus the control group.
The results showed that there was a statistically significant
difference between these two groups based on level of collab-
oration; F(1,33) = 11.42, p < 0.005, Cohen’s d = 1.18 (large
effect size).

Time on Task. Similarly, treatment group had a mean-
ingful difference with control group based on time on task
F(1,33) = 4.29, p < 0.05, Cohen’s d = 0.72 (relatively large
effect size).
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Table 1: Summary of the descriptive analytic for
two groups of the study.

Level of Collaboration (%)1 Time on Task (seconds)
Groups Mean (±SD) Mean (±SD)

Treatment 9.23 ±2.85 631.18 ±353.75
Control 6.39 ±1.84 428.75 ±170.64

1Level of collaboration was measured based on the percentage of

overlapping area of students while working on the painting task.

Figure 5: The box plots of Level on Collaboration
and Time on Task for treatment and control groups
in the study.

According to the results, collaboration level and time on
task had large effect size values and high level of significance
which indicated that both two indicators have identified the
variations among treatment and control conditions success-
fully. Based on Figure 5 (a and b), the treatment group had
higher means and more able to achieve higher value in both
indicators. That means, by using mobile tablets, students
were able to get closer to each other and would like to spend
more time to complete the task than use textbooks. During
the activity, teams with the tablet were more likely to share
the contents and discuss with teammates in a close distance.
Therefore, we could recognize the treatment performed bet-
ter than the control groups during collaborative learning.
Thus, our pre-trained Mask R-CNN approach can provide
useful features, and can be used for collaborative learning
analysis with acceptable accuracy.

6. CONCLUSION AND FUTURE WORK
In this paper, we used Mask R-CNN, an object detection
approach, to analyze the quality of collaboration. We then
evaluated the approach with two collaborative indicators re-
lated to team’s proximity and time on task. The results
showed that our approach was capable of recognizing differ-
ences in the level of collaboration among students in treat-
ment versus control groups. Both the time on task and level
of collaboration could successfully distinguish the differences
between two groups of the study.

The focus of current project is understanding collaboration
on muscle painting activity. Some aspects of our work could

be improved in the future. We plan to use our survey data
as another dimension to perform collaboration evaluation.
We also aim to hand-annotate part of our collected data
based on the object categories we need, including painting
brush, and re-train our model on the entire data set. We will
work on other collaborative features, such as facial expres-
sion recognition, emotion recognition, head, and body pose
estimation, and joint attention estimation to better under-
stand the level of collaborations among teams. Finally, we
aim to use a 3D pose estimation method of the human body
using a single image [3] in our future work to better under-
stand complex interpersonal collaborations with computer
vision techniques.
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ABSTRACT 
Course recommendation system is a useful tool that not only 
helps the students who have no sufficient experience to decide 
what they should study, but also leverages their full performance 
if they could study what they like or are interested in. Different 
from MOOCs, the selection and recommendation for hybrid 
learning environments such as university are relatively difficult. 
Students who enrolled in the same course may have completely 
different purposes and different interest. Employing the 
enrollment record data from Kyushu University, we conduct a 
systematic investigation on the course-taking pattern for 
recommendation. We then discuss the challenges to recommend 
suitable courses in university and propose a preliminary 
approach to address the challenges by designing a course 
recommendation mechanism based on association rule of 
previous course-taking pattern together with student interest.  

Keywords 
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1. INTRODUCTION 
Course recommendation is considered a challenging domain that 
could help students in suggesting suitable courses for them as 
well as reducing time to explore courses that they will take. To 
provide suggestions to assist learners who have no sufficient 
experience to choose courses which they need, researchers have 
tried to develop various approaches to recommend relevant 
learning materials to learners for MOOCs. Although MOOCs 
have their own benefits, they are inherently limited in 
supporting learners in physically co-located environments such 
as classrooms and group/peer learning spaces. The selection and 
recommendation at university are often different from those in 
MOOCs. 
Courses in university environments are closely interwoven with 
various types of physical, pedagogical and social contexts. 
There are required courses and elective courses in university. 
Students generally receive a grade and academic credit after 
completion of the course and they need to get enough credits to 
meet the requirements of graduation. It is difficult for students 
to decide which courses they should take because there are a 

large number of elective courses opened in each semester, they 
have to spend a lot of time for exploring those courses, and they 
may not be able to explore all of them. Also, student interest and 
goal can change as they explore and discover something 
meaningful on and off campus, and there are complex 
constraints and contexts that have to be considered in choosing 
courses.  
(1) Complex constraints 
Different from MOOCs, various courses are provided for each 
academic year, however, students usually do not choose many 
courses because learning a course is a time-consuming task. In 
Kyushu University, for instance, statistics show that each course 
usually lasts for several weeks and a student enrolls in 14 
courses on average each year. Moreover, students may take 
courses in the first two years mostly, because they may busy for 
internship or finding jobs in the third and fourth year.   
(2) Anti-interest 
Students may not choose courses based purely on their interest 
in university environment. For example, some students would 
not enroll in a course which contains contents they are interested 
in, they just choose the course that allow them to get credits 
easily. In addition, student enrollment behavior may be 
influenced if they are not familiar with the contents of those 
courses.  
(3) Long-tail effect 
Long-tail effect is a classic problem in recommendation system.  
For Kyushu University, figure 1 shows the long-tail distribution 
of course popularity. There are several popular courses which 
will be filled up quickly while most of courses will not be 
selected by students frequently. Those courses may disappear 
because there are not enough students follow. 
 

 
Figure 1. Long-tail distribution of course popularity. 
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2. RELATED WORK 
Various approaches have been used in applications for course 
recommendation. Content-based filtering approach recommends 
an item to a user by considering the description of the item and 
clustering the item and the user into groups to gain similarity 
between them. Piao and Breslin [1] propose a strategy to extract 
user profile text from their LinkedIn pages and to calculate the 
similarity with course profile text, then give the 
recommendation results by the similarity. Apaza et al. [2] use 
LDA to train two different topic models on both college course 
syllabus and online course syllabus then a content-based match 
algorithm is used to estimate the ratings from a user to all 
courses.  
Collaborative filtering approach recommends an item to a user 
by investigating the user's similarity with the user's information 
in a system and predict the item that the user would be interested 
in.  Hana [3] introduces a mechanism based on this approach to 
recommend courses for a student by exploring the student's 
academic record and matching the record with others' ones to 
gain the similarity. Then the system figures out and recommends 
which course he is good at or interested in so that he could pass 
the course.  Elham S.Khorasani et al. [4] proposes a Markov 
Chain Collaborative Filtering model to recommend courses 
based on historical academic data with concerns of the sequence 
of each course being taken. X.Jing and J.Tang [5] use LDA to 
extract user-specific latent information from their historical 
access behaviors to represent their interest profile. Then the 
similarity is calculated from above interest profile, and 
recommend outcomes are given based on the similarity. 
Kiratijuta et al. [6] developed an elective course 
recommendation system which investigates each student’s 
academic records to find the similarity with the targeted student. 
Association rules based on frequent patterns are often used to 
discover interesting relations between variables in databases. In 
terms of course enrollment, the objective is to extract rules from 
data that describe previous course selections from students in 
higher education. Aher and Lobo [7] use association rule mining 
together with clustering to recommend courses by using 
historical data. Narimel Bendakir and Esma A ̈ımeur [8] 
presented a course recommendation system, which incorporates 
association rule and user ratings in recommendation. 
Parameswaren et al. [9] propose a course recommendation 
mechanism for university students, which consider complex 
constraints.  
Compared with previous studies, the main contribution of our 
work is that we exploit student interest and use that to improve 
the traditional association rule. In addition, we use other 
information including course relation and social contexts to 
boost the recommendation performance. We designed our 
framework to combine them in order to make better use of 
available information.  

3. PRELIMINARYWORK  
This is a research project in its earlier stages. Currently, we 

collected approximately 38,968 pseudonymized enrollment 
records from 2,366 students. These students enrolled in 2015 at 
Kyushu University. And then we propose a preliminary 
approach and try to address those challenges above. In particular, 
we first analyzed the records of university student course-taking 
patterns by using the association rule analysis. Besides, learner 

interest is used to better reveal students’ potential choice and 
increase the diversity and abundance of recommendation results.  

3.1 Association rule  
It is useful for taking advantage of the collaborative experience 
of the students who have finished their studies. However, in the 
traditional association rule method, the importance of each item 
in the database is the same, this kind of course recommendation 
based on support threshold and confidence threshold is not 
enough. For example, some courses with good contents are 
excluded because the amounts of selection are lower than the 
support threshold. Also, the popular courses have been 
frequently extracted since they have been selected many times, 
but students may not have much interest in them. As a result, 
most of the recommended courses come from the relatively 
popular courses, however, those courses are not necessarily the 
ones that students are most interested in. Finally, students may 
be misled to choose those popular courses and other courses 
may disappear because there are not enough students follow. 
In our framework, we plan to use interest to reflect the different 
importance of each course to recommend suitable contents for 
students. The purpose is to recommend a wider range of courses 
to students, avoiding the problem of insufficient interest caused 
by traditional association rules. 

3.2 Measures of Interest  
Student interest is the most important target of our framework. 
We want to build a simple but universal representation of 
student interest which will be useful not only in course 
recommendation but also in other personalization tasks. 
Characterizing what is interesting is a difficult problem. The 
very definition of the word “interest” is elusive. A common 
solution in e-learning system is directly combining user 
enrollment and the tags of enrolled courses [5]. While this 
solution suffers from the small size of tag set and the sparsity of 
enrollment. In our framework, we extract student interest from 
student activities of courses which contain much more abundant 
information.  
Measures of interest include objective measures and subjective 
measures. Objective measures of interest or objective interest 
criteria are measures of interest that depend only on the data and 
the patterns extracted from it, for example, the rating of a course 
from student. Subjective measures of interest or subjective 
interest criteria are measures that also depend on the specific 
needs and prior knowledge of the student.  
Firstly, we divided students into different clusters based on their 
department. Each cluster has its owner preference on courses 
enrolling according to the enrollment records. Then every 
student can take the average rating of students who belong to the 
same cluster as an interest weight on every course. Then, 
available information including student attendance, quizzes, 
learning activities during class and their final score in each 
course could be used to calculate the subjective measures. 
Moreover, both teachers and students write e-journals after each 
class, which are helpful to get feedback. This kind of feedback 
will imply the interest of students for a specific course, which 
could be considered as objective measures together with student 
goals.  
Figure 2 illustrates an overview of the recommendation system. 
We first use association rule together with student interest to get 
rules for a certain cluster based on their department. The rules’ 

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 700



consequents determine a list of courses to be recommended. 
Then we plan to use social search and courses prerequisite to 
adjust the final results.  

 
Figure 2. Overview of the recommendation framework. 

4. FUTURE DIRECTION 
This research aims to discuss the difference between MOOCs 
and university environment to recommend suitable courses for 
learners and study how to improve personalized course 
recommendation in such environment. Apart from assisting the 
student, it also will help the university registrar to manage 
courses. In particular, we propose a preliminary approach which 
extracts student-specific interest from e-learning system and 
combines association rule and student interest together to give 
recommend results. In addition, our approach would be helpful 
in other personalization situations. 
As future work, social course search and course prerequisite will 
be used to boost our method for university environment, we will 
compare our framework with other recommendation system to 
get the evaluation result. In addition, mining other information 
from student behaviors to match the contents of learning 
materials is also an important work to do.  

5. ADVICES SOUGHT 

For this doctoral consortium, advice is sought regarding some 
concerns.  

a) Is this idea both significant and valuable? For example, 
could it be applied in a broader range of domains?  

b) What kind of student data should be used for a course 
recommendation system? For now, we give the results only 
based on historical data from previous students, who have 
already finished the course.  

c) Are there any other methods for predicting student interest 
for a certain course? Since the information from current 
student is limited, so what kind of data should be useful? 

d) Are there any suggestions for the evaluation procedures of 
this research? 	
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ABSTRACT 

A key issue in mathematics learning and instruction is supporting 

high-school students in developing problem-solving skills, which 

can foster creativity, innovation, and ultimately lead to success in 

the workplace. Towards this goal, a crucial first step is modeling 

students’ problem-solving skills, so that effective instructions and 

interventions can be designed to meet their learning needs. We 

propose three steps to explore this direction in the domain of non-

routine mathematics problems -- those that cannot be solved by a 

textbook procedure but require insight and resourcefulness. First, 

we construct a conceptual framework of the most common 

problem-solving strategies that our instruction and modeling 

process will be based on. Second, we conduct a pilot study to test 

whether the framework can help students generate multiple 

solution strategies. Third, we use natural language processing and 

crowdsourcing to support automated assessment of students’ 

inputs and explanations. These three steps will contribute to an 

educational platform that can be deployed at scale to assist 

students in solving non-routine mathematics problem and serve as 

a blueprint for problem-solving instructions in other domains. 

Keywords 
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1. INTRODUCTION 
Training students to be good problem solvers is an important 

focus of mathematics teaching and learning [9, 25]. However, 

typical mathematics instruction in U.S. classrooms too often 

comprises rote learning, such as memorizing the rules for solving 

algebraic equations, without exposing students to the reasons for 

those procedures or alternate ways to solve problems [8, 24]. As a 

result, students struggle to apply learned procedures in novel or 

non-routine situations where either the surface or structural 

features of the problem are different [3]. Not surprisingly, U.S. 

students have fallen far behind their counterparts in other 

countries on standardized tests of mathematics achievement and 

on tests measuring abilities to solve novel and challenging 

problems [18]. 

Addressing this issue at scale requires developing an educational 

platform that provides individualized instruction to students in 

non-routine mathematics problems. However, there are two 

crucial questions in this direction. First, what do we teach the 

students? Due to the non-routine domain’s nature, there is no set 

of procedures that can be used to solve all problems. Thus, we 

choose to focus on identifying a small number of strategies that 

are most widely applicable; these will serve as the expert model. 

Second, how do we evaluate student inputs and provide effective 

feedbacks? Recent development of tutoring systems has moved on 

to more complicated knowledge domains, such as protein folding 

[2], programming language [1], and database [17], which also 

require students to engage in high level problem-solving tasks. To 

our knowledge, however, there is no system that targets 

mathematics problem-solving. This domain is unique in that 

students have to input mathematical arguments, which are a 

combination of text and formula, to explain and justify their 

results. Therefore, our approach is to first construct a dataset of 

mathematical arguments and explanations through crowdsourcing, 

then employ natural language processing techniques trained on the 

dataset to assess the quality of student inputs. 

2. RESEARCH PLAN 

2.1 Constructing the Expert Model 
Schoenfeld [21] identified non-routine problems as those: (a) 

without straightforward, algorithmic solutions, (b) that require 

ingenuity and resourcefulness to solve, and (c) with multiple 

solutions. A useful source of these problems is the high school 

textbook “Problem Solving Strategies: Crossing the River with 

Dogs” [12] that contains problems such as:  

● Each team in a new basketball league will play one 

game against each of the other teams. There are seven 

teams: A, B, C, D, E, F, G. How many games will be 

played in all? (p. 32) 

● Find the sum of the first 5000 odd numbers (p. 296) 

● How many squares are there on an 8 x 8 grid? Note that 

a square can have side length from 1 to 8. (p.271) 

In identifying a conceptual framework for solving these problems, 

we turned to the four basic principles of problem-solving outlined 

by Polya [19]. First, “Understand the problem” is to make sure 

one knows what is being given and asked. Second, “Devise a 

plan” involves finding the connection between the data and the 

unknown, then choosing an appropriate strategy, such as making 

an orderly list, eliminating possibilities, and looking for a pattern. 

Third, “Carry out the plan” means executing the chosen strategy. 

Finally, “Look back” is about reflecting on the problem and the 

solution so that one can acquire transferable insights for new 

problems. Guided by these principles, we have solved 70 non-

routine mathematics problems from [12], which we will use as the 

source of instructional materials for this project. Through this 

exercise, we also came up with eight strategies, four of which are 

for “preprocessing,” used to create a useful mental representation 

of the problem, and four of which are “solving” strategies, used to 

come up with a solution. Every one of the 70 problems were 

solved in multiple ways, using different strategies. 
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Figure 1: Non-routine problem-solving flowchart serving as the expert model. 

 

Table 1: Materials used in the study. 

Problem Statement Comparison questions 

Problem 1: How many squares are there in an 8 x 8 

chessboard? 

Which solution strategy do you prefer and why? 

Which solution strategy works better for a larger chessboard? 

Which solution strategy works better if the question prompt changes 

to “how many rectangles are there in an 8 x 8 chessboard”? 

Problem 2: A number is called a decreasing number if 

it has two or more digits and each digit is less than the 

digit to its left. For example, 7,421; 964,310; and 52 

are decreasing numbers but 3,241; 6,642 and 963,212 

are not. How many decreasing numbers are there? 

Which solution strategy do you prefer and why? 

Which solution strategy would work better if the definition of 

decreasing number change to “a number is called a decreasing 

number if it has between two and ten digits, and each digit is less 

than or equal to the digit to its left”? 

  

To characterize problem-solving strategies --  as well as to create 

a representation that can be used to guide students -- we 

developed the flowchart in Figure 1 from solving the 70 problems, 

organized according to Polya’s four problem-solving stages [19].  

The flowchart will serve as a scaffold as students are exposed to 

and practice different problem-solving strategies. It is intended to 

help students select the most appropriate strategy at each stage of 

the problem-solving process, based on the problem features. 

Once the students have selected which strategy to follow, they 

will be prompted to enter the arguments and explanations for each 

of the four steps in Figure 1. 
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2.2 Pilot Experiment 
To test the effectiveness of the proposed framework, we will 

reach out to local high schools to conduct a pilot study, in which 

students will be shown each of the two non-routine problems in a 

separate paper and asked to solve it in as many ways as possible, 

with the aid of the flowchart. When the students succeed in 

coming up with one solution, they would be asked to think of 

another solution with a different strategy. If they could not come 

up with the second solution, they would be prompted to compare a 

given expert solution with their first solution. If they could not 

come up with any solution (due to time limit or being stuck), they 

would be shown one solution strategy, then another. We also 

rotate the order of solution strategies for each student. Finally, 

once students have two solutions, they are asked to compare the 

two with a number of prompting questions. The problem 

statements, selected from [12], and comparison questions used in 

the study are listed in Table 1. 

Students will be interviewed separately for about an hour and 

asked to think aloud while solving the problems / evaluating the 

solutions. Their written solutions and scratch papers, in addition 

to think-aloud records, will be used for preliminary data analysis 

and student modeling. 

2.3 Constructing the Student Model 
An important component of our educational platform will be its 

capability to assess student explanations generated during 

problem-solving and providing feedback on and guidance for 

those explanations. To achieve this, we propose to combine 

multiple sources of data, both domain-general and domain-

specific, to build the training dataset for this task. Our first data 

source will be domain-general, built from online math problem-

solving datasets that include solutions and explanations for math 

word problems. Three datasets that we will explore are those from 

the Google DeepMind project [15], the Stanford Natural 

Language Inference (SNLI) Corpus [4] and e-SNLI, a large 

corpus of explanations for the SNLI dataset [5]. Our second, 

domain-specific dataset will be crowdsourced. We will use 100 

Amazon Mechanical Turkers to collect explanations for each step 

of each of 15 non-routine mathematics problems (times 2 

solutions for each problem) that we will use in our study. In other 

words, each of the 100 Turkers will be presented with 30 

problems and will be tasked with providing explanations for each 

of the steps in each solution. We will then manually code these 

explanations according to their quality. Given the coded data, we 

will experiment with a variety of deep learning models to classify 

the quality of student inputs. We will explore several variations of 

Sequence Models and Convolutional Neural Networks coupled 

with Transfer Learning, as informed by state-of-the-art research 

results achieved by Howard and Ruder [10]. They proposed 

Universal Language Model Fine-tuning that reduced current text 

classification errors by 18%-24% in tasks such as Sentiment 

Analysis and Topic Detection. We will also experiment with the 

question classification method used by [20] that achieved high 

accuracy. In addition, once we have a fully-fleshed coding scheme 

for explanations, we will look more deeply at the specific content 

of feedback, particularly in catering feedback to specific 

knowledge levels of students. After assessing the quality of 

student inputs at each step, we can model students’ learning by 

Knowledge Component (KC) based modeling [13], where each 

KC represents one of the 12 strategy steps in Figure 1. We 

recognize that the level of granularity of these strategies may not 

be low enough for the final KC model. To address this issue, can 

use the students’ collective performance in each KC,  visualized 

by learning curves [7] in DataShop [23], in order to apply the 

human-machine discovery method [22] and identify potential 

improvements in our initial KC model (e.g., whether there is a KC 

that needs to be decomposed). We then can revise instructional 

materials for the next study iteration to identify more fine-grained 

KCs [14, 16]. There is also potential in KC-based student 

performance prediction, using a variety of techniques such as Item 

Response Theory [11], Bayesian Knowledge Tracing [7] and 

Bayesian Network [6]. Accurate predictions by the system would 

then allow for more effective and timely interventions, for 

example by offering an appropriate level of scaffolding at the 

beginning of a new problem.  

3. CONCLUSION 
In this paper, we propose a plan to model high-school students’ 

problem solving skills through an educational platform in the 

domain of non-routine mathematics problems. We envision three 

potential applications of this platform. First, it will be accessible 

to a wide range of students, especially the lower performing 

students who are not traditionally exposed to problem solving. 

Second, it will provide a blueprint for automated assessment of 

students’ explanations in an open-ended domain, which is among 

the central themes of the EDM community. Finally, the 

constructed student models could yield insights into students’ 

problem-solving process that are applicable to other domains. 
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ABSTRACT
Mobile technology has been a focus of research since the
early 2000s and has attracted researchers from various dis-
ciplines ranging from pedagogical, health-care, technological
to app developers. In recent times, there has been a substan-
tial interest in capitalizing on the abundance and the ubiq-
uity of these technologies for their educational use. How-
ever, the role of mobile phones in educational setting is still
largely under-researched. Similarly, little attention has been
paid to the research on the extension of learning analytics
to analyze the learning processes and strategies of students
adopting mobile platforms. Traditionally, the research into
mobile learning has mainly relied upon self-reported data.
While literature has evidence that survey data facilitates
extraction of invaluable information, it suffers from a signif-
icant shortcoming - unreliability due to learner bias and poor
recall. Therefore, this paper outlines the doctoral research
project that explores the use of mobile technology in edu-
cational context using data mining techniques and learning
analytics methods to analyze digital trace data and provide
insights into how students learn. The results so far have en-
abled us to categorize students as adopting one of the three
technological modality strategies - strategic, minimalist, and
intensive - based on how extensive the use of multiple modal-
ities (such as desktops, tablets, smartphones) is for learning
activities and their final academic performance. Our re-
sults also provide evidence suggesting incorporation of the
modality used by the learner, for carrying out an activity,
as a viable feature in learner models helps in improving the
prediction power of these models.

Keywords
Learning Analytics, Mobile Learning, Trace Analysis

1. INTRODUCTION
Mobile technology has been a focus of research since the
early 2000s and has attracted researchers from various dis-
ciplines ranging from pedagogical, health-care, educational,

technological to app developers. An October 2011 article
in The Economist posited that, with the number of PCs
already surpassing 1 billion in 2008, the number of mobile
devices too would reach 10 billion in 2020 [2]. However,
even with the proliferation of mobile phones at such an un-
precedented rate, their role in the educational setting is still
largely under-researched [1, 12]. The challenge for educators
and designers, thus, is one of understanding and exploring
how best students might use mobile technology to support
learning. This challenge is further complicated by the fact
that while there exist plethora of learning analytics dash-
boards (LADs), there is a critical paucity of mobile learning
analytics dashboard applications [11] in comparison to their
desktop counterpart. The desktop LADs have been exten-
sively researched in terms of their usability, learner strate-
gies, usefulness, effectiveness, and efficiency using complex
data mining techniques and learning analytics methods. On
the contrary, little attention has been paid to the research
on the extension of learning analytics to analyze the learn-
ing process of students adopting mobile platforms. The very
few extant mobile LADs [5, 10, 7, 4] adopted by students
have been analyzed mostly using self-reported data typically
collected through questionnaires or think-aloud protocols,
which suffer from unreliability issues due to learner bias and
poor recall. Moreover, we are still unaware of the impact
of the ‘source’ of log files (from different devices), if any, on
the outcome prediction in learner models.

Thus, our research aims to bridge all the previously dis-
cussed gaps and explore the use of mobile technology in an
educational context. It aims to provide a holistic under-
standing of learning in presence of mobile devices and its
impact on learning - right from the identification of learn-
ing strategies employed by mobile learners, to the learn-
ing activities benefiting the most from mobile technology
(w.r.t. online discussions and course assignments), and to
the construction of technological modality-specific learner
models for learning outcome prediction. We focus on us-
ing advanced data mining techniques and learning analytics
methods to analyze digital trace data and provide insights
into how students learn using different technological modal-
ities, with main focus on mobile devices.

1.1 Research Question I
The first goal of the proposed research is to explore how
mobile devices are used when regulating learning via learn-
ing management systems (LMS) in the context of blended
courses. To do so, we mine the sequence data from student
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logs to examine the extent to which various technological
modalities (including mobile devices, laptops and desktop
PCs) are either used sequentially and/or simultaneously and
assess their potential to influence the overall academic per-
formance and study habits at various learning activities. In
order to achieve that, we study the following two research
questions:

RQ1.1: Can we detect patterns in students’ use of multiple
modalities that are indicative of their adopted technological
modality strategy when using an LMS tool? If so, what kind
of strategies emerge?

RQ1.2: Is there an association of the identified strategies
with students’ performance in online discussions and overall
academic performance?

1.2 Research Question II
Central to the idea of mobile learning is that learning can oc-
cur context-free; across different places and at different times
and not confined to the formal classroom settings. While
location-aware mobile learning systems has been widely stud-
ied, albeit using descriptive statistics only, even lesser at-
tention has been given to the temporal aspect of the use
of these mobile technologies. That is to say, not much is
known of the associations between different modalities (such
as desktops, mobiles and tablets) and the time of the day
during which the modality-learner interactions take place.
We assess the associations of time of the day they learn, not
only with the frequency of usage of a modality, but with
the sequential patterns of usage of different modalities in
a blended course. Knowledge of the personally-negotiated
learning time-frames, mediated by different modalities are
conducive to timely, personally tailored feedback, reinforc-
ing the ‘right information at right time’ learning motto. In
order to achieve that, we study the following research ques-
tion:

RQ2: Are there any underlying associations between time
of the day and the patterns of modality usage based on a
learner’s modality-use profile?

1.3 Research Question III
The introduction of mobile technology as a pedagogical tool
has witnessed many enthusiastic supporters who success-
fully incorporate mobility in their everyday learning routine.
However, it is still unclear what dictates the students’ deci-
sion to adopt or resist mobile technology in the first place.
The following research questions ascertain whether learn-
ers’ patterns of modality usage are driven by their inherent
student characteristics or the type of activities they must
engage in.

RQ3: Do students use technological modalities differently
when engaging with different types of learning activities (say,
Assignments and Online Discussions)?

1.4 Research Question IV
The research area of analyzing log file trace data to build
academic performance prediction models has tremendous
potential for pedagogical support. Currently, these learner
models are developed from logs that are composed of one

intermixed stream of data, treated in the same manner re-
gardless of which platform (mobile, desktops) the data came
from. Given that learners use a combination of devices when
engaging in learning activities, it is apparent that weighing
the logs based on the platform they originate from might
generate different (possibly better) models, with varying pri-
ority assigned to different model features. For instance, fre-
quency of course material access might be a less powerful in-
dicator of academic performance compared to the frequency
of course material access ‘from mobile devices’, probably
due to the benefits associated with ubiquitous any-time ac-
cess available to mobile learners. Thus, the primary goal of
this research question is to bring to light the potential for
improvement of prediction power of models after consider-
ing the learner’s platform of access while generating learner
models for predictive analysis.

RQ4: To what extent is the predictive strength of LMS fea-
tures influenced by distinguishing the modality of learner ac-
cess when predicting course grade??

2. POTENTIAL CONTRIBUTIONS
The research on mobile learning has primarily focused on
studying the effectiveness or design of the mobile learning
systems [13]. There are two major flaws to this. Firstly, as
pointed out by [6], it is the learner that is mobile, rather
than the technology. Hence, while the research focused on
designing of specific portable technologies has been useful, it
is now time to dig deeper into complex interactions between
learners, mobile devices, learning activities, and available
learning materials (briefly touched upon by [1]).

Furthermore, assessments of effectiveness of mobile learn-
ing systems are generally conducted using overly general,
broad surveys and self-reported questionnaire, usually in a
lab setting. The traditional surveys have been recognized as
highly flawed in the educational research community due to
unreliable issues stemming from learner bias and poor recall
and the extremely controlled environment in lab settings de-
ters the observation of learners’ actions, decisions and learn-
ing strategy choices in their natural environment (thereby
threatening external validity of experiment). Consequently,
the studies have only sufficed in making superficial claims
about trends in mobile learning, using simple analyses such
as aggregates and percentages - 20% people prefer to use
mobile phones for participation in the discussion activity.
This is insufficient for the explication of the actual way in
which mobile technology is impacting the everyday learn-
ing process in authentic educational settings wherein inter-
leaved pattern of usage are observed which up until now have
been understudied [8, 9]. This is exactly what my doctoral
thesis will cater to. The advantages of analyzing such pat-
terns is three-fold. It supports instructors in blended courses
through more refined interpretation of students’ actions in
the LMS when participating in the learning activity. For
learners, this allows for recognition of strategies (compris-
ing modality-action pairs) that maximizes student’s learn-
ing achievements and helps in refraining from suboptimal
learning strategies. It is equally useful for future LMS de-
signers when designing notification systems that are capable
of sending reminders for modality-specific learning actions.
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3. METHOD AND CURRENT PROGRESS
In my research, I am analyzing the data produced by the
second and third year undergraduate students in two pro-
gramming oriented courses at a Canadian university. Cur-
rently, the data has been collected from two semesters (Fall
2017 and Spring 2018) and is being continually logged from
subsequent offerings of the two courses. Each course spans
over 13 weeks and for the two semesters, a combined enroll-
ment of 121 students (83+38) was observed. The courses use
blended delivery, utilizing the university’s learning manage-
ment system (LMS) to support learning activities and stu-
dents’ overall schoolwork. The LMS hosts access to reading
material, posted lecture slides, tutorial materials, general
course information, weekly or bi-weekly course assignments,
assignment submission, grades, and allows participation in
online discussion activities. In addition to the web-browser
versions of the LMS (desktop/laptop/mobile), students have
access to the mobile app version provided by the LMS ven-
dor. Comparison of the features and functionalities offered
by the two versions have revealed no apparent differences.

I plan to carry out my research in four phases, one for each
research question. At the current stage, I am working on
phase 2 and 3, having completed and submitted research
questions from phase 1 (accepted) and phase 4 (in review).
Hence, in this section, I will briefly touch upon the method-
ology used (or intend to use) for each of these research ques-
tions and the results obtained so far.

3.1 RQ1
In order to examine the presence of patterns in students’ use
of several technological modalities, I encoded each learning
session as a sequence of modalities (used to carry out each
action in that learning sessions) using a representation for-
mat of the TraMineR R package [3]. These sequences were
clustered using agglomerative clustering based on Ward’s
method. The computation of the distance (similarity) be-
tween sequences, required for the clustering algorithm, was
based on the optimal matching distance metric [3]. The
sequence clustering algorithm produced four clusters, i.e.
technological-modality profiles - Diverse (use of many differ-
ent modalities), Mobile-oriented, Short-desktop and Desk-
top. Next, the students were clustered, based on how many
of their sequences belong in each modality profile, using Eu-
clidean metric to compute the distance between vectors. As
a result, three student clusters (Strategic, Minimalist and
Intensive), representative of their modality strategies, were
obtained.

To examine if there was a significant difference between
the identified student groups, we performed a multivari-
ate analysis of variance (MANOVA). The student cluster
assignment was treated as the single, independent variable
along with following dependent variables: overall academic
score, counts and time spent on viewing, posting and re-
plying to messages along with the word counts and quality
of messages in discussion board. I found a moderate ef-
fect size (ε2 = 0.12) of students’ adopted strategies on the
final course grade. Furthermore, when looking specifically
at online discussion engagement and performance, students’
adopted technological modality strategies explained a large
amount of variance (η2 = 0.68) in their engagement and
quality of contributions.

3.2 RQ2
For this question, I have encoded learning sessions from all
students (as was done in RQ1), followed by categorizing
each learning session into one of the four broad TOD (time
of the day) categories, intuitively: Morning (5 - 11 a.m.),
Afternoon (11 a.m. - 4p.m.), Evening (4 - 7 p.m.) and
Night (7 p.m. - 5 a.m.). To examine if there was an over-
all significant relation between the modality-profile of learn-
ing sessions and the time of the day each of these sessions
took place, a chi-square test of independence was performed
across all learning sessions after summarizing data, com-
posed of each sessions’ technological modality profile cluster
and the TOD category it belongs to, in a two-way contin-
gency matrix. The analyses was replicated across each of the
three modality strategies (obtained in RQ1) and results re-
vealed significant associations for all three strategies. How-
ever, there were significant differences with respect to the
preferred time of the day for carrying out learning sessions
belonging to each modality profile, based on the learner’s
modality strategy. For instance, mobile-oriented learning
sessions were carried out mostly in the afternoon by strate-
gic and intensive learners but in the morning by minimalist
learners.

3.3 RQ3
The ongoing activities for this research question are mainly
focused on preliminary data analysis. I have encoded the
learning sequences, from two main learning activities i.e.
assignment and online discussions, as representations of the
TraMineR format. For each learning activity, the sequence
clustering based on optimal matching metric resulted in four
and three technological modality profiles (TMP), respec-
tively. Consequently, two different partitioning of the stu-
dents, one based on TMP clusters from online discussion
activity and the other based on TMP clusters from assign-
ment activity, both resulted in 3 student clusters each.

The initial exploratory analysis comparing the two student
clusterings, obtained from the two learning activities, re-
vealed a rand index of 0.48, meaning that the two clustering
agree to a very small extent only. Therefore, we posit with
some certainty that the learner’s patterns of modality usage
(or in short their choice of technological modality strategy) is
dependent on the learning activity they are engaging in. To
further strengthen this claim, we look at the rand indices ob-
tained from the two learning activities when compared to the
benchmark student classification (from RQ1). The bench-
mark classification corresponds to the student strategies (i.e.
clusters) that are gauged from their overall engagement with
the LMS and reflect the generic or habitual patterns of use
of different modalities (and thus considered analogous to a
student’s innate characteristics). We found a large overlap
(rand index = 0.85) of strategies in the benchmark classifi-
cation with the assignment activity but only a small overlap
(rand index = 0.51) with online discussion activity. This
indicates that, in addition to the strategies from the two
learning activities being different, the strategies from one of
them (i.e. assignment activity) more closely resemble the
strategies in the benchmark classification, compared to the
other (i.e. discussion activity). As with any speculation,
follow up inferential analysis will be required to solidify our
claims.
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3.4 RQ4
To investigate the effect of modality on different types of
commonly included learning-related activities (Table 1) and
their traces in the online courses, I selected 10 features (5
counts + 5 time spents for each activity) for inclusion in
my analyses as predictors of academic success. Variables
derived from the LMS trace data include: syllabus, course
material (lecture + tutorial slides and instructor provided
supplementary material), assignments, feedback on the as-
signments and calendar. For each student I extracted the
number of times (and the time spent on) using a partic-
ular feature by aggregating individual operations. I call
these variables LMS features. Each of these variables was
split up further to account for the platform used to access
that particular feature. For instance, in addition to having
the total number of assignment views for a student, I com-
puted three more variables – mobile views, desktop views
and tablet views – which indicate the respective number of
assignment views from each of the three main modalities. I
call such variables Modality features.

Next, I conducted a series of regression analyses with course
grade as the outcome variable in each. For each of the ten
learning features, two regression models were built using (a)
LMS features and (b) Modality features. The results re-
flected that for each of the ten features, an increase in R2

from Model 1 to Model 2 was observed. This increase ac-
counts for the percentage of variability in student course
grade explained by the Modality features over and above
the LMS feature. An ANOVA analysis using F-test of the
statistical significance was conducted to ascertain whether
the increase was statistically significant and it was found to
be significant for more than 50% of the variables tested.

4. ADVICE SOUGHT
My research is at an intermediate stage and I hope the con-
sortium could provide me some guidance and insights in the
following areas:

• I am interested to know if there is a method, espe-
cially in the area of network analysis that can help me
assess the (direction and frequency of) transitions be-
tween mobiles, desktops and tablets, and how these
transitions differ when learners are engaging in differ-
ent learning activities.

• For RQ3, while I am focusing on chi-square test of in-
dependence to test associations between time of the
day and modality patterns, for the next steps I need
to know how to identifying/interpret patterns using
the time-series analysis. Also, how can I account for
the ‘random noise’ that might be introduced from stu-
dents’ use of different devices for non-educational pur-
poses?
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ABSTRACT 

Students’ first response time has been used as a key predictor in 

various types of models in order to predict student performance and 

engagement. However, the effect of how much time students spend 

on particular activities within a single response time remained 

unexplored. In this paper, we divide response times into meaningful 

subcategories in order to provide a more accurate prediction of 

learning and disengagement. We fit a model with the derived sub-

categories and show how this model outperforms the baseline 

model that uses the raw response times. We present the early 

findings of our ongoing work and seek advice on how the insight 

that we get from these findings can be used in further detection of 

student off-task behavior. 

Keywords 

Student modeling, Response time, Disengagement, Regression 

models 

1. INTRODUCTION 
Various types of models of student learning from intelligent 

tutoring systems leverage response times in order to better predict 

student performance. For example, Xiong et al. [10] compared a 

baseline random forest model to another model with response times 

and related features added. They found that adding response time 

could make a (small but) significant improvement in predicting 

student performance. Wang et al. [9] included response time 

information in knowledge tracing algorithm and found that adding 

response time improved KT’s accuracy. People have also used 

response times in their models to explain whether students are 

engaged with the system they are interacting. Beck developed a 

model [2] based on item response theory which was able to give an 

estimate of the probability of a correct response given a response 

time for modeling disengagement over time. Shih et al. [7] 

developed a model that shows some behaviors previously shown as 

negatively correlated with learning can actually be beneficial for 

some students. In general, much of this research is based on the 

hypothesis that if a student responds to a problem step too quickly 

or too slowly, they are likely to be unsuccessful in that particular 

step and if students do this too frequently, they tend to perform 

worse on the task. 

However, something that is less explored is how much time 

students are spending on different activities within a single 

response time and how it is affecting how they perform on tasks. If 

we take a reading task for example, we would need an estimate of 

how long it takes a student to read a given text so that we could tell 

when a student is switching from one engaged state (reading) to 

another (thinking about the step/reflection) or an off-

task/disengaged state. Shih’s model used estimates of unobserved 

activities during a single response time to show that repeatedly 

asking for hints might not always be a harmful behavior. Our work 

is similar to Shih’s work in a way we are trying to estimate how 

much time students spend on activities we cannot directly observe 

from the log data, but our activities of interest are different as Shih 

is focusing on activities can be observed in a problem solving 

domain, while we are interested in a reading task.  

The goal of our work is to decompose response times into 

meaningful subcategories in order to provide a more accurate 

prediction of learning and disengagement.  

2. PROPOSED CONTRIBUTIONS 
In this work, we propose to develop a new model that leverages 

time information to predict student performance and 

disengagement. In order to achieve this goal, we will use the log 

data collected from EMBRACE [8]. EMBRACE is an iPad 

application designed to improve English reading comprehension of 

young native Spanish speaker students. Students are reading 

interactive story books by chapters and answer multiple choice 

questions related to the story at the end of each chapter. While 

students are reading, some of the sentences are highlighted with a 

blue color. In those sentences, students are asked to move images 

shown on the screen to represent what they read (see Figure 1). The 

control version of EMBRACE does not have this feature. In this 

version, student actions are restricted to reading a sentence, tapping 

on a word to hear its pronunciation, and moving forward to see the 

next sentence. We start to analyze the response time from the 

control version. Since the student actions are limited, we can get a 

clearer idea about how predictive the subcategories of response 

times we derive. As the students can be either reading the sentence 

or thinking about it (assuming they are engaged with the system) in 

the control version, we initially decompose response time into 

reading time and thinking time. Reading time is the estimated 

time for a student to read the sentence and thinking time is the 

remaining time when we subtract reading time from the raw 

response time (the total time spent on a sentence). 
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Figure 1. Screenshot from EMBRACE 

 

However, the student can be in a disengaged or an off-task state 

during reading. If that is the case, some part of what we identify as 

thinking time will be actually the time spent in these unproductive 

states. We are interested in finding in what portion of thinking time 

students are in these states. Since often being in these states are 

found to be negatively correlated with learning [1], the student 

performance within periods of thinking time may be indicative of 

their cognitive state. Our proposed approach to detect these states 

is to estimate the break points where the relationship between 

thinking time and the student performance changes. We are 

targeting identifying these states based on the different 

relationships in the regions that are defined by the estimated break 

points and frequency of specific student behavior such as help 

requests or trying to skip through sentences.  

With the insight gained from the control version, our next step will 

be to leverage this approach to identify different student behaviors 

within response times to more complex actions in other versions of 

EMBRACE. We are aiming to provide better predictions of student 

performance and identify student cognitive states such as 

reflection, gaming the system, mind wandering, and wheel spinning 

based on the time information in a larger set of student actions.  

3. METHODS & PRELIMINARY RESULTS 

3.1 Data 

Our data comes from the logs collected from 22 students interacting 

with the control version of EMBRACE. Students are reading 35 

chapters and answering questions at the end of each chapter. Our 

measure of student performance is the proportion of correctly 

answered questions in the comprehension assessment in each 

chapter. We extract the time a student spends on each sentence in a 

chapter and calculate the mean response time in each chapter.  

Some students had unrealistic response times (due to logging 

errors) or missing assessment scores in some of the chapters, such 

student chapter pairs are excluded from the dataset. This left us 742 

data points (student chapter pairs). 

3.2 Estimating Likely Reading Time 

Since the actual time that students take to read a sentence is not 

logged in the application, we estimate how long it should take them 

based on students’ decoding ability and how many words a 

particular sentence contains.  

The reading time was estimated for each sentence as word count in 

the sentence divided by how many words the student should be 

reading per minute based on their decoding ability. Students’ 

decoding ability is measured by their scores on the decoding part 

of the Qualitative Reading Inventory (QRI) [3]. 

In order to get the words per minute for each student, we used the 

guidelines from [4]. This gives lower and upper bounds for how 

many words a student should be reading per minute based on what 

grade the student is in.  

Instead of making predictions about reading time based on grade, 

we make predictions about reading time based on QRI scores. We 

perform this mapping as follows: 

𝑓(𝑡) = 𝑐 + (
𝑑 − 𝑐

𝑏 − 𝑎
) ∗ (𝑡 − 𝑎) 

where interval [𝑎 , b] denotes our QRI range, [c, d] denotes the wpm 

range for students from 2nd to 4th grade in [4], and t is a specific 

QRI score. 

Our QRI range is [10, 40] and the words per minute range that we 

picked from Morris's guideline is [80, 150]. Based on our mapping 

function, if a student got 33 on QRI, they are estimated to be 

reading 80 + ((70)/(30)) * (33 - 10) ~ 134 words per minute. Using 

the same function, if a student got 10 on QRI their wpm estimation 

is 80 and if a student got 40 on QRI their wpm estimation is 150. 

3.3 Estimating Likely Thinking Time 

We simply calculated the thinking time by subtracting the 

estimated reading time from the response time logged in the 

application. If we call the sentence time ST, where ST is the mean 

time spent on sentences in a chapter and call estimated reading time 

ERT where ERT is the mean of reading time for a student in a 

chapter based on student's QRI score and the word count in a 

sentence. Then thinking time TT is calculated as follows:  

𝑇𝑇 = 𝑆𝑇 − 𝐸𝑅𝑇 

If a student requested help (tapped on a word to hear its 

prononciation) on a sentence, we subtract the time the student 

spends on listening to the help audio (help time) from thinking time. 

Help time is calculated as number of help requests on a sentence 

multiplied by two, as help is a single word read to the student twice, 

which roughly equates to two seconds. 

3.4 Predicting Student Performance 

We built a piecewise linear regression with students’ mean thinking 

time on chapters, mean frequency of  help requests, mean frequency 

of attempt to skip, and students’ pre-test scores on different English 

language proficiency assessments (SELPS, QRI, Gates) as 

predictors and students’ correct answer proportion on 

comprehension assessment tests given at the end of each chapter as 

the outcome variable.  

We used the ‘segmented’ function in R [5, 6] to build the piecewise 

model. It takes potential breakpoints for one or more predictors as 

an input, and fits a piecewise linear function based on those 

breakpoints (each region, as denoted by two adjacent breakpoints, 

is fit with a linear regression). The function iterates over possible 

breakpoints, starting from the user-input breakpoints, until it finds 

an optimal set of breakpoints.  

We decided on three breakpoints for the thinking time variable as 

we expect to see four different relationships and four different 

states that can be identified by these relationships: 1) Probably 
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gaming / Not taking enough time to think, 2) Reflection / Thinking 

deeply about the sentence, 3) Wheel-spinning / Struggling to 

understand the sentence, 4) Mind-wandering / Possibly thinking 

about something else other than the sentence. We picked the initial 

breakpoints using mean and standard deviation of thinking time. 

Our first break point is one standard deviation below the mean (-

1.95 s), our second break point is the mean thinking time (3.99 s), 

and our third break point is one standard deviation above the mean 

(9.93 s).  

 

Figure 2. Relationship Between Students' Mean Thinking 

Time and Correct Answer Proportion 

The segmented function estimated the break points at -1.41 s, 4.30 

s, and 14.26 s. The resulting segmented model accounted for 21% 

of the of the variance (R2 = .21, F(12, 704) = 16.43, p < .01). The 

results showed that thinking time (β = -1.36, p < .05), mean 

frequency of skip attempts (β = -.13, p < .001), English SELPS 

scores (β = .19, p < .001), and Gates scores (β = .17, p < .001) 

significantly predicted correct answer proportions. 

As a comparison point, we fitted a linear model with the same 

predictors and the same outcome variable. The resulting linear 

model could account for 14% of the variance (R2 = .14, F(6, 710) = 

20.13, p < .01). It was found that thinking time (β = .16, p < .001), 

mean frequency of skip attempts (β = -.16, p < .001), English 

SELPS scores (β = .18, p < .001), and Gates scores (β = .13, p < 

.01) significantly predicted correct answer proportions. To 

statistically compare the linear model to the segmented model we 

used ‘anova’ function (which does an F-test) in R. Table 1 shows 

including the segments in thinking time variable reduces the 

residual sum of squares significantly which is indicating that the 

segmented model is a better fit for the data. 

Table 1. Comparison of Linear and Segmented Models with 

Thinking Time 

Model Res. 

Df 

RSS Df Sum 

of Sq 

F Pr(>F) 

Linear 

Model 

710 51.408     

Segmented 

Model 

704 46.988 6 4.4199 11.037 8.859e-12 

 

In order to see if using thinking time instead of the raw response 

time variable extracted from the log data can provide a better fit, 

we built another piecewise regression model similar to our first 

model. Instead of thinking time this model uses raw response time 

as a predictor and estimates the break points on this variable by 

using its mean and standard deviation values. This model accounted 

for 18% of the variance (R2 = .18, F(12, 704) = 13.32, p < .01). The 

raw response time (β = -7.08, p < .05), mean frequency of skip 

attempts (β = -.18, p < .001), English SELPS scores (β = .19, p < 

.001), and Gates scores (β = .16, p < .001) found to be significant 

predictors of correct answer proportions. Given this, the piecewise 

model with the thinking time as the segmented variable gave the 

best overall fit. In order to compare the two segmented models, 

‘coxtest’ function in R was used since these models are not nested. 

We found that the fit of the model using thinking time as the 

segmented variable is significantly better than the one using raw 

response times (p < .001). 

Figure 2 shows how the relationship between mean thinking time 

and correct answer proportion is changing at these points. The 

relationship seems to match our expectations. In the first zone, 

students are spending less than a second on thinking which means 

that they are spending less time than we estimated on reading the 

sentences, too. This was interpreted as possible gaming behavior as 

very low time spent on sentences with very low performance on 

chapter can be sign of skipping the sentences without reading. In 

the second zone we see that with more time spent on thinking about 

the sentences, the student performance is reaching to its peak value. 

This relationship was interpreted as a sign of reflection, taking 

enough time to think about the sentences after reading which is 

helpful for better understanding the story and doing well on the 

comprehension assessment test in the end of the chapter. We 

interpret the third zone as the possible start of wheel spinning. Since 

student performance is not low, we anticipate that the students in 

this zone are not completely off-task however as thinking time 

increases, the performance starts to slightly decrease which means 

that students are spending more time on thinking than they should. 

This was interpreted as students starting to struggle in the 

sentences. The last zone was interpreted as possible mind-

wandering as the time spent on thinking is quite high and as it 

increases the performance decreases drastically. This relationship 

explains that the students are not involving in task related thoughts.  

Our immediate next steps include calculating the percentage of time 

spent in each region defined by the estimated break points for each 

student and seeing if there is a correlation between that and 

behaviors that are indicative of gaming, mind wandering or wheel 

spinning such as constantly trying to skip through sentences and 

repeated help requests.  

Later we aim to apply a similar methodology in the other versions 

of EMBRACE where students can perform more complicated 

actions. We are interested in finding out different possible 

subcategories of response time and how they can be used to model 

student behavior in the richer data. 

4. ADVICE SOUGHT 
For this doctoral consortium, we would like advice regarding the 

following concerns: 

1) What are meaningful sub-categories of response time 

when student actions are not limited to reading only but 

they are actually interacting with the application by 

moving images they see step by step?  

2) In what ways can the relationship between thinking time 

and student performance be interpreted? How can it 

relate to student disengagement or off task behaviors and 

how can this relationship be validated?  

3) What suggestions in general do you have for the methods 

we are using to find sub-categories within response time. 
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Your feedback on these three aspects of our research will be very 

insightful for us as we are continuing our work with the data from 

other EMBRACE versions with more complex student actions. 
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ABSTRACT
Recent work [16] has demonstrated the superior quality of ques-
tions generated by state-of-the-art neural question generation algo-
rithms. However, evaluating the quality of these questions typi-
cally requires a domain expert which is labor intensive and costly.
We therefore seek an reliable and automatic method to evaluate
the quality of the questions. To this end, we propose a simple
evaluation criterion, NLL-QA, to replace the negative log likeli-
hood (NLL) criterion universally employed in state-of-the-art neu-
ral question generation models to evaluate and select the final out-
put question. Preliminary results demonstrate that, compared to the
traditional negative log likelihood criterion, NLL-QA enables neu-
ral question generation models to select better questions that are
more relevant to the input answer without sacrificing grammatical
correctness.

1. INTRODUCTION
We focus on a particular class of neural question generation (NQG)
models that takes as input an answer and an answer context, usu-
ally a sentence or paragraph containing relevant information about
the answer, and aims to output a question sentence. These NQG
models [3, 20, 19] are able to generate questions1 of much higher
quality than previous rule-based systems [5, 1, 8], demonstrating
their potential in improving performances of machine comprehen-
sion and question answering tasks [18, 14, 4] as well as automat-
ing the generation of quiz questions in large-scale educational set-
tings [10, 9]. The question generation process using a NQG model
is as follows First, beam search samples a list of candidate ques-
tions from the model. Then, a post-processing step selects the most
probable question according to the negative log likelihood scores
(NLL) of the candidate questions as the final output question.

For a question generated in the above manner to be of practical
value, it needs to be, at a minimum, free of grammatical errors and
relevant to the input answer from which it is generated. Unfor-
tunately, state-of-the-art neural question generation models often

1In our context, generate a question is equivalent to output or select
a question.

Context 1: It stands on the Vistula River in east-central Poland, roughly
260 kilometres (160 mi) from the Baltic Sea and 300 kilometres (190
mi) from the Carpathian Mountains.
Question 1: How long is the Vistula River in the Vistula River? (10.21)
Question 2: How far is the Vistula River from the Baltic Sea? (10.67)

Context 2: For exercise, Tesla walked between 8 to 10 miles per day.
Question 1: How did Tesla travel to 10 miles per day? (12.55)
Question 2: Tesla walked between 8 to 10 miles for what? (14.15)

Table 1: Two examples where the most probable question (Ques-
tion 1, which is the final output selected by NLL) is unsatisfactory:
in Context 1 it contains grammatical errors, and in Context 2 it asks
a question irrelevant to the input answer (italic and underlined text
in Context). In both examples, a less probable question (Question
2) is significantly better than Question 1. The raw negative log
likelihood is shown after each question.

generate questions that do not satisfy these two desired properties.
Interestingly, we have discovered, by manually examining numer-
ous generated questions, that a less probable question is of much
higher quality than the most probable one in a number of cases. To
illustrate, Table 1 shows two less probable questions that are more
fluent and more relevant to the input answers than the most proba-
ble ones. This observation suggests that, even though a satisfactory
output question may already appear in the beam search results, the
NLL criterion is often unable to select it.

Moreover, we notice that smart changes in the post-processing step,
in addition to the model itself, can bring significant benefit in lan-
guage generation tasks. For example, Google’s neural machine
translation system augments NLL with length and coverage penal-
ties, considerable improving the BLEU score of the translations [17].
We are thus motivated to explore the possibility of improving the
quality of generated questions by redesigning the question selec-
tion criterion in the post-processing step of the question generation
process.

Contributions. We propose NLL-QA, a novel question selection
criterion that combines NLL with a answer relevance score (QA)
that explicitly evaluates whether a candidate question can be cor-
rectly answered by the input answer from which the question is
generated. This combined score is then used in place of NLL to se-
lect the final output question from the candidate questions output by
beam search. Intuitively, this selection criterion encourages the fi-
nal output question to be relevant to the input answer, an important
aspect of a good generated question that NLL fails to adequately
evaluate.
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Machine-Authored Homework Questions" In: Proceedings of The
12th International Conference on Educational Data Mining
(EDM 2019), Collin F. Lynch, Agathe Merceron, Michel
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We demonstrate via qualitative, quantitative, and human evalua-
tions that NLL-QA selects questions that are more relevant to the
input answers than those selected by NLL without sacrificing gram-
matical correctness. A further advantage of our proposed criterion
is its versatility and ease of implementation. Since our criterion is
used only in the post-processing step, it does not affect the NQG
model itself in any way, and thus can be easily incorporated to-
gether with any advances in the NQG model to jointly improve the
quality of generated questions. Our work therefore provides a new
approach to boost performance of either existing or newly devel-
oped NQG models.

2. THE NLL-QA CRITERION
The proposed NLL-QA criterion calculates a composite score S
for each candidate question as a convex combination of negative
log likelihood and an answer relevance score QA:

S = αNLL + (1− α)QA, (1)

where α ∈ [0, 1] is a tunable hyper-parameter. Intuitively, α con-
trols the relative importance of NLL and QA in selecting the final
output question. We note that the case of α = 1 corresponds to the
usual NLL criterion. We have experimented with a range of α val-
ues and have observed that setting α = 0.3 in Equation 1 worked
well.

Answer Relevance Score. To calculate the answer relevance score,
we first use a question answering model to answer the generated
question. The question answering process takes as input a question
and a context, and outputs a list ofN predicted answers, with a con-
fidence score in range [0, 1] associated with each predicted answer.
We then compare the answer predicted by the question answering
model to the input answer from which the question is generated.
Intuitively, if the question can be correctly answered, i.e., the in-
put and predicted answers are identical or sufficiently similar, we
would assign a high answer relevance score to that generated ques-
tion.

Although automatic question answering is by itself a difficult task,
recent question answering models have achieved performance al-
most on par with humans [2, 13, 15] on benchmark datasets such
as SQuAD [12]. Question answering models thus provide a reason-
able evaluation of answer relevance of a question without resorting
to human evaluators. The answer relevance score QA is calculated
as follows:

QA = min
j

(
− log(cj · sim(A,A′j) + ε)

)
, (2)

where A is the input answer from which the question is generated,
A′j is the question answering model predicted answer indexed by
j, cj is the confidence score associated with the jth predicted an-
swer, and ε is a small number for numerical stability. The similarity
function sim(·, ·) outputs a similarity score in range [0, 1] by com-
paring the input answer to the jth predicted answer A′j . We use
the Ratcliff-Obershelp algorithm for the similarity function in our
experiments, which effectively calculates the string similarity be-
tween the input and predicted answers.

3. EXPERIMENTS AND RESULTS
We now describe our experiments to evaluate the efficacy of our
proposed NLL-QA criterion using qualitative, quantitative and hu-
man evaluation metrics.

Model and Dataset. To show the wide applicability of NLL-QA,

Context 1: The 2010 United States Census reported that Fresno had a
population of 494,665.
Human: What was Fresno’s population in 2010?
NLL: What was the population of the 2010 United States Census?
Ours: What was the population of Fresno in 2010?

Context 2: In July 1968 , ABC continued its acquisitions in the amuse-
ment parks sector with the opening of ABC Marine World in Redwood
City , California; ...
Human: Where was ABC Marine World opened?
NLL: Where was ABC Marine World World World World World World
World demolished ?
Ours: Where was the ABC Marine World sector located?

Context 3: The capability of the command module’s heat shield to sur-
vive a trans-lunar reentry was demonstrated by using the service module
engine to ram it into the atmosphere at higher than the usual earth-orbital
reentry speed.
Human: What was one thing that was specifically tested on the Apollo
4 test launch regarding the cm?
NLL: What led to the command module?
Ours: What did the command module provide to survive a trans-lunar
reentry?

Context 4: The sexual ethics task force of the United Methodist Church
states that “research shows it [pornography] is not an ‘innocent activity.’
Human: Which task force states that pornography is harmful?
NLL: What states that “research shows it is an innocent activity”?
Ours: What states that “research shows it is not an innocent activity”?

Table 2: Representative questions selected by different criteria and
human generated reference questions. The italic and underlined
text in each context is the true answer. NLL+QA consistently se-
lects higher quality questions than NLL.

we implement, test and compare it with NLL on two state-of-the-
art NQG models: LSTM + attention, which is a sequence-to-
sequence LSTM network with attention mechanism [3]2 and LSTM
+ attention + copy, which is LSTM + attention model with addi-
tionally copy mechanism [20]. We train each model on the SQuAD
dataset [12], each entry in which contains an answer, an answer
context, and a human generated reference question. During evalua-
tion, for each entry in the SQuAD test set, beam search first samples
10 candidate questions from the chosen NQG model. Then, the two
criteria, NLL-QA and NLL, respectively select a top question out
of the 10 candidates as the final output.

We use a trained DrQA model [2] to output predicted answers for
Equation 2.

Qualitative Evaluation. For illustration purpose, Table 2 shows
representative examples where NLL and NLL-QA return different
questions and compare them side-by-side, using LSTM + attention
+ copy model.3 This allows to observe general differences in per-
formance for these two criteria. It is clear that our combined cri-
terion selects higher quality questions. For example, in Context 2,
NLL selects a question that repeats the word “World”, while NLL-
QA selects a question that is grammatically correct. In Context 4,
both questions are fluent, but NLL selects the question without the
crucial negating word “not”, which makes the question inappropri-
ate. On the contrary, NLL-QA correctly selects the question with
the appropriate negation.

2To be precise, we modified the implementation of [3] so that it
can take the answer word(s) as input.
3In our experiments, NLL+QA selects the same questions as NLL
in 38.6% of all tests.
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NQG Model Selection
criterion

Metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

LSTM + attention NLL 0.4216 0.2603 0.1797 0.1284 0.1702 0.4212
NLL-QA 0.4340 0.2684 0.1850 0.1323 0.1766 0.4180

LSTM + attention + copy NLL 0.4583 0.3030 0.2216 0.1684 0.2035 0.4596
NLL-QA 0.4661 0.3038 0.2190 0.1637 0.2049 0.4572

Table 3: A comparison between questions selected by NLL and NLL-QA, with the higher scores bold. NLL-QA selects questions of
comparable or slightly higher quality for all metrics for both NQG models.

(a) Results for LSTM + attention model. (b) Results for LSTM + attention + copy model.
Figure 1: Graphical summary of human evaluation results. “Ties" means that raters choose the same preference for both questions, e.g., when
raters think both NLL and NLL-QA selected questions are grammatical. NLL-QA dominates in answer relevance and in overall preference.
Best viewed in color.

Automatic Evaluation. Similar to prior works [3, 20], we include
evaluation results using an array of common automatic metrics in-
cluding BLEU [11], METEOR [6], and ROUGE [7]. Table 3 sum-
marizes these evaluation results, with the best criterion in bold, for
both NQG models. Results in Table 3 show that, overall, NLL-
QA selects questions that are of comparable or even slightly higher
quality than those selected by NLL. We emphasize that the above
evaluation metrics are not the most appropriate ones for evaluat-
ing the quality of questions, which motivates the human evaluation
experiments that we now describe.

Human Evaluation To verify that NLL-QA indeed outputs ques-
tions of higher quality than NLL, we conduct a human evaluation
experiment for each NQG model. We randomly sample 150 en-
tries from the SQuAD test set where NLL and NLL-QA criteria
return different results. For each NQG model, and for each pair of
questions, we ask six human raters to give three categories of pref-
erences, one based on grammatical correctness, one on relevance
to input answer, and one on overall preference.

We then count the number of times each criterion the raters chose
for each of the three preference categories. Figure 1 presents these
results graphically for both NQG models. Comparing the last two
bars in each plot, we see that, overall, human raters prefer NLL-
QA twice as often as NLL. Comparing answer relevance in each
plot, we see that human raters strongly prefer NLL-QA than NLL.
We performed binomial tests confirm the significance of these two
observations: p = 6.8 × 10−4 and p < 10−4 for overall prefer-
ence, and p = 1.5 × 10−11 and p = 0.01 for answer relevance,
for LSTM + attention and LSTM + attention + copy model, re-
spectively. Comparing grammatical correctness in each plot, there
seems to be a slight preference for NLL over NLL-QA. However,

binomial test shows that this slight preference is not statistically
significant at all, with p = 1 for LSTM + attention model and
p = 0.75 for LSTM + attention + copy model.4 We thus con-
clude that NLL-QA significantly outperforms NLL on both answer
relevance and overall quality without sacrificing grammatical cor-
rectness.

4. CONCLUSIONS AND FUTURE WORK
We have introduced NLL-QA, a simple yet effective criterion to
replace the traditionally used NLL criterion in the post-processing
step during the question generation process using neural question
generation models. Through various evaluations, we have shown
the promise of NLL-QA in improving neural question generation
performance without changing or fine-tuning the question genera-
tion model itself.

The major challenge is defining a proper metric to evaluate the gen-
erated questions. NLL-QA is as reasonable criterion if we our met-
rics are grammatical correctness and relevancy to the input text.
These two metrics are obviously unsatisfactory in educational do-
main because we also care about the “educational value” of a gen-
erated question, which is difficult to quantify, let along doing so
automatically. Therefore, I would like to discuss ways to define
quantitative metrics for evaluating questions and methods to do so
automatically.
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ABSTRACT
While automated essay evaluation techniques have dramat-
ically reduced instructors’ grading burden, they fall short of
providing instructors with the rich qualitative insights into
students’ sense making process that a careful read of essays
can afford. In this study, we demonstrate how word embed-
ding techniques can serve as a complement to automated
scoring, providing instructors with valuable near-time in-
sight into how their students are conceptualizing targeted
lesson concepts. For this study, we use a post-test essay as-
sociated with two Web-based Inquiry Science Enrivonment
(WISE) units that provides instruction about how the sun
causes increases in temperature. We create word2vec models
fit to students’ c-rater scored essay responses at each score
level of a rubric designed to assess students’ integrated un-
derstanding of targeted concepts. Using cosine similarity,
we identify, with statistically reliability, the ideas that stu-
dents at each score level of the rubric used in relation to the
concepts targeted in the essay prompt. Our instructor inter-
view reveals the validity of the results in providing insight
into students’ ideas, differentiated across understanding lev-
els.

1. INTRODUCTION
In the domain of science, new science education reform ef-
forts, like the Next Generation Science Standards (NGSS),
call for students to both coherently understand and commu-
nicate complex science ideas[6]. Consequently, essays that
assess students’ developing knowledge of complex science
ideas could increase the validity of assessment in science
classrooms[6]. Concomitant with the call for increased use of
essay assessments is the need for machine-based techniques
to quickly and reliably analyze student essays in order to
provide instructors with qualitative insights about how their
students are developing and connecting complex science con-
cepts.

Advances in the field of natural language processing (NLP)
have given rise to automated essay evaluation (AEE) tech-

niques that help instructors meet the challenges of essay
scoring. However, there is still the need to develop effec-
tive techniques to assess and support students’ comprehen-
sion of complex ideas expressed in their essays[9]. In order
for instructors to provide targeted support based on their
students’ developing ideas, they need to have the qualita-
tive insight that comes from reading the essays. Without
it, instructors are left in the dark regarding the different
ways their students make sense of the targeted concepts be-
ing assessed by the essay item. Even though instructors
may have access to the exemplars used to train AEE mod-
els, the distance between the exemplar responses and that
of their students can leave instructors guessing about the
true nature and quality of their students’ understanding. In
this study, we describe the development and evaluation of
word2vec models that augment the value of automated scor-
ing by analyzing and comparing the conceptual connections
that students in different scoring categories express in their
essay.

2. BACKGROUND
Research in the field of teaching and learning has shown
students’ ability to develop an integrated understanding of
complex ideas, such energy transfer and transformation, is
influenced by how well their instructors notice and under-
stand their ideas[8]. Therefore, to support students in com-
municating integrated understanding of complex ideas, it is
important to develop machine-based analyses that provide
teachers opportunities to see, understand, and respond to
student ideas.

2.1 Auto-scored Student Essays
In partnership with Educational Testing Services (ETS),
we have previously used the c-rater algorithm to score stu-
dent essays from various assessment items in Web-based In-
quiry Science Enrivonment (WISE) units[2]. The student
responses used to train the c-rater model were human-coded
using a rubric based on the Knowledge Integration (KI)
framework[4]. The KI framework supports students to sort
through their ideas to develop an integrated understanding
of normative science concepts[3]. Since the rubric used to
score the essay assessment items in the units prioritizes the
links that students make between normative science ideas,
the c-rater generated scores reflect the extent to which stu-
dents’ ideas are normative and linked.

To support instruction based on students’ ideas, we cre-
ate skip-gram models[5] of students’ c-rater-scored essay re-
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sponses. In doing so, we were able to augment automated
essay feedback and, thus, provide instructors with quantita-
tive information regarding the correctness of students’ ideas
and qualitative information regarding the connectedness of
their ideas.

2.2 Science Content Knowledge
The WISE units used in this study were designed to sup-
port students in developing an integrated understanding of
how energy from the sun is transferred and transformed and
how those processes cause an increase in temperature. To
develop a normative and integrated understanding of this
complex concept, students need to link the following ideas:

• Energy from the sun travels to Earth in the form of
solar radiation.

• Solar radiation is in part reflected and absorbed by
objects.

• Once absorbed, solar radiation is transformed into heat
energy, resulting in an increase in temperature.

• Objects that absorb solar radiation can re-emit that
energy in the form of infrared radiation.

• Infrared radiation is blocked and reflected by certain
objects (e.g. atmospheric gasses, glass).

• Like solar radiation, infrared radiation is in part re-
flected and absorbed by objects.

• Once absorbed, infrared radiation is transformed into
heat energy, resulting in an increase in temperature.

The assumption is that students at each score level con-
ceptualize and connect these science ideas differently. Since
the word2vec models encode the semantic meaning of the
words as vectors, we can, for example, analyze the differen-
tiated ways students scoring at the level of 2 conceptualize
”temperature” as compared to how students at a level 5 con-
ceptualize ”temperature”. Using cosine similarity, we can
provide teachers with a list of the words that their students
have conceptually connected to the target lesson concept
(e.g. temperature).

Given this potential, we conducted this study to address the
following research questions:

1. Can we develop a skip-gram model from pre-scored es-
say responses to reliably extract the differential ways
students develop and conceptually connect complex
science ideas?

2. Do the skip-gram models generate results that are ped-
agogically informative (i.e. support teachers to notice,
understanding, and respond to their students ideas)?

3. METHODOLOGY
3.1 Offline Model Development (RQ1)
Student essay responses were prepared for skip-gram devel-
opment using standard Python libraries, pywsd and NLTK
were used to perform basic NLP techniques (i.e. case-adjustment,

abbreviation expansion, punctuation and symbol exclusion,
lemmatization, and stopword modification and removal)[1].
Skip-gram models for student responses at the KI rubric
score levels (range 2-5, four total) were developed using the
gensim library[7]. Model hyperparameters were adjusted
to produce cosine similarity results to the various target
words that a content-expert validated as conceptually rel-
evant to the prompt. To extract the meaning of a word as
used and understood by the student rather than its conven-
tional meaning, we created the word vectors from the study
datasets rather than using pre-trained vectors.

3.2 Classroom Evaluation (RQ2)
To determine the efficacy and utility of our skip-gram models
to support teacher noticing of student ideas, we conducted a
semi-structured interview of the high-school physics instruc-
tor whose students’ essay responses generated the model re-
sults referenced during the interview.

3.3 Datasets
The dataset used in the offline development and evaluation
of the skip-gram models consisted of student text responses
to the explanation portion of the following post-test essay
assessment item:

Let’s think about how global warming happens.
On a COLD day, Akbar walks to his car that is
parked in the sun and has not been driven for a
week. Predict the temperature inside the car:

• Colder than the outside air

• Warmer than the outside air

• Exactly the same as the outside air

Explain your answer:

The students of four sixth grade science teachers from two
Bay Area middle schools (N=497) generated their responses
to this prompt after engaging the WISE Global Climate
Change unit (https://wise.berkeley.edu/project/24751). In
this unit, students learned how solar radiation from the sun
can be absorbed, transformed into heat energy, and trapped
by greenhouse gases as infrared radiation, which leads to
increased temperature.

Student responses were, on average, 34 words long and were
human-coded, from 1 (low) to 5 (high), using a KI rubric.
Responses received a score of 1 if they were off-task or ir-
relevant and, thus, were excluded from the model develop-
ment dataset. Responses that included normative but un-
connected ideas about the transformation of solar radiation
to heat received a score of 3. Responses that connected one
or more normative ideas about the transformation of solar
radiation to heat received a score of 4 or 5, respectively. The
distribution of scores were as follows: Score 2 = 243; Score
3 = 92; Score 4 = 42; Score 5 = 23.

The dataset used in the classroom evaluation of the skip-
gram models consisted of student text responses to the same
essay prompt used for the offline model development and
evaluation (see above). The students of a ninth grade physics
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Table 1: The cosine similarity results for the target word ”temperature” of the skip-gram models associated
with each score level using the development dataset. The vocabulary size of each model is in parentheses.

Temperature
Score = 2 (105) cos sim Score = 3 (55) cos sim Score = 4 (62) cos sim Score = 5 (58) cos sim

become 0.999 get 0.998 inside 0.985 get 0.987
reason 0.999 into 0.994 get 0.985 glass 0.981
colder 0.999 become 0.987 glass 0.981 inside 0.981
inside 0.999 glass 0.986 into 0.969 become 0.976

time 0.996 inside 0.977 become 0.968 into 0.961
get 0.995 particle 0.967 travel 0.967 car 0.935
hot 0.995 may 0.933 radiation 0.955 bounce 0.906

warmer 0.993 bounce 0.932 bounce 0.922 pass 0.87

Table 2: The most similar words and associated p-values for the target word ”heat” of the skip-gram models
associated with each score level using the development dataset. The vocabulary size of each model is in
parentheses.

Heat
Score = 2 (105) p-value Score = 3 (55) p-value Score = 4 (62) p-value Score = 5 (58) p-value

outside <1.0E-6 outside 2.42E-04 car 1.13E-04 car 0.009
inside <1.0E-6 inside 0.012 air 0.007 glass 0.009

temperature <1.0E-6 air 0.049 glass 0.045 infrared 0.009
cold <1.0E-6 energy 0.049 radiation 0.045 energy 0.042

air <1.0E-6 get 0.049 turn 0.045 day 0.042
warm <1.0E-6 into 0.049 light 0.042

get 3.58E-06 warm 0.049 solar 0.042
sun 0.039 trap 0.049

instructor from a Bay Area high school generated their re-
sponses (N=155) before and after engaging the WISE Solar
Ovens unit, which focused on designing, building, and test-
ing a solar oven (https://wise.berkeley.edu/project/24537).
In this unit, students learned about the same energy cycle
described in the sixth grade unit, and then explored how dif-
ferent designs influence that energy cycle and temperature
change in a solar oven.

Student responses were, on average, 30 words long and were
scored using a c-rater algorithm based on the same KI rubric
used for the model development dataset. Similarly, responses
received a score of 1 if they were off-task or irrelevant and
were excluded from the dataset. The distribution of scores
were as follows: Score 2 = 82; Score 3 = 46; Score 4 = 22;
Score 5 = 3. Due to sparseness of responses at the score level
5, a skip-gram model was not created for this score level.

4. RESULTS
4.1 Offline Model Development (RQ1)
We chose ”heat” and ”temperature” as target words for our
model evaluation, since the essay used in this study was de-
signed to assess students understanding of how solar radia-
tion and infrared radiation cause an increase in temperature.
Our initial cosine similarity results from the four skip-gram
models appeared to be consistent with our content expert’s
expectations regarding the ways that students are different
scoring levels would connect ideas related to ”temperature”
(see Table 1). However, these initial results were not repro-
ducible from one model run to the next, in terms of exact
words and relative cosine similarity rank. The top 8 results
for each model within a given run displayed patterns con-

sistent with the content expert’s expectations, albeit with
variable reproducibility.

We used distribution probability to establish the statistical
reliability of our model results. Specifically, we used hy-
pergeometric and binomial distribution test, respectively, to
determine the probability that any given word in the model’s
vocabulary would appear in the top 8 cosine similarity re-
sults and do so consistently enough to yield a p-value < 0.05.
We ran each model 12 consecutive times on a random sam-
ple of the essay responses, where the number of responses
in the sample equaled the total number of responses in the
dataset. After 12 consecutive runs of each model, words
would need to appear in the top 8 cosine similarity results
of 3 or 4 of the runs, depending on the model’s vocabulary
size, to achieve a p-value < 0.05 according to the reliability
test.

Using the development dataset, we generated a statistically
reliable list of the words based on the model results for the
target word ”heat” (see Table 2). Examination of this list
revealed conceptually meaningful differences across the scor-
ing levels, as confirmed by the content expert and physics
instructor. The most statistically reliable results using the
target word ”heat” were: score level 2 model: air, tempera-
ture, inside; score level 3 model: inside, energy, trap; score
level 4 model: car, air, radiation; and score level 5 model:
car, radiation, trap (see Table 2). These model results in-
dicate a typical progression of student ideas when they are
beginning to understand the mechanism of how solar radia-
tion transforms to heat.
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Table 3: The most similar words for the target word
”temperature” of the skip-gram models associated
with each score level using the classroom dataset.
The vocabulary size of each model is in parentheses.

Temperature
Score = 2 (92) Score = 3 (68) Score = 4 (62)

become get inside
reason into get
colder become glass
inside glass into
time inside become
get particle travel
hot may radiation

warmer bounce bounce

That the lists of words produced from the target word ”tem-
perature”are similar to those from the target word ”heat”re-
flects the similar ways in which students conceptualize ”tem-
perature” and ”heat”.

4.2 Classroom Evaluation (RQ2)
To investigate the alignment of the model results with the
instructor’s expectations of the conceptual connections that
students at each score level would make, we presented the
instructor with the cosine similarity results from each model
for the target word ”temperature” (see Table 3). Although
the statistical reliability for the model results had not yet
been established, we asked the instructor to interpret the
results for each individual model and cross-comparatively.
The instructor commented that the results from the model
resonated with her expectations of what a developed under-
standing looks like and what a still-developing understand-
ing looks like.

Furthermore, we asked the instructor when and she might
use the information provided by our models. She indicated
that she would use a tool like this as a form of formative as-
sessment to see what her students’ ideas were while instruc-
tion was still ongoing. She went on to say that she could use
the information from the models to inform her instruction,
and that it would help her to decide if she needed to have
a whole class conversation, do a demo, or show a video to
support her students in sorting and integrating their ideas
towards normative understandings.

5. SUMMARY AND ADVICE SOUGHT
Our ability to create meaningful embedding models of the
differentiated way students at each scoring level conceptual-
ize target ideas has several implications:

• A strategy for extracting statistically reliable and mean-
ingful results from small, unevenly distributed datasets
typical of K-12 classrooms and upper-division college
courses

• The revelation of subpopulation-specific conceptual-
izations of target lesson concepts

• The realization of the full assessment power of essays
in an online learning environment

For this doctoral consortium, I would like advice regarding
how to further validate my models. Since my approach uti-
lizes relatively small datasets to generate instructor/class-
specific results, I would like to discuss additional ways to es-
tablish the reliability of my model results. Beyond distribu-
tion probability, what other statistical methods could I use
to establish reliability? Which other approaches would serve
as comparison cases for further model evaluation? Further-
more, to which other domains should we apply our model?

A major factor to consider in the consortium discussion is
what instructors have identified as a barrier for use, namely
model understandability. Instructors with whom we partner
have stressed the importance of being able to understand
how the models that automatically assess student responses
work. Importantly, their confidence in the model results is
linked to the extent to which they understand how the model
generates the results. Therefore, it is a priority to develop
a model that both generates meaningful results and can be
easily explained.

Our results are promising and, through this consortium, we
hope to determine how best to further develop our approach
for essay evaluation so that both researchers and practition-
ers can be confident in the results.
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ABSTRACT
Groups of schools face significant challenge to ensure that student 

assessment is consistent and valid, that predictions are accurate and 

that data policy does not adversely impact teacher workload.  This 

study looked to determine if student outcomes at the end of 

secondary phase education in the UK, and by extension elsewhere 

in the world, could be reliably predicted.  Data from two academic 

years, twenty-three secondary schools representing cohorts of 

approximately four thousand students were used to conduct 

comparative analysis on multiple machine learning experiments 

utilising Microsoft Azure Machine Learning and code written in 

Python.  Findings indicate that Attainment 8, the main performance 

indicator used by the UK Department for Education, could be 

predicted by linear regression models and neural network 

approaches with an accuracy in line with human (teacher) 

predictions, and when combined with human predictions the 

models provided significant (P= 0.00039) gains on either approach 

in isolation.  Seeking advice on further research particularly to 

introduce interactions to include a ‘human in the loop’ on model 

inputs, to refine feature selection, and to predict curriculum level 

variations in order for human intervention to occur early and 

improve outcomes.   

Keywords 

Predictive analytics, Machine Learning, Student outcomes, Python, 

Azure, Bot, human in the loop. 

1. INTRODUCTION 
‘Progress 8’ is an important measure in the current accountability 

framework for secondary phase state funded education in the UK 

[1]. Many countries have similar national tests, such as the National 

Assessment of Educational Progress (NAEP) in the US or the 

NAPLAN tests in Australia [2]. In brief, it measures the progress a 

student makes in academic study across their best eight subjects.  It 

measures this from their attainment at point of exit from primary 

phase education (aged 12 / National Curriculum Year 6), and its 

basis is relative to average attainment of the prior year’s cohort (at 

age 16 / National Curriculum Year 11), from the same starting 

point.  Progress 8 is used both at a student level, and aggregated in 

average to provide a ‘score’ at an institution level.  A score of 0 

represents a student (or school) making the average progress for 

students of the same prior attainment in the prior year’s cohort.  A 

score of 1 would represent hat the student has made on average one 

grade more progress in each of their subjects (and conversely, -1 

meaning one grade less progress).  

Progress 8, in and of itself, is of limited use for formative or 

summative assessment at a student or school level.  The data from 

which it is derived would be more appropriate for these purposes, 

namely subject level concept understanding, application and 

progression.   Despite the inherent difficulties in reliably predicting 

Progress 8 [3], it is common place for schools to do so.  In part, this 

is due to its nature as a high-stakes key performance indicator – one 

upon which the quality of education provided by the school is 

judged.  Education policy in recent years in the UK has driven 

schools to become part of Multi Academy Trusts (MATs), and 72% 

of secondary phase education is now delivered by schools with 

Academy status [4], and part of a MAT. 

The study involved a large MAT with a geographical spread and 

accountable for schools in all phases in both the state and the 

independent sectors.  In 2018 the MAT formed a project partnership 

with Microsoft and Coscole, a specialist company focusing on 

education data and analytics.  In addressing the need to predict 

Progress 8 and therefore understand how and where to intervene to 

support its students, the MAT surmised:   

• The methods adopted for teacher led subject predictions 

are variable across schools, and within them 

• Historical variance between teacher predicted outcomes 

and actual outcomes have not been easy to explain  

• Significant time can be spent by staff, leadership teams 

and trusts in the production and analysis of data relating to likely 

outcomes 

• Patterns of human predictive accuracy were not 

consistent between academic years  

Given these challenges two key questions were posed: 

• Can machine learning methods achieve human like 

predictive capability (or better) for Progress 8? 

• If so, could the administrative burden placed on schools 

in the production of these metrics be reduced? 
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2. METHODS 
If the results of this study were favourable in terms of predictive 

accuracy of outcomes it would be important to the study 

participants that there would be a mechanism for the approach to 

be repeatable, and to scale.  A solution architecture was therefore 

identified at the outset that would support both of these 

considerations.  The study comprised of data from 23 secondary 

schools, with a population of over 4000 students in their final year 

of study (National Curriculum Year 11, age 16).  

2.1 Solution components 
 

Figure 1 shows the high-level design that was created to support the 

modelling process and a proof of concept (POC) environment. 

 

Figure 1. Proof of concept high level design. 

2.1.1 Human computer interaction 
The requirement for the human-computer interaction was to ensure 

that the supply of data, and the return of predictive output could be 

transacted by an education practitioner with little technical 

expertise.  We identified existing channels in the MAT 

environment (and common in many MATs) for this interaction to 

occur and provided a ‘Chat Bot’ style interface in order to achieve 

the transfer of data, machine learning orchestration and for the 

supply of information back to the user.  An overview of this process 

can be seen in Figure 2, below. 

 

Figure 2. Human computer interaction POC scenario. 

This interaction outputs predictive data to table outputs in 

Microsoft SQL Azure, which can be consumed by the Bot 

framework and/or by the data visualisation layer. 

2.1.2 Data visualisation 
In addition to the supply of predictive output back to the 

practitioner by way of the Bot interaction, in depth data 

visualisation was provided by Microsoft Power BI.  When the 

machine learning predictive experiment web service completes, the 

resulting predictive data is posted to an Azure database table.  

Reports were created for data visualisation that consumed data from 

this table.  The user could either navigate to the Power BI 

workspace where the report resides, or follow a link that that Bot 

posts to the chat window (should the session still be active).  The 

link may include the refreshing of the report content, ensuring that 

the view of the data is always current.   

3. Model features 

3.1 Student characteristics 
Common student characteristics exist that form the basis of much 

analysis completed in this sector.  The annual government league 

tables, and other information that is available publicly, includes 

dimensions on gender, ethnic origin, prior attainment, ‘pupil 

premium’ where additional government funding is given due to 

disadvantage, and special educational needs.  Given a body of 

research drawing correlations between these characteristics and 

educational attainment [5] they were included in the model 

features. 

Student characteristics were converted into Boolean form (for 

example ‘Is Male’, ‘Is Special Educational Needs’, or ‘Is White 

British’)  

3.2 English and Maths ‘Mock’ examination 

results 
The MAT has a standard curriculum for ‘Mock’ examinations taken 

by Year 11 student in their final year of study.  We could therefore 

use 2016/2017 exam data as a feature input as data on the same 

basis would be available for 2017/2018.  This data is an integer 

scale (1-9), and also was likely to be correlated to the Progress 8 

outcome (as Progress 8 double weights English and Maths).  Other 

English and Maths data was available; however, it was excluded 

from our feature selection as it formed compound measures on the 

grade. 

3.3 Prior attainment 
Logic suggests that a student’s prior academic performance would 

be a good indicator of their future academic performance, a 

conclusion that is well supported by evidence [5].  Prior attainment 

data was available in the form of the student’s average attainment 

from the end of primary phase education (their ‘Key Stage 2 

Average Fine Level’).  

3.4 Teacher predictions 
Data was available at student level with a teacher’s prediction of 

‘likely’ grade at a subject level (for example in English Language, 

Mathematics, History and so on).  Initially this feature, as a 

composite measure ‘Teacher Predicted Attainment 8’ was withheld 

from the machine learning experiment, and later introduced for 

comparative purposes. 

4. Machine learning 

4.1 Azure Machine Learning 
Azure Machine Learning Studio was used to build several iterations 

of experiments.  It was used to:  
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• Conduct feature analysis to understand which 

components of our data were most significantly correlated to the 

target (Attainment 8).  This was performed by the Filter Based 

Feature Selection module using Pearson’s correlation method, 

following the test/train split. 

• Understand which forms of regression algorithm would 

be best suited to the type of predictive output 

• Tune the resulting model hyperparameters for the 

smallest error 

The final experiment utilised the Boosted Decision Tree Regression 

to create an ensemble of regression trees using boosting (where 

each tree is dependent on prior trees).  This algorithm learns by 

fitting the residual of the trees that preceded it.  The Azure ML 

implementation uses the Multiple Additive Regression Trees 

(MART) gradient decent boosting algorithm [6].  The filter-based 

feature selection module was used during the initial experiment. 

However, this was not necessary using the boosted decision tree 

algorithm due to its internally created feature summary (whereby 

features with zero weights are not used by any tree splits). 

During the experiment the Azure ML function ‘Tune Model 

Hyperparameters’ was used and the results set to the 

recommendation of 25 leaves per tree, 25 samples per leaf node, a 

learning rate of 0.167076 and a total number of 125 trees were 

constructed. 

4.2 Python 
In addition to the Azure ML experiments a Python model was built 

as a comparative approach.  This was completed not as a direct 

methods comparison, but as an illustration of the capability for 

Azure ML to host Python scripts within its data flow, and therefore 

to have complete control over all model features. 

Initially, a Neural Network was used in the Python implementation 

and simplified to input (64 nodes), output and a single hidden layer 

(64 nodes).  Its optimiser was set to use the RMS Prop Optimiser 

[7] and its learning rate set to 0.001.   

When the validation error was no longer reducing over a defined 

number of epochs (20), we stopped the training.  

Following this, a number of comparative algorithms were used 

which included a decision tree, a boosted decisions tree, a 2-layer 

neural network and a linear regression.  In addition to the variation 

in algorithms, the experiments were modified to include or exclude 

‘Teacher prediction’ data from the model, and also to extend the 

feature set to include further data related to the English and Maths 

results.  The Python experiments were written in a VSCode 

environment using the Anaconda 3.0 deployment. 

5. Results 
It was realised early in the study, following unpredictable model 

outputs, that directly predicting Progress 8 was not going to be 

successful.  It is beyond the scope of this paper to explain in depth 

the Progress 8 definition, but in summary it is a compound measure 

that utilises ‘Attainment 8’ (the eight highest grade values) and then 

applies a conversion based on the student’s prior attainment and last 

year’s cohort average attainment to result in a decimal number 

distributed around zero. 

Instead, it was determined that Progress 8 may be predicted by 

predicting the Attainment 8 score, and then applying the known 

conversion method ([1], p27) to convert to the Progress 8 score. 

The root mean squared errors (RMSE) of eight algorithmic 

approaches are compared to the RMSE of the teacher (Human) 

prediction in Figure 3.  Here we can see that both of the Neural 

Network approaches, as well as the Linear Regression surpass the 

accuracy of the human prediction. Attainment 8 is a decimal in the 

range 0-88 (8 qualifications on a 0-9 scale) and an RMSE of 1 

would represent 1 grade difference in total between predicted and 

actual achievement. 

 
Figure 3. Root Mean Squared Errors of Python algorithms. 

An F-Test was performed on the sample variance of the teacher 

prediction and the linear regression results to determine that the 

variances of the populations were unequal.  A subsequent T-Test 

was conducted with the conclusion that the observed difference 

between the sample means is convincing enough to say that the 

average Attainment 8 result differs significantly (p= 0.000387).  

6. Discussion 
This study set out to address two questions; Can machine learning 

methods achieve human like predictive capability (or better) for 

Progress 8, and if so, could the administrative burden placed on 

schools in the production of these metrics be reduced? 

Initial findings suggest that machine learning approaches can 

produce output that is as reliable as human prediction.  It could be 

argued that the time spent in collating such data, performing the 

analysis and communicating results can be reduced, therefore 

freeing time for education practitioners to focus their efforts in 

teaching young people and leading schools rather than wrangling 

data.  However, in order to accomplish this at scale, system 

improvements would be required in terms of the automation of data 

collection, standardisation of assessment approaches, and in the 

human computer interaction to explain the meaning of results. 

6.1 Human in the loop 
We specified and delivered an architecture for data to be supplied 

by end users (defined by low technical, low data science 

knowledge), and the results to be understood by those users.  We 

delivered this via a Bot Framework interaction for the upload of 

data and process trigger, and via data visualisation in Microsoft 

Power BI.  We also included human input in the form of teacher 

predictions at a subject level. 
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We have not in this iteration, however, placed the human inside the 

feedback loop of the machine learning itself.  There are 

opportunities to explore the following interactions.  First, in data 

validation.  Quality and clarity of data in educational settings, 

especially at an aggregated level, pose a significant challenge and 

our experiments eliminated data during the cleansing activity.  

Human input during this process may significantly improve the 

training data and help to reduce bias. The architecture could be 

extended to interact with the human to either input missing data, 

identify the correct rule-based approaches (for example where no 

prior attainment is available due to new entry into the UK state-

based system) or to modify the feature weights (for example around 

the impact of disadvantage or ‘Pupil Premium’ at an individual 

level).   

Second, what the human ‘knows’.  Teacher interaction with 

students on a daily basis gives rise to a more complex 

understanding based on situational awareness and factors of data 

that are not easily captured formally.  This might relate to wellbeing 

considerations, safeguarding and behaviours that are outside of the 

scope of data capture within the school. 

Finally, although this is far from an exhaustive list, we could give 

more consideration to who the human is in this scenario.  Obtaining 

data from students themselves, and on an ongoing basis, could 

trigger revisions to the predictive output. 

6.2 Generalisability, bias, ‘explainability’, and 

ethics 
The machine learning models in this study relied on a standard 

assessment practice in English and Maths mock exams, taken by all 

schools, with the same curriculum, at a similar time in the year, over 

two years (one for the training dataset and one for the test).  It is not 

common for this structure to be in place, and so issues exist in how 

one might scale the predictive capability to other institutions and 

student populations.  Many institutions utilise ‘Standardised 

Assessment’ practices in the Primary phase and Key stage 3 (age 

11-14) using third party tests which to some extent addresses this 

issue, but these are rarely in place during Key Stage 4 (the focus of 

this study).  There is a compelling reason to consider a longitudinal 

study on relative performance measures and other features that do 

remain consistent across schools. 

For similar reasons we need to consider bias that may have been 

introduced in our model due to feature selection and the data 

cleansing activities.  Notable examples exist where records may 

have been removed from training due to absent values, such as prior 

attainment.  Prior attainment may be absent where a student has 

entered secondary state education either from private schools, from 

abroad, or in the case where parental consent was not given for the 

student to sit Primary exams.  These characteristics of students 

might actually prove significantly correlated to outcomes, and bias 

may have been introduced in the way the training data was 

managed.       

The algorithms used, and the HCI enabled is unable to provide the 

practitioner with an explanation of why a certain progress 8 score 

has been predicted at the level it has.  This is important if machine 

output is to influence a decision on how public money might be 

spent to intervene to improve outcomes on its recommendation.  It 

is recommended at a minimum that we include in the bot interaction 

or data visualisation confirmation of the weights we have applied 

to features in the regression, and have these communicated in a 

manner which can be understood.  Further research is required to 

understand how we might better describe, in human understandable 

terms, what path the machine has trod to reach its conclusions. 

This leads fundamentally to our ethical considerations in predicting 

events that might lead a human to make a judgement on a student, 

and therefore tailor their educational experience in one direction or 

another.  In an environment where all resources are scarce (notably 

funding) should a prediction be overstated, this might lead to a 

withdrawal of resources that would benefit the student and vice 

versa.  The subjects must be aware of the manner in which data 

collected about them will be used, and it must be used in a way that 

supports the human decision-making process; it is not a 

replacement for it. 

6.3 Impact to practitioners 
We have identified, subject to certain challenges to be overcome 

with regard to standardisation and data collection, that a machine 

learning approach could provide additional predictive support and 

reduce workload. The next question is to what extent is this useful 

to practitioners to improve outcomes?  The answer in this case is 

that it is at the very beginning of a series of activities that would 

prove more valuable for this purpose.  As mastery of curriculum is 

broken down into subjects, the next level is to understand for those 

students that are predicted to miss their potential overall, which 

subjects in that composite measure are most at risk?  Beyond P8 

lies a cascading set of objectives to understand; which subjects are 

likely to have the furthest variance from expected standard?  Which 

topics within those subjects? Which foundation principles need 

reinforcement? 
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ABSTRACT
Schools across the United States suffer from low on-time
graduation rates. Targeted interventions help at-risk stu-
dents meet graduation requirements in a timely manner, but
identifying these students takes time and practice, as warn-
ing signs are often context-specific and reflected in a combi-
nation of attendance, social, and academic signals scattered
across data sources. Extremely high caseloads for counselors
compound the problem. At Infinite Campus, a large student
information system provider, we modeled statistical rela-
tionships between student educational records and enroll-
ment outcomes, using de-identified records and in-system
analysis to guarantee student data privacy. The resulting
risk scores are highly predictive, context-sensitive, nation-
ally available, integrated into the existing student informa-
tion system, and updated daily.

1. INTRODUCTION
Approximately 15% of American students do not graduate
high school on time [16]. States and districts frequently
employ interventions designed to improve educational out-
comes, including reducing dropout rates. A key role of
school counselors is to direct the application of these inter-
ventions to the students who need them most. Counselors
first need to identify these students but are faced with infor-
mation overload. Each student’s data is distributed across
a student information system (SIS) and often other systems
or people, making it difficult to synthesize into an accurate,
comprehensive portrait of a student’s risk. Compounding
the problem are extremely large counselor caseloads—the
national average is 430 students per counselor—with higher
numbers typical in schools serving children with other struc-
tural disadvantages [11].

Early warning systems function as“automated attention”for
overworked counselors by automatically identifying students

∗Infinite Campus, Blaine, Minnesota, USA
†@infinitecampus.com

who might benefit from additional institutional resources.
They automate the more tedious data analysis and summa-
rization tasks so that counselors can focus on what humans
do best: building relationships.

1.1 Alternate approaches
An effective dropout prevention system requires developing
people, processes, and technology [7], identifying valid pre-
dictors, managing data and reports, assigning interventions,
and monitoring student progress [10, 15]. In this paper, we
focus just on the technology that identifies risk factors and
estimates student dropout risk, which can then be embedded
in a larger dropout prevention system.

Quantitative and qualitative determination of school dropout
risk factors is a decades-old area of research [19], though
the mid-2000s were a particularly important inflection point.
High-profile studies of dropouts in the Chicago [3] and Philadel-
phia [17] urban districts led to the development of statisti-
cal methods for determining risk factors and their incor-
poration into early warning systems. Several organizations,
often working together, have been instrumental in encourag-
ing American schools to adopt research-based best practices
[10], including the U.S. Department of Education’s Regional
Education Laboratories [18], the Consortium on School Re-
search [2] and NORC [7] at the University of Chicago, the
American Institutes for Research [8], and the Everyone Grad-
uates Center at Johns Hopkins University [9]. Most states
now make an early warning system available to their school
districts [6].

Until the mid-2010s, all widely-used dropout early warning
systems used threshold-based models, characterized by a few
easily comprehensible predictors with associated risk thresh-
olds (e.g., failing at least one course or being absent at least
20 days). The simplicity and auditability of these models,
and the associated ease of implementation using common
software and spreadsheet skills, is their key advantage over
machine-learned systems. Students are measured on each
predictor and flagged as “on-track” or “off-track” based on
which side of a preset threshold their data point falls. Staff
can intervene with students who have the most “off-track”
risk flags, or whose risk areas correlate with particular in-
tervention domains. A particularly influential approach is
Balfanz’s “ABC” taxonomy, in which students are measured
on attendance, behavior, and course performance metrics
[4], optionally with different thresholds for different student
subpopulations [12]. While some educational institutions
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implemented an ABC-style system themselves [10], others
used spreadsheets or data tools made available by organi-
zations like American Institutes for Research [8]. An active
area of research involves determining which predictors and
thresholds are appropriate for each school, or whether single
thresholds are appropriate at all.

To overcome the limitations inherent in threshold-based sys-
tems, we and other organizations created machine-learned
dropout risk identification systems in the mid-2010s. A
number of researchers describe their systems in the aca-
demic literature (e.g., [1]) or industry white papers (e.g.,
[20]). Several organizations serve machine-learned dropout
predictions at the scale of hundreds of thousands of students
in many school districts. The Wisconsin Department of Pub-
lic Instruction’s Dropout Early Warning System uses data
reported to the state every few months by the districts’ SISs
to build machine-learned models. The system produces two
predictions per year and is available for students in grades
6–9 [14]. Mazin Education (through BrightBytes) and Hoo-
nuit both sell machine-learned early warning and interven-
tion monitoring systems for all grade levels.

Machine-learned systems have two major advantages over
threshold-based models. First, the additional model com-
plexity affords more accurate predictions and allows system
designers to infer which risk factors are predictive in the
presence of other factors or for different populations. Sec-
ond, the variety of model architectures allows for more than
just inferring overall risk. Designers can choose, for instance,
to model time until dropout so that staff can intervene ac-
cording to acuteness of risk, or to model uncertainty.

1.2 Our contribution
Two key obstacles prevent machine-learned early warning
systems from being deployed nationwide. First, the pre-
dictive quality of these models is chiefly a function of data
availability, as models must be trained on a large dataset—
including a variety of educational contexts and outcomes—
to ensure they perform well for students they haven’t seen
before. Models built on a single district’s or even state’s
data may not generalize well to other populations. How-
ever, building a model on multiple states’ data requires the
data to be standardized, and without a common SIS to en-
force uniformity, manipulating data into a common format
is costly and time consuming.

Second, predictions must be surfaced to educators in a fre-
quent and easy-to-use manner, which means the most suc-
cessful systems will be closest to existing daily workflows. In
some existing systems, staff members must log into a sepa-
rate software program to access risk scores. In others, there
are months between score updates. Timely prediction is im-
portant; the sooner a school is aware of a student at risk,
the more time it has to intervene.

Infinite Campus provides a large student information system
and has made significant investment in education data local-
ization and standardization, reporting and warehousing, and
user workflows for American K–12 education. Our role in
the industry positions us to address the key remaining gaps
in early warning systems using centralized data warehouses,
standardized data, and placement of the early warning ap-

plication into the existing SIS.

Contributions
Available nationally in 32 states yet contextual to each
child’s educational environment
Useful predictions: highly predictive, daily updates,
four risk category scores, with consistent of predictive
quality between protected student groups
Integrated into the student information system with no
imports, exports or synchronization necessary

In the following section we describe our implementation of
a dropout early warning system on more than 6 million
student-years of educational records across 32 states. Our
overall dropout risk score has excellent predictive quality
with an AUC of 0.941 (see table 1 for additional quality met-
rics), and includes additional machine-learned scores that
help counselors understand the source of a student’s risk to
guide which interventions may be appropriate. Risk scores,
delivered automatically and updated daily, are integrated
into our existing SIS and available to counselors as an en-
hancement to their existing workflows.

2. IMPLEMENTATION

System design. Student data is stored in a number of rela-
tional SQL Server databases for school staff to create, read,
update, and delete educational records. These databases ex-
ist in Infinite Campus’s fully owned and operated Tier 4 data
centers that fulfill security requirements of the U.S. Depart-
ment of the Interior. Student records exist in a variety of
data structures and are recorded with varied time granular-
ity for 45 states and the U.S. federal government, a portion of
which we use for early warning. Because our model architec-
ture requires a common data structure, we aggregate student
records into a fixed format with one row per student-year,
where ‘year’ corresponds to an academic year. Aggregated
data is periodically transferred to a central repository in the
same data center. Data for past students whose educational
outcomes are known (e.g., graduation or dropout) is then
used to build a machine-learned model relating summarized
educational records to student enrollment outcomes. The
model, along with summarized properties of each district,
school, and geographic area present in the dataset, is de-
ployed behind an API. Each day, records for currently en-
rolled students are aggregated, de-identified, and sent to the
API, which returns risk scores for each student. Figure 1
illustrates this architecture. The returned risk scores and
a score history is made available to counselors via the SIS
user interface. By integrating and automating the process
of generating and updating risk scores into the SIS, we re-
lieve dropout prevention teams from the burden of collect-
ing, storing, and analyzing the source data themselves.

What we predict. Each student-year of aggregated educa-
tional records is tagged with one of three labels: “needs early
warning”, “does not need early warning”, or “ignore for early
warning”. A student-year is labeled with “needs early warn-
ing” if the student’s records include known undesirable out-
comes during the year in question or future years. For ex-
ample, records for an 8th grader in 2014 would be labeled
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Figure 1: Schematic of architecture describing data flow for model training and prediction. Model train-
ing is performed infrequently, while risk scores are recalculated daily to incorporate new information. All
data remains in the Infinite Campus data center and is not transferred to third-party servers. Identifying
information is removed before transfer between systems.

“needs early warning” if they dropped out in 2016. We define
undesirable outcomes based on enrollment end status codes
identified by states as indicating school dropout, and expand
the definition to include unsatisfactory academic progress
(i.e., retention or demotion) and expulsion or other removal.
A student-year is labeled with “does not need early warning”
if the student had no undesirable enrollment outcomes dur-
ing the year in question or future years, and we can confirm
that the student persisted to graduation. If we do not know
whether the student persisted to graduation—the student
transferred outside of our system or is still enrolled—then
the student’s data is censored and we lack ground truth la-
bels for it. Each of these students’ years are labeled with“ig-
nore for early warning” and excluded from training and eval-
uation. To translate state-specific enrollment status codes
to outcome categories, codes were mapped by three indepen-
dent raters, then differences were reconciled and validated
by comparing resulting outcome rates across districts. Data
from a school district are removed from training if that dis-
trict has abnormally high “needs early warning” or “ignore
for early warning”rates, as these conditions may indicate un-
derlying inconsistencies in record-keeping that warrant fur-
ther investigation. In addition, student-years are removed
from training if the student’s cohort is not scheduled to have
graduated yet, in order to remove label bias in earlier grades.

Our data collection and labeling process produces approxi-
mately 6.4 million rows of labeled data. We use 45% of rows
for model training, 5% for model validation (to determine
training stopping points), and 50% for final quality evalu-
ation, split by student. Roughly 16% of training rows are
labeled as “needs early warning”.

Predictors. Our training set is produced by collecting and
summarizing educational information from the core SIS data-
base. This summarized information relates to attendance,
academic performance, behavior, household and enrollment

stability, and other items. We chose predictors that are con-
sistent across states and districts and that are supported by
the dropout prevention literature (e.g., [19]). Where data
is localized, we employ experts who communicate directly
with stakeholders in districts and states to ensure we under-
stand the unique characteristics of local use and law. At-
tendance information includes the proportion of class time
a student was actually present, as well as absences grouped
by type of excuse. Academic performance information in-
cludes the proportion of course grades attributed to each
letter grade, overall high school GPA, and the proportion of
attempted credits successfully earned. Behavior information
includes the number of behavior infractions and resolutions,
as well as whether weapons, drugs, or harassment were in-
volved. Household and enrollment stability information in-
cludes the presence of past undesirable enrollment outcomes
and how often the student changes home addresses, schools,
or districts in the middle of school years. Finally, we include
contextual information such as age and grade level. In to-
tal, we have approximately 70 distinct predictors per year,
and each student-year row includes the current and previous
year’s data.

One core design goal for our system was to have a nation-
wide statistical model that is sensitive to local and contex-
tual factors. We achieved context-specific performance with
two types of feature engineering: including subpopulation
aggregation features and calculating interactions among a
student’s personal features as well as the subpopulation ag-
gregates that apply to them. For example, a student’s at-
tendance or academic data relative to their peers in a given
group may carry information about risk. To allow for this
possibility, we calculated two types of summary statistics
for each school, district, and ZIP code in our dataset. For
numeric predictors, we calculated the mean value per group.
For categorical predictors, we calculated the proportion-per-
group of each category. These group-level contextual fea-
tures allow us to capture signals about students’ environ-
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ments that are more informative than simple group-membership
variables. The group-level information about each student-
year’s specific district, school, and ZIP code is joined on each
student-year row for model building and prediction.

By including a wide range of features characterizing individ-
ual students and their educational environments, we allow
the machine learning model to determine the significance of
each feature and the relationship between features as they
relate to risk. The wide range of potentially predictive fea-
tures is simply not available to most non-SIS vendors. By
using a relatively complex feature set and modeling architec-
ture, we are able to capture complex contextual relationships
between students and their environments.

Explanatory scores. While machine learning affords high
predictive accuracy and the ability to capture complex re-
lationships between predictive features, this comes at the
cost of reduced model interpretability. In early conversa-
tions with customers, we were frequently asked why a stu-
dent received a given risk score. To answer this question, we
supplement our overall risk score with two types of explana-
tory ‘category’ scores that provide insight into which parts
of a student’s record are contributing to their overall risk.

The first set of explanatory scores is based on Balfanz’s
“ABC” categories [10]—attendance, behavior, and course
performance—and an additional “stability” score including
measures of household and enrollment stability. Each of the
four scores is produced by a separate model trained only
on predictors from its respective category. By partitioning
the predictors according to category, we in turn are able
to disentangle the impact each category has on the over-
all risk score. The predictive quality of category scores is
necessarily lower than the overall risk score, because the
category-specific models use a strict subset of the overall
model’s predictors. However, these scores indicate whether
each category of a student’s predictors, when taken by it-
self, is characteristic of a student with undesirable future
enrollment outcomes.

In addition to scores built on subsets of predictors from
each category, we also build scores for each category using a
“counterfactual”approach. That is, if a student’s records im-
proved in a certain area (but the rest of the student’s records
stay the same), how would their risk change? To answer this
question, we replace the values for the “actionable” predic-
tors in a category with values corresponding to exemplary
performance. The resulting data represents an attainable
ideal for each student—if he or she attended every class,
earned perfect scores on every assignment, or never behaved
inappropriately. This data is used to produce a counterfac-
tual risk score for each of the four categories, which when
subtracted from the student’s actual overall risk score indi-
cates the potential“room for improvement” in each category;
these are our final four explanatory scores.

While picking values corresponding to exemplary perfor-
mance appears intuitive (e.g., 4.0 GPA, 100% attendance),
using them to artificially modify student data has the po-
tential to push the resulting data points outside the space
of training examples, leading to unpredictable model behav-

ior. Preliminary analysis found this to be a problem for some
“obvious” exemplary values, leading us to select values ex-
perimentally instead. For each feature, we used a statistical
model to find the optimal bin (range of values) correspond-
ing to the lowest predicted risk, which we subsequently val-
idated by checking that the proportion of actual dropouts
was lowest for this bin. We chose a reasonable value from
each optimal bin to represent exemplary performance.

2.1 Modeling technique
The system described here must operate at scale within an
industry setting and be robust to messy and missing data.
To achieve this, we use the xgboost package [5] for model-
ing, which constructs a series of simple decision trees. Unlike
logistic regression or neural networks, xgboost is robust to
the presence of outliers and appropriately handles missing
values. The decision-tree structure of model components
provides an integrated way to capture contextual relation-
ships between individual predictors and group-level aggre-
gates. xgboost supports parallelization of model training,
so training scales well on enterprise server hardware. We use
the ‘binary:logistic’ training objective, so that xgboost mod-
els produce the probability of a student-year being labeled
as “needs early warning”. We use the area under the receiver
operating characteristic curve (AUC) as the xgboost evalu-
ation metric. AUC measures the quality of sorting produced
by the model, with a high value for AUC indicating that the
model is correctly assigning higher probabilities to student-
years labeled as “needs early warning” than to those labeled
as “does not need early warning”.

Our modeling strategy ensures robustness to noise in two
ways. First, we heavily regularize our xgboost models by
using a small tree depth and relatively few training rounds,
reducing over-fitting and making the model more robust to
small changes in student data (both during training and dur-
ing prediction). Regularization makes it possible to provide
high-quality predictions for unseen data, such as a student
in the evaluation dataset or a new customer whose data was
not included in model training. Second, for each score type
we train an ensemble of 11 to 25 xgboost models, and use
the median prediction of all models. This technique further
reduces variability between model deployments.

Predictions. Predictions are refreshed daily by aggregating
educational records of currently enrolled students and send-
ing those aggregates to our API, as illustrated in Figure 1,
which provides GRAD scores and category scores back to
the SIS. This technique allows us to provide score updates
more frequently than competitors, and eliminates the re-
quirement for school districts to transfer or analyze data on
their own. The SIS then displays risk scores to staff mem-
bers that have been given access to the early warning tool
by district administrators.

As described above, we train the model using aggregations
from past entire student-years. However, daily predictions
are made for currently enrolled students, whose current year
records contain only a partial year of data. We used sev-
eral methods to mitigate the mismatch with our training
dataset. First, in addition to aggregates summarizing a
student’s data from the current academic year, we also in-
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clude aggregates from the student’s previous year as predic-
tors. This allows the model to observe student data for an
already-completed year and it affords analysis of year-over-
year changes. Second, some data is in the form of event
counts that accumulate throughout the year, such as the
number of missed periods or the number of behavior resolu-
tions. This data is converted into a rate, such as missed peri-
ods per instructional day. Rates are then directly compara-
ble at all points in the academic year. Since rate-converted
values are sensitive to small changes at the beginning of the
school year, we instead use an ‘estimated rate’ calculated as
a weighted combination of the previous and current year’s
rates. After about four weeks of school, the previous and
current year’s rates are equally weighted, with the current
year’s rate weighted more heavily after each additional day.

We convert the probability output from xgboost into a user-
facing “GRAD score” that ranges from 50 to 150, where 50
indicates high likelihood of undesirable enrollment outcomes
in the future and 150 indicates high likelihood of persistence
to graduation. We also considered that counselors may have
a greater need to distinguish between students with low and
moderate risk rather than between students with high and
very high risk. That is, a 0.1 change in dropout probability
from 0.05 to 0.15 is more important than a change in prob-
ability from 0.75 to 0.85. We therefore transform the raw
probabilities to ‘spread apart’ students at the low end of the
probability range (low risk), while compressing probabilities
at the high end of the range (high risk).

2.2 Model evaluation
We evaluated our overall and subscore models on an evalua-
tion set containing approximately 3.2M student-years (50%
of the total dataset) that were not used for model building or
validation during training. Results are listed in Table 1 and
represent, as far as we are aware, the highest predictive qual-
ity in the industry. In Table 2, we also list evaluation results
for our overall model by protected subpopulation [13]: sex,
race/ethnicity, grade level, and free/reduced meal eligibility
(a proxy for socioeconomic status).

Because counselors do not see predicted probabilities, but
rather ordered GRAD scores, we chose the area under the
receiver operating characteristic curve (AUC) metric that
measures whether students’ predictions are ordered in terms
of actual risk. The AUC effective range is 0.0 (perfectly
inversely sorted) to 1.0 (perfectly sorted), with 0.5 indicating
random predictions.

Futhermore, because counselors will give additional insti-
tutional resources to the few percent of students predicted
most at-risk, we chose precision and recall metrics that mea-
sure whether how well that most at-risk prediction category
actually contains at-risk students. We evaluated precision at
10% (P@10) and recall at 10% (R@10) following the litera-
ture [1]. A key limitation of precision@k and recall@k occurs
when k is less than the population’s condition-positive rate,
and therefore the effective range of those metrics is less than
1.0. To correct for this limitation, we also measured preci-
sion=recall at 16% (PR@16) because the condition-positive
(“needs early warning”) rate of the training set is 0.158. For
subpopulation evaluation, precision and recall at baseline
(PR@b) is based on that subpopulation’s own condition-

Model AUC P@10 R@10 PR@16
GRAD Score 0.941 0.865 0.549 0.719
Academics 0.914 0.825 0.524 0.682
Attendance 0.852 0.648 0.411 0.547
Behavior 0.808 0.582 0.368 0.493
Stability 0.860 0.654 0.415 0.548

Table 1: Risk score quality evaluation

Subpopulation + rate AUC P@10 R@10 PR@b
Female 0.130 0.935 0.770 0.597 0.683
Male 0.185 0.941 0.921 0.498 0.742
Hispanic 0.207 0.925 0.923 0.449 0.725
Asian 0.065 0.927 0.470* 0.712* 0.620
AIAN 0.275 0.927 0.972 0.354 0.771
NHPI 0.096 0.935 0.605* 0.676* 0.641
2+ races 0.185 0.935 0.909 0.487 0.717
White 0.134 0.937 0.790 0.592 0.692
Black 0.268 0.940 0.986 0.371 0.783
Not stated 0.136 0.951 0.871 0.639 0.762

6th grade 0.218 0.896 0.918 0.421 0.695
7th grade 0.212 0.910 0.924 0.434 0.709
8th grade 0.207 0.921 0.921 0.444 0.716
9th grade 0.232 0.937 0.978 0.423 0.779
10th grade 0.169 0.937 0.888 0.529 0.727
11th grade 0.112 0.940 0.730 0.654 0.692
12th grade 0.079 0.953 0.573* 0.728* 0.649
NSLP: Free 0.252 0.919 0.961 0.385 0.737
NSLP: Reduced 0.130 0.920 0.745 0.579 0.652
NSLP: Paid 0.097 0.942 0.683* 0.700* 0.690
NSLP: N/A 0.125 0.942 0.788 0.634 0.711

Table 2: Overall model risk score quality for subpop-
ulations. ‘+ rate’ refers to the baseline ‘condition-
positive’ negative enrollment outcome rate for
that subpopulation’s current or future enrollments.
NSLP refers to the National School Lunch Program.
AIAN refers to American Indian and Alaska Na-
tive. NHPI refers to Native Hawaiian and Pacific
Islander. * means that the ‘+ rate’ value is less
than 0.1 and therefore the effective maximum range
of P@10 and R@10 is less than 1.0 for that subpop-
ulation.

positive (“needs early warning”) rate. The effective range of
PR@16 and PR@b is 0.0 (completely incorrect) to 1.0 (com-
pletely correct), with the random prediction rate equivalent
to the baseline rate for that population.

3. LIMITATIONS AND EXTENSIONS
The use of year-level aggregates in model training erases
temporal relationships between individual event records, mak-
ing the system relatively blind to patterns of individual events
within an academic year. To address this limitation, we are
exploring alternate modeling strategies capable of ingesting
event-based data streams that are both more granular and of
non-uniform length. A second limitation is our model’s focus
on grades 6–12. Interventions are most successful when they
are applied early [21]. The ability to provide meaningful risk
indicators for younger students could significantly improve
outcomes by helping counselors target interventions toward
the students who need them most, at the point they can ben-
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efit from them most. To do this, we must overcome several
data-consistency related obstacles, the most pressing being
a lack of long-term datasets that are consistent in the type
of information collected over time and the quality/reliability
of the collection.

Finally, although target labels were created using inter-rater
reliability methods, research on state policies, and student
outcome data, the labels have not been verified by repre-
sentatives from each school district who could personally
attest to the accuracy of a given student’s outcome. We in-
tend to make the target calculation available to schools and
to implement a system for users to provide feedback on our
product’s predictive accuracy to allow us to verify our labels
and to continue to improve the quality of predictions.

4. CONCLUSION
We built a decision support system that provides high-quality,
context-sensitive risk predictions and is integrated into an
SIS that thousands of counselors already use in their work-
flows. In doing so, we offer daily risk assessments to mil-
lions of currently enrolled middle and high school students
across the country. By automatically identifying students
who may benefit from additional institutional resources in
the service of timely graduation, we fulfill a key component
of the dropout prevention process.
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ABSTRACT 
Determining which students are at risk of poorer outcomes -- 
such as dropping out, failing classes, or decreasing standardized 
examination scores -- has become an important area of research 
and practice in both K-12 and higher education. The detectors 
produced from this type of predictive modeling research are 
increasingly used in early warning systems to identify which 
students are at risk and intervene to support better outcomes. In 
K-12, it has become common practice to re-build and validate 
these detectors, district-by-district, due to different data 
semantics and risk factors for students in different districts. As 
these detectors become more widely used, however, it becomes 
desirable to also apply detectors in school districts without 
sufficient historical data to build a district-specific model. Novel 
approaches that can address the complex data challenges a new 
district presents are critical for extending the benefits of early 
warning systems to all students. Using an ensemble-based 
algorithm, we evaluate a model averaging approach that can 
generate a useful model for previously-unseen districts. During 
the ensembling process, our approach builds models for districts 
that have a significant amount of historical records and 
integrates them through averaging. We then use these models to 
generate predictions for districts suffering from high data 
missingness. Using this approach, we are able to predict student-
at-risk status effectively for unseen districts, across a range of 
grade ranges, and achieve prediction goodness comparable to 
previously published models predicting at-risk  

Keywords 
Learning Analytics, High School Graduation, Machine 
Learning, Ensembling.  

1. INTRODUCTION 
Graduating from high school is an educational achievement that 
is strongly linked to gainful well-paying employment, higher 
personal income, better personal health, reduced risk of 
incarceration, and lowered reliance on social welfare programs 
[23, 2]. Fortunately, graduation rates have been rising in the 
United States, trending towards reaching 90% nationwide by the 
year 2020 [18]. While this is a positive accomplishment, it 
leaves millions of students not completing high school, 

representing a continuing crisis within the American educational 
system. This crisis is not evenly distributed; in the USA, there 
are much higher dropout rates for African American, Native 
American, and Hispanic/Latinx students [35, 19], up to 4 times 
the rate for White students, as well as for learners from low-
income families and with disabilities [37]. 

There is a clear benefit in completing a high school education, 
so why do we still see alarmingly high levels of high school 
dropout? A great deal of research has been conducted trying to 
answer this one question, with the hope that once identification 
is achieved educators and administrators can apply a 
preventative or remedial intervention to curb student dropout 
[11]. However, many factors appear to lead to student dropout, 
including lack of social support from parents, poor motivation, 
low self-esteem, parental educational achievement and value, 
and economic factors, making it difficult to create a single 
intervention that works for all students [19, 30]. While 
demographic factors correlate with eventual dropout, these 
indicators are not considered actionable. A school district 
generally does not have the capacity to improve a student’s 
economic condition, nor is it possible to alter a student's racial 
identity or gender. As such, the educational research community 
has focused on more actionable factors such as behavior, 
attendance, engagement, and social-emotional learning [21]. The 
most successful interventions have attempted to address issues 
related to specific indicators while also attempting to improve 
overall student academic engagement [14]. There are a range of 
potential interventions and many are costly, driving a need to 
identify the students that could benefit most from specific forms 
of support. Identifying these students can be a difficult task [10] 
which has led to an ongoing effort within the educational 
research community to determine which students are at risk of 
not graduating from high school [20] to apply proactive 
interventions that can help get students back on track [8].  

This goal, along with the growing availability of student data, 
has led to Early Warning Systems, which leverage statistical 
methods applied to historical student data in order to predict 
outcomes for new students. Early work on predicting high 
school graduation tended to use statistical methods in order to 
infer the relationship between graduation and indicators such as 
grades and attendance. For example, the seminal Chicago Model 
developed an "on-task" indicator built from first-year high 
school student performance indicators and then used this newly 
defined feature within logistic regression to model student risk 
[1]. This method proved effective with 80+ percent accuracy in 
predicting student dropout, leading to high popularity and wide-
scale implementation and use [6]. 

More recently, researchers have begun to leverage machine 
learning and data mining methods, sometimes termed predictive 
analytics, to find complex patterns associated with future 
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student outcomes [28, 17]. In K-12 education, this approach was 
used by Lakkaraju et al. [29] to predict student dropout in two 
districts, finding that the Random Forest algorithm outperformed 
several other algorithms. Some of the efforts to use machine 
learning in predicting student success have been scaled beyond 
single districts to entire states [27]. However, it still remains a 
challenge to deploy predictive analytics for use in schools at 
scale. District data often contain substantial information about 
its schools and students: demographic data about the student and 
teacher populations, academic performance information, 
financial information, disciplinary actions, and attendance 
records [36]. However, in many school districts, data quality is 
limited, with key information only available by integrating 
across multiple data warehouses, incompatible student ID 
numbers, errors in data entry, and local idiosyncratic 
interpretations of often ambiguous data fields. Even when data 
is today excellent, key data from past years is often unavailable 
due to the absence of a formal data system or having a data 
system which is difficult to query. Semantics may also change -- 
for example, the definition of "not graduated" is not stable 
across years and contexts [35] -- but these changes may not 
always be clearly understood when reviewing past data.   

One solution is to use models that involve simple variables that 
are feasible for almost any district's data and assume that model 
will be valid in new contexts, even where that context may be 
quite different from the context where the model was initially 
developed [32]. The Chicago model [1] is a common choice for 
this type of application.  

In this paper, we propose and evaluate an alternate solution to 
providing a model for a new district. Our approach attempts to 
generate predictions for a specific “Target” school district based 
on models from other school districts where full datasets are 
available, using a simple average of the district models, where 
all existing models are given equal weight. We compare the 
quality of our averaging approach to the earlier solution of using 
a simple generic model, specifically, the Chicago model. 

2. METHODS 
In the following section, we will discuss our method for making 
at-risk student predictions for school districts which have 
insufficient data to create a district-based prediction model. In 
brief, we develop and validate predictive analytics models for 
each school district with sufficient data. These models predict 
each student’s probability of graduating (or risk of not 
graduating). We then conduct a simple ensembling approach, 
averaging each model’s predictions, to produce a single 
prediction for each student. We test the quality of this approach 
by conducting it for held-out districts where data is available.  

We validate our new approach by comparing its performance to 
the widely-used “Chicago model” [1, 6] on the same test data 
and comparing the performance of our detector to the classic 
Chicago model, which can be used for entirely new districts 
with no re-training. The Chicago model utilizes freshman-year 
GPA, the number of semester course failures, and freshman-year 
absences to determine the student’s risk of failing to graduate 
[1]. Since the Chicago model relies on data collected within the 
first year of high school, we were only able to compare the 
performance of our approach to the Chicago model for high 
school students. 

2.1 Data 
Data for this research originate from the BrightBytes data 
analytics and visualization platform, Clarity®. The Clarity® 
platform ingests disparate datasets, transforms them to a 
standardized format by mapping district-specific variables to a 
common schema, prepares the data for analysis, and then 
visualizes the data in a meaningful, easy-to-understand way. The 
Clarity® platform is used by 1 in 5 schools across 47 states to 
empower educational leaders to use data for decision making. 
The value derived by districts from the Clarity® platform comes 
from using data to drive change within an organization. The 
anonymized dataset used in this paper (n =3,575,724) represents 
a large spectrum of K-12 students in terms of free/reduced lunch 
eligibility, school urbanicity, and school demographic makeup, 
and is drawn from a range of school districts, educational 
organizations and agencies.  

We have nearly complete data (with only small numbers of 
variables unavailable) from an educational agency with 
decision-making power over a large geographical region (Pillar 
1) and three large individual school districts (Pillar 2, Pillar 3, 
Pillar 4). These datasets are referred to as “Pillars” because they 
serve as bases for our ensemble-based approach. The four Pillars 
differ in terms of their predominant student demographic 
groups, with Caucasians representing the largest group of 
students in Pillar 1 (n=1,681,988), Hispanic/Latinx students 
representing the largest group of students in Pillar 2 (n= 
392,148), and split demographics in Pillar 3 (n=158,991) and 
Pillar 4 (n=140,132). 

We test our models on 30 “Target” districts that were not used 
to develop the models, due to having fewer years of data, more 
missing variables, or smaller samples overall. These Target 
districts span a diverse range of predominant demographics, 
with one Target district being over ninety percent Caucasian at 
one extreme, and other districts being almost completely 
Hispanic/Latinx or African American. District performance is 
equally as diverse: some Target districts achieve graduation 
rates over 90% while others have graduation rates as low as 
36%. Table 1 below highlights the number of records available 
in the Pillar districts and Target districts. The Target districts 
are generally smaller than the Pillar districts, with some having 
as few as 271 total historical student records, with the percent of 
data missingness within the Target districts also quite high in 
some cases (M= 41.65%, SD=7.498%). 

Table 1: Average Number of Outcome Records in Target 
Districts 

Grade Band Graduates SD Dropouts SD 
1st – 5th 4,307 9,784 634 1,267 
6th – 8th 7,673 16,837 996 2,012 
9th – 12th 24,552 39,524 1,920 3,833 

All Grades 12,177 95,962 1,183 7,377 
 

2.2 Predictor Variables 
The potential set of predictor variables was selected in 
partnership with the American Institutes for Research (AIR) 
team [22], this paper’s authors, and other researchers and 
developers at BrightBytes. This collaboration resulted in a 
theory-based [9] framework of success indicators, along with 
definitions of those success indicators that are used to map and 
align district data. Due to the data ingestion and transformation 
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process, the same data features can be used across all districts. 
Below is a distillation of the broad range of potential variables 
into a small set of meaningful buckets: 

General Coursework: student academic performance such as 
total credits earned or student grade point averages [25, 38, 5]. 
Student Assessments: interim or summative assessments related 
to math, science, reading and social studies performance [26,16]. 
Student Attendance: recorded as absences or tardies [33]. 
Student Behavior: disciplinary incidents the student has on file 
[4, 10]. 

2.3 Model Fitting 
The first step toward building an at-risk prediction model for 
districts without sufficient data is to build models for districts 
with sufficient data. For each of these models, we took the data 
from a single district. We filtered down to only the students who 
were flagged as ‘dropped’ and ‘graduated’. Even if students took 
extra time to graduate, they were still counted as graduating. 
Only these students were used for building the model; all other 
outcomes (such as transferring to another school district) were 
removed from the filtered dataset. The resultant datasets were 
generally highly imbalanced, with substantially more students 
graduating than dropping out. To account for this imbalance, the 
training data was manually rebalanced by adding duplicate 
copies of students who dropped out to the data set. Specifically, 
duplicates were created such that every grade level (10th, 11th, 
12th, etc.) of students in the training datasets had an equal 
number of students who dropped out as students who remained. 
The original data distribution was used when testing the models. 

Decision trees, support vector machines, XGBoost, logistic 
regression and random forest were all tested to build the initial 
model. The best performance across data was obtained with 
random forest classifiers with n=15 estimators and a max depth 
of 10. Since the algorithm was tree based, we utilized arbitrary 
value substitution to replace missing values with a high integer 
[39]. The goodness of each district’s model was evaluated, 
within-district, using a train-test split method (note that models 
are also evaluated within entirely new districts; see below). In 
each case, the training set consisted of a randomly selected 70 
percent of the data with label-based stratification used across 
grades. The test set held out to validate the model consisted of 
the remaining 30 percent of the data.  

Models were evaluated using the Area Under the Curve for the 
Receiver Operator Characteristic graph. AUC ROC was selected 
as our primary evaluation statistic due to its interpretability and 
validity for highly-imbalanced test sets [24]. AUC ROC 
calculates the tradeoff between true positive and false negative 
for every possible threshold used for labeling data points as 
positive and negative; as such, it is well-suited for evaluating 
how well an algorithm ranks students relative to their risk. 

2.4 Pillar Selection 
Selection of the four Pillar districts was based on two factors, 
data quality and model performance. To evaluate data quality, 
we calculated the proportion of missing values within the total 
feature set, expressed as a percentage. Districts were not 
included as Pillar districts if they had high amounts of missing 
data, over 40% of values missing, as these districts would be 
less useful for modeling other districts where these features 
were present. Districts were also not included as Pillar districts 

if they lacked historical data spanning all grades 1 through 12; 
districts without historical data for some grades would be less 
useful for developing models that could be applied to all grades.  

Models developed for specific districts as potential pillar model 
candidates were fit and evaluated using held-out test sets from 
that district’s own data. Districts for which we were able to 
produce a model with AUC higher than 0.7 on the district’s test 
sample, averaged across all student class years, were designated 
as Pillar districts/models and used in our predictions for districts 
for which models could not be generated for all grade levels, or 
for which models were insufficient in quality. Of the 30 Target 
districts within our study, 25 do not have enough historical 
records spanning all 12 grades and 5 had sufficient data but were 
unable to produce an AUC over 0.7. All 30 districts suffered 
from at least some degree of feature missingness.  

2.5 Applying Models to New Districts 
Having developed models for Pillar districts, where data are 
abundant, data quality is high, and where it is possible to 
develop a high-quality model, we next applied each Pillar model 
to each Target district. These Target districts had at least one of 
the following attributes; 1) Under 20,000 students, 2) Over 40% 
missing values, 3) Missing historical records for some grades in 
K-12, 4) AUC ROC when applied to new students within-
district.  

Our first step to applying the Pillar models was simply to run 
each of them on the Target district’s data (n = 1,202,465) and 
obtain predictions for each student. This provides us with a set 
of predictions for each student and for each model. We then 
took the average of the probability estimates, across districts, to 
generate the final student prediction. When we applied Pillar 
models to Target districts, we evaluated these models using all 
historical records present in the data as none of their records 
were used within model training. As with models tested on the 
district for which they were built, we use AUC ROC as our 
metric of model goodness. 

3. RESULTS 
3.1 Within-District Performance  
We first applied each Pillar district model to new students from 
the same district, to evaluate within-district performance. As 
shown in Table 2, the four Pillar districts achieved AUC ROC 
values ranging between 0.899-0.936 when predicting 
graduation/dropout, for 9th through 12th grades (the typical high 
school years in U.S. classrooms). Performance was moderately 
lower for 6th-8th graders, where longitudinal predictions of up 
to 6 years are being made, with AUC ROC ranging from 0.849-
0.884. Performance was again moderately lower for 1st-5th 
graders, where longitudinal predictions of up to 11 years are 
being made, with AUC ROC ranging from 0.758-0.810. 

Table 2. AUC of Pillar Model Performance on Pillar Model 
Test Data (new students) by Grade Band 

District 1 – 5 6 - 8 9 - 12 Average 

Pillar 1 0.778 0.849 0.899 0.865 

Pillar 2 0.758 0.884 0.908 0.858 

Pillar 3 0.810 0.884 0.936 0.888 
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Pillar 4 0.794 0.850 0.903 0.886 
 
Our attempts to build a model for each Target district proved 
less successful, with 9th – 12th grade model AUC averaging 
0.729, 0.1825 lower than for the Pillar Districts, 6th-8th model 
AUC averaging 0.669, 0.198 AUC lower than the Pillar 
Districts, and 1st -5th grade obtaining an average AUC of 0.635, 
0.15 points lower than the Pillar Districts’ within-district 
performance for these grade levels.  
It should be noted that there were three exceptions to this poor 
AUC trend. Three Target districts produced relatively more 
successful models, averaging AUC = 0.81 for 9th-12th grade 
students, AUC = 0.709 for 6th-8th grade students, and AUC = 
0.666 for 1st-5th grade students. Despite the initial successful 
results of these three Target districts, they still lacked the data to 
produce models for all years, with all three missing records for 
1st and 2nd grades. When additional historical records become 
available in the future, these models will almost certainly make 
it into the pool of Pillar models in future model iterations. 

3.2 Feature Importance 
We can understand which features are particularly important to 
each Pillar model by calculating feature importance. Feature 
importance was calculated using the mean decrease impurity 
method, sometimes referred to as the gini importance [12]. This 
metric allows us to calculate how much each feature contributes 
to the model’s eventual predictions of a student’s outcomes (in 
this case, risk of dropout). A range of different types of features 
were found to be important in the four models. The Pillar 1 
model relied heavily on features related to student age, 
attendance and academic achievement. The Pillar 2 model was 
similar to the Pillar 1 model in that it relied strongly on 
academic and attendance related features. However, student 
summative reading scores were also important to the Pillar 2 
model. The Pillar 3 model was less similar to the first two 
Pillars. For Pillar 3, student assessment data and student 
behavioral data (i.e., disruption, defiance, etc.) were the primary 
contributors to the model’s predicted outcomes, a difference in 
feature importance that is likely due to a multitude of reasons. 
Pillar 4 was most similar to Pillar 1 as it also relied heavily on 
student academic indicators. One reason could be that there were 
differences in the data availability of features for each district. 
For example, no assessment data was available for Pillar 1, 
whereas Pillar 3 had assessment data available for almost all of 
their historical student records. Another cause could be the 
difference in the populations of students in each Pillar district. 
For example, attendance may play a larger role in graduation in 
urban districts (e.g. Pillar 2), whereas behavioral incidents could 
play a larger role in the path to dropping out for students in 
more rural districts (e.g. Pillar 3). 

3.3 Performance on New Districts 
We applied the Pillar models to each student’s data from the 30 
Target districts, and averaged the probability across models for 
each student. These districts had considerable variation in size, 
graduation rate, and degree of missingness of data (and which 
features were missing), with values for these variables that were 
substantially higher or lower than the values for the Pillar 
districts. In other words, applying models from the Pillar 
districts to these thirty Target districts represents substantial 
extrapolation. 

Table 3 shows average performance of each individual Pillar 
model detectors on the Target district data, as well as using 
averaged probabilities. Despite the high degree of extrapolation 
required, performance was generally good, with an average 
AUC (across districts) of 0.783 (SD = 0.100), with three 
districts achieving AUC above 0.9. AUC results within grade 
band produced similar outcomes, with 9th-12th obtaining an 
average AUC of 0.813 (SD = 0.078), 6th-8th model AUC 
averaging 0.736 (SD = 0.13), and 1st -5th grade model AUC 
averaging 0.646 (SD = 0.141). However, two districts (Target 
12 and Target 28) had poor overall AUC values of 0.539 and 
0.469. It is worth noting that these two districts had the highest 
rate of missing data for features that ranked most important in 
the Pillar models, with over 80% of students in these Target 
districts missing data related to coursework, over 90% of the 
records not containing any assessment scores, and the data for 
40% of the students not containing attendance information. 
Overall, the districts with the highest amounts of missing data in 
core features were also the districts with the lowest AUC ROC 
values. None of the individual Pillar models did as well as their 
average when applied to the Target districts; individual Pillar 
models achieved an AUC between 0.718 - 0.756 on the Target 
districts, significantly underperforming compared to averaging 
the produced model probabilities.  

Table 3: Average Performance of Pillar Model and Mean 
Detectors on Target District Data. 

Detector 1 – 5 6 - 8 9 - 12 All Grades 

Mean Model 0.646 0.74 0.813 0.783 

Pillar 1 Model 0.631 0.673 0.749 0.719 

Pillar 2 Model 0.568 0.678 0.764 0.718 

Pillar 3 Model 0.631 0.720 0.789 0.750 

Pillar 4 Model 0.591 0.685 0.788 0.756 

3.4 The Chicago Model On-Task Indicator 
Comparing our Mean Model detector to the Chicago model 
detector was limited by data availability: the Chicago model 
relies on freshman year high school student data, specifically the 
number of course credits and courses failed during freshman 
year (9th grade). Due to the detector’s reliance on these two data 
points, our validation sample was limited to only those districts 
that contained valid information for these two features. 
However, many of our Target districts lacked data for the 
features in the Chicago model, for some students. If at least one 
feature was available for the Chicago model, the model was 
used; a student was assigned a .5 probability of graduating if the 
Chicago model was missing all features and therefore incapable 
of producing a prediction. The Pillar models performed also 
poorly for these students with very high data missingness. 

Table 4: Average AUC Performance of Mean Model vs. 
Chicago On-Task Indicator: 9th-12th grades 

Detector Avg AUC Standard Deviation 

Mean Model 0.821 0.084 

Chicago Model 0.624 0.121 
The Mean Model outperformed the Chicago model in every 
Target district, except for one district. In that district, the 
Chicago model (AUC=0.77) performed .068 better than the 
Mean Model (AUC=0.702). Overall, the mean Pillar model 
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detector achieved an average AUC of 0.197 higher than the 
Chicago model when measuring performance of predictions on 
high school student Target district data. 
One might argue that this comparison biases against the Chicago 
model, by including cases where the specific data needed was 
unavailable. Although our approach is designed to work in cases 
of high missingness, we can also compare our Mean Model to 
the Chicago Model only for cases which have the data the 
Chicago model needs. This resulted in a significant reduction of 
the data used to calculate AUC metrics, with only 351,902 out 
of the original 1,202,465 student records able to populate the 
On-Track Indicator, 29.3% of our initial sample.  
Table 5: AUC Performance of Mean Model vs. Chicago On-

Task Indicator on Complete Records: 9th-12th grades 

Detector Avg AUC Standard Deviation 

Mean Model 0.874 0.061 

Chicago Model 0.734 0.082 
 
Both the Mean Model and the Chicago Model saw an increase in 
their average model performance across the new sample, with 
the Mean Model increasing by 0.053 from 0.821 to 0.874 and 
the Chicago model increasing by 0.11, from 0.624 to a more 
respectable AUC of 0.734. However, the Mean Model still 
achieves an AUC 0.14 higher despite these conditions designed 
to be more favorable to the Chicago Model.  

4. CONCLUSIONS 
In this paper we propose an approach to predict student risk of 
not graduating from high school for districts where the quality, 
quantity, or availability of data is insufficient to produce a 
satisfactory model of student risk, using an ensemble of models 
from other districts where data is available. This method 
achieves good predictive power for students in districts that 
were not used to develop the model, without any fitting or 
modification to the models or their application. Furthermore, it 
achieves substantially better results than a popular alternate 
approach to predicting at-risk status in new districts, the 
Chicago model. 
It is worth noting that our approach and study have several 
limitations that should be investigated in future work. Though 
our sample of Target districts was large, we have not yet applied 
this method across the full diversity of students in the U.S. In 
particular, districts with substantial Native American 
populations or those located in extremely rural regions, such as 
northern or western Alaska, are not represented in our study. 
Similarly, we have not studied whether our models are equally 
good for all subgroups within the school districts–a limitation 
that is common in the field. 
There are several ways in which we could probably improve 
model performance. Research has shown that contextual factors 
can contribute to identifying students at risk of dropping out and 
that factors associated with dropout can differ between 
populations [7, 15]. Altering the detector to weight the Pillar 
model probabilities by leveraging characteristic information 
such as student and school demographics, urbanicity (urban, 
rural, suburban), and the proportion of military-connected or 
otherwise highly-mobile students could help account for 
similarities between students and districts better. Additionally, 
future iterations of our method could take an empirical approach 

to selecting the Pillar model weights using measure of similarity 
based on model performance [31], rather than limiting the 
approach to the current simple averaging method where features 
are weighted equally. 
Ultimately, the performance of the Mean Model presents new 
opportunities in identifying students at risk of dropping out for 
districts with minimal or no data. Given the potential benefit of 
interventions for at-risk students, this new approach has the 
capacity to improve the future of student outcomes within a 
large number of schools where it is not yet possible to develop 
predictive models. Students educated by districts where data are 
insufficient can now be presented with greater opportunities 
through the use of proactive interventions driven by predictive 
modeling rather than being limited to receiving reactive 
interventions that are often applied too late, if ever. 
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ABSTRACT 
The Additive Factor Model (AFM) is a cognitive diagnostic model 
that can be used to predict student performance on items in a 
context that allows for student learning. Within AFM, skills have a 
learning rate, and student acquisition of a skill depends only on the 
number of opportunities a student has had to exercise that skill and 
the learning rate of that skill. Here we demonstrate an approach to 
measure the teaching value of individual items with respect to one 
another. The teaching values estimated through this approach may 
be useful for structuring intelligent tutoring systems and for content 
improvement.  
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1. INTRODUCTION 
Item Response Theory (IRT) models describe the performance of 
students with respect to a set of scored items (questions). As 
described by Sijtsma and Junker [5], most IRT models have three 
assumptions: 

1. Local independence: Student performance on a given 
item does not depend on student performance on previous 
items.  

2. Monotonicity: The probability of student success on an 
item increases when student ability improves. 

3. Unidimensionality: Each student has the same ability for 
every item, and each item has the same difficulty for 
every student. 

The simplest IRT equation, the 1-parameter logistic model or 1PL, 
can be expressed as 

𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1�𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖� =
𝑒𝑒𝛼𝛼𝑖𝑖−𝛽𝛽𝑗𝑗

1 + 𝑒𝑒𝛼𝛼𝑖𝑖−𝛽𝛽𝑗𝑗
= 𝑓𝑓(𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑖𝑖) 

where ƒ(x) = 1/(1 + e–x) (resulting in a probability in (0, 1)), Yij is 
the response of student i on item j (with 1 for correct, 0 for 

incorrect), αi is the ability of student i, and βj is the difficulty of item 
j. 

Multidimensional IRT (MIRT) models relax the third assumption, 
decomposing student abilities and/or item difficulties into an array 
of abilities or difficulties. The Additive Factor Model (AFM) 
proposed by Cen et al [2] can be viewed as a MIRT model that also 
relaxes the local independence assumption, taking into account 
multiple exposures to a skill through a learning rate for that skill. 
The probability of student success is expressed as: 

𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1�𝛼𝛼𝑖𝑖 ,𝛽𝛽, 𝛾𝛾� = 𝑓𝑓 �𝛼𝛼𝑖𝑖 + �𝛽𝛽𝑘𝑘𝑞𝑞𝑖𝑖𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+ �𝛾𝛾𝑘𝑘𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡𝑖𝑖𝑘𝑘

𝐾𝐾

𝑘𝑘=1

� 

where ƒ(x) is again the logistic function 1/(1 + e–x), βk is the 
difficulty (or easiness, with the sign reversed) of skill (rather than 
item) k, qjk is a binary indicator that item j uses skill k, γk is the 
learning rate of skill k, tik is the number of exposures student i has 
had to skill k, and K is the total number of skills assessed. If each 
item addresses only one skill, the first sum reduces to Bj. If the 
learning rate is 0, the second sum reduces to 0, resulting in the 1PL 
equation. 

In AFM, the likelihood of a student acquiring a skill is impacted 
only by the constant learning rate of that skill and the number of 
exposures that student has had to that skill. Here we seek to estimate 
a new quantity, the teaching value of an item with feedback. 
Exposure of a student to an item with a positive teaching value 
increases the probability that that student will answer a subsequent 
question correctly. 

2. METHODOLOGY 
Macmillan Learning's homework system examined in this study 
serves items (questions with automatic grading and feedback) to 
students, with the items grouped into assignments. The items 
investigated in this study were used across 570 institutions of 
higher learning in 4,704 courses. The order of the items in the 
assignments could be partially or fully randomized, and could be 
edited manually by individual instructors. As a result, a given item 
could be the first item in an assignment for some students, the 
second for others, etc., even within the same course. 

We began with a dataset containing 240,990 unique students 
interacting with 7,257 unique general chemistry items, resulting in 
29,005,495 student-item interactions. To simplify this proof of 
concept, we assume that all questions measured a single skill 
(“general chemistry knowledge”). To measure the impact of 
questions on one another, we define an experience as a set of one, 
two, or three items presented to a student in a particular order, 
starting with the first item in the assignment. For each experience, 
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we scored the experience as correct (1) iff the student was scored 
as correct on their first attempt on the last item in that experience, 
and incorrect (0) if they were scored as incorrect on their first 
attempt on the last item in that experience, regardless of how they 
performed on any previous items. Using the dplyr package [7] for 
the R programming language [3], we filtered the full dataset to 
32,199 unique students, 1,264 unique one-item experiences, 1,956 
unique two-item experiences, and 1,567 unique three-item 
experiences, resulting in 3,240,791 student-experience interactions, 
using the following conditions: 

1. The experience contained one, two, or three items. 
2. Every item within each experience was attempted by at 

least 100 students as the first item in their assignment. 
3. Every experience was attempted by at least 100 students. 
4. Each student attempted at least 50 experiences. 

By treating each experience as a single item, we were able to model 
the student abilities and difficulties of questions using a relatively 
simple IRT model. In this study we used the two-parameter logistic 
model (2PL) described by Birnbaum [1]. In the 2PL, items are 
allowed to have varying difficulties (β) and discrimination values 
(the ability of an item to differentiate between a low-skill student 
and a high-skill student, herein denoted a). The probability (P) of a 
student with ability θ answering a question correctly is given by: 

𝑙𝑙𝑙𝑙 � 𝑃𝑃
1−𝑃𝑃

� = 𝑎𝑎(𝜃𝜃 − 𝛽𝛽)   

For the 2PL, it is assumed that the chance of a student guessing the 
correct answer is 0. The item and student parameters can be 
estimated using marginal maximum likelihood estimation (MML). 
Here we used the TAM package [4] to perform the estimations. 

We fit the filtered student-experience interactions to a single two-
parameter logistic model. To illustrate the approach in detail, our 
focus in this paper will be on the two-item experiences. 

We define the raw difficulty (βA) of a given item A as the modeled 
difficulty of item A when it is the first item attempted by students 
(i.e., when it is presented in a one-item experience). We define the 
apparent difficulty (βA|B) of a given item A with respect to another 
item B as the modeled difficulty of item A when it appears second 
in a two-item experience, after item B. We calculated the difficulty 
change of a given item A after item B as the difference between the 
apparent difficulty and the raw difficulty for that item in that 
experience. 

𝛥𝛥𝛽𝛽𝐴𝐴|𝐵𝐵 = 𝛽𝛽𝐴𝐴|𝐵𝐵 − 𝛽𝛽𝐴𝐴 

A negative difficulty change indicates that item A appears to be 
easier when it follows item B, and a positive difficulty change 
indicates that item A appears to be harder when it follows item B. 
For this study, we did not constrain the time between a student 
answering item A and that student answering item B. 

3. RESULTS 
Two "goodness of fit" statistics were used to evaluate the fit of each 
experience to the model: outfit and infit. Both measures are 
expected to have a value close to 1.0 for each experience if the 
model fits the data without overfitting or underfitting. 92% of 
experiences had outfit of 1.0 ± 0.05 (standard deviation), and 99% 
of experiences had infit of 1.0 ± 0.05 (standard deviation). We 
analyzed two-item experiences which met these criteria: 1) the 

                                                                 
1 All figures were generated using the ggplot2 package for R [6]. 

experience had infit and outfit between 0.95 and 1.05, and 2) the 
second item of the experience had infit and outfit between 0.95 and 
1.05 when it was in a one-item experience. Seventy six percent 
(1,490 of 1,956) of two-item experiences met these criteria. 

The median difficulty change for these experiences was found to be 
−0.085, with the second quartile beginning at −0.42, and the third 
quartile ending at 0.27. We focused our analysis on experiences 
with difficulty changes more than 1.5 interquartile ranges above the 
third quartile or below the second quartile, and defined these 
difficulty changes as significant. Other difficulty changes may also 
be statistically significant, leading to net learning effects. However, 
the educational significance of such effects remains to be explored 
in future studies. We observed that 22 item pairs (1.5%) had a 
difficulty change more than 1.5 times the interquartile range below 
the first quartile, indicating a significant decrease in apparent 
difficulty (the items appeared to become significantly easier), as 
we expected would occur. Somewhat surprisingly, 17 item pairs 
(1.1%) had a difficulty change more than 1.5 times the interquartile 
range above the third quartile, indicating a significant increase in 
apparent difficulty (the items appeared to become significantly 
harder) (see Figure 11). The remaining 1451 item pairs (97.4%) did 
not have a significant change in apparent difficulty as defined here. 
We examined specific cases of each type of change in apparent 
difficulty to attempt to identify the sources of the difficulty 
changes.

 

3.1 Decrease in Apparent Difficulty 
Here we examine a specific case of difficulty changes in which the 
second item appears to be easier for students who have been primed 
by a specific preceding item. The item we designate "item A" in 
this study asks the student to 

Give the conjugate acid for each compound below. 

with three randomly selected bases such as HSO4−, CO32−, and NH3. 
The student must enter the conjugate acid for each base (in this 
example, H2SO4, HCO3−, and NH4+). The item we designate "item 
B" is effectively the opposite question, in which the student is given 
three acids, and asked to enter the conjugate base. Even when the 

Figure 1. Most difficulty changes (the second and third 
quartile, shown in the box here) were near zero. However, some 
items showed a decrease in apparent difficulty (points at the 
bottom of the plot, lying more than 1.5 times the interquartile 
range below the second quartile), and some items showed an 
increase in apparent difficulty (points at the top of the plot, 
lying more than 1.5 times the interquartile range above the 
third quartile). 
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randomly selected acids and bases do not line up from item B to 
item A for a given student, students perform significantly better 
when primed by item B before answering item A, or vice versa.  

In contrast, the item we designate "item C" is within the same 
general topic, asking the student to  

Label each reactant and product in this reaction as a 
Brønsted acid or base. 

and showing the reaction between HCN and NH2− to produce CN− 
and NH3. Item C does not have a significant impact on student 
performance on item A (data was not available for student 
performance on item B after item C). 

  
The raw difficulty for item A was found to be 0.45 ± 0.05 (95% 
confidence interval reported on all fit difficulties). When item A 
followed item B, the apparent difficulty was −0.9 ± 0.1, a difficulty 
change of −1.4 ± 0.1 (see Figure 2). Similarly, the raw difficulty for 

item B was 0.5 ± 0.1 and the apparent difficulty after item A was 
−0.7 ± 0.1, resulting in a difficulty change of −1.2 ± 0.1 (see Figure 
3). In contrast, when item A followed item C, the apparent 
difficulty was not significantly different from the raw difficulty 
(0.7 ± 0.4 vs 0.45 ± 0.05) (see Figure 4).  

3.2 Increase in Apparent Difficulty 
Here we examine a specific case of difficulty changes in which the 
second item appears to be harder for students who have been 
primed by a specific preceding item. The item we designate "item 
D" asks,  

Parts per million (ppm) is a common way to express 
small concentrations of a solute in water. A sample of tap 
water that is 25 ppm Cl− contains 25 grams of Cl− for 
every 1,000,000 grams of water. Which units are 
numerically equal to ppm for dilute aqueous solutions? 

Students are given 5 choices in a random order: "g/L", "cg/L", 
"mg/L", "μg/L", and "ng/L". The correct answer is "mg/L".  

A possible explanation for this effect can be found by examining 
the terminology used in each item, and the particular choices that 
students selected. Item E asks students to  

Match each term with its definition or description. 

with eight terms, including "parts per million." In the item we 
designate "item E," parts per million is defined as "micrograms of 
analyte per gram (or mL) of sample." In other words, Item D 
defines ppm in terms of L ("mg/L"), and item E defines ppm in 
terms of mL ("μg/mL"). Students who answer item E before item 
D are more likely to answer item D incorrectly, and they are more 
likely to do so by choosing the incorrect answer "μg/L" (see Figure 
5). These results imply that students were led astray by the 
similarity of numerators of the units. 

 

The raw difficulty of item D was 0.2 ± 0.3. When item D followed 
item E, the apparent difficulty was 1.9 ± 0.4, a difficulty change of 
1.7 ± 0.4 (see Figure 6).  

Figure 2. When a specific item A followed a specific item B 
(green), students performed better than when item A was the 
first question (gray); the curve shifted up and to the left, 
indicating that students with lower skill became more likely 
to answer the question correctly. The curves indicate the 
modeled difficulty and discrimination for each experience, 
while the boxes indicate the 95% confidence interval of actual 
student performance (% of students in a given modeled skill 
group who scored correct on the experience on their first try). 
See Figure 3 for the same items in the opposite order. 

Figure 3. When item B followed item A (green), students 
performed better than when item B was the first question 
(gray). See Figure 2 for the same items in the opposite order. 

Figure 4. When item A from Figures 2 and 3 followed a third 
specific item C (yellow), there was no significant change from 
when item A was the first question (gray). 

Figure 5. When item D followed item E (red), students chose 
"μg/L" more often than when item D was the first question 
(gray). 
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4. CONCLUSION 
We have shown that, adopting the methodology described above, 
we can measure the impact of individual questions with feedback 
on the difficulty of subsequent questions. This approach has 
implications for developing and revising pedagogically sound 
content. This approach could also influence sequencing of content 
to reinforce learning. Further research is required to attempt to 
generalize this difficulty change into a per-item “teaching value” 
parameter, but there appears to be evidence for this approach. 

Items can have both positive and negative priming effects on the 
apparent difficulties of other items. Further research is required to 
determine the extent to which this effect increases or decreases with 
greater time in-between items, and whether intervening items have 
an impact on this effect. 
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Figure 6. When item D followed item E (red), students 
answered incorrectly more often than when item D was the first 
question (gray); the curve shifted down and to the right, 
indicating that students required higher skill to have an equal 
probability of answering correctly. 
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ABSTRACT
Clustering of educational data allows similar students to be
grouped, in either crisp or fuzzy sets, based on their similari-
ties. Standard approaches are well suited to identifying com-
mon student behaviors; however, by design, they put much
less emphasis on less common behaviors or outliers. The ap-
proach presented in this paper employs fuzzing clustering in
the identification of these outlier behaviors. The algorithm
is an iterative one, where clustering is applied, outliers iden-
tified, the data restricted to the outliers, and the process
repeated. This approach produces a clustering that is crisp
between each iteration and fuzzy within. It arose as a con-
sequence of trying to cluster student progress trajectories in
an adaptive learning platform. Included are results from ap-
plying the repeated fuzzy clustering algorithm to data from
multiple courses and semesters at the University of Central
Florida, (N=5,044).

1. INTRODUCTION
Personalization holds the promise of making learning more
engaging and effective for students. Each student can receive
personalized feedback and guidance based on their interac-
tion with the learning material and their current needs and
goals. Key to being able to provide this is an understand-
ing of the full range of learning behaviors that students can
exhibit, and the driving forces behind them. Truly personal-
ized learning needs to understand not just the most common
behaviors, but also those that are more atypical or outliers.

A variety of techniques have been employed to uncover stu-
dent behaviors in different learning contexts [22]. Cluster-
ing is a common approach with a considerable range in both
the applications and the algorithm employed [25]. Appli-
cations have included adapting question delivery, promoting
group-based collaboration, and the characterization of atyp-
ical student behavior.

This work presents a clustering approach to automatically
detect and quantify the range of behaviors, including the

Figure 1: Student progress trajectories. The gray
lines show the trajectories for all 5,044 students at
UCF. The colored lines highlight several individual
trajectories.

outliers, that are evident in student progress data, in order
to provide feedback to instructors on their student’s behav-
iors. This goal throws up two restrictions on our approach.
First, the clustering of behaviors must be fully automated.
Not all instructors will have the required knowledge to make
decisions such as picking the parameters of the clustering al-
gorithm. Therefore these decisions need to be handled by
the algorithm. Second, the output from the clustering must
be readily interpretable by an instructor, including both un-
derstanding what makes a cluster a cluster, but also easily
understand the differences between clusters. These two re-
strictions provide a means of measuring the ultimate effec-
tiveness of the algorithm and the quality of the clusters that
it produces.

In [11], the authors examined student progress data against
time for an online course delivered at the University of Cen-
tral Florida (UCF) through the Realizeit adaptive learning
platform. The course was self-paced with students free to
set their rate of progress. While most set a steady, consis-
tent pace over the 15-week term, some students set a very
different pace. These outliers roughly fall into two cate-
gories: students who race ahead of the rest, and those who
fall behind, leaving all their learning to the last minute.

Figure 1 provides an understanding of the challenges when
clustering these progress trajectories. The x-axis represents
time in days, and the y-axis is progress measured as the per-
centage of concepts mastered. The progress trajectories for
5,044 students across 51 online course instances in 9 terms
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at UCF are shown in gray. Each line represents a single stu-
dent. Patterns are difficult to distinguish, but the consistent
trajectory of most students through their course is evident
along the diagonal. Five progress trajectories (colored lines)
have been singled out to highlight the range of possible be-
haviors. The challenge in clustering this data comes from
the fact that clustering algorithms, by design, attempt to
group the data into as few clusters as possible and therefore
put much less emphasis on outliers. They seek the most
common patterns. Our goal is to find both common and
outlier behaviors.

Our approach draws inspiration from He et al. [16, 17] who
used clustering to search for hidden communities in social
networks. In their work, they first used clustering to discover
the most apparent communities. They then decreased the
weights on the edges in the social network that represented
these communities. Repeating the clustering uncovers pre-
viously hidden communities. Our approach, repeated fuzzy
clustering (RFC) uses a similar technique where clustering
is applied, outliers identified, the data restricted to the out-
liers, and the process repeated. The purpose of this paper
is to describe and demonstrate the RFC algorithm.

Algorithmic clustering methods are essentially “blind” in
that there is no linguistic functioning in their process. The
categories identified are impervious to shared characteris-
tics that ground themselves in cultural beliefs. However, the
linguistic and algorithmic categorization processes do have
common intersections. Linguistically, Rosch, [23, 24], de-
scribed this as prototype theory where through any number
of cultural and societal processes what is the best represen-
tational icon of a category is formed by our preconceived
notions. Adaptive learning provides diverse paths to suc-
cess, many of which may not align with our preconceived
notions of what constitutes successful or unsuccessful behav-
ior. Clearly, clustering algorithms have assumptions built
into them a priori but once built are not influenced by pre-
conceptions. The questions we ultimately wish to address
involves whether or not the clustering of student trajecto-
ries can provide a foundation for category characteristics
through the multiple lenses of methods, education, linguis-
tics, and prototype theory and should they make educational
sense how can we use them to improve learning? [20].

2. APPROACH
Here we provide an outline of the RFC algorithm. In the
following subsections, we provide the specifics on our imple-
mentation of each function, although it is possible to alter
these to suit other needs or implementations. The algorithm
proceeds by first grouping students using fuzzy clustering
for a range of values of k (the number of clusters) - lines
5→ 7. Validity indices are calculated for each solution, and
the most appropriate number of clusters is chosen - line 8.
The algorithm then proceeds by identifying outliers and re-
moving them from the data. The algorithm then reapplies
the clustering creating a more compact solution. This part
of the process repeats until the algorithm identifies no new
outliers - line 10. The data is then limited to the previously
identified outliers on this loop - lines 11 → 12. The whole
process then repeats with the data filtered to the outliers.

There are three parameters to the algorithm: kmax is the

Algorithm Repeated Fuzzy Clustering

1: D is the student data
2: Outliers = All students
3: i = 0
4: while |Outliers| > tol & i < M do
5: for k in 1 : kmax do
6: Fk = FuzzyCluster (k,D)

Vk = V alidityIndices (Fk)
7: end for
8: Select k using V
9: i = i+ 1

10: FCi = RefineClustering (Fk)
11: Outliers = IdentifyOutliers (FCi, D)
12: D = D \Outliers
13: end while

maximum number of clusters to consider at each repetition;
tol is limit on the number of outliers that must be present
for the algorithm to repeat; M is the maximum number of
repetitions. There are four functions within the algorithm
where choice is possible. These enable the tailoring of the
algorithm to specific needs or implementations. The choices
here can lead to the introduction of additional parameters.

2.1 Fuzzy Clustering
Fuzzy clustering is used to determine the grouping of stu-
dents within a loop. The choice of fuzzy, as opposed to crisp,
is because it provides a membership value for each student in
each cluster. This is relied upon to determine outliers, S2.4.
In this implementation fuzzy k-means [10] is used, although
it would be possible to use any other fuzzy clustering algo-
rithm in its place [14]. An effect of using fuzzy clustering in
our approach is that the algorithm produces crisp divisions
between loops and fuzzy divisions within.

2.2 Validity Indices
Validity indices provide a quantitative measure of cluster
validation. Their calculation is a fundamental part of the
clustering process and provides guidance when deciding on
k, the number of clusters. There is a huge range of cluster
validity indices [2] with a large subset focused on fuzzy clus-
tering [26]. In this implementation, we use the six available
in the FClust R package [12]. These include the Silhou-
ette index [19], Fuzzy silhouette index [5], Partition coeffi-
cient [3], Modified partition coefficient [8], Partition entropy
[4],and Xie and Beni index [27]. For each clustering solu-
tion, we record the value of k recommended by each validity
index. The final value of k is the mode of these recommen-
dations. In the case of two possible values for k, we chose
the smallest.

2.3 Refining Clusters
Refining the clustering solution is an optional step that en-
hances the compactness of the final clusters on each loop.
Given a solution, outliers once identified are removed from
the data. The clustering procedure is then rerun with the
same value of k to derive a tighter clustering solution that
better represents that data and students that remain. This
process repeats as required until a stable solution emerges
and no outliers are present.
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Figure 2: Radviz of membership for a solution with
k = 6. Outliers are shown in blue. (a) Outliers as
identified by (1). (b) Outliers as identified by (2).

2.4 Identifying Outliers
Identifying outliers is the most crucial step in the RFC al-
gorithm. This process places the split in the data for each
loop of the algorithm. Many strategies are possible with
the choice depending on the application and chosen clus-
tering procedure. [21], [15] and [13] all explore identifying
outliers as part of the k-means clustering process. This is
done for several reasons including creating more compact
clusters. These process generally rely on distance measures
to identify the outliers in the data.

The method presented here identifies outliers using the mem-
bership values from fuzzy clustering with two versions con-
sidered below. The rationale behind both of these approaches
is that they seek a solution which places observations mostly
within one or two clusters. Any observation split among
three or more clusters is an outlier. For an instructor hav-
ing a student predominately within only one or two clusters
should help simplify the task of interpreting their behavior.

The first and simplest version of identifying outliers uses
the maximum membership value mi and the sum of the two
highest membership values si for an individual observation
i. The condition classifies an observation as an outlier if the
values of mi or si fall below some limit. Equation (1) places
a limit of 1

2
on the value of mi and a limit on si that is

increases slowly from 1
2

with increasing number of clusters
k.

Outliers =

{
i | mi <

1

2
∨ si <

1

2
+

1

k

}
(1)

This condition will not work for k = 2 as si will always equal
1, and the condition on mi will never be satisfied. In this
case, one possible solution would be to place a stricter limit
on mi and drop condition on si.

The second approach makes use of the Radviz method of vi-
sualizing fuzzy cluster membership [18]. Radviz represents
each cluster by a dimensional anchor and distributes each
dimensional anchor evenly on a unit circle. Each observa-
tion corresponds to a point. The visualization connects each
point to each anchor by a spring whose stiffness corresponds

to that observation’s cluster membership for the associated
anchor. The position is where the spring’s tension is at its
minimum. Imagine each anchor pulls on a data point with
a strength equal to the cluster membership. The higher the
membership value, the stronger the pull and the closer the
data point to that anchor. The ordering of the anchors is
essential, and work has been completed to determine the
optimum position [9].

The advantage of this method is that it makes observations
which are evenly split among multiple clusters evident as
these will be close to the center of the visualization since
they get equally pulled in all directions. Observations that
are a member of a small number of clusters will generally be
further from the center. An example of a Radviz, created
using [1], from one stage of implementing the RFC algorithm
with six clusters, can be seen in Figure 2. In part (a), out-
liers, as defined by (1) with k = 6, are colored in blue and
are visible in the center of the graph.

An alternative to (1) is to use the position of each obser-
vation on the Radviz graph. Here outliers are defined as
being those at the center of the graph within some circle of
radius r and where xi and yi are the Cartesian coordinates
of the position of the observation i in the visualization. The
parameter r has a similar role to m in the fuzzy k-means
algorithm in that it controls the fuzziness of the clusters.
The larger r, the crisper the clustering.

Outliers =
{
i | x2i + y2i < r2

}
(2)

This method has the advantage of also working without
modification for the case where k = 2, as points become
spaced along a straight line. In this case, the condition 2
reduces to m < r + 1

2
. Figure 2(b) displays the outliers as

identified by (2) using r = 0.4. We can see a significant
overlap of points using both conditions.

3. EXPERIMENTAL RESULTS
3.1 Dataset
The data used to test the algorithm is from UCF’s use of the
Realizeit platform. The data encompasses N = 5044 stu-
dents across 51 online and blended course deliveries across
nine terms from 2015 to 2018. Both spring and fall terms
last 15 weeks and the summer term is 12 weeks. The courses
cover a range of disciplines including Psychology, Spanish,
College Algebra, various Computing courses, and Nursing.
UCF uses the platform in a variety of different contexts and
the student learning in the platform contributes a more sig-
nificant element of their final grade in some course than
others. The data only contains first-time students; repeat
students are filtered out.

3.2 Features
It is possible to define a distance metric for the progress
trajectories in their raw form and to use the RFC algorithm.
However, we can obtain more easily interpretable results for
an instructor by extracting features from the trajectories
that capture the key behavioral aspects. Through testing
and iteration the following six were selected:
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Figure 3: The center (mean) of each cluster on each
of the key features for the normalized UCF data.

• Start day - The first day on which the student made
progress.

• End day - The last day on which the student made
some progress. The day on which the student reached
their final % progress value.

• End % progress - The percentage of concepts mas-
tered by the student by the end of the course.

• Num days progress - The number of days on which
the student made progress.

• Max step - The single largest jump in progress on a
single day.

• Max days no progress - Between the start and end
day, the largest number of consecutive days on which
the student made no progress.

One weakness of the chosen features is that they are only ob-
servable after the course is finished making an early predic-
tion of behaviors difficult. Note that the trajectories do not
capture all activities completed by the student, just those
that increase their progress. For example, practices, revi-
sions, or assessments are not evident in this data.

3.3 Clustering
The RFC algorithm made use of the fuzzy k-means algo-
rithm with the fuzzy parameter set at m = 2. Note that the
data was normalized before using fuzzy clustering. We set
kmax = 10, M = 10, and tol = 0.05N ≈ 250. The algorithm
completed 5 loops and automatically produced 13 clusters
in total. The breakdown of clusters per loop and the weight
of each cluster is provided in Table 1. We use weight since
a student belongs only partially to any one cluster.

Table 1: Cluster and Loop weights W , % and devi-
ation from average δ.

Cluster W % δ
Total

W % δ̄
C1L1 1685.6 33.42 0.60

3244 64.31 0.57
C2L1 1558.4 30.90 0.55
C1L2 280.6 5.56 0.29

915 18.14 0.70
C2L2 125.3 2.48 1.25
C3L2 223.7 4.44 0.38
C4L2 285.3 5.66 0.87
C1L3 202.0 4.00 0.61

293 5.81 0.68
C2L3 91.0 1.80 0.75
C1L4 129.4 2.57 1.12

340 6.74 1.08
C2L4 210.6 4.18 1.04
C1L5 63.3 1.25 1.29

252 5.00 1.07C2L5 76.9 1.52 1.52
C3L5 111.8 2.22 0.44

The first loop captures the standard approach of applying
the fuzzy k-means algorithm once and stopping (if the refine-
ment step is excluded). It is the clusters on loop two to five
that are new, and it is here that we find the outlier behav-
iors that would be missed by the standard approach. Notice
that the number of students clustered on each loop generally
decreases as the loop count increases. Another point is that
these “outliers” account for over 30% of the students.

Figure 3 visualizes the center (mean of the normalized data)
of each cluster for each feature. Figure 4 displays the trajec-
tories belonging to each cluster with a membership greater
than 0.5. The students with the highest membership val-
ues for each cluster are shown in black, and these can be
taken as prototypes for each cluster to help interpretation.
Note that some of the trajectories in each cluster vary con-
siderably from the prototypes due to the fuzzy nature of
the clusters and likely have membership values close to 0.5.
The noise present in the clusters on the final loop suggests
that perhaps the algorithm stopped too early and allowing
additional loops could uncover new behaviors.

From an examination of these graphs, we can see that some
outlier behaviors are entirely different from the most com-
mon behaviors found on the first loop. There are certain
similarities in some cases but enough of a difference to make
them worthy of being categorized as separate behaviors.

The clusters found on loop one represent more successful
behaviors in that the students generally finish over 50% of
the concepts. The first that represents unsuccessful behavior
appears on loop two, with more appearing on later loops.
Below we provide notes on some of the individual behaviors.
A detailed analysis is beyond the scope of this paper.

• Students in cluster 1 on loop 4 (C1L4) master all the
concepts in a short period right at the start of the
course.

• C2L5 are the students who generally did too little too
late.

• C3L5 are students who start well but for some reason
stopped with about a month to go.
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Figure 4: The trajectories belonging to each cluster in the UCF data. The most representative (highest
membership values) members of each cluster are shown in black.

• C2L1 and C4L2 are similar in that they make their
progress is a small number of large steps. The differ-
ence is when in the course that progress takes place.

• C1L5 are students who have a long dormant period in
the middle of the course and leave everything to the
last minute.

As expected the clusters found on the early loops tend to
capture behaviors that are close to the “average,” whereas
later loops have clusters that are more different. We demon-
strate this by examining the cluster centers displayed in Fig-
ure 3. The deviation of a cluster center from the mean (solid
black line) is an indication of how far the behavior is from
the average. Table 1 provides this deviation, calculated as
the mean absolute difference, for each cluster and loop. We
see that in general later clusters capture more extreme be-
haviors. The cluster closest to the average is C1L2, but only
represents about 5.5% of the students. The cluster furthest
from the average is C2L5 and represents about 1.5% of stu-
dents. What makes these students stand out is their late
start time and low level of progress.

3.4 Comparison
To highlight the limitations of standard approaches, we ap-
plied both crisp and fuzzy k-means to the UCF dataset. In
summary, these algorithms produce a much smaller number
of clusters and do not capture the same range of outlier be-
havior as those captured by the RFC algorithm. Table 2
display the results from fuzzy k-means for various values of
the fuzziness parameter m. For each value of m, the table
provides the validity indices, the selected number of cluster
k, and the number of outliers based on (2). The value of
m = 2 is the default and corresponds to applying just one
loop of the RFC without refinement. We observe that we
get more clusters and fewer outliers as m → 1. Indeed the
validity indices suggest that m = 1.01 is the best solution

Table 2: Results of fuzzy k-means for various values
of m including the validity indices and number of
outliers.

m k SIL.F SIL PC PE MPC XB Out.
1.01 5 .58 .58 1.0 .00 1.0 .29 1
1.2 4 .59 .56 .94 .11 .92 .36 66
1.4 3 .58 .51 .83 .31 .75 .46 366
1.6 3 .60 .50 .73 .50 .59 .49 864
1.8 3 .62 .49 .63 .66 .44 .52 1438
2.0 2 .52 .44 .69 .48 .37 .54 1606

of those presented. However, with this solution, we only
get five clusters, and these contain high levels of noise and
are therefore can be challenging for instructors to interpret.
This low number of clusters does not accurately capture the
full range of behaviors apparent in the data.

With the solution improving as m → 1 the logical step to
take is to set m = 1 and perform simple crisp clustering
using the k-means algorithm. We performed this using the
NBClust R package [7] which provides a collection of 23 ap-
propriate validity indices to help with the choice of k. Of
these, 7 proposed 3 clusters, followed by 5 indices proposing
7 clusters. Both values lead to the same conclusion as we ar-
rived at with fuzzy clustering; that is, the number of clusters
does not adequately capture the full range of behaviors.

4. CONCLUSIONS AND FUTURE WORK
The RFC algorithm has allowed us to uncover outlier be-
haviors that are in some cases very different to the most
common behaviors found on loop 1, and in other cases ap-
pear visually similar but represent a very different type of
learning behavior. The behavioral clusters found here are
by no means an exhaustive list. Adjusting the parameters
of the algorithm, for example, by changing the parameters
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that control the fuzziness of the clustering, would possibly
allow more outlier behaviors to emerge.

The purpose of this paper was to describe and demonstrate
the RFC algorithm in its current form. Many possible im-
provements and extensions could be carried out. Once the
RFC algorithm has finished, it is possible that clusters on
a later loop could better capture a student that belongs to
some clusters on an earlier loop. One extension could be to
carry out a refinement process moving students from earlier
to later clusters. Potentially we can achieve further improve-
ments by including additional features that capture other
aspects of behaviors or by applying a weighting to features
that are considered more critical.

Lakoff [20] puts the clustering process this way, “Categoriza-
tion is not to be taken lightly. There is nothing more basic
than categorization to our thought, perception, action and
speech” ([20] pg. 5). Identifying these student trajectories
as either subordinate, superordinate of basic level create a
substantial educational responsibility in the adaptive learn-
ing environment where students have control time, pace and
feedback. If John Carroll [6] was correct in that learning is
a function of time spent and time needed then the question
is what resources do various student cohorts require. We
argue that the clustering process can help in the better un-
derstanding of what it will take to help larger numbers of
students become successful. As we explore these procedures
several questions emerge. If and when will the process be-
come excessively granular and dysfunctional how can these
processes be integrated into the educational environment?
Can these methods contribute to resolving achievement in-
equality? Finally, the question remains about whether the
clusters exhibit a categorical structure with meaningful pro-
totypes that respond to instructional interventions.
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ABSTRACT 

Liberal Arts programs are often characterized by their open 

curriculum. Yet, the abundance of courses available and the 

highly personalized curriculum are often overwhelming for 

students who must select courses relevant to their academic 

interests and suitable to their academic background. This paper 

presents the course recommender system that we have developed 

for the Liberal Arts bachelor of the University College Maastricht, 

the Netherlands. It aims to complement academic advising and 

help students make better-informed course selections. The system 

recommends courses whose content best matches the student’s 

academic interests, issues warnings for courses that are too 

advanced given the student’s academic background and, in the 

latter case, suggests suitable preparatory courses. We base the 

course recommendations on a topic model fitted on course 

descriptions, and the warnings on a sparse predictive model for 

grade based on students’ past academic performance and level of 

academic expertise. Preparatory courses consist of courses whose 

content has the best preparatory value according to the predictive 

model. We find that course recommendations are relevant for a 

wide range of academic interests present in the student population 

and that students found recommendations for courses at other 

departments especially helpful. The preparatory courses often lack 

coherence with the target course and need to be improved. 

 

Keywords 

Education, recommender system, warning, topic model, grade 

prediction. 

1. INTRODUCTION 
The Bachelor in Liberal Arts offered at the University College 

Maastricht, the Netherlands, is an honors program characterized 

by an open curriculum. The program allows students to design 

their curriculum in a fairly free fashion: more than 75% of the 

educational credits are free, the college offers over 150 courses 

covering a wide range of topics from artificial intelligence, to 

conflict resolution and to pop songs, and students can take up to 

one year’s worth of courses outside of the college. This freedom 

allows students to tailor their curriculum to their own interests; 

but the abundance of courses available makes the selection of 

courses overwhelming. First, the number of courses offered at the 

12 departments of the university is too large for students to have 

an overview of which ones match their academic interests. 

Second, since each liberal arts student has a unique curriculum, it 

can be difficult for them to determine if they have covered the 

necessary prerequisites for a particular course or if the course’s 

level is too advanced given their academic background. A 

recommender system that suggests courses whose content matches 

students’ academic interests, issues a warning for courses too 

advanced and, in the latter case, provides suitable preparatory 

courses would therefore be extremely beneficial. Not only would 

it increase the students’ information position, thereby improving 

self-advising, but it would also improve academic advising when 

used as an agenda-setting tool. 

Our course recommender system achieves these three goals: 

course suggestion, warning issuance and preparatory course 

advice. To receive course suggestions, the student enters her/his 

academic interests into the system which returns the 20 courses 

whose content best matches them. In practice, the student selects 

key words from a predetermined list that represent her/his 

academic interests. The course recommender system then uses a 

topic model to identify the courses whose content best matches 

the topics corresponding to the selected key words (see Figure 1). 

To receive warnings, students provide their transcript and indicate 

which courses they are considering for the following term. The 

system issues a warning for courses that it identifies as too 

advanced given the student’s academic background. In practice, 

the student enters her/his student ID with which the system 

extracts her/his past academic performance and the expertise that 

she/he has acquired in various topics. From these, the system uses 

a predictive model to estimate the grade that the student will 

obtain in the selected courses and issues a warning when the 

predicted grade is a fail (see Figure 2). Each warning issued is 

then accompanied by a list of preparatory courses whose content 

has the best preparatory value according to the predictive model. 

2. RELATED WORK 
Identifying courses that are both of interest to the students and of 

an appropriate level is a task that has recently gained attention in 

the literature. Gulzar et al. [8] propose a recommender system that 

uses information retrieval techniques to select courses based on 

students’ interests. Their system uses key words to search the 

space of possible courses and tries to improve the quality of the 

query by finding synonyms and generating N-grams so that the 

search returns a higher number of courses. Then, they use an 

ontological model to expand the search even further and retrieve 

courses related to the previously extracted courses in the 

ontological model. In this context, an ontological model is a 

knowledge model that represents relationships between concepts 

of a previously specified domain, such as ‘Computer Science’ [7]. 

This system is content-based since it is the contents of the courses 
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that are matched to the concepts of the ontological model or the 

key words of the query. In this manner, the recommender system 

allows the interest of the students to be matched to the contents of 

the course. However, the system suffers from several drawbacks: 

first, the domains (e.g. Computer Science or Medicine) from 

which the ontological models are built must be defined a-priori 

[7]. Second, the recommender system is dependent on a well-built 

database that is not always available at interested institutions. 

 

Figure 1. Course suggestions. 

 

Figure 2. Warnings and preparatory courses. 

Bydžovská [3] develops a recommender system that takes into 

account a student’s past performance and interest profile to make 

course recommendations. Students’ interests are defined in a 

narrow sense, that is, a course is considered of interest if a student 

has taken the course or marked it as a favorite in the university 

system. Course recommendations based on interest are then issued 

via a collaborative filtering approach: the suggested courses are 

the courses most selected by other students in the same field of 

study, or those that were taken by the n-most similar students that 

already graduated. To detect risk of failure, Bydžovská [3] 

predicts grades using classification and regression, or nearest 

neighbor, depending on the course. Warnings are issued after 

binning the predicted grades into excellent, good, or bad. The 

main innovation of the system is that it proceeds to include social 

behavior and take into account courses taught by a favorite 

teacher or taken by similar students. Although the system attempts 

to handle both interest and appropriateness of a course’s level, it 

suffers from three major disadvantages: first, it does not provide 

the kind of transparent recommendation that would allow students 

to reflect on their course selection because the content of the 

course is not explicitly taken into account. Second, it does not 

give students suggestions on how to address their deficiencies. 

Third, it does not permit students to change their interest, which is 

particularly important in a liberal arts context where students go 

through a broad exploratory phase before specializing.  

Bakhshinategh et al. [1] address the issue of recommending 

courses that help students overcome their deficiencies whilst 

accounting for changes over time. They view a study program as a 

path to obtain graduating attributes (skills, qualities, 

understandings) and rank the impact that each course has on 

promoting those graduating attributes for a student who took the 

course. The ranking is done through self-assessment by students 

after completing the course. The recommender system then uses 

collaborative filtering to find courses that score highest on 

promoting a targeted graduating attribute for a student who wishes 

to develop it further. Thus, if a student lacks “analytical skills”, 

the system identifies courses that improve these skills so that a 

student comes closer to the level of “analytical skills” that is 

required for graduation. This system can be used to find 

preparatory courses for other courses by shifting from graduating 

attributes to attributes required to succeed in a course. The main 

disadvantage is that the impact of each course is found through 

self-assessment rather than in a data-driven way. 

Jiang et al. [11] take a different approach to find preparatory 

courses by using recurrent neural networks to develop a goal-

based course recommender. A student specifies a course that they 

wish to take, along with the grade that they desire to achieve, and 

the system uses their transcript to find personalized preparatory 

courses. Although this approach finds preparatory courses in a 

data-driven way, it does so at the expense of transparency, which 

makes a student’s reflective decision-making process more 

difficult and provides no direct insight for academic advising. 

We use a topic model to extend Bydžovská’s [3] use of students’ 

interest. This provides a more flexible and realistic interpretation 

of a student’s interests and how they change over time. Moreover, 

we use a topic model to expand the search of relevant courses in 

the manner that by Gulzar et al. [8] use ontological models. The 

advantage of a topic model is that topics are learned from the data 

and must not be known in advance. Our system also supplements 

recommendations with explanations and additional information to 

help students make well-informed course selections. 

3. DATA 
We use two types of data: student data and course data.  

The student data consists of anonymized course enrollment 

information. We use the transcripts of the 2,526 students of the 

liberal arts program between 2008 and 2019 with a total of 79,245 

course enrollments. We exclude enrollments with a missing grade 

which indicates that the student either dropped the course or fail 

the attendance requirement. In the latter case, the data set contains 

an observation corresponding to the resit. Table 1 presents the 

student data. Each row contains an anonymized student ID, a 

course ID, a year and semester, and the obtained grade. 

The course data consists of the 2018-2019 course catalogues of 5 

departments of Maastricht University: European Studies, 

University College Maastricht, University College Venlo, 

Psychology and Science Program. These catalogues contain a 

one-page description of 490 courses. Table 2 presents the textual 

data in the tidy format with one row per document-term [18]. We 

process the data following common cleaning procedures [13]: we 

tokenize the individual terms, stem them with the Hunspell 

dictionary and remove common stop words, numbers between 1 

and 1,000, and terms occurring less than 3 times in the data set. 
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Table 1. Example of student data 

 

Table 2. Example of course data 

 

4. METHODOLOGY 

4.1 Overview 
Figure 3 presents a diagram of the course recommender system. 

We start by fitting models to the data. We use the Latent Dirichlet 

Allocation statistical model to fit a topic model on the course data 

and the lasso penalty to fit a series of sparse multiple linear 

regression models for grade prediction to the student data. A 

model is fitted to each course. Their inputs consist of the students’ 

past academic performance and level of expertise in the topics 

which we derive from their transcript with the topic model. 

These models generate intermediate results from the user’s input. 

We use the topic model to infer the student’s academic interests 

from the key words that she/he has entered into the system and the 

regression models to predict the grades that the student will obtain 

in the course she/he selected based on her/his transcript. 

The system’s outputs are based on these intermediate results. The 

course suggestions consist of the 20 courses whose content best 

matches the student’s academic interest in terms of Kullback-

Leibler distance. Warnings are issued when the predicted grade is 

a fail. For each warning issued, we indicate the 5 courses whose 

content has the best preparatory value according to the regression 

model. The preparatory value of a course is estimated with the 

Kullback-Leibler distance of its topic distribution to the 

coefficient estimates of the topic variables in the linear regression.  

All computations are realized on the environment for statistical 

computing and graphics R [16, 13, 10, 4, 19, 20]. 

4.2 Topic Model 
We use the Latent Dirichlet Allocation (LDA) generative 

probabilistic model and the Gibbs sampling algorithm to fit a 

topic model to the course data. 

The LDA model conceptualizes topics as a probability 

distribution over a finite set of words (in this case, the vocabulary 

of the course data), and a document (i.e. a course description) as a 

sequence of N words, where each word was generated by drawing 

from a probability distribution over topics specific to that 

document [2]. Thus, each word belongs to all topics but with 

different probabilities, and all topics are present in each course 

but with different weights. Figure 4 and Figure 5 respectively 

show the word distribution in two topics and the topic distribution 

in a course based estimated by the topic model fitted on the course 

data. Technically, the LDA model generates a document as 

follows. First, the word distribution β for each topic is determined 

by β ~ Dirichlet(δ) and the topic weights  for each document are 

determined by  ~ Dirichlet(α). Second, each of the N words of 

the document is chosen by choosing a topic z ~ Multinomial(θ) 

and then choosing a word from a multinomial probability 

distribution  conditioned on the topic z. 

 

Figure 3. Diagram of the course recommender system. 

Gibbs sampling is a Monte Carlo Markov Chain (MCMC) 

technique for successively sampling conditional distributions of 

variables whose distribution over states converges to the true 

distribution in the long run [5]. Gibbs sampling generates 

posterior samples by sweeping through each variable and 

sampling from its conditional distribution when the other 

variables are fixed to their current values. Phan et al. [14] used 

Gibbs sampling to learn the distributions β and θ for the LDA 

model. In this case, δ and α are the prior distributions for Gibbs 

sampling, acting as hyper-parameters that respectively determine 

how sparse the distributions of words in topics and topics in 

documents are. Gibbs sampling picks each word in the vocabulary 

and estimates the probability of assigning the current word to each 

topic conditioned on the topic assignments of all other words. 

With this conditional distribution, given a document, a topic is 

sampled and assigned as the new topic assignment for the current 

word. Then, with the distribution of words per topic, we compute 

the conditional probability of the topics given an observed 
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Student ID Course ID Academic Year Period Grade 

44940 CAP3000 2009-2010 4 8.8 
37490 SSC2037 2009-2010 4 8.4 
71216 H l\ fl003 2010-2011 4 6.8 
44212 SSC2049 2010-2011 2 8.4 
85930 SSC2043 2011-2012 l 4.3 

14492 COR1004 2012-2013 2 .5 
34750 H . l\12049 2013-2014 5 6.0 
32316 SSClO0l 2013-2014 8.5 
22092 CI1009 2014-2015 1 6.4 
19512 COR1004 2016-2017 5 7.0 

Course ID Course T it le Department word 

HUl\13034 World His tory UCl\I understand 
HUl\13034 World Hi tory UCM major Data 

HUl\13034 World His tory UCl\I issue 
HUl\13034 World Hi tory UCM episode 
HUl\13034 World History UCl\I shape 

HUl\13034 World His tory UCl\I history 
HUl\13034 World His tory UCl\I mankind 
HUl\13034 World History UCl\I focus 
HUl\13034 World History UCl\I theme 
HUl\13034 World History UCl\I topic 

Preparatory Courses 



document. Since Gibbs sampling is a MCMC, the distribution 

sampled from a large number of iterations approximates the target 

distribution [5], enabling us to infer β and θ. 

  

Figure 4. Term distribution in two topics. Topic 4 corresponds 

to international politics and topic 19 to philosophy. 

 

Figure 5. Topic distribution in the core course COR1004 

Political Philosophy. The course is characterized by topic 4 

(international politics) and topic 19 (philosophy). 

 

Figure 6. Model selection based on log-likelihood. The 

maximum-likelihood model has 65 topics. 

4.2.1 Model Selection 
This procedure requires that we fix a-priori the number of topics 

(k) to be inferred. We trained 30 models with k = 5, 10, …, 150. 

We set  to 50/k and  to 0.1 as suggested by Griffiths & Steyvers 

[6]. For Gibbs sampling, we run 6,000 iterations with a burn in of 

1,000 iterations and sample every 100 iterations. To avoid being 

stuck in a local optimum, we use 10 random initializations to 

explore the model space and keep the best model with respect to 

the log-likelihood. We then select the number of topics yielding 

the model with the largest log-likelihood [6]. Figure 6 shows the 

log-likelihood of the topic models that we trained. The model with 

65 topics has the maximum log likelihood. In order to increase the 

quality of the selected model, we refit it with more iterations 

(16,000 iterations with a burn in of 2,000 iterations and 20 

random starts; the other parameters are kept the same). 

4.3 Warnings 
We fit a sparse multiple linear regression model for grade 

prediction to each of the 132 courses currently offered at the 

college that have had more than 20 student enrollments since 

2008. We regularize the models with the lasso penalty [17]. The 

set of predictors consists of students’ past academic performance 

and their level of topic expertise at the start of the course. 

Students’ past academic performance consists of 6 variables 

corresponding to their general and concentration-specific GPA’s 

(humanities, natural sciences, social sciences, skills and projects). 

Students’ topic expertise consists of a set of 65 variables (one per 

topic of the topic model) which indicate how much knowledge the 

student has acquired about the topic during her/his studies. A 

topic expertise variable corresponds to the sum of the topic’s 

importance in the courses taken by the student (as estimated by 

the topic model) weighted by the grades. We assume that students 

who obtain 10/10 acquired all the topic-related knowledge present 

in the course while those obtaining 5/10 acquired half of it. Tables 

3a, 3b and 3c and Figure 7 show a toy example of the contribution 

of individual courses towards a student’s topic expertise. 

Since the number of predictors is large, we regularize the models 

with the lasso penalty to increase their accuracy. The lasso penalty 

shrinks the coefficient estimates of the model, thereby reducing its 

variance. For each model, we use 10-fold cross-validation (CV) to 

find the lasso tuning parameter λ that minimizes the CV mean 

absolute error, a more robust loss function than the squared error 

[9]. Figure 8 presents the distribution of the CV mean absolute 

error for the 132 prediction models. The model for the course 

PRO2004 Academic Debate has the smallest prediction error 

(0.38 grade point) and the model for SCI3006 Mathematical 

Modelling the largest (1.80 grade point). The mean CV error 

weighted by the number of students enrolled in the course is 0.78, 

the median is 0.78 and the standard deviation is 0.28. 

To receive a warning, the user enters into the system her/his 

student ID and the list of courses that she/he is considering for the 

coming term. The system uses the student ID to extract her/his 

transcript, from which her/his past academic performance and 

topic expertise are determined. We then use the regression models 

to predict the grades that the student will obtain in the selected 

courses and issue a warning for the fail grades (see Figure 2). 

4.3.1 Rule-based Warnings 
We initially explored an alternative approach for warnings based 

on association rules. We used the SPADE algorithm [21] to 

identify sequences in the students transcripts of the type <fail 

course A> => <fail course B> or <not take course A> => <fail 

course B> and considered sequences with a support superior to 10 

students, a confidence superior to 0.4 and a lift superior to 1.1. 

Warnings were issued when a student selected a course for which 

one of the selected rules predicted a failure. 

The transparency of this approach motivated its initial adoption; 

but it turned out to be unsuitable to our case. First, given the small 

size of the student data and the fact that relatively few students 

fail courses at the college, only 21 rules met the criteria. Second, 

this approach ignores the fact that skills necessary to perform well 

in a particular course can be acquired by taking a combination of 

courses. To tackle the first issue, we considered a relaxed version 

of the rules that substitutes a <fail course A> with a <obtain less 

than 6.5 in course A>. The number of rules meeting the relaxed 

criteria increased to 185. Yet, the second issue remained and led 

us to consider regression models that use topic expertise as a 

proxy for the skills necessary to perform well in a course. 
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Table 3a. Toy example: topic distribution in 3 courses 

 

Table 3b. Toy example: transcript 

 

Table 3c. Toy example: course contribution to topic expertise 

 

 

Figure 7. Toy example: course contribution to a student’s topic 

expertise. We use these variables to predict grade. 

 

Figure 8. Distribution of the cross-validation mean absolute 

error in the 148 predictive models. 

4.4 Course Recommendation 
To provide course recommendations, we identify courses whose 

content best matches the academic interests of the students. We 

use the Kullback-Leibler distance, an asymmetric measure of the 

difference between two probability distributions [12], to estimate 

the degree to which a course’s topic distribution (as estimated in 

the topic model) corresponds to the normalized academic interests 

of the student. The system returns the 20 courses with the smallest 

such distance. A student’s academic interests profile consists of a 

numeric vector indicating the interest of the student in each of the 

topics. It corresponds to the sum of the selected key words’ 

contribution to the topics in the topic model. In order to assist 

students in selecting key words, we preselect the 10 terms most 

relevant to their topic expertise profile (as defined in section 4.3). 

To make the system as informative and transparent as possible, 

each recommendation includes the three selected key words with 

the most relevance to the course. Here, a term’s relevance 

corresponds to the sum of the term’s contribution across the 

topics weighted by the importance of the topics in the student’s 

academic interests profile or student’s topic expertise profile. 

4.5 Preparatory Courses 
In order to help students plan their curriculum, each warning is 

accompanied by a list of suitable preparatory courses. Similarly to 

the regression models built for the warnings, we fit a lasso-

regularized multiple linear regression model for grade prediction 

to each course; but this time, the input only consists of the 

students’ topic expertise. A positive coefficient estimate indicates 

that more knowledge of the topic is associated with larger grade in 

the course. For each course, the preparatory courses consist of the 

5 courses (excluding advanced courses) whose topic distribution 

has the smallest KL distance to the course’s regression’s 

normalized coefficient estimates. 

5. RESULTS 
We used expert validation to evaluate the system’s usefulness: 

current students, alumni and members of academic advising 

interacted with the system and commented on their experience. 

We find that the system recommends course that are potentially 

useful to the students, thereby helping them make better-informed 

course selections. First, students value the system’s ability to 

consider multiple interpretations of the same term e.g. the term 

function in mathematics and in biology. This feature of the system 

stems from the possibility for a term to have a large weight in 

several topics. Second, many users were surprised that they do not 

need to enter key words present in the course description for the 

course to be recommended. Since topics act as a buffer between 

the key words entered in the system and the course descriptions, 

students merely need to choose key words that characterize topics 

present in the course. This allows them to focus on their academic 

interests when selecting key words as opposed to thinking about 

the courses that might interest them. Third, they found that self-

selected key words yield recommendations that are more useful 

than those stemming from the preselected key words. This pattern 

is due to the presence of topics related not to the content but the 

structure of the courses. For instance, topic 25 is dominated by the 

terms paper, write and assessment. A student’s topic expertise 

profile therefore contains topics related to the structure of the 

courses that they have taken, which, for a student focusing on film 

art, leads to the preselection of the terms research, method, 

period, and skill along with film, gender, literature and culture, 

and the recommendation of the courses Research Methods: 

Interviewing, Research skills, and Research Project. Excluding 

structured-related key words solves the issue and results in 

suggestions of potentially interesting courses: Narrative Media, 

Pop songs and poetry, and Cultural Studies II. We therefore 

include an opt-out option to cancel key word preselection. Fourth, 

students found recommendations for courses at other departments 

particularly useful: in most cases, they ignored that these courses 

existed or that their content matched their academic interests. 

Students wished that warnings also included low grades. We 

therefore provide red warnings for predicted fail grades (< 5.5/10) 

and orange warnings for low ones (between 5.6/10 and 6.5/10). 

Users were enthusiastic about the preparatory courses; they found 

it very beneficial to receive suggestions of how to prepare for a 

particular course. Unfortunately, the preparatory courses returned 

by the system often lack coherence with the target course. For 

instance, the list of preparatory courses for the course World 
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History contains the course Nutritional Neuroscience. These 

incongruences may stem from the presence of structure-related 

topics in the topic model combined with the fact that the lasso 

penalty shrinks most coefficient estimates to 0. Hence, it is 

possible that the regression model for grade prediction of some 

courses only has non-zero coefficient estimates for structure-

related topics, hence yielding preparatory courses characterized by 

these structure-related topics, and not the content-related topics. 

6. FUTURE WORK 
This course recommender system is a work in progress and the 

difficulties detailed above indicate three pathways for future work. 

First, we need to differentiate structure-related and content-related 

topics. This seems particularly difficult to do. One approach is to 

manually inspect the topics that are most prevalent in the corpus 

of documents and reduce the weight of the structure-related ones. 

Second, in order to increase the coherence between preparatory 

courses and target course, we could impose that their content must 

be related. The KL distance could be used to accomplish this. We 

could also take the personalized approach of Jiang et al. [11]. 

Third, since the topic model has a central place in the system, we 

plan to improve it by (i) expanding the course data to course 

manuals (20-page document offering a detailed description of a 

course’s content) and the material covered in the course e.g. 

academic articles, textbook chapters, and (ii) using a structural 

topic model that uses covariates to build the model and calibrate 

topic prevalence and topic content depending on metadata [15] to 

take into account the origins (department) of the course data. 
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ABSTRACT
One significant challenge in the field of measuring ability
is measuring the current ability of a learner while they are
learning. Many forms of inference become computationally
complex in the presence of time-dependent learner ability,
and are not feasible to implement in an online context. In
this paper, we demonstrate an approach which can estimate
learner skill over time even in the presence of large data
sets. We use a rating system derived from the Elo rating
system and its relatives, which are commonly used in chess
and sports tournaments. A learner’s submission of a course
assignment is interpreted as a single match. We apply this
approach to Coursera’s online learning platform, which in-
cludes millions of learners who have submitted assignments
tens of millions of times in over 3000 courses. We demon-
strate that this provides reliable estimates of item difficulty
and learner ability. Finally, we address how this scoring
framework may be used as a basis for various applications
that account for a learner’s ability, such as adaptive diag-
nostic tests and personalized recommendations.

Keywords
Adaptive learning, student modeling, knowledge tracing, stu-
dent ability estimation

1. INTRODUCTION
A requirement of any adaptive learning system is the simul-
taneous understanding of learner skill and item difficulty.
Such measurements also enable ordering content by mea-
sured difficulty and recommending content and assessments
appropriate for a learner’s degree of skill, among other ap-
plications.

Item Response Theory, one common method for obtain-
ing skill estimates in a testing context, requires assuming
a fixed skill for the learner. While valid during a single
exam, this assumption fails for learners who are learning
during a course. Some techniques can rigorously handle

skills that change over time, such as knowledge tracing [2]
and performance factor analysis [6], but they are computa-
tionally intensive. For Coursera’s dataset, applying these
techniques would require computing results for millions of
learners across thousands of courses. Further, because learn-
ers in an online platform can benefit from visibility into
their own skills, online updates are desirable. Under these
conditions, many approaches become computationally in-
tractable.

To address this problem, we turned to the Elo and related
rating systems, which are commonly used in chess tourna-
ments and for team ratings in many sports [7, 9]. Following
the example of [7], we treat learners and course items as
players in a tournament. Each attempt by a learner at pass-
ing an item is a match.

In this paper, we demonstrate the application of the Glicko
rating system [3], a variant of the Elo rating system which
incorporates uncertainty, to Coursera’s unique dataset. We
maintain a focus on the most well-measured skills on our
platform. We show that we can obtain reasonable and re-
liable estimates of learner skill and item difficulty. Finally,
we discuss planned applications and next steps.

2. BACKGROUND
Coursera is an online learning platform, which offers courses
in partnership with the universities and companies that cre-
ate them. In addition to single courses, Coursera also pro-
vides “specializations,” which are groupings of 3-10 courses
that are usually (but not always) intended to be taken in se-
quence. Coursera has over 3300 different courses available,
covering a broad range of subjects.

Instructors who create courses on Coursera can provide a
rough estimate of the difficulty (“beginner”, “intermediate”,
“advanced”), but this is generally not enough to establish
prerequisites or help a learner know if they are ready to start
a course. Since the label is at the course level, skill-related
nuance is lost. For example, a course may teach both in-
termediate statistics and introductory programming. These
labels are also insufficient for a learner to determine whether
it would be more valuable to them to jump in to a course or
specialization halfway through, rather than start at the be-
ginning. Therefore, it’s useful to estimate content difficulty
independent of instructor labels. Personalizing this support
to individual learners requires estimating their degree of skill
as well.

Rachel Reddick "Using a Glicko-based Algorithm to Measure
In-Course Learning" In: Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019), Collin F.
Lynch, Agathe Merceron, Michel Desmarais, & Roger Nkambou
(eds.) 2019, pp. 754 - 759
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Many other people have previously estimated content diffi-
culty and learner skill. The most fundamental include ap-
proaches based on Item Response Theory (IRT; e.g., [1]).
However, these are not suitable in Coursera’s context be-
cause they generally assume constant learner skill, as in a
testing environment. Although alternatives such as Bayesian
knowledge tracing [5] have potential, the methods are dif-
ficult to scale up from a few tens of thousands of item at-
tempts to over ten million for a single skill in Coursera’s
case. Further, the authors of [5] also note the confound-
ing effect of learners with stronger skills working on more
challenging problems, which systematically underestimates
the difficulty of advanced content, even in some knowledge
tracing approaches.

Therefore, we follow the work of [7] and consider the Elo
rating system. The Elo system is commonly used in chess
tournaments and other competitions. The general princi-
ple is that every player has a score, which is updated after
matches. Updates will be large if the outcome of a match is
unexpected. If a novice player defeats a master, the novice’s
score will have a large increase and the master will have
a large decrease. On the other hand, if a master defeats
a novice, the updates for both will be small or negligible.
This method may be applied to learners and items in courses
(such as exams), where each learner and item is interpreted
as a player. A new learner who “defeats” a hard item in
the Machine Learning skill will gain a large increase to that
skill, but not lose much from their score if they fail. Because
that ability differs from other skills (such as Management),
a learner should have different scores for each possible skill.
Items also need to be associated with the relevant skills.

In contrast to [7], we focus on the Glicko variant of the
Elo rating system [3]. This variant uses an approximated
Bayesian framework, which incorporates uncertainty in the
rating. This is particularly helpful for understanding learn-
ers who have not yet completed very many items. It also
supports estimation of ability across populations by enabling
weighted averages based on the uncertainty. The Glicko
scoring system has the drawback that it can’t be easily
adapted to use more complex IRT solutions, such as those
for multiple choice questions with a non-zero success proba-
bility even in the case of very low skill. However, because we
focus on full assignments rather than individual questions,
this will not be a serious limitation.

3. DATA
Coursera has over 38 million registered learners on its plat-
form. We draw our data from late 2014 onward.

We also have a framework for automatically tagging skills
to courses. We will focus on those subjects – business, com-
puter science, and data science – where the skills framework
is best calibrated. In this two sections, we briefly describe
how we tag skills to courses, and how we process the course
item data that we use.

3.1 Associating Content with Skills
Based on Wikipedia’s hierarchy of topics and our own hu-
man curation, we developed a hierarchy of more than 40,000
skills, over 13,000 of which are tagged to courses in the
Coursera catalog (see [8] for additional details). The most

popular of these skills are listed in Table 1, out of a total
of 26 available. These broad skills all have a set of subskills
within the skill hierarchy.

Individual skills are tagged to courses based on a combi-
nation of crowd-sourcing and machine learning. Learners
who complete a course are asked to tell us what skills they
learned. This information is used as the target variable of
a machine-learning model, which estimates the likelihood of
tagging based on course content features. The actual tag
rate and machine learning prediction are combined to cre-
ate a single relevance score, giving results for both popular
courses and unpopular courses with few crowd-sourced tags.

For our broad skills of interest, we treat a skill as tagged to
a course if any of its subskills in the course’s subject area
(e.g., data science) are tagged to the course.

Using this approach, for this set of skills, we obtain a total
of about 1400 courses tagged with skills. Of these, about
1000 are tagged with more than one skill.

3.2 Item Attempts
We define an item attempt as a learner submission. On the
Coursera platform, items include exams with multiple-choice
or text answers, programming assignments that require sub-
mitting code, and peer review assignments that are graded
by other learners. Most, but not all, are graded. In this
analysis, we include only items that are graded. Learners
are typically able to retake items up to a maximum number
of attempts per day.

Learners may retake an item for many reasons, from trying
again to technical issues. These repeated attempts are often
uninformative. For this reason, we reduce learner attempts
to those that are either the first attempt or a later attempt
that does not have the same pass/fail outcome. Thus, most
learner-item interactions are of the form pass (with no fur-
ther attempts), fail (with no further attempts), or fail fol-
lowed by pass at a later time.

This approach has the secondary benefit that if the skill
scores are surfaced to learners in the future, there is no
longer a motive to repeatedly submit a passed item in order
to game the system to get a higher score.

We also remove all attempts at items that all learners pass
on the first attempt, since these items are not informative.

We currently do not estimate scores for individual questions
or sub-parts within items. Using entire items has the advan-
tage of being able to easily include atypical items, such as
programming assignments. Expanding to obtain scores for
individual exam questions is left for future work.

4. IMPLEMENTATION
Our implementation of the Glicko scoring system generally
followed [3], with several modifications.

Most importantly, the Glicko system assumes that players
encounter each other during a tournament, during which
individual scores can be assumed to be roughly constant.
This is the “rating period” over which matches are accu-
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Table 1: Popular Skills
Skill Number of Attempts Number of Courses
Statistical Programming 17,840,101 157
Machine Learning 134,52,639 60
Computer Programming 12,940,557 383
Software Engineering 9,287,216 245
Artificial Intelligence 7,900,817 127
Management 6,104,244 386

mulated, and after which an update to the scores is made.
However, scores may change rapidly for learners who are
learning within a course. Learners watch course lectures or
review supplementary material about 40% of the time be-
tween subsequent submissions. Therefore, we are forced to
use a rating period that is only one “match” long – one item
attempt. In this case, the update equations from [3] reduce
to, for a single match:

µ′ = µ+
1

1/σ2 + 1/δ2
g(σ2

o){s− E(s|µ, µo, σ
2
o)} (1)

σ′2 =

(
1

σ2
+

1

δ2

)−1

(2)

Where:

g(σ2) =
1√

1 + 3σ2/π2

E(s|µ, µo, σ
2
o) =

1

1 + exp [−g(σo)(µ− µo)]

δ2 =
[
g(σ2

o)2E(s|µ, µo, σ
2
o){1− E(s|µ, µo, σ

2
o)}
]−1

In these expressions, µ is the initial score, µ′ is the updated
score, σ is the initial uncertainty in terms of standard devi-
ation, and σ′ is the updated uncertainty. The values with a
subscript ‘o’ are those for the opponent. If the “player” is a
learner, then the opponent is an item (and vice versa). s is
the outcome of the match. For a learner, passing the item
is a ‘win’, and s = 1, and failing is a loss with s = 0. The
reverse is true for items.

Our difficulty scores for items are based entirely on the scor-
ing method described above. Instructor provided difficulty
labels were not used as a feature in this framework.

Importantly, the learner’s score carries over from one course
to another, so long as both courses teach the same skill.
For example, when a learner finishes a course and starts
another, their score for the skill at the end of that course is
used as their starting point for that skill in the new course.
If the courses teach different skills, then the learner’s score
for the new skill taught in the second course will start at
zero, unaffected by their score in previously learned skills.

Finally, to obtain high-quality scores for all learners, we find
that we need to run the Glicko scorer twice. In the first run,
we set both learners and items to have prior scores of 0

Figure 1: Scores for course items generally converge
after many attempts. This example shows several
items from the Practical Reinforcement Learning
course, in the Machine Learning skill. The item
scores rapidly converge to stable values, with a small
amount of negative drift. For clarity, we only show
the first few items in the course.

and uncertainties of 5, to allow large updates initially and
to prevent questions with well-established scores to avoid
experiencing large perturbations from new learners. This
provides good estimates of item difficulty, but means that
learners who took the same item early in the data, rather
than late, are matched up against items whose scores may
be far from reasonable values, especially for less popular
content. It also means that a learner who has completed the
same course, but early in our data, may not have the same
score as a learner who performed in exactly the same way
in the same course near the end.

Thus, all learner scores are reported based on the Glicko
scorer a second time, using the item scores and uncertainties
from the first run. These values for items are held fixed.
The items scores for each skill are offset so that the fifth
percentile item has a score of zero. Learners start with prior
scores of zero and prior uncertainty of 1.0, which avoids
excessive initial swings in score.

In principle, it is possible to construct a more accurate learner
prior score based on information they have given us (e.g.,
education history) and what course they are starting. How-
ever, this could also lead to gaming of the system (by provid-
ing false information or trying a hard course first to obtain
a better score), may be biased against learners with nontra-
ditional backgrounds, and introduces additional complexity.
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Figure 2: Comparison of final item scores within a
single course (in the Machine Learning skill). As
expected, later items are generally more difficult
than earlier ones. The method also successfully cap-
tures differences in difficulty among different types
of items – graded programming assignments tend to
be more challenging than exams.

5. RESULTS
We show the convergence results for a few items in a typical
course in Fig. 1. This is the Practical Reinforcement Learn-
ing course, within the Machine Learning skill. As we might
expect, items later in the course are typically more challeng-
ing, but not always. This reflects variation in difficulty of
sub-topics within the course.

Although the item scores clearly converge within the first
few hundred attempts, there is also a long-term negative
drift in the scores. This is a known occurrence within Elo
frameworks (for examples in chess, see [4, 10]). In the case
of chess, players generally begin playing as novices and stop
playing as masters, with a higher skill than they started.
The pressure of new players always starting with low scores
leads to ratings deflation over time, and chess tournament
rating systems often include corrective factors for this rea-
son. In our case, a similar effect occurs because learners
generally start with lower scores than those of the items.

The degree of drift over a few hundred attempts is typically
of the same order as the estimated uncertainty (around 0.2
for the first item in the example course). In the future, we
may add a correction for this drift effect, but it does not
currently have a strong effect on our results.

For clarity, we note that convergence is only expected or
desirable for item scores. Items within courses are generally
not modified over time, and therefore, the difficulty of the
item should not change. In contrast, learner scores can be
expected to change rapidly as they progress through course
content.

When we examine the final item scores more closely, we find
that there are some differences by item type. Programming
assignments are often more difficult than regular exams (see
Fig. 2), in agreement with our expectations for these items.

Even with this variation and within-topic variability, we find
that difficulty does generally increase from the beginning to

Figure 3: Histogram showing the distribution of
the correlation between item difficulty and item or-
der for each course in the Machine Learning skill.
Extreme correlation (or anti-correlation) generally
comes from courses with few items.

Figure 4: learner score while progressing through
a course. This plot shows a learner progressing
through a Machine Learning course, and complet-
ing it. Note the occasional small drop in score when
the learner initially fails an item. Error bars are
±1σ.

end of a course. Across all skills, the mean correlation be-
tween item order and item difficulty within a course is 0.25.
The distribution of correlations for a single skill, Machine
Learning, is shown in Fig. 3.

We also find that scores across different courses make sense.
For example, based on median item score within the Ma-
chine Learning skill, the “Google Cloud Platform Big Data
and Machine Learning Fundamentals” course is the easiest.
This is the first course in a sequence of courses which are
intended to be introductory. Conversely, the hardest course
is “Probabilistic Graphical Models 3: Learning”, the final
course in a series of advanced Machine Learning courses.

A representative example of a learner gaining the Machine
Learning skill is shown in Fig. 4. The learner rapidly in-
creases in score to match the initial difficulty of the course,
followed by more incremental increases later on. This is
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Figure 5: A profile showing the top 5 most relevant
skills for a data scientist and the typical degree of
proficiency. In this example, the skill score is shown
as a percentile compared to the rest of the learners
on Coursera.

fairly typical of learners moving through a single course.

6. FUTURE APPLICATIONS
These difficulty and ability scores, in combination with our
skills tagging framework, unlocks many applications:

1. Learner skill profiles. These surface a summary of
each learner’s measured abilities. Providing this infor-
mation to learners would enable them to better under-
stand their own skills and how much they have learned
so far. These profiles would update online to immedi-
ately reflect recently submitted items.

2. Career skill profiles. In contrast to a learner skill
profile, a career skill profile shows the skills important
to a career and the necessary degree of proficiency.
These profiles can be built based on the skills of learn-
ers on Coursera who are already in these careers. Then
these profiles can be compared against a learner pro-
file, to allow the learner to see what they still need to
enter their desired career.

3. Recommendations by difficulty. Given knowledge
of a learner’s current and desired ability in a skill, we
can recommend courses that teach that skill which are
at the right level for that individual.

4. Adaptive diagnostics. With difficulty scores for course
items, it is possible to extract questions from course
content and use them as the question bank for an adap-
tive diagnostic, which provides questions close to a test
taker’s estimated skill. If learners take diagnostics as
a pre-test, before taking any courses, this can support
the recommendations by difficulty discussed above.

5. Review recommendations. If a learner struggles in
part of a course, a recommendation to review could
find lectures or reading, potentially in another course
entirely, which teaches the same skill at an easier dif-
ficulty.

We show an early example of a career skill profile for a Data
Scientist in Fig. 5. These initial results align with our ex-
pectations, in that more fundamental skills for the career

(e.g., Machine Learning) are required at a higher relative
skill than the more niche skill of Artificial Intelligence.

We would expect this approach to generalize well to other
data sets, if the fundamental data can be constructed as
attempts by learners at passing items.

For simplicity, our current approach omits the addition of
uncertainty for time passed since the last scoring update. In
the original Glicko model, this incorporates how a player’s
skills may have increased due to practice or decayed due to
lack of use over time. In the future, it may be valuable to
restore this factor, with additional uncertainty for learners
who have spent a significant time perusing course material,
or who have spent a long period away from course content.

Similarly, this approach ignores cases where multiple skills
are related or relevant. For example, Machine Learning and
Artificial Intelligence are closely related. However, because
we treat each skill in isolation, a learner who has only taken
courses in Machine Learning will not have an estimated score
for Artificial Intelligence. Similarly, an item in a course may
require more than one skill to pass the item. In future work,
we will consider multiple-skill approaches that can address
these cases.

7. CONCLUSIONS
In sum, we find that using the Glicko rating system in an
educational context produces reasonable scores for learners
and items. The approach successfully mitigates the potential
bias from more skilled learners encountering more difficult
items.

We plan to use these results in many applications in the
future to improve the learning experience for learners on
Coursera.
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ABSTRACT
Research on automated affect detection in educational soft-
ware using play log data has shown promising results. Yet
most studies use classroom-based software designed for ado-
lescents or adults. In this paper, we aim to detect affection in
an online educational platform primarily aimed at home use
by young children. This presents two challenges: we have to
rely on a self-report instrument of affect that users can uti-
lize at home, and we have to make sure that this instrument
is properly understood by children. To this end, we devel-
oped and validated an emoticon-based self-report instrument
to derive ground-truth labels of four emotions: Joy, frustra-
tion, confusion, and boredom. Training a number of different
classifiers for automated affect detection yields promising re-
sults, in particular for detecting joy and frustration.

1. INTRODUCTION
It is by now well established that student engagement is
an important correlate of learning efficacy, academic perfor-
mance, and even long-term professional achievements [1, 2].
Consequently, monitoring student engagement is of key in-
terest, so that appropriate interventions can be applied when
necessary. Educational software holds a strong promise in
this regard, as it enables the collection of troves of data that
can be mined for engagement and learning patterns.

Previous research has demonstrated that student engage-
ment is a multifaceted concept, typically encompassing be-
havioral, cognitive, and emotional aspects [5–7, 14]. There
is a large body of empirical literature that aims to identify
these facets of engagement during educational software use.
Emotional engagement – or affect detection – in particular
has garnered a lot of recent interest. Previous studies in this
area have collected data from sensors and play logs to con-
struct and identify metrics that can detect different types of
emotions (and changes therein) [1, 3–5, 12].

Our objective in the current paper is to explore the possi-
bility for affect detection based on play logs in a particular

online learning platform, called Squla. This platform em-
bodies two traits that inhibit a straightforward application
of previous research. First, Squla is primarily developed for
use at home, whereas virtually all previous research considers
educational software used in the classroom. Second, Squla is
used by children aged 4-12, whereas previous studies mostly
consider adolescents or adults.

In order to train models for automated affect detection, we
first have to collect instances (i.e. ‘ground truth labels’) of
students’ emotions during software use. Ideally, these data
are collected during normal use of the product, i.e. when
students play at home. This in turn requires a self-report
instrument that can be understood and used by children.
In particular, the instrument should take into account that
young children cannot read, and that identifying their own
emotions might be problematic.

To address these issues, we first design and validate a self-
report instrument of affect that is based on emoticons. In
particular, we aim to identify four emotions: Joy, boredom,
confusion, and frustration [1, 3]. We then use this instrument
to collect ground truth labels of affect during software use.
Finally, we construct a number of features from the play logs
and correlate these with the labeled emotions, building four
separate affect detectors (one for each emotion).

2. THE ONLINE LEARNING PLATFORM
The software used in this study is an online educational gam-
ing platform for K-6 children (ages 4-12) in the Netherlands,
called Squla. Squla’s primary business model is aimed at
home-use, i.e. paid subscriptions are sold to parents. The
platform is available through web as well as via a native app
(iOS and Android). It is set up primarily along 8 educa-
tion classes that correspond with the grades in kindergarten
(KDG), pre-school (pre-K), and elementary school. Chil-
dren can play a variety of subjects, both curriculum based
(e.g. math or spelling) as well as outside the curriculum
(e.g. social skills or 21st century skill).

Within a subject, students can choose a topic, within which
they can choose a mission, that itself is typically subdivided
into multiple (hierarchical) levels.1 One level typically con-
sists of ten questions that have to be answered correctly be-

1For example, grade 3 has the subject geography, contain-
ing the topic ‘weather’, which has two missions. The first
is ‘seasons’, consisting of five levels, and the second is an
instruction video about rain.
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fore the level is completed and the next one is unlocked. Im-
portantly, students have complete freedom regarding what
to play. The only restriction is that within a mission, levels
have to be played in a predetermined order.

There are various different question formats, such as mul-
tiple choice questions, puzzles, open-answer questions, bub-
ble poppers (popping foam bubbles containing answers), and
catapult questions (shoot at answers with a catapult). If a
question is answered incorrectly, the right answer is high-
lighted, and the question is moved to the end of the queue,
so that the user has to answer it again after cycling through
the remaining questions. At any point during playtime, a
user can choose to quit the current level. She can always go
back to that level and pick up where she left off.

When answering a question correctly, the user is rewarded
with a coin. There are also numerous ways to earn bonus
coins, e.g. when participating in a thematic campaign. Coins
can be used to buy new avatars, or non-digital goodies from
the goodie shop (e.g. cinema vouchers, toy-store vouchers,
or paper-cut animals). During play, users also collect ex-
perience points, which gradually increases their experience
level. Each experience level unlocks new benefits, such as
new avatars in the avatar shop.

When users log onto the platform, they land on the home
screen depicted in Figure 1. Here, they can navigate between
the different subjects, but also to their playing statistics, to
the Squla shop – where they can buy avatars and goodies
with the collected coins – and to the ‘social’ screen – where
they can search for friends, send and accept friend requests,
and send or read messages to and from friends and parents.
The top of the screen shows their experience level, their expe-
rience points, and the number of coins collected. Finally, the
home screen also offers play recommendations in the three
tiles in the top bar.

3. PREVIOUS RESEARCH

3.1 Log-based affect detection
Previous research on automated affect detection has used
both sensor data and play log-based data to find correlates
of affect. The educational software used in this study does
not utilize sensors, so that we have to rely on the latter
approach. Below we briefly review a number of studies that
have successfully done so before.

In a study involving an automated tutoring system, D’mello
et al. [5] use a combination of conversation-based log metrics
and self and third-person reports – by one peer and two
expert judges – of affective states. Their results show that
machine predictions of affect are on par with those of ‘novice’
judges (self and peer) but inferior to those of the trained
judges.

Contati and MacLaren [4] and Sabourin et al. [12] adopt
a (dynamic) Bayesian network approach to develop a causal
model linking user goals and (inter)actions to affective states.
The resulting models significantly outperform default class
prediction, and further allow the researchers to infer user
play-goals.

Figure 1: Squla home screen (web)

Lee et al. [8] show that persistent confusion negatively corre-
lates with learning achievement, yet that resolved confusion
has a positive effect. Botelho et al. [3] resort to Recurrent
Neural Networks to improve the performance of these mod-
els. Unlike previous studies, they combine all emotions in
one detector, rather than training one detector per emotion.

3.2 Affect detection for young children
All the studies discussed above share two traits: First, they
all involve educational software that is used in a classroom
setting, and second, the study populations are usually either
adolescents or adults. Yet in this paper we consider edu-
cational software designed for home use by children. This
means that collecting data in a controlled setting – such as
a classroom or lab – would interfere too much with the in-
tended user experience. As a result, affect labeling has to
happen at home, using self-reports. Yet this creates another
challenge, which is that (young) children cannot be expected
to provide reliable survey feedback [9].

A number of studies have developed instruments for usabil-
ity testing of software products with children [10, 11]. This
research stream restricts the notion of child engagement or
satisfaction to“fun”. One validated instrument that has been
successfully applied in this context is the smiley-o-meter.
This is essentially a 5-point Likert scale with emoticons cap-
turing the intensity of fun (vs lack of fun).

However, Padilla-Zea et al. [13] find that this instrument is
not properly understood by young children (ages 3-5), since
they are not able to grade the strength or intensity of a feel-
ing. Yet their tests demonstrate that young children are able
to differentiate between different types of emotions, based on
different emoticons.

Our approach toward affect labeling mirrors that of Padilla-
Zea et al.[13]: Instead of aiming to capture the intensity
of one emotion, we want students to identify the relevant
type out of several emotions. To this end, we develop an
emoticon-based instrument, while taking into account that
the youngest respondents cannot read.

Following Baker et al. [1] and Botelho et al. [3], we aim
to capture four affective states: Joy, confusion, frustration,
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and boredom.2 However, before putting the emoticon-based
instrument to use, we first have to ensure that we design a set
of emoticons whose meaning is understood by the students.
This design and validation process is described in the next
section. Section 5 then discusses our initial efforts towards
automated affect detection, using this instrument to collect
ground-truth labels.

4. AFFECT INSTRUMENT VALIDATION

4.1 Method
We first designed six sets of three emoticons, or 18 in to-
tal. The emoticons in the first four sets were designed to
capture joy, confusion, frustration, and boredom. We added
two more sets to represent surprise and sadness. We then
proceeded in three steps.

In step one (the offline adult test), we presented each of
the six sets to 14 adults, asking them (1) to express the
emotion they inferred from each of the 18 emoticons, and
(2) to choose the emoticon (out of three) they found most
fitting for each of the six emotions. Achieving consistency
across feedback from adults served as a lower threshold in
this case. Eventually, this step resulted in six emoticons
preferred by adults, one for each affect type.

In step two (the offline child test), we presented these six
emoticons to 23 children aged 4-12 in one-on-one sessions,
asking them (1) to express the emotion they inferred from
each of them, and (2) to choose the emoticon (out of six)
they found most fitting for a particular scenario. This step
was intended to flag potential interpretation differences be-
tween adults and children, allowing for a redesign if neces-
sary. Eventually, this step resulted in a set of emoticons
preferred by children.

In step three (the online child test), we used the emoticons
from step two to develop a new online ‘affect mission’ with
two levels on the Squla platform. In the first level, children
were presented each of the emoticons individually, while be-
ing asked to answer the following question: “Look at the
character in the picture. What do you see?” They were
then offered four answer options, one of which contained the
intended meaning of the emoticon.3

In the second level of the mission, users were asked questions
of the type “Which of the characters is [. . . ]?” where [. . . ]
was substituted for a particular emotion. They were then
shown five emoticons, one of which contained the one we
intended to actually capture the emotion. For children aged

2To be precise, these studies aim to capture“engaged concen-
tration” rather than “joy”. However, in designing the instru-
ment we ran into difficulties capturing the former. Instead,
we opted for “joy” as a substitute positive affective state that
is more easily understood by children.
3An alternative setup would have been to ask children open-
answer questions. However, since our youngest users are not
able to write, this option is unfeasible. Furthermore, our ex-
perience with these types of questions is that many children
abuse this freedom of answering by providing nonsensical or
offensive answers, increasing the effort of identifying relevant
answers. Nonetheless, we attempted to ensure that one or
two of the alternative answer options served as detractors.

Table 1: Respondents by grade level

Grade level # Respondents Respondent share

KDG 1169 5.4
Pre-K 1972 9.1
Grade 1 2965 13.7
Grade 2 2421 11.1
Grade 3 3222 14.8
Grade 4 3411 15.7
Grade 5 3570 16.4
Grade 6 2985 13.7

Figure 2: Initial confusion emoticon

4-7 we provided voice-recordings of both the question (in
both levels), as well as the answer options (in level one).

The two mission levels were live on the platform for one week
(from November 19th 2018 to November 26th 2018). During
that time period, we collected responses from 21715 unique
players. Table 1 shows the distribution of respondents by
grade level. Although respondent shares are notably lower
in the bottom two grades, they are representative of the user
population across grades.

4.2 Results
The offline adult test resulted in one emoticon per affective
state that was preferred by adults. In the offline child test,
the emoticons for joy and boredom were correctly interpreted
by children. The same holds for frustration, although most
children identified this as anger instead. However, given their
relatedness, as well as the fact that young children are gener-
ally not familiar yet with the notion of frustration, we deem
these as interchangeable.

However, confusion was not well identified. Figure 2 de-
picts the original emoticon that was used. Wen asked what
the character was feeling, typical responses were ‘nauseous’,
‘funny’, and ‘dizzy’. Further probing revealed that both the
wriggly mouth as well as the cross eyes confused children’s
interpretation regarding the intended meaning.

We used this feedback to redesign the confusion emoticon.
In particular, two new designs were made. Additionally, we
also designed an additional emoticon for frustration, in order
to verify that the response ‘angry’ was not driven by the
emoticon but rather by children’s lack of awareness of the
concept of frustration.

All in all, we ended up with a set of eight emoticons, pre-
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Figure 3: Final test emoticons

sented in Figure 3: Joy (A), thoughtfulness (B), confusion
(C), anger (D), frustration (E), boredom (F), sadness (G),
and surprise (H). Recall that we are primarily interested in
capturing joy, confusion, frustration, and boredom. We had
two emoticons for confusion (B and C) and frustration (D
and E). We used the results of the online child tests to choose
the preferred/optimal one. The emoticons for surprise and
sadness were used as additional detractors in the online child
test.

Using the data from the online child test, we compare the
share of respondents that chose a particular answer option.
Chi-squared tests show that the distribution of response shares
on all questions in all grade levels are significantly differ-
ent from uniform, indicating that at least one answer re-
ceived a disproportionate share of responses. Computing
Chi-squared statistics on all answer pairs per question re-
veals there is only one instance where two answer options
are equally preferred: This concerns the level one question
regarding the confused emoticon (C) in kindergarten.

The four answer options presented to users in this case are
‘struggling’, ‘confused’, ‘surprised’, and ‘sad’, with ‘strug-
gling’ added as a detractor. Indeed, in Kindergarten the
detractor received a sufficient number of responses so as to
not be statistically differentiable from the ‘confused’ answer
option. Yet for present purposes, the distinction between
struggling and confused is negligible. Both these emotions
correspond to what we aim to capture, which is that the user
is having difficulties understanding or answering questions.

In all of the other cases, the preferred answer option corre-
sponds to the intended answer option. The degree of vari-
ation across answer options is notably higher in the lower
grades. Figure 4 illustrates this. It shows the response shares
across the five emoticon options for the question ‘Which
character is bored?’ Although the bored emoticon (F) re-
ceives the highest response shares in all grades, the variation
is notably greater in the bottom two grades, with the angry
emoticon (D) as a close second.

Finally, the online child test also enables us to identify the
preferred emoticon for confusion and frustration. In all grades,
emoticon C is preferred for confusion, and emoticon E is pre-
ferred for frustration. An added benefit is that the primary
detractor for Kindergarten and Pre-K, i.e. emoticon D, is
not part of the final set.

Table 2: Answer response shares per trigger

Answer Level
completed

Level
interrupted

Navigating

happy 54.4 28.5* 33.2*

bored 15.4 14.8 11.9*

confused 9.6 9.7 6.7*

frustrated 9.5 18* 8.8

not-answered 11.1 29.1* 39.5*

* Response share different from quiz-completed (p<0.05)

5. AFFECT DETECTION

5.1 Method
Using emoticons A, C, E, and F in Figure 3, we designed a
modal to prompt users for feedback regarding their affective
state during playtime. Since we are targeting young children
whose parents pay for the product, we did not want to ex-
cessively disrupt their play experience. We therefore present
the modal following three specific triggers (with a maximum
of three modals per week):

1. When a user finishes a mission-level in one attempt
2. When a user prematurely interrupts a mission-level for

the first time
3. When a user has been navigating the platform without

playing a mission-level for three consecutive minutes

In all three cases, users are shown a modal that prompts
them for their affective state. Their response is logged, to-
gether with the relevant trigger, a timestamp, an id of the
particular gamesession4 that they are playing (in case of the
first two triggers), or the url that they were visiting when
they were shown the modal (in case of the third trigger).
Users have the option to close the modal without providing
an answer, which is logged as well.

In Section 5.2, we first compare the affect response distribu-
tion following the first trigger with that following the other
two. The first trigger serves as the benchmark case: We
expect that users are predominantly happy when they fin-
ish a mission-level, and that the two other triggers typically
correlate more strongly with a lack of enjoyment.

In Section 5.3, we then present the results for four affect de-
tectors (one for each affect state) for users playing the sub-
ject math. We construct 51 mission-level features (such as
the share of correct questions, the total number of questions
answered, or the minimum, median, maximum and stan-
dard deviation of answer time per question) to serve as in-
puts, with the collected affect responses serving as outputs.
We trained the following models (hyper parameters within
parentheses):

• Logistic regression with elastic-net regularization (mix-
ing parameter between L1 and L2 regularization, and
regularization weight parameter) [glmnet]

4A gamesession is a particular play instance of a mission-
level by a student.
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Figure 4: Which character is bored? (intended answer in orange)

• C5.0 classification tree with boosting (tree vs rule-based
model, number of boosting iterations, and without or
without feature selection) [C5.0]

• Naive Bayes classifier (Laplace correction and band-
width adjustment) [nb]

• Random forest (the number of selected features to try
during bagging) [rf ]

• Gradient boosting machine (number of boosting itera-
tions and maximum tree depth) [gbm]

Following Baker et al. we use 5-fold student level cross-
validation to guide hyper-parameter tuning of the model,
and conduct down-sampling to achieve response balance dur-
ing cross-validation [1]. In terms of hyperparameters, we
perform grid searches to determine the optimal parameters
during cross-validation, and use the optimal model to com-
pute performance on the (held out) test set. The objective
metric for model training is Kappa.

5.2 Trigger comparisons
Table 2 presents the share of responses per answer-type and
per trigger. In all three cases, the dominant answer option is
‘happy’. Yet the share is notably higher when users complete
a level than when they interrupt it or when they are navi-
gating. Conversely, the share of frustrated users is notably
higher when a level is interrupted. There is little difference in
boredom and confusion between completing and interrupt-
ing a level, however. Finally, players are much more likely
to ignore the modal when they are navigating or after they
interrupt a level, compared to when they complete a level.

It is noteworthy that a non-negligible share of users chooses
to ignore the modal, in particular when interrupting a level
or after navigating for a while. Given the difference with
the ‘level completed’ share on this response, this could be
indicative of a lack of enjoyment as well, yet without more
detailed user feedback this is impossible to verify.

These patterns are by and large replicated across grades and
subjects (for the level completed and interrupted triggers).

Table 3: Model training results

Affect state Model Kappa AUC

happy gbm 0.212 0.643
bored C5.0 0.051 0.541
confused rf 0.077 0.617
frustrated glmnet 0.173 0.669

The most notable differences are that players in kindergarten
and pre-school (1) more often choose to ignore the modal
(regardless of the trigger), and (2) are less frustrated when
interrupting a mission-level.

5.3 Affect detectors
Table 3 presents the model results in terms of Kappa and
AUC.5 The detector for boredom is weakest, followed by that
for frustration, confusion, and boredom, respectively. This
partly reinforces the results presented in Table 2, where we
observed that happiness and frustration exhibit most varia-
tion between the level completed and interrupted triggers.

Table 4 shows the top-3 features per detector. The share
of correctly answered questions appears in three of the four
detectors. This is also true for the response time between
the moment the modal is shown, and when it is answered.
Finally, note that happy and frustrated share two of the top-
three features. This could indicate that these two emotions
are two sides of the same coin.

6. DISCUSSION & CONCLUSION
In this paper we have developed and validated an instrument
for affect detection that can be used during home-based ed-
ucational software use by (young) children. Consistent with
previous research, we find that children aged 4-12 are able to

5The model performance statistics reported in Table 3 are
based on a test set with the original, non-resampled response
distributions. The test data are again completely disjoint
from the training data at the student
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Table 4: Top-3 model features

happy share of correctly answered questions
response time to modal
trigger that generates the modal

bored player grade level
share of correctly answered questions
a repetitive streak of calculator questions

confused response time to modal
the type of questions that was answered last
the average difficulty of questions in the level

frustrated the difference between user performance and
average question difficulty
share of correctly answered questions
response time to modal

differentiate between four different affective states (joy, bore-
dom, confusion, and frustration) based on a set of emoticons.

We find that users in our study that complete a mission-level
are predominantly happy, whereas those that interrupt it
are predominantly unhappy. Furthermore, this unhappiness
mostly reveals itself as frustration. For users that have been
navigating for an extended period of time, the conclusion are
less clear, in particular given the high share of users which
ignore the modal.

In comparison to existing studies on affect detection in ed-
ucational software, we find that the response distribution
across affect states – reported in Table 2 – is much less
skewed. For example, Baker et al. (2012) find that close
to 85% of their responses capture engaged concentration,
and just 0.9% confusion [1]. The differences with the re-
sults reported in this study could be driven by a variety of
factors, most notably the fact that out target population in-
cludes children instead of adults/adolescents, and the fact
that students are playing at home rather than in the class-
room. More generally, recall that students are completely
free to pick and choose what they play on the platform.
This is very different from many of the previous studies,
where software is used in the classroom and as part of the
curriculum, including instruction. At the very least, it illus-
trates that the findings in this literature cannot simply be
extended to other contexts.

Compared to Baker et. al. [1], the performance of our
automated affect detectors is quite a bit weaker. In part,
these differences might be driven by the different number of
model features (51 vs 258) and in target populations, i.e. chil-
dren vs adolescents. Yet another explanation might be that
our emoticons leave more room for interpretation differences
than text surveys. As a result, out affect identification might
be less precise than in earlier studies.

Going forward, the ultimate goal is to be able to detect affect
during playtime, in order to provide meaningful and effective
interventions. The processes and results reported in this pa-
per are a first step towards that goal. The best performing
models are still weaker than those found in previous research.
However, the models for detecting joy and frustration per-
form notably better than chance. This suggests that it is
worthwhile to put more effort into feature construction and

algorithm selection for these detectors.

7. REFERENCES
[1] Baker, R.S. et al. 2012. Towards sensor-free affect de-
tection in cognitive tutor algebra. Educational data mining
2012, june 19-21, proceedings (2012).

[2] Baker, R.S.J.d. et al. 2010. Better to be frustrated than
bored: The incidence, persistence, and impact of learners’
cognitive-affective states during interactions with three dif-
ferent computer-based learning environments. Int. J. Hum.-
Comput. Stud. 68, 4 (Apr. 2010), 223–241.

[3] Botelho, A.F. et al. 2017. Improving sensor-free affect
detection using deep learning. Artificial intelligence in edu-
cation AIED 2017, june 28 - july 1 (2017), 40–51.

[4] Conati, C. and Maclaren, H. 2009. Empirically building
and evaluating a probabilistic model of user affect. User
Modeling and User-Adapted Interaction. (2009), 267–303.

[5] D’Mello, S.K. et al. 2008. Automatic detection of learner’s
affect from conversational cues. User Modeling and User-
Adapted Interaction. 18, 1-2 (Feb. 2008), 45–80.

[6] Fredricks, J.A. et al. School engagement: Potential of
the concept, state of the evidence. Review of Educational
Research. 74, 1, 59–109.

[7] Hershkovitz, A. and Nachmias, R. 2008. Developing a log-
based motivation measuring tool. Educational data mining
2008, june 20-21, proceedings (2008), 226–233.

[8] Lee, D.M.C. et al. 2011. Exploring the relationship be-
tween novice programmer confusion and achievement. 4th
international conference on affective computing and intelli-
gent interaction (Memphis, TN, 2011), 175–184.

[9] Markopoulos, P. et al. 2008. Evaluating children’s in-
teractive products: Principles and practices for interaction
designers. Morgan Kaufmann Publishers Inc.

[10] Read, J. and Macfarlane, S. 2002. Endurability, engage-
ment and expectations: Measuring children’s fun. Interac-
tion design and children, shaker publishing (2002), 1–23.

[11] Read, J.C. 2008. Validating the fun toolkit: An instru-
ment for measuring children’s opinions of technology. Cogn.
Technol. Work. 10, 2 (Mar. 2008), 119–128.

[12] Sabourin, J. et al. 2011. Modeling learner affect with
theoretically grounded dynamic bayesian networks. Proceed-
ings of the 4th international conference on affective comput-
ing and intelligent interaction (2011), 286–295.

[13] Zea, N.P. et al. 2013. A method to evaluate emotions in
educational video games for children. J. UCS. 19, 8 (2013),
1066–1085.

[14] Zhu, E. 2006. Interaction and cognitive engagement: An
analysis of four asynchronous online discussions. Instruc-
tional Science. 34, 6 (Nov. 2006), 451.

765 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



Reinforcement Learning for Educational Data Mining
Workshop (RL-EDM 2019)

Hamoon Azizsoltani
North Carolina State

University
Raleigh, NC, 27695

hazizso@ncsu.edu

Min Chi
North Carolina State

University
Raleigh, NC, 27695
mchi@ncsu.edu

Joseph Jay Williams
University of Toronto

Toronto, Ontario
williams@cs.toronto.edu

Tiffany Barnes
North Carolina State

University
Raleigh, NC, 27695

tmbarnes@ncsu.edu

Markel Sanz Ausin
North Carolina State

University
Raleigh, NC, 27695

msanzau@ncsu.edu

Yeo-Jin Kim
North Carolina State

University
Raleigh, NC, 27695

ykim32@ncsu.edu

ABSTRACT
Advances in the tutoring systems present a unique opportu-
nity for effective and cost-efficient tutoring for the students.
Such tutoring systems produce a large amount of educa-
tional data. Therefore, there is a growing need for data-
driven learning techniques applicable to the development of
Intelligent Tutoring Systems (ITSs)[4, 7, 18]. One of the
goals of ITSs is to improve the traditional education meth-
ods by providing individualized tutoring for every student,
from underrepresented ones to those with high competency
level.

Reinforcement Learning (RL)[20] provides a data-driven ap-
proach to personalize the learning environment for each stu-
dent in a cost and time effective way [11, 13]. Such an inex-
pensive, personalized and data-driven approach provides an
opportunity for every student based on their level of com-
petency [23]. However, several major challenges need to be
addressed for the induction of an effective RL policy. For
example, one of the major challenges lies in the definition of
the states, actions, and rewards in the educational domain.
It is known to the community that the data collected by the
tutoring systems is usually noisy, and the rewards, such as
learning gain, are only available with a significant amount
of delay. When the immediate reward is not observable, in-
ducing an effectiveness offline RL policy is challenging. One
example of this is when we measure the performance of stu-
dents in the exam they take at the end of the semester.
On top of that, there are several sources of uncertainty in
educational training data. For example, the student’s learn-
ing state is not completely observable. At the same time,
the student’s interaction with the tutoring system is not
deterministic which makes the training data noisy. In this

workshop, we discuss the issues to induce effective policies
for educational purposes in the presence of uncertainty and
delayed rewards.

1. INTRODUCTION
Since successful cases of data-driven approaches in ITS have
increased substantially in the past years[2, 17], there is a
growing need for researchers to share the new methods and
present their work.

This workshop will provide the opportunity for researchers
to 1) present their negative as well as positive results in order
to learn from past experiments, 2) present and discuss the
state-of-the-art techniques in RL, 3) expand the community
of researchers interested in the field. In this workshop, we
present full and short papers, as well as posters concerned
with the application of RL in education. The research in-
cludes diverse issues in RL for ITSs such as representing
learning states, defining reward functions, discovering effec-
tive actions, and introducing new ITS environments. Specif-
ically, we cover a variety of RL topics including but not lim-
ited to:

• Tabular Reinforcement Learning[12, 3]

– Markov Decision Processes (MDP)

– Partially Observable MDP (POMDP)

– Monte Carlo Simulation (MCS)

• Reinforcement Learning with approximation[19]

– Model-based and model-free methods

– Off-policy and on-policy methods

– Q-learning

– Policy Gradient algorithms

– Actor-Critic algorithms

• Offline Policy Evaluation (Importance Sampling and
variants)[21]
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2. RL FOR EDUCATIONAL DATA MINING
2019

RL for Educational Data Mining workshop will be held within
the Educational Data Mining 2019 conference in Montreal,
Canada. This workshop will be organized as a half-day mini-
conference. We will start the workshop with a presentation
about two ITSs developed at the Department of Computer
Science at North Carolina State University. Then, we will
present our recent work about the challenges of applying
Deep Reinforcement Learning (DQN) [10] for Pedagogical
Policy Induction. These challenges include 1) reward re-
shaping [1] and inferring immediate rewards from delayed
rewards to induce effective pedagogical policies, 2) offline
evaluation of the induced pedagogical policies [6, 9] and 3)
discussion about different deep reinforcement learning al-
gorithms and architectures such as Double DQN [22] and
Double-DQN with prioritized experience replay [14], Actor-
Critic methods [15, 16], Deep Deterministic Policy Gradient
(DDPG) [8] and Soft Actor-Critic (SAC) [5]. Next, we will
dedicate our time for the full paper presentations and dis-
cussions after each presentation. We will continue with net-
working and planning for future works and collaborations.

During this mini-conference, we will transfer the required
knowledge to understand the best practices for conducting
research with RL for Educational Data Mining. Moreover,
we will discuss the challenges, limits, and future directions
of RL for Educational Data Mining.
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ABSTRACT
This workshop is the second edition of LABBEC 2018 [2].
It aims to foster the exchange of ideas between the field of
education measurements and education practitioners, and
the EDM community. Research contributions were invited
on topics related to the mutual influence between EDM and
the education community. Demos of real world applications
issued from EDM were presented and a discussion in the
form of a round-table closed the worskhop.

Keywords
Psychometrics, Educational measurements, Education set-
tings

1. INTRODUCTION
Spawning from computer science, the Educational Data Min-
ing (EDM) and Learning Analytics (LA) fields have gener-
ated a wealth of research over the last decade, including two
yearly conferences and two scientific journals. EDM and LA
typically aim to discover relations of interest by analyzing
institutional or digital learning environment databases. Of-
ten so, practitioners create models borrowed from generic
techniques in machine learning [1]. This preference for a do-
main agnostic “data science” could be construed as a lack of
concern for existing educational measurement theory in the
newer fields of EDM and LA. Conversely, educational mea-
surement might be failing to engage with newer research in
computing-based practices.

The first edition of the workshop was held at ITS 2018
[3]. In addition to a round-table and two demon-
strations of existing Learning Analytics and EDM
applications currently deployed, the half-day ses-

sion included the presentation of three 8–10 pages
research papers. The program is available at this
link : http://griemetic.ca/fr/evenements/learning-

analytics-building-bridges-between-the-education-

and-the-computing-communities/.

2. TOPICS OF INTEREST
The call for papers mentioned the following list of topics
that were of interest, though not exclusively:

• Mutual perception of EDM/LA and educational mea-
surement communities

• Expectations of the educational community towards
EDM

• Role of psychometrics in EDM and vice-versa

• EDM tools and methods in education

• Statistical learning methods in psychometrics

3. SCHEDULE
The workshop was half-day and included four papers that
were peer reviewed by two experts and the Program com-
mittee members. Two demonstrations of practical applica-
tions of EDM were presented by our invited speaker Sameer
Bhatnagar from Dawson College, Polytechnique Montreal,
and the Saltise Association (https://www.saltise.ca/).

The four research papers presented were selected from a to-
tal of six submissions. They are:

1. Björn Rudzewitz, Ramon Ziai, Florian Nuxoll, Kor-
dula De Kuthy and Detmar Meurers. Enhancing a
Web-based Language Tutoring System with Learning
Analytics.

2. James Shing Chun Yip and Raymond Chi-Wing
Wong. Analyzing Student Performance with Person-
alized Study Path and Learning Trouble Ratio.
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3. Stevens Dormezil, Taghi Khoshgoftaar and Federica
Robinson-Bryant. Differentiating between Educational
Data Mining and Learning Analytics: A Bibliometric
Approach.

4. Renzhe Yu, Zachary Pardos and John Scott. Student
Behavioral Embeddings and Their Relationship to Out-
comes in a Collaborative Online Course.

A round table closed the workshop.
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ABSTRACT
In this tutorial, participants explore design and development
considerations for open, pedagogically-based predictive models
using the Moodle Analytics API. The tutorial covers aligning
models and systems with pedagogical and curriculum needs of
the educational program, including interactive exercises in
identifying curricular needs to inform educational data mining.
We then introduce the Moodle Analytics API, including
interfaces for developing Targets, Indicators, Analysers, and
Time-Splitting Methods, and including hands-on exercises in
which participants use the Moodle Analytics API. The tutorial
concludes with a complete basic model developed in PHP using
the API.

A laptop capable of installing and running a local copy of
Moodle is required for full participation in this tutorial.

Keywords

Educational Data Mining, Moodle, curriculum, pedagogy, open
systems

1. INTRODUCTION
In this tutorial, we first explore the educational assumptions that
underlie all learning analytics models. These assumptions are
often implicit and sometimes even in conflict with one another.
Having identified specific goals for a program, we document the
requirements for a predictive model to support those goals. As
we proceed through the tutorial, we work from the requirements
defined in the first exercises to implement models in PHP using
the Moodle Analytics API.

This tutorial is followed up with online modules allowing
participants to explore each topic in more depth, including peer-
reviewed tasks with badges.

2. LITERATURE REVIEW
Over the past few decades, educational data mining systems and
models have brought statistical analysis, data mining, and
machine learning tools to bear on the teaching and learning
process [1,2]. However, even as such predictive models become

more widespread, often they remain focused on “at risk” models
that make assumptions about the definition of “student success,”
such as completion of a course with a “passing” grade [3,4]. Yet
there are many definitions of “student success,” and some
programs are not evaluated in terms of the proportion of
“passing” students, but in terms of other programmatic
outcomes such as accurate identification of those with scholarly
potential, influence on pro-social behaviors, or support of
student-selected goals and lifelong learning skills [5]. These
definitions can inform contemporary educational data mining
efforts to identify new relationships and features.

The Moodle Analytics API supports a broad range of such
programmatic outcomes, and provides integrated detection,
modeling, and notification tools within Moodle [6]. Moodle is
an open source learning management system (LMS) used by
over 100 million users on over 100 thousand sites in 227
countries [7], providing a robust events and logging system, and
as such is ideal as a modern platform for educational data
mining, including creating, verifying and implementing
predictive models.

3. AGENDA
This tutorial is designed to be delivered in a full day, and
contains the following sections:

3.1 Introduction to Moodle Analytics
In this introduction, basic concepts of data analysis in the
Moodle environment are briefly covered, and the features of the
Moodle Analytics API are introduced.

3.2 Defining and Measuring “Quality 
Education”
We cannot measure what we have not defined, much less make
predictions and advisements to support the quality of the
learning process [8]. In this portion of the tutorial, we explore
four paradigms [5] of “quality education” in terms of curriculum
theory, pedagogy, stakeholders, outcomes, and potential
predictors. The tradeoff between accuracy and interpretability of
predictions is also discussed.

3.3 Exercise: Defining Quality Education
In this hands-on exercise, participants answer a series of
questions about the nature and purpose of education and plot
their responses on shared charts. The purpose of the exercise is
not to determine a single definition of “quality education,” but
to allow participants to unpack assumptions and make explicit
the definitions they wish to support in educational data mining.
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3.4 Predictive Model Design Overview
Participants walk through the steps to design a predictive model,
including basic data analysis and stakeholder involvement.
Benefits and risks of real-time notification systems are
discussed.

3.5 Introduction to the Moodle Analytics 
API
This overview explores the API, including functional
components, specific classes to be extended, and required
elements in each class.

3.6 Exercise: Prepare Git Repository
Moodle Analytics models are developed as Moodle “plugins.”
Participants have an opportunity to set up a Moodle
development environment and clone a skeleton Git repository
for work on a model plugin.

3.7 Model Review: The Community of 
Inquiry Model
We review the base model shipped with Moodle Core, the
“Students at risk of dropping out” model [9] based on the
Community of Inquiry theoretical framework [10]. We discuss
design decisions made in implementing this model and review
challenges in implementing and evaluating the model for
widespread use.

This presentation concludes with an opportunity to connect to a
live system with sample date to observe the model in operation.
Processes for evaluating learning analytics models are
discussed.

3.8 Exercise: Design an Open, Ethical, 
Pedagogically-Based Predictive Model
Participants design a predictive analytics model “on paper,”
defining the learning question or challenge to be resolved,
stakeholders, user stories, the target that will be implemented,
possible indicators, and a channel for discussion. Working teams
present their results to the tutorial participants. 

3.9 Development of Targets
The Moodle Analytics API currently supports supervised
learning, requiring a training set of data with defined Targets.
The Target class is examined in more detail, including the
specification of outcome classes, the analyser class, constraints
for valid analysables and samples, and the target calculation
itself.

3.10 Insights, Notifications and Actions
Insights, Notifications and Actions are coded as part of the
Target class. Insights define the text to be used in each outcome
class for the model. An array of links to Actions is constructed
for use by the recipient of the Notification.

3.11 Exercise: Develop a Target
Participants build on the repository created in the previous
exercise to define a simple binary target.

3.12 Development of Indicators
Indicators consist of reusable classes that calculate predictors
for use in models. A set of indicators are provided with Moodle
Core. Indicators can be used in any model using an appropriate

Analyser (see below). Most of the current indicators calculate
values by aggregating log actions and other data over a time
splitting interval.

3.13 Exercise: Develop an Indicator
Participants build on the repository created in the previous
exercise to define a simple indicator.

3.14 Discussion: Novel Indictors
Indicators are one of the most fertile areas for advanced
educational data mining, as they can be extended to take
advantage of innovations in feature discovery. Participants
discuss potential novel indicators in groups and then present to
the rest of the participants.

3.15 Development of Time-Splitting 
Methods
The time-splitting method classes determine how often to make
predictions and how much data (based on time intervals) to
include in each prediction.

3.16 Development of Analysers
Analyser classes define the context of the predictions, i.e. one
prediction should be generated for every student in each course,
or every course in each category, or every learning plan for each
student. Analyser classes are usually the most complex
components in the Moodle Analytics API.

3.17 Backend Engine and Algorithm 
Interfaces
The Moodle Analytics API currently supports two backend
machine learning engines, one using php-ml and one using
Python based on Tensorflow [11]. The php-ml backend provides
a regression algorithm, and the python backend provides a feed-
forward neural network with one single hidden layer. It is
possible to extend these interfaces to make use of other
backends and algorithms. Like Indicators, this is another fertile
area for Educational Data Mining.

3.18 Exercise: Implement a Basic Model
In this exercise, participants work individually or in groups to
extend the provided skeleton to create a simple predictive model
using the API. We provide a system with realistic data on which
to install and test models, and review model evaluation. The
process to submit a completed model to the Moodle Plugins
Database is also reviewed.

4. ONLINE MODULES
Participants may continue to explore more advanced API
concepts using a series of free online modules.
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ABSTRACT 
This tutorial will explore LearnSphere, an NSF-funded, 
community-based repository that facilitates sharing of educational 
data and analytic methods. The tutorial organizers will discuss the 
unique research benefits that LearnSphere affords. We will focus 
on Tigris, a workflow tool within LearnSphere that helps 
researchers share analytic methods and computational models. 
Attendees will integrate their analytic methods or models into 
LearnSphere’s Tigris in advance of the tutorial, and these methods 
will be made accessible to all tutorial attendees. We will learn about 
these different analytic methods during the tutorial and spend 
hands-on time applying them to a variety of educational datasets 
available in LearnSphere’s DataShop. Finally, we will discuss the 
bottlenecks that remain, and brainstorm potential solutions, in 
openly sharing analytic methods through a central infrastructure 
like LearnSphere. Our goal is to create the building blocks to allow 
groups of researchers to integrate their data with other researchers 
to advance the learning sciences as harnessing and sharing big data 
has done for other fields.   

Keywords 

Learning metrics; data storage and sharing; data-informed learning 
theories; modeling; data-informed efforts; scalability. 

1. INTRODUCTION 
The use of data to improve student learning has become more 
effective as student learning activities and student progress through 
educational technologies are increasingly being tracked and stored. 
There is a large variety in the kinds, density, and volume of such 
data and to the analytic and adaptive learning methods that take 
advantage of it. Data can range from simple (e.g., clicks on menu 
items or structured symbolic expressions) to complex and harder-
to-interpret (e.g., free-form essays, discussion board dialogues, or 
affect sensor information). Another dimension of variation is the 

time scale in which observations of student behavior occur: click 
actions are observed within seconds in fluency-oriented math 
games or in vocabulary practice, problem-solving steps are 
observed every 20 seconds or so in modeling tool interfaces (e.g., 
spreadsheets, graphers, computer algebra) in intelligent tutoring 
systems for math and science, answers to comprehension-
monitoring questions are given and learning resource choices are 
made every 15 minutes or so in massive open online courses 
(MOOCs), lesson completion is observed across days in learning 
management systems, chapter/unit test results are collected after 
weeks, end-of-course completion and exam scores are collected 
after many months, degree completion occurs across years, and 
long-term human goals like landing a job and achieving a good 
income occur across lifetimes. Different paradigms of data-driven 
education research differ both in the types of data they tend to use 
and in the time scale in which that data is collected. In fact, relative 
isolation within disciplinary silos is fostered and fed by differences 
in the types and time scale of data used (cf., Koedinger et al., 2012). 

Thus, there is a broad need for an overarching data infrastructure to 
not only support sharing and use within the student data (e.g., 
clickstream, MOOC, discourse, affect) but to also support 
investigations that bridge across them. This will enable the research 
community to understand how and when long-term learning 
outcomes emerge as a causal consequence of real-time student 
interactions within the complex set of instructional options 
available (cf., Koedinger et al., 2010). Such an infrastructure will 
support novel, transformative, and multidisciplinary approaches to 
the use of data to create actionable knowledge to improve learning 
environments for STEM and other areas in the medium term and 
will revolutionize learning in the longer term. 

LearnSphere transforms scientific discovery and innovation in 
education through a scalable data infrastructure designed to enable 
educators, learning scientists, and researchers to easily collaborate 
over shared data using the latest tools and technologies. 
LearnSphere.org provides a hub that integrates across existing data 
silos implemented at different universities, including educational 
technology “click stream” data in CMU’s DataShop (Stamper et al., 
2011), massive online course data in Stanford’s DataStage and 
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analytics in MIT’s MOOCdb (Veeramachaneni et al., 2014), and 
educational language and discourse data in CMU’s new 
DiscourseDB (Jo et al., 2016). LearnSphere integrates these DIBBs 
in two key ways: 1) with a web-based portal that points to these and 
other learning analytic resources and 2) with a web-based workflow 
authoring and sharing tool called Tigris. A major goal is to make it 
easier for researchers, course developers, and instructors to engage 
in learning analytics and educational data mining without 
programming skills. 

The main goal of this tutorial is to provide attendees with hands-on 
experience using Tigris for learning analytics. We hope that this 
year we will be able to attract attendees that have been exposed to 
LearnSphere from these past events, although we will have some 
tutorial activities included for new attendees as well. This tutorial 
builds off a successful LAK 2018 Tutorial, and tutorial at 
AIED/EDM 2017. 

Activities will include presentations from tutorial organizers. 
Hands-on sessions will include demos and group work towards 
implementing analytics. Broadly, this tutorial offers those in the 
Learning Analytics community exposure to LearnSphere as a 
community-based infrastructure for educational data and analysis 
tools. In opening lectures, the organizers will discuss the way 
LearnSphere connects data silos across universities and its unique 
capabilities for sharing data, models, analysis workflows, and 
visualizations while maintaining confidentiality. 
More specifically, we propose to focus on attracting, integrating, 
and discussing researcher contributions to Tigris, the web-based 
workflow authoring and sharing tool. tutorial submissions in the 
form of abstracts will involve a brief description of an analysis 
pipeline relevant to modeling educational data as well as 
accompanying code. Prior to the tutorial itself, the organizers will 
coordinate with attendees to integrate their code into Tigris. A 
significant portion of the tutorial will be dedicated to a hands-on 
exploration of custom workflows and workflow modules within 
Tigris. Attendees will present their analysis pipelines, and everyone 
attending the tutorial will be able to access those analysis pipelines 
within Tigris to a variety of freely available educational datasets 

available from LearnSphere. The goal is to generate -- for each 
workflow component contribution in the tutorial -- a publishable 
tutorial paper that describes the outcomes of openly sharing the 
analysis with the research community.  

Finally, tutorial attendees will discuss bottlenecks that remain 
toward our goal of a unified repository. We will also brainstorm 
possible solutions. Our goal is to create the building blocks to allow 
groups of researchers to integrate their data with other researchers 
we can advance the learning sciences as harnessing and sharing big 
data has done for other fields.  
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ABSTRACT 
There is growing evidence that digital games are an effective 
medium for learning. Games also present distinctive challenges 
and opportunities for educational data mining (EDM). Many 
games feature complex, open-ended tasks and unexpected 
learner behaviors. In addition, games provide vast amounts of 
fine-grained data about learners’ behaviors, offering a new 
window into student learning processes. Game-based learning 
raises questions that require new computational techniques and 
methodologies to enhance our understanding of the moment-to-
moment signatures of engaged learning. To explore these 
questions, we have convened a workshop on EDM & Games: 
Leveling Up Engaged Learning with Data-Rich Analytics. The 
purpose of the workshop is to build a community with shared 
interest in this emerging area, foster future collaborations, and 
identify new opportunities for EDM that are enabled by data 
from student interactions with game-based learning 
environments. The half-day workshop features a program of oral 
paper presentations, group discussions, and an invited speaker, 
each exploring questions about how EDM and games can be 
leveraged together to enhance our understanding of engaged 
learning in a range of educational contexts.   

Keywords 

Game-based learning, serious games, game-based assessment, 
multimodal analytics, engagement. 

1. INTRODUCTION 
Recent advances in educational data mining (EDM) are creating 
new opportunities for game-based learning. Games have long 
been recognized for their capacity to engage players in 
immersive virtual worlds and complex problem scenarios. Now, 
there is growing evidence that games are also an effective 
medium for enhancing learning [1, 2]. Games for learning have 

been developed across a broad range of educational domains, 
including science education [3, 4], mathematics education [5], 
language learning [6], civic education [7], and patient education 
[8].  

As learners interact with educational games, rich streams of in-
game behavior data are generated that can be modeled and 
analyzed using EDM techniques. These data streams contain 
timestamped records of key game events, such as interactions 
with non-player characters, movements between locations, and 
manipulations of virtual objects. Increasingly, they also include 
multimodal sensor data, such as eye tracking, facial expression, 
posture, and biometric data [9, 10]. The increasing availability 
of trace-level data from games has created new opportunities for 
investigating methods to analyze and model learner behavior in 
these environments. The resulting models hold promise for 
enriching our understanding of learning, problem solving, and 
engagement [11, 12], as well as enabling data-driven 
pedagogical functionalities to create personalized game-based 
learning experiences [13]. 

In light of these advances, a variety of questions have begun to 
emerge at the intersection of EDM and games:  

● Which EDM techniques are best suited for addressing the 
distinctive challenges posed by game-based learning, such 
as open-ended tasks, unexpected learner behaviors, and 
balancing learning and engagement effectively?  

● How can we leverage EDM techniques to inform evidence-
based design principles for game-based learning?  

● What are the unique contributions that EDM can provide 
toward enhancing our understanding of the moment-to-
moment signatures of engaged learning. 

2. WORKSHOP GOALS 
To explore these questions, the workshop brings together 
researchers interested in the intersection of EDM and games to 
better understand student learning and engagement using data-
rich analytics. It showcases recent research on EDM in games 
for learning, training, and education. A key focus is leveraging 
novel data mining techniques and methodologies to enhance our 
understanding of student learning and engagement, as well as to 
enable enriched learning experiences that are both effective and 
engaging. 
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The workshop covers a broad range of topics at the intersection 
of EDM and games across different educational settings (e.g., 
schools, training, online learning), student populations (e.g., 
primary, secondary, post-secondary), and educational domains 
(e.g., science, mathematics, military training). It has been 
designed to build a community of researchers that share 
common interests and to create opportunities for future 
collaborations. It has also seen the assembly of a 
multidisciplinary program committee consisting of more than 20 
scholars spanning academia and industry, several of whom have 
also contributed to the workshop as authors. 

3. WORKSHOP PROGRAM 
The half-day workshop is structured around a series of oral 
paper presentations, group discussions, and an invited talk. 
Accepted papers cover a range of topics at the intersection of 
EDM and games, including the following: 

● An investigation of problem-solving strategies of both 
expert humans and AI agents playing Atari 2600 games, 
including visualizations of game data to compare agent 
policies and human expert strategies. 

● An examination of off-the-shelf data-mining techniques to 
predict student quitting and assessment performance with 
two online middle school science learning games. 

● An investigation of how much data is needed in gameplay 
sessions to predict student performance, and thus inform 
how teachers should allocate help and attention toward 
students. Teachers may not always be able to attend to 
information dashboards in the classroom, so understanding 
how to alert teachers of student needs is critical.  

● An approach to detecting student affect using multimodal 
sensors in game-based learning environments. The authors 
examine two sensor modalities, posture and electrodermal 
activity, to predict the affective states of students and 
evaluate different types of multimodal data fusion 
techniques to obtain the best classification accuracy. 

● A data-driven approach to predicting students’ challenge 
outcomes using a game-based learning environment for 
genetics. The model predicts two categories of challenge 
outcome: quit or complete. The paper explores and 
compares an extensive set of machine learning models for 
predicting student performance. 

4. CONCLUSION 
Game-based learning environments have significant potential as 
a medium for engaging learners in complex problem-solving 
scenarios. The rich data streams produced by student 
interactions with games are creating new opportunities for 
applying EDM to enrich our understanding of learning, problem 
solving, and engagement. This workshop represents an 
important step toward realizing this vision by cultivating a 
scholarly community that seeks to understand how we might 
foster engaged learning through the integration of EDM and 
game-based learning technologies and methods. 
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ABSTRACT
This tutorial explores causal discovery algorithms in Tetrad
1 implemented in LearnSphere’s Tigris workflow tool 2. The
Tetrad software suite contains algorithms that search for
causal models from observational and experimental datasets
[10], and has been productively applied to many educational
datasets [8, 6, 3]. LearnSphere’s Tigris is a free online
workflow authoring tool and data mining infrastructure for
custom analyses of new and existing data formats, including
the educational data repository DataShop [11]. The tutorial
teaches the fundamentals of causal discovery with hands on
work in Tetrad, and teaches integrated causal data-mining
with hands on work in Tigris. Attendees will gain experience
sharing their results and methods in Tigris with others as
well as connecting their analyses to thousands of datasets
available in DataShop.

1. INTRODUCTION
As more educational technologies are created, more data
is being logged and available to researchers. Mining this
data for information concerning what pattern of student
behaviors cause better learning outcomes is crucial if we are
to intervene, either in the design of the online material, or
in the student’s behavior more directly. The gold standard
for determining causal relationships is randomized controlled
experiments, but these cost money and time, and are often
unable to answer questions about the mechanisms by which
an intervention causes learning. Tetrad contains algorithms
that can mine both experimental and observational datasets
for information about the causal relationships that might
have produced the observed data. It has been used to guide
follow-up experiments in educational research [5]. With an
abundance of datasets available and causal questions at the
center of all kinds of science, educational data-mining for
causation is an increasingly important task.

1http://www.phil.cmu.edu/tetrad/
2https://pslcdatashop.web.cmu.edu/LearnSphere

Tetrad is a standalone Java program developed by the Phi-
losophy department at Carnegie Mellon University and more
recently in conjunction with the Department of Biomedical
Informatics at the University of Pittsburgh. The aim of
the program is to provide sophisticated methods of creating,
searching for, estimating, and testing causal and statistical
models of both experimental and observational data. No
prior programming experience is needed to use Tetrad.

Much of the functionality of Tetrad has been included in an
online workflow tool called Tigris. The LearnSphere project
created Tigris to connect multiple data sources to analytical
tools that are open source and available for collaboration.
LearnSphere.org provides a hub that integrates existing data
silos implemented at different universities, including educa-
tional technology ”click stream” data in CMU’s DataShop[11],
massive online course data in Stanford’s DataStage and ana-
lytics in MIT’s MOOCdb [12], and educational language and
discourse data in CMU’s DiscourseDB [1]. Researchers can
share their data mining code in the Tigris tool by adding
it to the open source repository3 such as the Performance
Factors Analysis[4] program or the Feature Extractor [13].

The advantages of the Tetrad implementation in Tigris are
numerous. Since Tigris is a web based tool, workflows can be
shared amongst anyone with a computer. There is no need to
worry about having Java on your computer or downloading
different versions of Tetrad. The owner of a workflow can
share their Tetrad analyses on Tigris with whomever they
wish. In addition to shareability, Tetrad on Tigris is con-
nected to the educational data repository DataShop. This
connection allows for easy access and permission control of
data in a Tetrad analysis.

Tigris workflows are executed and saved remotely on secure
servers. LearnSphere has a scalable infrastructure that allows
for computation on large datasets, and so the limitations on
computation are not influenced by the user’s machine. The
analyses are run remotely, so the code still runs regardless
of the status of the user’s machine. The analyses can be
accessed from any computer and are safely saved.

In this tutorial, we will explore the causes of learning in
online courses using Tetrad in Tigris. The organizers will
explain how to interpret the output generated by algorithms
in Tetrad and how to build a Tigris workflow that utilizes
data in DataShop to determine the causes of learning with

3https://github.com/LearnSphere/WorkflowComponents
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Tetrad. The attendees will gain access to a dataset that was
collected from an online college course. The data contains
variables such as pages viewed, activities performed, quiz
scores, and final exam grades. Using this data, the attendees
will generate causal models in a similar fashion to [2] and [3].

2. THE TUTORIAL
2.1 Schedule

Table 1: Tutorial Schedule: July 2nd, 2019
Time Item
1:00pm Introduction and Definition of Causal

Discovery and Tetrad
2:15pm Demonstration: Building a Tigris

workflow that utilizes DataShop data
and Tetrad

2:45pm Break
3:00pm Hands-on: Determine the causes of

learning using DataShop data in Tigris.
4:00pm Closing / High Level Discussion

2.2 Introduction and Definition of Causal Dis-
covery and Tetrad

Richard Scheines is the Dean of the Mariana Brown Dietrich
College of Humanities and Social Sciences at Carnegie Mellon
University and a Professor in the Department of Philoso-
phy. His research is on causal discovery, and in particular,
the problem of learning about causation from statistical evi-
dence. The theoretical and computational dimensions of Dr.
Scheines’s work are implemented in the Tetrad causal discov-
ery tool. In this first segment of the tutorial, Dr. Scheines
will introduce the theory behind statistical causality and
teach attendees about graph theory. This will give atten-
dees the background necessary to understand the underlying
workings of the causal discovery algorithms in Tetrad.

2.3 Demonstration: Building a Tigris workflow
that utilizes DataShop data and Tetrad

Peter Schaldenbrand is a developer on the LearnSphere
project and researcher in the Human-Computer Interaction
Institute at Carnegie Mellon University. He has authored
many analysis components in the Tigris workflow tool and
has integrated Tetrad’s causal search algorithms into Tigris.
Mr. Schaldenbrand will introduce attendees to the online
educational data mining tool, Tigris, in a demontrative way
in this segment of the tutorial. Attendees will learn how to
view another researcher’s workflows and even build off of
them while using their own data. The connection between
DataShop data and the analytical tools in Tigris will be
demonstrated. Mr. Schaldenbrand will introduce many of
the educational data mining tools implemented in Tigris
including the Tetrad suite. Lastly, Mr. Schaldenbrand will
build a workflow which will setup the attendees to build their
own workflows in the hands on section.

2.4 Hands-on: Determine the causes of learn-
ing using DataShop data in Tigris.

Tutorial attendees will gain access to two datasets in Data-
Shop. Both datasets were generated from Massive Open
Online Courses, but the courses were for different subjects

and took place at different universities. Each dataset con-
tains variables that measure pre- and post-test assessment
as well as resource usage such as videos watched, activities
completed, and pages read.

Attendees will import the data directly from DataShop into
a new Tigris workflow which they have created. They will
learn to clean the data for usage with the Tetrad components.
They will then use the Tetrad components to explore the
causes of learning within these MOOC environments. This
analysis will be similar to that performed in [2] and [3].

3. OBJECTIVES AND OUTCOMES
One of the objectives of this tutorial is to introduce the
importance of causal analysis to the educational data min-
ing community. Many papers focus on finding interesting
correlations in data such as [7] and [9]. These correlations
can be fascinating but only give small clues into how to
make actionable interventions in curricula, intelligent tutor-
ing systems, or classrooms to increase learning. This tutorial
will demonstrate that important causal relationships can be
mined from observational data and that these relationships
can give insight into real interventions on student learning.

This tutorial will also display the importance of making
analyses sharable and introduce easily reproducible workflow
capabilities in Tigris. Software versioning, data permissions,
and hidden calculations plague the reproducibility of research
results. In Tigris, versioning is hidden from the user allowing
anyone with a computer to use the tools. Data permissions
are handled through the safe infrastructure of DataShop,
and all calculations and parameters are visible in the Tigris
workflow pipeline. This tutorial will demonstrate that doing
research in Tigris is a great way to support reproducibility
and shareability.

One outcome of this tutorial is that attendees will be familiar
with using data from DataShop in a Tigris workflow. They
will request access to a dataset which they will import into a
Tigris workflow under the guidance of the organizers. They
will then gain familiarity with the Tetrad algorithms and
analyze the results with the organizers.

Once the attendees are familiar with creating causal models
in a workflow, they can move onto working on their own
research questions. Tutorial attendees will discuss what
causal relationships they would like to investigate and try
to expand on the use cases of Tetrad. They may present a
workflow that utilizes Tetrad and their own datasets to the
other attendees. This tutorial will promote the importance
of causal reasoning in education with the intention of making
productive interventions on student learning.
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Cohen, Anat 603
Coleman, Chad 732
Conrad, Stefan 500
Cristea, Alexandra 438

d’Aquin, Mathieu 188
D’Mello, Sidney K. 79, 324, 420
Dai, Huan 691
Dale, Meghan 420
Dalton, Elizabeth 770
Dang, Steven 276
Davis, Andrea 528
Davis, Christopher 687
Davis, Glenn 532
de Barba, Paula 354
Dede, Chris 643
Desmarais, Michel 556, 611, 768
Dickler, Rachel 536
Ding, Xinyi 282
Doan, Thanh-Nam 288
Dong, Matthew 540
Dong, Yihuan 218
Donnelly, Patrick 420
Douglas, Kerrie 619
Dubrawski, Artur 520
Duckworth, Angela L. 79
Dufresne, Aude 623
Dziuban, Charles 742

E. Mello, Carlos 627
Eglington, Luke G. 5, 773
Elliott, Mark 360
Emerson, Andrew 39
Emond, Bruno 544
Ezra, Orit 603

Fancsali, Stephen 468
Fang, Weiqi 468
Farrar, Scott 342
Ferreira, Rafael 19
Flemming, Rory 548, 615
Fu, Guowei 240
Furr, Daniel 528, 552

Proceedings of the 12th International Conference on Educational Data Mining dcclxxx



Author Index

Gagnon, Vincent 556
Gal, Kobi 408, 603
Gao, Jing 450, 671
Garcia, Julian 584
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Rus, Vasile 246, 258

S Baker, Ryan 99
Sadiq, Shazia 228
Sahebi, Shaghayegh 288
Sanz Ausin, Markel 168, 766
Schaldenbrand, Peter 777
Scheines, Richard 777
Schinazi, Victor 198
Schmück, Emmanuel 548
Schneider, Bertrand 149, 318, 496, 639
Schrater, Paul 548, 615
Schwartz, Daniel L. 109
Segal, Avi 603
Shafran, Eyal 330
Shaikh, Hammad 647
Shang, Xuequn 691
Sher, Varshita 651, 706
Shi, Lei 438
Shillo, Roi 408, 659
Shimada, Atsushi 178, 655
Shrier, Ian 611
Simmering, Vanessa 372
Sinclair, Arabella 414
Sitton, Daniel 659
Smeets, Roger 760
Smith, Andy 39
Smith, Cody 39
Solenthaler, Barbara 198
Sonmez Unal, Deniz 710
Spanakis, Gerasimos 580
Srinivasa, Srinath 631
Stamper, John 139, 468, 702, 773
Stenhaug, Ben 252
Stephenson, Shonte 732
Stevens, Mitchell 294
Stone, Cathlyn 420
Studer, Christoph 208
Sunahase, Takeru 426
Syed, Munira 432

Tabach, Michal 603

Proceedings of the 12th International Conference on Educational Data Mining dcclxxxiv



Author Index

Taijala, Taavi 726
Takhar, Rohit 444
Tang, Jie 450
Taniguchi, Rin-Ichiro 178
Taniguchi, Yuta 178, 655
Taub, Michelle 8
Terzi, Evimaria 504
Thai, K. P. 378
Toda, Armando Maciel 438
Tzayada, Odelya 603

Unnam, Abhishek 444

Vainas, Oded 659
Valdés, Julio J. 544
van der Maas, Han 372
Van Dessel, Steven 89
Varatharaj, Ashvini 663
Vassileva, Julita 1
Vazquez Alferez, Sofia 748
Vela, Adan 264
Velagapudi, Nishant 9
Venant, Rémi 188
Vie, Jill-Jênn 29
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