PARCC

Final Technical Report for 2017 Administration

Pearson

March 27, 2018

Table of Contents

Table	e of Contents	i
List o	of Tables	vii
List o	f Figures	xv
Execu	utive Summary	17
Wha	t's New for the 2016-2017 PARCC Technical Report	17
Over	view	17
Section	on 1: Introduction	24
1.1	Background	24
1.2	Purpose of the Operational Tests	25
1.3	Composition of Operational Tests	25
1.4	Intended Population	26
1.5	Groups and Organizations Involved with PARCC	26
1.6	Overview of the Technical Report	27
1.7	Glossary of Abbreviations	30
Section	on 2: Test Development	32
2.1 C	Overview of the PARCC Assessment, Claims, and Design	32
2.:	1.1 English Language Arts/Literacy (ELA/L) Assessments—Claims and Subclaims	32
2.:	1.2 Mathematics Assessments—Claims and Subclaims	33
2.2 T	est Development Activities	34
2.2	2.1 Item Development Process	34
2.2	2.2 Item and Text Review Committees	35
2.2	2.3 Operational Test Construction	36
2.2	2.4 Linking Design of the Operational Test	41
2.2	2.5 Graphical Representation of PARCC Operational Test Linking Design	42
2.2	2.6 Field Test Data Collection Overview	44
Section	on 3: Test Administration	46
3.1 T	esting Windows	46
3.2 T	est Security and Administration Policies	46
3.3 A	Accessibility Features and Accommodations	48
3.3	3.1 Participation Guidelines for PARCC Assessments	48

3.3.2 PARCC Accessibility System	48
3.3.3 What are Accessibility Features?	48
3.3.4 Accommodations for Students with Disabilities and English Learners	49
3.3.5 Unique Accommodations	50
3.3.6 Emergency Accommodations	50
3.3.7 Student Refusal Form	51
3.4 Testing Irregularities and Security Breaches	51
3.5 Data Forensics Analyses	53
3.5.1 Response Change Analysis	53
3.5.2 Aberrant Response Analysis	54
3.5.3 Plagiarism Analysis	54
3.5.4 Longitudinal Performance Monitoring	54
3.5.5 Internet and Social Media Monitoring	55
3.5.6 Off-Hours Testing Monitoring	55
Section 4: Item Scoring	56
4.1 Machine-Scored Items	56
4.1.1 Key-Based Items	56
4.1.2 Rule-Based Items	56
4.2 Human or Hand-scored Items	57
4.2.1 Scorer Training	58
4.2.2 Scorer Qualification	62
4.2.3 Managing Scoring	63
4.2.4 Monitoring Scoring	63
4.3 Automated Scoring for PARCC PCRs	66
4.3.1 Concepts Related to PARCC Automated Scoring	66
4.3.2 Sampling Responses Used for Training IEA	68
4.3.3 Primary Criteria for Evaluating IEA Performance	68
4.3.4 Contingent Primary Criteria for Evaluating IEA Performance	69
4.3.5 Applying Smart Routing	69
4.3.6 Evaluation of Secondary Criteria for Evaluating IEA Performance	70
4.3.7 Inter-rater Agreement for Prose Constructed Response	72
Section 5: Test Taker Characteristics	74

5.1 Overview of Test Taking Population	74
5.2 Composition of Operational Forms	74
5.3 Rules for Inclusion of Students in Analyses	74
5.4 Test Takers by Grade, Mode, and Gender	75
5.5 Demographics	77
Section 6: Classical Item Analysis	78
6.1 Overview	78
6.2 Data Screening Criteria	78
6.3 Description of Classical Item Analysis Statistics	78
6.4 Summary of Classical Item Analysis Flagging Criteria	80
6.5 Classical Item Analysis Results	81
Section 7: Differential Item Functioning	86
7.1 Overview	86
7.2 DIF Procedures	86
7.3 Operational Analysis DIF Comparison Groups	88
7.4 Operational Differential Item Functioning Results	90
Section 8: Reliability	93
8.1 Overview	93
8.2 Reliability and SEM Estimation	94
8.2.1 Raw Score Reliability Estimation	94
8.2.2 Scale Score Reliability Estimation	95
8.3 Reliability Results for Total Group	96
8.3.1 Raw Score Reliability Results	96
8.3.2 Scale Score Reliability Results	98
8.4 Reliability Results for Subgroups of Interest	101
8.5 Reliability Results for English Language Arts/Literacy Subscores	124
8.6 Reliability Results for Mathematics Subscores	127
8.7 Reliability of Classification	129
8.8 Inter-rater Agreement	134
Section 9: Validity	135
9.1 Overview	135
9.2 Evidence Based on Test Content	135

9.3 Evidence Based on Internal Structure	137
9.3.1 Intercorrelations	138
9.3.2 Reliability	151
9.3.3 Local Item Dependence	151
9.4 Evidence Based on Relationships to Other Variables	156
9.5 Evidence from the Special Studies	162
9.5.1 Content Alignment Studies	162
9.5.2 Benchmarking Study	164
9.5.3 Longitudinal Study of External Validity of PARCC Performance Levels (Phase 1)	165
9.5.4 2017 Mode and Device Comparability Studies	166
9.6 Evidence Based on Response Processes	167
9.7 Interpretations of Test Scores	168
9.8 Evidence Based on the Consequences to Testing	168
9.9 Summary	169
Section 10: IRT Calibration and Scaling in Operational Year Three	171
10.1 Overview	171
10.2 IRT Data Preparation	171
10.2.1 Overview	171
10.2.2 Student Inclusion/Exclusion Rules	172
10.2.3 Items Excluded from IRT Sparse Matrices	172
10.2.4 Omitted, Not Reached, and Not Presented Items	173
10.2.5 Quality Control of the IRT Sparse Matrix Data Files	173
10.3 Description of the Calibration Process	173
10.3.1 Two-Parameter Logistic/Generalized Partial Credit Model	174
10.3.2 Treatment of Prose Constructed-Response (PCR) Tasks	174
10.3.3 IRT Item Exclusion Rules (Before Calibration)	174
10.3.4 IRTPRO Calibration Procedures and Convergence Criteria	175
10.3.5 Calibration Quality Control	176
10.4 Model Fit Evaluation Criteria	177
10.5 Items Excluded from Score Reporting	180
10.5.1 Item Review Process	180
10.5.2 Count and Percentage of Items Excluded from Score Reporting	181

10.6 Scaling Parameter Estimates	182
10.7 Items Excluded from Linking Sets	182
10.8 Correlations and Plots of Scaling Item Parameter Estimates	184
10.9 Scaling Constants	186
10.10 Summary Statistics and Distributions from IRT Analyses	187
10.10.1 IRT Summary Statistics for English Language Arts/Literacy	187
10.10.2 IRT Summary Statistics for Mathematics	190
Section 11: Performance Level Setting	193
11.1 Performance Standards	193
11.2 Performance Levels and Policy Definitions	193
11.3 Performance Level Setting Process for the PARCC Assessment System	195
11.3.1 PARCC Research Studies	196
11.3.2 PARCC Pre-Policy Meeting	196
11.3.3 Performance Level Setting Meetings	196
11.3.4 PARCC Post-Policy Reasonableness Review	198
Section 12: Scale Scores	200
12.1 Operational Test Content (Claims and Subclaims)	200
12.1.1 English Language Arts/Literacy	200
12.1.2 Mathematics	202
12.2 Establishing the Reporting Scales	203
12.2.1 Full Summative Score Scale and Performance Levels	203
12.2.2 ELA/L Reading and Writing Claim Scale	204
12.2.3 Subclaims Scale	205
12.3 Creating Conversion Tables	206
12.4 Score Distributions	209
12.4.1 Score Distributions for ELA/L	209
12.4.2 Score Distributions for Mathematics	219
12.5 Interpreting Claim Scores and Subclaim Scores	225
12.5.1 Interpreting Claim Scores	225
12.5.2 Interpreting Subclaim Scores	225
Section 13: Student Growth Measures	227
12.1 Norm groups	227

13.2 Student Growth Percentile Estimation	230
13.3 Student Growth Percentile Results/Model Fit for Total Group	231
13.4 Student Growth Percentile Results for Subgroups of Interest	232
Section 14: Quality Control Procedures	236
14.1 Quality Control of the Item Bank	236
14.2 Quality Control of Test Form Development	236
14.3 Quality Control of Test Materials	237
14.4 Quality Control of Scanning	238
14.5 Quality Control of Image Editing	239
14.6 Quality Control of Answer Document Processing and Scoring	240
14.7 Quality Control of Psychometric Processes	241
14.7.1 Pearson Psychometric Quality Control Process	241
14.7.2 HumRRO Psychometric Quality Control Process	243
14.7.3 Measured Progress Psychometric Quality Control Process	243
References	245
Appendices	249
Appendix 5: Test Takers by Grade and Mode, for Each State	249
Appendix 7: Summary of Differential Item Function (DIF) Results	279
Appendix 8: Reliability of Classification by Content and Grade Level	298
Appendix 10.1: IRT Results for Spring 2017 English Language Arts/Literacy (ELA/L)	319
Appendix 10.2: IRT Results for Spring 2017 Mathematics	327
Appendix 12.1: Form Composition	333
Appendix 12.2: Scaling Constants and Associated Information	339
Appendix 12.3: IRT Test Characteristic Curves, Information Curves, and CSEM Curves	344
Appendix 12.4: Subgroup Scale Score Performance	365
Appendix 13: Growth	416
Addendum: Statistical Summary of the Fall/Winter Block 2016 Administration	433
Addendum 5: Test Taker Characteristics	433
Addendum 8: Reliability	445
Addendum 9: Validity	459
Addendum 12: Scale Scores	464

List of Tables

Table 1.1 Defined Summative Scale Scores and Cut Scores	22
Table 1.2 Defined Scaled Scores and Cut Scores for Reading and Writing Claim Scores	22
Table 1.3 Glossary of PARCC Abbreviations and Acronyms	30
Table 2.1 Number of Core Operational Forms per Grade/Subject and Mode for ELA/L and Mathen	natics*
	38
Table 3.1 PARCC Fall/Winter Block 2016 and Spring 2017 Testing Windows	46
Table 4.1 Training Materials Used During Scoring	60
Table 4.2 Mathematics Qualification Requirements	62
Table 4.3 Scoring Hierarchy Rules	63
Table 4.4 Scoring Validity Agreement Requirements	64
Table 4.5 Inter-rater Agreement Expectations and Results	65
Table 4.6 Comparison Groups	
Table 5.1 ELA/L Test Takers by Grade and Mode: All States Combined	75
Table 5.2 Mathematics Test Takers by Grade and Mode: All States Combined	76
Table 5.3 Spanish-Language Mathematics Test Takers, by Grade and Mode: All States Combined	
Table 6.1 Summary of p Values for ELA/L Operational Items by Grade and Mode	82
Table 6.2 Summary of p Values for Mathematics Operational Items by Grade and Mode	83
Table 6.3 Summary of Item-Total Polyserial Correlations for ELA/L Operational Items by Grade an	d Mode
	84
Table 6.4 Summary of Item-Total Correlations for Mathematics Operational Items by Grade and M	∕lode 85
Table 7.1 DIF Categories for Dichotomous Selected-Response and Constructed-Response Items	88
Table 7.2 DIF Categories for Polytomous Constructed-Response Items	88
Table 7.3 Traditional DIF Comparison Groups	89
Table 7.4 Differential Item Functioning for ELA/L Grade 3	91
Table 7.5 Differential Item Functioning for Mathematics Grade 3	92
Table 8.1 Summary of ELA/L Test Reliability Estimates for Total Group	
Table 8.2 Summary of Mathematics Test Reliability Estimates for Total Group	98
Table 8.3 Summary of ELA/L Test Scale Score Reliability Estimates for Total Group	99
Table 8.4 Summary of Mathematics Test Scale Score Reliability Estimates for Total Group	100
Table 8.5 Summary of Test Reliability Estimates for Subgroups: Grade 3 ELA/L	103
Table 8.6 Summary of Test Reliability Estimates for Subgroups: Grade 4 ELA/L	104
Table 8.7 Summary of Test Reliability Estimates for Subgroups: Grade 5 ELA/L	105
Table 8.8 Summary of Test Reliability Estimates for Subgroups: Grade 6 ELA/L	106
Table 8.9 Summary of Test Reliability Estimates for Subgroups: Grade 7 ELA/L	107
Table 8.10 Summary of Test Reliability Estimates for Subgroups: Grade 8 ELA/L	108
Table 8.11 Summary of Test Reliability Estimates for Subgroups: Grade 9 ELA/L	109
Table 8.12 Summary of Test Reliability Estimates for Subgroups: Grade 10 ELA/L	110
Table 8.13 Summary of Test Reliability Estimates for Subgroups: Grade 11 ELA/L	
Table 8.14 Summary of Test Reliability Estimates for Subgroups: Grade 3 Mathematics	
Table 8.15 Summary of Test Reliability Estimates for Subgroups: Grade 4 Mathematics	113

Table 8.16 Summary of Test Reliability Estimates for Subgroups: Grade 5 Mathematics	114
Table 8.17 Summary of Test Reliability Estimates for Subgroups: Grade 6 Mathematics	115
Table 8.18 Summary of Test Reliability Estimates for Subgroups: Grade 7 Mathematics	116
Table 8.19 Summary of Test Reliability Estimates for Subgroups: Grade 8 Mathematics	117
Table 8.20 Summary of Test Reliability Estimates for Subgroups: Algebra I	118
Table 8.21 Summary of Test Reliability Estimates for Subgroups: Geometry	119
Table 8.22 Summary of Test Reliability Estimates for Subgroups: Geometry	120
Table 8.23 Summary of Test Reliability Estimates for Subgroups: Integrated Mathematics I	121
Table 8.24 Summary of Test Reliability Estimates for Subgroups: Integrated Mathematics II	122
Table 8.25 Summary of Test Reliability Estimates for Subgroups: Integrated Mathematics III	123
Table 8.26 Descriptions of ELA/L Claims and Subclaims	124
Table 8.27 Average ELA/L Reliability Estimates for Total Test and Subscores	126
Table 8.28 Average Mathematics Reliability Estimates for Total Test and Subscores	128
Table 8.29 Reliability of Classification: Summary for ELA/L	130
Table 8.30 Reliability of Classification: Grade 3 ELA/L	131
Table 8.31 Reliability of Classification: Summary for Mathematics	133
Table 8.32 Inter-rater Agreement Expectations and Results	134
Table 9.1 Average Intercorrelations and Reliability between Grade 3 ELA/L Subclaims	140
Table 9.2 Average Intercorrelations and Reliability between Grade 4 ELA/L Subclaims	140
Table 9.3 Average Intercorrelations and Reliability between Grade 5 ELA/L Subclaims	141
Table 9.4 Average Intercorrelations and Reliability between Grade 6 ELA/L Subclaims	141
Table 9.5 Average Intercorrelations and Reliability between Grade 7 ELA/L Subclaims	142
Table 9.6 Average Intercorrelations and Reliability between Grade 8 ELA/L Subclaims	142
Table 9.7 Average Intercorrelations and Reliability between Grade 9 ELA/L Subclaims	143
Table 9.8 Average Intercorrelations and Reliability between Grade 10 ELA/L Subclaims	143
Table 9.9 Average Intercorrelations and Reliability between Grade 11 ELA/L Subclaims	144
Table 9.10 Average Intercorrelations and Reliability between Grade 3 Mathematics Subclaims	144
Table 9.11 Average Intercorrelations and Reliability between Grade 4 Mathematics Subclaims	145
Table 9.12 Average Intercorrelations and Reliability between Grade 5 Mathematics Subclaims	145
Table 9.13 Average Intercorrelations and Reliability between Grade 6 Mathematics Subclaims	146
Table 9.14 Average Intercorrelations and Reliability between Grade 7 Mathematics Subclaims	146
Table 9.15 Average Intercorrelations and Reliability between Grade 8 Mathematics Subclaims	147
Table 9.16 Average Intercorrelations and Reliability between Algebra I Subclaims	147
Table 9.17 Average Intercorrelations and Reliability between Geometry Subclaims	148
Table 9.18 Average Intercorrelations and Reliability between Algebra II Subclaims	148
Table 9.19 Average Intercorrelations and Reliability between Integrated Mathematics I Subclaims	149
Table 9.20 Average Intercorrelations and Reliability between Integrated Mathematics II Subclaims	149
Table 9.21 Average Intercorrelations and Reliability between Integrated Mathematics III Subclaims	150
Table 9.22 Conditions used in LID Investigation and Results	154
Table 9.23 Summary of Q₃ Values for ELA/L Grade 4 and Integrated Mathematics II (Spring 2015)	154
Table 9.24 Correlations between ELA/L and Mathematics for Grade 3	157
Table 9.25 Correlations between ELA/L and Mathematics for Grade 4	

March 27, 2018 Page viii

Table 9.26 Correlations between ELA/L and Mathematics for Grade 5	158
Table 9.27 Correlations between ELA/L and Mathematics for Grade 6	158
Table 9.28 Correlations between ELA/L and Mathematics for Grade 7	159
Table 9.29 Correlations between ELA/L and Mathematics for Grade 8	159
Table 9.30 Correlations between ELA/L and Mathematics for High School	160
Table 9.31 Correlations between ELA/L Reading and Mathematics for High School	
Table 10.1 N-Counts and Number of Items in the ELA/L IRT Calibration Files	173
Table 10.2 Number and Percentage of ELA/L Items Excluded from IRT Calibration	182
Table 10.3 WRMSD Flagging Criteria for Inspection and Possible Removal of Linking Items	183
Table 10.4 Number of ELA/L Items Excluded from the Year-to-Year Linking Sets	184
Table 10.5 Number of Items, Number of Points, and Correlations for ELA/L Year-to-Year Linking Item	ıs184
Table 10.6 Scaling Constants Spring 2016 to Spring 2017 for ELA/L	187
Table 10.7 CBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade	188
Table 10.8 CBT IRT Standard Errors of Parameter Estimates for All Items for ELA/L by Grade	188
Table 10.9 CBT IRT Model Fit for All Items for ELA/L by Grade	189
Table 10.10 PBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade	189
Table 10.11 PBT IRT Parameter Distribution by Year for All Items for ELA/L by Grade	190
Table 10.12 CBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject	190
Table 10.13 CBT IRT Parameter Distribution by Year for All Items for Mathematics by Grade/Subject	191
Table 10.14 PBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject	191
Table 10.15 PBT IRT Parameter Distribution by Year for All Items for Mathematics by Grade/Subject	
Table 11.1 PARCC PLS Committee Meetings and Dates	
Table 12.1 Form Composition for ELA/L Grade 3	
Table 12.2 Contribution of Prose Constructed-Response Items to ELA/L	
Table 12.3 Mathematics Form Composition for Grade 3	
Table 12.4 Defined Summative Scale Scores	
Table 12.5 Defined Scaled Scores for Reading and Writing Claim Scores	
Table 12.6 Calculating Scaling Constants for Reading and Writing Claim Scores	
Table 12.7 Subgroup Performance for ELA/L: Grade 3	
Table 12.8 Subgroup Performance for ELA/L: Grade 9	
Table 12.9 Subgroup Performance for Mathematics Scale Scores: Grade 3	
Table 12.10 Subgroup Performance for Mathematics Scale Scores: Algebra I	
Table 12.11 Subgroup Performance for Mathematics Scale Scores: Integrated Mathematics I	
Table 13.1 ELA/L Grade-Level Progressions for One-year and Two-year Prior Test Scores	
Table 13.2 Mathematics Grade-Level Progressions for One-year and Two-year Prior Test Scores	
Table 13.3 Algebra I Grade/Content Area Progressions for One-year and Two-year Prior Test Scores	
Table 13.4 Geometry Grade/Content Area Progressions for One-year and Two-year Prior Test Scores	
Table 13.5 Algebra II Grade/Content Area Progressions for One-year and Two-year Prior Test Scores	
Table 13.6 Integrated Mathematics I Grade/Content Area Progressions for One-year and Two-year	
Prior Test Scores	
Table 13.7 Integrated Mathematics II Grade/Content Area Progressions for One-year and Two-year.	
Prior Test Scores	229

Table 13.8 Integrated Mathematics II Grade/Content Area Progressions for One-year and Two-year	230
Prior Test Scores	230
Table 13.9 Summary of ELA/L SGP Estimates for Total Group	232
Table 13.10 Summary of Mathematics SGP Estimates for Total Group	232
Table A.5.1 ELA/L Test Takers, by State, and Grade	249
Table A.5.2 Mathematics Test Takers, by State, and Grade	251
Table A.5.3 Spanish-Language Mathematics Test Takers, by State, and Grade	253
Table A.5.4 All States Combined: ELA/L Test Takers by Grade, Mode, and Gender	255
Table A.5.5 All States Combined: All Mathematics Test Takers by Grade, Mode, and Gender	256
Table A.5.6 All States Combined: Spanish-Language Mathematics Test Takers, by Grade, Mode, and	
Gender	257
Table A.5.7 Demographic Information for Grade 3 ELA/L, Overall and by State	258
Table A.5.8 Demographic Information for Grade 4 ELA/L, Overall and by State	259
Table A.5.9 Demographic Information for Grade 5 ELA/L, Overall and by State	260
Table A.5.10 Demographic Information for Grade 6 ELA/L, Overall and by State	261
Table A.5.11 Demographic Information for Grade 7 ELA/L, Overall and by State	262
Table A.5.12 Demographic Information for Grade 8 ELA/L, Overall and by State	263
Table A.5.13 Demographic Information for Grade 9 ELA/L, Overall and by State	264
Table A.5.14 Demographic Information for Grade 10 ELA/L, Overall and by State	265
Table A.5.15 Demographic Information for Grade 11 ELA/L, Overall and by State	266
Table A.5.16 Demographic Information for Grade 3 Mathematics, Overall and by State	267
Table A.5.17 Demographic Information for Grade 4 Mathematics, Overall and by State	268
Table A.5.18 Demographic Information for Grade 5 Mathematics, Overall and by State	269
Table A.5.19 Demographic Information for Grade 6 Mathematics, Overall and by State	270
Table A.5.20 Demographic Information for Grade 7 Mathematics, Overall and by State	271
Table A.5.21 Demographic Information for Grade 8 Mathematics, Overall and by State	272
Table A.5.22 Demographic Information for Algebra I, Overall and by State	273
Table A.5.23 Demographic Information for Geometry, Overall and by State	274
Table A.5.24 Demographic Information for Algebra II, Overall and by State	275
Table A.5.25 Demographic Information for Integrated Mathematics I, Overall and by State	276
Table A.5.26 Demographic Information for Integrated Mathematics II, Overall and by State	277
Table A.5.27 Demographic Information for Integrated Mathematics III, Overall and by State	278
Table A.7.1 Differential Item Functioning for ELA/L Grade 3	279
Table A.7.2 Differential Item Functioning for ELA/L Grade 4	280
Table A.7.3 Differential Item Functioning for ELA/L Grade 5	281
Table A.7.4 Differential Item Functioning for ELA/L Grade 6	282
Table A.7.5 Differential Item Functioning for ELA/L Grade 7	283
Table A.7.6 Differential Item Functioning for ELA/L Grade 8	284
Table A.7.7 Differential Item Functioning for ELA/L Grade 9	285
Table A.7.8 Differential Item Functioning for ELA/L Grade 10	286
Table A.7.9 Differential Item Functioning for ELA/L Grade 11	
Table A.7.10 Differential Item Functioning for Mathematics Grade 3	288

Table A.7.11 Differential Item Functioning for Mathematics Grade 4	289
Table A.7.12 Differential Item Functioning for Mathematics Grade 5	290
Table A.7.13 Differential Item Functioning for Mathematics Grade 6	. 291
Table A.7.14 Differential Item Functioning for Mathematics Grade 7	292
Table A.7.15 Differential Item Functioning for Mathematics Grade 8	. 293
Table A.7.16 Differential Item Functioning for Mathematics Algebra I	. 294
Table A.7.17 Differential Item Functioning for Mathematics Geometry	295
Table A.7.18 Differential Item Functioning for Mathematics Algebra II	
Table A.7.19 Differential Item Functioning for Integrated Mathematics I	. 297
Table A.8.1 Reliability of Classification: Grade 3 ELA/L	. 298
Table A.8.2 Reliability of Classification: Grade 4 ELA/L	. 299
Table A.8.3 Reliability of Classification: Grade 5 ELA/L	300
Table A.8.4 Reliability of Classification: Grade 6 ELA/L	301
Table A.8.5 Reliability of Classification: Grade 7 ELA/L	302
Table A.8.6 Reliability of Classification: Grade 8 ELA/L	303
Table A.8.7 Reliability of Classification: Grade 9 ELA/L	304
Table A.8.8 Reliability of Classification: Grade 10 ELA/L	305
Table A.8.9 Reliability of Classification: Grade 11 ELA/L	306
Table A.8.10 Reliability of Classification: Grade 3 Mathematics	307
Table A.8.11 Reliability of Classification: Grade 4 Mathematics	308
Table A.8.12 Reliability of Classification: Grade 5 Mathematics	309
Table A.8.13 Reliability of Classification: Grade 6 Mathematics	310
Table A.8.14 Reliability of Classification: Grade 7 Mathematics	311
Table A.8.15 Reliability of Classification: Grade 8 Mathematics	312
Table A.8.16 Reliability of Classification: Algebra I	313
Table A.8.17 Reliability of Classification: Geometry	314
Table A.8.18 Reliability of Classification: Algebra II	315
Table A.8.19 Reliability of Classification: Integrated Mathematics I	316
Table A.8.20 Reliability of Classification: Integrated Mathematics II	317
Table A.8.21 Reliability of Classification: Integrated Mathematics III	318
Table A.10.1 CBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade	319
Table A.10.2 PBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade	321
Table A.10.3 CBT IRT Standard Errors of Parameter Estimates for All Items for ELA/L by Grade	323
Table A.10.4 CBT IRT Model Fit for All Items for ELA/L by Grade	325
Table A.10.5 CBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject	.327
Table A.10.6 PBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject	.330
Table A.12.1 Form Composition for ELA/L Grade 3	333
Table A.12.2 Form Composition for ELA/L Grade 4	333
Table A.12.3 Form Composition for ELA/L Grade 5	333
Table A.12.4 Form Composition for ELA/L Grade 6	
Table A.12.5 Form Composition for ELA/L Grade 7	334
Table A.12.6 Form Composition for FLA/L Grade 8	334

Table A.12.7 Form Composition for ELA/L Grade 9	335
Table A.12.8 Form Composition for ELA/L Grade 10	335
Table A.12.9 Form Composition for ELA/L Grade 11	335
Table A.12.10 Form Composition for Mathematics Grade 3	336
Table A.12.11 Form Composition for Mathematics Grade 4	336
Table A.12.12 Form Composition for Mathematics Grade 5	336
Table A.12.13 Form Composition for Mathematics Grade 6	336
Table A.12.14 Form Composition for Mathematics Grade 7	337
Table A.12.15 Form Composition for Mathematics Grade 8	337
Table A.12.16 Form Composition for Algebra I	337
Table A.12.17 Form Composition for Geometry	337
Table A.12.18 Form Composition for Algebra II	338
Table A.12.19 Form Composition for Integrated Mathematics I	338
Table A.12.20 Form Composition for Integrated Mathematics II	338
Table A.12.21 Form Composition for Integrated Mathematics III	
Table A.12.22 Threshold Scores and Scaling Constants for ELA/L Grades 3 to 8	339
Table A.12.23 Threshold Scores and Scaling Constants for Mathematics Grades 3 to 8	
Table A.12.25 Threshold Scores and Scaling Constants for High School Mathematics	342
Table A.12.26 Scaling Constants for Reading and Writing Grades 3 to 8	343
Table A.12.27 Subgroup Performance for ELA/L Scale Scores: Grade 3	365
Table A.12.28 Subgroup Performance for ELA/L Scale Scores: Grade 4	367
Table A.12.29 Subgroup Performance for ELA/L Scale Scores: Grade 5	
Table A.12.30 Subgroup Performance for ELA/L Scale Scores: Grade 6	371
Table A.12.31 Subgroup Performance for ELA/L Scale Scores: Grade 7	
Table A.12.32 Subgroup Performance for ELA/L Scale Scores: Grade 8	
Table A.12.33 Subgroup Performance for ELA/L Scale Scores: Grade 9	377
Table A.12.34 Subgroup Performance for ELA/L Scale Scores: Grade 10	379
Table A.12.35 Subgroup Performance for ELA/L Scale Scores: Grade 11	381
Table A.12.36 Subgroup Performance for Mathematics Scale Scores: Grade 3	383
Table A.12.37 Subgroup Performance for Mathematics Scale Scores: Grade 4	384
Table A.12.38 Subgroup Performance for Mathematics Scale Scores: Grade 5	385
Table A.12.39 Subgroup Performance for Mathematics Scale Scores: Grade 6	386
Table A.12.40 Subgroup Performance for Mathematics Scale Scores: Grade 7	387
Table A.12.41 Subgroup Performance for Mathematics Scale Scores: Grade 8	388
Table A.12.42 Subgroup Performance for Mathematics Scale Scores: Algebra I	389
Table A.12.43 Subgroup Performance for Mathematics Scale Scores: Geometry	390
Table A.12.44 Subgroup Performance for Mathematics Scale Scores: Algebra II	391
Table A.12.45 Subgroup Performance for Mathematics Scale Scores: Integrated Mathematics I	392
Table A.12.46 Subgroup Performance for Mathematics Scale Scores: Integrated Mathematics II	393
Table A.12.47 Subgroup Performance for Mathematics Scale Scores: Integrated Mathematics III	394
Table ADD.5.1 State Participation in ELA/L Fall 2016 Operational Tests, by Grade	433
Table ADD.5.2 State Participation in Mathematics Fall 2016 Operational Tests, by Grade	435

Table ADD.5.3 State Participation in Spanish Mathematics Fall 2016 Operational Tests, by Grade	436
Table ADD.5.4 All States Combined: Fall 2016 ELA/L Test Takers by Grade and Gender	437
Table ADD.5.5 All States Combined: Fall 2016 Mathematics Test Takers by Grade and Gender	437
Table ADD.5.6 All States Combined: Fall 2016 Spanish-Language Mathematics Test Takers by Grade	and
Gender	438
Table ADD.5.7 Demographic Information for Fall 2016 Grade 9 ELA/L, Overall and by State	439
Table ADD.5.8 Demographic Information for Fall 2016 Grade 10 ELA/L, Overall and by State	440
Table ADD.5.9 Demographic Information for Fall 2016 Grade 11 ELA/L, Overall and by State	441
Table ADD.5.10 Demographic Information for Fall 2016 Algebra I, Overall and by State	442
Table ADD.5.11 Demographic Information for Fall 2016 Geometry, Overall and by State	443
Table ADD.5.12 Demographic Information for Fall 2016 Algebra II, Overall and by State	444
Table ADD.8.1 Summary of Test Reliability Estimates for Fall 2016 Total Group	445
Table ADD.8.2 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Grade 9 ELA/L	446
Table ADD.8.3 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Grade 10 ELA/L	447
Table ADD.8.4 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Grade 11 ELA/L	448
Table ADD.8.5 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Algebra I	449
Table ADD.8.6 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Geometry	450
Table ADD.8.7 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Algebra II	451
Table ADD.8.8 Fall 2016 Average ELA/L Reliability Estimates for Reading Total and Subscores	452
Table ADD.8.9 Fall 2016 Average ELA/L Reliability Estimates for Writing Total and Subscores	452
Table ADD.8.10 Fall 2016 Average Mathematics Reliability Estimates for Total Test and Subscores	453
Table ADD.8.11 Reliability of Classification: Summary for ELA/L Fall Block 2016	455
Table ADD.8.12 Reliability of Classification: Summary for Mathematics Fall Block 2016	455
Table ADD.8.13 Reliability of Classification: Grade 9 ELA/L	456
Table ADD.8.14 Reliability of Classification: Grade 10 ELA/L	456
Table ADD.8.15 Reliability of Classification: Grade 11 ELA/L	457
Table ADD.8.16 Reliability of Classification: Algebra I	457
Table ADD.8.17 Reliability of Classification: Geometry	458
Table ADD.8.18 Reliability of Classification: Algebra II	458
Table ADD.9.1 Average Intercorrelations and Reliability between Grade 9 ELA/L Subclaims	459
Table ADD.9.2 Average Intercorrelations and Reliability between Grade 10 ELA/L Subclaims	460
Table ADD.9.3 Average Intercorrelations and Reliability between Grade 11 ELA/L Subclaims	460
Table ADD.9.4 Average Intercorrelations and Reliability between Algebra I Subclaims	461
Table ADD.9.5 Average Intercorrelations and Reliability between Geometry Subclaims	461
Table ADD.9.6 Average Intercorrelations and Reliability between Algebra II Subclaims	462
Table ADD.9.7 Average Correlations between ELA/L and Mathematics for High School	462
Table ADD.9.8 Average Correlations between Reading and Mathematics for High School	463
Table ADD.9.9 Average Correlations between Writing and Mathematics for High School	463
Table ADD.12.1 Fall 2016 Subgroup Performance for ELA/L Scale Scores: Grade 9	464
Table ADD.12.2 Fall 2016 Subgroup Performance for ELA/L Scale Scores: Grade 10	466
Table ADD.12.3 Fall 2016 Subgroup Performance for ELA/L Scale Scores: Grade 11	468
Table ADD.12.4 Fall 2016 Subgroup Performance for Mathematics Scale Scores: Algebra I	470

March 27, 2018 Page xiii

2017 Technical Report

Table ADD.12.5 Fall 2016 Subgroup Performance for Mathematics Scale Scores: Geometry47	1
Table ADD.12.6 Fall 2016 Subgroup Performance for Mathematics Scale Scores: Algebra II47	2

List of Figures

Figure 2.1 PARCC ELA/L CBT and PBT Linking Design (Grades 6–11)	43
Figure 2.2 PARCC Mathematics CBT and PBT Linking Design (Grades 3–5)	44
Figure 9.1 Comparison of Internal Consistency by Item and Cluster (Testlet)	153
Figure 9.2 Distribution of Q ₃ Values for Grade 4 ELA/L (Spring 2015)	155
Figure 9.3 Distribution of Q ₃ Values for Integrated Mathematics II (Spring 2015)	155
Figure 10.1 An example ELA/L 5-Category Item, 2 PL/GPC Model, N-count 44,658, Q1=1266.64,	,
ZQ1=147.21 and a criterion ZQ1,crit= 237.02	180
Figure 10.2 An example ELA/L 3-Category Item, 2 PL/GPC Model, N-count 175,839	181
Figure 10.3 ELA/L Grade 8 Transformed New a- vs. Reference a-Parameter Estimates for Year-t	o-Year
Linking	185
Figure 10.4 ELA/L Grade 8 Transformed New b- vs. Reference b-Parameter Estimates for Year-t	o-Year
Linking	186
Figure 12.1 Test Characteristic Curves, Conditional Standard Error of Measurement Curves, and	t
Information Curves for ELA/L Grade 3	208
Figure 12.2 Distributions of ELA/L Scale Scores: Grades 3–11	210
Figure 12.2 (continued) Distributions of ELA/L Scale Scores: Grades 3–11	211
Figure 12.3 Distributions of Reading Scale Scores: Grades 3–11	212
Figure 12.3 (continued) Distributions of Reading Scale Scores: Grades 3–11	213
Figure 12.4 (continued) Distributions of Writing Scale Scores: Grades 3–11	216
Figure 12.5 Distributions of Mathematics Scale Scores: Grades 3–8	220
Figure 12.6 Distributions of Mathematics Scale Scores: High School	222
Figure A.12.1 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 3 344
Figure A.12.2 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 4 345
Figure A.12.3 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 5 346
Figure A.12.4 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 6 347
Figure A.12.5 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 7 348
Figure A.12.6 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 8 349
Figure A.12.7 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 9 350
Figure A.12.8 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 10 351
Figure A.12.9 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade	e 11 352
Figure A.12.10 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathemat	
3	
Figure A.12.11 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathemat	ics Grade
4	
Figure A.12.12 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathemat	
5	
Figure A.12.13 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathemat	
6	
Figure A.12.14 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathemat	
7	357

March 27, 2018

Figure A.12.15 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathematics Gra	
Figure A.12.16 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Algebra I	
Figure A.12.17 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Geometry	360
Figure A.12.18 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Algebra II	361
Figure A.12.19 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Integrated	
Mathematics I	362
Figure A.12.20 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Integrated	
Mathematics II	363
Figure A.12.21 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Integrated	
Mathematics III	364

Executive Summary

What's New for the 2016-2017 PARCC Technical Report

The purpose of this technical report is to describe the third operational administration of the Partnership for Assessment of Readiness for College and Careers (PARCC) assessments in the 2016–2017 academic year. The structure and format of this technical report is consistent with the prior technical reports with the following changes or updates:

- Section 5 Test Taker Characteristics: Participation included students from Colorado, Bureau of Indian Education, District of Columbia, Illinois, Maryland, New Jersey, New Mexico, and Rhode Island.
- Section 8 Reliability: Reliability is provided at the scale score level in addition to the raw score level. When reliability is summarized across forms, the minimum and maximum reliability is included in the tables.
- Section 9 Validity: The mode and device comparability study from the spring 2015 administration has been updated based on data from the spring 2017 administration. A summary of the first phase of the Study of External Validity of PARCC Performance Standards is included.
- Section 10 –IRT Calibration and Scaling: The online and paper mathematics assessments were pre-equated for spring 2017. The paper ELA/L assessments were pre-equated for spring 2017. The online ELA/L assessments were post-equated for spring 2017. Pre-equated assessments do not have the linking results included as these only apply to post-equated assessments.
- **Section 12 Scale Scores:** Details on the pre-equated conversion tables are provided. In Appendix 12, cumulative frequency tables for scale score distributions are provided and the conversion tables for the performance level setting forms are removed. The prior technical report is referenced for obtaining these.
- **Section 13 Student Growth Measures:** This section is new and provides details on the calculation of the Student Growth Percentiles reported to the PARCC participants.

Overview

PARCC is a state-led consortium creating next-generation assessments that, compared to traditional K–12 assessments, more accurately measures student progress toward college and career readiness. The PARCC assessments are aligned to the Common Core State Standards (CCSS) and were administered operationally for the first time in the 2014–2015 academic year. PARCC comprises assessments in both English language arts/literacy (ELA/L) and mathematics in grades 3 through 8 and high school.

The information provided in this technical report is intended for use by those who evaluate tests, interpret scores, or use test results in making educational decisions. It is assumed that the reader has technical knowledge of test construction and measurement procedures, as stated in *Standards for Educational and Psychological Testing* (American Educational Research Association [AERA], American Psychological Association [APA], and National Council on Measurement in Education [NCME], 2014). The

purpose of this technical report is to describe the third operational administration of the PARCC assessments in the 2016–2017 academic year and includes the following topics:

- background and purpose of the assessments;
- test development of items and forms;
- test administration, security, and scoring;
- test taker characteristics;
- classical item analyses and differential item functioning;
- reliability and validity of scores;
- item response theory (IRT) calibration and scaling;
- performance level setting;
- development of the score reporting scales and student performance;
- student growth measures; and
- quality control procedures.

Background and Purpose

Assessments for the first operational administration were constructed in 2014. Eleven states and the District of Columbia participated in the first administration of the PARCC assessments during the 2014–2015 school year. A small subset of students was tested in fall 2014. ELA/L grades 9, 10, and 11, and Algebra I, Geometry, and Algebra II were administered in the fall; these assessments were administered on paper only. The majority of students tested during the spring 2015 window when all grades and content areas were administered online and on paper. Seven states, the Bureau of Indian Education, and District of Columbia participated in the second administration in school year 2015–2016. Not all participating states had students testing in all grades. In fall 2015 ELA/L grades 9, 10, and 11, and Algebra I, Geometry, and Algebra II were administered online and on paper. The majority of students tested during the spring 2016 window when all grades and content areas were administered online and on paper. Six states, the Bureau of Indian Education, and District of Columbia participated in the third administration in school year 2016-2017. Not all participating states had students testing in all grades. In fall 2016 ELA/L grades 9, 10, and 11, and Algebra I, Geometry, and Algebra II were administered online and on paper. The majority of students tested during the spring 2017 window when all grades and content areas were administered online and on paper.

The PARCC assessments are designed to achieve several purposes. First, the tests are intended to provide evidence to determine whether students are on track for college- and career-readiness. Second, the tests are structured to access the full range of CCSS and measure the total breadth of student performance. Finally, the tests are designed to provide data to help inform classroom instruction, student interventions, and professional development.

Item Types

The tests contain selected response, brief and extended constructed response, technology-enabled, and technology-enhanced items (TEI), as well as performance tasks. Technology-enabled items are single-response or constructed-response items that involve some type of digital stimulus or open-ended response box with which the students engage in answering questions. Technology-enhanced items involve specialized student interactions for collecting performance data. Therefore, the act of performing the task is the way in which data are collected. Students may be asked, among other tasks, to categorize information, organize or classify data, order a series of events, plot data, generate equations, highlight text, or fill in a blank. One example of a TEI is an interaction in which students are asked to drag response options onto a Venn diagram to show the relationship among ideas.

Pre- and Post-Equating

Spring 2017 PARCC assessments (except ELA/L online) were pre-equated, meaning that the scoring tables were based on item parameters estimated using data from earlier administrations. The ELA/L online test continued to be post-equated due to the structure of these tests. ELA/L paper tests used only established operational items to make pre-equating possible. Mathematics tests have embedded field-test items that provide reliable statistics for new items. This coupled with the evolution of the item bank given the longevity of the program made pre-equating possible. Pre-equating allows for faster reporting of results. In this technical report, item statistics are from the administration the item parameters were estimated that were used to score the students.

Classical and IRT Item Analysis

Classical item analyses and differential item functioning analyses were performed on the data to evaluate the psychometric characteristics of the operational test items after items were administered and before scores were reported. The two-parameter logistic/generalized partial credit (2PL/GPC) IRT model was used for calibrations and scaling. Multiple operational core forms were administered for each grade in ELA/L and mathematics. The forms included sets of embedded common items to provide data to support horizontal linking across test forms within a grade and content area and for post-equated tests across years. Forms that were pre-equated, meaning that the conversion table is based on item parameters estimated using data from earlier operational administrations, have parameter estimates already on the base IRT scale, so there was no need to create year-to-year common item (linking) sets for these grades/subjects.

For post-equated ELA/L online tests, IRT calibration and scaling placed all operational items for a single grade onto a common scale. After calibration and model fit evaluation was completed, a master list of all items flagged as problematic was compiled and brought to the PARCC Priority Alert Task Force. The task force reviewed each item, its content and the statistical properties, and made decisions about whether to include the item in the operational scores. Sometimes, an item was rejected because it appeared to have content issues, and sometimes an item was excluded because it could not be calibrated or showed extremely poor IRT model fit. Ultimately the decision about whether to keep or exclude each flagged item was made by the task force. The goals of the task force were to: a) minimize

¹ The Priority Alert Task Force comprised Parcc Inc. staff, state leads and content experts, and Pearson staff.

the number of items excluded from the operational test forms, and b) avoid advantaging or disadvantaging any test takers.

In response to several practical constraints based on the number of forms constructed for each mode and to meet the blueprints (e.g., inclusion of TEI on computer-based testing [CBT] forms), there was no single CBT form that was administered intact in the paper delivery mode at any grade level. For example, TEI from online forms were replaced in the paper forms with items having similar content, but appropriate for paper-based testing (PBT). However, for both ELA/L and mathematics, the content on PBT forms significantly overlapped content on the CBT forms. Mode comparability studies were conducted in 2015 and 2017; the results are presented in separate technical reports. The studies evaluated the extent to which scores from CBT and PBT forms could be considered as comparable with regard to psychometric characteristics. A major finding was that score comparability was inconsistent across the content domains and grade levels investigated.

Overall Scale Scores, Claim Scores, and Subclaim Scores

The PARCC ELA/L and mathematics scores are expressed as various types of scale scores (both total scores and claim scores, related to the claims structures described below), as well as by performance levels used to describe how well students meet the academic standards for their grade level. On the basis of a student's total score, an inference is drawn about how much knowledge and skill in the content area the student has acquired. The total score is also used to classify students in terms of the level of knowledge and skill in the content area as students progress in their K–12 education. These levels are called performance levels and are reported as:

- Level 5: Exceeded expectations
- Level 4: Met expectations
- Level 3: Approached expectations
- Level 2: Partially met expectations
- Level 1: Did not yet meet expectations

Students classified as either Level 4 or Level 5 are meeting or exceeding the grade level expectations. Additionally, information on more specific skills is provided and is reported as *Below Expectations*, *Nearly Meets Expectations*, and *Meets or Exceeds Expectations*.

PARCC developed performance level descriptors (PLDs) to assist with the understanding and interpretations of the ELA/L and mathematics scores (https://parcc-assessment.org/performance-levels/). Additionally, resource information is available online to educators, parents, and students (http://understandthescore.org/score-report-guide/), which includes information on understanding and interpreting the ELA/L and mathematics score reports.

The claim structures for ELA/L and mathematics, grounded in the Common Core State Standards, inform the design and development of the summative assessments.

Claim Structure for ELA/L

Master Claim. The master claim is the overall performance goal for the PARCC ELA/L Assessment System—students must demonstrate that they are college- and career-ready or on track to readiness as demonstrated through reading and comprehending of grade-level texts of appropriate complexity and writing effectively when using and/or analyzing sources.

Major Claims: 1) reading and comprehending a range of sufficiently complex texts independently, and 2) writing effectively when using and/or analyzing sources.

Subclaims: The subclaims further explicate what is measured on the PARCC assessments and include claims about student performance on the standards and evidences outlined in the PARCC evidence tables for reading and writing (https://parcc-assessment.org/ela-literacy). The claims and evidences are grouped into the following categories:

- 1. Vocabulary, Interpretation, and Use
- 2. Reading Literature
- 3. Reading Informational Text
- 4. Written Expression
- 5. Knowledge of Language and Conventions

Claim Structure for Mathematics

Master Claim. The degree to which a student is college- or career-ready or on track to being ready in mathematics. The student solves grade-level/course-level problems aligned to the Standards for Mathematical Content with connections to the Standards for Mathematical Practice.

Subclaims: The subclaims further explicate what is measured on the PARCC assessments and include claims about student performance on the standards and evidences outlined in the PARCC evidence statement tables for mathematics (https://parcc-assessment.org/mathematics/). The claims and evidence are grouped into the following categories:

Subclaim A: Major Content with Connections to Practices

Subclaim B: Additional and Supporting Content with Connections to Practices

Subclaim C: Highlighted Practices with Connections to Content: Expressing mathematical reasoning by constructing viable arguments, critiquing the reasoning of others, and/or attending to precision when making mathematical statements

Subclaim D: Highlighted Practice with Connections to Content: Modeling/Application by solving real-world problems by applying knowledge and skills articulated in the standards

Scale Scores

Scale scores were defined for each test as a linear transformation of the IRT theta (θ) scale. The test characteristic curves associated with the performance level setting forms were used to identify the theta values associated with the Level 2 and Level 4 point scores. By defining Level 2 and Level 4 scale scores to be 700 and 750, respectively, the linear relationship between theta and scale scores was established.

The result is 201 defined full summative scale score points for each ELA/L and mathematics assessment, ranging from 650 to 850. A scale score of 700 is always the minimum for Level 2 performance, and a scale score of 750 is always the minimum for Level 4 performance.

The thresholds for summative performance levels on the scale score metric recommended by the scale score task force are described in Table 1.1.

Table 1.1 Defined Summative Scale Scores and Cut Scores

	Lowest Obtainable Scale Score	Cut Score Level 2	Cut Score Level 4	Highest Obtainable Scale Score	
Full Summative	650	700	750	850	

As with the full summative scores, scale scores for reading and writing were defined for each test as a linear transformation of the IRT theta (θ) scale. The same IRT theta scale was used for reading and writing as was used for the ELA/L full summative scores. The theta values associated with the Level 2 and Level 4 performance levels were identified using the test characteristic curves associated with the performance level setting forms. Parallel to the full summative scores, the relationship between theta and scale scores was established with Level 2 and Level 4 theta scores and the corresponding predefined scale scores.

The result was 81 defined scale score points for reading, ranging from 10 to 90. A scale score of 30 is the cut score for minimum Level 2 performance, and a scale score of 50 is the cut score for minimum Level 4 performance. There are 51 defined scale score points for writing, ranging from 10 to 60. A scale score of 25 is the cut score for minimum Level 2 performance, and a scale score of 35 is the cut score for minimum Level 4 performance. The threshold reading and writing performance levels on the scale score metric recommended by the scale score task force are described in Table 1.2.

Table 1.2 Defined Scaled Scores and Cut Scores for Reading and Writing Claim Scores

	Lowest Obtainable Scale Score	Cut Score Level 2	Cut Score Level 4	Highest Obtainable Scale Score
Reading	10	30	50	90
Writing	10	25	35	60

Regarding the subclaim scores, the Level 4 cut is defined as *Meets or Exceeds Expectations* because grade 3–8 and high school students at Level 4 or above are likely to have the skills and knowledge to meet the definition of career and college readiness. Subclaim outcomes center on that performance level and are reported as *Below Expectations*, *Nearly Meets Expectations*, and *Meets or Exceeds Expectations*.

Quality Control

To ensure IRT calibrations, scaling and conversion tables were produced accurately, HumRRO replicated the data processing, IRT calibrations and scale score transformations carried out by Pearson, and the generation of the score conversion tables. Pearson and HumRRO independently generated incomplete data matrices and conducted the calibrations using IRTPRO (Cai, Thissen & du Toit, 2011) calibration software. Pearson's scaling constants were compared to those generated by HumRRO and found to be consistent. Measured Progress (MP) performed independent quality control comparisons between the Pearson and HumRRO item parameter estimates to identify any differences. In addition, MP independently made certain that the same items were excluded from the linking sets, and compared transformed parameter estimates computed by Pearson and HumRRO. If items had large differences across years or modes, the items were discussed and any remaining issues resolved. MP prepared reports documenting their findings. Exact matches were found between all Pearson and HumRRO conversion tables before scores were reported.

Section 1: Introduction

1.1 Background

States associated with the Partnership for Assessment of Readiness for College and Careers (PARCC) came together in early 2010 with a shared vision of ensuring that all students—regardless of income, family background, or geography—have equal access to a world-class education that will prepare them for success after high school in college and/or careers. The PARCC goal was to develop new assessments that tie into more rigorous academic expectations and help prepare students for success in college and the workforce, as well as to provide information back to teachers and parents about where students are on their path to success. Calling on the expertise of thousands of teachers, higher education faculty, and other educators in multiple states, the PARCC assessment system is a high-quality set of summative assessments, diagnostic assessments, formative tasks, and other support materials for teachers including professional development and communications tools.

The PARCC consortium develops and administers next-generation assessments that, compared to traditional K–12 assessments, more accurately measure student progress toward college and career readiness. The assessments are aligned to the Common Core State Standards (CCSS) and include both English language arts/literacy (ELA/L) assessments (grades 3 through 11) and mathematics assessments (grades 3 through 8 and high school). Compared to traditional standardized tests, these assessments are intended to measure more complex skills like critical-thinking, persuasive writing, and problem-solving.

In 2013, the PARCC Governing Board launched Parcc Inc., a non-profit organization designed to support the successful delivery of the tests in 2014–15, and the long-term success of the multi-state partnership. States continue to govern decisions about the assessment system; the non-profit organization is their "agent" for overseeing the many vendors involved in the PARCC assessment system, coordinating the multiple work groups and committees (including Governing Board meetings), managing the PARCC intellectual property, overseeing the research agenda and the Technical Advisory Committee, and developing and launching the multiple non-summative tools.

Summative assessments for the first operational administration were constructed in 2014. Eleven states and the District of Columbia participated in the first administration of the PARCC assessments during the 2014–2015 school year. A small subset of students tested in the fall 2014 window. ELA/L grades 9, 10, and 11, and Algebra I, Geometry, and Algebra II were administered in the fall; these assessments were administered on paper only. The majority of students tested during the spring 2015 window when all grades and content areas were administered online and on paper. Seven states, the Bureau of Indian Education, and District of Columbia participated in the second administration in school year 2015–2016. Not all participating states had students testing in all grades. In the fall 2015 window, ELA/L grades 9, 10, and 11, and Algebra I, Geometry, and Algebra II were administered online and paper. The majority of students tested during the spring 2016 window when all grades and content areas were administered online and on paper.

The purpose of this technical report is to describe the third operational administration of the PARCC summative assessments in the 2016–2017 academic year, including test form construction, test administration, item scoring, test taker characteristics, classical item analysis results, reliability results, evidence of validity, item response theory (IRT) calibrations and scaling, performance level setting procedure, growth measures, and quality control procedures.

1.2 Purpose of the Operational Tests

The PARCC assessments are designed to achieve several purposes. First, the tests are intended to provide evidence to determine whether students are on track for college- and career-readiness. Second, the tests are structured to access the full range of CCSS and measure the total breadth of student performance. Finally, the tests are designed to provide data to help inform classroom instruction, student interventions, and professional development.

1.3 Composition of Operational Tests

Each operational test form was constructed to reflect the full test blueprint in terms of content, standards measured, and item types. Sets of common items, included to provide data to support horizontal linking across test forms within a grade and content area, were proportionally representative of the operational test blueprint.

The current PARCC assessments were administered in either computer-based (CBT) or paper-based (PBT) format. English language arts/literacy (ELA/L) assessments focused on writing effectively when analyzing text. Mathematics assessments focused on applying skills and concepts, and understanding multi-step problems that require abstract reasoning and modeling real-world problems, precision, perseverance, and strategic use of tools. In both content areas, students also demonstrated their acquired skills and knowledge by answering selected response items and fill-in-the-blank questions.

PARCC is a mixed-format test. The ELA/L assessment has between two and four literary and informational texts; each text has five or six brief comprehension and vocabulary questions. ELA/L constructed-response items include three types of tasks: literary analysis, narrative writing, and research simulation. For each task, students are instructed to read one or more texts, answer several brief questions, and then write an essay based on the material they read. The mathematics assessment contains tasks that measure a combination of conceptual understanding, applications, skills, and procedures. Mathematics constructed-response items consist of tasks designed to assess a student's ability to use mathematics to solve real-life problems. Some of the tasks require students to describe how they solved a problem, while other tasks measure conceptual understanding and ability to apply concepts by means of selected-response or technology-enhanced items. In addition, students are required to demonstrate their skills and knowledge by answering innovative selected-response and short-answer questions that measure concepts and skills.

Each assessment consisted of multiple units, and additionally, one of the mathematics units was split into two sections: a non-calculator section and a calculator section.

1.4 Intended Population

The PARCC tests are intended for students taking ELA/L and/or mathematics in grades 3 through 11, as well as students taking high school mathematics (i.e., Algebra I, Geometry, Algebra II, Integrated Mathematics I–III). For these students, the PARCC tests measured whether students were meeting state academic standards and mastering the knowledge and skills needed to progress in their K–12 education and beyond.

1.5 Groups and Organizations Involved with PARCC

Parcc Inc. is a nonprofit organization that assumes the responsibility for management of the PARCC consortium, as well as the development and implementation of PARCC assessments.

A number of committees of educators, state education agency staff, and national experts lead the work of the PARCC consortium. These committees include:

- the PARCC consortium Governing Board that makes major policy and operational decisions;
- the Technical Advisory Committee that helps ensure all assessments will provide reliable results to inform valid instructional and accountability decisions;
- the K–12 State Leads that coordinate all aspects of development of the PARCC assessment system and serve as the conduit to the Technical Advisory Committee and the Governing Board;
- the Advisory Committee on College Readiness, which includes higher education executive officers from PARCC states and other state- and nationally recognized leaders in the postsecondary community; and
- the Higher Education Leadership Team, which is responsible for coordinating higher education engagement in the PARCC assessment system and works closely with the Advisory Committee on College Readiness.

Test and item development activities were conducted by Pearson and WestEd under the guidance and oversight of PARCC leadership.²

Pearson served as the primary contractor for the PARCC operational administration and was responsible for developing test forms, producing all testing materials, packaging and distribution, receiving and scanning of materials, and scoring, as well as program management and customer service.

Pearson Psychometrics was responsible for all psychometric analyses of the PARCC operational test data. This included classical item analyses, differential item functioning (DIF) analyses, item calibrations based on item response theory (IRT), scaling, and development of all conversion tables.

² PARCC leadership includes the following groups: PARCC Governing Board, K–12 State Leads, Higher Education Leadership Team, Technical Advisory Committee, Operational Working Group members from each of the member states, and staff members from Parcc, Inc., the project management partner for the PARCC Consortium.

HumRRO served as a subcontractor and was responsible for replicating item calibrations based on item response theory (IRT), scaling, and development of all conversion tables.

Measured Progress (MP) served as a subcontractor to conduct external evaluations; they were responsible for reviewing and comparing the psychometric IRT calibrations performed by Pearson, which were replicated by HumRRO. MP also provided comparisons of results obtained independently from Pearson and from HumRRO for conversion tables, summative and claim scale scores, performance level classifications, and subclaim performance level classifications.

1.6 Overview of the Technical Report

This report begins by providing explanations of the test form construction process, test administration, and scoring of the test items. Subsequent sections of the report present descriptions of test taker characteristics, results of classical item analyses, results of reliability analyses, evidence of validity, item response theory (IRT) calibrations and scaling, performance level setting procedure, measures of student growth, and quality control procedures.

The technical report contains the following sections:

Section 2 – Test Development

This section describes the PARCC test design and the procedures followed during the development of operational test forms.

Section 3 – Test Administration

This section presents the operational administration schedule, information regarding test security and confidentiality, accessibility features and accommodations, and testing irregularities and security breaches.

Section 4 – Scoring of the Items

The key-based and rule-based processes for machine scored items, as well as the training and monitoring processes for human scored items are provided in this section.

Section 5 – Test Taker Characteristics

This section describes the composition of test forms, rules for inclusion of students in analyses, distributions of test takers by grade, mode, and gender, and distributions of demographic variables of interest.

Section 6 – Classical Item Analyses

The classical item-level statistics calculated for the operational test data, the flagging criteria used to identify items that performed differently than expected, and the results of these analyses are presented in this section.

Section 7 – Differential Item Functioning

In this section, the methods for conducting differential item functioning analyses as well as corresponding flagging criteria are described. This is followed by definitions of the comparison groups and subsequent results for the comparison groups.

Section 8 – Reliability

The results of internal consistency reliability analyses and corresponding standard errors of measurement, for each grade, content area, and mode (CBT or PBT) for all test takers, and for subgroups of interest, is provided in this section. This is followed by reliability results for subscores and reliability of classification (i.e., decision accuracy and decision consistency). Finally, expectations and results for interrater agreement for hand scored items are summarized.

Section 9 – Validity

Validity evidence based on analyses of the internal structure of the tests is provided in this section. Correlations between subscores are reported by grade, content area, and mode (CBT or PBT) for all test takers.

Section 10 –IRT Calibration and Scaling

This section presents the information related to the calibration and scaling of item response data including: data preparation, the calibration process, model fit evaluation, and items excluded from score reporting. In addition, the scaling process is described and evaluated.

Section 11 – Performance Level Setting (PLS) Procedure and Results

Performance levels and policy definitions, as well as the processes followed to establish performance level thresholds are described in this section.

Section 12 – Scale Scores

This section provides an overview of the claims and subclaims, describes the development of the reporting scales and conversion tables, and presents scale score distributions. Finally, information regarding the interpretation of claim scores and subclaim scores is presented.

Section 13 – Student Growth Measures

This section provides details on student growth percentiles (SGP). Information about the model, model fit, and SGP averages at the consortium-level for all test takers, and for subgroups of interest, are provided in this section.

Section 14 – Quality Control Procedures

All aspects of quality control are presented in this section. These activities range from quality assurance of item banking, test form construction, and all testing materials to quality control of scanning, image editing, and scoring. This is followed by a detailed description of the steps taken to ensure that all psychometric analyses were of the highest quality.

References

Appendices

To facilitate utility, tables in the appendices are numbered sequentially according to the section represented by the tables. For example, the first appendix table for Section 5 is numbered A.5.1, the second appendix table for Section 5 is numbered A.5.2, and so on.

Addendum

The addendum presents the results of analyses for the fall operational administration. These results are reported separately from the spring results because fall testing involved a nonrepresentative subset of students testing only ELA/L grades 9, 10, and 11, as well as Algebra I, Geometry, and Algebra II.

To organize the addendum, tables are numbered sequentially according to the section represented by the tables. For example, the first addendum table for Section 5 is numbered ADD.5.1, the second addendum table for section 5 is numbered ADD.5.2, and so on.

1.7 Glossary of Abbreviations

Table 1.3 Glossary of PARCC Abbreviations and Acronyms

Abbreviation/Acronym	Definition
1PL/PC	One-parameter/Partial Credit Model
2PL/GPC	Two-parameter Logistic/Generalized Partial Credit Model
3PL/GPC	Three-parameter Logistic/Generalized Partial Credit Model
AAF	Accessibility, Accommodations, and Fairness
ABBI	Assessment Banking for Building and Interoperability
AERA	American Educational Research Association
AIS	Average Item Score
AIQ	Assessment and Information Quality
APA	American Psychological Association
ASC	Additional and Supporting Content (Mathematics)
ASL	American Sign Language
ATA	Automatic Test Assembler
CBT	Computer-Based Test
CCSS	Common Core State Standards
CDQ	Customer Data Quality
CSEM	Conditional Standard Error of Measurement
DIF	Differential Item Functioning
DPL	Digital Production Line
DPP	Digital Pre-press
EBSS	Evidence-based Standard Setting
ELA/L	English Language Arts/Literacy
EL	English Learners
EOC	End-of-Course
EOY	End-of-Year
ePEN2	Electronic Performance Evaluation Network second generation
ESEA	Elementary and Secondary Education Act
FRL	Free or Reduced-price Lunch
FS	Full Summative
FT	Field Test
IA	Item Analysis
ICC	Item Characteristic Curve
IDEA	Individuals with Disabilities Education Act
IEP	Individualized Education Program
INF	Information Curve
IRA	Inter-rater Agreement
IRF	Item Response File
IRT	Item Response Theory
ISR	Individual Student Report
K-12	Kindergarten to Grade 12
LEA	Local Education Agency
LID	Local Item Dependence
MAD	Mean Absolute Difference
MC	Major Content (Mathematics)
MH	Mantel-Haenszel
MP	Measured Progress
IVII	ויובמטעובע דוטפובט

Abbreviation/Acronym	Definition
MP	Modeling Practice (Mathematics)
MR	Mathematical Reasoning
NAEP	National Assessment of Educational Progress
NCLB	No Child Left Behind
NCME	National Council on Measurement in Education
NSLP	National School Lunch Program
OE responses	Open-ended responses
OMR	Optical Mark Reading
OWG	Operational Working Group
PARCC	Partnership for Assessment of Readiness for College and Careers
PBA	Performance-Based Assessment
PBT	Paper-Based Test
PCR	Prose Constructed Response (ELA/L)
PEJ	Postsecondary Educators' Judgment
PLD	Performance Level Descriptor
PLS	Performance Level Setting
PV	Product Validation
QA	Quality Assurance
RD	Reading (ELA/L)
RI	Reading Information (ELA/L)
RL	Reading Literature (ELA/L)
RMSD	Root Mean Square Difference
RV	Reading Vocabulary (ELA/L)
RST	Raw-score-to-theta
SD	Standard Deviation
SDF	Student Data File
SE	Standard Error
SEJ	Standard Error of Judgment
SEM	Standard Error of Measurement
SIRB	Scored Item Response Block
SMD	Standardized Mean Difference
SSMC	Single Select Multiple Choice
SWD	Students with Disabilities
TCC	Test Characteristic Curve
TTS	Text to Speech
UIN	Unique Item Number
WE	Writing Written Expression (ELA/L)
WKL	Writing Knowledge Language and Conventions (ELA/L)
WLS	Weighted Least Squares
WR	Writing (ELA/L)
WRMSD	Weighted Root Mean Square Difference

Section 2: Test Development

2.1 Overview of the PARCC Assessment, Claims, and Design

Aligned to the Common Core State Standards (CCSS) as articulated in the PARCC Model Content Frameworks, the PARCC assessments are designed to determine whether students are college- and career-ready or on track, assess the full range of the CCSS, measure the full range of student performance, and provide data to help inform instruction, interventions, and professional development. Test development is an ongoing process involving educators, researchers, psychometricians, subject matter professionals, and assessment experts who participate in the development of the PARCC test design and its underlying foundational documents; develop and review passages and items used to build the PARCC assessments; monitor the program for quality, accessibility, and fairness for all students; and construct, review, and score the assessments

The PARCC summative assessments include both English language arts/literacy (ELA/L) and mathematics assessments in grades 3 through 8 and high school. The high school mathematics tests include traditional mathematics and integrated mathematics course pathways. Tests contain selected response, brief and extended constructed response, technology-enabled and technology-enhanced items (TEI), as well as performance tasks. Technology-enabled items are single-response or constructed-response items that involve some type of digital stimulus or open-ended response box with which the students engage in answering questions. Technology-enhanced items involve specialized student interactions for collecting performance data. In other words, the act of performing the task is the way in which data is collected. Students may be asked, among other interactions, to categorize information, organize or classify data, order a series of events, plot data, generate equations, highlight text, or fill in a blank. One example of a TEI is an interaction in which students are asked to drag response options onto a Venn diagram to show the relationship among ideas.

The PARCC assessments offer a wide range of accessibility features for all students and accommodations for students with disabilities (e.g., screen reader, assistive technology, braille, large print [LP], text-to-speech [TTS], and American Sign Language [ASL] video versions of the test, as well as response accommodations that allow students to respond to test items using different formats). For English learners who are native Spanish speakers, PARCC offers the mathematics assessments in Spanish, and both LP and TTS versions of the test in Spanish (refer to the PARCC Accessibility Features and Accommodations Manual for in-depth information).

2.1.1 English Language Arts/Literacy (ELA/L) Assessments—Claims and Subclaims

The ELA/L summative assessment at each grade level consists of three task types: literary analysis, research simulation, and narrative writing. For each performance-based task, students are asked to read or view one or more texts, answer comprehension and vocabulary questions, and write an extended response that requires them to draw evidence from the text(s). The summative assessment also contains literary and informational reading passages with comprehension and vocabulary questions.

The claim structure, grounded in the CCSS, undergirds the design and development of the ELA/L summative assessments.

Master Claim. The master claim is the overall performance goal for the PARCC ELA/Literacy Assessment System—students must demonstrate that they are college- and career-ready or on track to readiness as demonstrated through reading and comprehending of grade-level texts of appropriate complexity and writing effectively when using and/or analyzing sources.

Major Claims: 1) reading and comprehending a range of sufficiently complex texts independently, and 2) writing effectively when using and/or analyzing sources.

Subclaims: The subclaims further explicate what is measured on the PARCC assessments and include claims about student performance on the standards and evidences outlined in the PARCC evidence tables for reading and writing (refer to PARCC test specifications documents). The claims and evidences are grouped into the following categories:

- 1. Vocabulary Interpretation and Use
- 2. Reading Literature
- 3. Reading Informational Text
- 4. Written Expression
- 5. Knowledge of Language and Conventions

2.1.2 Mathematics Assessments—Claims and Subclaims

The summative mathematics assessment at each grade level includes both short- and extended-response questions focused on applying skills and concepts to solve problems that require demonstration of the mathematical practices from the CCSS with a focus on modeling and reasoning with precision. The assessments also include performance-based short-answer questions focused on conceptual understanding, procedural skills, and application.

The claim structure, grounded in the CCSS, undergirds the design and development of the summative assessments.

Master Claim. The degree to which a student is college- or career-ready or on track to being ready in mathematics. The student solves grade-level/course-level problems aligned to the Standards for Mathematical Content with connections to the Standards for Mathematical Practice.

Subclaims: The subclaims further explicate what is measured on the PARCC assessments and include claims about student performance on the standards and evidences outlined in the PARCC evidence statement tables for mathematics (refer to PARCC test specifications documents). The claims and evidence are grouped into the following categories.

Subclaim A: Major Content with Connections to Practices

Subclaim B: Additional and Supporting Content with Connections to Practices

Subclaim C: Highlighted Practices with Connections to Content: Expressing mathematical reasoning by constructing viable arguments, critiquing the reasoning of others, and/or attending to precision when making mathematical statements

Subclaim D: Highlighted Practice with Connections to Content: Modeling/Application by solving real-world problems by applying knowledge and skills articulated in the standards

2.2 Test Development Activities

Test development activities began with the standards and model content frameworks. From these, PARCC, in collaboration with more than 2,000 educators, researchers, and psychometricians, has developed the PARCC test specifications documents that guide the development of test items and the composition of the tests. These documents include the College- and Career-Ready Determinations and Performance-Level Descriptions, Claim Structure, Evidence Statement Tables, Blueprints, Informational Guides, Passage Selection Guidelines, Mathematics Sequencing Guidelines, Task Generation Models, Fairness and Sensitivity Guidelines, Text Selection Guidelines, and the Style Guide. Refer to the PARCC website for further information about these documents.

2.2.1 Item Development Process

PARCC test and item development activities were conducted by Pearson and WestEd under the guidance and oversight of PARCC leadership, including the PARCC Governing Board, the K–12 state leads, the Higher Education Leadership Team, the Technical Advisory Committee, the Operational Working Group members from each of the member states, the PARCC State Text and State Content Item Review Committees, and staff members from Parcc, Inc., the project management partner for the PARCC Consortium.

Developing high quality assessment content with authentic stimuli for computer-based tests (CBT) and paper-based tests (PBT) measuring rigorous standards is a complex process involving the services of many experts including assessment designers, psychometricians, managers, trainers, content providers, content experts, editors, artists, programmers, technicians, human scorers, advisors, and members of the PARCC Operational Working Groups (OWGs).

Bank Analysis and Item Development Plan

The PARCC summative item bank houses passages and items at each assessed grade level and subject. The bank supports the administration of the assessments, along with item release and practice tests. Items are developed and field tested annually. Prior to the annual item development cycle, the item development teams, in conjunction with members of the OWGs for ELA/L and mathematics, evaluated the strengths of the bank and considered the needs for future tests to establish an item development plan.

Text Selection for ELA/L

Using the PARCC Passage Selection Guidelines, English language arts subject matter experts were trained to search for appropriate passages to support an annual pool of passages for consideration. Guided by the PARCC test specifications documents, Pearson and WestEd recruited, trained, and managed the contracted subject matter experts to deliver the number of texts specified in the annual item development plan. The Passage Selection Guidelines provided a text complexity framework and guidance on selecting a variety of text types and passages that allow for a range of standards/evidences to be demonstrated to meet the PARCC claims. PARCC ELA/L tests are based on authentic texts, including multi-media stimulus. Authentic texts are grade-appropriate texts that are not developed for the purposes of the assessment or to achieve a particular readability metric, but reflect the original language of the authors. Pearson and WestEd content experts reviewed the passages for adherence to the PARCC Passage Selection Guidelines to meet the annual item development plan described above in the number and distribution of genres and topics prior to review and consideration by the State Text Review Committee. ELA/L item development was not conducted until after texts were approved by the State Text Review Committee.

Item Development

Guided by the PARCC foundational documents, Pearson and WestEd recruited and trained the item writers and managed the item writing to develop the number of items specified in the annual item development plan. Prior to further committee reviews, the assessment teams at Pearson and WestEd reviewed the items for content accuracy, alignment to the standards, range of difficulty, adherence to universal design principles (which maximize the participation of the widest possible range of students), bias and sensitivity, and copy edit to enable the accurate measurement of the PARCC standards.

2.2.2 Item and Text Review Committees

Members of the PARCC OWGs for ELA/L and mathematics, state-level experts, local educators, post-secondary faculty, and community members from the PARCC states conducted rigorous reviews of every item and passage being developed for the PARCC assessment system to ensure all test items are of the highest quality, aligned to the standards, and fair for all student populations. All PARCC reviewers were nominated by their state education agency. The purpose of the educator reviews was to provide feedback to Pearson, WestEd, and PARCC on the quality, accuracy, alignment, and appropriateness of the test passages and items developed annually for the summative PARCC assessments. The meetings were conducted either in person or virtually and included large group training on the expectations and processes of each meeting, followed by breakout meetings of grade/subject working committees where additional training was provided.

State Text Review

The State Text Review is a review and approval by the State Text Review Committee of the texts eligible for item development. Participants reviewed and provided feedback to Pearson, WestEd, and PARCC about the grade-level appropriateness, content, and potential bias concerns, and reached consensus about which texts would move forward for development. The State Text Review Committee was made up of members of both State Content Item Review and Bias and Sensitivity Review Committees.

State Content Item Review

During State Content Item Review, committees reviewed and edited test items for adherence to the PARCC foundational documents, basic universal design principles, PARCC Accessibility Guidelines, associated item metadata, and the PARCC Style Guide. Committees accessed the item content within the Pearson Assessment Banking for Building and Interoperability (ABBI) system that previews how the passages and items will be displayed in an operational online environment. Committees also verified that the appropriate scoring rule had been applied to each item. The State Content Item Review Committees were made up of OWG members and educators nominated by PARCC member states.

State Bias and Sensitivity Review

Educators and community members make up the committee that reviews items and tasks to confirm that there are no bias or sensitivity issues that would interfere with a student's ability to achieve his or her best performance. The committee reviewed items and tasks to evaluate adherence to the Fairness and Sensitivity Guidelines, and to ensure that items and tasks do not unfairly advantage or disadvantage one student or group of students over another. Bias and Sensitivity Committee members made edits and modifications to items and passages to eliminate sources of bias and improve accessibility for all students.

Editorial Review

The PARCC Editorial Review Committee consists of state-level editors who reviewed up to 10 percent of the items and tasks. The committee reviewed the items for grammar, punctuation, clarity, and adherence to the PARCC Style Guide.

Data Review

Following the field test, educator and bias committee members met to evaluate test items and associated performance data with regard to appropriateness, level of difficulty, and potential gender, ethnic, or other bias, then recommended acceptance or rejection of each field-test item for inclusion on an operational assessment. The Data Review Committee also made recommendations that items be revised and re-field tested. Items that were approved by the committee are eligible for use on operational summative assessments.

2.2.3 Operational Test Construction

Under the guidance in the operational test form creation specifications, Pearson constructed the operational forms to adhere to the test blueprints and the assessment goals outlined in the form creation specifications. These goals were:

- test forms designed to measure well across the full range of student ability;
- scores that are comparable among forms and across test administrations;
- scales that support classification of students into performance levels;
- maximization of the number of parallel forms;
- minimization of overexposure of items; and
- adherence to standards for validity, reliability, and fairness (*Standards for Educational and Psychological Testing, 2014*).

Each content-area and grade-level assessment was based on a specific test blueprint that guided how each test was built. Test blueprints determined the range and distribution of content, and the distribution of points across the PARCC subclaims and task types.

Multiple operational forms were constructed for each grade/subject. These forms were designed to facilitate psychometric equating through a common item linking strategy (described in Section 2.2.4) and to be constructed as "parallel" as possible from a content and test-taking experience. Evaluation criteria for parallelism included adherence to blueprint; sequencing of content across the forms; statistical averages and distributions for difficulty (e.g., *p* value) and discrimination (e.g., polyserial correlation); item type and cognitive complexity; and passage characteristics for ELA/L including genre, topics, word count, and text complexity.

Core forms are the operational test forms consisting of only those items that will count toward a student's score. Core forms are constructed to meet the blueprint and psychometric properties outlined in the test construction specifications. PARCC creates multiple core forms for a given assessment to enhance test security and to support opportunity for item release. The number of core operational forms per grade/subject is provided in Table 2.1. Additionally, appropriate forms were identified as accessibility and accommodated forms, and the core forms for all mathematics assessments included embedded field-test items. A sample of students were administered ELA/L core forms with embedded field-test items. Accessibility and accommodated forms and embedded field testing are described later in this section.

Table 2.1 Number of Core Operational Forms per Grade/Subject and Mode for ELA/L and Mathematics*
--

Crada/Subject	ELA/L		Mathematics	
Grade/Subject	СВТ	PBT	CBT	PBT
Grade 3	3	1	3	1
Grade 4	3	1	3	1
Grade 5	3	1	3	1
Grade 6	3	1	3	1
Grade 7	3	1	3	1
Grade 8	3	1	3	1
Grade 9	3	1		
Grade 10	3	1		
Grade 11	3	1		
Algebra I			3	1
Geometry			3	1
Algebra II			3	1
Integrated Mathematics I			1	1
Integrated Mathematics II			1	1
Integrated Mathematics III			1	1

^{*}Grades 3–11 ELA/L and Integrated Mathematics I have two operational accommodated forms and mathematics grades 3–8 and the high school traditional assessments have three accommodated forms. The forms are accommodated to support Braille, large print, human reader/human signers, assistive technology, text-to-speech, closed captioning, and Spanish. Human reader/human signers and Spanish are provided for mathematics assessments only. Closed captioning is provided for ELA/L assessments only.

Test Construction Activities

After the data review meetings and prior to the test construction meetings, Pearson assessment specialists constructed initial versions of all the core forms, as depicted in Table 2.1. The construction model varied slightly between the two subject areas.

For ELA/L, content specialists constructed the initial core forms shown in Table 2.1 based on the support documents and specific processes to achieve fair parallel forms. The following steps were used to construct the operational core ELA/L form inputs taken to the Test Construction Committee for review.

- constructed the online forms to match blueprint and test construction specifications
- 2. constructed the paper forms to match the blueprint and test construction specifications
- identified accommodated and accessibility forms by evaluating the constructed forms for eligibility

The ELA/L construction process included iterative steps between content specialists and psychometricians. Custom PARCC test construction reports (i.e., SAS reports) generated by the Pearson psychometric team provided information on adherence to blueprint and statistical

averages/distributions of item difficulty and discrimination describing the forms and allowing comparison of the forms. These reports facilitated content changes to better achieve the test construction goals.

For mathematics, Pearson employed the use of an automatic test assembler (ATA) to select the items for the initial forms. Based on the blueprints and other test construction goals and specifications, the ATA was able to create sets of items best satisfying the statistical parameters outlined in the test construction specifications; however, the ATA was unable to sequence the items as required by the PARCC Mathematics Sequencing Guidelines. Sequencing was conducted by assessment specialists who ordered the items according to the sequencing guidelines. To achieve the appropriate linking design, assessment specialists created linking item sets from an ATA-generated linking blueprint; these sets are shared across forms using the strategy described in Section 2.2.4. The following steps were used to construct the linking sets and operational core form inputs taken to the Test Construction Committee for review.

- 1. pulled linking online blueprint (ATA)
- 2. sequenced blueprint and created linking item sets
- 3. pulled online forms using linking sets (ATA)
- 4. constructed the online forms
- 5. constructed the paper forms
- 6. identified accommodated and accessibility forms

Similar to the ELA/L construction process, mathematics included iterative steps between assessment specialists and psychometricians. Custom PARCC test construction reports (i.e., SAS reports) generated by the Pearson psychometric team provided information on adherence to blueprint and statistical averages/distributions of item difficulty and discrimination allowing a comparison of the forms and facilitating content changes to better achieve the test construction goals. Since the mathematics forms were generated by the ATA, psychometricians could also generate the SAS reports prior to content experts reviewing the forms.

Pearson assessment specialists identified forms for each grade/subject suitable for use as the accommodated forms. The content of these forms was also reviewed by Pearson accessibility specialists allowing for content changes prior to the Test Construction Committee meetings.

These test construction activities provided significant inputs to commence the meetings including:

- the proposed items for the initial operational core forms and the accommodated forms described above
- reports describing each form and comparing parallel forms
- recommended accommodated forms

Test Construction Meeting to Review Test Construction Inputs

Members of the State Content Item Review Committees and the Accessibility, Accommodations, and Fairness (AAF) OWG participated in the building of operational core forms that met PARCC summative assessments requirements. In that process, they met in an in-person meeting to review and make recommendations for changes so that test forms conformed to both the content and psychometric requirements of the assessment.

Accommodated Form Review Process

In addition to participating in many of the development activities including the State Text Review and the State Bias and Sensitivity Review meetings, the AAF OWG reviewed the proposed accommodated forms at the Test Construction Committee meeting for accessibility to make sure that the content can be accommodated for students with disabilities and English learners without changing the underlying measured construct.

Forms were identified to support the following accommodations:

Accommodated Base 1

- Spanish paper (also serves Spanish LP, Spanish human reader paper)
- Spanish human reader/human signer online
- base accommodated paper (serves Braille, LP, human reader paper)
- human reader/human signer online
- assistive technology screen reader
- assistive technology non-screen reader
- ASL

Accommodated Base 2

- closed captioning
- text-to-speech first form
- Spanish online
- Spanish text-to-speech

Accommodated Base 3

text-to-speech second form

All Human Reader/Human Signers are mathematics only. ELA/L Human Reader uses a main online form. Spanish is mathematics only. Closed captioning is ELA/L only.

At the conclusion of the meetings, all test forms were constructed to meet test blueprints and PARCC requirements, and to the extent possible, reflect the operational linking design. Each test form reflected the test blueprint in terms of content, item types, and test length, as well as *expected* difficulty and performance along the ability continuum. Linking sets were proportionally representative of the operational test blueprint. The operational core forms, linking set forms, and field-test forms were reviewed by PARCC Forms Review Committees and approved prior to the test administration.

Spanish-Language Assessments for Mathematics

For English learners, PARCC offers the mathematics assessments in Spanish, as well as large print and text-to-speech (TTS) versions of the test in Spanish. Once the operational form was approved, the form was sent to Pearson's subcontractor, Teneo, for transadaption of the items. Transadaption differs from translation in that it takes into consideration the grade-level appropriateness of the words, as well as the linguistic and cultural differences that exist between speakers of two different languages.

Accounting for these differences allows the item to measure the achievement of Spanish language speakers in the same way that the original version of the item does for native speakers of English. The PARCC Spanish Glossary provided guidance to the translator conducting the transadaption in grade-level and culturally appropriate ways of transadapting the items. For the Spanish language TTS form, the alternate text (used for description and/or text in art and graphics) was transadapted from the alternate text for the English language version of the TTS form. Phonetic mark-up, which guides how the TTS reader pronounces content-specific words and phrases, was also applied in this process.

In addition to the expert review of potential content for all accommodated forms conducted by the AAF OWG with assistance from content experts at the test construction meetings, the transadapted forms underwent three additional quality checks: a Pearson Spanish copy edit services review and approval, an AAF OWG review and approval, and a Spanish DIF analysis after the administration, when possible.

2.2.4 Linking Design of the Operational Test

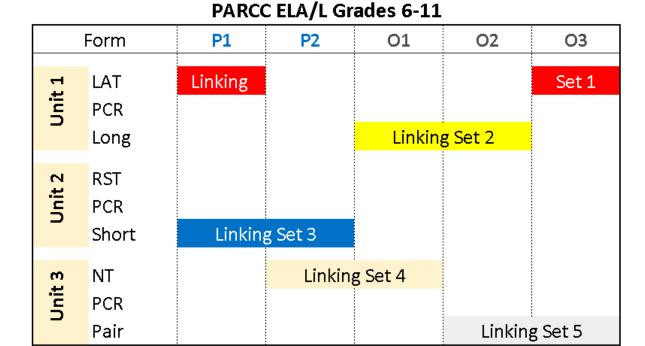
This section begins with a discussion of special considerations for selection of linking items, followed by two examples of the graphical representations of the linking designs for ELA/L and for mathematics. To support the goal of score comparability within and across administrations and years, PARCC implemented a hybrid approach that incorporated the strengths of common item linking and randomly equivalent groups. The use of repeated operational core items was leveraged for common item linking. In addition, all forms were available throughout the operational administration, with spiraling at the student level, leveraged to support linking through randomly equivalent groups.

The PARCC operational test forms involved various types of linking: horizontal linking, testing mode linking, and across-administration linking. Horizontal linking consisted of linking items, or common items, included in multiple forms in a single administration. The horizontal linking was achieved through a daisy-chain strategy. This strategy links multiple operational forms together in a ring, where each operational form shares some items with a preceding form and some items with a following form, and the last form also shares some items with the first form. Together, all the shared items make up the horizontal linking set. All forms for the grade and subject are connected, but not identical (e.g., A is connected to B, B is connected to C, and C is connected to A). Testing mode linking consisted of common items placed in computer-based forms and paper-based forms within an administration to support the development of scores on the same reporting scale. Across-administration linking, or year-to-year linking, consisted of common items included in two different administrations. The placement of linking items across forms or administrations supports the development of comparable scores.

Linking item sets can be internal or external linking sets. Internal linking sets consist of common items in operational positions such that the items contribute to the students' scores. External linking sets consist of common items in positions resulting in the items not contributing to students' scores. The current linking designs included both external and internal linking sets. The horizontal linking across forms within an administration and across-administration linking included internal linking sets. The testing mode linking included both internal and external linking sets.

For ELA/L, the horizontal linking designs for the online test forms were based on the number of unique test forms constructed for a grade. After constructing the unique test forms, the test forms were divided into sections and sections were dispersed across additional forms such that each section appeared on two forms. As a result, the operational linking sets represented full test blueprints. This means that linking items were selected to reflect the content balance, task models, types of items, and cognitive complexity of the full PARCC assessment.

For mathematics, the ATA pulled an initial blueprint linking set that was divided into item sets and distributed across the online forms following a daisy-chain strategy, as depicted in Figure 2.2.


The paper forms for both subjects were generated from the online forms. In response to several practical constraints based on the number of forms constructed for each mode and to meet the blueprints (e.g., inclusion of technology-enhanced items in CBT forms), there was no one online form that was administered intact in the paper delivery mode at any grade level. For example, technology-enhanced items from online forms were replaced in the paper forms with items from similar content, but appropriate for PBT. However, for both subjects, the content on paper forms overlaps with that on the online forms.

2.2.5 Graphical Representation of PARCC Operational Test Linking Design

This section includes two examples of graphical representations to illustrate the horizontal linking designs described above. Designs for across-administrations linking are not included in these graphs. Note that to the extent possible, item set (a) for within-year equating and item set (b) for across-year equating will be the same set of items. Limitations in achieving identical linking sets include the release of some of last year's content and exposure concerns.

Figure 2.1 illustrates the linking design for ELA/L for grades 6–11 CBT forms (O1, O2, O3) and PBT forms (P1, P2). Each form was constructed to include two linking sets, one text and one task, accounting for approximately 33 percent of the score points. The set of forms for a grade/subject linked through a daisy-chain model such that each form was linked to two adjacent forms. Additional new content had exposure on multiple forms, providing stronger within-year linking. Grades 3–5 linking design was similar.

PARCC

Figure 2.1 PARCC ELA/L CBT and PBT Linking Design (Grades 6–11)

Figure 2.2 illustrates the linking design for mathematics for grades 3–5 CBT forms (O1, O2, O3) and PBT forms (P1, P2). Each form was constructed to include three linking sets, accounting for approximately 38 percent of the score points. Linking sets were positioned in different units. The set of forms for a grade/subject linked through a daisy-chain model such that each form was linked to two adjacent forms. Additional new content had exposure on multiple forms, providing stronger within-year linking. Grades 6–8 and high school linking designs were similar.

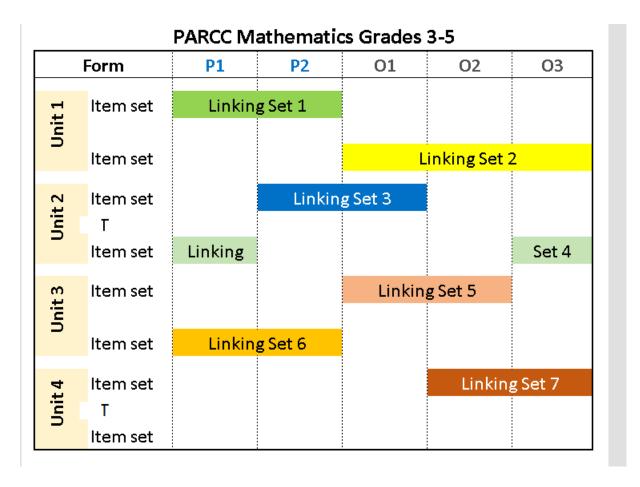


Figure 2.2 PARCC Mathematics CBT and PBT Linking Design (Grades 3-5)

2.2.6 Field Test Data Collection Overview

Field-test items were embedded in the spring operational forms to collect data for psychometric analysis necessary to support the assessment system for future administrations. Field-test administration entailed paper and computer administration modes, with computer administration as the dominant mode. The ELA/L embedded field-test items were administered to a sample of students.

Field-test sets were constructed to balance the expected cognitive load and difficulty across forms, reflected in the number of points, distribution of task types, and balance of passages for ELA/L. Forms for each content area were spiraled at the student level. The data collection design entailed two conditions. Condition 1, which comprised the mathematics assessment, was an embedded census field-test model in which all students taking the summative assessment participated in the field test.

Under Condition 2, which comprised the ELA/L assessment, PARCC sampled approximately one-third of the schools across the consortium states. Students in the sampled schools took forms containing ELA/L embedded field-test tasks. Schools were selected so that the sample for each ELA/L assessment was representative of the general PARCC testing populations in terms of achievement (i.e., average scale score and percentage of student at Level 4 and Level 5 in the previous year) and demographics (i.e.,

ethnicity composition, percentage of economically disadvantaged, English learners, and students with disabilities). A three-year sampling plan was created such that if a given school was part of the ELA/L field test one year (e.g., Spring 2016), it would not be required to participate in the field test for the subsequent two years (e.g., Spring 2017 and Spring 2018).

Section 3: Test Administration

3.1 Testing Windows

The 2016–2017 operational administration of PARCC assessments included a fall/winter block administration beginning in the fall of 2016 as well as a spring administration in the spring of 2017. Each PARCC assessment consisted of multiple units, and additionally, one of the mathematics units for grade 7 and high school course assessments was split into two sections: a non-calculator section and a calculator section.

Table 3.1 PARCC Fall/Winter Block 2016 and Spring 2017 Testing Windows

Total Control of the	
Fall/Winter Block 2016	November 14, 2016— January 27, 2017
Spring 2017	March 13, 2017– June 9, 2017

3.2 Test Security and Administration Policies

The administration of any PARCC assessment is a secure testing event. Maintaining the security of test materials before, during, and after the test administration is crucial to obtaining valid and reliable results. School Test Coordinators are responsible for ensuring that all personnel with authorized access to secure materials are trained in and subsequently act in accordance with all security requirements.

School Test Coordinators must implement chain-of-custody requirements for specified materials. School Test Coordinators are responsible for distributing materials to Test Administrators, collecting materials from Test Administrators, returning secure test materials, and securely destroying certain specified materials after testing.

The administration of the PARCC assessment includes both secure and non-secure materials, and these materials are further delineated by whether they are "scorable" or "nonscorable," depending on whether the assessments were administered via paper/pencil (i.e., paper-based assessments) or online (i.e., computer-based assessments). For the 2016–2017 paper-based administration, students used paper-based answer documents (except in grade 3 where students responded directly into test booklets). About 96 percent of the PARCC assessments administered during the 2016–2017 administration were online assessments, and about 4 percent were paper-based assessments.

Secure vs. Non-Secure Materials

PARCC defines secure materials as those that must be closely monitored and tracked to prevent unauthorized access to or prohibited use or distribution of secure content such as test items, reading

passages, student work, etc. For paper-based tests, secure materials include both used and unused test booklets and used scratch paper, while for computer-based tests, secure materials include student testing tickets, secure administration scripts (e.g., mathematics read-aloud), and used scratch paper. PARCC defines non-secure materials as any authorized testing materials that do not include secure content (e.g., test items or student work). These include test administration manuals, unused scratch paper, and mathematics reference sheets that have not been written upon, etc.

Scorable vs. Nonscorable Materials

Paper-based assessments have both scorable and nonscorable materials while computer-based assessments have only nonscorable materials. Scorable materials for paper-based assessments consist of used (includes student work) test booklets (grade 3) and answer documents (grades 4 and above) only. Scorable materials must be returned to the vendor to be scored. All other materials for paper-based testing, such as blank (i.e., unused) test booklets, test administration manuals, scratch paper, mathematics reference sheets, etc., are deemed nonscorable. For computer-based tests, there are no scorable materials as student work is submitted electronically for scoring; thus there are limited physical materials to return (e.g., secure administration scripts for certain accommodations).

Students taking the computer-based test may not have access to secure test materials before testing, including printed student testing tickets. Printed mathematics reference sheets (if applicable) and scratch paper must be new and unmarked.

Students taking the paper-based test may not have access to scorable or nonscorable secure test content before or after testing. Scorable secure materials that are to be provided by Test Administrators to students include test booklets (grade 3) or answer documents (grades 4 through high school). Nonscorable secure materials that are distributed by Test Administrators to paper-based testing students include large print test booklets, braille test booklets, scratch paper (paper used by students to take notes and work through items), and printed mathematics reference sheets (grades 5 through 8 and high school).

School Test Coordinators are required to maintain a tracking log to account for collection and destruction of test materials, including mathematics reference sheets and scratch paper written on by students. As part of the test administration policy, schools are required to maintain the Chain-of-Custody Form or tracking log of secure materials for at least three years unless otherwise directed by state policy. Copies of the Chain-of-Custody Form for paper-based testing are included in each Local Education Agency (LEA) or school's test materials shipment.

Test Administrators are not to have extended access to test materials before or after administration (except for certain accessibility or accommodations purposes). Test Administrators must document the receipt and return of all secure test materials (used and unused) to the School Test Coordinator immediately after testing.

All PARCC test security and administration policies are found in the *PARCC Test Coordinator Manual* and the *PARCC Test Administrator Manuals*. State security and administration policies may exceed that of the PARCC policies. State-specific policies are included in Appendix C of the *Test Coordinator Manual*.

3.3 Accessibility Features and Accommodations

3.3.1 Participation Guidelines for PARCC Assessments

All students, including students with disabilities and English learners, are required to participate in statewide assessments and have their assessment results be part of the state's accountability systems, with narrow exceptions for English learners in their first year in a U.S. school, and certain students with disabilities who have been identified by the Individualized Education Program (IEP) team to take their state's alternate assessment. All eligible students will participate in the PARCC ELA/L and mathematics assessments. Federal laws governing student participation in statewide assessments include the No Child Left Behind Act of 2001 (NCLB), the Individuals with Disabilities Education Act of 2004 (IDEA), Section 504 of the Rehabilitation Act of 1973 (reauthorized in 2008), and the Elementary and Secondary Education Act (ESEA) of 1965, as amended. All students can receive accessibility features on PARCC assessments.

Four distinct groups of students may receive accommodations on PARCC assessments:

- 1. students with disabilities who have an Individualized Education Program (IEP);
- 2. **students with a Section 504 plan** who have a physical or mental impairment that substantially limits one or more major life activities, have a record of such an impairment, or are regarded as having such an impairment, but who do not qualify for special education services;
- 3. students who are English learners; and
- 4. **students who are English learners with disabilities who have an IEP or 504 plan.** These students are eligible for accommodations intended for both students with disabilities and English learners.

Testing accommodations for students with disabilities or students who are English learners (EL) must be documented according to the guidelines and requirements outlined in the *PARCC Accessibility Features* and *Accommodations Manual*.

3.3.2 PARCC Accessibility System

Through a combination of universal design principles and accessibility features, PARCC has designed an inclusive assessment system by considering accessibility from initial design through item development, field testing, and implementation of the assessments for all students, including students with disabilities, English learners, and English learners with disabilities. Accommodations may still be needed for some students with disabilities and English learners to assist in demonstrating what they know and can do. However, the accessibility features available to students should minimize the need for accommodations during testing and ensure the inclusive, accessible, and fair testing of the diverse students being assessed.

3.3.3 What are Accessibility Features?

On the PARCC computer-based assessments, accessibility features are tools or preferences that are either built into the assessment system or provided externally by Test Administrators, and may be used

by any student taking the PARCC assessments (i.e., students with and without disabilities, gifted students, English learners, and English learners with disabilities). Since accessibility features are intended for all students, they are not classified as accommodations. Students should have the opportunity to select and practice using them prior to testing to determine which are appropriate for use on the PARCC assessment. Consideration should be given to the supports a student finds helpful and consistently uses during instruction. Practice tests that include accessibility features are available for teacher and student use throughout the year. Practice tests are available at parcc.pearson.com.

3.3.4 Accommodations for Students with Disabilities and English Learners

It is important to ensure that performance in the classroom and on assessments is influenced minimally, if at all, by a student's disability or linguistic/cultural characteristics that may be unrelated to the content being assessed. For PARCC assessments, accommodations are considered to be adjustments to the testing conditions, test format, or test administration that provide equitable access during assessments for students with disabilities and students who are English learners. In general, the administration of the assessment should not be the first occasion on which an accommodation is introduced to the student. To the extent possible, accommodations should:

- provide equitable access during instruction and assessments;
- mitigate the effects of a student's disability;
- not reduce learning or performance expectations;
- not change the construct being assessed; and
- not compromise the integrity or validity of the assessment.

Accommodations are intended to reduce and/or eliminate the effects of a student's disability and/or English language proficiency level; however, accommodations should never reduce learning expectations by reducing the scope, complexity, or rigor of an assessment. Moreover, accommodations provided to a student on the PARCC assessments must be generally consistent with those provided for classroom instruction and classroom assessments. There are some accommodations that may be used for instruction and for formative assessments that are not allowed for the summative assessment because they impact the validity of the assessment results—for example, allowing a student to use a thesaurus or access the Internet during a PARCC assessment. There may be consequences (e.g., excluding a student's test score) for the use of non-allowable accommodations during PARCC assessments. It is important for educators to become familiar with PARCC policies regarding accommodations used for assessments.

To the extent possible, accommodations should adhere to the following principles.

- Accommodations enable students to participate more fully and fairly in instruction and assessments and to demonstrate their knowledge and skills.
- Accommodations should be based upon an individual student's needs rather than on the category of a student's disability, level of English language proficiency alone, level of or access to

- grade-level instruction, amount of time spent in a general classroom, current program setting, or availability of staff.
- Accommodations should be based on a documented need in the instruction/assessment setting
 and should not be provided for the purpose of giving the student an enhancement that could be
 viewed as an unfair advantage.
- Accommodations for students with disabilities must be described and documented in the student's appropriate plan (i.e., either a 504 plan or an approved IEP), and must be provided if they are listed.
- Accommodations for English learners should be described and documented.
- Students who are English learners with disabilities are eligible to receive accommodations for both students with disabilities and English learners.
- Accommodations should become part of the student's program of daily instruction as soon as possible after completion and approval of the appropriate plan.
- Accommodations should not be introduced for the first time during the testing of a student.
- Accommodations should be monitored for effectiveness.
- Accommodations used for instruction should also be used, if allowable, on local district assessments and state assessments.

In the following scenarios, the school must follow each state's policies and procedures for notifying the state assessment office:

- a student was provided a test accommodation that was not listed in his or her IEP/504 plan/documentation for an English learner, or
- a student was <u>not</u> provided a test accommodation that <u>was</u> listed in his or her IEP/504 plan/documentation for an English learner.

3.3.5 Unique Accommodations

PARCC provides a comprehensive list of accessibility features and accommodations in the *PARCC Accessibility Features and Accommodations Manual* that are designed to increase access to PARCC assessments and that will result in valid, comparable assessment scores. However, students with disabilities or English learners may require additional accommodations that are not already listed. PARCC states individually review requests for unique accommodations in their respective states and provide a determination as to whether the accommodation would result in a valid score for the student, and if so, would approve the request.

3.3.6 Emergency Accommodations

An emergency accommodation may be appropriate for a student who incurs a temporary disabling condition that interferes with test performance shortly before or during the PARCC assessment window. A student, whether or not they already have an IEP or 504 plan, may require an accommodation as a result of a recently occurring accident or illness. Cases include a student who has a recently fractured limb (e.g., arm, wrist, or shoulder); a student whose only pair of eyeglasses has broken; or a student

returning to school after a serious or prolonged illness or injury. An emergency accommodation should be given only if the accommodation will result in a valid score for the student (i.e., does not change the construct being measured by the test[s]). If the principal (or designee) determines that a student requires an emergency accommodation on the PARCC assessment, an Emergency Accommodation Form must be completed and maintained in the student's assessment file. If required by a PARCC state, the school may need to consult with the state or district assessment office for approval. **The parent must be notified that an emergency accommodation was provided.** If appropriate, the Emergency Accommodation Form may also be submitted to the District Assessment Coordinator to be retained in the student's central office file. Requests for emergency accommodations will be approved after it is determined that use of the accommodation would result in a valid score for the student.

3.3.7 Student Refusal Form

If a student refuses an accommodation listed in his or her IEP, 504 plan, or if required by the PARCC member state, an English learner plan, the school should document in writing that the student refused the accommodation, and the accommodation must be offered and remain available to the student during testing. This form must be completed and placed in the student's file and a copy must be sent to the parent on the day of refusal. Principals (or designee) should work with Test Administrators to determine who, if any others, should be informed when a student refuses an accommodation documented in an IEP, 504 plan, or (if required by the PARCC member state) English learner plan.

3.4 Testing Irregularities and Security Breaches

Any action that compromises test security or score validity is prohibited. These may be classified as testing irregularities or security breaches. Below are examples of activities that compromise test security or score validity (note that these lists are not exhaustive). It is highly recommended that School Test Coordinators discuss other possible testing irregularities and security breaches with Test Administrators during training.

Examples of test security breaches and irregularities include but are not limited to:

Electronic Devices

- Using a cell phone or other prohibited handheld electronic device (e.g., smartphone, iPod, smart watch, personal scanner) while secure test materials are still distributed, while students are testing, after a student turns in his or her test materials, or during a break
 - Exception: Test Coordinators, Technology Coordinators, Test Administrators, and Proctors are permitted to use cell phones in the testing environment only in cases of emergencies or when timely administration assistance is needed. LEAs may set additional restrictions on allowable devices as needed.

• Test Supervision

- Coaching students during testing, including giving students verbal or nonverbal cues, hints, suggestions, or paraphrasing or defining any part of the test
- Engaging in activities (e.g., grading papers, reading a book, newspaper, or magazine)
 that prevent proper student supervision at all times while secure test materials are still distributed or while students are testing
- Leaving students unattended for any period of time while secure test materials are still distributed or while students are testing
- Deviating from testing time procedures
- Allowing cheating of any kind
- Providing unauthorized persons with access to secure materials
- o Unlocking a test in PearsonAccess^{next} during non-testing times
- Failing to provide a student with a documented accommodation or providing a student with an accommodation that is not documented and therefore is not appropriate
- o Allowing students to test before or after the state's test administration window

Test Materials

- Losing a student test booklet or answer document
- Losing a student testing ticket
- o Leaving test materials unattended or failing to keep test materials secure at all times
- o Reading or viewing the passages or test items before, during, or after testing
 - Exception: Administration of a human reader/signer accessibility feature for mathematics or accommodation for English language arts/literacy, which requires a Test Administrator to access passages or test items
- Copying or reproducing (e.g., taking a picture of) any part of the passages or test items or any secure test materials or online test forms
- Revealing or discussing passages or test items with anyone, including students and school staff, through verbal exchange, email, social media, or any other form of communication
- Removing secure test materials from the school's campus or removing them from locked storage for any purpose other than administering the test

• Testing Environment

- Allowing unauthorized visitors in the testing environment
- Failing to follow administration directions exactly as specified in the *Test Administrator Manual*
- Displaying testing aids in the testing environment (e.g., a bulletin board containing relevant instructional materials) during testing

All instances of security breaches and testing irregularities must be reported to the School Test Coordinator immediately. The Form to Report a Testing Irregularity or Security Breach must be completed within two school days of the incident.

If any situation occurred that could cause any part of the test administration to be compromised, schools should refer to the *PARCC Test Coordinator Manual* for each state's policy and immediately follow those steps. Instructions for the School Test Coordinator or LEA Test Coordinator to report a testing irregularity or security breach is available in the *PARCC Test Coordinator Manual*.

3.5 Data Forensics Analyses

Maintaining the validity of test scores is essential in any high-stakes assessment program, and misconduct represents a serious threat to test score validity. When used appropriately, data forensic analyses can serve as an integral component of a wider test security protocol. The results of these data forensic analyses may be instrumental in identifying potential cases of misconduct for further follow-up and investigation.

In 2016–2017, PARCC conducted the following data forensics analyses on its operational assessments:

- Response Change Analysis
- Aberrant Response Analysis
- Plagiarism Analysis
- Longitudinal Performance Modeling
- Internet and Social Media Monitoring
- Off-Hours Testing Monitoring

An overview of each data forensics analysis method is provided next.

3.5.1 Response Change Analysis

Response change analysis looks at how often student answers are changed, focusing specifically on an excessive number of wrong answers changed to right answers. In traditional paper-based, multiple-choice testing programs, this is sometimes referred to as "erasure analysis". The rationale for erasure analysis is that a teacher or administrator who is intent on improving classroom performance might be motivated to change student responses after the answer sheets are collected. A clustered number of student answer documents from the same school or classroom with unusually high numbers of answers changed from wrong to right might provide evidence to support follow-up investigation. PARCC's response change analysis extended the traditional erasure method to account for issues specific to computer-based testing as well as the variety of item types on the PARCC assessments, such as partial-credit, multi-part, and multiple-select items.

³ The term "erasure analysis" is sometimes objected to because it is inferential rather than descriptive. A more descriptive term is "mark discrimination analysis," which recognizes that the scanning approach makes discriminations among the darkness of selected answer choices when multiple responses to a multiple-choice item are detected during answer sheet processing.

3.5.2 Aberrant Response Analysis

Aberrant response pattern detection analysis looks at the unusualness of student responses compared with what would be expected. Most simply, this can be thought of as quantifying the extent to which higher-scoring students miss easy questions and lower-scoring students answer difficult questions correctly. While it would be difficult to draw a definitive inference about a single student flagged as having an aberrant response pattern, a cluster of students with aberrant response patterns within a classroom or school might warrant further investigation.

3.5.3 Plagiarism Analysis

Plagiarism analysis compares the responses given for a group of written composition items, looking for high degrees of similarity. For the PARCC assessments, the primary item type of interest was the prose constructed-response (PCR) tasks in the English Language Arts and Literacy (ELA/L) content area. This analysis was conducted for PCR tasks administered online using some of the same artificial intelligence (AI) techniques that are applied in automated essay scoring. Specifically, this method was based on Latent Semantic Analysis (LSA) technology to detect possible plagiarism. Using LSA, the content of each constructed response was compared against the content of every other constructed response and a measure that indicated the degrees of similarity was generated for each pair of response comparison. Because LSA provided a semantic representation of language, rather than a syntactic or word-based representation, it allowed the detection of potential copying behaviors, even when test takers or administrators substituted synonymous words or phrases.

3.5.4 Longitudinal Performance Monitoring

Longitudinal performance modeling evaluates the performance on PARCC assessments across test administrations and identifies unusual performance gains in the unit of interest (e.g., school or district). The original proposal was to use the cumulative logit regression (CLR) model approach (Clark, Skorupski, Jirka, McBride, Wang & Murphy, 2014) to identify unusual changes in test performance across two consecutive administrations of the PARCC assessment. A research study comparing the cumulative logit regression model and the weighted least squares (WLS) regression approach found that the cumulative logit regression model worked well when there were more units exhibiting unexpected performance. WLS resulted in lower false positives when few units exhibited unexpected performance. In addition, the units flagged by WLS were almost always flagged by CLR.

At the November 2016 Technical Advisory Committee (TAC) meeting, the results from this study were discussed and the recommendation to use the Weighted Least Squares methodology was endorsed by the TAC. In January of 2017, the State Leads approved the TAC recommendation.

In the weighted least squares regression approach, mean current year scale scores are regressed on mean prior year scale scores, weighting by unit sample size. The model is fit using SAS PROC REG or the Im function in R. Standardized residuals are calculated by dividing raw residuals by their respective standard deviations. Units with a standardized residual exceeding 3.0 are flagged for unexpected performance.

3.5.5 Internet and Social Media Monitoring

Internet and social media monitoring was conducted by Caveon, LLC. Caveon's team monitored English-language websites and searchable forums that were publicly available for suspected proxy testing solicitations and website postings that contain, or appear to contain, infringements of PARCC's protected operational test content. The Internet and social media outlets monitored included popular websites (such as Facebook and Twitter), blogs, discussion forums, video archives, document archives, brain dumps, auction sites, media outlets, peer-to-peer servers, etc. Caveon's process generated regular updates that categorize identified threats by level of actual or potential risk based upon the representations made on the websites, or actual analysis of the proffered content. For example, categorizations typically ranged from "cleared" (lowest risk but bookmarked for continued monitoring) to "severe" (highest risk). Note that this process only considered potential breaches of secure item content, not violations of testing administration policies. Potential breaches were reported directly to the state(s) implicated for further action. Summary reports describing the threats were provided to PARCC through notification emails.

3.5.6 Off-Hours Testing Monitoring

Off-hours testing monitoring checks for suspicious testing activities at test administration locations occurring outside of the set windows for computer-based testing sessions. PARCC states established set start and end times for administering computer-based assessments. Based on these hours, authorized users (that is, users with the State Role) were allowed to override the start and end times for a test session. The off-hours testing monitoring process tracked such occurrences and logged them in an operational report, which listed the sessions within an organization that selected to test outside the set window. PARCC states could use this report to follow-up with the organizations identified in the report.

Section 4: Item Scoring

4.1 Machine-Scored Items

4.1.1 Key-Based Items

Pearson performed a key review prior to the test administration to verify that the scoring (answer) keys were correct for each item. Once the forms were constructed and approved by PARCC for publication, an independent key review was performed by an experienced third-party vendor. The vendor reviewed each item and confirmed that the key was correct. If discrepancies were identified, a Pearson senior content specialist or content manager reviewed the flagged item(s) and worked with the item developers to resolve the issue.

4.1.2 Rule-Based Items

Rule-based scoring refers to item types that use various scoring models. PARCC uses Question and Test Interoperability (QTI) item type implementation based on scoring model rules. Examples of these item types include "choice interaction," which presents a set of choices where one or more choices can be selected; text entry, where the response is entered in a text box; hot spot or text interaction, where an area in a graph or text in a paragraph (for example) can be highlighted; or match interaction, where an association can be made between pairs of choices in a set. These items include the scoring rules and correct responses as part of their item XML (markup language) coding.

During the initial stages of item development for PARCC, Pearson staff worked closely with PARCC to first delineate the rules for the scoring rubrics and then to adjust those rules based on student responses. During the item tryout⁴ planning phase, Pearson content staff received input from PARCC staff to develop a thorough rule-based scoring process that met PARCC needs.

Pearson worked with the item developers to review initial scoring rules created during the item development. Once the rule-based scoring process was approved by PARCC, and prior to test construction, Pearson content staff worked closely with the item developers to finalize scoring rubrics for items to be scored via the rule-based scoring method. The proposed scoring rubrics were sent to PARCC for review, and if any additional changes were needed or new rules added, Pearson documented and applied the requested edits.

During test construction, Pearson monitored and evaluated the scoring and updated the scoring keys/ scoring rules in the item bank. After the tryout items were scored, Pearson prepared a frequency distribution of student responses for each item or task scored using a rule-based approach and compared this to the expected response based on correct answers to ensure that scoring keys and rules were appropriately applied. The content team does this by analyzing the student response data to determine if scoring is acceptable using the item metadata and the student response file in conjunction with any potential item issues as flagged by psychometrics. These frequency distributions included an

⁴ The item tryout was a set of item studies conducted in spring 2015.

indication of right/wrong and other identifying information defined by PARCC and those items that showed a statistical anomaly, whereby the frequency distribution was outside of the expected range, were sent to content experts to verify that the items were coded with the correct key.

Following the Rule-Based Scoring Educator Committee's review, which occurred prior to year one test construction, Pearson analyzed the feedback from the committees and made recommendations about adjustments to the scoring rubrics based on the results of the reviews. Upon submission of the results, Pearson worked with PARCC staff to discuss these findings and determine next steps prior to the completion of scoring. In subsequent years as scoring inquiries arise throughout the process of test construction, forms creation, testing, scoring, and psychometric analysis, items with scoring discrepancies are brought before the PARCC Priority Alert Task Force for resolution. This committee consists of representatives from each state as well as PARCC and Pearson content specialists.

Following the initial development of the PARCC rule-based scoring rubrics, Pearson has continued to monitor and evaluate new item development to ensure the scoring rules established are maintained within all item types as approved.

Pearson continues to use several avenues to monitor scoring each year. Prior to testing, a third-party key review checks operational and field test items for correct keys. Any disputed items go to a second review with Pearson content experts and anything still in question is taken before the PARCC task force for review and possible key change. During testing, Pearson creates early testing files for frequency distribution analysis whereby items where an incorrect key receives a high distribution of responses are further evaluated for accuracy. After testing, all responses are again evaluated for distribution of responses and potential scoring abnormalities during psychometric analysis. Any change in scoring that may be requested as a result of the psychometric analysis is also taken before the PARCC task force for decisions. These processes are the same for both paper and online modes of testing.

4.2 Human or Hand-scored Items

PARCC constructed-response items were scored by human scorers in a process referred to as hand-scoring. Online training units were used to train all scorers. The online training units included prompts (items), passages, rubrics, training sets, and qualification sets. Scorers who successfully completed the training and qualified, demonstrating they could correctly score student responses based on the guidelines in the online training units, were permitted to score student responses using the ePEN2 (Electronic Performance Evaluation Network, second generation) scoring platform. All online and paper responses were scored within the ePEN2 system. Pearson monitored quality throughout scoring.

Pearson staff roles and responsibilities were as follows:

- Scorers applied scores to student responses.
- Scoring Supervisors monitored the work of a team of scorers through review of scorer statistics
 and backreading, which is a review of responses scored by each scorer. When backreading, a
 supervisor sees the scores applied by scorers, which helps the supervisor provide additional
 coaching or instruction to the scorer being backread.

- Scoring Directors managed the scoring quality of a subset of items and monitored the work of supervisors and scorers for their assigned items. Directors backread responses scored by supervisors and scorers as part of their quality-monitoring duties.
- English language arts/literacy (ELA/L) and mathematics content specialists managed the scoring quality and monitored the work of the Scoring Directors.
- Project Managers documented the procedures, identified risks, and managed day-to-day administrative matters.
- A Program Manager provided oversight for the entire scoring process.

All Pearson employees involved in the scoring or the supervision of scoring possessed at least a fouryear college degree.

4.2.1 Scorer Training

Key steps in the development of scorer training materials were rangefinding and rangefinder review meetings where educators and administrators from PARCC states met to interpret the scoring rubrics and determine consensus scores for student responses. Rangefinding meetings were held prior to scoring field-test items, and rangefinder review meetings were held prior to scoring operational items.

At rangefinding meetings, educators and administrators from PARCC states reviewed student responses and used scoring rubrics to determine consensus scores. Those responses scored in rangefinding were used to create field-test scorer training sets. After items were selected for operational testing, PARCC educators and administrators attended rangefinder review meetings to review and approve proposed operational training sets.

When developing scorer training materials, Pearson Scoring Directors carefully reviewed detailed notes and records from PARCC rangefinding and rangefinder review committee meetings. Training sets were developed using the responses scored by the committees and additional suitable student response samples (as needed). PARCC reviewers reviewed and approved all scorer training sets prior to scorer training.

During training, scorers reviewed training sets of scored student responses with annotations that explained the rationale for the score assigned. The anchor set was the primary reference for scorers as they internalized the rubric during training. Each anchor set consisted of responses that were clear examples of student performance at each score point. The responses selected were representative of typical approaches to the task and arranged to reflect a continuum of performance. All scorers had access to the anchor set when they were training and scoring and were directed to refer to it regularly during scoring.

Practice sets were used in training to help trainees practice applying the scoring guidelines. Scorers reviewed the anchor sets, scored the practice sets, and then were able to compare their assigned scores for the practice sets to the actual PARCC-assigned scores to help them learn.

Qualification sets were used to confirm that scorers understood how to score student responses accurately. Qualification sets were composed of responses that were clear examples of score points. Scorers were required to meet specified agreement percentages on qualification sets in order to score student responses.

Pearson developed two types of training sets to train scorers: prototype and abbreviated sets. Prototype training sets were complete training sets consisting of anchor, practice, and qualification sets (refer to 4.2.2 for information on the qualification process). In ELA/L, there was one prototype training set per task type (Research Simulation Task, Literary Analysis Task, and Narrative Writing Task) at each of the nine grade levels (grades 3 through 11). In mathematics, a prototype training set was built for a grouping of similar items for a total of approximately three to five prototype sets per grade level or course.

The prototype training approach promoted consistency in scoring, as each subsequent abbreviated training set for the ELA/L task type or mathematics item grouping was based on the prototype. Once a prototype was chosen, full training materials were developed for that item, and at each grade level, scorers were trained to score a particular task type using the prototype training materials for that type.

Abbreviated training sets were prepared for all items not selected for prototype training sets. The abbreviated training sets included an anchor set and two practice sets so scorers could internalize the scoring standards for these new items, which were similar to prototype items they had previously scored.

Anchor and practice sets for both prototype and abbreviated items included annotations for each response. Annotations are formal written explanations of the score for each student response.

The table below details the composition of the anchor sets, practice sets, and qualification sets.

Table 4.1 Training Materials Used During Scoring

Training Set Development

Description

Specification

Anchor Set

The anchor set is the primary reference for scorers as they internalize the rubric during training. All scorers have access to the anchor set when they are training and scoring, and are directed to refer to it regularly.

The anchor set comprises clear examples of student performance at each score point. The responses selected may be representative of typical approaches to the task or arranged to reflect a continuum of performance.

The anchor set for mathematics prototype items comprises three annotated responses per score point.

The anchor set for subsequent abbreviated items for mathematics comprise one to three annotated responses per score point.

The anchor sets for ELA/L prototype items comprise three annotated responses per score point. Anchor sets for prototype items include separate complete anchor sets for each applicable scoring trait (Reading Comprehension and Written Expression and Conventions).

Practice Sets

Practice sets are used to help trainees develop experience in independently applying the scoring guide (the rubric) to student responses. Some of these responses clearly reinforce the scoring guidelines presented in the anchor set. Other responses are selected because they are more difficult to evaluate, fall near the boundary between two score categories, or represent unusual approaches to the task.

The practice sets provide guidance and practice for trainees in defining the line between score categories, as well as applying the scoring criteria to a wider range of types of responses.

The practice sets for mathematics prototype and abbreviated items include two to three sets of ten annotated responses.

ELA/L practice sets for prototype items include two sets of five annotated responses and two sets of ten annotated responses.

The subsequent ELA/L practice sets for abbreviated items include two sets of ten annotated responses.

Table 4.1 Training Materials Used During Scoring

Training Set Development				
Description	Specification			
Qualification Sets				
Qualification sets are used to confirm that scorer trainees understand the scoring criteria and are able to assign scores to				
student responses accurately. The responses in these sets are selected to reinforce the application of the scoring criteria illustrated in the anchor set.	The qualification sets for mathematics prototype items include three sets of ten responses each (not annotated).			
Scorer trainees must demonstrate acceptable performance on these sets by meeting a pre-determined standard for	The subsequent mathematics abbreviated items for mathematics do not include qualification sets.			
accuracy in order to qualify to score. Pearson scoring staff define and document qualifying standards in conjunction with	The qualification sets for ELA/L prototype items include three sets of ten responses each (not annotated).			
PARCC prior to scoring.	The subsequent ELA/L abbreviated items do not include qualification sets.			

4.2.2 Scorer Qualification

In order to score items, scorers were required to show that they were able to apply PARCC scoring methodology accurately through a qualification process. Scorers were asked to apply scores to three qualification sets consisting of ten responses each. ELA/L scorers applied a score for each trait on each response in the qualification sets. Literary Analysis and Research Simulation Tasks each had two traits: the Reading Comprehension and Written Expression trait and the Conventions trait. The Narrative Writing Task had two traits: Written Expression and Conventions. Mathematics scorers applied a score for each part of an item that was a constructed response. The number of constructed-response parts for each mathematics item ranged from one to four. Scorers were required to match the PARCC-approved score at a percentage agreed to by PARCC in order to qualify.

For ELA/L qualification, scorers were required to meet the following three conditions:

- 1. On at least one of the three qualifying sets, at least 70 percent of the ratings on each of the two scoring traits (considered separately), must agree exactly with the PARCC-approved scores.
- 2. On at least two of the three qualifying sets, at least 70 percent of the ratings (combined across the three scoring traits) must agree exactly with the PARCC-approved scores.
- 3. Combining over the three qualifying sets and across the two scoring traits, at least 96 percent of the ratings must be within one point of the PARCC-approved scores.

For mathematics qualification, the requirements were based on the item types and score point ranges. Because mathematics items can have one or more scoring traits, a scorer needed to achieve the following requirements separately for each scoring trait (when applicable to the item):

		- 1.6	
Tahla /1 7	Mathamatica	Ouglitication	Requirements

Category	Score Point Range	Perfect Agreement	Within One Point
2-category	0–1	90%	100%
3-category	0–2	80%	96%
4-category	0–3	70%	96%
5-category	0–4	70%	95%
7-category	0–6	70%	95%

On at least two of the three qualifying sets, a scorer was required to meet the "perfect agreement" percentage indicated in the table above for each category. "Perfect agreement" was achieved when the scores applied exactly matched the PARCC-approved scores. Over the three qualifying sets, a scorer was required to meet the "within one point" percentage indicated in the table above for each category. The average is exclusive to each trait, so an item with multiple scoring traits would have multiple trait rating averages within one point of the PARCC-approved score.

4.2.3 Managing Scoring

Pearson created a hand-scoring specifications document that detailed the hand-scoring schedule, customer requirements, rangefinding plans, quality management plans, item information, and staffing plans for each scoring administration.

4.2.4 Monitoring Scoring

Second Scoring

During scoring, Pearson's ePEN2 scoring system automatically and randomly distributed a minimum of 10 percent of student responses for second scoring; scorers had no indication whether a response had been scored previously. Humans applied the second score for all mathematics items. Second scoring for ELA/L was performed either by human scorers or by the Intelligent Essay Assessor. If the first and second scores applied were non-adjacent, a third and occasionally a fourth score was assigned to resolve scorer disagreements. When a resolution score (i.e., third score) was nonadjacent to one and/or both of the first and second scores, the content specialist or Scoring Director would apply an adjudication score (fourth score).

Table 4.3 Scoring Hierarchy Rules

If a response was scored more than once, the following rules were applied to determine the final score:			
Score Type	Rank	Final Score Calculation	
Adjudication	1	If an adjudication score is assigned, this is the final score.	
Resolution	2	If no adjudication score is assigned, this is the final score.	
Backread	3	If no adjudication or resolution score is assigned, the latest	
		backreading score is the final score.	
Human First Score	4	If no adjudication, resolution, or backreading score is assigned,	
		this is the final score.	
Human Second Score	5	If no adjudication, resolution, backreading, or human first score	
		is assigned, this is the final score.	
Intelligent Essay Assessor	6	If no human score is assigned, this is the final score.	
Score			

Backreading

Backreading was one of the major responsibilities of Pearson Scoring Supervisors and a primary tool for proactively guarding against scorer drift, where scorers score responses in comparison to one another instead of in comparison to the training responses. Scoring supervisory staff used the ePEN2 backreading tool to review scores assigned to individual student responses by any given scorer in order to confirm that the scores were correctly assigned and to give feedback and remediation to individual scorers. Pearson backread approximately 5 percent of the hand-scored responses. Backreading scores did not override the original score but were used to monitor scorer performance.

Validity

Validity responses are pre-scored responses strategically interspersed in the pool of live responses. These responses were not distinguishable from any other responses so that scorers were not aware they

were scoring validity responses rather than live responses. The use of validity responses provided an objective measure that helped ensure that scorers were applying the same standards throughout the project. In addition, validity was at times shared with scorers in a process known as "validity as review." Validity as review provided scorers automated, immediate feedback: a chance to review responses they mis-scored, with reference to the correct score and a brief explanation of that score. One validity response was sent to scorers for every 25 "live" responses scored.

PARCC validity agreement requirements for scorers are listed in Table 4.3. Scorers had to meet the required validity agreement percentages to continue working on the PARCC project. Scorers who did not maintain expected agreement statistics were given a series of interventions culminating in a targeted calibration set: a test of scorer knowledge. Scorers who did not pass targeted calibration were removed from scoring the item, and all the scores they assigned were deleted.

Table 4.4 Scoring Validity Agreement Requirements

Subject	Score Point Range	Perfect Agreement	Within One Point
Mathematics	0–1	90%	96%*
Mathematics	0–2	80%	96%
Mathematics	0–3	70%	96%
Mathematics	0–4	65%	95%
Mathematics	0–6	65%	95%
ELA/L	Multi-trait	65%	96%

^{*}A zero or 1 score compared to a blank score will have a disagreement greater than 1 point.

Calibration Sets

Calibration sets are special sets created during scoring to help train scorers on particular areas of concern or focus. Scoring Directors used calibration sets to reinforce rangefinding standards, introduce scoring decisions, or address scoring issues and trends. Calibration was used either to correct a scoring issue or trend, or to continue scorer training by introducing a scoring decision. Calibration was administered regularly throughout scoring.

Inter-rater Agreement

Inter-rater agreement is the agreement between the first and second scores assigned to student responses and is the measure of how often scorers agree with each other. Pearson scoring staff used inter-rater agreement statistics as one factor in determining the needs for continuing training and intervention on both individual and group levels. PARCC inter-rater agreement expectations are shown in Table 4.4.

Table 4.5 Inter-rater Agreement Expectations and Results

Subject	Score Point Range	Perfect Agreement Expectation	Perfect Agreement Result	Within One Point Expectation	Within One Point Result
Mathematics	0-1	90%	97%	96%*	100%
Mathematics	0–2	80%	94%	96%	100%
Mathematics	0–3	70%	93%	96%	99%
Mathematics	0–4	65%	92%	95%	99%
Mathematics	0–5	65%	90%	95%	98%
Mathematics	0–6	65%	91%	95%	97%
ELA/L	Multi-trait	65%	75%	96%	99%

^{*}A zero or 1 score compared to a blank score will have a disagreement greater than 1 point.

Pearson's ePEN2 scoring system included comprehensive inter-rater agreement reports that allowed supervisory personnel to monitor both individual and group performance. Based on reviews of these reports, scoring experts targeted individuals for increased backreading and feedback, and if necessary, retraining.

The perfect agreement rate for all mathematics responses scored by two scorers was 93 percent and the within one point rate was 99 percent. For all ELA/L responses scored by two scorers, the perfect agreement rate was 75 percent and the within one point rate was 99.7 percent.

The results by grade level for ELA/L are provided in Section 4.3.7: Inter-rater Agreement for Prose Constructed Response.

4.3 Automated Scoring for PARCC PCRs

Automated scoring performed by Pearson's Intelligent Essay Assessor (IEA) was the default option for scoring the PARCC assessment's online prose constructed-response (PCR) tasks. Under the default option, it was assumed that operational scores for approximately 67 percent of the online PCR responses would be assigned by IEA for the spring administration. The operational scores for the remaining online responses were assigned by human scorers. Human scoring was applied to responses that were scored while IEA was being trained as well as to additional responses routed to human scoring when there was uncertainty about the automated scores. New Jersey adopted an option to have human scores assigned as the first score for 100 percent of responses for grades 3 through 8 and grade 10.

For 10 percent of responses, a second "reliability" score was assigned. The purpose of the reliability score was to provide data for evaluating the consistency of scoring, which is done by evaluating scoring agreement. When IEA provided the first score of record, the second reliability score was a human score. For the New Jersey responses from grade levels with the human-scoring option, the second reliability score was assigned by IEA.

4.3.1 Concepts Related to PARCC Automated Scoring

The text below describes concepts related to PARCC automated scoring.

Continuous Flow

Continuous flow scoring results in an integrated connection between human scoring and automated scoring. It refers to a system of scoring where either an automated score, a human score, or both can be assigned based on a predetermined asynchronous operational flow.

Calibration of IEA using Operational Data

Continuous flow scoring facilitates the training of IEA using human scores assigned to operational online data collected early in the administration. Once IEA obtains sufficient data to train, it can be "turned on" and becomes the primary source of scoring (although human scoring continues for the 10 percent reliability sample and other responses that may be routed accordingly).

Smart Routing

Smart routing refers to the practice of using automated scoring results to detect responses that are likely to be challenging to score, and applying automated routing rules to obtain one or more additional human scores. Smart routing can be applied prompt by prompt to the extent needed to meet scoring quality criteria for automated scoring.

Quality Criteria for Evaluating Automated Scoring

The PARCC state leads approved specific quality criteria for evaluating automated scoring at the time IEA was trained. The primary evaluation criteria for IEA was based on responses to validity papers with "known" scores assigned by experts. For each prompt scored, a set of validity papers is used to monitor the human-scoring process over time. Validity papers are seeded into human scoring throughout the administration. The expectation is that IEA can score validity papers at least as accurately as humans can.

Additional measures of inter-rater agreement for evaluating automated scoring were proposed based on the research literature (Williamson, Xi, & Breyer 2012). These measures were previously utilized in Pearson's automated scoring research and include Pearson correlation, kappa, quadratic-weighted kappa, exact agreement, and standardized mean difference. These measures are computed between pairs of human scores, as well as between IEA and humans, to evaluate how performance was the same or different. Criteria for evaluating the training of IEA given these measures include the following:

- Pearson correlation between IEA-human should be within 0.1 of human-human.
- Kappa between IEA-human should be within 0.1 of human-human.
- Quadratic-weighted kappa between IEA-human should be within 0.1 of human-human.
- Exact agreement between IEA-human should be within 5.25 percent of human-human.
- Standardized mean difference between IEA-human should be less than 0.15.

The specific criteria for evaluating IEA included both primary and secondary criteria and are noted below.

- Primary Criteria—Based on responses to validity papers: With smart routing applied as needed, IEA agreement is as good as or better than human agreement for each trait score.
- Contingent Primary Criteria—Based on the training responses if validity responses are not available: With smart routing applied as needed, IEA-human exact agreement is within 5.25 percent of human-human exact agreement for each trait score.
- Secondary Criteria—Based on the training responses: With smart routing applied as needed, IEAhuman differences on statistical measures for each trait score are within the Williamson et al. tolerances for subgroups with at least 50 responses.

Hierarchy of Assigned Scores for Reporting

When multiple scores are assigned for a given response, the following hierarchy determines which score was reported operationally:

- The IEA score is reported if it is the only score assigned.
- If an IEA score and a human score are assigned, the human score is reported.
- If two human scores are assigned, the first human score is reported.
- If a backread score and human and/or IEA scores are assigned, the backread score is reported.

- If a resolution score is assigned and an adjudicated score is not assigned, the resolution score is reported (note that if nonadjacent scores are encountered, responses are automatically routed to resolution).
- If an adjudicated score is assigned, it is reported (note that if a resolution score is nonadjacent to the other scores assigned, responses are automatically routed to adjudication).

4.3.2 Sampling Responses Used for Training IEA

For prompts trained using 2017 operational data, the early performance of human scoring was closely monitored to verify that an appropriate set of data would be available for training IEA. In particular, several characteristics of the human scoring data were monitored, including:

- exact agreement between human scorers (the goal was for this to be at least 65 percent for each trait);
- exact agreement between human scores conditioned on score point (the goal was for this to be at least 50 percent for each trait);
- the number of responses at each score point (the goal was to have at least 40 responses at the highest score points in the training samples used by IEA); and
- number of responses with two human scores assigned (note that IEA "ordered" additional scoring of responses during the sampling period as needed).

Although the desired characteristics of the training data were easily achieved for some prompts, they were more challenging to achieve for others. For some prompts, a subset of scores were reset and clarifying directions were provided to scorers to improve human-human agreement. For other prompts, special sampling approaches were used to increase the numbers of responses that received top scores. In addition, a healthy percentage of responses were backread during the sampling period and these scores as well as double human scores were all part of the data used to train IEA.

4.3.3 Primary Criteria for Evaluating IEA Performance

The primary criteria for evaluating IEA performance is based on evaluating validity papers and is stated as follows: With smart routing applied as needed, IEA agreement is as good as or better than human agreement for each trait score.

To operationalize the primary criteria for a given prompt, the following general steps are undertaken:

- 1. Determine agreement of the human scores with the validity papers for each trait.
- 2. Calculate agreement of the IEA scores with the validity papers for each trait.
- 3. Compare the IEA validity agreement with the human agreement.
- 4. If the IEA validity agreement is greater than or equal to the human agreement for each trait, IEA can be deployed operationally.

In addition to looking at overall validity agreement, conditional agreement was also examined. In general, it was desirable for IEA to exceed 65 percent agreement at every score point as well as be close to or exceed the human validity agreement at each score point.

4.3.4 Contingent Primary Criteria for Evaluating IEA Performance

For many of the prompts trained in 2017, it was not possible to utilize human-scored validity responses in evaluating IEA performance. In these cases, IEA was evaluated based on IEA-human exact agreement for each trait score and compared to agreement based on responses that were double-scored by humans. A portion of the data was held out for evaluating IEA-human exact agreement according to the following steps:

- 1. Determine exact agreement of the two human scores with each other for each trait.
- 2. Calculate agreement of the IEA scores with the human scores for each trait.
- 3. Compare the IEA-human agreement with the human-human agreement.
- 4. If the IEA-human agreement is within 5.25 percent of the human-human agreement, IEA can be deployed operationally.

In addition to the overall comparison, we targeted the following performance thresholds in the test data set: 1) at least 65 percent overall IEA-human agreement; and 2) 50 percent IEA-human agreement by score point (i.e., conditioned on the human score). These targets went beyond the contingent primary criteria approved by the state leads.

4.3.5 Applying Smart Routing

With smart routing, the quality of automated scoring can be increased by routing responses that are more likely to disagree with a human score to receive an additional human score.

When human scorers read a paper, they typically apply integer scores based on a scoring rubric. When there is strong agreement between two independent human readers, they might both assign a score of 3 such that the average score over both raters is also a 3 (i.e., (3+3)/2 = 3). IEA simulates this behavior, but because its scores come from an artificial intelligence algorithm, it generates continuous (i.e., decimalized) scores. In this case, the IEA score might be a 2.9 or 3.1. When human readers disagree on the score for a paper, say one reader gives the paper a score of 3 and another reader gives the paper a score of 4, the average of the two scores would be 3.5 (i.e., 3+4=7/2=3.5). For this paper, IEA would likely provide a score between 3 and 4, say 3.4 or 3.6. Because this continuous score needs to be rounded to an integer score for reporting, it might be reported as a 3 or a 4, depending on the rounding rules. Smart routing involves routing those responses with "in between" IEA scores to additional human scoring because the nature of the responses suggests there may be less confidence in the IEA score. Since these "in between" IEA scores are based on modeling human scores, it follows that human scores may be less certain as well, and thus such responses tend to be the ones that it makes sense to have double-scored and possibly to resolve if the IEA and human scores are non-adjacent.

Smart routing was utilized as needed to help IEA achieve targeted quality metrics (e.g., validity agreement or agreement with human scorers). Smart routing involved the application of the following four steps:

- 1. The continuous IEA score for each of the two trait scores was rounded to the nearest score interval of 0.2, starting from zero. For example, IEA scores between 0 and 0.1 were rounded to an interval score of 0, scores between 0.1 and 0.3 were rounded to an interval score of 0.2, scores between 0.3 and 0.5 were rounded to an interval score of 0.4, and so on.
- 2. Within each of these intervals, the percentage of exact agreement between IEA integer scores and the human scores was calculated for each trait.
- 3. For each prompt, agreement rates were evaluated by rounding interval. Those intervals for which the agreement rates were below a designated threshold for either trait were identified.
- 4. Once IEA scoring was implemented, responses within intervals for which IEA-human agreement was below the designated threshold were routed for additional human scoring.

In training IEA, we first evaluated the scoring models without smart routing by applying either the primary validity criteria or the contingent criteria as described in Sections 4.2 and 4.3 of these procedures. For those prompts that did not meet these criteria, we applied increasing smart routing thresholds in an iterative fashion to filter scores and evaluate the remaining scores against the criteria. That is, in any one iteration a particular smart routing threshold was applied such that only scores falling in intervals for which exact agreement exceeded the threshold were included in evaluating the criteria. If the primary or contingent criteria were not met with this level of smart routing, we repeated the analysis applying an increased smart routing threshold. If the primary or contingent criteria were still not met, we repeated the analysis applying a still higher threshold. If the criteria were still not met after a maximum threshold was applied, we investigated different models and/or utilized additional human scoring data until an IEA scoring model was found that met the criteria.

4.3.6 Evaluation of Secondary Criteria for Evaluating IEA Performance

The secondary criteria for evaluating IEA performance involved comparing agreement indices for IEA-human scoring for various demographic subgroups. Because of the importance of protecting personally identifiable information (PII), student demographic data is stored and managed separately from the performance scoring data. For this reason, it was not possible to evaluate subgroup performance in real time as IEA was being trained.

For those prompts trained on early operational data, attempts were made to prioritize the data being returned from the field to include data from states or districts where more diverse populations of students were anticipated. In addition, requests for additional human scores were made to increase the likelihood that there would be sufficient numbers of responses with two human scores for most of the demographic subgroups of interest.

Once IEA was trained and deployed, scoring sets used in training were matched to demographic information so that agreement between IEA and human scorers could be evaluated across subgroups. The analysis was conducted for the following ten comparison groups:

Table 4.6 Comparison Groups

Group Type	Comparison Groups	
Sex	Female	
	Male	
Ethnicity	American Indian/Alaska Native	
	Asian	
	Black/African American	
	Hispanic/Latino	
	Native Hawaiian or Other Pacific Islander	
	White	
Special Instructional	English Language Learners (ELL)	
Needs	Students with Disabilities (SWD)	

IEA-human agreement indices were calculated for all cases with an IEA score and at least one human score. Human-human agreement was calculated for all cases with two human scores.

To evaluate the training of IEA for subgroups, we applied the following criteria approved by the state leads for subgroups with at least 50 IEA-human scores and at least 50 human-human scores:

- Pearson correlation between IEA-human should be within 0.1 of human-human.
- Kappa between IEA-human should be within 0.1 of human-human.
- Quadratic-weighted kappa between IEA-human should be within 0.1 of human-human.
- Exact agreement between IEA-human should be within 5.25 percent of human-human.
- Standardized mean difference between IEA-human should be less than ±0.15 (this criterion was applied to subgroups with at least 50 IEA-human scores).

Although it was not expected that these criteria would be met for all subgroups for all prompts, if results of the evaluation between IEA and human scoring for subgroups for any prompt indicated that IEA performance persistently failed on the criteria listed above, consideration would be given to resetting the responses scored by IEA and reverting to human scoring until such time that an alternate IEA model could be established with improved subgroup performance.

In addition to the secondary criteria approved by the State Leads, we also compared the performance of IEA to the following targets on the various measures for subgroups with at least 50 responses:

- Pearson correlation between IEA-human should be 0.70 or above.
- Kappa between IEA-human should be 0.40 or above.
- Quadratic-weighted kappa between IEA-human should be 0.70 or above.
- Exact agreement between IEA-human should be 65 percent or above.

These targets were not intended to be directly applied in decisions about whether to deploy IEA operationally or not. Such targets may or may not be met by human scoring for any particular prompt and/or subgroup, and if they are not met by human scoring, they are unlikely to be met by IEA scoring. Nevertheless, comparisons to these targets provided additional information about IEA performance (and human scoring) in an absolute sense.

4.3.7 Inter-rater Agreement for Prose Constructed Response

This section presents the inter-rater agreement for operational results for the online prose constructed-response (PCR) tasks by trait and grade level in spring 2017. For the 2017 administration, the PCR task items were scored on two traits: (1) Reading Comprehension and Written Expression and (2) Knowledge of Language and Conventions. Narrative Writing tasks (NWT) continued to be scored on the same two traits as in 2015 and 2016: (1) Written Expression and (2) Knowledge of Language and Conventions.

For 10 percent of responses, a second "reliability" score was assigned. The purpose of the reliability score was to provide data for evaluating the consistency of scoring, which is done by evaluating scoring agreement. Inter-rater agreement is the agreement between the first and second scores assigned to student responses and is the measure of how often scorers agree with each other. Pearson scoring staff used inter-rater agreement indices as one factor in determining the needs for continuing training and intervention on both individual and group levels. PARCC inter-rater agreement expectations are provided in Table 4.4 in Section 4.2.4. For ELA/L PCR traits, the expectation for agreement is an interrater agreement of 65 percent or higher between two scorers. When IEA provided the first score of record, the second reliability score was a human score. For those states choosing the human-scoring option, the second reliability score was assigned by IEA. For a subset of responses, the first and second score were both human scores.

Table 4.5 presents the average agreement across the PCRs for each grade level by trait. The number of prompts included in the analyses is listed for each grade level. The agreement indices (exact agreement, kappa, quadratic-weighted kappa, and Pearson correlation) were calculated separately by PCR for each trait (Written Expression and Conventions). For each grade level, the agreement indices were averaged across the PCRs. The table presents the average count and the average for the agreement indices.

The exact agreement for the PCR traits is above the 65 percent agreement rate criteria for all PCRs. The strength of agreement between raters is moderate to substantial agreement as defined by Landis and Koch (1977) for all PCRs. The quadratic-weighted kappa (QW Kappa) distinguishes between differences in ratings that are close to each other versus larger differences. The weighted kappa is substantial to almost perfect agreement for all grades. The Pearson correlations (r) ranged from .71 to .89.

During operational scoring, the PCR agreement rates are monitored for quality and items not meeting the criteria are shared with the PARCC hand-scoring operational working group. After the operational administration, the performance of all the PCRs is provided to the content team as feedback for re-using

PCRs and in order to inform development of future PCRs. This provides evidence for continuous improvement of the testing program.

Table 4.7 PARCC PCR Average Agreement Indices by Test

			Written Expression				Conventions			_
	Number				QW				QW	
Test	of PCRs	Count	Exact	Карра	Kappa	r	Exact	Kappa	Карра	r
ELA03	8	21,608	72.89	0.52	0.71	0.71	72.10	0.55	0.74	0.74
ELA04	8	21,473	67.66	0.51	0.76	0.76	70.23	0.55	0.77	0.77
ELA05	8	20,393	72.61	0.55	0.77	0.77	71.23	0.57	0.80	0.80
ELA06	7	25,702	71.64	0.60	0.84	0.85	72.04	0.60	0.83	0.83
ELA07	7	24,904	71.93	0.61	0.87	0.87	70.74	0.60	0.85	0.85
ELA08	8	20,003	69.84	0.59	0.87	0.87	71.11	0.60	0.85	0.85
ELA09	6	12,155	73.22	0.64	0.89	0.89	74.22	0.65	0.87	0.87
ELA10	8	11,004	73.44	0.64	0.88	0.88	73.33	0.63	0.86	0.86
ELA11	8	5,123	73.58	0.63	0.88	0.88	73.51	0.63	0.87	0.87

Section 5: Test Taker Characteristics

5.1 Overview of Test Taking Population

Approximately three million students participated in the operational administration of the PARCC assessments during the 2016–2017 school year in Colorado, Bureau of Indian Education, District of Columbia, Illinois, Maryland, New Jersey, New Mexico, and Rhode Island. Not all participating states had students testing in all grades. Assessments were administered for English language arts/literacy (ELA/L) in grades 3 through 11; mathematics assessments were administered in grades 3 through 8, as well as for traditional high school mathematics (Algebra I, Geometry, and Algebra II) and integrated high school mathematics (Integrated Mathematics I – III). A small subset of students tested in ELA/L grades 9, 10, and 11, and Algebra I, Geometry, and Algebra II during fall of 2016. Test taker characteristics for this group are presented in an addendum. The majority of students tested during the spring 2017 window when all grades and content areas were administered online and on paper.

5.2 Composition of Operational Forms

The fall 2016 and spring 2017 PARCC assessments were administered in either a computer-based test (CBT) or a paper-based test (PBT) format. ELA/L assessments focused on writing effectively when analyzing text. Mathematics assessments focused on applying skills and concepts, and feature multi-step problems that require abstract reasoning and modeling of real-world problems. Solving such problems requires the strategic use of tools, as well as precision and perseverance. In both content areas, students also demonstrated their acquired skills and knowledge by answering selected response items and fill-in-the-blank questions. Each assessment was comprised of multiple units; one of the mathematics units was split into calculator and non-calculator sections.

5.3 Rules for Inclusion of Students in Analyses

Criteria for inclusion of students were implemented prior to all operational analyses. These rules were established by Pearson psychometricians in consultation with PARCC to determine which, if any, student records should be removed from analyses. This data screening process resulted in higher quality, albeit slightly smaller, data sets.

Student response data were included in analyses if:

- Valid form numbers were observed for each unit for online assessments or for the full form for paper assessments,
- 2) Student records were not flagged as "void" (i.e., do not score), and
- 3) The student attempted at least 25 percent of the items in each unit or form,

⁵ Addendum 5 presents a summary of the test taker characteristics for the fall 2016 administration.

Additionally, in cases where students had more than one valid record, the record with the higher raw score was chosen. Records for students with administration issues or anomalies were excluded from analyses.

5.4 Test Takers by Grade, Mode, and Gender

Table 5.1 presents, for each grade of ELA/L, the number and percentage of students who took the test in each mode (CBT or PBT). This information is provided for all participating states combined. Table 5.2 presents the same type of information for all students who took the mathematics assessments, and Table 5.3 provides this information for students who took the mathematics assessments in Spanish.

Markedly more students tested online than on paper across all grades for both content areas. For ELA/L, the percentages of online test takers, for all states combined, ranged from 86.4% to 98.9%, while the percentages of paper test takers ranged from 1.1% to 13.6%. For all mathematics test takers, the percentages of students testing online ranged from 86.4% to 99.3%, whereas the percentages of students testing on paper ranged from 0.7% to 13.6%. The percentages of students taking Spanish-language mathematics online forms ranged from 85.9% to 100% and the percentages of students taking paper Spanish-language mathematics paper forms ranged from 0.1% to 14.1%. Generally, the percentage of students who tested online increased steadily from the lower grades to the higher grades. For example, about 86% of the ELA/L grade 3 students tested online, while about 99% of the grade 11 students tested online. Overall, fewer students tested at the higher grades for both content areas.

Table 5.1 ELA/L Test Takers by Grade and Mode: All States Combined

Grade	No. of Valid	CBT	Γ	PB ⁻	Τ
Grade	Cases	N	%	N	%
3	420,496	363,304	86.4	57,192	13.6
4	423,098	374,192	88.4	48,906	11.6
5	414,461	399,511	96.4	14,950	3.6
6	406,705	389,472	95.8	17,233	4.2
7	406,201	390,667	96.2	15,534	3.8
8	399,371	385,257	96.5	14,114	3.5
9	188,201	185,251	98.4	2,950	1.6
10	171,965	170,101	98.9	1,864	1.1
11	107,593	106,447	98.9	1,146	1.1
Grand Total	2,938,091	2,764,202		173,889	

Note: Includes students taking accommodated forms of ELA/L.

Table 5.2 Mathematics Test Takers by Grade and Mode: All States Combined

Grade	No. of Valid	CBT	Γ	PB	Т
Grade	Cases	N	%	N	%
3	425,744	367,726	86.4	58,018	13.6
4	426,609	376,664	88.3	49,945	11.7
5	416,556	400,631	96.2	15,925	3.8
6	408,664	391,131	95.7	17,533	4.3
7	393,942	379,753	96.4	14,189	3.6
8	314,484	302,002	96.0	12,482	4.0
A1	260,806	254,419	97.6	6,387	2.4
GO	137,530	136,043	98.9	1,487	1.1
A2	122,710	120,173	97.9	2,537	2.1
M1	10,964	10,892	99.3	72	0.7
M2	2,243	2,047	91.3	196	8.7
M3	568	560	98.6	8	1.4
Grand Total	2,920,820	2,742,041		178,779	

Note: Includes students taking mathematics in English, students taking Spanish-language forms for mathematics, and students taking accommodated forms. A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III.

Table 5.3 Spanish-Language Mathematics Test Takers	. by	v Grade and Mode: All States Combined

Grade	No. of Valid	СВ	вт	PE	BT
Grade	Cases	N	%	N	%
3	6,399	5,498	85.9	901	14.1
4	3,971	3,532	88.9	439	11.1
5	3,021	2,944	97.5	77	2.5
6	2,736	2,694	98.5	42	1.5
7	2,617	2,572	98.3	45	1.7
8	2,573	2,532	98.4	41	1.6
A1	4,032	3,646	90.4	386	9.6
GO	1,755	1,755	100	n/a	n/a
A2	1,085	1,084	99.9	1	0.1
MI	88	88	100	n/a	n/a
M2	1	1	100	n/a	n/a
M3	1	1	100	n/a	n/a
Grand Total	28,279	26,347		1,932	

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics II, M3 = Integrated Mathematics III. n/a = not applicable.

Tables A.5.1, A.5.2, and A.5.3 in Appendix 5 show the number and percentage of students with valid test scores in each content area (including Spanish Language mathematics), grade, and mode of assessment for all states combined and for each state separately. Tables A.5.4, A5.5, and A5.6 present the distribution by content area, grade, mode, and gender, for all states combined.

5.5 Demographics

Also presented in Appendix 5 is student demographic information for the following characteristics: economically disadvantaged, students with disabilities, English learners (EL), gender, and race/ethnicity (American Indian/Alaska Native; Asian; Black/African American; Hispanic/Latino; White/Caucasian; Native Hawaiian or Other Pacific Islander; two or more races reported; race not reported). Student demographic information was provided by the states and districts and captured in PearsonAccess^{next} by means of a student data upload. The demographic data was verified by the states and districts prior to score reporting.

Tables A.5.7 through A.5.15 provide demographic information for students with valid ELA/L scores, and Tables A.5.16 through A.5.27 present demographics for students with valid mathematics scores. All tables of demographic information are organized by grade; the results are first aggregated across all PARCC states and then presented for each state. Percentages are not reported for any states in which fewer than 20 students tested in a grade/content area.

Section 6: Classical Item Analysis

6.1 Overview

This section describes the results of the classical item analysis conducted for data obtained from the operational test items. For the spring 2017 administration, mathematics online and paper and ELA/L paper tests were pre-equated; ELA/L online tests were post-equated. For pre-equated tests, the item statistics provided in this section are from prior operational administrations and reflect the statistics that were used at test construction. For the post-equated tests, the statistics provided in this section are from the spring 2017 administration. Item analysis serves two purposes: to inform item exclusion decisions for IRT analysis and to provide item statistics for the item bank.

PARCC item analysis included data from the following types of items: key-based selected-response items, rule-based machine-scored items, and hand-scored constructed-response items. For each item, the analysis produced item difficulty, item discrimination, and item response frequencies.

6.2 Data Screening Criteria

Item analyses were conducted by test form based on administration mode. In preparation for item analysis, student response files were processed to verify that the data were free of errors. Pearson Customer Data Quality (CDQ) staff ran predefined checks on all data files and verified that all fields and data needed to perform the statistical analyses were present and within expected ranges.

Before beginning item analysis, Pearson performed the following data screening operations:

- 1. All records with an invalid form number were excluded.
- 2. All records that were flagged as "void" were excluded.
- 3. All records where the student attempted fewer than 25 percent of items were excluded.
- 4. For students with more than one valid record, the record with the higher raw score was chosen.
- 5. Records for students with administration issues or anomalies were excluded.

6.3 Description of Classical Item Analysis Statistics

A set of classical item statistics were computed for each operational item by form and by administration mode. Each statistic was designed to evaluate the performance of each item.

The following statistics and associated flagging rules were used to identify items that were not performing as expected:

Classical item difficulty indices (p value and average item score)

When constructing PARCC tests, a wide range of item difficulties is desired (i.e., from easy to hard items) so that students of all ability levels can be assessed with precision. At the operational stage, item difficulty statistics are used by test developers to build forms that meet desired test difficulty targets.

For dichotomously scored items, item difficulty is indicated by its p value, which is the proportion of test takers who answered that item correctly. The range for p values is from .00 to 1.00. Items with high p values are easy items and those with low p values are difficult items. Dichotomously scored items were flagged for review if the p value was above .95 (i.e., too easy) or below .20 (i.e., too difficult).

For polytomously scored items, difficulty is indicated by the average item score (AIS). The AIS can range from .00 to the maximum total possible points for an item. To facilitate interpretation, the AIS values for polytomously scored items are often expressed as percentages of the maximum possible score, which are equivalent to the p values of dichotomously items. The desired p value range for polytomously scored items is .30 to .80; items with values outside this range were flagged for review.

The percentage of students choosing each response option

Selected-response items on PARCC assessments refer primarily to single-select multiple choice scored items. These items require that the test taker select a response from a number of answer options. These statistics for single-select multiple choice items indicate the percentage of students who select each of the answer options and the percentage that omit the item. The percentages are also computed for the high-performing subgroup of students who scored at the top 20 percent on the assessment. Items were flagged for review if more high-performing test takers chose the incorrect option than the correct response. Such a result could indicate that the item has multiple correct answers or is miskeyed.

Item-total correlation

This statistic describes the relationship between test takers' performance on a specific item and their performance on the total test. The item-total correlation is usually referred to as the item discrimination index. For PARCC operational item analysis, the total score on the assessment was used as the total test score. The polyserial correlation was calculated for both selected-response items and constructed-response items as an estimate of the correlation between an observed continuous variable and an unobserved continuous variable hypothesized to underlie the variable with ordered categories (Olsson, Drasgow, and Dorans, 1982). Item-total correlations can range from -1.00 to 1.00. Desired values are positive and larger than .15. Negative item-total correlations indicate that low-ability test takers perform better on an item than high-ability test takers, an indication that the item may be potentially flawed. Item-total correlations below .15 were flagged for review. Items with extremely low or negative values were considered for exclusion from IRT calibrations or linking (refer to Section 10 for details on item inclusion and exclusion criteria for IRT analyses).

Distractor-total correlation

For selected-response items, this estimate describes the relationship between selecting an incorrect response (i.e., a distractor) for a specific item and performance on the total test. The item-total correlation is calculated (refer to #3) for the distractors. Items with distractor-total correlations above .00 were flagged for review as these items may have multiple correct answers, be miskeyed, or have other content issues.

Percentage of students omitting or not reaching each item

For both selected-response and constructed-response items, this statistic is useful for identifying problems with test features such as testing time and item/test layout. Typically, if students have an adequate amount of testing time, approximately 95 percent of students should attempt to answer each question on the test. A distinction is made between "omit" and "not reached" for items without responses.

- An item is considered "omit" if the student responded to subsequent items.
- An item is considered "not reached" if the student did not respond to any subsequent items.

Patterns of high omit or not-reached rates for items located near the end of a test section may indicate that test takers did not have adequate time. Items with high omit rates were flagged. Omit rates for constructed-response items tend to be higher than for selected-response items. Therefore, the omit rate for flagging individual items was 5 percent for selected-response items and 15 percent for constructed-response items. If a test taker omitted an item, then the test taker received a score of 0 for that item and was included in the *N*-count for that item. However, if an item was near the end of the test and classified as not reached, the test taker did not receive a score and was not included in the *N*-count for that item.

Distribution of item scores

For constructed-response items, examination of the distribution of scores is helpful to identify how well the item is functioning. If no students' responses are assigned the highest possible score point, this may indicate that the item is not functioning as expected (e.g., the item could be confusing, poorly worded, or just unexpectedly difficult), the scoring rubric is flawed, and/or test takers did not have an opportunity to learn the content. In addition, if all or most test takers score at the extreme ends of the distribution (e.g., 0 and 2 for a 3-category item), this may indicate that there are problems with the item or the rubric so that test takers can receive either full credit or no credit at all, but not partial credit.

The raw score frequency distributions for constructed-response items were computed to identify items with few or no observations at any score points. Items with no observations or a low percentage (i.e., less than 3 percent) of test takers obtaining any score point were flagged. In addition, constructed-response items were flagged if they had U-shaped distributions, with high frequencies for extreme scores and very low frequencies for middle score categories. Items with such response patterns may pose problems during the IRT calibrations and therefore may need to be excluded (refer to Section 10 for more information).

6.4 Summary of Classical Item Analysis Flagging Criteria

In summary, items are flagged for review if the item analysis yielded any of the following results:

- 1. p value above .95 for dichotomous items and above .80 for polytomous items
- 2. p value below .25 for dichotomous items, and below .30 for polytomous items
- 3. item-total correlation below .15

- 4. any distractor-total correlation above .00
- 5. greater number of high-performing students (top 20 percent) choosing a distractor rather than the keyed response
- 6. high percentage of omits: above 5 percent for selected-response items and above 15 percent for constructed-response items
- 7. high percentage that did not reach the item: above 5 percent for selected-response items and above 15 percent for constructed-response items
- 8. constructed-response items with a score value obtained by less than 3 percent of responses

Pearson's psychometric staff carefully reviewed the flagged items and brought items to the PARCC Priority Alert Task Force to decide if the items were problematic and should be excluded from scoring.

6.5 Classical Item Analysis Results

This section presents tables summarizing the analyses for items on the spring 2017 operational forms. Spring 2017 PARCC assessments (except ELA/L online) were pre-equated, meaning that the scoring was based on item parameters estimated using data from earlier administrations. For the pre-equated grades/subjects, item analysis results in this section are the item statistics from prior administrations that were used to make decisions during test construction and for scoring. For ELA/L online, the item analysis is from the spring 2017 operational administration.

- Tables 6.1 and 6.2 present *p* value information by grade and mode for the ELA/L and mathematics operational items.
- Tables 6.3 and 6.4 present item-total correlations by grade and mode for the ELA/L and mathematics operational items.

An operational item could appear on multiple test forms. The tables list only unique items in each test mode, and the reported item statistics are based on student responses across multiple occurrences of an item.

Spoiled or "do not score" items were excluded from the total test score in item analysis. These items were removed from scoring because of item performance, technical scoring issues, content concerns, or multiple/no correct answers. Additionally, some items were dropped during item calibrations due to:

- a low weighted polyserial,
- a low p value (e.g., extremely difficult item), or
- extremely poor IRT model fit or item not able to calibrate.

Table 10.2 in section 10 presents the count and percentage of items excluded from IRT calibration along with the reasons the items were excluded for ELA/L. The tables in this section and in the Appendix include only those items that were used for operational scoring.

The fall 2016 forms were based on the spring 2016 operational forms; therefore, the item analyses for these forms were reported in the 2015–2016 Technical Report.

Table 6.1 Summary of p Values for ELA/L Operational Items by Grade and Mode

Grade	Mode	N of Unique Items	Mean p Value	SD p Value	Min p Value	Max p Value	Median p Value
3	CBT	82	0.45	0.18	0.14	0.84	0.46
3	PBT	32	0.39	0.14	0.13	0.75	0.37
4	CBT	86	0.46	0.16	0.14	0.78	0.46
4	PBT	34	0.43	0.14	0.13	0.72	0.41
5	CBT	85	0.42	0.15	0.09	0.80	0.38
5	PBT	34	0.39	0.12	0.17	0.78	0.37
6	CBT	106	0.43	0.13	0.15	0.71	0.42
6	PBT	40	0.44	0.12	0.22	0.69	0.41
7	CBT	98	0.44	0.14	0.17	0.79	0.42
7	PBT	40	0.44	0.13	0.21	0.71	0.40
8	CBT	104	0.46	0.14	0.20	0.78	0.44
8	PBT	40	0.48	0.14	0.31	0.84	0.46
9	CBT	96	0.43	0.12	0.18	0.74	0.42
9	PBT	40	0.43	0.14	0.19	0.76	0.43
10	CBT	104	0.40	0.12	0.13	0.71	0.39
10	PBT	40	0.43	0.13	0.21	0.70	0.42
11	CBT	106	0.35	0.11	0.12	0.61	0.34
11	PBT	40	0.35	0.10	0.19	0.62	0.32

Note: CBT = computer-based testing (online); PBT = paper-based testing (paper).

Table 6.2 Summary of *p* Values for Mathematics Operational Items by Grade and Mode

Grade	Mode	N of Unique Items	Mean p Value	SD p Value	Min p Value	Max p Value	Median p Value
3	CBT	113	0.50	0.22	0.06	0.94	0.49
3	PBT	43	0.54	0.20	0.14	0.89	0.52
4	CBT	99	0.46	0.19	0.07	0.89	0.47
4	PBT	40	0.48	0.22	0.11	0.86	0.51
5	CBT	103	0.44	0.20	0.08	0.88	0.44
5	PBT	40	0.50	0.23	0.08	0.88	0.54
6	CBT	95	0.42	0.22	0.09	0.95	0.38
6	PBT	38	0.44	0.21	0.13	0.93	0.43
7	CBT	97	0.30	0.18	0.05	0.75	0.26
7	PBT	38	0.34	0.21	0.08	0.83	0.30
8	CBT	91	0.30	0.20	0.06	0.86	0.28
8	PBT	36	0.36	0.21	0.04	0.74	0.34
A1	CBT	104	0.22	0.13	0.02	0.64	0.18
A1	PBT	42	0.34	0.19	0.01	0.71	0.34
GO	CBT	102	0.23	0.13	0.04	0.57	0.21
GO	PBT	41	0.27	0.18	0.05	0.73	0.22
A2	CBT	110	0.28	0.17	0.03	0.79	0.25
A2	PBT	43	0.32	0.19	0.04	0.74	0.30
M1	CBT	42	0.31	0.18	0.03	0.74	0.27
M1	PBT	42	0.33	0.21	0.01	0.84	0.37
M2	CBT	41	0.25	0.17	0.01	0.62	0.22
M2	PBT	42	0.29	0.17	0.01	0.72	0.28
M3	CBT	40	0.28	0.17	0.04	0.82	0.26
М3	PBT	39	0.31	0.19	0.03	0.83	0.29

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III. CBT = computer-based testing (online); PBT = paper-based testing (paper).

Table 6.3 Summary of Item-Total Polyserial Correlations for ELA/L Operational Items by Grade and Mode

Grade	Mode	N of Unique Items	Mean <i>Polyserial</i>	SD Polyserial	Min Polyserial	Max Polyserial	Median Polyserial
3	CBT	82	0.53	0.12	0.18	0.75	0.54
3	PBT	32	0.53	0.13	0.25	0.73	0.54
4	CBT	86	0.50	0.15	0.19	0.81	0.48
4	PBT	34	0.50	0.15	0.19	0.79	0.47
5	CBT	85	0.49	0.16	0.19	0.79	0.48
5	PBT	34	0.47	0.17	0.20	0.77	0.44
6	CBT	106	0.49	0.14	0.20	0.81	0.47
6	PBT	40	0.50	0.15	0.21	0.80	0.51
7	CBT	98	0.48	0.16	0.22	0.84	0.45
7	PBT	40	0.47	0.13	0.28	0.77	0.43
8	CBT	104	0.48	0.17	0.13	0.85	0.46
8	PBT	40	0.47	0.16	0.17	0.81	0.47
9	CBT	96	0.48	0.16	0.19	0.85	0.47
9	PBT	40	0.49	0.14	0.27	0.79	0.48
10	CBT	104	0.48	0.17	0.21	0.86	0.44
10	PBT	40	0.53	0.14	0.28	0.83	0.53
11	CBT	106	0.49	0.16	0.21	0.83	0.47
11	PBT	40	0.45	0.18	0.21	0.82	0.41

Note: CBT = computer-based testing (online); PBT = paper-based testing (paper).

Table 6.4 Summary of Item-Total Correlations for Mathematics Operational Items by Grade and Mode

Grade	Mode	N of Unique Items	Mean <i>Polyserial</i>	SD Polyserial	Min Polyserial	Max Polyserial	Median Polyserial
3	CBT	113	0.54	0.14	0.18	0.80	0.55
3	PBT	43	0.53	0.13	0.24	0.80	0.54
4	CBT	99	0.57	0.11	0.29	0.79	0.58
4	PBT	40	0.55	0.12	0.30	0.79	0.57
5	CBT	103	0.52	0.13	0.22	0.81	0.53
5	PBT	40	0.53	0.12	0.34	0.81	0.53
6	CBT	95	0.54	0.16	0.20	0.88	0.57
6	PBT	38	0.53	0.16	0.17	0.80	0.53
7	CBT	97	0.53	0.16	0.20	0.91	0.55
7	PBT	38	0.50	0.15	0.25	0.96	0.47
8	CBT	91	0.49	0.13	0.22	0.89	0.50
8	PBT	36	0.49	0.14	0.22	0.84	0.50
A1	CBT	104	0.51	0.17	0.21	0.90	0.51
A1	PBT	42	0.46	0.14	0.16	0.72	0.46
GO	CBT	110	0.53	0.16	0.18	0.98	0.53
GO	PBT	43	0.51	0.15	0.23	0.78	0.53
A2	CBT	102	0.47	0.13	0.16	0.83	0.46
A2	PBT	41	0.45	0.16	0.10	0.75	0.47
M1	CBT	42	0.53	0.16	0.19	0.83	0.53
M1	PBT	42	0.47	0.16	0.15	0.8	0.46
M2	CBT	41	0.4	0.13	0.16	0.67	0.38
M2	PBT	42	0.43	0.17	0.16	0.76	0.38
M3	CBT	40	0.46	0.16	0.20	0.75	0.47
M3	PBT	39	0.44	0.16	0.12	0.74	0.44

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III, M3 = Integrated Mathematics III. CBT = computer-based testing (online); PBT = paper-based testing (paper)

Section 7: Differential Item Functioning

7.1 Overview

Differential item functioning (DIF) analyses were conducted using the data obtained from the operational items. If an item performs differentially across identifiable subgroups (e.g., gender or ethnicity) when students are matched on ability, the item may be measuring something other than the intended construct (i.e., possible evidence of DIF). It is important, however, to recognize that item performance differences flagged for DIF might be related to actual differences in relevant knowledge or skills (item impact) or statistical Type I error. As a result, DIF statistics are used to identify *potential* item bias. Subsequent reviews by content experts and bias/sensitivity committees are required to determine the source and meaning of performance differences.

In this section, DIF statistics are presented for the spring 2017 ELA/L online post-equated tests. In addition, the DIF statistics used at test construction to make decisions about items are provided for preequated grades/subjects: mathematics online and paper and ELA/L paper.

7.2 DIF Procedures

Dichotomous Items

The Mantel-Haenszel (MH) DIF statistic was calculated for selected-response items and for dichotomously scored constructed-response items. In this method, test takers are classified to relevant subgroups of interest (e.g., gender or ethnicity). Using the PARCC raw score total as the criteria, test takers in a certain total score category in the focal group (e.g., females) are compared with examinees in the same total score category in the reference group (e.g., males). For each item, test takers in the focal group are also compared to test takers in the reference group who performed equally well on the test as a whole. The common odds ratio is estimated across all categories of matched test taker ability using the following formula (Dorans & Holland, 1993), and the resulting estimate is interpreted as the relative likelihood of success on a particular item for members of two groups when matched on ability.

$$\hat{\alpha}_{MH} = \frac{\sum_{s=1}^{S} R_{rs} W_{fs} / N_{ts}}{\sum_{s=1}^{S} R_{fs} W_{rs} / N_{ts}},$$
(7-1)

in which:

S = the number of score categories,

 R_{rs} = the number of test takers in the reference group who answer the item correctly,

 W_{fs} = the number of test takers in the focal group who answer the item incorrectly,

 R_{fs} = the number of test takers in the focal group who answer the item correctly,

 W_{rs} = the number of test takers in the reference group who answer the item incorrectly, and

 N_{ts} = the total number of test takers.

To facilitate the interpretation of MH results, the common odds ratio is frequently transformed to the delta scale using the following formula (Holland & Thayer, 1988):

$$MH D-DIF = -2.35 \ln (\hat{\alpha}_{MH})$$
 (7-2)

Positive values indicate DIF in favor of the focal group (i.e., positive DIF items are differentially easier for the focal group), whereas negative values indicate DIF in favor of the reference group (i.e., negative DIF items are differentially easier for the reference group).

Polytomous Items

For polytomously scored constructed-response items, the MH D-DIF statistic is not calculated; instead the standardization DIF (Dorans & Schmitt, 1991; Zwick, Thayer & Mazzeo, 1997; Dorans, 2013), in conjunction with the Mantel chi-square statistic (Mantel, 1963; Mantel & Haenszel, 1959), is used to identify items with DIF.

The standardization DIF compares the item means of the two groups after adjusting for differences in the distribution of test takers across the values of the matching variable (i.e., total test score) and is calculated using the following formula:

$$STD - EISDIF = \frac{\sum_{s=1}^{S} N_{fs} * E_f(Y|X=s)}{\sum_{s=1}^{S} N_{fs}} - \frac{\sum_{s=1}^{S} N_{fs} * E_r(Y|X=s)}{\sum_{s=1}^{S} N_{fs}} = \frac{\sum_{s=1}^{S} D_s}{\sum_{s=1}^{S} N_{fs}},$$
 (7-3)

in which:

X= the total score

Y= the item score

S = the number of score categories on X,

 N_{rs} = the number of test takers in the reference group in score category s,

 N_{fs} = the number of test takers in the focal group in score category s,

 E_r = the expected item score for reference group, and

 E_f = the expected item score for focal group.

A positive *STD-EISDIF* value means that, conditional on the total test score, the focal group has a higher mean item score than the reference group. In contrast, a negative STD-EISDIF value means that, conditional on the total test score, the focal group has a lower mean item score than the reference group.

Classification

Based on the DIF statistics and significance tests, items are classified into three categories and assigned values of A, B, or C (Zieky, 1993). Category A items contain negligible DIF, Category B items exhibit slight to moderate DIF, and Category C items possess moderate to large DIF values. Positive values indicate that, conditional on the total score, the focal group has a higher mean item score than the reference group. In contrast, negative DIF values indicate that, conditional on the total test score, the focal group has a lower mean item score than the reference group. The flagging criteria for dichotomously scored

items are presented in Table 7.1; the flagging criteria for polytomously scored constructed-response items are provided in Table 7.2.

Table 7.1 DIF Categories for Dichotomous Selected-Response and Constructed-Response Items

DIF Category	Criteria
A (negligible)	Absolute value of the MH D-DIF is not significantly different from zero, or is
-	less than one. 1. Absolute value of the MH D-DIF is significantly different from zero but not
	from one, and is at least one; or
B (slight to moderate)	2. Absolute value of the MH D-DIF is significantly different from one, but is less than 1.5.
	Positive values are classified as "B+" and negative values as "B-".
C (moderate to large)	Absolute value of the MH D-DIF is significantly different from one, and is at
c (moderate to large)	least 1.5. Positive values are classified as "C+" and negative values as "C-".

Table 7.2 DIF Categories for Polytomous Constructed-Response Items

DIF Category	Criteria
A (negligible)	Mantel Chi-square <i>p value</i> > 0.05 or $ STD-EISDIF/SD \le 0.17$
B (slight to moderate)	Mantel Chi-square p value < 0.05 and STD-EISDIF/SD > 0.17
C (moderate to large)	Mantel Chi-square p value < 0.05 and STD-EISDIF/SD > 0.25

Note: *STD-EISDIF* = standardized DIF; SD = total group standard deviation of item score.

7.3 Operational Analysis DIF Comparison Groups

Traditional Comparisons

DIF analyses were conducted on each test form for designated comparison groups defined on the basis of demographic variables including: gender, race/ethnicity, economic disadvantage, and special instructional needs such as students with disabilities (SWD) or English learners (EL). Student demographic information was provided by the states and district and captured in PearsonAccess by means of a student data upload. The demographic data was verified by the states and district prior to score reporting. These comparison groups are specified in Table 7.3.

Table 7.3 Traditional DIF Comparison Groups

Grouping Variable	Focal Group	Reference Group
Gender	Female	Male
Ethnicity	American Indian/Alaska Native	White
Ethilicity	(AmerIndian)	winte
	Asian	White
	Black or African American	White
	Hispanic/Latino	White
	Native Hawaiian or Pacific Islander	White
	Multiple Race Selected	White
Economic Status*	Economically Disadvantaged (EcnDis)	Not Economically Disadvantaged (NoEcnDis)
Special Instructional Needs	English Learner (ELY)	Non English Learner (ELN)
	Students with Disabilities (SWDY)	Students without Disabilities (SWDN)

Note: * Economic status was based on participation in National School Lunch Program (receipt of free or reduced-price lunch).

Comparison across Languages

DIF analyses were also conducted for Spanish-language items vs. English-language items in mathematics for items that previously were not evaluated for Spanish-language DIF. The purpose of the Spanish vs. English DIF analysis was to evaluate how similarly the items functioned between the two languages because the data from the Spanish-language forms were not separately calibrated using IRT. The item parameter estimates based on the English-speaking test takers were used to generate conversion tables for the Spanish-language forms. Spanish-language mathematics items flagged for C-DIF were reviewed by content specialists and the PARCC Priority Alert Task Force to decide if the items were problematic and should be excluded from scoring. An item could be dropped from a Spanish-language form but remain in the English-language form if no other issues were detected; in those cases, separate conversion tables were generated for the two versions of the form that had different numbers of items.

The Spanish-language forms did not have a non-accommodated English-language form counterpart with the same set of items (refer to Section 2 for more information on the development of Spanish-language forms). Most of the Spanish-language items were previously evaluated for Spanish-language DIF. For items that had not been evaluated for Spanish-language DIF, the analyses were conducted for items that had an English-language item on a non-accommodated test form.

Sample Size Requirement

DIF analyses were conducted when the following sample size requirements were met:

- the smaller group, reference or focal, had at least 100 students, and
- the combined group, reference and focal, had at least 400 students.

Spanish-language vs. English-language DIF analyses were not conducted for Integrated Mathematics I, II, and III because of insufficient sample sizes.

7.4 Operational Differential Item Functioning Results

Appendix 7 presents tables summarizing the DIF results for the spring 2017 ELA/L post-equated online operational items as well as the pre-equated item DIF results that were used to inform decisions at test construction. There is one table prepared for each content and grade level (e.g., ELA/L Grade 3). The fall 2016 forms were based on spring 2016 operational forms. The DIF analyses for these forms are reported in the 2015–2016 Technical Report.

Spoiled or "do not score" items were excluded from the total test score for each form in DIF analysis. These items were removed from scoring because of item performance, technical scoring issues, content concerns, multiple correct answers, or no correct answers. However, the tables in this section may include items for certain grade levels that were excluded from scoring based on later analyses (refer to Section 10.5 Items Excluded from Score Reporting for more information).

In the DIF results tables, the column "DIF Comparisons" identifies the focal and reference groups for the analysis performed; the column "Mode" identifies the test delivery mode. "Total N of Unique Items" reports the number of unique items included in the analysis, whereas "Total N of Item Occurrences" reports the number of times items were used on test forms. An item could be used in multiple test forms; therefore, items were counted according to the occurrences. For example, if the same item appeared in five test forms, it was counted as five occurrences; if this item was classified as B+ on one form and C+ on another form, both occurrences were reported in the corresponding columns. For the Spanish-language DIF, "Total N of Item Occurrences" reports the number of items previously not analyzed for Spanish-language DIF and a non-accommodated English-language item was available in spring 2017. "Total N of Item Occurrences Included in DIF Analysis" reports the number of occurrences with sufficient sample sizes to be included in DIF analyses. In addition, "0" indicates that the DIF analysis did not classify any items in the particular DIF category, while "n/a" indicates that the DIF analysis was not performed due to insufficient sample sizes.

Table 7.4 Differential Item Functioning for ELA/L Grade 3

		Total N		Total N of	C-	DIF	B-	DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of	Item Occurrences Included in O	N of Occurrences	% of Total Occurrences in DIF								
Male vs Female	СВТ	90	105	105			1	1	102	97	2	2		
·	PBT	29	35	35					35	100				
White vs AmerIndian	СВТ	90	105	105			1	1	104	99				
	PBT	29	35	35		•	2	6	33	94	•	•		•
White vs Asian	СВТ	90	105	105					104	99	1	1		
	РВТ	29	35	35					34	97	1	3		
White vs Black	СВТ	90	105	105			1	1	104	99		,		•
	PBT	29	35	35			1	3	34	97		,		•
White vs Hispanic	СВТ	90	105	105					105	100				
	PBT	29	35	35			3	9	32	91				
White vs Pacific Islander	СВТ	90	105	105		,	2	2	103	98		,		•
	PBT	29	35	35					33	94				
White vs Multiracial	СВТ	90	105	105			"		105	100				
·	PBT	29	35	35			"		35	100				
NoEcnDis vs EcnDis	СВТ	90	105	105			"		105	100				
	PBT	29	35	35					35	100				
ELN vs ELY	СВТ	90	105	105			2	2	103	98				
	PBT	29	35	35					35	100				
SWDN vs SWDY	СВТ	90	105	105					105	100				
	PBT	29	35	35		•	1	3	34	97	•			•

Note: Amerindian = American Indian/Alaska Native, Black = Black/African American, Hispanic = Hispanic/Latino, Pacific Islander = Native Hawaiian or Pacific Islander, Multiracial = Multiple Race Selected, NoEcnDis = not economically disadvantaged, EcnDis = economically disadvantaged, ELN = not an English learner, ELY = English learner, SWDN = not student with disability, SWDY = student with disability.

Table 7.5 Differential Item Functioning for Mathematics Grade 3

DIF Comparisons		Total N	Total N of	Total N of Item	C-	DIF	В-	DIF	А	DIF	B+	- DIF	C+	DIF
DIF Comparisons	Mode		Item Occurrences	Occurrences Included in DIF Analysis	N of ccurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	113	124	124		,	3	2	120	97	1	1		
	PBT	43	63	63			1	2	62	98				
White vs AmerIndian	СВТ	113	124	124	3	2	1	1	118	95	2	2		
	PBT	43	63	63	1	2	3	5	57	90	2	3		
White vs Asian	СВТ	113	124	124	1	1			107	86	13	10	3	2
	РВТ	43	63	63					60	95	2	3	1	2
White vs Black	СВТ	113	124	124	5	4	5	4	105	85	9	7		
	PBT	43	63	63		<u>, </u>	3	5	58	92	2	3		
White vs Hispanic	СВТ	113	124	124			4	3	119	96	1	1		
	PBT	43	63	63			3	5	58	92	2	3		
White vs Pacific Islander	СВТ	113	124	124					123	99	1	1		
	PBT	43	63	63					59	94	4	6		
White vs Multiracial	СВТ	113	124	124		•	1	1	121	98	2	2	•	
	PBT	43	63	63					62	98	1	2		
NoEcnDis vs EcnDis	СВТ	113	124	124					123	99		-	1	1
	PBT	43	63	63					61	97	1	2	1	2
ELN vs ELY	СВТ	113	124	124			2	2	122	98				
	PBT	43	63	63			1	2	62	98				
SWDN vs SWDY	СВТ	113	124	124	2	2	3	2	117	94	2	2		
	РВТ	43	63	63			1	2	61	97	1	2		

Note: Amerindian = American Indian/Alaska Native, Black = Black/African American, Hispanic = Hispanic/Latino, Pacific Islander = Native Hawaiian or Pacific Islander, Multiracial = Multiple Race Selected, NoEcnDis = not economically disadvantaged, EcnDis = economically disadvantaged, ELN = not an English learner, ELY = English learner, SWDN = not student with disability, SWDY = student with disability. Small sample sizes may result in fewer items in the column "Total N of Item Occurrences Included in DIF Analysis.

Section 8: Reliability

8.1 Overview

Reliability focuses on the extent to which differences in test scores reflect true differences in the knowledge, ability, or skill being tested rather than fluctuations due to chance. Thus, reliability measures the consistency of the scores across conditions that can be assumed to differ at random, especially which form of the test taker is administered and which persons are assigned to score responses to constructed-response questions. In statistical terms, the variance in the distributions of test scores, essentially the differences among individuals, is partly due to real differences in the knowledge, skill, or ability being tested (true variance) and partly due to random errors in the measurement process (error variance). Reliability is an estimate of the proportion of the total variance that is true variance.

There are several different ways of estimating reliability. The type of reliability estimate reported here is an internal-consistency measure, which is derived from analysis of the consistency of the performance of individuals across items within a test. It is used because it serves as a good estimate of alternate forms reliability, but it does not take into account form-to-form variation due to lack of test form parallelism, nor is it responsive to day-to-day variation due to, for example, the examinee's state of health or the testing environment.

Reliability coefficients range from 0 to 1. The higher the reliability coefficient for a set of scores, the more likely individuals would be to obtain very similar scores upon repeated testing occasions, if the students do not change in their level of the knowledge or skills measured by the test. The reliability estimates in the tables to follow attempt to answer the question, "How consistent would the scores of these test takers be over replications of the entire testing process?"

Reliability of classification estimates the proportion of students who are accurately classified into proficiency levels. There are two kinds of classification reliability statistics: decision accuracy and decision consistency. Decision accuracy is the agreement between the classifications actually made and the classifications that would be made if the test scores were perfectly reliable. Decision consistency is the agreement between the classifications that would be made on two independent different forms of the test.

Another index is inter-rater reliability for the human-scored constructed-response items, which measures the agreement between individual raters (scorers). The inter-rater reliability coefficient answers the question, "How consistent would the scores of these test takers be over replication of scoring of the same responses by different scorers?"

Standard error of measurement (SEM) quantifies the amount of error in the test scores. SEM is the extent by which test takers' scores tend to differ from the scores they would receive if the test were perfectly reliable. As the SEM increases, the variability of students' observed scores is likely to increase across repeated testing. Observed scores with large SEMs pose a challenge to the valid interpretation of a single test score.

Reliability and SEM estimates were calculated at the full assessment level—both paper-based tests (PBTs) and computer-based tests (CBTs)—and at the claim and subclaim levels. In addition, conditional SEMs were calculated and reported in Section 12 and Appendix 12.4.

8.2 Reliability and SEM Estimation

8.2.1 Raw Score Reliability Estimation

Coefficient alpha (Cronbach, 1951), which measures internal consistency reliability, is the most commonly used measure of reliability. Coefficient alpha is estimated by substituting sample estimates for the parameters in the formula below:

$$\alpha = \frac{n}{n-1} \left[1 - \frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sigma_{x}^{2}} \right], \tag{8-1}$$

where n is the number of items, σ_i^2 is the variance of scores on the i-th item, and σ_x^2 is the variance of the total score (sum of scores on the individual items). Other things being equal, the more items a test includes, the higher the internal consistency reliability.

Since PARCC test forms have mixed item types (dichotomous and polytomous items), it is more appropriate to report stratified alpha (Feldt & Brennan, 1989). Stratified alpha is a weighted average of coefficient alphas for item sets with different maximum score points or "strata." Stratified alpha is a reliability estimate computed by dividing the test into parts (strata), computing alpha separately for each part, and using the results to estimate a reliability coefficient for the total score. Stratified alpha is used here because different parts of the test consist of different item types and may measure different skills. The formula for the stratified alpha is:

$$\rho_{strata} = 1 - \frac{\sum_{j=1}^{J} \sigma_{x_j}^2 (1 - \alpha_j)}{\sigma_X^2}$$
(8-2)

where $\sigma_{x_j}^2$ is the variance for part j of the test, σ_x^2 is the variance of the total scores, and α_j is coefficient alpha for part j of the test. Estimates of stratified alpha are computed by substituting sample estimates for the parameters in the formula. The average stratified alpha is a weighted average of the stratified alphas across the test forms.

The formula for the standard error of measurement is:

$$\sigma_E = \sigma_X \sqrt{1 - \rho_{XX'}} \tag{8-3}$$

where σ_X is the standard deviation of the test raw score and ρ_{XX} , is the reliability estimated by substitution of appropriate statistics for the parameters in equation 8-1 or 8-2.

8.2.2 Scale Score Reliability Estimation

Like the stratified alpha coefficients given in section 8, scale score reliability coefficients range from 0 to 1. The higher the reliability coefficient for a set of scores, the more likely individuals would be to obtain similar scores upon repeated testing occasions, if the students do not change in their level of the knowledge or skills measured by the test. Because PARCC scale scores are computed from a total score and do not have an item-level component, a stratified alpha coefficient cannot be computed for scale scores. Instead, Kolen, Zeng, and Hanson's (1996) method for scale score reliability was used.

The general formula for a reliability coefficient,

$$\rho = 1 - \frac{\sigma^2(E)}{\sigma^2(X)},\tag{8-1}$$

involves the error variance, $\sigma^2(E)$, and the total score variance, $\sigma^2(X)$. Using Kolen et al.'s (1996) method, conditional raw score distributions are estimated using Lord and Wingersky's (1984) recursion formula. The conditional raw score distributions are transformed into conditional scale score distributions. Denote x as the raw sum score ranging from 0 to X, and s as a resulting scale score after transformation. The conditional distribution of scale scores is written as $P(X = x | \theta)$. The mean and variance, $\sigma^2[s(X)]$, of this distribution can be computed using these scores and their associated probabilities.

The average error variance of the scale scores is computed as

$$\sigma^{2}(Error_{scale}) = \int_{\theta} \sigma^{2}(s(X)|\theta) g(\theta) d\theta, \tag{8-2}$$

where $g(\theta)$ is the ability distribution. The square root of the error variance is the conditional standard error of measurement of the scale scores.

Just as the reliability of raw scores is one minus the ratio of error variance to total variance, the reliability of scale scores is one minus the ratio of the average variance of measurement error for scale scores to the total variance of scale scores,

$$\rho_{scale} = 1 - \frac{\sigma^{2}(Error_{scale})}{\sigma^{2}[s(X)]}.$$
(8-3)

The Windows program POLYCSEM (Kolen, 2004) was used to estimate scale score error variance and reliability.

8.3 Reliability Results for Total Group

8.3.1 Raw Score Reliability Results

Tables 8.1 and Table 8.2 summarize test reliability estimates for the total testing group for English language arts/literacy (ELA/L) and mathematics, respectively. The section includes only spring 2017 results. The fall 2016 results are located in the Addendum.⁶ The tables provide the average reliability, which is estimated by averaging the internal consistency estimates computed for all the individual forms of the test and the raw score SEMs, separately for the CBTs and PBTs within each grade level. In addition, the number of forms, the total sample size across all forms, and the average maximum possible score for each set of tests are provided. Estimates were calculated only for groups of 100 or more students administered a specific test form.

English Language Arts/Literacy

The average reliability estimates for the CBT tests for grades 3 through 11 ELA/L range from a low of .91 to a high of .94. The average reliability estimates for the PBT tests for ELA/L grades 3 through 11 range from a low of .86 to a high of .94. The tests for grades 3 through 5 have fewer maximum possible points than for the grades 6 through 11 tests. The average reliability estimates are at least .90 except for grades 4 and 5 PBT tests, which are .88, and grade 11 PBT, which is .86. The average raw score SEM is consistently between 5 percent to 6 percent of the maximum possible score.

⁶ Addendum 8 provides a summary of reliability information for the fall 2016 administration.

Table 8.1 Summary of ELA/L Test Reliability Estimates for Total Group

Grade Level	Testing Mode	Number of Forms	Avg. Max. Possible Score	Avg. Raw Score SEM	Avg. Reliability	Min. Sample Size	Min. Reliability	Max. Sample Size	Max. Reliability
	CBT	4	94	4.93	0.92	8,088	0.86	114,767	0.92
3	PBT	2	94	5.39	0.90	2,199	0.85	53,719	0.91
	СВТ	5	106	5.65	0.91	9,281	0.88	159	0.92
4	PBT	2	106	6.02	0.88	2,333	0.84	45,527	0.89
5	CBT	5	105	5.47	0.91	9,562	0.84	128,027	0.92
5	PBT	2	106	5.97	0.88	1,068	0.86	13,636	0.88
6	CBT	5	121	6.08	0.93	9,161	0.87	124,574	0.94
O	PBT	2	121	6.65	0.92	895	0.90	161,54	0.92
7	CBT	5	121	6.23	0.93	157	0.90	125,944	0.94
	PBT	2	121	6.85	0.91	695	0.88	14,688	0.91
8	CBT	5	121	6.19	0.93	7,591	0.89	125,202	0.94
	PBT	2	121	6.85	0.91	660	0.90	13,287	0.92
9	CBT	4	121	6.03	0.94	3,044	0.88	60,189	0.94
9	PBT	2	121	6.35	0.93	2,791	0.93	106	0.93
10	CBT	5	121	6.24	0.93	2,414	0.88	54,430	0.94
10	PBT	1	121	6.45	0.94	1,740	0.94	1,740	0.94
11	CBT	4	121	6.08	0.93	1,604	0.88	34,137	0.93
	PBT	1	121	6.65	0.86	1,069	0.86	1,069	0.86

Mathematics

The average reliability estimates for the grades 3 through 8 mathematics assessments range from .90 to .94 for the CBT tests and from .86 to .93 for the PBT tests. Most of the average reliability estimates are above .90 except for two PBT and one CBT. The raw score SEM consistently ranges from 4 percent to 6 percent of the maximum score.

Table 8.2 Summary of Mathematics T	est Reliability Estimates for Total Group
------------------------------------	---

Grade	Testing	Number	Avg. Max. Possible	Avg. Raw	Avg.	Min. Sample	Min.	Max. Sample	Max.
Level	Mode	of Forms	Score 66	Score SEM 3.53	Reliability 0.94	Size 2,007	Reliability 0.92	Size 34,750	Reliability 0.94
3	CBT	6				•		•	
	PBT	2	66	3.75	0.93	5,670	0.90	50,959	0.93
4	CBT	6	66	3.49	0.94	1,966	0.92	102,282	0.94
	PBT	2	66	3.43	0.93	5,065	0.88	42,538	0.93
5	CBT	6	66	3.48	0.93	1,784	0.89	46,338	0.93
	PBT	2	66	3.41	0.92	2,176	0.87	13,450	0.92
c	CBT	7	66	3.44	0.94	107	0.84	108,745	0.94
6	PBT	2	66	3.60	0.92	1,603	0.84	15,276	0.93
	CBT	8	66	3.43	0.92	108	0.70	32,369	0.93
7	PBT	2	66	3.41	0.89	1,253	0.79	12,199	0.90
	CBT	6	66	3.26	0.91	884	0.90	83,333	0.92
8	PBT	2	66	3.51	0.89	1,173	0.75	11,058	0.90
A 1	CBT	6	81	3.61	0.94	488	0.85	67,566	0.94
A1	PBT	2	81	3.73	0.92	406	0.86	5,623	0.92
	CBT	6	80	3.48	0.94	204	0.86	35,202	0.95
GO	PBT	1	81	3.6	0.93	1,306	0.93	1,306	0.93
4.2	CBT	5	81	3.51	0.93	4,818	0.92	35,156	0.93
A2	PBT	1	81	4.01	0.93	2,051	0.93	2,051	0.93
M1	CBT	2	81	3.53	0.92	425	0.71	9,376	0.93
IVII	PBT								
	CBT	1	80	3.73	0.90	1,914	0.90	1,914	0.90
M2	PBT	1	80	3.21	0.86	182	0.86	182	0.86
	CBT	1	81	3.89	0.93	477	0.93	477	0.93
M3	PBT								

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics II, M3 = Integrated Mathematics III.

8.3.2 Scale Score Reliability Results

Tables 8.3 and Table 8.4 summarize scale score reliability estimates for the total testing group for English language arts/literacy (ELA/L) and mathematics, respectively, for spring 2017. The tables provide average reliabilities by grade level and mode, which are estimated by averaging the reliability estimates computed for all forms of the test within mode and grade level. In addition, the number of forms, the total sample size across all forms, and the average maximum possible score for each set of tests are provided. Since estimates of scale score reliability are sample independent, all of the form-level results are included.

English Language Arts/Literacy

The average reliability estimates for CBTs for grades 3-11 English language arts/literacy (ELA/L) range from .902 to .932. The average reliability estimates for the PBTs for ELA/L grades 3-11 range from .899 to .936. The average reliability estimates are at least .899. The average scale score SEM is consistently between 8.472 to 11.583 for CBTs and between 8.628 and 11.967 for PBTs.

Mathematics

The average scale score reliability estimates for the grades 3-8 mathematics assessments range from .875 to .928 for the CBTs and from .856 to .929 for the PBTs. For the high school assessments, these quantities range from .839 to .892 and from .848 and .898 for CBTs and PBTs, respectively. For grades 3-8, the scale score SEM consistently ranges from 8.449 to 12.436 for CBTs and from 8.391 to 13.462 for PBTs. For high school tests, the scale score SEM ranges from 9.278 to 13.818 for CBTs and from 8.952 to 14.027 for PBTs.

Table 8.3 Summary of ELA/L Test Scale Score Reliability Estimates for Total Group

	Testing	Number of	Avg. Scale	Avg. Scale	Min. Scale	Max. Scale
Grade Level	Mode	Forms	Score SEM	Score	Score	Score
				Reliability	Reliability	Reliability
3	CBT	5	11.583	0.909	0.902	0.921
	PBT	2	11.967	0.904	0.904	0.904
4	CBT	5	9.838	0.913	0.904	0.923
	PBT	2	9.829	0.913	0.912	0.914
5	CBT	6	9.881	0.902	0.892	0.915
	PBT	2	9.745	0.904	0.894	0.915
6	CBT	6	8.472	0.921	0.914	0.925
	PBT	2	8.628	0.918	0.917	0.919
7	CBT	6	9.798	0.924	0.916	0.932
	PBT	2	10.412	0.915	0.913	0.918
8	CBT	6	9.636	0.927	0.921	0.932
	PBT	2	10.118	0.920	0.918	0.923
9	CBT	5	9.710	0.927	0.917	0.934
	PBT	2	10.169	0.920	0.919	0.921
10	СВТ	5	11.408	0.932	0.929	0.938
	PBT	2	11.061	0.936	0.935	0.938
11	CBT	5	10.869	0.913	0.903	0.919
	PBT	2	11.766	0.899	0.895	0.904

Table 8.4 Summary of Mathematics Test Scale Score Reliability Estimates for Total Group

Grade Level	Testing Mode	Number of Forms	Avg. Scale Score SEM	Avg. Scale Score Reliability	Min. Scale Score Reliability	Max. Scale Score Reliability
3	CBT	7	9.066	0.928	0.922	0.932
	PBT	2	9.287	0.925	0.924	0.926
4	CBT	7	8.449	0.928	0.923	0.931
	PBT	2	8.391	0.929	0.929	0.930
5	CBT	7	8.667	0.921	0.916	0.926
	PBT	2	8.547	0.922	0.922	0.923
6	CBT	7	8.702	0.916	0.910	0.922
	PBT	2	8.739	0.915	0.915	0.915
7	CBT	7	9.006	0.892	0.880	0.898
	PBT	2	9.337	0.885	0.882	0.887
8	CBT	6	12.436	0.875	0.855	0.882
_	PBT	2	13.462	0.856	0.847	0.865
A1	CBT	6	11.795	0.882	0.875	0.887
	PBT	2	11.301	0.888	0.888	0.888
G1	CBT	7	9.278	0.892	0.877	0.901
	PBT	2	8.952	0.898	0.895	0.900
A2	СВТ	7	13.117	0.887	0.881	0.893
	PBT	2	13.137	0.886	0.885	0.888
M1	СВТ	5	11.820	0.881	0.861	0.906
	PBT	2	11.938	0.879	0.879	0.880
M2	СВТ	3	12.857	0.839	0.830	0.846
	PBT	2	12.476	0.848	0.846	0.850
M3	CBT	3	13.818	0.875	0.865	0.881
	PBT	2	14.027	0.872	0.865	0.878

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics II, M3 = Integrated Mathematics III.

8.4 Reliability Results for Subgroups of Interest

When the sample size was sufficiently large, raw score reliability and SEM were estimated for the groups identified for DIF analysis. Estimates were calculated only for groups of 100 or more students administered a specific test form.

Tables 8.5 through 8.13 summarize test reliability for groups of interest for ELA/L grades 3 through 11, and Tables 8.14 through 8.25 summarize test reliability for groups of interest for mathematics grades/subjects. Note that reliability estimates are dependent on score variance, and subgroups with smaller variance are likely to have lower reliability estimates than the total group.

Gender

English Language Arts/Literacy

The average reliability estimates and the average SEMs for males and females are similar to the corresponding values for the total group. For most tests, the reliabilities between males and females are equal; for three tests, the reliability for males was .01 higher than for females. The SEMs for females are all higher than for males.

Mathematics

As with the ELA/L test components, the average reliability estimates and SEMs for males and females reflect the corresponding reliabilities for the total group. Typically, the reliabilities are a little higher for males than for females. The SEMs are generally very similar for females and males.

Ethnicity

English Language Arts/Literacy

The majority of the reliabilities for the ethnicity groups are .01 to .02 lower than for the total group. There is not a consistent difference among the test reliabilities for white, African American, Asian/Pacific Islander, Hispanic, and multiple-ethnicity students, with the majority of the reliabilities between .89 and .94. However, the majority of the reliabilities for American Indian/Alaskan native students range from .88 to .92. In general, the SEMs are similar to the total group SEMs. For most grade levels, the SEMs are highest for Asian/Pacific Islander students.

Mathematics

As with the ELA/L reliabilities, the reliabilities for ethnicity groups are marginally lower than for the total group of students. The average SEMs reflect the total group SEMs. While there is variation across tests, the average reliabilities are generally highest for Asian/Pacific Islander students. The American Indian/Alaskan native and the African American groups have the lowest reliabilities.

Special Education Needs

English Language Arts/Literacy

The reliabilities for five groups of students (economically disadvantaged, not economically disadvantaged, non-English learner, students with disabilities, and students without disabilities) are generally .01 to .02 less than those for the total group of students. The majority of the reliabilities range from .88 to .93. The average reliabilities for English learner students are lower, ranging from .84 to .88. The SEMs are generally similar to the total group SEMs.

Mathematics

The average reliabilities for the larger student groups (not economically disadvantaged, non-English learner, and students without disabilities) are quite similar to the total group of students. For economically disadvantaged, English learner, and students with disabilities, the average reliabilities are lower than those for the total group. In general, the SEMs are similar to the total group SEMs.

Students Taking Accommodated Forms

English Language Arts/Literacy

Two of the four accommodation form types had sufficient sample sizes to allow for estimation of reliability and SEM except grades 10 and 11, which had three and one of the four forms that had a sufficient sample, respectively. In the lower grades, the ASL and screen reader groups did not have at least 100 students take any specific form. Within grades, the reliabilities of the closed caption forms are similar to the average reliabilities for the total group. For the text-to-speech forms, the reliabilities are somewhat lower than for the total group.

Mathematics

The text-to-speech forms had sufficient sample sizes for reliability and SEM estimation across grades, except for the Integrated Mathematics II and III courses where the sample was not sufficient. ASL forms had more than 100 students for grade 6 through 8 and Algebra 1. For almost all tests, text-to-speech reliabilities and SEMs are very close to the total group reliabilities. For grade 6, the ASL reliability was .84, but for the other grades these reliabilities were lower. The SEMs for accommodated forms were similar to the total group.

Students Taking Translated Forms

Mathematics

With the exception of Integrated Mathematics I, II, and III, there were sufficient numbers of students taking the Spanish-language form for reliability and SEM estimation. The average reliability ranged from .68 to .91. The SEMs are generally lower for the students administered the Spanish-language forms. The moderate to high correlations suggest the translated forms are sufficient for individual student reporting.

Table 8.5 Summary of Test Reliability Estimates for Subgroups: Grade 3 ELA/L

				CBT				PBT						
	Max.		Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	94	4.93	0.92	8,088	0.86	114,767	0.92	94	5.39	0.90	2,199	0.85	53,719	0.91
Gender														
Male	94	4.82	0.92	5,239	0.85	58,237	0.92	94	5.22	0.90	1,438	0.84	26,759	0.91
Female	94	5.05	0.91	2,849	0.86	56,530	0.92	94	5.56	0.90	761	0.86	26,960	0.91
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	94	5.06	0.90	3,014	0.86	42,290	0.91	94	5.54	0.90	445	0.86	14,949	0.90
African American	94	4.73	0.90	1,999	0.8	17,806	0.92	94	5.18	0.89	786	0.85	13,692	0.89
Asian/Pacific Islander	94	5.09	0.91	17,411	0.9	17,562	0.92	94	5.61	0.90	4,714	0.90	4,714	0.90
Am. Indian/Alaska Native	94	4.56	0.89	1,418	0.88	1,418	0.90	94	5.23	0.85	1,394	0.85	1,394	0.85
Hispanic	94	4.77	0.90	2,536	0.83	31,352	0.92	94	5.36	0.89	861	0.83	17,370	0.89
Multiple	94	4.93	0.92	226	0.87	4,236	0.92	94	5.50	0.90	1,571	0.90	1,571	0.90
Special Instructional Needs														
Economically														
Disadvantaged	94	4.72	0.90	4,750	0.80	53,596	0.91	94	5.26	0.88	1,858	0.83	34,427	0.89
Not Economically	94	5.11	0.90	3,332	0.88	60.002	0.91	94	5.61	0.89	336	0.00	1 274	0.89
Disadvantaged	_			•		60,982						0.89	1,274	
English Learner	94	4.48	0.88	1,011	0.75	15,273	0.89	94	5.23	0.87	599	0.78	11,816	0.88
Non-English Learner	94	5.00	0.91	7,058	0.86	96,572	0.92	94	5.43	0.91	1,593	0.86	41,809	0.91
Students with Disabilities	94	4.37	0.91	8,088	0.86	14,480	0.93	94	4.57	0.89	2,138	0.85	5,302	0.90
Students w/o Disabilities	94	5.02	0.91	99,376	0.90	99,873	0.92	94	5.51	0.90	48,303	0.90	48,303	0.90
Students Taking														
Accommodated Forms	_													
A: ASL		- 4.85	0.93	244	0.93	- 244	0.93	_	-	-	-	-	-	-
C: Closed Caption	94		0.93	∠44	0.93	Z44	0.93	_	-	-	-	-	-	-
R: Screen Reader	-	-	-	7.044	-	7.044	-	_	-	-	-	-	-	-
T: Text-to-Speech	94	4.20	0.85	7,844	0.85	7,844	0.85	-	-	-	-	-	-	-

Table 8.6 Summary of Test Reliability Estimates for Subgroups: Grade 4 ELA/L

				СВТ					PBT						
	Max.		Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.	
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility	
Total Group	106	5.65	0.91	9,281	0.88	159	0.92	106	6.02	0.88	2,333	0.84	45,527	0.89	
Gender															
Male	106	5.49	0.91	5,942	0.87	103	0.94	106	5.80	0.88	1,508	0.84	22,661	0.89	
Female	106	5.81	0.91	3,339	0.88	58,657	0.92	106	6.22	0.88	825	0.84	22,866	0.88	
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Ethnicity															
White	106	5.78	0.90	3,475	0.88	44,526	0.91	106	6.17	0.88	392	0.86	11,355	0.88	
African American	106	5.39	0.90	2,315	0.84	18,220	0.91	106	5.82	0.85	844	0.82	11,529	0.86	
Asian/Pacific Islander	106	5.91	0.91	17,847	0.90	246	0.92	106	6.22	0.88	3,972	0.88	3,972	0.88	
Am. Indian/Alaska Native	106	5.05	0.89	1,412	0.88	1,422	0.90	106	5.79	0.83	1,313	0.83	1,313	0.83	
Hispanic	106	5.45	0.90	2,927	0.86	32,806	0.91	106	5.97	0.86	1,002	0.82	16,237	0.86	
Multiple	106	5.66	0.91	236	0.87	4,313	0.92	106	6.15	0.89	1,062	0.89	1,062	0.89	
Special Instructional Needs															
Economically															
Disadvantaged	106	5.36	0.89	5,463	0.84	54,981	0.91	106	5.89	0.86	1,969	0.82	30,561	0.86	
Not Economically	106	5.86	0.90	3,816	0.88	63,961	0.91	106	6.23	0.87	364	0.87	14,915	0.87	
Disadvantaged	106	3.86 4.76	0.90	938	0.88	10,193	0.91	106	5.43	0.80	672	0.87	•	0.80	
English Learner						10,193			5.43 6.11				6,452		
Non-English Learner	106	5.72	0.91	8,311	0.88		0.93	106		0.88	1,656	0.85	38,962	0.88	
Students with Disabilities	106	4.93	0.91	9,281	0.88	15,872	0.93	106	5.15	0.88	2,291	0.84	5,149	0.89	
Students w/o Disabilities	106	5.77	0.90	103,959	0.90	102,906	0.91	106	6.16	0.87	40,246	0.87	40,246	0.87	
Students Taking Accommodated Forms															
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
A: ASL	106	5.64	0.93	236	0.93	236	0.93	_	_	_	_	_	_	_	
C: Closed Caption	100	J.0 4	-	-	-	-	-		_	_	_	_	_	_	
R: Screen Reader	106	4.99	0.87	9,045	0.87	9,045	0.87		_	-	_	_		_	
T: Text-to-Speech	100	4.33	0.67	3,043	0.67	3,043	0.67	_	-	-	-	-	-	-	

Table 8.7 Summary of Test Reliability Estimates for Subgroups: Grade 5 ELA/L

				CBT				PBT						
	Max.		Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	105	5.47	0.91	9,562	0.84	128,027	0.92	106	5.97	0.88	1,068	0.86	13,636	0.88
Gender														
Male	105	5.28	0.91	6,100	0.83	64,869	0.92	106	5.73	0.88	675	0.85	7,022	0.88
Female	105	5.65	0.91	3,462	0.84	63,158	0.92	106	6.23	0.87	6,614	0.87	393	0.88
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	105	5.64	0.90	3,601	0.85	46,692	0.91	106	6.17	0.86	5,057	0.86	224	0.88
African American	105	5.14	0.89	2,395	0.75	20,946	0.91	106	5.44	0.86	385	0.82	1,795	0.87
Asian/Pacific Islander	105	5.71	0.91	18,416	0.90	18,305	0.91	106	6.27	0.87	2,121	0.87	2,121	0.87
Am. Indian/Alaska Native	105	5.05	0.88	1,317	0.88	1,463	0.89	106	5.85	0.79	1,176	0.79	1,176	0.79
Hispanic	105	5.29	0.89	3,002	0.81	36,109	0.91	106	5.81	0.85	387	0.77	3,016	0.86
Multiple	105	5.48	0.91	205	0.81	4,253	0.92	106	6.26	0.88	442	0.88	442	0.88
Special Instructional Needs														
Economically														
Disadvantaged	105	5.20	0.89	5,585	0.78	61,077	0.90	106	5.74	0.85	863	0.79	7,080	0.86
Not Economically	105	5.69	0.90	3,971	0.86	66,738	0.91	106	6.23	0.86	6 525	0.86	204	0.91
Disadvantaged				•		•		106			6,525		_	0.91
English Learner	105	4.43	0.83	917	0.59	8,697	0.86		5.51	0.76	228	0.64	1,446	
Non-English Learner	105	5.53	0.90	8,615	0.84	116,218	0.91	106	6.02	0.88	833	0.87	12,097	0.88
Students with Disabilities	105	4.72	0.90	9,562	0.84	17,677	0.92	106	5.00	0.87	1,048	0.86	2,404	0.87
Students w/o Disabilities	105	5.60	0.90	110,069	0.89	109,924	0.91	106	6.26	0.86	11,177	0.86	11,177	0.86
Students Taking Accommodated Forms														
	_	_	_	_	_	_	_	_	_	_	_	_	_	_
A: ASL	100	5.30	0.90	303	0.90	303	0.90	_	_	_	_	_	_	_
C: Closed Caption	106	J.30 -	-	-	-	-	0.50	_	_	_	_	_	_	_
R: Screen Reader	106	- 4.47	0.83	- 9,259	0.83	- 9,259	0.83		_	-	-	-	2	-
T: Text-to-Speech	100	4.47	0.83	9,259	0.83	9,239	0.83	_	-	-	-	-	-	-

Table 8.8 Summary of Test Reliability Estimates for Subgroups: Grade 6 ELA/L

Max. Raw Score	Avg. SEM	Avg. Relia-	Min.	Min.	Max.	Max.	Max.		Δνα	Min.	Min.	Max.	N.A
Score	•	Relia-					IVIAA.		Avg.	iviiri.	IVIIII.	IVIAX.	Max.
	SEM		Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
121		bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
	6.08	0.93	9,161	0.87	124,574	0.94	121	6.65	0.92	895	0.90	161,54	0.92
121	5.87	0.93	5,846	0.87	64,165	0.94	121	6.41	0.92	570	0.88	8,262	0.92
121	6.28	0.93	3,315	0.88	61,320	0.93	121	6.90	0.91	325	0.91	7,892	0.91
-	-	-	-	-	-	-	-	-	-	-	-	-	-
121	6.23	0.93	3,653	0.89	46,483	0.93	121	6.67	0.91	222	0.90	6,939	0.91
121	5.78	0.92	2,263	0.81	20,111	0.92	121	6.31	0.91	322	0.86	2,407	0.91
121	6.30	0.93	270	0.93	17,571	0.94	121	6.92	0.90	2,286	0.90	2,286	0.90
121	5.68	0.92	1,277	0.91	1,210	0.92	121	6.94	0.87	1,122	0.87	1,122	0.87
121	5.91	0.92	2,687	0.85	36,029	0.92	121	6.52	0.91	290	0.87	2,792	0.91
121	6.10	0.94	205	0.83	3,857	0.94	121	6.66	0.92	592	0.92	592	0.92
121	5.84	0.92	5,226	0.82	58,773	0.92	121	6.52	0.90	706	0.85	7,462	0.91
121	6 27	0.02	2 025	0.80	66 107	0.02	121	6 76	0.01	0 670	0.01	107	0.94
			•		-					•			0.94
					-							•	0.86
			•		-							•	0.92
					-							-	
121	6.22	0.93	107,452	0.93	106,634	0.93	121	0.80	0.90	13,492	0.90	13,492	0.90
_	_	_	_	_	_	_	_	_	_	_	_	_	_
121	5.61	0.95	298	0.95	298	0.95	_	_	_	_	_	_	_
-	-	-	-	-	-	-	_	_	_	_	_	_	_
121		0 86		በ ጳና		0.86	_	_	_	_	_	_	_
141	5.05	0.00	0,003	0.00	0,003	0.00		-	_	_	_	_	_
	121 - 121 121 121 121 121	121 5.87 121 6.28 	121 5.87 0.93 121 6.28 0.93 121 6.23 0.93 121 5.78 0.92 121 6.30 0.93 121 5.68 0.92 121 5.91 0.92 121 6.10 0.94 121 5.84 0.92 121 6.27 0.93 121 4.91 0.85 121 6.14 0.93 121 5.28 0.92 121 6.22 0.93	121 5.87 0.93 5,846 121 6.28 0.93 3,315 - - - - 121 6.23 0.93 3,653 121 5.78 0.92 2,263 121 5.68 0.92 1,277 121 5.91 0.92 2,687 121 5.84 0.92 5,226 121 5.84 0.92 5,226 121 6.27 0.93 3,925 121 4.91 0.85 753 121 6.14 0.93 8,386 121 5.28 0.92 9,161 121 6.22 0.93 107,452 - - - - 121 5.61 0.95 298 - - - - 121 5.61 0.95 298	121 5.87 0.93 5,846 0.87 121 6.28 0.93 3,315 0.88 - - - - - 121 6.23 0.93 3,653 0.89 121 5.78 0.92 2,263 0.81 121 6.30 0.93 270 0.93 121 5.68 0.92 1,277 0.91 121 5.91 0.92 2,687 0.85 121 6.10 0.94 205 0.83 121 5.84 0.92 5,226 0.82 121 4.91 0.85 753 0.62 121 6.14 0.93 8,386 0.88 121 5.28 0.92 9,161 0.87 121 6.22 0.93 107,452 0.93 - - - - - 121 5.61 0.95 298 0.95 - - - - - 121 5.61 0.95	121 5.87 0.93 5,846 0.87 64,165 121 6.28 0.93 3,315 0.88 61,320 - - - - - - 121 6.23 0.93 3,653 0.89 46,483 121 5.78 0.92 2,263 0.81 20,111 121 6.30 0.93 270 0.93 17,571 121 5.68 0.92 1,277 0.91 1,210 121 5.91 0.92 2,687 0.85 36,029 121 5.84 0.92 5,226 0.82 58,773 121 5.84 0.92 5,226 0.82 58,773 121 6.27 0.93 3,925 0.89 66,107 121 4.91 0.85 753 0.62 7,349 121 5.28 0.92 9,161 0.87 17,932 121 5.28 0.92 9,161 0.87 17,932 121 5.61 0.95 298	121 5.87 0.93 5,846 0.87 64,165 0.94 121 6.28 0.93 3,315 0.88 61,320 0.93 121 6.23 0.93 3,653 0.89 46,483 0.93 121 5.78 0.92 2,263 0.81 20,111 0.92 121 6.30 0.93 270 0.93 17,571 0.94 121 5.68 0.92 1,277 0.91 1,210 0.92 121 5.91 0.92 2,687 0.85 36,029 0.92 121 5.91 0.92 2,687 0.85 36,029 0.92 121 5.84 0.92 5,226 0.82 58,773 0.92 121 6.27 0.93 3,925 0.89 66,107 0.93 121 4.91 0.85 753 0.62 7,349 0.87 121 5.28 0.92 9,161 0.87 17,932 0.93 121 5.28 0.92 9,161 0.87	121 5.87 0.93 5,846 0.87 64,165 0.94 121 121 6.28 0.93 3,315 0.88 61,320 0.93 121 - - - - - - - - - 121 6.23 0.93 3,653 0.89 46,483 0.93 121 121 5.78 0.92 2,263 0.81 20,111 0.92 121 121 6.30 0.93 270 0.93 17,571 0.94 121 121 5.68 0.92 1,277 0.91 1,210 0.92 121 121 5.91 0.92 2,687 0.85 36,029 0.92 121 121 6.10 0.94 205 0.83 3,857 0.94 121 121 5.84 0.92 5,226 0.82 58,773 0.92 121 121 4.91 0.85 753 0.62 7,349 0.87 121 121 5.28 0.92	121 5.87 0.93 5,846 0.87 64,165 0.94 121 6.41 121 6.28 0.93 3,315 0.88 61,320 0.93 121 6.90 121 6.23 0.93 3,653 0.89 46,483 0.93 121 6.67 121 5.78 0.92 2,263 0.81 20,111 0.92 121 6.31 121 6.30 0.93 270 0.93 17,571 0.94 121 6.92 121 5.68 0.92 1,277 0.91 1,210 0.92 121 6.94 121 5.91 0.92 2,687 0.85 36,029 0.92 121 6.52 121 5.84 0.92 5,226 0.82 58,773 0.92 121 6.52 121 4.91 0.85 753 0.62 7,349 0.87 121 6.11 121 6.14 0.93 8,386 0.88 114,491 0.93 121 6.68 121 5	121 5.87 0.93 5,846 0.87 64,165 0.94 121 6.41 0.92 121 6.28 0.93 3,315 0.88 61,320 0.93 121 6.90 0.91 121 6.23 0.93 3,653 0.89 46,483 0.93 121 6.67 0.91 121 5.78 0.92 2,263 0.81 20,111 0.92 121 6.31 0.91 121 5.78 0.92 2,263 0.81 20,111 0.92 121 6.31 0.91 121 5.68 0.92 1,277 0.91 1,210 0.92 121 6.92 0.90 121 5.91 0.92 2,687 0.85 36,029 0.92 121 6.52 0.91 121 6.10 0.94 205 0.83 3,857 0.94 121 6.66 0.92 121 6.27 0.93 3,925 0.89 66,107 0.93 121 6.76 0.91 121 6.14	121 5.87 0.93 5,846 0.87 64,165 0.94 121 6.41 0.92 570 121 6.28 0.93 3,315 0.88 61,320 0.93 121 6.90 0.91 325 -	121 5.87 0.93 5,846 0.87 64,165 0.94 121 6.41 0.92 570 0.88 121 6.28 0.93 3,315 0.88 61,320 0.93 121 6.90 0.91 325 0.91 121 6.23 0.93 3,653 0.89 46,483 0.93 121 6.67 0.91 222 0.90 121 5.78 0.92 2,263 0.81 20,111 0.92 121 6.31 0.91 322 0.86 121 6.30 0.93 270 0.93 17,571 0.94 121 6.92 0.90 2,286 0.90 121 5.68 0.92 1,277 0.91 1,210 0.92 121 6.94 0.87 1,122 0.87 121 5.91 0.92 2,687 0.85 36,029 0.92 121 6.52 0.91 290 0.87 121 6.10 0.94 205 0.83 3,857 0.94 121 6.66 0.92 592	121 5.87 0.93 5,846 0.87 64,165 0.94 121 6.41 0.92 570 0.88 8,262 121 6.28 0.93 3,315 0.88 61,320 0.93 121 6.90 0.91 325 0.91 7,892 121 6.23 0.93 3,653 0.89 46,483 0.93 121 6.67 0.91 222 0.90 6,939 121 5.78 0.92 2,263 0.81 20,111 0.92 121 6.31 0.91 322 0.86 2,407 121 6.30 0.93 270 0.93 17,571 0.94 121 6.92 0.90 2,286 0.90 2,286 121 5.68 0.92 1,277 0.91 1,210 0.92 121 6.92 0.90 2,286 0.90 2,286 121 5.68 0.92 1,277 0.91 1,210 0.92 121 6.52 0.91 290 0.87 2,792 121 6.10 0.94 205 0.83 3,857 0.94 121 6.66 0.92 592 0.92 592 121 6.10 0.94 205 0.83 3,857 0.94 121 6.66 0.92 592 0.92 592 121 6.10 0.94 205 0.83 3,857 0.94 121 6.66 0.92 592 0.92 592 121 6.10 0.94 0.87 1,122 0.87 1,122 0.87 1,122 121 5.91 0.92 5,226 0.82 58,773 0.92 121 6.52 0.90 706 0.85 7,462 121 6.14 0.93 8,386 0.88 114,491 0.93 121 6.68 0.92 708 0.90 14,914 121 5.28 0.92 9,161 0.87 17,932 0.93 121 6.68 0.92 708 0.90 14,914 121 5.28 0.92 9,161 0.87 17,932 0.93 121 6.86 0.90 13,492 0.9

Table 8.9 Summary of Test Reliability Estimates for Subgroups: Grade 7 ELA/L

•				СВТ	<u> </u>							PBT		
	Max.		Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	121	6.23	0.93	157	0.90	125,944	0.94	121	6.85	0.91	695	0.88	14,688	0.91
Gender														
Male	121	6.03	0.93	5,443	0.89	63,855	0.94	121	6.58	0.91	430	0.83	7,442	0.91
Female	121	6.43	0.93	2,860	0.90	62,089	0.93	121	7.10	0.90	7,246	0.90	265	0.90
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	121	6.35	0.92	3,405	0.91	48,125	0.93	121	6.93	0.91	6,512	0.91	161	0.92
African American	121	5.99	0.92	1,965	0.84	20,086	0.93	121	6.46	0.90	251	0.84	2,600	0.90
Asian/Pacific Islander	121	6.42	0.93	242	0.93	17,517	0.94	121	7.15	0.90	1,862	0.90	1,862	0.90
Am. Indian/Alaska Native	121	5.97	0.91	1,346	0.91	1,360	0.92	121	6.82	0.85	827	0.85	827	0.85
Hispanic	121	6.09	0.92	2,488	0.86	34,982	0.93	121	6.73	0.88	238	0.79	2,314	0.89
Multiple	121	6.28	0.93	148	0.90	3,692	0.94	121	7.05	0.90	559	0.90	559	0.90
Special Instructional Needs														
Economically														
Disadvantaged	121	6.03	0.92	4,418	0.85	56,926	0.93	121	6.69	0.88	521	0.81	6,560	0.89
Not Economically	121	6.38	0.93	3,873	0.91	68,806	0.93	121	6.97	0.90	8,114	0.90	174	0.93
Disadvantaged				-		•					-			
English Learner	121	5.19	0.86	712	0.73	7,082	0.88	121	6.28	0.80	132	0.65	876	0.83
Non-English Learner	121	6.28	0.93	120	0.90	116,025	0.94	121	6.88	0.91	562	0.89	13,722	0.91
Students with Disabilities	121	5.52	0.92	157	0.90	17,506	0.93	121	5.92	0.89	684	0.88	2,403	0.89
Students w/o Disabilities	121	6.36	0.93	108,772	0.92	107,918	0.93	121	7.06	0.89	12,251	0.89	12,251	0.89
Students Taking														
Accommodated Forms														
A: ASL		-	- 0.04	262	- 0.04	363	-	_	-	-	-	-	-	-
C: Closed Caption	121	5.96	0.94	363	0.94		0.94	_	-	-	-	-	-	-
R: Screen Reader	-	-	-	7.040	-	7.040	-	_	-	-	-	-	-	-
T: Text-to-Speech	121	5.20	0.89	7,940	0.89	7,940	0.89	-	-	-	-	-	-	-

Table 8.10 Summary of Test Reliability Estimates for Subgroups: Grade 8 ELA/L

,				СВТ		<u>·</u>						PBT		
	Max.		Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	121	6.19	0.93	7,591	0.89	125,202	0.94	121	6.85	0.91	660	0.90	13,287	0.92
Gender														
Male	121	6.02	0.93	4,968	0.88	63,844	0.94	121	6.58	0.92	417	0.89	6,862	0.92
Female	121	6.35	0.93	2,623	0.89	61,507	0.93	121	7.11	0.90	6,425	0.90	243	0.90
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	121	6.30	0.93	3,110	0.90	48,592	0.93	121	6.85	0.91	5,527	0.91	183	0.93
African American	121	5.97	0.92	1,921	0.85	20,143	0.93	121	6.50	0.90	193	0.87	2,290	0.91
Asian/Pacific Islander	121	6.33	0.93	224	0.92	17,050	0.94	121	7.03	0.91	1,643	0.91	1,643	0.91
Am. Indian/Alaska Native	121	5.87	0.92	1,249	0.91	1,221	0.92	121	7.22	0.85	791	0.85	791	0.85
Hispanic	121	6.06	0.92	2,151	0.87	34,312	0.93	121	6.88	0.90	234	0.86	2,598	0.90
Multiple	121	6.16	0.94	149	0.90	3,537	0.94	121	6.78	0.92	422	0.92	422	0.92
Special Instructional Needs														
Economically														
Disadvantaged	121	5.99	0.92	4,007	0.86	55,736	0.92	121	6.85	0.89	472	0.86	6,453	0.90
Not Economically	121	6.22	0.02	2 565	0.00	60.257	0.02	121	6.84	0.01	6 022	0.91	187	0.93
Disadvantaged	121	6.33	0.93	3,565	0.90	69,257	0.93			0.91	6,822		_	
English Learner	121	5.19	0.87	531	0.79	6,964	0.87	121	6.82	0.82	131	0.78	983	0.83
Non-English Learner	121	6.23	0.93	7,028	0.89	115,665	0.93	121	6.85	0.91	526	0.91	12,246	0.91
Students with Disabilities	121	5.55	0.92	7,591	0.89	17,371	0.93	121	6.18	0.91	642	0.90	2,247	0.91
Students w/o Disabilities	121	6.29	0.93	106,507	0.92	107,005	0.93	121	7.01	0.90	11,014	0.90	11,014	0.90
Students Taking														
Accommodated Forms				_	_				_	_	_			_
A: ASL	424	6.07	- 0.94	312	- 0.94	312	- 0.94		_	_	_	_	-	_
C: Closed Caption	121	6.07 -	0.54	312	0.94	314	0.54	_	-	-	-	-	-	-
R: Screen Reader	121		-	- 7 270		- 7 270	-	_	-	-	-	-	-	-
T: Text-to-Speech	121	5.36	0.88	7,279	0.88	7,279	0.88	_	-	-	-	-	-	-

Table 8.11 Summary of Test Reliability Estimates for Subgroups: Grade 9 ELA/L

,				СВТ		<u>. </u>						PBT		
	Max.		Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	121	6.03	0.94	3,044	0.88	60,189	0.94	121	6.35	0.93	2,791	0.93	106	0.93
Gender														
Male	121	5.83	0.94	1,980	0.88	30,989	0.94	121	5.95	0.93	1,526	0.93	1,526	0.93
Female	121	6.21	0.94	1,064	0.88	29,200	0.94	121	6.82	0.92	1,265	0.92	1,265	0.92
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	121	6.24	0.93	1,208	0.88	19,286	0.93	121	6.24	0.93	324	0.93	324	0.93
African American	121	5.84	0.92	704	0.84	6,535	0.93	121	5.76	0.91	166	0.91	166	0.91
Asian/Pacific Islander	121	6.18	0.94	124	0.91	12,125	0.94	121	6.73	0.93	788	0.93	788	0.93
Am. Indian/Alaska Native	121	5.61	0.90	1,091	0.89	1,000	0.91	121	6.24	0.86	186	0.86	186	0.86
Hispanic	121	5.77	0.93	903	0.87	19,811	0.93	121	6.23	0.90	1,246	0.90	1,246	0.90
Multiple	121	6.13	0.94	1,219	0.94	1,275	0.94	-	-	-	-	-	-	-
Special Instructional Needs														
Economically														
Disadvantaged	121	5.75	0.92	1,410	0.84	24,725	0.93	121	6.16	0.90	1,551	0.90	1,551	0.90
Not Economically	121	C 20	0.02	1.620	0.00	25 240	0.04	121	6.62	0.02	1 215	0.02	1 215	0.93
Disadvantaged	121	6.20	0.93	1,620	0.89	35,340	0.94			0.93	1,215	0.93	1,215	
English Learner	121	4.78	0.86	104	0.71	4,858	0.87	121	5.77	0.85	521	0.85	521	0.85
Non-English Learner	121	6.12	0.93	2,920	0.88	53,301	0.94	121	6.47	0.93	2,216	0.93	2,216	0.93
Students with Disabilities	121	5.36	0.92	3,044	0.88	8,747	0.93	121	5.60	0.92	530	0.92	530	0.92
Students w/o Disabilities	121	6.14	0.94	51,078	0.93	51,248	0.94	121	6.53	0.92	2,235	0.92	2,235	0.92
Students Taking														
Accommodated Forms					_					_	_			
A: ASL	424	6.38	0.93	- 111	0.93	- 111	0.93		_	_	_	_	-	-
C: Closed Caption	121	0.56	0.33	111	0.55	-	0.55		-	-	-	-	-	-
R: Screen Reader	121		- 0.07	- 2 022	-		-	_	-	-	-	-	-	-
T: Text-to-Speech	121	5.22	0.87	2,933	0.87	2,933	0.87	_	-	-	-	-	-	-

Table 8.12 Summary of Test Reliability Estimates for Subgroups: Grade 10 ELA/L

				СВТ								PBT		
	Max.		Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	121	6.24	0.93	2,414	0.88	54,430	0.94	121	6.45	0.94	1,740	0.94	1,740	0.94
Gender														
Male	121	6.02	0.94	1,584	0.87	27,572	0.94	121	6.18	0.94	929	0.94	929	0.94
Female	121	6.45	0.93	830	0.89	26,858	0.93	121	6.73	0.94	811	0.94	811	0.94
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	121	6.44	0.92	1,016	0.90	22,014	0.93	121	6.64	0.94	847	0.94	847	0.94
African American	121	5.95	0.92	589	0.83	11,374	0.93	121	6.13	0.94	346	0.94	346	0.94
Asian/Pacific Islander	121	6.61	0.92	4,349	0.92	4,445	0.93	-	-	-	-	-	-	-
Am. Indian/Alaska Native	121	5.83	0.91	804	0.90	845	0.91	121	6.32	0.85	196	0.85	196	0.85
Hispanic	121	6.01	0.92	617	0.84	14,627	0.93	121	6.16	0.94	220	0.94	220	0.94
Multiple	121	6.29	0.93	1,171	0.93	1,108	0.93	-	-	-	-	-	-	-
Special Instructional Needs														
Economically														
Disadvantaged	121	5.93	0.92	1,098	0.84	20,834	0.93	121	6.32	0.92	701	0.92	701	0.92
Not Economically	121	6.41	0.02	1 200	0.89	22.450	0.03	121	6.56	0.94	1 017	0.04	1 017	0.94
Disadvantaged			0.93	1,299		33,458	0.93				1,017	0.94	1,017	
English Learner	121	4.60	0.84	107	0.76	2,875	0.85	121	6.17	0.88	101	0.88	101	0.88
Non-English Learner	121	6.31	0.93	2,305	0.88	51,415	0.93	121	6.48	0.94	1,617	0.94	1,617	0.94
Students with Disabilities	121	5.48	0.92	2,414	0.88	8,084	0.93	121	6.04	0.94	482	0.94	482	0.94
Students w/o Disabilities	121	6.37	0.93	46,481	0.93	46,158	0.93	121	6.61	0.93	1,237	0.93	1,237	0.93
Students Taking Accommodated Forms														
	121	5.11	0.76	126	0.76	126	0.76	_	_	_	_	_	_	_
A: ASL		6.06	0.70	101	0.70	101	0.70		-	-	<u>-</u> _	-	_	-
C: Closed Caption	121	-	-	101	0.52	101	0.32		_	_	-	_	_	_
R: Screen Reader	121	5.08	- 0.87	2 212	0.87	- 2 212	0.87	-	-	-	-	-	-	-
T: Text-to-Speech	121	5.08	0.87	2,313	0.87	2,313	0.87	_	-	-	-	-	-	-

Table 8.13 Summary of Test Reliability Estimates for Subgroups: Grade 11 ELA/L

lax. aw ore 21 21	Avg. SEM 6.08	Avg. Relia- bility 0.93	Min. Sample Size 1,604	Min. Relia- bility	Max. Sample	Max. Relia-	Max.	_	Avg.	Min.	Min.	Max.	Max.
21 21	SEM 6.08	bility	Size		-	Rolia-	_						
21	6.08	•		bility			Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
21		0.93	1 604		Size	bility	Score	SEM	bility	Size	bility	Size	bility
			1,004	0.88	34,137	0.93	121	6.65	0.86	1,069	0.86	1,069	0.86
21	5.79	0.93	1,034	0.87	17,737	0.93	121	6.28	0.85	615	0.85	615	0.85
21	6.36	0.92	570	0.89	16,400	0.93	121	7.12	0.85	454	0.85	454	0.85
-	-	-	-	-	-	-	-	-	-	-	-	-	-
21	6.14	0.93	636	0.90	12,885	0.94	121	6.63	0.85	341	0.85	341	0.85
21	5.84	0.92	412	0.82	6,661	0.92	121	5.78	0.84	133	0.84	133	0.84
21	6.58	0.93	2,196	0.93	2,158	0.94	-	-	-	-	-	-	-
21	5.93	0.90	831	0.90	793	0.91	121	7.11	0.84	400	0.84	400	0.84
21	6.03	0.92	438	0.86	11,051	0.92	121	6.36	0.88	142	0.88	142	0.88
21	6.22	0.93	452	0.92	447	0.94	-	-	-	-	-	-	-
21	5.93	0.92	724	0.87	14,287	0.92	121	6.79	0.85	638	0.85	638	0.85
21	<i>C</i> 10	0.02	000	0.00	10 707	0.04	121	6.40	0.07	111	0.07	414	0.07
					•								0.87
			•		-								0.72
			-										0.86
			-		-								0.82
21	6.24	0.93	29,017	0.92	28,523	0.93	121	6.94	0.84	/18	0.84	/18	0.84
_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_		_	_	_	_	_	_
_	_	_	-	_	_	_	_	_	-	-	_	_	_
- 21	- 177	- 0.00	1 546	- 0.00	1 546	- 0.00	_	-	-	-	-	-	-
Z I	4.//	0.88	1,546	0.88	1,546	0.88	_	-	-	-	-	-	-
	21 21 21 21 21	21 5.84 21 6.58 21 5.93 21 6.03 21 6.22 21 5.93 21 6.18 21 4.83 21 6.13 21 5.20 21 6.24	21 5.84 0.92 21 6.58 0.93 21 5.93 0.90 21 6.03 0.92 21 6.22 0.93 21 5.93 0.92 21 6.18 0.93 21 4.83 0.84 21 6.13 0.93 21 5.20 0.91 21 6.24 0.93	21 5.84 0.92 412 21 6.58 0.93 2,196 21 5.93 0.90 831 21 6.03 0.92 438 21 6.22 0.93 452 21 5.93 0.92 724 21 6.18 0.93 880 21 4.83 0.84 1,709 21 5.20 0.91 1,604 21 6.24 0.93 29,017	21 5.84 0.92 412 0.82 21 6.58 0.93 2,196 0.93 21 5.93 0.90 831 0.90 21 6.03 0.92 438 0.86 21 6.22 0.93 452 0.92 21 5.93 0.92 724 0.87 21 6.18 0.93 880 0.89 21 4.83 0.84 1,709 0.83 21 5.20 0.91 1,604 0.88 21 5.20 0.91 1,604 0.88 21 6.24 0.93 29,017 0.92	21 5.84 0.92 412 0.82 6,661 21 6.58 0.93 2,196 0.93 2,158 21 5.93 0.90 831 0.90 793 21 6.03 0.92 438 0.86 11,051 21 6.22 0.93 452 0.92 447 21 5.93 0.92 724 0.87 14,287 21 6.18 0.93 880 0.89 19,787 21 4.83 0.84 1,709 0.83 1,680 21 5.20 0.91 1,604 0.88 5,541 21 6.24 0.93 29,017 0.92 28,523	21 5.84 0.92 412 0.82 6,661 0.92 21 6.58 0.93 2,196 0.93 2,158 0.94 21 5.93 0.90 831 0.90 793 0.91 21 6.03 0.92 438 0.86 11,051 0.92 21 6.22 0.93 452 0.92 447 0.94 21 5.93 0.92 724 0.87 14,287 0.92 21 6.18 0.93 880 0.89 19,787 0.94 21 4.83 0.84 1,709 0.83 1,680 0.85 21 6.13 0.93 1,555 0.88 32,436 0.93 21 5.20 0.91 1,604 0.88 5,541 0.92 21 6.24 0.93 29,017 0.92 28,523 0.93	21 5.84 0.92 412 0.82 6,661 0.92 121 21 6.58 0.93 2,196 0.93 2,158 0.94 - 21 5.93 0.90 831 0.90 793 0.91 121 21 6.03 0.92 438 0.86 11,051 0.92 121 21 6.22 0.93 452 0.92 447 0.94 - 21 5.93 0.92 724 0.87 14,287 0.92 121 21 6.18 0.93 880 0.89 19,787 0.94 121 21 4.83 0.84 1,709 0.83 1,680 0.85 121 21 6.13 0.93 1,555 0.88 32,436 0.93 121 21 5.20 0.91 1,604 0.88 5,541 0.92 121 21 6.24 0.93 29,017 0.92 28,523 0.93 121	21 5.84 0.92 412 0.82 6,661 0.92 121 5.78 21 6.58 0.93 2,196 0.93 2,158 0.94 - - 21 5.93 0.90 831 0.90 793 0.91 121 7.11 21 6.03 0.92 438 0.86 11,051 0.92 121 6.36 21 6.22 0.93 452 0.92 447 0.94 - - 21 5.93 0.92 724 0.87 14,287 0.92 121 6.79 21 6.18 0.93 880 0.89 19,787 0.94 121 6.49 21 4.83 0.84 1,709 0.83 1,680 0.85 121 6.72 21 5.20 0.91 1,604 0.88 5,541 0.92 121 6.04 21 6.24 0.93 29,017 0.92 28,523 0.93 121 6.94	21 5.84 0.92 412 0.82 6,661 0.92 121 5.78 0.84 21 6.58 0.93 2,196 0.93 2,158 0.94 -	21 5.84 0.92 412 0.82 6,661 0.92 121 5.78 0.84 133 21 6.58 0.93 2,196 0.93 2,158 0.94 -	21 5.84 0.92 412 0.82 6,661 0.92 121 5.78 0.84 133 0.84 21 6.58 0.93 2,196 0.93 2,158 0.94 - <td>21 5.84 0.92 412 0.82 6,661 0.92 121 5.78 0.84 133 0.84 133 21 6.58 0.93 2,196 0.93 2,158 0.94 -<!--</td--></td>	21 5.84 0.92 412 0.82 6,661 0.92 121 5.78 0.84 133 0.84 133 21 6.58 0.93 2,196 0.93 2,158 0.94 - </td

Table 8.14 Summary of Test Reliability Estimates for Subgroups: Grade 3 Mathematics

PARCC

				CBT								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	66	3.53	0.94	2,007	0.92	34,750	0.94	66	3.75	0.93	5,670	0.90	50,959	0.93
Gender														
Male	66	3.51	0.94	1,264	0.92	21,748	0.94	66	3.72	0.93	3,414	0.90	25,145	0.94
Female	66	3.56	0.93	743	0.92	15,413	0.94	66	3.78	0.93	2,256	0.89	25,814	0.93
Unknown/Missing														
Ethnicity														
White	66	3.63	0.93	30,594	0.92	9,906	0.94	66	3.79	0.92	1,155	0.90	14,263	0.92
African American	66	3.35	0.93	512	0.89	15,167	0.93	66	3.66	0.92	1,226	0.87	13,145	0.92
Asian/Pacific Islander	66	3.62	0.94	12,637	0.93	3,446	0.95	66	3.76	0.93	345	0.92	4,665	0.93
Am. Indian/Alaska Native	66	3.31	0.92	472	0.92	890	0.92	66	3.61	0.91	1,375	0.91	1,375	0.91
Hispanic	66	3.42	0.93	597	0.89	23,497	0.93	66	3.74	0.92	2,797	0.90	15,994	0.92
Multiple	66	3.56	0.94	3,049	0.94	971	0.95	66	3.74	0.93	105	0.92	1,491	0.93
Special Instructional Needs														
Economically														
Disadvantaged	66	3.39	0.93	1,162	0.89	41,931	0.93	66	3.70	0.92	4,613	0.89	32,233	0.92
Not Economically	66	3.64	0.93	44 705	0.93	12 172	0.94	66	3.79	0.92	1,052	0.91	18,709	0.92
Disadvantaged				44,795		13,172					-		•	
English Learner	66	3.30	0.92	567	0.90	9,579	0.93	66	3.69	0.92	2,464	0.90	10,447	0.92
Non-English Learner	66	3.57	0.94	1,437	0.92	24,327	0.94	66	3.76	0.93	3,199	0.89	40,423	0.93
Students with Disabilities	66	3.23	0.93	1,452	0.90	8,721	0.95	66	3.45	0.91	3,917	0.89	3,495	0.93
Students w/o Disabilities	66	3.58	0.94	553	0.93	21,646	0.94	66	3.80	0.93	1,742	0.90	47,339	0.93
Students Taking														
Accommodated Forms	_	_	_	_	_	_		_	-	_	_	_	-	_
A: ASL	_	-	-	-	-	-	-	_	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	_	-	-	-	-	-	-
R: Screen Reader	-	- 2.25	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	66	3.35	0.94	34,750	0.94	36,519	0.94	-	-	-	-	-	-	-
Students Taking Translated														
Forms	66	3.18	0.91	5,137	0.91	5,137	0.91	66	3.41	0.90	886	0.90	886	0.90
Spanish-Language Form	00	3.10	0.91		0.51		0.91	00	3.41	0.50	000	0.50		0.50

Table 8.15 Summary of Test Reliability Estimates for Subgroups: Grade 4 Mathematics

Table 8.13 Sulfilliary of Test Ne	•		<u> </u>	CBT								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	66	3.49	0.94	1,966	0.92	102,282	0.94	66	3.43	0.93	5,065	0.88	42,538	0.93
Gender														
Male	66	3.45	0.94	1,259	0.92	51,649	0.94	66	3.39	0.93	3,146	0.88	20,846	0.93
Female	66	3.53	0.93	50,099	0.93	16,528	0.94	66	3.47	0.93	1,919	0.88	21,692	0.93
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	66	3.59	0.93	39,985	0.92	10,215	0.94	66	3.51	0.93	910	0.91	10,688	0.93
African American	66	3.31	0.93	5,954	0.91	15,531	0.93	66	3.31	0.91	1,435	0.85	10,358	0.91
Asian/Pacific Islander	66	3.57	0.94	15,964	0.93	3,275	0.95	66	3.52	0.93	216	0.92	3,988	0.93
Am. Indian/Alaska Native	66	3.29	0.91	539	0.89	923	0.92	66	3.27	0.91	1,238	0.91	1,238	0.91
Hispanic	66	3.38	0.92	523	0.89	25,229	0.93	66	3.40	0.91	2,367	0.85	15,204	0.92
Multiple	66	3.53	0.94	928	0.93	3,885	0.94	66	3.54	0.93	1,008	0.93	1,008	0.93
Special Instructional Needs														
Economically														
Disadvantaged	66	3.35	0.92	1,175	0.89	43,485	0.93	66	3.36	0.91	4,189	0.85	28,119	0.92
Not Economically	66	3.59	0.93	E0 061	0.93	12.426	0.94	66	3.54	0.92	874	0.91	14,372	0.93
Disadvantaged				58,061		13,436							•	
English Learner	66	3.06	0.90	6,923	0.88	5,072	0.91	66	3.20	0.89	1,850	0.86	5,671	0.90
Non-English Learner	66	3.53	0.94	1,530	0.93	26,823	0.94	66	3.46	0.93	3,203	0.89	36,759	0.93
Students with Disabilities	66	3.14	0.92	14,966	0.90	9,201	0.95	66	3.19	0.90	4,223	0.87	3,071	0.93
Students w/o Disabilities	66	3.55	0.93	91,385	0.93	416	0.95	66	3.47	0.93	833	0.89	39,333	0.93
Students Taking														
Accommodated Forms														
A: ASL	-	-	-	-	-	-	-	_	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	66	3.11	0.93	34,358	0.93	35,450	0.94	-	-	-	-	-	-	-
Students Taking Translated														
Forms	66	2 06	0.00	2 270	0.00	2 270	0.90	66	2 11	0.90	420	0.89	428	0.89
Spanish-Language Form	66	2.86	0.90	3,378	0.90	3,378	0.90	66	3.11	0.89	428	0.89	428	0.89

Table 8.16 Summary of Test Reliability Estimates for Subgroups: Grade 5 Mathematics

			0 1	СВТ								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	66	3.48	0.93	1,784	0.89	46,338	0.93	66	3.41	0.92	2,176	0.87	13,450	0.92
Gender														
Male	66	3.46	0.93	1,112	0.89	33,848	0.94	66	3.39	0.92	1,357	0.87	6,798	0.93
Female	66	3.50	0.93	672	0.89	21,249	0.93	66	3.42	0.91	819	0.86	6,652	0.92
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	66	3.60	0.92	664	0.91	11,337	0.94	66	3.51	0.91	586	0.89	4,687	0.92
African American	66	3.25	0.91	459	0.78	19,746	0.91	66	3.19	0.89	615	0.84	1,545	0.90
Asian/Pacific Islander	66	3.61	0.93	13,454	0.93	3,484	0.96	66	3.52	0.93	147	0.93	2,422	0.93
Am. Indian/Alaska Native	66	3.26	0.90	497	0.89	532	0.91	66	3.23	0.86	1,153	0.86	1,153	0.86
Hispanic	66	3.35	0.91	501	0.83	19,940	0.91	66	3.33	0.88	745	0.80	3,191	0.90
Multiple	66	3.53	0.93	3,083	0.93	1,007	0.94	66	3.48	0.93	424	0.93	424	0.93
Special Instructional Needs														
Economically														
Disadvantaged	66	3.31	0.91	1,106	0.84	31,426	0.91	66	3.27	0.88	1,647	0.82	6,843	0.89
Not Economically	66	2.61	0.03	C77	0.01	14.076	0.04		2 55	0.02	F20	0.01	C - 7 7	0.02
Disadvantaged	66	3.61	0.93	677	0.91	14,876	0.94	66	3.55	0.92	529	0.91	6,577	0.92
English Learner	66	2.98	0.88	391	0.81	5,685	0.89	66	3.15	0.83	540	0.82	1,349	0.84
Non-English Learner	66	3.51	0.93	1,390	0.90	36,430	0.93	66	3.44	0.92	1,626	0.87	12,011	0.92
Students with Disabilities	66	3.12	0.90	1,414	0.86	12,475	0.93	66	3.17	0.88	1,936	0.86	1,466	0.91
Students w/o Disabilities	66	3.54	0.93	369	0.92	29,240	0.93	66	3.47	0.92	238	0.89	11,929	0.92
Students Taking														
Accommodated Forms														
A: ASL	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	66	3.19	0.93	43,585	0.93	44,739	0.93	-	-	-	-	-	-	-
Students Taking Translated														
Forms														
Spanish-Language Form	66	2.87	0.86	2,776	0.86	2,776	0.86	-	-	-	-	-	-	-

Table 8.17 Summary of Test Reliability Estimates for Subgroups: Grade 6 Mathematics

Table 8.17 Sulfilliary of Test Ne			a.08. c a.bc.	CBT								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	66	3.44	0.94	107	0.84	108,745	0.94	66	3.60	0.92	1,603	0.84	15,276	0.93
Gender														
Male	66	3.39	0.94	639	0.90	54,427	0.94	66	3.54	0.92	1,012	0.83	7,777	0.93
Female	66	3.49	0.93	393	0.91	17,550	0.94	66	3.66	0.92	591	0.84	7,499	0.93
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	66	3.62	0.93	34,848	0.92	10,220	0.95	66	3.72	0.92	471	0.85	6,146	0.93
African American	66	3.10	0.91	244	0.81	15,694	0.92	66	3.22	0.88	460	0.78	1,734	0.90
Asian/Pacific Islander	66	3.69	0.94	13,456	0.93	2,415	0.96	66	3.85	0.93	113	0.91	2,755	0.93
Am. Indian/Alaska Native	66	3.09	0.91	295	0.89	1,125	0.91	66	3.27	0.90	1,051	0.90	1,051	0.90
Hispanic	66	3.23	0.92	290	0.78	27,499	0.92	66	3.43	0.89	502	0.78	3,031	0.91
Multiple	66	3.51	0.94	2,944	0.93	718	0.95	66	3.70	0.93	542	0.93	542	0.93
Special Instructional Needs														
Economically														
Disadvantaged	66	3.17	0.91	622	0.82	45,276	0.92	66	3.35	0.89	1,175	0.79	6,840	0.90
Not Economically	66	2.66	0.02	FO 200	0.02	42.755	0.05	66	2.00	0.02	425	0.00	0.424	0.02
Disadvantaged	66	3.66	0.93	50,200	0.93	12,755	0.95	66	3.80	0.92	425	0.88	8,421	0.93
English Learner	66	2.69	0.87	156	0.66	4,428	0.90	66	3.06	0.85	354	0.78	1,116	0.87
Non-English Learner	66	3.48	0.94	103	0.85	31,502	0.94	66	3.64	0.92	1,240	0.84	14,077	0.93
Students with Disabilities	66	2.91	0.91	107	0.84	10,656	0.94	66	3.11	0.89	1,466	0.84	1,839	0.92
Students w/o Disabilities	66	3.53	0.94	205	0.93	23,578	0.94	66	3.71	0.93	132	0.85	13,395	0.93
Students Taking														
Accommodated Forms		2.00	0.04	107	0.04	107	0.04							
A: ASL	66	2.68	0.84	107	0.84	107	0.84	-	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	66	3.04	0.94	36,286	0.93	37,401	0.94	-	-	-	-	-	-	-
Students Taking Translated														
Forms	66	2.56	0.84	2,601	0.84	2,601	0.84	_	-	_	_	_	_	_
Spanish-Language Form	00	2.50	0.04	2,001	0.04	2,001	0.04	_	-		-	-	<u>-</u>	

Table 8.18 Summary of Test Reliability Estimates for Subgroups: Grade 7 Mathematics

Table 6.10 Sulfilliary of Test Ne			a.08. c a.bc.	CBT								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	66	3.43	0.92	108	0.70	32,369	0.93	66	3.41	0.89	1,253	0.79	12,199	0.90
Gender														
Male	66	3.35	0.93	1,276	0.77	42,143	0.93	66	3.36	0.89	750	0.76	6,160	0.91
Female	66	3.5	0.92	1,152	0.77	14,433	0.93	66	3.46	0.89	503	0.81	6,039	0.90
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	66	3.56	0.92	376	0.89	9,054	0.94	66	3.56	0.90	362	0.83	4,850	0.90
African American	66	3.14	0.89	7,593	0.88	229	0.93	66	3.04	0.80	363	0.66	1,377	0.83
Asian/Pacific Islander	66	3.62	0.94	15,176	0.93	2,083	0.96	66	3.61	0.91	2,203	0.91	2,203	0.91
Am. Indian/Alaska Native	66	3.07	0.88	1,178	0.87	264	0.90	66	3.00	0.81	758	0.81	758	0.81
Hispanic	66	3.25	0.89	2,300	0.77	12,585	0.91	66	3.22	0.85	391	0.69	2,569	0.87
Multiple	66	3.47	0.93	3,337	0.92	633	0.94	66	3.53	0.90	427	0.90	427	0.90
Special Instructional Needs														
Economically														
Disadvantaged	66	3.20	0.89	1,985	0.77	21,174	0.90	66	3.70	0.92	4,613	0.89	32,233	0.92
Not Economically	66	2.50	0.03	427	0.77	44.476	0.04	66	2.70	0.02	4.053	0.01	10.700	0.02
Disadvantaged	66	3.58	0.93	437	0.77	11,176	0.94	66	3.79	0.92	1,052	0.91	18,709	0.92
English Learner	66	2.67	0.83	2,428	0.77	3,715	0.85	66	3.69	0.92	2,464	0.90	10,447	0.92
Non-English Learner	66	3.47	0.92	790	0.90	28,082	0.93	66	3.76	0.93	3,199	0.89	40,423	0.93
Students with Disabilities	66	2.85	0.89	109	0.65	9,029	0.92	66	3.45	0.91	3,917	0.89	3,495	0.93
Students w/o Disabilities	66	3.51	0.92	2,307	0.77	18,641	0.93	66	3.80	0.93	1,742	0.90	47,339	0.93
Students Taking														
Accommodated Forms	66	2.55	0.70	100	0.70	100	0.70							
A: ASL	66	2.55	0.70	108	0.70	108	0.70	-	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	66	3.03	0.92	966	0.80	32,369	0.93	-	-	-	-	-	-	-
Students Taking Translated														
Forms	63	2.57	0.77	2,428	0.77	2 /20	0.77							
Spanish-Language Form	03	2.57	0.77	۷,428	0.77	2,428	0.77	-	-		-	-	-	-

Table 8.19 Summary of Test Reliability Estimates for Subgroups: Grade 8 Mathematics

Table 8.19 Summary of Test Re	liability Estilli	ates for	эары оар	CBT	viacriciii	atics						PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	66	3.26	0.91	884	0.90	83,333	0.92	66	3.51	0.89	1,173	0.75	11,058	0.90
Gender														
Male	66	3.19	0.92	543	0.88	42,408	0.92	66	3.40	0.89	740	0.76	5,668	0.91
Female	66	3.32	0.91	12,553	0.90	40,925	0.91	66	3.61	0.88	433	0.73	5,390	0.89
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	66	3.43	0.91	7,270	0.91	399	0.92	66	3.71	0.90	374	0.80	4,280	0.90
African American	66	2.96	0.87	187	0.48	12,869	0.87	66	3.11	0.80	302	0.58	1,208	0.85
Asian/Pacific Islander	66	3.47	0.93	7,815	0.93	1,445	0.94	66	3.70	0.90	1,610	0.90	1,610	0.90
Am. Indian/Alaska Native	66	2.92	0.86	248	0.82	290	0.89	66	3.24	0.83	763	0.83	763	0.83
Hispanic	66	3.11	0.88	229	0.76	11,190	0.89	66	3.30	0.85	377	0.71	2,848	0.87
Multiple	66	3.28	0.92	433	0.91	491	0.93	66	3.65	0.92	334	0.92	334	0.92
Special Instructional Needs														
Economically														
Disadvantaged	66	3.06	0.88	474	0.73	37,774	0.89	66	3.25	0.84	845	0.72	5,675	0.86
Not Economically	66	2.42	0.02	0.744	0.01	402	0.02	66	2.75	0.00	226	0.70	F 274	0.00
Disadvantaged	66	3.43	0.92	8,744	0.91	403	0.92	66	3.75	0.90	326	0.78	5,371	0.90
English Learner	66	2.66	0.82	111	0.75	4,140	0.84	66	2.91	0.73	260	0.65	1,063	0.75
Non-English Learner	66	3.30	0.91	24,384	0.90	77,217	0.92	66	3.56	0.89	909	0.77	9,955	0.90
Students with Disabilities	66	2.79	0.86	12,020	0.81	10,573	0.90	66	2.88	0.83	1,088	0.75	1,494	0.89
Students w/o Disabilities	66	3.35	0.91	16,253	0.90	175	0.93	66	3.66	0.90	9,538	0.90	9,538	0.90
Students Taking														
Accommodated Forms														
A: ASL	66	2.45	0.59	105	0.59	105	0.59	-	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	66	3.10	0.90	28,298	0.90	28,826	0.90	-	-	-	-	-	-	-
Students Taking Translated														
Forms														
Spanish-Language Form	66	2.48	0.75	2,464	0.75	2,464	0.75	-	-	-	-	-	-	-

Table 8.20 Summary of Test Reliability Estimates for Subgroups: Algebra I

Table 6.20 Sulfilliary of Test Re		101 5	аобі оарз.	CBT								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	81	3.61	0.94	488	0.85	67,566	0.94	81	3.73	0.92	406	0.86	5,623	0.92
Gender														
Male	81	3.59	0.94	287	0.87	34,399	0.95	81	3.70	0.92	248	0.84	2,953	0.93
Female	81	3.63	0.93	201	0.82	33,167	0.94	81	3.76	0.91	158	0.88	2,670	0.91
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	81	3.87	0.93	124	0.88	24,719	0.94	81	3.98	0.92	1,446	0.92	1,446	0.92
African American	81	3.16	0.90	123	0.88	10,781	0.91	81	3.30	0.86	642	0.86	642	0.86
Asian/Pacific Islander	81	3.94	0.95	11,302	0.94	889	0.96	81	4.10	0.91	1,407	0.91	1,407	0.91
Am. Indian/Alaska Native	81	2.87	0.84	174	0.79	916	0.86	81	3.15	0.80	168	0.80	168	0.80
Hispanic	81	3.25	0.90	166	0.77	17,703	0.91	81	3.38	0.87	290	0.79	1,748	0.88
Multiple	81	3.72	0.94	197	0.93	181	0.94	81	4.00	0.92	179	0.92	179	0.92
Special Instructional Needs														
Economically														
Disadvantaged	81	3.20	0.90	210	0.87	25,298	0.91	81	3.40	0.86	261	0.77	2,423	0.87
Not Economically	01	2 02	0.04	202	0.96	42 107	0.94	81	3.96	0.02	145	0.00	2 100	0.92
Disadvantaged	81	3.83	0.94		0.86	42,107				0.92		0.90	3,180	
English Learner	81	2.76	0.82	3,920	0.75	3,469	0.88	81	3.11	0.75	273	0.73	615	0.76
Non-English Learner	81	3.65	0.94	419	0.86	62,786	0.94	81	3.82	0.92	132	0.92	4,952	0.92
Students with Disabilities	81	3.07	0.90	4,462	0.85	9,085	0.93	81	3.32	0.90	794	0.90	145	0.92
Students w/o Disabilities	81	3.69	0.94	102	0.73	58,262	0.94	81	3.80	0.91	261	0.72	4,808	0.92
Students Taking														
Accommodated Forms	81	2.97	0.78	151	0.78	151	0.78							
A: ASL	91	2.97	0.78	151	0.78	151	0.78	_	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	80	3.84	0.92	11,069	0.92	11,757	0.93	-	-	-	-	-	-	-
Students Taking Translated														
Forms	80	2.92	0.69	2,618	0.69	2,618	0.69	81	3.09	0.72	255	0.72	255	0.72
Spanish-Language Form	80	۷.3۷	0.05	2,010	0.05	2,010	0.03	91	3.03	0.72	233	0.72	233	0.72

Table 8.21 Summary of Test Reliability Estimates for Subgroups: Geometry

, , , , , , , , , , , , , , , , ,			0 1	СВТ								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	80	3.48	0.94	204	0.86	35,202	0.95	81	3.6	0.93	1,306	0.93	1,306	0.93
Gender														
Male	80	3.45	0.94	102	0.88	17,671	0.95	81	3.57	0.94	675	0.94	675	0.94
Female	80	3.51	0.93	102	0.82	17,531	0.94	81	3.63	0.93	631	0.93	631	0.93
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	80	3.63	0.93	15,806	0.93	15,030	0.94	81	3.33	0.90	241	0.90	241	0.90
African American	80	3.01	0.90	104	0.81	3,850	0.92	81	2.71	0.83	102	0.83	102	0.83
Asian/Pacific Islander	80	4.03	0.93	5,614	0.93	302	0.96	81	4.14	0.90	428	0.90	428	0.90
Am. Indian/Alaska Native	80	2.93	0.87	108	0.79	707	0.89	81	3.17	0.85	168	0.85	168	0.85
Hispanic	80	3.08	0.90	3,591	0.84	9,564	0.91	81	3.34	0.92	317	0.92	317	0.92
Multiple	80	3.76	0.94	746	0.94	677	0.95	-	-	-	-	-	-	-
Special Instructional Needs														
Economically														
Disadvantaged	80	3.04	0.90	158	0.84	11,443	0.91	81	3.27	0.90	566	0.90	566	0.90
Not Economically	00	2.60	0.04	24.042	0.04	22.622	0.04	0.4	2.04	0.02	740	0.02	74.0	0.00
Disadvantaged	80	3.68	0.94	24,842	0.94	23,632	0.94	81	3.84	0.93	718	0.93	718	0.93
English Learner	81	2.58	0.82	2,125	0.74	1,131	0.88	-	-	-	-	-	-	-
Non-English Learner	80	3.52	0.94	180	0.85	33,524	0.95	81	3.62	0.93	1,191	0.93	1,191	0.93
Students with Disabilities	80	2.84	0.91	2,005	0.81	4,677	0.93	81	2.98	0.90	262	0.90	262	0.90
Students w/o Disabilities	80	3.57	0.94	122	0.82	30,378	0.94	81	3.74	0.93	1,025	0.93	1,025	0.93
Students Taking														
Accommodated Forms														
A: ASL	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	81	3.09	0.93	5,910	0.93	5,511	0.94	-	-	-	-	-	-	-
Students Taking Translated														
Forms														
Spanish-Language Form	81	2.52	0.68	1,677	0.68	1,677	0.68	-	-	-	-	-	-	-

Table 8.22 Summary of Test Reliability Estimates for Subgroups: Geometry

			0 1	СВТ								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	81	3.51	0.93	4,818	0.92	35,156	0.93	81	4.01	0.93	2,051	0.93	2,051	0.93
Gender														
Male	81	3.49	0.94	2,564	0.93	17,538	0.94	81	3.93	0.94	1,115	0.94	1,115	0.94
Female	81	3.52	0.92	2,254	0.91	17,379	0.92	81	4.09	0.90	936	0.90	936	0.90
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	81	3.67	0.92	1,497	0.92	14,722	0.93	81	4.16	0.92	1,191	0.92	1,191	0.92
African American	81	3.07	0.87	5,937	0.86	807	0.88	81	3.52	0.88	246	0.88	246	0.88
Asian/Pacific Islander	81	3.97	0.94	227	0.94	3,771	0.94	81	4.34	0.93	134	0.93	134	0.93
Am. Indian/Alaska Native	81	3.06	0.81	684	0.80	680	0.84	81	3.52	0.87	209	0.87	209	0.87
Hispanic	81	3.23	0.87	2,026	0.87	1,200	0.88	81	3.67	0.92	186	0.92	186	0.92
Multiple	81	3.66	0.93	650	0.93	665	0.94	-	-	-	-	-	-	-
Special Instructional Needs														
Economically														
Disadvantaged	81	3.18	0.87	12,065	0.86	2,485	0.88	81	3.63	0.89	595	0.89	595	0.89
Not Economically	0.1	2.65	0.03	2 222	0.02	22.204	0.04	04	4.45	0.02	4 445	0.02	4 445	0.00
Disadvantaged	81	3.65	0.93	2,332	0.93	23,291	0.94	81	4.15	0.93	1,445	0.93	1,445	0.93
English Learner	81	2.78	0.85	238	0.76	902	0.87	-	-	-	-	-	-	-
Non-English Learner	81	3.53	0.93	3,760	0.92	34,082	0.93	81	4.04	0.93	1,978	0.93	1,978	0.93
Students with Disabilities	81	2.98	0.89	1,090	0.81	3,948	0.90	81	3.36	0.92	323	0.92	323	0.92
Students w/o Disabilities	81	3.57	0.93	3,723	0.92	31,096	0.93	81	4.11	0.92	1,720	0.92	1,720	0.92
Students Taking														
Accommodated Forms														
A: ASL	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	81	3.44	0.92	4,224	0.92	3,749	0.92	-	-	-	-	-	-	-
Students Taking Translated														
Forms														
Spanish-Language Form	81	2.73	0.83	814	0.83	814	0.83	-	-	-	-	-	-	-

2017 Technical Report

Table 8.23 Summary of Test Reliability Estimates for Subgroups: Integrated Mathematics I

Table 8.25 Summary of Test Ne			<u>a.o.g.</u> o a.po.	СВТ								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	81	3.53	0.92	425	0.71	9,376	0.93	-	-	-	-	-	-	-
Gender														
Male	81	3.52	0.92	268	0.74	4,995	0.93	-	-	-	-	-	-	-
Female	81	3.54	0.92	157	0.67	4,381	0.93	-	-	-	-	-	-	-
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	81	3.53	0.93	224	0.93	224	0.93	-	-	-	-	-	-	-
African American	81	3.34	0.91	692	0.91	692	0.91	-	-	-	-	-	-	-
Asian/Pacific Islander	81	3.81	0.93	3,735	0.93	3,735	0.93	-	-	-	-	-	-	-
Am. Indian/Alaska Native	81	3.26	0.88	103	0.88	103	0.88	-	-	-	-	-	-	-
Hispanic	81	3.28	0.89	260	0.63	4,375	0.90	-	-	-	-	-	-	-
Multiple	81	3.64	0.93	243	0.93	243	0.93	-	-	-	-	-	-	-
Special Instructional Needs														
Economically														
Disadvantaged	81	3.31	0.89	317	0.65	4,772	0.91	-	-	-	-	-	-	-
Not-economically	01	3.73	0.02	100	0.80	4.604	0.93							
Disadvantaged	81		0.93	108	0.80	4,604		_	-	-	-	-	-	-
English Learner	81	2.88	0.77	234	0.70	1,707	0.79	-	-	-	-	-	-	-
Non-English Learner	81	3.62	0.92	154	0.73	5,601	0.92	-	-	-	-	-	-	-
Students with Disabilities	81	2.97	0.85	284	0.66	935	0.91	-	-	-	-	-	-	-
Students w/o Disabilities	81	3.59	0.93	141	0.78	8,441	0.93	-	-	-	-	-	-	-
Students Taking														
Accommodated Forms														
A: ASL	-	-	-	-	-	-	-	_	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	81	2.88	0.68	368	0.68	368	0.68	-	-	-	-	-	-	-
Students Taking Translated														
Forms														
Spanish-Language Form	-	-			-	-	-	-	-	-	-	-		-

2017 Technical Report

Table 8.24 Summary of Test Reliability Estimates for Subgroups: Integrated Mathematics II

Table 8.24 Summary of Test Ne				СВТ								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample		Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	80	3.73	0.90	1,914	0.90	1,914	0.90	80	3.21	0.86	182	0.86	182	0.86
Gender														
Male	81	3.49	0.94	2,564	0.93	17,538	0.94	-	-	-	-	-	-	- '
Female	81	3.52	0.92	2,254	0.91	17,379	0.92	-	-	-	-	-	-	-
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	- '
Ethnicity														!
White	-	-	-	-	-	-	-	-	-	-	-	-	-	- '
African American	80	3.47	0.89	178	0.89	178	0.89	-	-	-	-	-	-	-
Asian/Pacific Islander	80	3.89	0.87	995	0.87	995	0.87	-	-	-	-	-	-	-
Am. Indian/Alaska Native	-	-	-	-	-	-	-	80	3.21	0.86	178	0.86	178	0.86
Hispanic	80	3.49	0.89	564	0.89	564	0.89	-	-	-	-	-	-	-
Multiple	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Special Instructional Needs														
Economically														
Disadvantaged	80	3.55	0.89	758	0.89	758	0.89	-	-	-	-	-	-	-
Not Economically	80	3.83	0.89	1,156	0.89	1,156	0.89							
Disadvantaged			0.09	1,130	0.05	1,130	U.65	_	-	-	-	-	-	-
English Learner	-	-	-	-	-	1 017	-	-	-	-	-	-	-	-
Non-English Learner	80	3.74	0.89	1,817	0.89	1,817	0.89	80	3.51	0.88	101	0.88	101	0.88
Students with Disabilities	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Students w/o Disabilities	80	3.74	0.89	1,829	0.89	1,829	0.89	80	3.28	0.86	157	0.86	157	0.86
Students Taking														
Accommodated Forms	_	_	_	_	_	_	_		_	_	_	_	_	_
A: ASL	_	_	_	_	_	-	_		_	_	_	_	_	_
C: Closed Caption	-	-	-	-	-	-	-	_	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Students Taking Translated														
Forms Spanish Language Form	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Spanish-Language Form														

2017 Technical Report

Table 8.25 Summary of Test Reliability Estimates for Subgroups: Integrated Mathematics III

				CBT								PBT		
			Avg.	Min.	Min.	Max.	Max.	Max.		Avg.	Min.	Min.	Max.	Max.
	Max. Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility	Score	SEM	bility	Size	bility	Size	bility
Total Group	81	3.89	0.93	477	0.93	477	0.93	-	-	-	-	-	-	-
Gender														
Male	81	3.92	0.93	250	0.93	250	0.93	-	-	-	-	-	-	-
Female	81	3.86	0.94	227	0.94	227	0.94	-	-	-	-	-	-	-
Unknown/Missing	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethnicity														
White	-	-	-	-	-	-	-	-	-	-	-	-	-	-
African American	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asian/Pacific Islander	81	4.60	0.87	163	0.87	163	0.87	-	-	-	-	-	-	-
Am. Indian/Alaska Native	81	3.18	0.78	100	0.78	100	0.78	-	-	-	-	-	-	-
Hispanic	81	3.15	0.90	144	0.90	144	0.90	-	-	-	-	-	-	-
Multiple	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Special Instructional Needs														
Economically														
Disadvantaged	81	3.39	0.85	296	0.85	296	0.85	-	-	-	-	-	-	-
Not Economically	01	4.55	0.00	101	0.00	101	0.00							
Disadvantaged	81	4.55	0.89	181	0.89	181	0.89	-	-	-	-	-	-	-
English Learner	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Non-English Learner	81	3.96	0.93	450	0.93	450	0.93	-	-	-	-	-	-	-
Students with Disabilities	-	-	-	-	-	-	-	-	-	-	-	-	-	•
Students w/o Disabilities	81	3.95	0.93	448	0.93	448	0.93	-	-	-	-	-	-	•
Students Taking														
Accommodated Forms														
A: ASL	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C: Closed Caption	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R: Screen Reader	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T: Text-to-Speech	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Students Taking Translated														
Forms														
Spanish-Language Form	-	-	-	-	-	-	-	_	-	-	-	-	-	-

8.5 Reliability Results for English Language Arts/Literacy Subscores

PARCC developed subclaims in addition to major claims based on the Common Core State Standards. English language arts/literacy (ELA/L) has two major claims relating to Reading Complex Text and Writing. The major claim for Reading Complex Text is that students read and comprehend a range of sufficiently complex texts independently. The major claim for Writing is that students write effectively when using and/or analyzing sources. Refer to Table 8.26 for a summary of the ELA/L claims and subclaims.

Table 8.26 Descriptions of ELA/L Claims and Subclaims

		English Language Arts/Literacy
Major Clai	im Subclaim	Description
Reading	Reading Literature	Students demonstrate comprehension and draw evidence from
		readings of grade-level, complex literary text.
Reading	Reading Information	Students demonstrate comprehension and draw evidence from
		readings of grade-level, complex informational text.
Reading	Reading Vocabulary	Students use context to determine the meaning of words and
		phrases.
Writing	Writing Written	Students produce clear and coherent writing in which the
	Expression	development, organization, and style are appropriate to the task,
		purpose, and audience.
Writing	Writing Knowledge	Students demonstrate knowledge of conventions and other
	Language and	important elements of language.
	Conventions	

Reliability indices were calculated for each major claim and subclaim. Table 8.27 presents the average reliability estimates for all forms of the test at the specified grade and testing mode for the ELA/L tests. In order to assist in understanding the reliability estimates, the average maximum number of points for each major claim and subclaim are also provided.

The reliabilities for the Reading Complex Text claim for grades 3 through 11 range from .87 to .91 for CBT and from .80 to .93 for PBT. The median reliability across all grades and modes is .90. The reliability for grades 3 through 5 range from .85 to .89, and the average reliability for grades 6 through 11 ranges from .85 to .93. Grade 11 reliability for the PBT is .80.

The Writing claim reliabilities are generally lower than those for the Reading claim. The median reliability across all grades and modes is .85. The reliabilities for the Writing claim for grades 3 and 4 are based on 27 points and 33 points, respectively, and the average reliabilities for the grades 5 through 11 Writing claims are based on 36 points. The reliabilities for grades 3 and 5 range from .79 to .83, and the average reliability for grades 6 through 11 ranges from .81 to .89. Taking the number of points into consideration, the per-point information of the two claims are quite similar, as are the per-point information when comparing grades 3 through 5 with grades 6 through11.

The reliabilities of the Reading Literature subclaim scores over testing modes and grades have a median of .76, and the reliabilities vary from .61 to .79. For seven of the nine PBTs, the Reading Literature subclaim was based on less than 25 points. The reliabilities for these PBTs ranged from .61 to .72. The reliabilities for tests with 25 or more points ranged from .71 to .79. For grades 3 through 5, the Reading Information subclaim reliabilities are based on 19 to 26 points and the reliability is typically lower than for grades 6 through 11, where the Reading Information subclaim is based on 30 to 40 points. The median average reliability for Reading Information is .79 overall. Once again, when taking the number of points into consideration, the per-point information of the claim is quite similar when comparing grades 3 through 5 with grades 6 through 11. The Reading Vocabulary subclaim is based on the fewest points, ranging from 12 to 24 points. The subclaim average reliabilities have a median of .67 and range from .48 to .78. The lower reliabilities for the Reading Vocabulary subclaim are reflected in the smaller range of raw score points.

The Writing Written Expression subclaim is based on 27 and 33 points for grades 3 and 4–5 CBT respectively, and 36 points for grade 4 and 5 PBT and grades 6 through 11. The median of the average reliabilities for the tests with less than 36 points is .77, and the median of the average reliabilities for grades 6 through 11 is .85. The Writing Knowledge of Language and Conventions subclaims are all based on nine points. The average reliabilities are consistent, varying from .78 to .90, with a median of .84.

Table 8.27 Average ELA/L Reliability Estimates for Total Test and Subscores

			iding: otal		ding: ature		nding: mation		iding: ibulary		iting: otal		iting: Expression	Knov Langu	iting: vledge age and entions
Grade Level	Testing Mode	Average Max Possible Raw Score	Average Reliability												
3	CBT	58	0.90	25	0.79	20	0.75	13	0.73	36	0.81	27	0.74	9	0.83
	PBT	58	0.89	27	0.77	19	0.71	12	0.74	36	0.80	27	0.72	9	0.80
4	CBT	64	0.89	26	0.76	24	0.77	14	0.63	42	0.83	33	0.80	9	0.84
	PBT	64	0.86	24	0.66	24	0.72	16	0.67	45	0.79	36	0.73	9	0.78
5	CBT	63	0.87	25	0.71	24	0.74	14	0.62	42	0.85	33	0.79	9	0.86
	PBT	64	0.85	24	0.62	26	0.73	14	0.59	45	0.81	36	0.72	9	0.80
	CBT	76	0.91	26	0.78	34	0.82	17	0.70	45	0.87	36	0.86	9	0.88
6	PBT	76	0.90	22	0.73	34	0.81	20	0.71	45	0.84	36	0.81	9	0.83
	CBT	76	0.90	25	0.75	35	0.81	17	0.64	45	0.87	36	0.86	9	0.89
7	PBT	76	0.88	24	0.72	32	0.75	20	0.68	45	0.84	36	0.81	9	0.82
	CBT	76	0.90	29	0.79	32	0.78	15	0.62	45	0.88	36	0.88	9	0.89
8	PBT	76	0.89	16	0.72	40	0.80	20	0.69	45	0.85	36	0.82	9	0.83
	CBT	76	0.90	27	0.78	36	0.82	13	0.61	45	0.89	36	0.89	9	0.90
9	PBT	76	0.91	28	0.78	34	0.80	14	0.69	45	0.86	36	0.83	9	0.84
	CBT	76	0.90	26	0.77	30	0.81	20	0.67	45	0.88	36	0.88	9	0.88
10	PBT	76	0.93	22	0.78	30	0.86	24	0.78	45	0.87	36	0.87	9	0.88
	CBT	76	0.90	24	0.75	34	0.81	18	0.67	45	0.87	36	0.86	9	0.86
11	PBT	76	0.80	20	0.61	36	0.63	20	0.48	45	0.83	36	0.79	9	0.79

8.6 Reliability Results for Mathematics Subscores

For mathematics, there are four subclaims related to the major claim that students are on track or ready for college and careers:

- Subclaim A: Students solve problems involving the major content for their grade level with connections to the Standards for Mathematical Practice.
- Subclaim B: Students solve problems involving the *additional and supporting content* for their grade level with connections to the Standards for Mathematical Practice.
- Subclaim C: Students express grade/course-level appropriate mathematical reasoning by constructing viable mathematical arguments and critiquing the reasoning of others, and/or attending to precision when making mathematical statements.
- Subclaim D: Students solve real-world problems with a degree of difficulty appropriate to the grade/course by applying knowledge and skills articulated in the standards and by engaging particularly in the *modeling practice*.

Reliability estimates were calculated for each subclaim for mathematics. Table 8.28 presents the average reliability estimates for mathematics subclaims by mode (CBT and PBT) and grade/subject. The sample sizes for Integrated Mathematics I and III PBT were not sufficient for reliability analyses.

Subclaims with greater numbers of points tend to have greater reliability estimates. The Major Content subclaim has the largest number of points for each assessment and, accordingly, has higher average reliabilities than the other three subclaims. For all grades and modes, the median of the average reliabilities for the subclaim is .83. The Major Content reliabilities were higher for the grade 3 – 8 tests and lower for the six end-of-course (EOC) assessments. The medians of the average reliabilities for the Major Content subclaim for the grade level test versus the EOC tests are .86 and .81 respectively.

The median of the average reliabilities for the Additional and Supporting Content subclaim for grades 3 through 8 is .65, and the median of the average reliabilities for the traditional EOC tests is .73. Due to the similarity in the number of items representing the Mathematics Reasoning subclaim across grades and courses, the reliabilities for Mathematics Reasoning are less variable than those for the Additional and Supporting Content subclaim, and range from .48 for Integrated Mathematics II PBT test forms to .75 for the grade 6 PBT test forms. The median of the average reliabilities for this subclaim is .71

For the Modeling Practice subclaim, the median of the average reliabilities is .62 for grades 3 through 8, and the medians of the averages are .70 and .66 for the traditional and integrated mathematics EOC test forms, respectively.

Table 8.28 Average Mathematics Reliability Estimates for Total Test and Subscores

		Major Content		Additional & Su Content	pporting	Mathematics R	easoning	Modeling Pract	ice
Grade Level	Testing Mode	Average Max Possible Raw Score	Average Reliability						
	СВТ	29	0.89	11	0.75	14	0.71	12	0.68
3	PBT	28	0.87	12	0.75	14	0.67	12	0.66
4	СВТ	31	0.89	9	0.69	14	0.73	12	0.63
4	PBT	31	0.87	9	0.64	14	0.72	12	0.60
_	СВТ	30	0.87	10	0.63	14	0.72	12	0.65
5	PBT	30	0.84	10	0.62	14	0.66	12	0.53
	СВТ	26	0.87	14	0.72	14	0.73	12	0.70
6	PBT	26	0.83	14	0.68	14	0.75	12	0.64
_	СВТ	29	0.85	11	0.65	14	0.74	12	0.54
7	PBT	29	0.76	11	0.61	14	0.72	12	0.45
0	СВТ	27	0.81	13	0.63	14	0.70	12	0.60
8	PBT	27	0.77	13	0.58	14	0.62	12	0.58
44	СВТ	26	0.82	15	0.72	14	0.74	18	0.75
A1	PBT	26	0.78	15	0.63	14	0.65	18	0.70
	СВТ	30	0.86	18	0.76	14	0.74	18	0.68
GO	PBT	30	0.87	19	0.71	14	0.66	18	0.71
42	СВТ	25	0.82	20	0.77	14	0.70	18	0.65
A2	PBT	23	0.80	20	0.74	14	0.68	18	0.66
D.4.1	СВТ	27	0.77	20	0.77	14	0.69	18	0.73
M1	PBT	-	-	-	-	-	-	-	-
N/2	СВТ	31	0.78	17	0.65	14	0.57	18	0.62
M2	PBT	29	0.62	19	0.63	14	0.48	18	0.59
N42	СВТ	26	0.83	23	0.73	14	0.74	18	0.69
M3	PBT	-	-	-	-	-	-	-	-

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics II, M3 = Integrated Mathematics III. Integrated Mathematics I and III PBT had insufficient sample sizes.

8.7 Reliability of Classification

The reliability of the classifications for the test takers was calculated using the computer program BB-CLASS (Brennan, 2004), which operationalizes a statistical method developed by Livingston and Lewis (1993, 1995). As Livingston and Lewis (1993, 1995) explain, this method uses information from the administration of one test form (i.e., distribution of scores, the minimum and maximum possible scores, the cut points used for classification, and the reliability coefficient) to estimate two kinds of statistics, decision accuracy and decision consistency. Decision accuracy refers to the extent to which the classifications of test takers based on their scores on the test form agree with the classifications made on the basis of the classifications that would be made if the test scores were perfectly reliable. Decision consistency refers to the agreement between these classifications based on two non-overlapping, equally difficult forms of the test.

Decision consistency values are always lower than the corresponding decision accuracy values, because in decision consistency, both of the classifications of the student are based on scores that depend on which form of the test the student took. In decision accuracy, only one of the classifications is based on a score that can vary in this way. It is not possible to know which students were accurately classified, but it is possible to estimate the proportion of the students who were accurately classified. Similarly, it is not possible to know which students would be consistently classified if they were retested with another form, but it is possible to estimate the proportion of the students who would be consistently classified.

English Language Arts/Literacy

Table 8.29 provides information about the accuracy and the consistency of two classifications made on the basis of the scores on the grades 3 through 11 ELA/L assessments. The columns labeled "Exact level" provide the classification of the student into one of five achievement levels. The columns labeled "Level 4 or higher vs. 3 or lower" provide the classification of the student as being either in one of the upper two levels (Levels 4 and 5) or in one of the lower three levels (Levels 1, 2, and 3).

The table shows that for classifying each student into one of the five achievement levels, the proportion accurately classified ranges from .67 to .78; the proportion who would be consistently classified on two different test forms ranges from .56 to .69. For classifying each student simply as being at Level 4 or higher vs. being at Level 3 or lower, the proportion accurately classified ranges from .89 to .93; the proportion who would be consistently classified this way on two different test forms ranges from .85 to .90.

Table 8.29 Reliability of Classification: Summary for ELA/I	Table 8.29	Reliability	of Classificati	on: Summary	v for FLA/L
---	-------------------	-------------	-----------------	-------------	-------------

		Decision	Accuracy:	Decision (Consistency:
		•	Accurately	•	Consistently
	<u>-</u>	Clas	sified	Clas	ssified
			Level 4 or		Level 4 or
Grade	Testing		higher vs. 3 or		higher vs. 3 or
Level	Mode	Exact level	lower	Exact level	lower
3	CBT	0.75	0.92	0.66	0.88
3	PBT	0.72	0.91	0.63	0.87
4	CBT	0.73	0.91	0.63	0.87
4	PBT	0.70	0.90	0.59	0.85
5	CBT	0.75	0.91	0.66	0.87
J	PBT	0.72	0.90	0.63	0.85
6	CBT	0.78	0.92	0.69	0.89
U	PBT	0.76	0.91	0.67	0.88
7	CBT	0.75	0.92	0.65	0.89
,	PBT	0.71	0.91	0.61	0.87
8	CBT	0.75	0.92	0.66	0.89
O	PBT	0.72	0.91	0.62	0.88
9	CBT	0.77	0.93	0.68	0.90
<i></i>	PBT	0.75	0.93	0.66	0.90
10	CBT	0.73	0.92	0.64	0.89
10	PBT	0.75	0.93	0.66	0.90
11	CBT	0.75	0.92	0.66	0.89
11	PBT	0.67	0.89	0.56	0.85

Table 8.30 provides more detailed information about the accuracy and the consistency of the classification of students into proficiency levels for ELA/L grade 3. Each cell in the 5-by-5 table shows the estimated proportion of students who would be classified into a particular combination of proficiency levels. The sum of the five bold values on the diagonal should equal the level of decision accuracy or consistency presented in Table 8.29. For "Level 4 and higher vs. 3 and lower" found in Table 8.27, the sum of the shaded values in Table 8.28 should equal the level of decision accuracy or consistency presented in Table 8.29. Note that the sums based on values in Table 8.28 may not match exactly to the values in Table 8.29 due to truncation and rounding.

Detailed information for all ELA/L spring results are provided in Appendix 8 Tables A.8.1 to A.8.9. Fall block results for ELA/L grades 9 through 11 are provided in the addendum to Section 8. The structure of these tables is the same as that of Table 8.28 and the values in the tables should be interpreted in the same manner as Table 8.30.

Table 8.30 Reliability of Classification: Grade 3 ELA/L

		Full						Catagory
		Summative	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		Scale Score						TOtal
		650 – 699	0.15	0.02	0.00	0.00	0.00	0.18
	Decision	700 – 724	0.03	0.11	0.04	0.00	0.00	0.19
	Accuracy	725 – 749	0.00	0.04	0.15	0.04	0.00	0.23
		750 – 809	0.00	0.00	0.04	0.31	0.02	0.37
СВТ		810 – 850	0.00	0.00	0.00	0.01	0.02	0.03
CDI		650 – 699	0.15	0.04	0.00	0.00	0.00	0.19
	Decision	700 – 724	0.04	0.09	0.05	0.01	0.00	0.19
	Consistency	725 – 749	0.00	0.04	0.11	0.05	0.00	0.22
		750 – 809	0.00	0.01	0.06	0.28	0.02	0.37
		810 – 850	0.00	0.00	0.00	0.02	0.02	0.04
		650 – 699	0.17	0.03	0.00	0.00	0.00	0.19
	Decision	700 – 724	0.04	0.11	0.04	0.00	0.00	0.20
	Accuracy	725 – 749	0.00	0.04	0.12	0.05	0.00	0.22
		750 – 809	0.00	0.00	0.04	0.29	0.02	0.36
PBT		810 – 850	0.00	0.00	0.00	0.01	0.02	0.03
PDI		650 – 699	0.16	0.04	0.01	0.00	0.00	0.21
	Decision	700 – 724	0.04	0.09	0.05	0.01	0.00	0.19
	Consistency	725 – 749	0.01	0.05	0.09	0.06	0.00	0.21
		750 – 809	0.00	0.01	0.06	0.26	0.02	0.35
		810 – 850	0.00	0.00	0.00	0.02	0.02	0.04

Note: This table includes the same information as Table A.8.1. The sum of the five bold values on the diagonal should equal the level of decision accuracy or consistency presented in Table 8.27. For "Level 4 and higher vs. 3 and lower" presented in Table 8.27, the sum of the shaded values in Table 8.28 should equal the level of decision accuracy or consistency presented in Table 8.27. Any differences between the sums based on values in Table 8.28 and the values in Table 8.27 are due to truncation and rounding.

Mathematics

Table 8.31 provides information about the accuracy and the consistency of two classifications made on the basis of the scores on the mathematics assessments. For the grades 3 through 8 mathematics tests, the table shows that for classifying each student into one of the five achievement levels, the proportion accurately classified ranges from .69 to .79; the proportion who would be consistently classified on two different test forms ranges from .59 to .71. For the six high school mathematics courses, the table shows that for classifying each student into one of the five achievement levels, the proportion accurately classified ranges from .71 to .81; the proportion who would be consistently classified on two different test forms ranges from .61 to .73.

For classifying each student simply as being at Level 4 or higher vs. being at Level 3 or lower, for the grades 3 through 8 mathematics tests, the proportion accurately classified ranges from .91 to .93; the proportion who would be consistently classified on two different test forms ranges from .88 to .91. For the six high school mathematics courses, the proportion accurately classified as being at Level 4 or higher vs. being at Level 3 or lower ranges from .90 to .94; the proportion who would be consistently classified on two different test forms ranges from .86 to .92.

Appendix 8 tables A.8.10 to A.8.21 provide more detailed information about the accuracy and the consistency of the classification of students into proficiency levels for mathematics. Each cell in the 5-by-5 table shows the estimated proportion of students who would be classified into a particular combination of proficiency levels. Fall block results for Algebra I, Geometry, and Algebra II are provided in the addendum to Section 8.

Table 8.31 Reliability of Classification: Summary for Mathematics

			Accuracy:		Consistency:
			n Accurately	•	Consistently
		Clas	sified	Clas	sified
			Level 4 or		Level 4 or
Grade	Testing		higher vs. 3 or		higher vs. 3 or
Level	Mode	Exact Level	lower	Exact Level	lower
3	CBT	0.77	0.93	0.68	0.90
3	PBT	0.76	0.92	0.66	0.89
4	CBT	0.79	0.93	0.71	0.90
4	PBT	0.77	0.93	0.68	0.91
5	CBT	0.77	0.92	0.68	0.89
J	PBT	0.76	0.93	0.66	0.91
6	CBT	0.79	0.93	0.70	0.90
U	PBT	0.76	0.92	0.66	0.89
7	CBT	0.77	0.92	0.68	0.89
,	PBT	0.74	0.92	0.64	0.88
8	CBT	0.74	0.92	0.65	0.89
٥	PBT	0.69	0.91	0.59	0.88
A1	CBT	0.79	0.93	0.71	0.90
ΑI	PBT	0.76	0.92	0.67	0.89
	CBT	0.80	0.93	0.72	0.90
GO	PBT	0.81	0.93	0.73	0.90
4.2	CBT	0.77	0.93	0.69	0.91
A2	PBT	0.76	0.93	0.67	0.89
N 4 4	CBT	0.75	0.93	0.66	0.90
M1	PBT	-	-	-	-
N 4 2	CBT	0.74	0.90	0.64	0.86
M2	PBT	0.71	0.94	0.61	0.92
N 42	CBT	0.78	0.93	0.70	0.90
M3	PBT	-	-	-	-

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics II, M3 = Integrated Mathematics III. "--" means insufficient sample size (< 100 students).

8.8 Inter-rater Agreement

Inter-rater agreement is the agreement between the first and second scores assigned to student responses. Inter-rater agreement measurements include exact, adjacent, and nonadjacent agreement. Pearson scoring staff used these statistics as one factor in determining the needs for continuing training and intervention on both individual and group levels. Table 8.32 displays both PARCC's expectations and the actual spring 2017 agreement percentages for perfect agreement and perfect plus adjacent agreement.

Table 8.32 Inter-rater Agreement Expectations and Results

Subject	Score Point Range	Perfect Agreement Expectation	Perfect Agreement Result	Within One Point Expectation	Within One Point Result
Mathematics	0–1	90%	97%	96%*	100%
Mathematics	0–2	80%	94%	96%	100%
Mathematics	0–3	70%	93%	96%	99%
Mathematics	0–4	65%	92%	95%	98%
Mathematics	0–5	65%	90%	95%	98%
Mathematics	0–6	65%	91%	95%	97%
ELA/L	Multi-trait	65%	75%	96%	99%

Note: *A 0 or 1 score compared to a blank score will have a disagreement greater than 1 point.

Pearson's ePEN2 scoring system included comprehensive inter-rater agreement reports that allowed supervisory personnel to monitor both individual and group performance. Based on reviews of these reports, scoring experts targeted individuals for increased backreading and feedback and, if necessary, retraining. Table 8.32 shows that the actual percentages for both exact reader agreement and the percentages of agreement within one point were higher than the inter-rater agreement expectations. Refer to Section 4 for more information on hand-scoring.

Section 9: Validity

9.1 Overview

The Standards for Educational and Psychological Testing, issued jointly by the American Educational Research Association [AERA], American Psychological Association [APA], and National Council on Measurement in Education [NCME] (2014) reports:

Validity refers to the degree to which evidence and theory support the interpretations of test scores for proposed uses of tests. Validity is, therefore, the most fundamental consideration in developing tests and evaluating tests. The process of validation involves accumulating relevant evidence to provide a sound scientific basis for the proposed score interpretations (p. 11).

The purpose of test validation is not to validate the test itself but to validate interpretations of the test scores for particular uses. Test validation is not a quantifiable property but an ongoing process, beginning at initial conceptualization and continuing throughout the lifetime of an assessment. Every aspect of an assessment provides evidence in support of its validity (or evidence of lack of validity), including design, content specifications, item development, and psychometric characteristics. The 2016–2017 operational assessment provided an opportunity to gather evidence of validity based on both test content and on the internal structure of the tests.

Pearson applies the principles of universal design, as articulated in materials developed by the National Center for Educational Outcomes (NCEO) at the University of Minnesota (Thompson, Johnstone, and Thurlow, 2002).

9.2 Evidence Based on Test Content

Evidence based on content of achievement tests is supported by the degree of correspondence between test items and content standards. The degree to which the test measures what it claims to measure is known as construct validity. The PARCC assessments adhere to the principles of evidence-centered design, in which the standards to be measured (the Common Core State Standards) are identified, and the performance a student needs to achieve to meet those standards is delineated in the PARCC evidence statements. Test items are reviewed for adherence to universal design principles, which maximize the participation of the widest possible range of students.

Pearson and PARCC built spreadsheets at the evidence statement level that incorporate the probability statements from the test blueprints and attrition rates at committee review and data review. The basis of our entire item development is driven by the use of these item development target spreadsheets provided by PARCC. Before beginning item development, Pearson uses these target spreadsheets to develop an internal item development plan to correlate with the expectations of the test design. These are reviewed and approved by PARCC. We acknowledge that each assessment has multiple parts and each part specifies the types of tasks and standards eligible for assessment.

In addition to the PARCC evidence statements, content is aligned through the articulation of performance in the performance level descriptors. At the policy level, the performance level descriptors include policy claims about the educational achievement of students who attain a particular performance level, and a broad description of the grade-level knowledge, skills, and practices students performing at a particular achievement level are able to demonstrate. Those policy-level descriptors are the foundation for the subject- and grade-specific performance level descriptors, which, along with the PARCC evidence frameworks, guide the development of the items and tasks.

The PARCC college- and career-ready determinations (CCRD) in English language arts/literacy (ELA/L) and mathematics describe the academic knowledge, skills, and practices students must demonstrate to show readiness for success in entry-level, credit-bearing college courses and relevant technical courses. The PARCC states determined that this level means graduating from high school and having at least a 75 percent likelihood of earning a grade of "C" or better in credit-bearing courses without the need for remedial coursework. After reviewing the standards and assessment design, the PARCC Governing Board (made up of the K–12 education chiefs in PARCC states) in conjunction with the PARCC Advisory Committee on College Readiness (composed of higher education chiefs in the PARCC states), determined that students who achieve at Levels 4 and 5 on the final PARCC high school assessments are likely to have acquired the skills and knowledge to meet the definition of college- and career-readiness. To validate the determinations, PARCC conducted a postsecondary educator judgment study and a benchmark study of the SAT, ACT, National Assessment of Educational Progress (NAEP), Trends in International Mathematics and Science Study (TIMSS), Programme of International Student Assessment (PISA), and Progress in International Reading Literacy Study (PIRLS) tests (McClarty, Korbin, Moyer, Griffin, Huth, Carey, and Medberry, 2015).

Gathering construct validity evidence for PARCC is embedded in the process by which the PARCC assessment content is developed and validated. At each step in the assessment development process, PARCC states involved hundreds of educators, assessment experts, and bias and sensitivity experts in review of text, items, and tasks for accuracy, appropriateness, and freedom from bias. See Chapter 2 for an overview of the content development process. In the early stages of development, Pearson conducted research studies to validate the PARCC item and task development approach. One such study was a student task interaction study designed to collect data on the student's experience with the assessment tasks and technological functionalities, as well as the amount of time needed for answering each task. Pearson also conducted a rubric choice study that compared the functioning of two rubrics developed to score the prose constructed-response (PCR) tasks in ELA/L. Quantitative and qualitative evidence was collected to support the use of a condensed or expanded trait scoring rubric in scoring student responses.

PARCC items and tasks were field tested prior to their use on an assessment. During the initial field test administration in 2014, PARCC states collected feedback from students, test administrators, test coordinators, and classroom teachers on their experience with the PARCC assessments, including the quality of test items and student experience. A summary of the feedback can be found at: http://parcc-assessment.org/content/uploads/2017/11/PARCCCCRDPolicyandPLDsFINAL.pdf. The feedback from that survey was used to inform test directions, test timing, and the function of online task interactions.

Performance data from the field test also informed the future development of additional items and tasks.

All item developers and item writers are provided an electronic version of PARCC accessibility guidelines and PARCC's linguistic complexity rubric. Items and passages are reviewed internally by accessibility and fairness experts trained in the principles of universal design and who become well versed in PARCC's accessibility guidelines. Items received internal review for alignment to PARCC evidence tables, task generation model, item selection guidelines, and accessibility and fairness reviews.

An important consideration when constructing test forms is recognition of items that may introduce construct-irrelevant variance. Such items should not be included on test forms to help ensure fairness to all subgroups of test takers. PARCC convened bias and sensitivity committees to review all items. Additionally, content experts facilitated reviews of all items. All reviewers were trained using PARCC bias and sensitivity guidelines, and the guidelines were used to review items and ELA/L passages. Accommodations were made available based on individual need documented in the student's approved IEP, 504 Plan, or if required by the PARCC member state, an English learner (EL) Plan. An accessibility specialist worked in consultation with the PARCC accessibility specialist to review forms and determine which forms should be used for students with accommodations.

The ELA/L and mathematics operational test forms, as described in Section 2, were carefully constructed to align with the test blueprints and specifications that are based on the Common Core State Standards (CCSS). During the fall of 2016, content experts representing various PARCC states, along with other content experts, held a series of meetings to review the operational forms for ELA/L and mathematics. These meetings provided opportunity to evaluate tests forms in their entirety and recommend changes. Requested item replacements were accommodated to the extent possible while striving to maintain the integrity of the various linking designs required for the operational test analyses. Psychometricians were available throughout this process to provide guidance with regard to implications of item replacements for the linking and statistical requirements.

Further information regarding the PARCC assessment college- and career-ready content standards, performance level descriptors, and accessibility features and accommodations is provided at http://parcc-assessment.org/college-career-ready.

9.3 Evidence Based on Internal Structure

Analyses of the internal structure of a test typically involve studies of the relationships among test items and/or test components (i.e., subclaims) in the interest of establishing the degree to which the items or components appear to reflect the construct on which a test score interpretation is based (AERA, APA, & NCME, 2014, p. 16). The term construct is used here to refer to the characteristics that a test is intended to measure; in the case of the PARCC operational tests, the characteristics of interest are the knowledge and skills defined by the test blueprint for ELA/L and for mathematics.

The PARCC assessments provide a full summative test score, Reading claim score, and Writing claim score as well as ELA/L subclaims and mathematics subclaim scores. The goal of reporting at this level is

to provide criterion-referenced data to assess the strengths and weaknesses of a student's achievement in specific components of each content area. This information can then be used by teachers to plan for further instruction, to plan for curriculum development, and to report progress to parents. The results can also be used as one factor in making administrative decisions about program effectiveness, teacher effectiveness, class grouping, and needs assessment.

9.3.1 Intercorrelations

The ELA/L full summative tests comprise two claim scores, Reading (RD) and Writing (WR), and five subclaim scores—Reading Literature (RL), Reading Information (RI), Reading Vocabulary (RV), Writing Written Expression (WE), and Writing Knowledge Language and Conventions (WKL). The RD claim score is a composite of RL, RI, and RV. The writing claim score, a composite of WE and WKL, comprises only PCR items, and the same PCR items are in each subclaim. The ELA/L operational test analyses were performed by evaluating the separate trait scores of WE and WKL, and for some PCR items also RL or RI; therefore, the trait scores were used for the intercorrelations.

The mathematics full summative tests have four subclaim scores—Major Content (MC), Mathematical Reasoning (MR), Modeling Practice (MP), and Additional and Supporting Content (ASC).

High total group internal consistencies as well as similar reliabilities across subgroups provide additional evidence of validity. High reliability of test scores implies that the test items within a domain are measuring a single construct, which is a necessary condition for validity when the intention is to measure a single construct. Refer to Section 8 for reliability estimates for the overall population, subgroups of interest, as well as for subscores for ELA/L and subclaims for mathematics.

Another way to assess the internal structure of a test is through the evaluation of correlations among subscores. These analyses were conducted between the ELA/L Reading and Writing claim scores and the ELA/L subclaims (RL, RI, RV, WE, and WKL) and between the mathematics subclaims. If these components within a content area are strongly related to each other, this is evidence of unidimensionality.

A series of tables are provided to summarize the results for the spring 2017 administration.⁷ Tables 9.1 through 9.9 present the Pearson correlations observed between the ELA/L Reading and Writing claim scores and subclaim scores for each grade; correlations are reported separately for online (CBT) and paper (PBT) versions of the tests. The tables provide the weighted average intercorrelations by averaging the intercorrelations computed for all the core operational forms of the test separately for the CBT and PBT tests within each grade level. The total sample size across all forms is provided in the upper triangle portion of the tables. The subclaim reliabilities (from Section 8) are reported along the diagonal. The WR, WE, and WKL scores tended to be highly correlated; this is expected given that these three intercorrelations are based on the trait scores from the same Writing items. RL, RI, and RV, all subclaims of Reading, are moderately to highly correlated. Additionally, the WR claim and the WE and WKL

⁷ Addendum 9 provides a summary of results for the fall 2016 administration.

subclaims are moderately correlated with RD subclaims (of RL, RI, and RV). These moderate to high ELA/L intercorrelations amongst the subclaims are sufficiently high to provide evidence that the ELA/L tests are unidimensional. The moderate intercorrelations among the subclaims and claims suggest the claims may be sufficient for individual student reporting.

The intercorrelations and reliability estimates for mathematics are provided in Tables 9.10 through 9.21. The mathematics intercorrelations are moderate. The only observable pattern in the mathematics intercorrelations is that the MC subclaim generally has slightly higher correlations with the ASC, MR, and MP subclaims; the intercorrelations amongst the ASC, MR, and MP subclaims are usually slightly lower. The mathematics intercorrelations are sufficiently high to suggest that the mathematics tests are likely to be unidimensional with some minor secondary dimensions.

Additionally, the ELA/L and mathematics correlations for the two modes, PBT and CBT, displayed similar patterns of intercorrelations, with the CBT intercorrelations generally, but not always, being slightly larger than their PBT counterparts. Overall, these findings suggest that the structure of the PBT assessments and CBT assessments are similar. The sample sizes for Integrated Mathematics I and III PBTs were both below 100 and thus are not reported here.

Table 9.1 Average Intercorrelations and Reliability between Grade 3 ELA/L Subclaims

				СВТ			PBT								
	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.90	363,128	363,128	363,128	363,128	363,128	363,128	RD	0.89	57,188	57,188	57,188	57,188	57,188	57,188
RL	0.93	.79	363,128	363,128	363,128	363,128	363,128	RL	0.93	0.77	57,188	57,188	57,188	57,188	57,188
RI	0.90	0.75	0.75	363,128	363,128	363,128	363,128	RI	0.90	0.73	0.71	57,188	57,188	57,188	57,188
RV	0.88	0.74	0.71	0.73	363,128	363,128	363,128	RV	0.88	0.73	0.72	0.74	57,188	57,188	57,188
WR	0.71	0.67	0.67	0.58	0.81	363,128	363,128	WR	0.75	0.70	0.70	0.63	0.80	57,188	57,188
WE	0.69	0.65	0.66	0.56	0.99	0.74	363,128	WE	0.74	0.68	0.69	0.62	0.99	0.72	57,188
WKL	0.66	0.62	0.63	0.55	0.91	0.83	0.83	WKL	0.70	0.65	0.66	0.60	0.91	0.83	0.80

Table 9.2 Average Intercorrelations and Reliability between Grade 4 ELA/L Subclaims

				СВТ				PBT							
	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.89	373,912	373,912	373,912	373,912	373,912	373,912	RD	0.86	48,905	48,905	48,905	48,905	48,905	48,905
RL	0.92	0.76	373,912	373,912	373,912	373,912	373,912	RL	0.88	0.66	48,905	48,905	48,905	48,905	48,905
RI	0.91	0.74	0.77	373,912	373,912	373,912	373,912	RI	0.89	0.65	0.72	48,905	48,905	48,905	48,905
RV	0.84	0.68	0.68	0.63	373,912	373,912	373,912	RV	0.87	0.67	0.68	0.67	48,905	48,905	48,905
WR	0.75	0.70	0.71	0.67	0.83	373,912	373,912	WR	0.76	0.70	0.68	0.62	0.79	48,905	48,905
WE	0.74	0.69	0.70	0.56	0.99	0.80	373,912	WE	0.75	0.69	0.68	0.61	0.99	0.73	48,905
WKL	0.70	0.65	0.66	0.54	0.93	0.88	0.84	WKL	0.70	0.65	0.62	0.58	0.92	0.87	0.78

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.3 Average Intercorrelations and Reliability between Grade 5 ELA/L Subclaims

				СВТ			РВТ								
•	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.87	399,223	399,223	399,223	399,223	399,223	399,223	RD	0.85	14,948	14,948	14,948	14,948	14,948	14,948
RL	0.90	0.71	399,223	399,223	399,223	399,223	399,223	RL	0.86	0.62	14,948	14,948	14,948	14,948	14,948
RI	0.91	0.71	0.74	399,223	399,223	399,223	399,223	RI	0.91	0.66	0.73	14,948	14,948	14,948	14,948
RV	0.83	0.64	0.65	0.62	399,223	399,223	399,223	RV	0.82	0.59	0.63	0.59	14,948	14,948	14,948
WR	0.72	0.67	0.67	0.55	0.85	399,223	399,223	WR	0.71	0.64	0.66	0.54	0.81	14,948	14,948
WE	0.71	0.66	0.66	0.54	0.99	0.79	399,223	WE	0.70	0.64	0.65	0.53	0.99	0.72	14,948
WKL	0.71	0.65	0.65	0.55	0.95	0.90	0.86	WKL	0.68	0.61	0.63	0.51	0.94	0.89	0.80

Table 9.4 Average Intercorrelations and Reliability between Grade 6 ELA/L Subclaims

				CBT				РВТ							
•	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.91	389,198	389,198	389,198	389,198	389,198	389,198	RD	0.90	17,228	17,228	17,228	17,228	17,228	17,228
RL	0.92	0.78	389,198	389,198	389,198	389,198	389,198	RL	0.88	0.73	17,228	17,228	17,228	17,228	17,228
RI	0.94	0.78	0.82	389,198	389,198	389,198	389,198	RI	0.94	0.75	0.81	17,228	17,228	17,228	17,228
RV	0.87	0.72	0.74	0.70	389,198	389,198	389,198	RV	0.88	0.69	0.75	0.71	17,228	17,228	17,228
WR	0.75	0.72	0.72	0.59	0.87	389,198	389,198	WR	0.74	0.72	0.70	0.57	0.84	17,228	17,228
WE	0.74	0.72	0.71	0.58	1.00	0.86	389,198	WE	0.73	0.72	0.69	0.57	1.00	0.81	17,228
WKL	0.74	0.71	0.71	0.59	0.97	0.95	0.88	WKL	0.71	0.70	0.68	0.55	0.96	0.94	0.83

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.5 Average Intercorrelations and Reliability between Grade 7 ELA/L Subclaims

				СВТ			РВТ								
-	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.90	390,424	390,424	390,424	390,424	390,424	390,424	RD	0.88	15,527	15,527	15,527	15,527	15,527	15,527
RL	0.91	0.75	390,424	390,424	390,424	390,424	390,424	RL	0.88	0.72	15,527	15,527	15,527	15,527	15,527
RI	0.94	0.77	0.81	390,424	390,424	390,424	390,424	RI	0.92	0.70	0.75	15,527	15,527	15,527	15,527
RV	0.84	0.67	0.70	0.64	390,424	390,424	390,424	RV	0.88	0.68	0.70	0.68	15,527	15,527	15,527
WR	0.76	0.72	0.73	0.57	0.87	390,424	390,424	WR	0.74	0.69	0.69	0.58	0.84	15,527	15,527
WE	0.75	0.71	0.73	0.56	1.00	0.86	390,424	WE	0.73	0.69	0.69	0.57	1.00	0.81	15,527
WKL	0.75	0.71	0.73	0.57	0.97	0.95	0.89	WKL	0.72	0.67	0.67	0.57	0.97	0.94	0.82

Table 9.6 Average Intercorrelations and Reliability between Grade 8 ELA/L Subclaims

				CBT			PBT								
·	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.90	385,037	385,037	385,037	385,037	385,037	385,037	RD	0.89	14,113	14,113	14,113	14,113	14,113	14,113
RL	0.93	0.79	385,037	385,037	385,037	385,037	385,037	RL	0.87	0.72	14,113	14,113	14,113	14,113	14,113
RI	0.93	0.78	0.78	385,037	385,037	385,037	385,037	RI	0.95	0.73	0.80	14,113	14,113	14,113	14,113
RV	0.83	0.69	0.69	0.62	385,037	385,037	385,037	RV	0.87	0.71	0.72	0.69	14,113	14,113	14,113
WR	0.77	0.74	0.73	0.59	0.88	385,037	385,037	WR	0.73	0.69	0.70	0.57	0.85	14,113	14,113
WE	0.77	0.73	0.72	0.58	1.00	0.88	385,037	WE	0.72	0.69	0.69	0.57	1.00	0.82	14,113
WKL	0.77	0.73	0.73	0.59	0.97	0.96	0.89	WKL	0.72	0.67	0.68	0.57	0.97	0.95	0.83

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.7 Average Intercorrelations and Reliability between Grade 9 ELA/L Subclaims

				CBT			РВТ								
·	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.90	184,918	184,918	184,918	184,918	184,918	184,918	RD	0.91	2,946	2,946	2,946	2,946	2,946	2,946
RL	0.92	0.78	184,918	184,918	184,918	184,918	184,918	RL	0.92	0.78	2,946	2,946	2,946	2,946	2,946
RI	0.95	0.79	0.82	184,918	184,918	184,918	184,918	RI	0.94	0.78	0.80	2,946	2,946	2,946	2,946
RV	0.81	0.67	0.68	0.61	184,918	184,918	184,918	RV	0.87	0.73	0.74	0.69	2,946	2,946	2,946
WR	0.78	0.75	0.75	0.56	0.89	184,918	184,918	WR	0.76	0.73	0.72	0.62	0.86	2,946	2,946
WE	0.77	0.74	0.74	0.55	1.00	0.89	184,918	WE	0.76	0.72	0.72	0.61	1.00	0.83	2,946
WKL	0.78	0.75	0.75	0.56	0.98	0.96	0.90	WKL	0.76	0.71	0.72	0.62	0.98	0.96	0.84

Table 9.8 Average Intercorrelations and Reliability between Grade 10 ELA/L Subclaims

				CBT				PBT							
•	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.90	169,651	169,651	169,651	169,651	169,651	169,651	RD	0.93	1,861	1,861	1,861	1,861	1,861	1,861
RL	0.92	0.77	169,651	169,651	169,651	169,651	169,651	RL	0.92	0.78	1,861	1,861	1,861	1,861	1,861
RI	0.94	0.78	0.81	169,651	169,651	169,651	169,651	RI	0.96	0.82	0.86	1,861	1,861	1,861	1,861
RV	0.87	0.71	0.73	0.67	169,651	169,651	169,651	RV	0.93	0.78	0.83	0.78	1,861	1,861	1,861
WR	0.79	0.75	0.76	0.62	0.88	169,651	169,651	WR	0.82	0.80	0.79	0.70	0.87	1,861	1,861
WE	0.78	0.75	0.75	0.62	1.00	0.88	169,651	WE	0.82	0.80	0.79	0.70	1.00	0.87	1,861
WKL	0.79	0.75	0.75	0.63	0.98	0.97	0.88	WKL	0.81	0.79	0.78	0.70	0.98	0.97	0.88

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.9 Average Intercorrelations and Reliability between Grade 11 ELA/L Subclaims

				СВТ				РВТ							
•	RD	RL	RI	RV	WR	WE	WKL		RD	RL	RI	RV	WR	WE	WKL
RD	0.90	106,129	106,129	106,129	106,129	106,129	106,129	RD	0.80	1,141	1,141	1,141	1,141	1,141	1,141
RL	0.90	0.75	106,129	106,129	106,129	106,129	106,129	RL	0.84	0.61	1,141	1,141	1,141	1,141	1,141
RI	0.94	0.77	0.81	106,129	106,129	106,129	106,129	RI	0.88	0.62	0.63	1,141	1,141	1,141	1,141
RV	0.86	0.69	0.71	0.67	106,129	106,129	106,129	RV	0.79	0.54	0.52	0.48	1,141	1,141	1,141
WR	0.74	0.71	0.73	0.55	0.87	106,129	106,129	WR	0.70	0.68	0.63	0.44	0.83	1,141	1,141
WE	0.74	0.71	0.72	0.55	1.00	0.86	106,129	WE	0.70	0.67	0.63	0.44	1.00	0.79	1,141
WKL	0.74	0.70	0.72	0.55	0.98	0.97	0.86	WKL	0.69	0.67	0.63	0.43	0.99	0.97	0.79

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.10 Average Intercorrelations and Reliability between Grade 3 Mathematics Subclaims

		СВТ	Г				T		
	MC	ASC	MR	MP		MC	ASC	MR	MP
MC	0.89	367,423	367,423	367,423	MC	0.87	58,016	58,016	58,016
ASC	0.81	0.75	367,423	367,423	ASC	0.82	0.75	58,016	58,016
MR	0.77	0.72	0.71	367,423	MR	0.74	0.68	0.67	58,016
MP	0.75	0.69	0.69	0.68	MP	0.76	0.71	0.69	0.66

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.11 Average Intercorrelations and Reliability between Grade 4 Mathematics Subclaims

		СВТ	Γ						
	MC	ASC	MR	MP		MC	ASC	MR	MP
MC	0.89	376,274	376,274	376,274	MC	0.87	49,945	49,945	49,945
ASC	0.75	0.69	376,274	376,274	ASC	0.72	0.64	49,945	49,945
MR	0.79	0.68	0.73	376,274	MR	0.76	0.67	0.72	49,945
MP	0.75	0.66	0.70	0.63	MP	0.71	0.62	0.69	0.60

Table 9.12 Average Intercorrelations and Reliability between Grade 5 Mathematics Subclaims

		CBT	Г						
	MC	ASC	MR	MP		MC	ASC	MR	MP
MC	0.87	400,272	400,272	400,272	MC	0.84	15,924	15,924	15,924
ASC	0.73	0.63	400,272	400,272	ASC	0.71	0.62	15,924	15,924
MR	0.78	0.66	0.72	400,272	MR	0.76	0.65	0.66	15,924
MP	0.75	0.64	0.70	0.65	MP	0.70	0.61	0.67	0.53

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.13 Average Intercorrelations and Reliability between Grade 6 Mathematics Subclaims

		СВТ	Г			PBT					
	MC	ASC	MR	MP		MC	ASC	MR	MP		
MC	0.87	390,769	390,769	390,769	MC	0.83	17,527	17,527	17,527		
ASC	0.79	0.72	390,769	390,769	ASC	0.76	0.68	17,527	17,527		
MR	0.79	0.71	0.73	390,769	MR	0.79	0.70	0.75	17,527		
MP	0.77	0.69	0.73	0.70	MP	0.71	0.65	0.71	0.64		

Table 9.14 Average Intercorrelations and Reliability between Grade 7 Mathematics Subclaims

		СВТ	ī						
	MC	ASC	MR	MP		MC	ASC	MR	MP
MC	0.85	379,475	379,475	379,475	MC	0.76	14,182	14,182	14,182
ASC	0.74	0.65	379,475	379,475	ASC	0.69	0.61	14,182	14,182
MR	0.78	0.67	0.74	379,475	MR	0.70	0.63	0.72	14,182
MP	0.76	0.66	0.71	0.54	MP	0.71	0.62	0.67	0.45

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.15 Average Intercorrelations and Reliability between Grade 8 Mathematics Subclaims

		СВТ	Г			РВТ					
	MC	ASC	MR	MP		MC	ASC	MR	MP		
MC	0.81	301,671	301,671	301,671	MC	0.77	12,481	12,481	12,481		
ASC	0.73	0.63	301,671	301,671	ASC	0.68	0.58	12,481	12,481		
MR	0.74	0.66	0.70	301,671	MR	0.72	0.61	0.62	12,481		
MP	0.71	0.65	0.68	0.60	MP	0.69	0.62	0.65	0.58		

Table 9.16 Average Intercorrelations and Reliability between Algebra I Subclaims

		СВТ	-						
	MC	ASC	MR	MP		MC	ASC	MR	MP
MC	0.82	252,814	252,814	252,814	MC	0.78	6,364	6,364	6,364
ASC	0.79	0.72	252,814	252,814	ASC	0.75	0.63	6,364	6,364
MR	0.78	0.73	0.74	252,814	MR	0.70	0.65	0.65	6,364
MP	0.77	0.71	0.73	0.75	MP	0.74	0.68	0.68	0.70

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.17 Average Intercorrelations and Reliability between Geometry Subclaims

		СВТ	Г			РВТ					
	MC	ASC	MR	MP		MC	ASC	MR	MP		
MC	0.86	135,546	135,546	135,546	MC	0.87	1,482	1,482	1,482		
ASC	0.82	0.76	135,546	135,546	ASC	0.78	0.71	1,482	1,482		
MR	0.75	0.70	0.74	135,546	MR	0.68	0.63	0.66	1,482		
MP	0.77	0.72	0.76	0.68	MP	0.78	0.68	0.64	0.71		

Table 9.18 Average Intercorrelations and Reliability between Algebra II Subclaims

		СВТ	•			PBT					
	MC	ASC	MR	MP		MC	ASC	MR	MP		
MC	0.82	119,653	119,653	119,653	MC	0.80	2,279	2,279	2,279		
ASC	0.81	0.77	119,653	119,653	ASC	0.79	0.74	2,279	2,279		
MR	0.74	0.74	0.70	119,653	MR	0.73	0.72	0.68	2,279		
MP	0.73	0.73	0.71	0.65	MP	0.74	0.72	0.69	0.66		

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.19 Average Intercorrelations and Reliability between Integrated Mathematics I Subclaims

		СВТ	•			PBT					
	MC	ASC	MR	MP		MC	ASC	MR	MP		
MC	0.77	10,842	10,842	10,842	MC						
ASC	0.80	0.77	10,842	10,842	ASC						
MR	0.76	0.76	0.69	10,842	MR						
MP	0.70	0.70	0.72	0.73	MP						

Table 9.20 Average Intercorrelations and Reliability between Integrated Mathematics II Subclaims

		СВТ	Ī			РВТ					
	MC	ASC	MR	MP		MC	ASC	MR	MP		
MC	0.78	1,999	1,999	1,999	MC	0.62	196	196	196		
ASC	0.68	0.65	1,999	1,999	ASC	0.67	0.63	196	196		
MR	0.67	0.57	0.57	1,999	MR	0.69	0.63	0.48	196		
MP	0.67	0.58	0.54	0.62	MP	0.65	0.64	0.65	0.59		

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table. Please refer to Appendix A.12.1 (Form Composition) for information about the number of items and number of score points in each claim and subclaim.

Table 9.21 Average Intercorrelations and Reliability between Integrated Mathematics III Subclaims

		СВТ	•			PBT				
	MC	ASC	MR	MP		MC	ASC	MR	MP	
MC	0.83	500	500	500	MC					
ASC	0.82	0.73	500	500	ASC					
MR	0.76	0.73	0.74	500	MR					
MP	0.73	0.72	0.73	0.69	MP					

9.3.2 Reliability

Additionally, the reliability analyses presented in Section 8 of this technical report provide information about the internal consistency of the PARCC assessments. Internal consistency is typically measured via correlations amongst the items on an assessment and provides an indication of how much the items measure the same general construct. The reliability estimates, computed using coefficient alpha (Cronbach, 1951), are presented in Tables 8.1 and 8.2 and are along the diagonals of Tables 9.1 through 9.21.8 The average reliabilities for ELA/L PARCC assessments and for the mathematics assessments range from .86 up to .94. Tables 8.3 through 8.11 summarize test reliability for groups of interest for ELA/L grades 3 through 11, and Tables 8.12 through 8.23 summarize test reliability for groups of interest for mathematics grades/subjects. Along with the subclaim intercorrelations, the reliability estimates indicate that the items within each PARCC assessment are measuring the same construct and provides further evidence of unidimensionality.

9.3.3 Local Item Dependence

In addition to the intercorrelations for ELA/L and mathematics, local item independence was evaluated. Local independence is one of the primary assumptions of IRT that states the probability of success on one item is not influenced by performance on other items, when controlling for ability level. This implies that ability or theta accounts for the associations among the observed items. Local item dependence (LID) when present essentially overstates the amount of information predicted by the IRT model. It can exert other undesirable psychometric effects and represents a threat to validity since other factors besides the construct of interest are present. Classical statistics are also affected when LID is present since estimates of test reliability like IRT information can be inflated (Zenisky, Hambleton, & Sireci, 2003).

The LID issue affects the choice of item scoring in IRT calibrations. Specifically, if evidence suggests these items indeed have local dependence, then it might be preferable to sum the item scores into clusters or testlets as a method of minimizing LID. However, if these items do not appear to have strong local item dependence, then retaining the scores as individual item scores in an IRT calibration is preferred since more information concerning item properties is retained. During the initial operational administration of the PARCC assessments in spring 2015, a study that included two methods of investigating the presence of LID was conducted. A description of the methods along with study findings are summarized below.

First, analyses of the internal consistency in items and testlets were conducted under classical test theory (Wainer & Thissen, 2001) as a way to evaluate the degree of LID. Two estimates of Cronbach's alpha (Cronbach, 1951) were compared based on individual items in a test and those clustered into testlets. Cronbach's alpha is formulated as:

⁸ Section 8 provides information on the computations of the reliability estimates0

$$\alpha = \frac{k}{k-3} \frac{\sum_{i \neq i} \sigma_{ii}}{\sigma_T^4}, \tag{9-1}$$

where k is the total number of items, σ_m is the covariance of items i and i' ($i \neq i'$), and σ_T^2 is the variance of total scores. To compute an alpha coefficient, sample standard deviations and variances are substituted for the σ_m and σ_T^2 . The alpha for the total test based on individual items is compared with those that form testlets based on larger subparts. If the item-level configuration has appreciably higher levels of internal consistency compared with the testlets, LID may be present.

For IRT-based methods, local dependence can be evaluated using statistics such as Q_3 (Yen, 1984). The item residual is the difference between observed and expected performance. The Q_3 index is the correlation between residuals of each item pair defined as

$$d_i = (O - \hat{E}),$$
 (9-2)
 $Q_5 = r(d_i, d_i)$

where O is the observed score and \hat{E} is the expected value of O under a proposed IRT model and the index is defined as the correlation between the two item residuals.

LID manifests itself as a residual correlation that is nonzero and large. For Q_3 , LID can be either positive or negative. Positive (negative) LID indicates that performance is higher (lower) than expectation. The residual Q_3 correlation matrix can be inspected to determine if there are any blocks of locally dependent items (e.g., perhaps blocks of items belonging to the same reading passage). For Q_3 , the null hypothesis is that local independence holds. The expected value of Q_3 is -1/n-1 where n is the number of items such that the statistic shows a small negative bias. As a rule of thumb, item pairs with moderate levels of LID for Q_3 are |0.20| or greater. Significant levels of LID are present when the statistic is greater than |0.40|. An alternative is to use the Fisher r to z transformation and evaluate the resulting p values.

For the LID comparisons, the following eight test levels administered in spring 2015 were selected:

- 1. Grade 4 for span 3-5 in ELA/L,
- 2. Grade 4 for span 3-5 in mathematics,
- 3. Grade 7 for span 6-8 in ELA/L,
- 4. Grade 7 for span 6-8 in mathematics,
- 5. Grade 10 for span 9–11 in ELA/L,
- 6. Integrated Mathematics II for Integrated Mathematics I–III,
- 7. Algebra I, and
- 8. Algebra II.

One spring 2015 CBT form for each of the eight tests was selected that was roughly at the median in terms of test difficulty. For ELA/L, reading items were summed according to passage assignment. For mathematics, items were summed according to subclaims. Cronbach's alpha was computed for the entire forms using the two different approaches as described above, one involving calculations at the

item level and the second utilizing scores on summed items (i.e., testlets). Further description of the data is given in Table 9.22.

To cross-validate the internal consistency analysis, the Q_3 statistic was computed from spring CBT data based on grade 4 ELA/L and Integrated Mathematics II items. All items in the pool at that test level were included. The CBT item pool for grade 4 ELA/L contained 125 items while Integrated Mathematics II had 77 items.

The results for the internal consistency analysis are shown in Figure 9.1. In every instance, the item-level Cronbach's alpha is higher than in the testlet configuration. The greatest difference was for Algebra II, which showed a difference of 0.07. Although this was not unexpected, the magnitude of the differences in the respective alpha coefficients in general do not suggest a concerning level of LID. Table 9.23 shows the summary for the Q_3 values. Figures 9.2 and 9.3 show graphs of the distribution of Q_3 values. Most of the Q_3 values were small and negative, again suggesting that LID is not at a level of concern.

For these two test levels, the difference in the alpha coefficients was 0.03 and was consistent with the low values of Q_3 .

In summary, this investigation did not find evidence for the existence of pervasive LID. The results of both the internal consistency analyses and Q_3 methods support a claim of minimal LID. For a multiple-choice-only test containing four reading passages with 5 to 12 items associated with a reading passage, Sireci, Thissen, and Wainer (1991) reported that testlet alpha was approximately 10 percent lower than the item-level coefficient. In comparison, PARCC tests have complex test structures and exhibited smaller differences in alpha coefficients. In addition, the median Q_3 values presented in Table 9.23 centered around the expectation of -1/n-1.

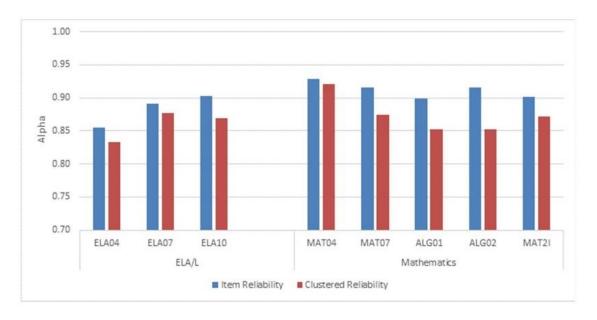


Figure 9.1 Comparison of Internal Consistency by Item and Cluster (Testlet)

Table 9.22 Conditions used in LID Investigation and Results

		N	N	Percent	No.	No.	Item	Task
Content	Grade	Valid	Complete	Incomplete	Items	Tasks	Rel.	Rel.
				ELA/L				
ELA/L	4	13,660	13,518	1.04	31	5	0.86	0.83
ELA/L	7	12,757	12,685	0.56	41	7	0.89	0.88
ELA/L	10	3,097	3,033	2.07	41	7	0.90	0.87
				Mathematics				
Math	4	10,332	10,255	0.75	53	4	0.93	0.92
Math	7	10,295	10,188	1.04	50	6	0.92	0.87
Math	A1	5,072	4,885	3.69	52	6	0.90	0.85
Math	A2	4,982	4,769	4.28	54	6	0.92	0.85
Math	M2	2,708	2,645	2.33	51	6	0.90	0.87

Note: A1 = Algebra I, A2 = Algebra II, M2 = Integrated Mathematics II.

Table 9.23 Summary of Q₃ Values for ELA/L Grade 4 and Integrated Mathematics II (Spring 2015)

Min.	Q_1	Median	Mean	Q ₃	Max.	SD
			ELA/L (Grade 4		
-0.138	-0.047	-0.031	-0.031	-0.017	0.279	0.030
-			Integrated M	lathematics II		
-0.160	-0.038	-0.017	-0.019	0.001	0.280	0.032

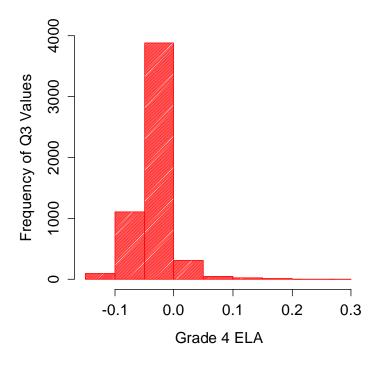


Figure 9.2 Distribution of Q₃ Values for Grade 4 ELA/L (Spring 2015)

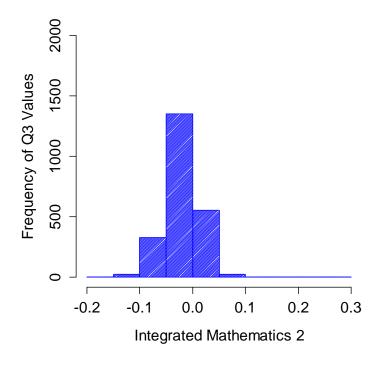


Figure 9.3 Distribution of Q_3 Values for Integrated Mathematics II (Spring 2015)

9.4 Evidence Based on Relationships to Other Variables

Empirical results concerning the relationships between scores on a test and measures of other variables external to the test can also provide evidence of validity when these relationships are found to be consistent with the definition of the construct that the test is intended to measure. As indicated in the AERA, APA, and NCME standards (2014), the variables investigated can include other tests that measure the same construct and different constructs, criterion measures that scores on the test are expected to predict, as well as demographic characteristics of test takers that are expected to be related and unrelated to test performance.

The relationship of the scores across the ELA/L and mathematics assessments was evaluated using correlational analyses. Tables 9.24 through 9.29 present the Pearson correlations observed between the ELA/L scale scores and the mathematics scale scores for each grade; the correlations are reported separately for online (CBT) and paper (PBT) versions of the tests. For grades 3 through 8, students must have a valid test score for both ELA/L and mathematics at the same grade level to be included in the tables. These tables provide the correlation in the lower triangle and the sample size is provided in the upper triangle. In computing the correlations between a particular pair of ELA/L and mathematics tests, test takers must have taken both tests via the same mode in spring 2017. Across both modes of ELA/L, Reading (RD), and Writing (WR) are moderately to highly correlated with mathematics; the correlations range from .60 up to .80 for grades 3 through 8. These correlations suggest that the ELA/L and mathematics tests are assessing different content. The higher intercorrelations between the ELA/L, Reading (RD), and Writing (WR) suggest stronger internal relationships when compared to the correlations with the mathematics content area.

The ELA/L and mathematics correlations for the high school tests are presented in Tables 9.30 through 9.32. Because students in high school can take the mathematics courses in different years (e.g., one student make take Algebra I in grade 9 while another student may take Algebra I in grade 10), the high school mathematics scores were correlated with several of the ELA/L grades (e.g., Algebra I correlated with both grades 9 and 10). Only correlations for pairings with total sample sizes of at least 100 are shown in the tables. Across both modes of grades 8 through 11 ELA/L, Reading (RD) and Writing (WR) claims have correlations with high school mathematics tests that range from .22 to .75. Correlations between high school mathematics scores and corresponding ELA/L scores demonstrate low to moderate correlations.

Table 9.24 Correlations between ELA/L and Mathematics for Grade 3

		СВ	т			PBT				
	ELA/L	RD	WR	MA		ELA/L	RD	WR	MA	
ELA/L		360,980	360,980	360,980	ELA/L		56,195	56,195	56,195	
RD	0.96		360,980	360,980	RD	0.96		56,195	56,195	
WR	0.85	0.71		360,980	WR	0.89	0.74		56,195	
MA	0.79	0.78	0.68		MA	0.77	0.75	0.68		

Note: ELA/L = English language arts/literacy, RD = Reading, WR = Writing, MA = Mathematics. The correlations are provided in the lower portion of the table and the sample sizes are provided in the upper portion of the table. Students must have a valid grade 3 ELA/L score *and* a valid grade 3 mathematics score to be included in this table.

Table 9.25 Correlations between ELA/L and Mathematics for Grade 4

		СВ	T			РВТ				
	ELA/L	RD	WR	MA		ELA/L	RD	WR	MA	
ELA/L		371,799	371,799	371,799	ELA/L		48,153	48,153	48,153	
RD	0.96		371,799	371,799	RD	0.96		48,153	48,153	
WR	0.89	0.74		371,799	WR	0.90	0.75		48,153	
MA	0.80	0.79	0.69		MA	0.76	0.76	0.65		

Note: ELA/L = English language arts/literacy, RD = Reading, WR = Writing, MA = Mathematics. The correlations are provided in the lower portion of the table and the sample sizes are provided in the upper portion of the table. Students must have a valid grade 4 ELA/L score *and* a valid grade 4 mathematics score to be included in this table.

Table 9.26 Correlations between ELA/L and Mathematics for Grade 5

		СВ	т			PBT				
	ELA/L	RD	WR	MA		ELA/L	RD	WR	MA	
ELA/L		396,828	396,828	396,828	ELA/L		14,516	14,516	14,516	
RD	0.95		396,828	396,828	RD	0.94		14,516	14,516	
WR	0.86	0.71		396,828	WR	0.88	0.70		14,516	
MA	0.77	0.75	0.65		MA	0.74	0.74	0.62		

Note: ELA/L = English language arts/literacy, RD = Reading, WR = Writing, MA = Mathematics. The correlations are provided in the lower portion of the table and the sample sizes are provided in the upper portion of the table. Students must have a valid grade 5 ELA/L score *and* a valid grade 5 mathematics score to be included in this table.

Table 9.27 Correlations between ELA/L and Mathematics for Grade 6

		СВ	T			PBT				
	ELA/L	RD	WR	MA		ELA/L	RD	WR	MA	
ELA/L		385,764	385,764	385,764	ELA/L		15,675	15,675	15,675	
RD	0.96		385,764	385,764	RD	0.95		15,675	15,675	
WR	0.86	0.72		385,764	WR	0.87	0.71		15,675	
MA	0.80	0.80	0.66		MA	0.79	0.79	0.64		

Note: ELA/L = English language arts/literacy, RD = Reading, WR = Writing, MA = Mathematics. The correlations are provided in the lower portion of the table and the sample sizes are provided in the upper portion of the table. Students must have a valid grade 6 ELA/L score *and* a valid grade 6 mathematics score to be included in this table.

Table 9.28 Correlations between ELA/L and Mathematics for Grade 7

		СВ	т			PBT				
	ELA/L	RD	WR	MA		ELA/L	RD	WR	MA	
ELA/L		374,078	374,078	374,078	ELA/L		12,388	12,388	12,388	
RD	0.95		374,078	374,078	RD	0.95		12,388	12,388	
WR	0.89	0.74		374,078	WR	0.88	0.71		12,388	
MA	0.78	0.78	0.66		MA	0.74	0.75	0.60		

Note: ELA/L = English language arts/literacy, RD = Reading, WR = Writing, MA = Mathematics. The correlations are provided in the lower portion of the table and the sample sizes are provided in the upper portion of the table. Students must have a valid grade 7 ELA/L score *and* a valid grade 7 mathematics score to be included in this table.

Table 9.29 Correlations between ELA/L and Mathematics for Grade 8

		СВ	т			PBT				
	ELA/L	RD	WR	MA		ELA/L	RD	WR	MA	
ELA/L		296,823	296,823	296,823	ELA/L		10,975	10,975	10,975	
RD	0.95		296,823	296,823	RD	0.95		10,975	10,975	
WR	0.89	0.72		296,823	WR	0.91	0.73		10,975	
MA	0.74	0.75	0.62		MA	0.78	0.78	0.65		

Note: ELA/L = English language arts/literacy, RD = Reading, WR = Writing, MA = Mathematics. The correlations are provided in the lower portion of the table and the sample sizes are provided in the upper portion of the table. Students must have a valid grade 8 ELA/L score *and* a valid grade 8 mathematics score to be included in this table.

Table 9.30 Correlations between ELA/L and Mathematics for High School

ELA/L			CI	вт			ELA/L	РВТ					
22,42	A1	GO	A2	M1	M2	M3		A1	GO	A2	M1	M2	M3
8	0.68	0.56	0.61	0.58	0.47		8	0.66	0.47				
	(71,566)	(10,548)	(602)	(1,413)	(157)			(804)	(117)				
9	0.67	0.68	0.70	0.73	0.62	0.59	9	0.71	0.59				
	(115,968)	(39,003)	(8,521)	(8,551)	(1,458)	(191)		(2,259)	(363)				
10	0.54	0.62	0.66	0.68	0.61		10	0.55	0.57	0.74			
	(11,319)	(68,746)	(35,784)	(409)	(219)			(180)	(511)	(192)			
11	0.45	0.50	0.57	0.56	0.73	0.67	11		0.47	0.62		0.64	
	(2,410)	(8,915)	(57,832)	(248)	(113)	(323)			(106)	(594)		(169)	

Note: ELA/L = English language arts/literacy, A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III. The correlations are provided with the sample sizes, below in parentheses. Shaded cells indicate pairings with sample sizes less than 100.

Table 9.31 Correlations between ELA/L Reading and Mathematics for High School

RD			CI	ВТ			RD	PBT					
11.5	A1	GO	A2	M1	M2	M3		A1	GO	A2	M1	M2	M3
8	0.69	0.57	0.61	0.61	0.42		8	0.69	0.59				
	(71,566)	(10,548)	(602)	(1,413)	(157)			(804)	(117)				
9	0.67	0.69	0.71	0.74	0.64	0.60	9	0.71	0.57				
	(115,968)	(39,003)	(8,521)	(8,551)	(1,468)	(191)		(2,259)	(363)				
10	0.54	0.63	0.66	0.67	0.60		10	0.54	0.55	0.75			
	(11,319)	(68,746)	(35,784)	(409)	(219)			(180)	(511)	(192)			
11	0.46	0.51	0.59	0.57	0.72	0.70	11		0.43	0.61		0.66	
	(2,410)	(8,915)	(57,832)	(248)	(113)	(323)			(106)	(594)		(169)	

Note: RD = Reading, A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III. The correlations are provided with the sample sizes, below in parentheses. Shaded cells indicate pairings with sample sizes less than 100.

Table 9.32 Correlations between ELA/L Writing and Mathematics for High School

WR			CI	ВТ			WR	РВТ					
•••	A1	GO	A2	M1	M2	M3		A1	GO	A2	M1	M2	M3
8	0.57	0.44	0.50	0.42	0.38		8	0.46	0.22				
	(71,566)	(10,548)	(602)	(1,413)	(157)			(804)	(117)				
9	0.55	0.55	0.58	0.57	0.47	0.45	9	0.58	0.49				
	(115,968)	(39,003)	(8,521)	(8,551)	(1,468)	(191)		(2,259)	(363)				
10	0.45	0.52	0.56	0.56	0.50		10	0.46	0.48	0.65			
	(11,319)	(68,746)	(35,784)	(409)	(219)			(180)	(511)	(192)			
11	0.36	0.38	0.44	0.37	0.63	0.49	11		0.42	0.53		0.54	
	(2,410)	(8,915)	(57,832)	(248)	(113)	(323)			(106)	(594)		(169)	

Note: WR = Writing, A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III. The average correlations are provided with the sample sizes, below in parentheses. Shaded cells indicate pairings with sample sizes less than 100.

9.5 Evidence from the Special Studies

Several research studies were conducted to provide additional validity evidence for the PARCC's goals of assessing more rigorous academic expectations, helping to prepare students for college and careers, and providing information back to teachers and parents about their students' progress toward college and career readiness. Some of the special studies conducted include:

- content alignment studies,
- a benchmarking study,
- a longitudinal study of external validity
- a mode comparability study, and
- a device comparability study.

The following paragraphs briefly describe each of these studies.

9.5.1 Content Alignment Studies

In 2016, content of the ELA/L assessments at grades 5, 8, and 11 and the Algebra II and Integrated Mathematics II assessments were evaluated to determine how well the PARCC assessments were aligned to the Common Core State Standards (CCSS; Doorey, & Polikoff, 2016, Schultz, Michaels, Dvorak, & Wiley, 2016). These content alignment studies were conducted by the Fordham Institute for grades 5 and 8 and by Human Resources Research Organization (HumRRO) for the high school assessments. Both of these studies used the same methodology by having content experts review the assessment items and answers (for the constructed-response items the rubrics were reviewed). The content experts then judged how well the items aligned to the CCSS, the depth of knowledge of the items, and the accessibility of the items to all students, including English learners and students with disabilities. The authors of both studies noted that the content experts reviewing the assessments were required to be familiar with the CCSS but could not be employed by participating organizations or be the writers of the CCSS. Therefore, an effort was made to eliminate any potential conflicts of interest.

The content studies had the individual content experts review and rate each item; then as a group the content experts came to a consensus on the final ratings for the content alignment, depth of knowledge, and accessibility to all students. In addition to the ratings, the content experts were asked to make comments that provided an explanation of their ratings; these comments were then used by the full group of content experts to provide narrative comments regarding the overall ratings and to provide feedback and recommendation about the assessment programs.

The PARCC assessment program was rated as *Excellent Match* for ELA/L content and depth and *Good Match* for mathematics content and depth for grades 5 and 8. However, for grade 11 ELA/L content was rated as *Excellent Match* but depth was rated as *Limited/Uneven Match*. The high school mathematics assessments were rated at *Excellent Match* for content and *Good Match* for depth.

The content studies noted some weaknesses and strengths of the PARCC assessments. For ELA/L, it was noted that the assessments include complex texts, a range of cognitive demands, and have a variety of

item types. Furthermore, the ELA/L "assessments require close reading, assess writing to sources, research, and inquiry, and emphasize vocabulary and language skills" (Doorey & Polikoff, 2016). The grade 11 ELA/L assessment had a smaller range of depth and included items assessing the higher-demand cognitive level. A weakness of the ELA/L assessments is the lack of a listening and speaking component. It was also suggested that the ELA/L assessments could be enhanced by the inclusion of a research task that requires the use of two or more sources of information.

The strengths of the mathematics assessments include assessments that are aligned to the major work for each grade level. While the grade 5 assessment includes a range of cognitive demand, the grade 8 assessment includes a number of higher-demand items and may not fully assess the standards at the lowest level of cognitive demand. It was suggested that the grade 5 assessment could include more focus on the major work and the grade 8 assessment could include items at the lowest cognitive demand level. Additionally, the reviewers noted that some of the mathematics items should be carefully reviewed for editorial and mathematical accuracy.

The high school report noted that the PARCC assessment program incorporates a number of accessibility features and test accommodations for students with disabilities and for English learners. Furthermore, the PARCC assessments included items designed to accommodate the needs of students with disabilities.

In 2017, HumRRO conducted a study to evaluate the quality and alignment of ELA/L and mathematics assessments for grades 3, 4, 6, and 7 (Shultz, Norman-Dvorak, Chen, 2017). This alignment study followed a similar methodology as the 2016 study. Reviewers were asked to determine the extent to which items were aligned to the CCSS, using fully, partially, or not aligned as the rating categories. Ratings were averaged to determine overall alignment. For ELA/L, 99.6 percent of grade 3 and 4 items, 95.5 percent of grade 6 items, and 94.6 percent of grade 7 items were fully aligned. For mathematics, 92.0 percent of grade 3, 91.1 percent of grade 4 items, 83.1 percent of grade 6 items, and 94.0 percent of grade 7 items were fully aligned. The majority of the items that did not fall into fully aligned were considered partially aligned to the standards. CCSS are designed to be measured by multiple items, so items that aligned to multiple CCSS received a partially aligned rating. The overall item to CCSS alignment was captured by a holistic alignment rating which indicated if an item captured the identified standards as a set. Holistic ratings (either yes or no) were found by averaging review ratings across clusters for items that included more than one standard. For ELA, for all four grades, at least 93 percent of items had a holistic alignment rating of yes to indicate that the identified standards captured the skills or knowledge required. For mathematics, grade 6 had the lowest percentage for the holistic alignment rating of yes (84.8 percent), and grade 7 had the highest (96.3 percent). Overall the alignment study suggests that the identified CCSS capture the knowledge and skills required in the items.

In addition to the alignment study, HumRRO also evaluated the CCSSO criteria for content and depth for ELA/L and mathematics grades 3, 4, 6 and 7, as well as the cognitive complexity levels of these same grades. There are five criteria for ELA/L content: close reading, writing, vocabulary and language skills, research and inquiry, and speaking and listening. Reviewers were asked to rate the content as *Excellent*, *Good*, *Limited/Uneven*, or *Weak Match*. For grades 3, 4, 5, and 7, the ELA/L assessments received a

composite rating of *Excellent Match* for assessing the content needed for college and career readiness. There are four criteria for ELA/L depth: text quality and types, complexity of texts, cognitive demand, and high-quality items and item variety. All grades in this study received a composite rating of *Good Match* for depth. For mathematics content, the composite rating is based on two criteria: focus and concepts, procedures, and applications. Grades 3, 4, and 6 received a composite content rating of *Good Match*, and grade 7 received a composite content rating of *Excellent Match*. The mathematics composite depth rating is based on three criteria: connecting practice to content, cognitive demand, and high-quality items and item variety. All grades in the study were rated as *Excellent Match* at assessing the depth needed to successfully meet college and career readiness.

Finally, the 2017 HumRRO study looked at cognitive complexity of the items on ELA/L and mathematics at grades 3, 4, 6, and 7. Reviewers indicated their agreement with the intended cognitive complexity ratings provided by PARCC of low, medium, or high. The results indicated that the reviewers generally agreed with the distribution of complexity levels assigned by PARCC. There were differences in agreements in ELA/L language cluster and a few exceptions to agreement in math, particularly at grade 6, where there was disagreement in the ratings at the medium complexity level for two domains and the high complexity level for one domain. For grade 7, there was agreement across low, medium, and high in all domains.

9.5.2 Benchmarking Study

The purpose of the PARCC benchmarking study (McClarty, Korbin, Moyer, Griffin, Huth, Carey, and Medberry, 2015) was to provide information that would inform the PARCC performance level setting (PLS) process. PARCC used an evidence-based standard setting approach (EBSS; McClarty, Way, Porter, Beimers, & Miles, 2013) to establish the performance levels for its assessments. In EBSS, the threshold scores for performance levels are set based on a combination of empirical research evidence and expert judgment. This benchmarking study provided one source of empirical evidence to inform the PARCC college- and career-readiness performance level (i.e., Level 4). The study findings were provided to PARCC's pre-policy standard-setting committee. The charge of this committee was to suggest a reasonable range for the percentage of students meeting or exceeding the PARCC Level 4 threshold score and therefore considered college- and career-ready. Section 11.3.2 of this report provides more information about the PARCC pre-policy meeting. For the PARCC benchmarking study, external information was analyzed to provide information about the Level 4 threshold scores for the grade 11 ELA/L, Algebra II, and Integrated Mathematics III assessments, the grade 8 ELA/L and mathematics assessments, and the grade 4 ELA/L and mathematics assessments. The PARCC assessments and Level 4 expectations were compared with comparable assessments and expectations for the Programme of International Student Assessment (PISA), Trends in International Mathematics and Science Study (TIMSS), Progress in International Reading Literacy Study (PIRLS), National Assessment of Educational Progress (NAEP), ACT, SAT, the Michigan Merit Exam, and the Virginia End-of-Course exams. For each external assessment, the best-matched performance level was determined and the percentage of students reaching that level across the nation and in the PARCC states was determined. Across all grades and subjects, the data indicated approximately 25 to 50 percent of students were college- and careerready or on track to readiness based on PARCC's Level 4 expectations.

For details on how the benchmarking study was used during the standard setting process, refer to Section 11 of this technical report.

9.5.3 Longitudinal Study of External Validity of PARCC Performance Levels (Phase 1)

In 2016–2017, the first phase of a two-part external validity study of claims about the alignment of PARCC Level 4 to college readiness was completed (Steedle, Quesen, and Boyd, 2017) using PARCC assessment scores from the 2014–2015 and 2015–2016 academic years. Associations between PARCC performance levels and college-readiness benchmarks established by the College Board and ACT were used to study the claim that students who achieve Level 4 have a .75 probability of attaining at least a C in entry-level, credit-bearing, postsecondary coursework. Regression estimates measured the relationship between the PARCC and external test scores. The PARCC Level 4 benchmark was used to estimate the expected score on an external test, and vice versa. Assessment scores were dichotomized for additional analyses. Cross-tabulation tables provided classification agreement among tests. Logistic regression modeled the relationship between students' PARCC scores and their probabilities of meeting the external assessment benchmark, and vice versa.

These methods were used to make the following comparisons in mathematics: Algebra I and PSAT10 Math; Geometry and PSAT10 Math; Algebra II and PSAT10 Math; Algebra II and PSAT10 Math; Algebra II and SAT Math; and Algebra II and ACT Math. The classification agreement (meeting the benchmark on both tests or not meeting the benchmark on both tests) ranged from 62.5 percent to 86.5 percent. The overall trend indicated that students who met the benchmark on a PARCC mathematics assessment were likely to meet or exceed the benchmark on an external test (probabilities ranged from .509 to .886). However, students who met the benchmark on the external test had relatively low probabilities of meeting the PARCC mathematics benchmark (.097 to .310).

The following comparisons were made in English language arts/literacy: grade 9 and PSAT10 evidence-based reading and writing (EBRW); grade 10 and PSAT10 EBRW; grade 10 and PSAT/NMSQT EBRW; grade 10 and SAT EBRW; grade 11 and ACT English; and grade 11 and ACT reading. In the majority of comparisons, the trend in ELA/L results was similar to mathematics. The classification agreements ranged from 67.3 percent to 79.7 percent. Students meeting the PARCC ELA/L benchmark had probabilities between .667 and .825 of meeting the benchmark on the external assessment. However, a student taking the external test had lower probabilities of meeting the benchmark on the PARCC ELA/L assessments (.326 to .513).

Overall, results indicated that a student meeting the benchmark on the PARCC test had a high probability of making the benchmark on the external test, but the converse did not hold for students meeting the benchmark on the external test, for the majority of comparisons. These results suggest that meeting the PARCC benchmark is an indicator of academic readiness for college. However, it may be that students who meet the PARCC benchmark have a greater than .75 probability of earning a C or higher in first-year college courses.

Phase 1 is a preliminary study using indirect comparisons; therefore, there are limitations to interpretations. Phase 2 of this study (to occur in 2018) will use longitudinal data including academic

performance in entry-level college courses for students who took PARCC assessments during high school. This second phase may lend additional support for the validity of the PARCC Level 4 performance level as a predictor of postsecondary academic success.

9.5.4 2017 Mode and Device Comparability Studies

PARCC assessments have been operational since the 2014–2015 school year. In addition to the traditional paper format, the assessments were available for online administration via a variety of electronic devices, including desktop computers, laptop computers, and tablets. PARCC's research agenda includes several studies evaluating the interchangeability of scale scores across modes and devices.

This report describes a two-pronged study consisting of a mode comparability analysis and a device comparability analysis. In the mode comparability analysis, scores arising from the paper administration were compared to those arising from any type of online administration. In the device comparability analysis, online scores arising from tests administered using a tablet are compared with online scores arising from any other type of electronic administration where a tablet was not present (i.e., laptops, desktops, Chromebooks).

The goal of this study was threefold: 1) to investigate whether assessment items were of similar difficulty across the levels of conditions for each analysis (i.e., paper and online for the mode comparability analysis and tablet and non-tablet for the device comparability analysis); 2) to determine whether the psychometric properties of test scores were similar across the levels of conditions for each analysis; and 3) to determine whether overall test performance was similar across the levels of conditions for each analysis.

This study examined performance on 12 PARCC assessments, split evenly between mathematics and ELA/L. Students were matched on demographic variables as well as the score from the PARCC assessment in the same content area in the prior year, creating comparable samples that allowed for an unbiased comparison of performance across different conditions.

The results of the mode comparability analysis were mixed and found to be consistent with prior research. The item means suggested that items were of similar difficulty on paper and online modes. Only two items were flagged for mode effects, both of which were on the mathematics assessments. Clevel differential item functioning (DIF) was present in both analyses. All the items flagged for C-level DIF in the mathematics assessments favored the online students, whereas the majority items flagged for C-level DIF in the ELA/L assessments favored the paper students. An examination of test reliability displayed comparable reliability values between the two modes; none of the test forms were flagged for mode effects with respect to test reliability. The test-level adjustment analysis as well as the change of the paper students' performance levels after the adjustment constants were applied to the paper students' scores indicated that more scale scores were adjusted downward than were adjusted upward on the paper test form for each assessment except grades 5 and 7 mathematics. However, all adjustments were less than the minimum standard error of Theta except for grade 11 ELA/L, which was

the same as the minimum standard error of Theta. Therefore the adjustments are within measurement precision for each assessment.

The results of the device comparability study revealed consistent evidence supporting the comparability between the tablet condition (TC) and the non-tablet condition (NTC). Specifically, the item means suggested that items were similarly difficult for the TC and NTC, and none of the items were flagged for device effects. The DIF analysis revealed that none of the items had C-level DIF. Consistent with the findings at the item level, an examination of test reliability indicated that the TC and NTC test forms were similarly reliable and that none of the test forms were flagged for device effects. Furthermore, the test-level adjustment analysis as well as the change of the students' performance levels after the adjustment constants were applied did not indicate strong evidence of device effects.

The generalizability of the findings from this study may be limited due to the small sample size of both the paper students (for mode comparability) and the tablet students (for device comparability) at the high-school grades; however, it appears that high-quality matching supports the internal validity of this study's findings. For mode and device comparability, there were little to no items flagged for mode or device effects, the psychometric properties of test scores were similar across assessment conditions, and any adjustments to student performance for the paper or tablet condition were within measurement precision.

9.6 Evidence Based on Response Processes

As noted in the AERA, APA, and NCME Standards (2014), additional support for a particular score interpretation or use can be provided by theoretical and empirical evidence indicating that test takers are using the intended response processes when responding to the items in a test. This type of evidence may be gathered from interacting with test takers in order to understand what processes underlie their item responses. Evidence may also be derived from feedback provided by test proctors/teachers involved in the administration of the test and raters involved in the scoring of constructed-response items. Evidence may also be gathered by evaluating the correct and incorrect responses to short constructed-response items (e.g., items requiring a few words to respond) or by evaluating the response patterns to multi-part items.

PARCC has undertaken research investigating the quality of the items, tasks, and stimuli, focusing on whether students interact with items/tasks as intended, whether they were given enough time to complete the assessments, and the degree to which PARCC scoring rubrics allow accurate and reliable scoring. In addition, PARCC has examined the accessibility of the test for students with disabilities and English learners. This research has included examining students' understanding of the format of the assessments and the use of technology. Although out of the purview of this technical report, several other PARCC research efforts have investigated questions relevant to response processes evidence.⁹

⁹ Various PARCC research is described at: http://parcc-assessment.org/research/

9.7 Interpretations of Test Scores

The PARCC ELA/L and mathematics scores are expressed as scale scores (both total scores and claim scores), along with performance levels to describe how well students met the academic standards for their grade level. Additionally, information on specific skills (the subclaims) is also provided and is reported as *Below Expectations*, *Nearly Meets Expectations*, and *Meets or Exceeds Expectations*. On the basis of a student's total score, an inference is drawn about how much knowledge and skill in the content area the student has acquired. The total score is also used to classify students in terms of the level of knowledge and skill in the content area as students progress in the K–12 education. These levels are called performance levels and are reported as:

- Level 5: Exceeded expectations
- Level 4: Met expectations
- Level 3: Approached expectations
- Level 2: Partially met expectations
- Level 1: Did not yet meet expectations

Students classified as either Level 4 or Level 5 are meeting or exceeding the grade level expectations. PARCC has developed performance level descriptors (PLDs) to assist with the understanding and interpretations of the ELA/L and mathematics scores (http://parcc-assessment.org/performance-levels/). Additionally, resource information is available online to educators, parents, and students (http://parcc-assessment.org/resources), which includes information on understanding and interpreting the ELA/L and mathematics score reports (https://www.isbe.net/Documents/Score_Report_Interpretation_Guide_Spring_2017.pdf http://understandthescore.org).

Section 12 of this technical report provides more information on the scale scores and the subclaim scores.

9.8 Evidence Based on the Consequences to Testing

The consequence of testing should also be investigated to support the validity evidence for the use of the PARCC assessments as the standards note that tests are usually administered "with the expectation that some benefit will be realized from the intended use of the scores" (AERA, APA, & NCME, 2014). When this is the case, evidence that the expected benefits accrue will provide support for the intended use of the scores. Evidence of the consequence of testing will also accrue with the continued implementation of the CCSS and the continued administration of the PARCC assessments.

Consequences of the PARCC tests may vary by state or by school district. For example, some states may require "passing" the PARCC assessments as one of several criteria for high school graduation, while other states/districts may not require students to "pass" the PARCC assessments for high school graduation. Additionally, some school districts may use the PARCC scores along with other information such as school grades and teacher recommendations for placing students into special programs (e.g., remedial support, gifted and talented program) or for course placement (e.g., Algebra I in grade 8).

Because the consequences for the PARCC assessments can vary by each state, it is suggested that each PARCC member state provide school districts, teachers, parents, and students with information on how to interpret and use the PARCC scores. Additionally, the states should monitor how PARCC scores are used to ensure that the scores are being used as intended by PARCC.

9.9 Summary

In this section of the technical report, several aspects of validity were included, such as validity evidence based on content, the internal structure of the assessments, relationships across the content assessments, and evidence from special studies.

The PARCC item development process involved educators, assessment experts, and bias and sensitivity experts in review of text, items, and tasks for accuracy, appropriateness, and freedom from bias. PARCC conducted several studies during the item development process to evaluate the item development process (e.g., technological functionalities, answer time required, and student experiences). Additionally, items were field tested prior to the initial operational administration, and data and feedback from students, test administrators, and classroom teachers was used to improve the operational administration of the items and to inform future item development. The multiple item and form reviews conducted by educators and studies to evaluate item administration help to ensure the integrity of the PARCC assessments.

The intercorrelations of the subclaims, the reliability analyses, and the local item dependence analyses indicated that the ELA/L and the mathematics assessments are both essentially unidimensional. Furthermore, the correlations between ELA/L and mathematics indicated that the two assessments are measuring different content. Also, the patterns of correlations for the CBT and PBT assessments were similar, indicating that the structure of the assessments were similar across the two modes.

Several studies were conducted as part of the PARCC assessment program (e.g., benchmarking study, content evaluation/alignment studies, longitudinal study, and mode and device comparability studies). The benchmarking study was conducted in support of the standard setting meeting. This study indicated students performing at or above Level 4 could be considered to be college- and career-ready or on track to readiness.

The content evaluation/alignment studies performed by the Fordham Institute and HumRRO indicate that the PARCC assessments are good to excellent matches to the CCSS in terms of content and depth of knowledge. Thus, the PARCC assessments are assessing the college- and career-readiness standards. However, the reports noted that the PARCC program could improve by adding a wider range of depth of knowledge to some of the assessments. The reports also suggested enhancing the ELA/L assessments by including a research task that requires the use of two or more sources of information.

In the longitudinal study of external validity, associations between PARCC performance levels and college-readiness benchmarks established by the College Board and ACT were used to study the claim that students who achieve Level 4 have a .75 probability of attaining at least a C in entry-level, credit-bearing, postsecondary coursework. In the first phase of the study, the relationship between PARCC and

external tests was studied. Overall, results indicated that a student meeting the benchmark on the PARCC test had a high probability of making the benchmark on the external test, but the converse did not hold for students meeting the benchmark on the external test, for the majority of comparisons. These results suggest that meeting the PARCC benchmark is an indicator of academic readiness for college. In the next phase of the study, the relationship between PARCC scores and performance in first-year college courses will be explored.

The mode comparability study indicated that the comparability across modes was inconsistent across content domains and grade levels. The results of the mode comparability analysis were mixed and found to be consistent with prior research. The results of the device comparability study revealed consistent evidence supporting the comparability between the tablet condition (TC) and the non-tablet condition (NTC). In both the mode and device comparability studies, there were little to no items flagged for mode or device effects, the psychometric properties of test scores were similar across assessment conditions, and any adjustments to student performance for the paper or tablet condition were within measurement precision.

In addition to the validity information presented in this section of the technical report, other information in support of the uses and interpretations of the PARCC scores appear in the following sections:

Section 5 presents information regarding student characteristics for the spring administration of the ELA/L and mathematics administration.

Section 6 provides information concerning the test characteristics based on classical test theory.

Section 7 provides information regarding the differential item functioning (DIF) analyses.

Section 8 provides information on the test reliability (total test score and for subclaims) and includes information on the interrater reliability/agreement.

Section 12 provides detailed information concerning the scores that were reported and the cut scores for ELA/L and mathematics.

The technical report addendum provides the test taker characteristics and test reliability (total test score and for subclaims) for the 2016 fall block administration.

Section 10: IRT Calibration and Scaling in Operational Year Three

10.1 Overview

Multiple operational core forms were administered for each grade in English language arts/literacy (ELA/L) and mathematics assessments. The purpose of the item response theory (IRT) calibration and scaling was to place all operational items for a single grade/subject onto a common scale. For the ELA/L computer-based tests (CBTs), the IRT parameters were post-equated. This section describes procedures used to calibrate and scale the post-equated PARCC operational assessments. Because ELA/L paper-based tests (PBTs) and all mathematics tests were pre-equated, much of the discussion in this section will not apply; however, the parameters used to construct the conversion tables for these tests are presented in this section.

In this section of the technical report, the following topics related to IRT calibration and scaling are discussed:

Calibration:

- 10.2 IRT Data Preparation
- 10.3 Description of the Calibration Process
- 10.4 Model Fit Evaluation Criteria
- 10.5 Items Excluded from Score Reporting

Scaling:

- 10.6 Scaling Parameter Estimates
- 10.7 Items Excluded from Linking Sets
- 10.8 Correlations and Plots of Scaling Item Parameter Estimates
- 10.9 Scaling Constants
- 10.10 Summary Statistics and Distributions from IRT Analyses

10.2 IRT Data Preparation

10.2.1 Overview

Post-equating was performed on an early sample of the student data. The Bureau of Indian Education (BIE), the District of Columbia (DC), and six states participated in the spring administration: Colorado (CO), Illinois (IL), Maryland (MD), New Jersey (NJ), New Mexico (NM), and Rhode Island (RI). Each state tested over multiple weeks. Student data were monitored to determine when the early equating sampling criteria were met. Student data were evaluated for the following:

- 1) Overall N-count, form count, and item count
- 2) Demographic representation
- 3) State representation
- 4) Summative scale score distribution

Based on the early equating report, using data from the prior spring PARCC administration, approximately 25 percent (75,000–90,000) of the online student data were sufficient for post-equating selected tests in grades 3 through 8. Approximately 40 percent (70,000–90,000) of the online student data were sufficient for post-equating selected tests in grades 9 through 11. The larger percentage of the student data for high school assessments was due to the high percentage of students removed for not meeting attemptedness criteria and the need to obtain student responses for each score category for the more difficult items. The results from the research study were used to determine criteria for sample size and acceptable differences between the baseline demographic distributions and the sample demographic distributions for the post-equating sample.

The resulting early equating samples for the spring administration exceeded state representation, exceeded the sample size criteria, met criteria for most of the demographic groups, and met criteria for the prior grade's PARCC performance level distributions for most of the grades/subjects. Table 10.1 lists the equating sample sizes for all tests that were post-equated.

All student response data in the early equating samples for operational items were used to create the IRT sparse data matrices for the concurrent calibration. IRT sparse data matrices combine student data across forms within administration mode. When duplicate records for a single student existed, the record with the largest raw score was included in the data file (and the other record was excluded). No student was included more than one time in the IRT sparse data matrices files.

10.2.2 Student Inclusion/Exclusion Rules

The following are the IRT valid case criteria. These criteria are the same as the student inclusion/exclusion rules used to evaluate and filter data prior to conducting the operational item analysis (IA) and differential item functioning (DIF) analyses (steps 1–5). The rules were agreed upon with PARCC and applied to the scored data used in the IRT calibration.

- 1. All records with an invalid form number were excluded.
- 2. All records that were flagged as "void" were excluded.
- 3. Records in which the student attempted fewer than 25 percent of the items were excluded. An item was deemed "not attempted" if it had a value of "M" (item omitted) or "Z" (item "spoiled," do not score) in the scored item response block. For example, if there were 25 items on a form and two were flawed ("Z"), those two items were not included in the numerator or denominator of the percentage-attempted calculation.
- 4. For students with more than one valid record, the record with the higher raw score was chosen.
- 5. Records for students with administration issues or anomalies were excluded.

An assumption was made that mathematics items translated into Spanish were equivalent to the same items in English. Prior results of Spanish versus English DIF analyses supported this assumption.

10.2.3 Items Excluded from IRT Sparse Matrices

Pearson conducted an initial scoring and key check. Items identified by Pearson as "spoiled" (also referred to as "do not use (DNU)") were listed and excluded from the test maps. When the IRT sparse

data matrices were created, all items were included in the files unless they were marked as "spoiled" by Pearson.

10.2.4 Omitted, Not Reached, and Not Presented Items

In the student data files, "Z" was used to represent "spoiled" or "not presented" items and "M" was used to represent omitted items. For IA and IRT, omitted and not reached items were treated differently. Item response scores for omits were recoded as "0" in the IRT sparse matrix files (i.e., unless the omitted item was a "not reached" item). Not reached items are omitted items at the end of the test or unit—items that the student probably did not reach or try to answer. Not reached items were recoded from "M" in the SIRB to "N" (i.e., not presented) in the IRT sparse matrix files, if all items from that point to the end of the form are "M" or "Z." Not reached items were counted as missing or no response, and therefore did not contribute to the item statistics for IA and IRT calibration.

10.2.5 Quality Control of the IRT Sparse Matrix Data Files

The IRT sparse data matrices were created by the primary analysts and replicators from Pearson and HumRRO. The matrices were checked for quality and accuracy by comparing the number of students (*N*-counts), item category frequencies, and item statistics (e.g., AIS values) between Pearson and HumRRO. Since the same inclusion rules for students were used, all *N*-counts, category frequencies, and statistics for all items matched. All discrepancies in *N*-counts were resolved. The programs used to create the IRT statistics were independent, so the QC procedure involved parallel computing. Table 10.1 shows the N-counts and number of items in the CBT IRT sparse data matrices for each grade in ELA/L.

Table 10.1 N-Counts and Number of Items in the ELA/L IRT Calibration Files

Grade	N-Count	Items
3	319,709	82
4	304,409	86
5	333,896	85
6	253,902	106
7	230,200	98
8	225,183	104
9	177,216	96
10	124,417	104
11	95,487	106

10.3 Description of the Calibration Process

The IRT calibrations were performed only on the ELA/L CBT tests. The form-to-form linking is established through internal and external common items selected during test construction to represent the blueprint.

10.3.1 Two-Parameter Logistic/Generalized Partial Credit Model

The operational IRT analyses were conducted by both Pearson and HumRRO. The operational items in the IRT sparse data matrix were concurrently calibrated with the two-parameter logistic/generalized partial credit model (2PL/GPC: Muraki, 1992). The 2PL/GPC is denoted

$$p_{im}(\theta_{j}) = \frac{exp\left[\sum_{k=0}^{m} D a_{i}(\theta_{j} - b_{i} + d_{ik})\right]}{\sum_{v=0}^{M_{i}-1} exp\left[\sum_{k=0}^{v} D a_{i}(\theta_{j} - b_{i} + d_{ik})\right]}$$

where $a_i(\theta_j - b_i + d_{i0}) \equiv 0$; $p_{im}(\theta_j)$ is the probability of a test taker with θ_j getting score m on item i; D is the IRT scale constant (1.7); a_i is the discrimination parameter of item i; b_i is the item difficulty parameter of item i; d_{ik} is the k^{th} step deviation value for item i; M_i is the number of score categories of item i with possible item scores as consecutive integers from zero to $M_i - 1$; v sequences through each response category through $M_i - 1$. IRT calibrations might also use a guessing parameter in special cases, if needed.

10.3.2 Treatment of Prose Constructed-Response (PCR) Tasks

The prose constructed-response (PCR) tasks were calibrated at the trait score level (and not as aggregated scores). To address the issue of local independence related to PCR items, a single-calibration "model" approach was used. When sample sizes were large (i.e., greater than 10,000 test takers), the data were manipulated using random assignment, by selecting one of the two traits for each PCR item for each student. Then one calibration was run so that all trait parameters were independently estimated. When sample sizes were smaller (i.e., field-test samples), a multiple-calibration "model" approach was used. In this alternative approach, the same data set was calibrated two times, each trait represented in one of the two data sets for all students. Then the PCR traits were scaled onto the base scale using non-PCR items as anchor items. These two trait calibration approaches addressed the issue of local dependence while allowing for the accurate calculation of claim scores and the proper weighting of traits in the summative scale scores.

10.3.3 IRT Item Exclusion Rules (Before Calibration)

In addition to checking IRT data for accuracy, Pearson conducted item analyses (IA) to identify items that were not performing as expected and should be considered for removal from calibration and score reporting. The following are the criteria Pearson used to flag extremely problematic items to be dropped from calibration. All "non-spoiled" items were included in the IRT data matrices; however, the IRTPRO calibration software (Cai, Thissen, & du Toit, 2011) control files were used to exclude from calibration items flagged for the following reasons:

- 1. A weighted polyserial correlation less than 0.0
- 2. An average item score of 0.0
- 3. 100 percent of the students having the same item score, such as:
 - a. 100 percent omitted the item

- b. 100 percent received the same score
- c. 100 percent of the responses were at the same score after collapsing score categories due to low frequencies, or
- d. 100 percent of the responses were not presented or not reached
- 4. Insufficient sample sizes for the selected IRT model combinations (i.e., 300 for the 2PL/GPC)
- 5. High omit rates (i.e., greater than 50 percent) on one or more forms (usually an indication that an item may not be functioning correctly on all forms)

A master list of all problematic items before and after calibration was maintained and all flagged and potentially flawed items were brought to the PARCC Priority Alert Task Force (consisting of Parcc Inc. and participating State Leads for PARCC member states) for content and statistical reviews. Ultimately, the decisions about whether to keep or exclude an item from score reporting was made by the PARCC Priority Task Force.

10.3.4 IRTPRO Calibration Procedures and Convergence Criteria

The data were calibrated concurrently across forms using the 2PL/GPC model combination. The primary goal was to place the operational item data within each content area and grade/subject on a common difficulty scale. The following are the steps used to calibrate the operational item response data:

- 1. Using the IRT sparse data matrices, concurrent calibrations were conducted using commercially available IRTPRO for Windows (version 3.0) on CBT data, and separately on PBT data within each grade/subject.
- 2. The 2PL/GPC model combination was used for all grades and subjects for each content area. Thus, two calibrations were completed for each grade/subject.
- 3. IRTPRO Calibration Settings: The logistic partial credit model was specified using the scale constant of 1.0. The prior distributions for latent traits were set to a mean of zero and a standard deviation of one. The number of quadrature points used in the estimation was set to 49. And the slope starting value was set/updated before each run.
- 4. Each IRTPRO run was inspected for convergence and for any unexpected item-parameter estimates. The PRIORS command in IRTPRO provided a prior on IRT parameters to constrain the calibration so that convergence was more likely. Specifically, option "Guessing[0]" indicated that the prior is placed on the lower asymptote for the 3-PL model, and a normal distribution for the priors with mean of -1.4 and standard deviation 1. For these items, an inspection of item-level statistics and modal-data fit plots were sufficient to ensure that item parameters were acceptable if convergence was reached. Item information functions from the IRTPRO output may also be reviewed. Pearson verified that the maximum number of EM (expectation-maximization) cycles was not reached (which indicated the program did not converge).
- 5. To convert IRTPRO item parameters to the commonly used logistic parameter presentation (called new item parameters), the following formula was used since IRTPRO uses 1.0 for a scaling constant. There was no need to transfer *b* and *c*-parameters from IRTPRO output.

Please note that all unscaled and scaled item parameters were kept on the theta scale. For 2PL or 3PL models:

New
$$\alpha$$
-parameter: $a_{new} = \frac{a_{irtpro}}{1.7}$

- 6. Pearson reported any need for item-calibration decisions, including convergence issues and extreme parameter estimates, along with proposed resolutions, to the Priority Alert Task Force. Anticipated resolutions included fixing the slope parameters to a minimum .10 value, fixing the guessing parameter to a rational value (1 divided by number of options), and fixing the difficulty parameters at an upper or lower bound, depending on the nature of the problem. If extreme *b*-parameter values were observed (e.g., > 100) and the *a*-parameter values for these items were low (i.e., < 0.10), it was recommended that the prior for the *a*-parameter be set to 0.5.
- 7. Dropping an item from further processing or dropping an item and rerunning IRTPRO was performed only if it was needed after communication with HumRRO and the Priority Alert Task Force.
- 8. Inspection of model-data fit plots was helpful in deciding parameter constraints and acceptability of parameter fit. Documentation of each step, after resolution of any issues, was provided by Pearson to PARCC, Humrro, and Measured Progress.

10.3.5 Calibration Quality Control

To ensure IRT calibrations and conversion tables were produced accurately, HumRRO replicated the IRT calibrations and the generation of the score conversion tables. Both Pearson and HumRRO used the same calibration software, IRTPRO. Daily meetings were held so that Pearson and HumRRO could provide status reports and discuss issues related to the IRT work. Measured Progress performed independent quality control comparisons between the Pearson and HumRRO item parameter estimates to identify any differences.

Specifically, Measured Progress completed the following quality control analyses/comparisons:

- 1. Made sure all items were treated the same way (e.g., if Pearson collapsed a category, made sure HumRRO collapsed the category in the same way for the item)
- 2. Compared IRT item parameter estimates by Pearson and HumRRO (i.e., IRT a-, b-, and dparameter estimates)
- 3. Compared the scaling constants for the common item linking sets
- 4. Compared transformed PBT parameter estimates generated by Pearson and HumRRO

Compared all conversion tables produced by Pearson and HumRRO to make sure they were accurate

Measured Progress prepared reports documenting their findings. Exact matches were found between all Pearson and HumRRO conversion tables before scores were reported.

10.4 Model Fit Evaluation Criteria

The usefulness of IRT models is dependent on the extent to which they effectively reflect the data. As discussed by Hambleton, Swaminathan, and Rogers (1991), "The advantages of item response models can be obtained only when the fit between the model and the test data of interest is satisfactory. A poorly fitting IRT model will not yield invariant item and ability parameters" (p. 53).

After convergence was achieved for each IRT data set, the IRT model fit was evaluated by doing the following:

- 1. Calculating the Q₁ statistic and comparing it to a criterion score
- 2. Calculating the G² statistic and comparing it to a criterion score
- 3. Reviewing graphical output for all items

The Q_1 statistic (Yen, 1981) was used as an index of correspondence between observed and expected performance. To compute Q_1 , first the estimated item parameters and student response data (along with observed item scores) were used to estimate student ability $(\hat{\theta})$. Next, expected performance was computed on each item using students' ability estimates in combination with estimated item parameters. Differences between expected item performance and observed item performance were then compared at 10 intervals across the range of student achievement (with approximately the same number of students per interval). Q_1 was computed as a ratio involving expected and observed item performance. Q_1 is interpretable as a chi-squared (χ^2) statistic, which can be compared to a critical chi-squared value to make a statistical inference about whether the data (observed item performance) were consistent with what might be observed if the IRT model was true (expected item performance). Q_1 is not directly comparable across different item types because items with different numbers of IRT parameters have different degrees of freedom (df). For that reason, a linear transformation (to a Z-score, Z_{Q_1}) was applied to Q_1 . This transformation also made item fit results easier to interpret and addressed the sensitivity of Q_1 to sample size.

To evaluate item fit, Yen's Q_1 statistic was calculated for all operational and field-test items. Q_1 is a fit statistic that compares observed and expected item performance. MAP (maximum *a posteriori*) estimates from IRTPRO were used as student ability estimates. For dichotomous items, Q_1 was computed as

$$Q_{1i} = \sum_{j=1}^{j} \frac{N_{ij}(O_{ij} - E_{ij})^2}{E_{ij}(1 - E_{ij})}$$

where N_{ij} was the number of examinees in interval (or group) j for item i, O_{ij} was the observed proportion of the examinees for the same cell, and E_{ij} was the expected proportions of the examinees for the same interval. The expected proportion was computed as

$$E_{ij} = \frac{1}{N_{ij}} \sum_{a \in j}^{N_{ij}} P_i(\hat{\theta}_a)$$

where $P_i(\hat{\theta}_a)$ was the item characteristic function for item i and examinee a. The summation is taken over examinees in interval j.

The generalization of Q_1 for items with multiple response categories is

Gen
$$Q_{1i} = \sum_{j=1}^{10} \sum_{k=1}^{m_i} \frac{N_{ij} (O_{ikj} - E_{ikj})^2}{E_{ikj}}$$

where

$$E_{ikj} = \frac{1}{N_{ij}} \sum_{\alpha \in j}^{N_{ij}} P_{ik} (\hat{\theta}_{\alpha}).$$

Both Q_1 and generalized Q_1 results were transformed to ZQ_1 and were compared to a criterion $ZQ_{1,crit}$ to determine acceptable fit. The conversion formula was

$$ZQ_1 = \frac{Q_1 - df}{\sqrt{2df}}$$

and

$$ZQ_{1,crit} = \frac{N}{1500} * 4,$$

where df is the degrees of freedom. The degrees of freedom is equal to the number of independent cells less the number of independent item parameters. For example, the degrees of freedom for polytomous items equals $[10 \times (number of score categories-1) - number of independent item parameters]$. For the GPCM, the number of independent item parameters equals 1 (for the a parameter) plus the number of step values (e.g., for an item scored 0, 1, 2, 3: there are 3 independent step values—the b parameter is simply the mean of the step values and is not, therefore, independent).

If Q_1 is found to be excessively sensitive (i.e., a large number of items are flagged for poor fit, even if their item fit plots look reasonable), a likelihood-ratio chi-squared statistic may be computed for each item (Muraki, 1997):

$$G_i^2 = 2 \sum_{w=1}^{W_i} \sum_{h=1}^{m_i} r_{wih} \ln \frac{r_{wih}}{N_{wi} P_{ih}(\bar{\theta}_w)}$$

where r_{wih} is the observed frequency of the h^{th} categorical response to item i in interval w, N_{wi} is the number of examinees in interval w for item i, $P_{ih}(\bar{\theta}_w)$ is the expected probability of observing the h^{th} categorical response to item i for the mean θ in interval w, and W_i is the number of intervals remaining after neighboring intervals are merged, if necessary, to avoid expected values, $N_{wi}P_{ih}(\bar{\theta}_w)$, less than 5. To conduct a standard hypothesis test, the number of degrees of freedom is equal to the number of intervals, W_i , multiplied by m_i-1 .

As an alternative to a traditional hypothesis test, the "contingency coefficient" (effect size; Barton & Huynh, 2003) was computed:

$$C = \sqrt{\frac{\chi^2}{\chi^2 + N}}$$

In this formula, G_i^2 was substituted for χ^2 , and N is the sample size on which the IRT parameters were estimated. According to Cohen (1988, pp. 224-225), values of C below .10 are considered insignificant, .10+ small, .287+ medium, and .447+ large. A threshold of .35 is recommended (i.e., flag items for which $C \ge .35$).

An item fit-plot was created for each item. Item-fit plots show observed and expected average scores for each interval (e.g., figure below).

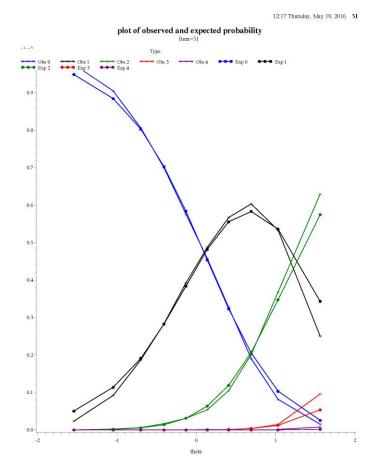


Figure 10.1 An example ELA/L 5-Category Item, 2 PL/GPC Model, N-count 44,658, Q1=1266.64, ZQ1=147.21 and a criterion ZQ1,crit= 237.02

10.5 Items Excluded from Score Reporting

As mentioned previously, after calibration and model fit evaluation were completed, a master list of all problematic items was compiled and potentially flawed items were brought to the PARCC Priority Alert Task Force. The Task Force reviewed each item, its content and the statistical properties, and made decisions about whether to include the item in the operational scores. Sometimes, an item was rejected because it appeared to have content issues, and sometimes an item was excluded because it could not be calibrated or showed extremely poor IRT model fit. Ultimately the decisions about whether to keep or exclude each flagged item was made by the Task Force.

10.5.1 Item Review Process

The following are the types of problematic items that were brought to the PARCC Priority Alert Task Force for evaluation and an "include or exclude" determination was made:

- 1. Extremely difficult items (e.g., an item with a *p* value less than 0.02)
- 2. Items with low α -parameter estimates (e.g., slope less than 0.10)

3. Items flagged for subgroup DIF or language DIF

Again, the primary goal was to minimize the number of items dropped from the operational test forms. An equally important goal was to not advantage or disadvantage any test takers.

10.5.2 Count and Percentage of Items Excluded from Score Reporting

All items that did not have IRT item parameter estimates were excluded from the student operational scores and the conversion tables used for score reporting. For ELA/L and mathematics, at most 2 percent of the items were excluded from score reporting for all grades/subjects. Figure 10.2 demonstrates an item that was flagged during the calibrations and item fit review for poor statistics (a-parameter=0.02 and b-parameter=33.48) and poor fit (e.g. Q_1 = 4947.19, ZQ_1 = 845.52 and a criterion $ZQ_{1,crit}$ = 468.90). This item was reviewed by the Priority Alert Task Force and removed from scoring.

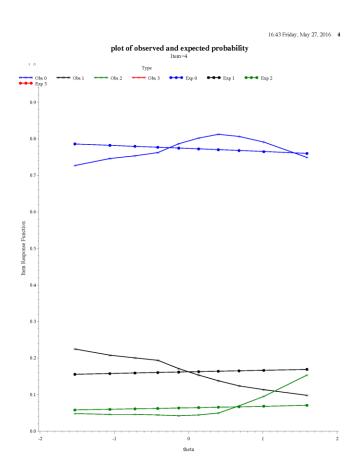


Figure 10.2 An example ELA/L 3-Category Item, 2 PL/GPC Model, N-count 175,839

Table 10.2 presents the count and percentage of CBT items excluded from IRT calibration along with the reasons the items were excluded.

		n of CBT			Rea	ason Exclude	d
Grade	Total <i>n</i> of CBT Items	ltems Excluded	Percent Excluded	Small Sample Size	Poor IA Stats	Did Not Calibrate	Other
3	82	0	0%				
4	86	0	0%				
5	86	1	1%				Display malfunction
6	106	0	0%				
7	98	0	0%				
8	104	0	0%				
9	96	0	0%				
10	104	0	0%				
11	106	0	0%				

10.6 Scaling Parameter Estimates

Year-to-year linking was performed on all ELA/L CBTs to transform IRT parameters to the 2016 IRT scale. The linking analyses included common-item sets. The linking methodology was based on the Stocking and Lord (1983) test characteristic curve scale transformation method.

Year-to-year linking transforms IRT parameters from different years (or administrations) onto the same underlying IRT scale. Due to the PARCC test redesign and updates to the trait scoring for the PCRs, the spring 2016 online IRT scale was established as the base IRT scale.

The entire item bank was previously transformed to the spring 2016 IRT scale through a common-item linking set consisting of spring 2016 operational online items that were operational or field-test items on the spring 2015 online administration. The details for this procedure can be found in the 2016 PARCC Technical Report.

Humrro not only conducted independent calibrations of item response data using IRTPRO scaling software, they also used STUIRT (Kim & Kolen, 2004) software to transform their IRTPRO item parameter estimates onto the IRTPRO scales for each grade/subject. Humrro's scaling constants were compared to those generated by Pearson and found exactly match. As described in Section 10.3.4, Measured Progress independently made certain that the same items were excluded from the linking sets, and compared transformed parameter estimates by Pearson and Humrro.

10.7 Items Excluded from Linking Sets

Linking is an iterative process. Robust *Z* (Huynh & Meyer, 2010) and Weighted Root Mean Square Difference (WRMSD) were used to identify outlier items in the linking sets. Furthermore, items used in the paper-to-online linking were checked for differential item functioning (DIF). Mantel-Haenszel D-DIF

procedures were used for dichotomous items and standardized mean difference (SMD) were calculated for polytomous items. The following rules were used to identify items for possible exclusion from the linking sets:

- 1) Exclude an item from the common-item set if different amounts of collapsing resulted in a different number of response categories across modes or versions.
- 2) Flag and potentially exclude an item from the common-item set if the online or paper weighted polyserial correlation, based on the item analysis, was less than 0.10.
- 3) Exclude items dropped by the PARCC Priority Alert Task Force (i.e., due to content or parameter estimation issues).
- 4) Flag and potentially exclude an item from the common-item set if the mode DIF results indicated positive or negative C-DIF.

After removing items due to item performance issues as described above, the following steps were performed:

- 5) Implement the Robust Z approach to see if any common items are flagged.
- 6) Run the initial Stocking and Lord procedure using the STUIRT software.
- 7) Calculate WRMSD and check to see if any common items exceed the threshold.
- 8) Re-run STUIRT after removing the items flagged by Robust Z.
- 9) Compare the slopes and intercepts from steps 2 and 4.

SAS code was developed to calculate WRMSD, Robust *Z*, to compare the item characteristic curves (ICCs) across modes, and to identify items for possible removal from the linking sets. Table 10.3 lists the flag criteria for the WRMSD. (*Note: these values were originally developed as part of the 2014 PARCC field-test analysis.*).

Table 10.3 WRMSD Flagging Criteria for Inspection and Possible Removal of Linking Items

		WRMSD/	
Categories	Points	Points	WRMSD
2	1	0.100	0.100
3	2	0.075	0.150
4	3	0.075	0.225
5	4	0.075	0.300
6	5	0.075	0.375
7	6	0.075	0.450
>=8	>= 7	0.090	0.999

When inspecting items flagged for exclusion from the linking sets, content representation was also considered to avoid removing large numbers of items from the same subclaim. Table 10.4 presents the total number of common items, items excluded from the year-to-year linking sets, and items kept in the

linking sets for each grade for ELA/L. The final number of linking items ranged from 6 (in grade 3) to 22 (in grade 9). Grades 6 and 7 had the largest number of items removed from the linking sets due to Robust Z for the α -parameter and b-parameter.

Table 10.4 Number of ELA/L Items Excluded from the Year-to-Year Linking Sets

	Total <i>n</i> of	Number	Final Number	Number of Excluded Items by Reason for Exclusion					
Grade	Common Items	Excluded	in Linking Set	Low Polyserial	Robust Z IRT_a	Robust Z IRT_b	High WRMSD		
3	8	2	6	0	1	1	0		
4	15	1	14	0	0	1	0		
5	15	1	14	0	0	1	0		
6	13	3	10	0	2	1	0		
7	18	3	15	0	2	1	0		
8	14	2	12	0	0	2	0		
9	24	2	22	0	2	0	0		
10	13	2	11	0	0	2	0		
11	8	0	8	0	0	0	0		

10.8 Correlations and Plots of Scaling Item Parameter Estimates

Once the final group of items for each linking set was determined, the a- and b-parameter estimates were plotted and the correlation between the a-parameter estimates and the b-parameter estimates were calculated. Table 10.5 presents the number of linking items, score points of the linking items, and the correlation of the a- and b-parameter estimates across years.

Table 10.5 Number of Items, Number of Points, and Correlations for ELA/L Year-to-Year Linking Items

	Nur	nber	Parame	Parameter Correlations		
Grade	Items	Points	а-	b-		
3	6	12	0.9984	0.9998		
4	14	31	0.9815	0.9991		
5	14	30	0.9965	0.9027		
6	10	25	0.9994	0.9553		
7	15	33	0.9921	0.9982		
8	12	29	0.9973	0.9978		
9	22	47	0.9796	0.9821		
10	11	22	0.9806	0.9890		
11	8	19	0.9974	0.9985		

Figures 10.3 to 10.4 are a selection of plots of the α - and b-parameter estimates for linking items for the year-to-year linking. ELA/L grade 8 (Figures 10.3 and 10.4) is an example of the year-to-year linking. For each plot, the x-axis is the original (reference) parameter and the y-axis is the new parameter after applying the scaling constants.



Figure 10.3 ELA/L Grade 8 Transformed New a- vs. Reference a-Parameter Estimates for Year-to-Year Linking

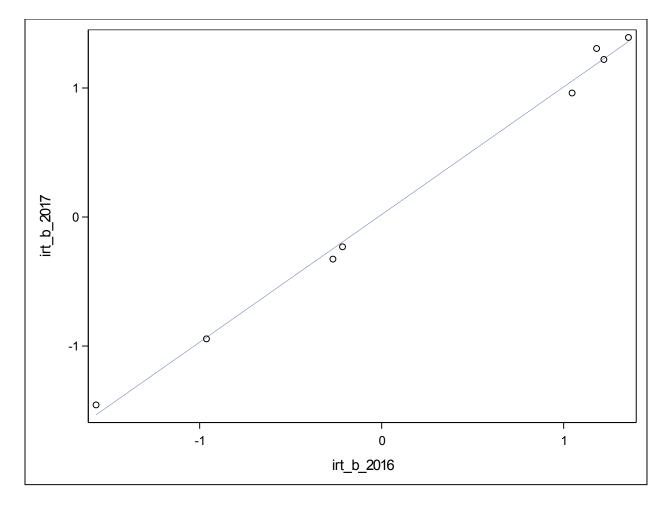


Figure 10.4 ELA/L Grade 8 Transformed New b- vs. Reference b-Parameter Estimates for Year-to-Year Linking

10.9 Scaling Constants

Table 10.6 presents the slope and intercept scaling constants for ELA/L for the year-to-year linking, derived from STUIRT (Kim & Kolen, 2004) using the Stocking and Lord (1983) test characteristic curve procedure. The slopes and intercepts are similar. The slopes range from .9929 to 1.0324, and the intercepts range from -0.0631 and 0.1076.

Table 10.6 Scaling	Constants Spring	2016 to Spring	2017 for ELA/L

	Spring 2016 to Spring 2	017
Grade/Subject	Slope	Intercept
3	1.0281	0.0926
4	1.0324	0.0338
5	1.063	0.1076
6	0.9929	0.0608
7	0.9959	-0.0406
8	1.0218	-0.0631
9	1.0306	0.0815
10	0.9975	0.06
11	1.0298	-0.0199

10.10 Summary Statistics and Distributions from IRT Analyses

Tables 10.7 through 10.15 present summary statistics for the IRT (b- and a-) parameter estimates, the standard errors (SEs) of the parameter estimates, and the IRT model fit values (chi-square and adjusted fit) for ELA/L CBTs. For all other tests, which were pre-equated, the summary statistics for the parameter estimates and the administration from which the parameter was first obtained are presented. The information is provided by content area (ELA/L and mathematics) and by mode (CBT and PBT) for all items at each grade level or course. The summary statistics shown include the total number of items and score points, along with the mean, standard deviation (SD), minimum, and maximum.

10.10.1 IRT Summary Statistics for English Language Arts/Literacy

Table 10.7 shows the b- and a-parameter estimates for the ELA/L CBT assessments. Table 10.8 presents the standard errors (SE) of the estimates, and Table 10.9 provides model fit information for the ELA/L CBT assessments. IRT summary statistics are provided in the Appendix 10 for ELA/L for all items, reading-only, and writing-only. Table 10.10 shows the summary of the parameters estimates, and Table 10.11 shows the source year for the item statistics for each of the ELA/L PBT assessments.

Table 10.7 CBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade

			Sur	nmary o	f <i>b</i> Estimat	tes	Summary of a Estimates			
Grade	No. of Items	No. of Score Points	Mean	SD	Min	Max	Mean	SD	Min	Max
3	82	180	0.47	1.05	-1.4	3.44	0.55	0.2	0.11	1.00
4	86	193	0.20	1.43	-6.48	4.99	0.49	0.22	0.13	0.97
5	85	192	0.65	1.21	-6.27	3.56	0.47	0.23	0.13	1.00
6	106	233	0.53	0.87	-0.97	4.45	0.48	0.19	0.15	0.96
7	98	217	0.35	0.89	-2.17	3.82	0.48	0.23	0.14	1.11
8	104	232	0.27	0.95	-2.39	3.30	0.46	0.26	0.09	1.10
9	96	210	0.58	0.83	-1.04	3.59	0.47	0.28	0.10	1.40
10	104	232	0.69	0.80	-1.27	3.06	0.48	0.23	0.16	1.09
11	106	236	0.91	0.82	-0.54	3.77	0.48	0.19	0.14	0.91

Table 10.8 CBT IRT Standard Errors of Parameter Estimates for All Items for ELA/L by Grade

				SE of b		SE of a Estimates				
Grade	No. of Items	No. of Score Points	Mean	SD	Min	Max	Mean	SD	Min	Max
3	82	180	0.009	0.007	0.004	0.053	0.004	0.002	0.002	0.01
4	86	193	0.013	0.022	0.004	0.163	0.004	0.002	0.002	0.01
5	85	192	0.012	0.017	0.004	0.14	0.004	0.002	0.002	0.01
6	106	233	0.01	0.01	0.004	0.093	0.004	0.002	0.002	0.01
7	98	217	0.01	0.008	0.004	0.067	0.005	0.002	0.002	0.012
8	104	232	0.012	0.01	0.004	0.075	0.005	0.003	0.002	0.013
9	96	210	0.012	0.011	0.004	0.067	0.005	0.003	0.002	0.017
10	104	232	0.015	0.01	0.005	0.08	0.006	0.003	0.003	0.016
11	106	236	0.019	0.015	0.007	0.099	0.007	0.003	0.003	0.016

Table 10.9 CBT IRT Model Fit for All Items for ELA/L by Grade

				Ġ	\tilde{j}^2		$\mathbf{Q_1}$				
Grade	No. of Items	No. of Score Points	Mean	SD	Min	Max	Mean	SD	Min	Max	
3	82	180	2628.5	2558.7	182.3	11676.5	2524.8	2468.9	178.9	10234.5	
4	86	193	2566	2756.7	391.7	20517.1	2488.4	2633.2	373.6	17734.4	
5	85	192	3010.8	3148.6	132.3	20149.4	9706.6	62643.1	129.6	579715.1	
6	106	233	2033.8	1846.4	227.5	12312.5	1964.5	1828.4	222.5	12034	
7	98	217	2007	2081.5	189.3	11308.1	1979.5	2096.7	180.7	10699.5	
8	104	232	1922.6	1726.3	164.2	9222.1	1853.3	1678.6	152.6	8390.7	
9	96	210	1683.8	1348.7	150.2	5455.1	1671.9	1443.7	148.7	7125.8	
10	104	232	1154.7	1286	58.1	11355.6	1127.9	1500.8	57.2	14014.8	
11	106	236	747.9	700.2	74.9	5082.1	700.3	665	75.6	4584.2	

Table 10.10 PBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade

			Summary of b Estimates				Summary of <i>a</i> Estimates			tes
Grade	No. of Items	No. of Score Points	Mean	SD	Min	Max	Mean	SD	Min	Max
3	32	70	0.82	0.96	-0.9	3.35	0.5	0.18	0.12	0.82
4	34	76	0.51	1.09	-1.08	4.96	0.48	0.24	0.17	0.99
5	34	76	1.03	0.83	-0.97	2.99	0.43	0.22	0.13	0.94
6	40	89	0.51	0.78	-0.74	2.37	0.44	0.19	0.15	0.96
7	40	89	0.38	0.8	-1.38	2.15	0.38	0.16	0.19	0.84
8	40	89	0.35	0.78	-1.39	1.9	0.43	0.19	0.1	0.84
9	40	89	0.58	0.77	-1.07	2.22	0.44	0.21	0.18	0.96
10	40	89	0.48	0.73	-1.05	1.88	0.51	0.19	0.18	0.9
11	40	89	1.35	1	-0.58	3.75	0.41	0.21	0.15	0.9

Table 10.11 PBT IRT Parameter Distri	bution by Year	for All Items for	r ELA/L b	v Grade

Grade	ALL	2014	2015	2016
3	32	0	10	22
4	34	0	8	26
5	34	0	6	28
6	40	0	12	28
7	40	0	14	26
8	40	0	0	40
9	40	0	11	29
10	40	0	22	18
11	40	0	8	32

10.10.2 IRT Summary Statistics for Mathematics

Tables 10.12 and 10.14 show the b- and a-parameter estimates for the CBT and PBT mathematics assessments, respectively. Tables 10.13 and 10.15 show the source year for the item statistics for each of the assessments. IRT summary statistics are provided in the Appendix 10 for mathematics for all items, single-select multiple-choice items, constructed-response items, and subclaims.

Table 10.12 CBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject

			Summary of b Estimates			tes	Summary of a Estimates			
Grade	No. of Items	No. of Score Points	Mean	SD	Min	Max	Mean	SD	Min	Max
3	113	172	-0.01	1.13	-3	2.81	0.77	0.25	0.22	1.42
4	99	155	0.13	0.93	-1.98	2.1	0.76	0.19	0.29	1.23
5	103	164	0.22	1.08	-2.44	2.61	0.68	0.25	0.22	1.45
6	95	163	0.28	1.1	-2.98	2.46	0.72	0.25	0.26	1.38
7	97	163	1.07	1.08	-1.76	3.47	0.7	0.28	0.24	1.71
8	91	166	1.1	1.07	-1.8	3.92	0.65	0.26	0.23	1.35
A1	104	191	1.53	0.92	-0.73	5.3	0.67	0.28	0.23	1.34
GO	110	206	1.14	0.98	-1.77	3.88	0.77	0.33	0.16	1.86
A2	102	194	1.56	0.91	-0.51	4.21	0.7	0.33	0.18	1.56
M1	42	81	1.15	1.07	-0.95	3.94	0.64	0.22	0.18	1.28
M2	41	80	1.9	1.45	-0.74	5.99	0.53	0.27	0.12	1.18
M3	40	81	1.27	1.08	-2.27	4.28	0.59	0.27	0.16	1.27

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics II, M3 = Integrated Mathematics III.

Table 10.13 CBT IRT Parameter Distribution by Year for All Items for Mathematics by Grade/Subject

Grade	ALL	2014	2015	2016
3	113	1	60	52
4	99	2	58	39
5	103	0	55	48
6	95	0	46	49
7	97	1	46	50
8	91	0	43	48
A1	104	0	45	59
A2	102	0	35	67
GO	110	0	38	72
M1	42	0	20	22
M2	41	0	0	41
M3	40	0	0	40

Table 10.14 PBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject

			Sur	Summary of b Estimates			Summary of a Estimates			
Grade	No. of	No. of Score Points	Mean	SD	Min	Max	Mean	SD	Min	Max
Grauc	iteilis	ronits	IVICALI	30	141111	IVIAA	ivican	30	141111	IVIAA
3	43	66	-0.27	1.04	-2.44	2.08	0.74	0.26	0.29	1.42
4	40	66	-0.18	1.12	-2.11	2.1	0.75	0.23	0.42	1.28
5	40	66	0	1.16	-2.27	2.28	0.71	0.23	0.4	1.36
6	38	66	0.27	1.32	-3.54	3.59	0.64	0.24	0.23	1.4
7	38	66	0.93	1.2	-1.66	3.06	0.61	0.21	0.34	1.06
8	36	66	1.04	1.17	-1.17	3.22	0.56	0.24	0.18	1.23
A1	42	81	1.05	1.14	-1.16	3.27	0.54	0.2	0.17	1.01
GO	43	81	1.02	1.1	-1.1	3.6	0.71	0.32	0.24	1.41
A2	41	81	1.75	1.87	-1.39	9.06	0.61	0.29	0.12	1.41
M1	42	81	1.22	1.31	-1.25	5.41	0.59	0.28	0	1.36
M2	42	80	1.67	1.14	-0.5	4.87	0.52	0.24	0.18	1.15
M3	39	80	1.31	1.33	-2.27	4.61	0.56	0.26	0.13	1.24

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III.

Table 10.15 PBT IRT Parameter Distribution by Year for All Items for Mathematics by Grade/Subject

Grade	ALL	2014	2015	2016
3	43	0	6	37
4	40	0	9	31
5	40	0	8	32
6	38	0	11	27
7	38	0	11	27
8	36	0	5	31
A1	42	0	10	32
A2	41	0	2	39
GO	43	0	10	33
M1	42	1	19	22
M2	42	0	22	20
M3	39	0	14	25

Section 11: Performance Level Setting

11.1 Performance Standards

Performance standards relate levels of performance on an assessment directly to what students are expected to learn. This is done by establishing threshold scores that distinguish between performance levels. Performance level setting (PLS) is the process of establishing these threshold scores that define the performance levels for an assessment.

11.2 Performance Levels and Policy Definitions

For the PARCC assessments, the performance levels are

- Level 5: Exceeded expectations
- Level 4: Met expectations
- Level 3: Approached expectations
- Level 2: Partially met expectations
- Level 1: Did not yet meet expectations

More detailed descriptions of each performance level, known as policy definitions, are:

Level 5: Exceeded expectations

Students performing at this level **exceed academic expectations** for the knowledge, skills, and practices contained in the standards assessed at their grade level or course.

<u>Grades 3–10:</u> Students performing at this level **exceed academic expectations** for the knowledge, skills, and practices contained in the standards for English language arts/literacy (ELA/L) or mathematics assessed at their grade level. They are **academically well prepared** to engage successfully in further studies in this content area.

Algebra II, Integrated Mathematics III, and ELA/L Grade 11: Students performing at this level **exceed** academic expectations for the knowledge, skills, and practices contained in the mathematics and ELA/L standards assessed at grade 11. They are very likely to engage successfully in entry-level, credit-bearing courses in mathematics and ELA/L, as well as technical courses requiring an equivalent command of the content area. Students performing at this level are exempt from having to take and pass placement tests in two- and four-year public institutions of higher education designed to determine whether they are academically prepared for such courses without need for remediation.

Level 4: Met expectations

Students performing at this level **meet academic expectations** for the knowledge, skills, and practices contained in the standards assessed at their grade level or course.

<u>Grades 3–10:</u> Students performing at this level **meet academic expectations** for the knowledge, skills, and practices contained in the standards for ELA/L or mathematics assessed at their grade level. They are **academically prepared** to engage successfully in further studies in this content area.

Algebra II, Integrated Mathematics III, and ELA/L Grade 11: Students performing at this level meet academic expectations for the knowledge, skills, and practices contained in mathematics and ELA/L at grade 11. They are very likely to engage successfully in entry-level, credit-bearing courses in mathematics and ELA/L, as well as technical courses requiring an equivalent command of the content area. Students performing at this level are exempt from having to take and pass placement tests in two-and four-year public institutions of higher education designed to determine whether they are academically prepared for such courses without need for remediation.

Level 3: Approached expectations

Students performing at this level **approach academic expectations** for the knowledge, skills, and practices contained in the standards assessed at their grade level or course.

<u>Grades 3–10:</u> Students performing at this level **approach academic expectations** for the knowledge, skills, and practices contained in the standards for ELA/L or mathematics assessed at their grade level. They are likely prepared to engage successfully in further studies in this content area.

Algebra II, Integrated Mathematics III, and ELA/L Grade 11: Students performing at this level approach academic expectations for the knowledge, skills, and practices contained in the ELA/L and mathematics standards assessed at grade 11. They are likely to engage successfully in entry-level, credit-bearing courses in mathematics and ELA/L, as well as technical courses requiring an equivalent command of the content area. Students performing at Level 3 are strongly encouraged to continue to take challenging high school coursework in English and mathematics through graduation. Postsecondary institutions are encouraged to use additional information about students performing at Level 3, such as course completion, course grades, and scores on other assessments to determine whether to place them directly into entry-level courses.

Level 2: Partially met expectations

Students performing at this level **partially meet academic expectations** for the knowledge, skills, and practices contained in the standards assessed at their grade level or course.

<u>Grades 3–10:</u> Students performing at this level **partially meet academic expectations** for the knowledge, skills, and practices contained in the standards for ELA/L or mathematics assessed at their grade level. They will likely need academic support to engage successfully in further studies in this content area.

Algebra II, Integrated Mathematics III, and ELA/L Grade 11: Students performing at this level **partially meet academic** expectations for the knowledge, skills, and practices contained in the ELA/L and mathematics standards assessed at grade 11. They will likely need academic support to engage successfully in entry-level, credit-bearing courses, and technical courses requiring an equivalent command of the content area. Students performing at this level are not exempt from having to take and pass placement tests designed to determine whether they are academically prepared for such courses without the need for remediation in two- and four-year public institutions of higher education.

Level 1: Did not yet meet expectations

Students performing at this level **do not yet meet academic expectations** for the knowledge, skills, and practices contained in the standards assessed at their grade level or course.

<u>Grades 3–10:</u> Students performing at this level **do not yet meet academic expectations** for the knowledge, skills, and practices contained in the standards for ELA/L or mathematics assessed at their grade level. They will need academic support to engage successfully in further studies in this content area.

Algebra II, Integrated Mathematics III, and ELA/L Grade 11: Students performing at this level **do not yet meet academic expectations** for the knowledge, skills, and practices contained in the ELA/L and mathematics standards assessed at grade 11. They will need academic support to engage successfully in entry-level, credit-bearing courses in college algebra, introductory college statistics, and technical courses requiring an equivalent level of mathematics. Students performing at this level are not exempt from having to take and pass placement tests in two- and four-year public institutions of higher education designed to determine whether they are academically prepared for such courses without need for remediation.

11.3 Performance Level Setting Process for the PARCC Assessment System

One of the main objectives of the PARCC assessment system is to provide information to students, parents, educators, and administrators as to whether students are on track in their learning for success after high school, defined as college- and career-readiness. To set performance levels associated with this objective, PARCC used the evidence-based standard setting (EBSS) method (Beimers, Way, McClarty, & Miles, 2012) for the PARCC PLS process. The EBSS method is a systematic method for combining various considerations into the process for setting performance levels, including policy considerations, content standards, educator judgment about what students should know and be able to demonstrate, and research to support PARCC's policy goals related to college- and career-readiness. A defined multistep process was used to allow a diverse set of stakeholders to consider the interaction of these elements in recommending performance level threshold scores for each PARCC assessment.

The seven steps of the EBSS process that were followed in order to establish performance standards for the PARCC assessments are:

Step 1: Define outcomes of interest and policy goals

Step 2: Develop research, data collection, and analysis plans

Step 3: Synthesize the research results

Step 4: Conduct pre-policy meeting

Step 5: Conduct performance level setting (PLS) meetings with panels

Step 6: Conduct reasonableness review with post-policy panel

Step 7: Continue to gather evidence in support of standards

A summary of key components within these steps is provided below. Additional detail about each step in the PARCC PLS process is provided in the PARCC Performance Level Setting Technical Report.

11.3.1 PARCC Research Studies

PARCC conducted two research studies in support of their policy goals—the benchmarking study and the postsecondary educators' judgment (PEJ) study. The benchmarking study included a review of the literature relative to college- and career-readiness as well as consideration of the percentage of students obtaining a level equivalent to college- and career-readiness on a set of external assessments (e.g., ACT, SAT, NAEP). The PEJ study involved a group of nearly 200 college faculty reviewing items on the Algebra II and ELA/L grade 11 PARCC assessments and making judgments about the level of performance needed on each item to be academically ready for an entry-level college-credit bearing course in mathematics or ELA/L. Additional detail about the benchmarking study can be found in the *PARCC Performance Level Setting Technical Report* as well as in the *PARCC Benchmarking Study Report*. Additional detail about the PEJ study can be found in the *PARCC Performance Level Setting Technical Report* as well as in the *Postsecondary Educators' Judgment Study Final Report*.

11.3.2 PARCC Pre-Policy Meeting

Prior to the PLS meetings, a pre-policy meeting was convened to determine reasonable ranges that would be shown to panelists during the high school PLS meetings. Pre-policy meeting participants included representatives from both K–12 and higher education who served in roles such as commissioner/superintendent, deputy/assistant commissioner, state board member, director of assessment, director of academic affairs, senior policy associate, and so on. The reasonable ranges recommended by the pre-policy meeting defined the minimum and maximum percentage of students that would be expected to be classified as college- and career-ready. The pre-policy meeting participants reviewed the test purpose, how the performance standards will be used, and the results of the research studies to provide the recommendations for the reasonable ranges without viewing any student performance data.

11.3.3 Performance Level Setting Meetings

The task of the PLS committee was to recommend four threshold scores that would define the five performance levels for each PARCC assessment. PARCC solicited nominations from all states that had administered the PARCC assessments in 2014–2015 for panelists to serve on the PLS committees. Nominations were solicited both from state departments of public education (K–12) and higher education (primarily for participation on the high school panels). When selecting panelists, PARCC placed an emphasis on those educators who had content knowledge as well as experience with a variety of student groups and attempted to balance the panels in terms of state representation.

PARCC used an extended modified Angoff (Yes/No) method to collect educator judgments on the PARCC items. This method asked panelists to review each item on a reference form of the PARCC assessment and to make the following judgment:

¹⁰ More information can be requested online from http://www.parcconline.org/assessments/test-design/research.

How many points would a borderline student at each performance level likely earn if they answered the question?

This extension to the Yes/No standard setting method (Plake, Ferdous, Impara, & Buckendahl, 2005) allowed for incorporation of the multipoint PARCC items by asking educators to evaluate (Yes or No) whether a borderline student would earn the maximum number of points on an item, a lesser number of points on an item, or no points on the item. In the case of a single point or multiple-choice item, this task simplifies to the standard Yes/No method.

After receiving training on the PLS procedure, panelists participated in three rounds of judgments for each assessment. Within each round, panelists were asked to consider the items in the test form, starting with the performance-based assessment (PBA) component and then the end-of-year (EOY) component. Each panelist made a judgment for the Level 2 performance level, followed by judgments for the Level 3 performance level, the Level 4 performance level, and the Level 5 performance level, in this order. The panelists entered their item judgments for each round by completing an online item judgment survey. Educator judgments were summed across items to create an estimated total score on the reference form for each performance level threshold. Feedback data relative to panelist agreement, student performance on the items, and student performance on the test as a whole were provided in between each of the three rounds of judgment. Panelists were shown the pre-policy reasonable ranges prior to making their Round 1 judgments and again as feedback data following each round of judgment.

A dry-run of the PARCC PLS meeting process was held for grade 11 ELA/L and Algebra II in order to evaluate the implementation of the PLS method with the innovative characteristics of the PARCC assessments. These content areas were selected because they combined all the various aspects of the PARCC assessments, including the various types of items, scoring rules, and performance level decisions. The dry-run PLS meetings provided the opportunity to implement and evaluate multiple aspects of the operational plan for the actual PLS meeting, including pre-work, meeting materials, data analysis and feedback, and staff and panelist functions. The results of the dry-run PLS meeting were used to implement improvements in the process for the operational PLS meetings. Additional information about the methods and results of the dry-run PLS meeting is available in the full report in the *PARCC Performance Level Setting Dry-Run Meeting Report*.

The PLS meetings for the PARCC assessments were conducted during three one-week sessions. The dates of the twelve PLS committee meetings that were conducted are shown in Table 11.1.

Dates	Committees by Subjects and Grades		
July 27–31, 2015	Algebra I/Integrated Mathematics I		
_	Geometry/Integrated Mathematics II		
_	Algebra II/Integrated Mathematics III		
_	Grade 9 English Language Arts/Literacy		
_	Grade 10 English Language Arts/Literacy		
_	Grade 11 English Language Arts/Literacy		
August 17–21, 2015	Grades 7 & 8 Mathematics		
_	Grades 7 & 8 English Language Arts/Literacy		
August 24–28, 2015	Grades 3 & 4 Mathematics		
_	Grades 5 & 6 Mathematics		
_	Grades 3 & 4 English Language Arts/Literacy		
_	Grades 5 & 6 English Language Arts/Literacy		

Additional information about the methods and results of the PLS meetings is available in the *Performance Level Setting Technical Report*.

11.3.4 PARCC Post-Policy Reasonableness Review

Performance standards for all PARCC assessments were recommended by PLS committees and reviewed by the PARCC Governing Board and (for the Algebra II, Integrated Mathematics III, and ELA/L grade 11 assessments) the Advisory Committee on College Readiness as part of a post-policy reasonableness review. This group reviewed both the median threshold score recommendations from each committee and the variability in the threshold scores as represented by the standard error of judgment (SEJ) of the committee. Adjustments to the median threshold scores that were within 2 SEJ were considered to be consistent with the PLS panels' recommendation.

In addition to voting to adopt the performance standards based on the committees' recommendations, this group also voted to conduct a shift in the PARCC performance levels to better meet the intended inferences about student performance. Holding the college- and career-ready (or on-track) expectations (i.e., the current level 4) constant, performance levels above this expectation were combined and performance levels below this expectation were expanded to create the final system of performance levels with three below and two above the college- and career-ready (or on-track) expectation. The shift in performance levels was accomplished using a scale anchoring process that involved two primary steps. In the first step, the top two performance levels, above college- and career-ready (or on-track), were combined into a single performance level and an additional performance level below college- and career-ready (or on-track) was created by empirically determining the midpoint between the existing two levels. In the second step, the performance level descriptors (PLDs) were updated using items that discriminated student performance well at this level to create a PLD aligned with the new empirically determined performance level. At this same time, PLDs for all performance levels were reviewed for consistency and continuity. Members of the original PLS committees were recruited to participate in this

process. Additional information about this process can be found in the *Performance Level Setting Technical Report*.

Section 12: Scale Scores

PARCC assessments are designed to measure and report results in categories called master claims and subclaims. Master claims (or simply "claims") are at a higher level than subclaims with content representing multiple subclaims contributing to each claim outcome.

Four scale scores were reported for PARCC assessments. ¹¹ A full summative scale score was reported for each mathematics assessment. A summative scale score and separate claim scores for Reading and Writing were reported for each English language arts/literacy (ELA/L) assessment. PARCC reports results according to five performance levels that delineate the knowledge, skills, and practices students are able to demonstrate:

- Level 5: Exceeded expectations
- Level 4: Met expectations
- Level 3: Approached expectations
- Level 2: Partially met expectations
- Level 1: Did not yet meet expectations

Subclaim outcomes describe student performance for content-specific subsets of the item scores contributing to a particular claim. For example, Written Expression and Knowledge of Conventions subclaim outcomes are reported along with Writing claim scores. Subclaim outcomes are reported as *Below Expectations*, *Nearly Meets Expectations*, or *Meets or Exceeds Expectations*.

12.1 Operational Test Content (Claims and Subclaims)

A claim is a statement about student performance based on how students respond to test questions. PARCC tests are designed to elicit evidence from students that supports valid and reliable claims about the extent to which they are college and career ready or on track toward that goal and are making expected academic gains based on the Common Core State Standards (CCSS).

The number of items associated with each claim and subclaim outcome vary depending on test subject and grade. The item types vary in terms of the number of points associated with them, so that both the number of items and the number of points are important in evaluating the quality of a claim or subclaim score.

12.1.1 English Language Arts/Literacy

Table 12.1^{12} includes the number of items and the number of points by subclaim and claim for ELA/L grade 3. Corresponding information is provided in Appendix 12.1 for all ELA/L grades.

¹¹ Addendum 12 presents a summary of results on scale scores for the fall 2016 administration.

¹² Table A.12.1 in Appendix 12.1 is identical to Table 12.1.

Table 12.1 Form Composition for ELA/L Grade 3

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	10–12	23–27
	Reading Informational Text	8–9	19–21
	Vocabulary	5–8	10–16
	Claim Total	26	58
Writing			
	Written Expression	2	27
	Knowledge of Conventions	1	9
	Claim Total	3	36
SUMMATIVE TOTA	L	29	94

Note: Prose constructed responses (PCRs) consist of at least two writing traits (Written Expression and Writing Knowledge and Conventions) and, in some cases, a reading trait as well. An *aggregated* PCR item score is determined by summing the multiple scores the student received on two or three traits depending on the item. Therefore, each PCR trait is identified as a separate item in this table for the two writing subclaims and, in some cases, either the Reading Literary Text or the Reading Informational Text subclaim.

Each ELA/L form contains items of varying types. The prose constructed-response (PCR) traits contribute to different claims and the aggregate of the traits contributes to the summative scale score. The following details the number of possible points and the associated subclaims for the three PCR tasks:

- Literary Analysis Task
- Research Simulation Task
- Narrative Writing Task

The Literary Analysis Task and the Research Simulation Task are scored for two traits/subclaims: Reading Comprehension and Written Expression, and Knowledge of Conventions. The Narrative Writing Task is scored for two traits/subclaims: Written Expression and Knowledge of Conventions. All traits/subclaims are initially scored as either 0–3 or 0–4; the Written Expression subclaims are multiplied by 3 (or weighted) to increase their contribution to the total score, making possible subclaim scores 0, 3, 6, and 9, or 0, 3, 6, 9, and 12. The maximum possible points for ELA/L PCR items are provided in Table 12.2.

Table 12.2 Contribution of Prose Constructed-Response Items to ELA/L

	Score	Possible Points				
Grade		Literary Analysis	Research Simulation	Narrative Writing Task		
		Task	Task			
3	Reading	3	3	0		
	Written Expression	9	9	9		
	Knowledge of Conventions	3	3	3		
	Total	15	15	12		
4–5	Reading	4	4	0		
	Written Expression	12	12	9		
	Knowledge of Conventions	3	3	3		
	Total	19	19	12		
6–11	Reading	4	4	0		
-	Written Expression	12	12	12		
	Knowledge of Conventions	3	3	3		
	Total	19	19	15		

12.1.2 Mathematics

Table 12.3^{13} includes the numbers of items and points associated with subclaim scores for mathematics grade 3, as an example of the composition of the mathematics tests.

Table 12.3 Mathematics Form Composition for Grade 3

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	26	30
	Additional & Supporting Content	10	10
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	3	12
TOTAL		43	66

Because there is substantial variation in the composition of the tests, corresponding information is provided in Appendix 12.1 tables for all mathematics grades/courses.

 $^{^{\}rm 13}$ Table A.12.10 in Appendix 12.1 is identical to Table 12.3.

12.2 Establishing the Reporting Scales

PARCC reporting scales designate student performance into one of five performance levels¹⁴ with Level 1 indicating the lowest level of performance and Level 5 indicating the highest level of performance. Threshold or cut scores associated with performance levels were initially expressed as raw scores on the performance level setting (PLS) forms approved by the PARCC Governing Board.

A scale score task force was assembled by PARCC, which made recommendations about how threshold levels would be represented on the reporting scale.

12.2.1 Full Summative Score Scale and Performance Levels

There are 201 defined full summative scale score points for both ELA/L and mathematics, ranging from 650 to 850. A scale score of 700 is associated with minimum Level 2 performance, and a scale score of 750 is associated with minimum Level 4 performance. The threshold for summative performance levels on the scale score metric recommended by the scale score task force is described in Table 12.4.

Table 12.4 Defined Summative Scale Scores

	Lowest Obtainable	Level 2	Level 4	Highest Obtainable
	Scale Score (LOSS)	Level 2	Level 4	Scale Score (HOSS)
Full Summative	650	700	750	850

For spring 2015, scale scores were defined for each test as a linear transformation of the theta (θ_{2015}) scale. The theta values associated with the Level 2 and Level 4 performance levels were identified using the test characteristic curve associated with the performance level setting form. With Levels 2 and 4 scale scores fixed at 700 and 750, respectively, the relationship between theta (θ_{2015}) and scale scores ($Scale\ Score_{2015}$) was established as

$$Scale\ Score_{2015} = A_{2015} * \theta_{2015} + B_{2015}$$

where A_{2015} is the slope and B_{2015} is the intercept. The slope and intercept were established as

$$A_{2015} = \frac{750 - 700}{\theta_{2015 \ Level \ 4} - \theta_{2015 \ Level \ 2}}$$

and

$$B_{2015} = 750 - A_{2015} * \theta_{2015 \ Level \ 4}$$

¹⁴ Section 11 provides an overview of the performance level setting process, and detailed information can be found in the *Performance Level Setting Technical Report*.

As indicated by these formulas, the slope and intercept for the summative scale scores were based on the theta scale, and by default the IRT parameter scale, established in 2015. Since the spring 2016 IRT parameter scale is the base scale for the IRT parameters, the scaling constants A_{2015} and B_{2015} were updated in order to continue reporting performance levels, summative scale scores, claim scores, and subclaim performance levels on the same scale as 2015. Maintaining the 2015 scale allows for prior year scores to be compared to current and future scores, and it maintains the performance levels cut scores.

New scaling constants for the summative scale score were needed for the linear transformation of the theta scale (θ_{2016}) to the 2015 reporting scale ($Scale\ Score_{2015}$):

$$Scale\ Score_{2015} = SA_{2016} * \theta_{2016} + SB_{2016}$$

The slope ($slope_{2015_to_2016}$) and intercept ($intercept_{2015_to_2016}$) generated during the year-to-year linking defined the linear relationship between the 2015 theta scale (θ_{2015}) and the 2016 theta scale (θ_{2016}). These values were included in the scale score formula, and the formulas were used to solve for the slope (SA_{2016}) and (SB_{2016}) intercept for 2016.

The slope (A_{2016}) was updated using the following formula:

$$SA_{2016} = A_{2015}/slope_{2015 \ to \ 2016}$$

where A_{2015} is the current scale score multiplicative constant, $slope_{2015_to_2016}$ is the multiplicative coefficient from the year-to-year linking, and SA_{2016} is the scale score slope constant for 2016 and beyond.

The intercept (B_{2016}) was updated using the following formula:

$$SB_{2016} = B_{2015} - A_{2016} * intercept_{2015 \ to \ 2016},$$

where B_{2015} is the current scale score additive constant, A_{2016} is the updated scale score slope, and (SB_{2016}) is the scale score intercept constant for 2016 and beyond.

In addition, new scaling constants for the reading and writing claim scales were needed. The same formulas were applied by replacing the slope (A_{2015}) and intercept (B_{2015}) with the reading claim slope and intercept and the writing claim slope and intercept.

A and B values resulting from these calculations as well as the theta values associated with the threshold performance levels are included in the 2015–2016 technical report. Also, the 2015–2016 technical report includes raw to scale score conversion tables for the performance level setting forms.

12.2.2 ELA/L Reading and Writing Claim Scale

There are 81 defined scale score points for Reading, ranging from 10 to 90. A scale score of 30 is associated with minimum Level 2 performance, and a scale score of 50 is associated with minimum Level 4 performance. There are 51 defined scale score points for Writing, ranging from 10 to 60. A scale score

of 25 is associated with minimum Level 2 performance, and a scale score of 35 is associated with minimum Level 4 performance. The threshold Reading and Writing performance levels on the scale score metric recommended by the scale score task force are described in Table 12.5.

Table 12.5 Defined Scaled Scores for Reading and Writing Claim Scores

	Lowest Obtainable Scale Score	Level 2	Level 4	Highest Obtainable Scale Score
Reading	10	30	50	90
Writing	10	25	35	60

As with the full summative scores, scale scores for Reading and Writing were defined for each test as a linear transformation of the IRT theta (θ) scale. The same IRT theta scale was used for Reading and Writing as was used for the ELA/L full summative scores. The theta values associated with the Level 2 and Level 4 performance levels were identified using the test characteristic curve associated with the performance level setting form. As with the full summative scores, the relationship between theta and scale scores was established with Level 2 and Level 4 theta scores and the corresponding predefined scale scores. The formulas used for this are provided in Table 12.6.

Table 12.6 Calculating Scaling Constants for Reading and Writing Claim Scores

Reading	Writing
$Scale = A_R * \Theta + B_R$	$Scale = A_W * \Theta + B_W$
$A_R = \frac{50 - 30}{\Theta_{Level\ 4} - \Theta_{Level\ 2}}$	$A_W = \frac{35 - 25}{\Theta_{Level\ 4} - \Theta_{Level\ 2}}$
$B_R = 50 - A * \Theta_{Level 4}$	$B_W = 35 - A * \Theta_{Level 4}$

A and B values resulting from these calculations are included in Appendix 12.2.

12.2.3 Subclaims Scale

The Level 4 cut is defined as *Meets or Exceeds Expectations* because high school students at Level 4 or above are likely to have the skills and knowledge to meet the definition of career and college readiness. The Level 3 cut is defined as *Nearly Meets Expectations*. Subclaim outcomes center on the Level 3 and Level 4 performance levels and are reported at three levels:

- Below Expectations;
- Nearly Meets Expectations; or
- Meets or Exceeds Expectations.

The subclaim performance levels are designated through the IRT theta (θ) scale for the items associated with a particular subclaim. The theta values and corresponding raw scores associated with the Level 3 and Level 4 performance levels were identified using the test characteristic curve. Students earning a

raw subclaim score equal to or greater than the Level 4 threshold were designated as *Meets or Exceeds Expectations*. Students not earning a raw subclaim score equal to or greater than the Level 3 threshold were designated as *Below Expectations*. Other students whose raw subclaim score fell between the Level 3 and 4 thresholds were designated as *Nearly Meets Expectations*.

12.3 Creating Conversion Tables

A PARCC conversion table relates the number of points earned by a student on the ELA/L full summative score, the mathematics full summative score, the Reading claim score, or the Writing claim score to the corresponding scale score for the test form administered to that student. An IRT inverse test characteristic curve (TCC) approach is used to develop the relationship between point scores and IRT ability estimates (θs). In carrying out the calculations, estimates of item parameters and thetas are substituted for parameters in the formulas in each step.

Step 1: Calculate the expected item score (i.e., estimated item true score) for every scale score in the selected range (determined by LOSS, HOSS, and scale score increment) based on the generalized partial credit model for both dichotomous and polytomous items:

$$s_{i}(\theta_{j}) = \sum_{m=0}^{M_{i}-1} m p_{im}(\theta_{j}), \qquad (12-4)$$

$$p_{im}(\theta_{j}) = \frac{\exp\left[\sum_{k=0}^{m} D a_{i}(\theta_{j} - b_{i} + d_{ik})\right]}{\sum_{v=0}^{M_{i}-1} \exp\left[\sum_{k=0}^{v} D a_{i}(\theta_{j} - b_{i} + d_{iv})\right]},$$
(12-5)

where $a_i(\theta_j - b_i + d_{i0}) \equiv 0$; $s_i(\theta_j)$ is the expected item score for item i on a scale score, θ_j ; $p_{im}(\theta_j)$ is the probability of a test taker with θ_j getting score m on item i; m_i is the number of score categories of item i; with possible item scores as consecutive integers from 0 to $m_i = 1$; p_i is the IRT scale constant (1.7); a_i is a slope parameter; b_i is a location parameter reflecting overall item difficulty; d_{ik} is a location parameter incrementing the overall item difficulty to reflect the difficulty of earning score category k; v is the number of score categories.

Step 2: Calculate the expected (weighted) test score for every scale score in the selected range:

$$T_{j} = \sum_{i=1}^{I} w_{i} s_{i}(\theta_{j}), \qquad (12-6)$$

where T_j is the expected (weighted) test score on a scale score, θ_j ; θ_j ; is the item weight for item θ_j ; with θ_j and a three-category item is scored as 0, 2, or 4); is the total number of items in a test form.

Step 3: Calculate the estimated conditional standard error of measurement (CSEM) for each scale score in the selected range:

$$C S E M_{j} = \sqrt{\frac{1}{\sum_{i=1}^{I} L_{i}(\theta_{j})}},$$
(12-7)

$$L_{i}(\theta_{i}) = (Da_{i})^{2} [s_{i2}(\theta_{i}) - s_{i}^{2}(\theta_{i})],$$
(12-8)

$$s_{i2}(\theta_j) = \sum_{m=0}^{M_i-1} m^2 p_{im}(\theta_j),$$
 (12-9)

where $L_i(\theta_i)$ is the estimated item information function for item i on scale score θ_i .

Step 4: Match every raw score with a scale score. θ_j is the scale score for a raw score r_h if $T_j - r_h$ is minimum across all T_j s.

Figure 12.1 contains TCCs, estimated CSEM curves, and estimated information (INF) curves for ELA/L grade 3.¹⁵ The curves in each figure are for the three core online forms and two core paper forms. The average difficulty of each form is reported and the curves are reported on the theta scale. Vertical dotted lines indicate the performance level cuts on the theta scale. For ELA/L grade 3, the three CBT and two PBT forms had very similar TCCs. CSEM and Information curves were similar for CBT forms and PBT forms. Appendix 12.3 contains TCC, CSEM, and INF curves for all ELA/L grades and all mathematics grades/courses.

¹⁵ Grade 3 TCC, CSEM, and INF curves are also included in Appendix 12.4.

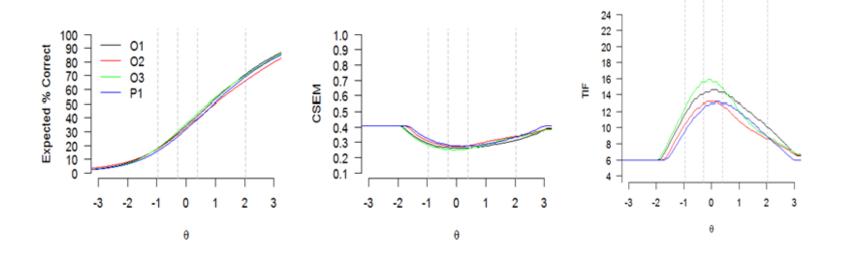


Figure 12.1 Test Characteristic Curves, Conditional Standard Error of Measurement Curves, and Information Curves for ELA/L Grade 3

12.4 Score Distributions

12.4.1 Score Distributions for ELA/L

All Students

Figures 12.2 through 12.4 graphically represent the distributions of scale scores for grades 3 through 11 ELA/L full summative, Reading, and Writing, respectively. The vertical axis of each graph, labeled "Density," represents the proportion of students earning the scale score point indicated along the horizontal axis.

The distributions of the ELA/L scale scores were fairly symmetrical and centered around the Level 4 cut score (i.e., 750), with the exception of grades 10 and 11, whose distributions were centered around the same location but whose shapes were slightly more irregular.

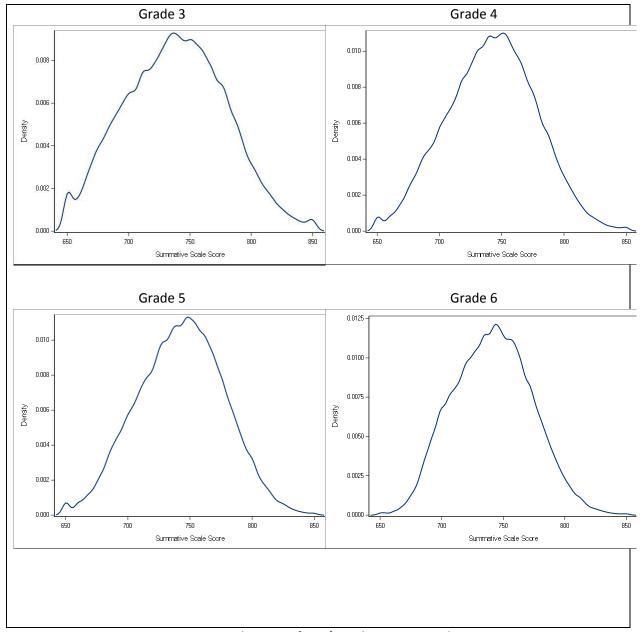


Figure 12.2 Distributions of ELA/L Scale Scores: Grades 3–11

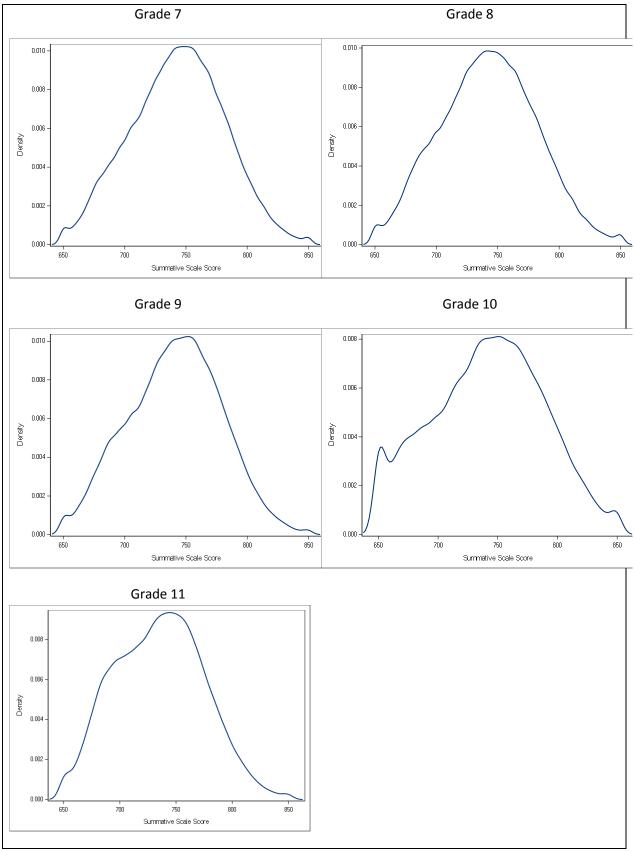


Figure 12.2 (continued) Distributions of ELA/L Scale Scores: Grades 3–11

Reading scale scores tended to be centered between around or slightly below the Level 4 cut score of 50 and were slightly more irregular than the summative scale scores. Distributions were fairly symmetric, with scores below the Level 4 cut score being a bit more common than higher scores. A portion of this is due to larger numbers of students earning near zero raw scores than near perfect raw scores. Raw score near zero can occur for a variety of reasons, such as student illness, and do not always indicate low skill levels.

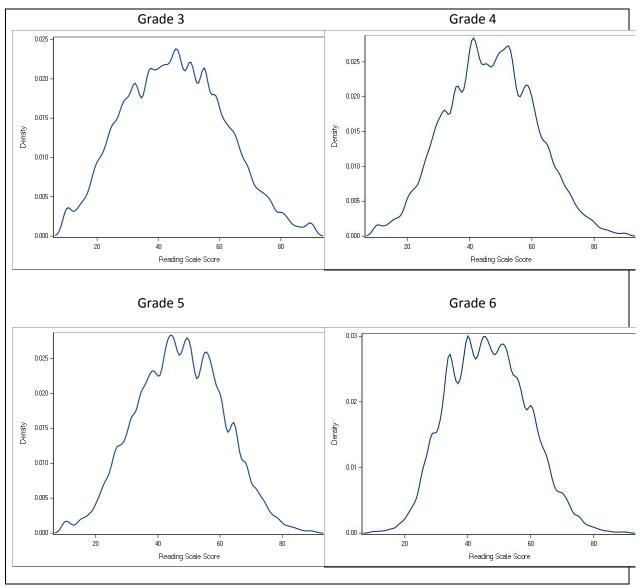


Figure 12.3 Distributions of Reading Scale Scores: Grades 3–11

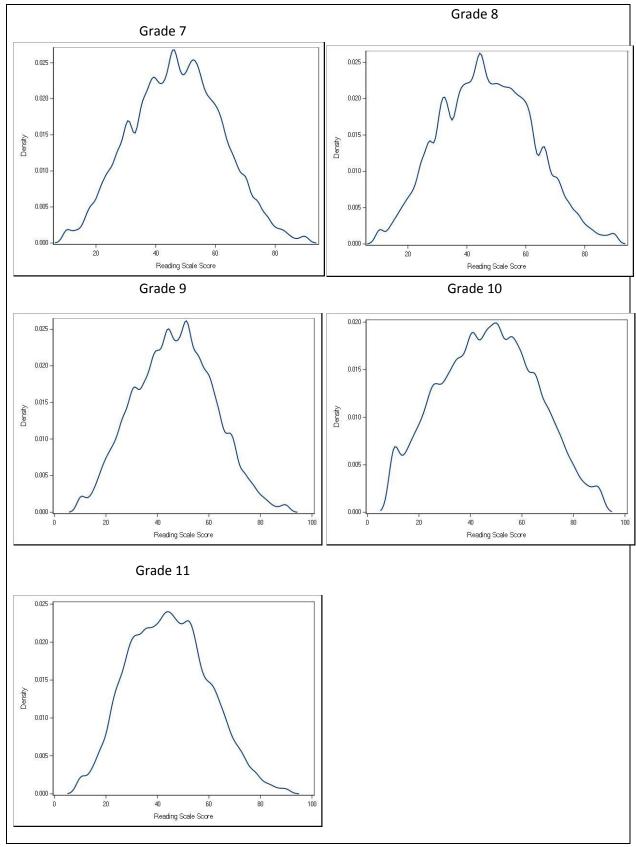


Figure 12.3 (continued) Distributions of Reading Scale Scores: Grades 3–11

Writing scale score distributions were noticeably less smooth than Reading or ELA/L full summative distributions due to peaks related to the weighting of the Written Expression portion of the PCR tasks.

The proportion of students earning the lowest obtainable scale score was fairly high for Writing. This occurred even though a score point of zero is typically necessary to obtain the minimum scale score. Writing items are embedded exclusively in PCR tasks, which tended to be difficult. The Written Expression trait/subclaim also tended to be the most difficult of the PCR traits.

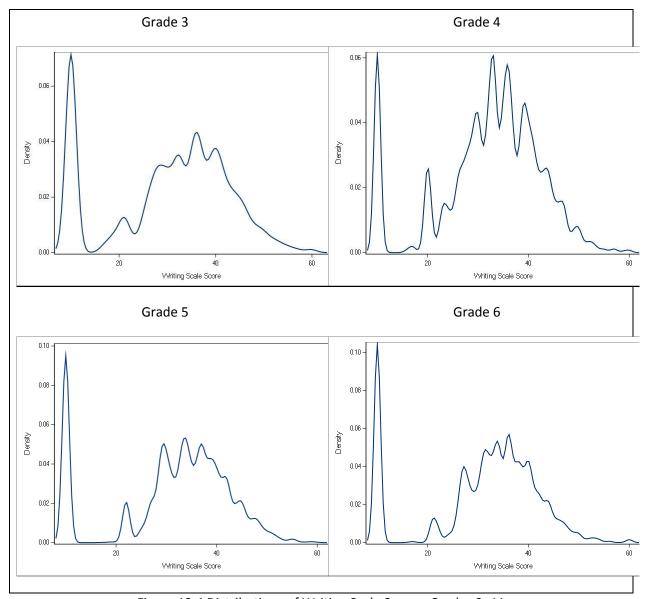


Figure 12.4 Distributions of Writing Scale Scores: Grades 3–11

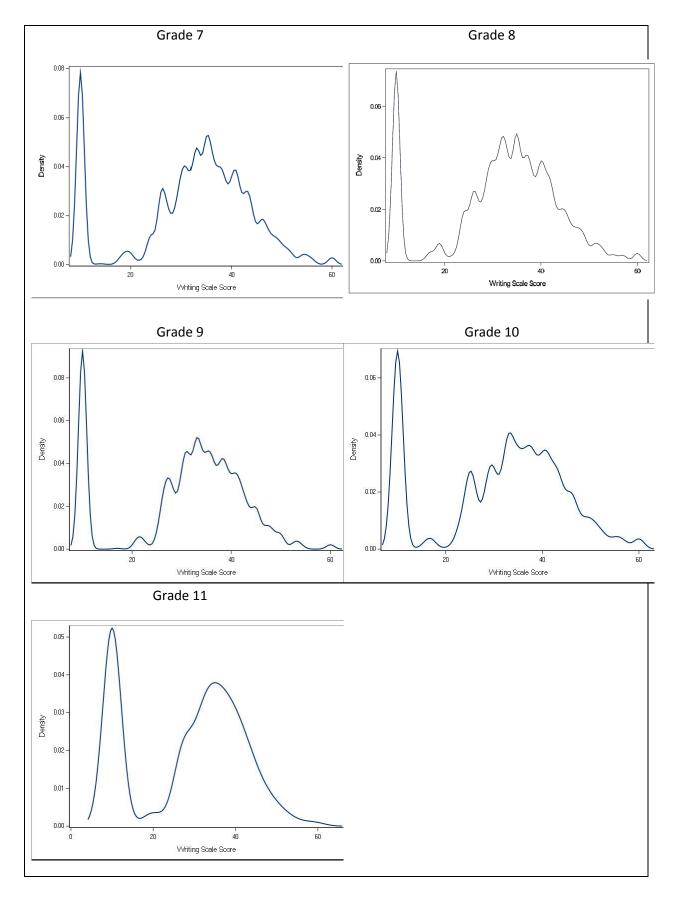


Figure 12.4 (continued) Distributions of Writing Scale Scores: Grades 3–11

Groups

Grade 3 group statistics for ELA/L full summative, Reading, and Writing scale scores are presented in Table 12.7.¹⁶ Mean scores were higher for female students relative to male students. Mean scores were highest for Asian students followed by white students and were lowest for American Indian/Alaska native students. Economically disadvantaged students performed less well than students who are not economically disadvantaged. English learners (EL) performed less well than non-EL students. Students with disabilities (SWD) performed less well than students without disabilities.

Patterns of mean scale scores were quite similar in grades 4 through 8; corresponding tables for all grades are presented in Appendix 12.4.

Table 12.7 Subgroup Performance for ELA/L: Grade 3

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		420,496	738.23	41.04	650	850
Gender	Female	206,149	743.10	41.14	650	850
	Male	214,347	733.54	40.40	650	850
Ethnicity	American Indian/Alaska Native	5,920	716.34	34.04	650	850
	Asian	24,650	766.38	39.94	650	850
	Black or African American	73,056	721.93	38.49	650	850
	Hispanic/Latino	118,820	725.02	37.91	650	850
	Native Hawaiian or Pacific Islander	672	745.66	42.15	650	850
	Multiple Race Selected	15,036	743.81	40.77	650	850
	White	181,382	749.85	38.43	650	850
Economic Status*	Economically Disadvantaged	209,280	722.50	37.11	650	850
	Not Economically Disadvantaged	210,597	753.81	38.74	650	850
English Learner Status	English Learner (EL)	61,177	712.91	34.21	650	850
	Non-English Learner	349,974	742.44	40.55	650	850
Disabilities	Students with Disabilities (SWD)	61,999	709.57	38.69	650	850
	Students without Disabilities	357,072	743.21	39.37	650	850
Reading Score		420,496	45.36	16.33	10	90
Gender	Female	206,149	46.67	16.26	10	90
	Male	214,347	44.10	16.31	10	90
Ethnicity	American Indian/Alaska Native	5,920	36.35	13.27	10	90
	Asian	24,650	55.60	15.92	10	90
	Black or African American	73,056	38.82	14.94	10	90
	Hispanic/Latino	118,820	39.74	14.69	10	90
	Native Hawaiian or Pacific Islander	672	47.29	16.35	10	90

 $^{^{16}}$ Table A.12.27 in Appendix 12.4 is identical to Table 12.7.

Group Type	Group	N	Mean	SD	Min	Max
	Multiple Race Selected	15,036	47.96	16.36	10	90
	White	181,382	50.37	15.55	10	90
Economic Status*	Economically Disadvantaged	209,280	38.98	14.45	10	90
	Not Economically Disadvantaged	210,597	51.69	15.62	10	90
English Learner Status	English Learner (EL)	61,177	34.91	13.02	10	90
	Non-English Learner	349,974	47.09	16.17	10	90
Disabilities	Students with Disabilities (SWD)	61,999	34.76	15.44	10	90
	Students without Disabilities	357.072	47.21	15.77	10	90
Writing Score		420,496	30.41	12.53	10	60
Gender	Female	206,149	32.48	12.13	10	60
	Male	214,347	28.43	12.58	10	60
Ethnicity	American Indian/Alaska Native	5,920	25.71	11.67	10	60
	Asian	24,650	38.19	10.94	10	60
	Black or African American	73,056	26.50	12.48	10	60
	Hispanic/Latino	118,820	27.68	12.38	10	60
	Native Hawaiian or Pacific Islander	672	33.23	12.62	10	60
	Multiple Race Selected	15,036	31.22	12.46	10	60
	White	181,382	32.80	11.82	10	60
Economic Status*	Economically Disadvantaged	209,280	26.71	12.29	10	60
	Not Economically Disadvantaged	210,597	34.09	11.64	10	60
English Learner Status	English Learner (EL)	61,177	24.79	12.01	10	60
	Non-English Learner	349,974	31.36	12.36	10	60
Disabilities	Students with Disabilities (SWD)	61,999	21.99	12.27	10	60
*	Students without Disabilities	357,072	31.88	11.98	10	60

Note: *Economic status was based on participation in National School Lunch Program (NSLP)—receipt of free or reduced-price lunch (FRL).

Grade 9 group statistics for ELA/L, Reading, and Writing scale scores are presented in Table 12.8. Mean scores were very similar to what was observed for grades 3 through 8. Mean scores were higher for female students than for male students. Mean scores were highest for Asian students followed by white students; scores were lowest for American Indian/Alaska native students. Economically disadvantaged students performed less well than students who are not economically disadvantaged. English learners (EL) performed less well than non-EL students. Students with disabilities (SWD) performed less well than students without disabilities.

Similar patterns are observed in other grades, with some small variations in the ordering of the ethnic groups. For example, in ELA/L grade 11, American Indian/Alaska native students had higher mean scores than black or African American students, and native Hawaiian or Pacific Islander students and students

who selected multiple races scored higher than white students. Corresponding tables for grades 10 and 11 are presented in Appendix 12.5.

Table 12.8 Subgroup Performance for ELA/L: Grade 9

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	ore	188,201	740.92	37.97	650	850
Gender	Female	90,951	748.89	36.81	650	850
	Male	97,250	733.47	37.53	650	850
Ethnicity	American Indian/Alaska Native	3,407	719.95	30.27	650	828
	Asian	12,192	771.45	37.59	650	850
	Black or African American	21,038	727.01	34.98	650	850
	Hispanic/Latino	62,335	726.81	35.14	650	850
	Native Hawaiian or Pacific Islander	373	749.01	37.05	650	850
	Multiple Race Selected	3,839	744.07	37.68	650	850
	White	84,482	751.22	34.90	650	850
Economic Status*	Economically Disadvantaged	78,341	725.35	34.39	650	850
	Not Economically Disadvantaged	109,453	752.17	36.42	650	850
English Learner Status	English Learner (EL)	15,584	698.36	26.51	650	846
	Non-English Learner	166,483	745.00	36.44	650	850
Disabilities	Students with Disabilities (SWD)	30,113	713.88	34.03	650	850
	Students without Disabilities	157,483	745.20	36.43	650	850
Reading Score		188,201	46.54	15.34	10	90
Gender	Female	90,951	48.72	14.97	10	90
	Male	97,250	44.50	15.40	10	90
Ethnicity	American Indian/Alaska Native	3,407	37.37	12.13	10	79
	Asian	12,192	57.70	15.49	10	90
	Black or African American	21,038	40.82	13.91	10	90
	Hispanic/Latino	62,335	40.66	13.92	10	90
	Native Hawaiian or Pacific Islander	373	49.35	14.90	10	90
	Multiple Race Selected	3,839	48.46	15.45	10	90
	White	84,482	51.02	14.25	10	90
Economic Status*	Economically Disadvantaged	78,341	40.14	13.66	10	90
	Not Economically Disadvantaged	109,453	51.15	14.81	10	90
English Learner Status	English Learner (EL)	15,584	29.33	10.03	10	90
	Non-English Learner	166,483	48.14	14.75	10	90
Disabilities	Students with Disabilities (SWD)	30,113	36.22	13.79	10	90
	Students without Disabilities	157,483	48.55	14.81	10	90
Writing Score		188,201	30.89	11.86	10	60
Gender	Female	90,951	34.13	10.64	10	60

Group Type	Group	N	Mean	SD	Min	Max
	Male	97,250	27.86	12.14	10	60
Ethnicity	American Indian/Alaska Native	3,407	26.58	10.85	10	56
	Asian	12,192	39.46	9.95	10	60
	Black or African American	21,038	27.41	11.76	10	60
	Hispanic/Latino	62,335	27.42	11.84	10	60
	Native Hawaiian or Pacific Islander	373	33.33	11.47	10	60
	Multiple Race Selected	3,839	31.02	11.84	10	60
	White	84,482	33.28	10.92	10	60
Economic Status*	Economically Disadvantaged	78,341	26.95	11.76	10	60
	Not Economically Disadvantaged	109,453	33.76	11.07	10	60
English Learner Status	English Learner (EL)	15,584	19.49	10.69	10	60
	Non-English Learner	166,483	32.04	11.37	10	60
Disabilities	Students with Disabilities (SWD)	30,113	22.92	11.79	10	60
	Students without Disabilities	157,483	32.45	11.23	10	60

Note: *Economic status was based on participation in National School Lunch Program (NSLP)—receipt of free or reduced-price lunch (FRL).

12.4.2 Score Distributions for Mathematics

All Students

Figure 12.5 graphically represents the distributions of scale scores for grades 3 through 8 mathematics. Scale score distributions peaked between 700 and the Level 4 performance level cut of 750.

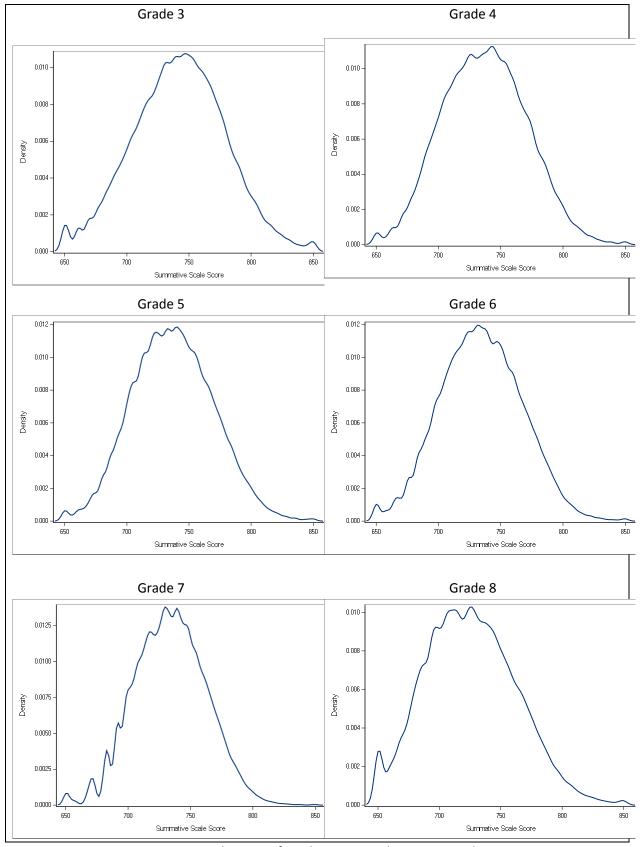


Figure 12.5 Distributions of Mathematics Scale Scores: Grades 3–8

Figure 12.6 graphically represents the distributions of scale scores for Algebra I, Geometry, Algebra II, and Integrated Mathematics I, II, and III. Scale score distributions peaked between 700 and the 750 Level 4 performance level cut score, with the exception of Integrated Mathematics II, which peaked between 750 and 775. Distributional shapes were somewhat similar for Algebra I and Integrated Mathematics II, for Geometry and Integrated Mathematics II, and for Algebra II and Integrated Mathematics III.

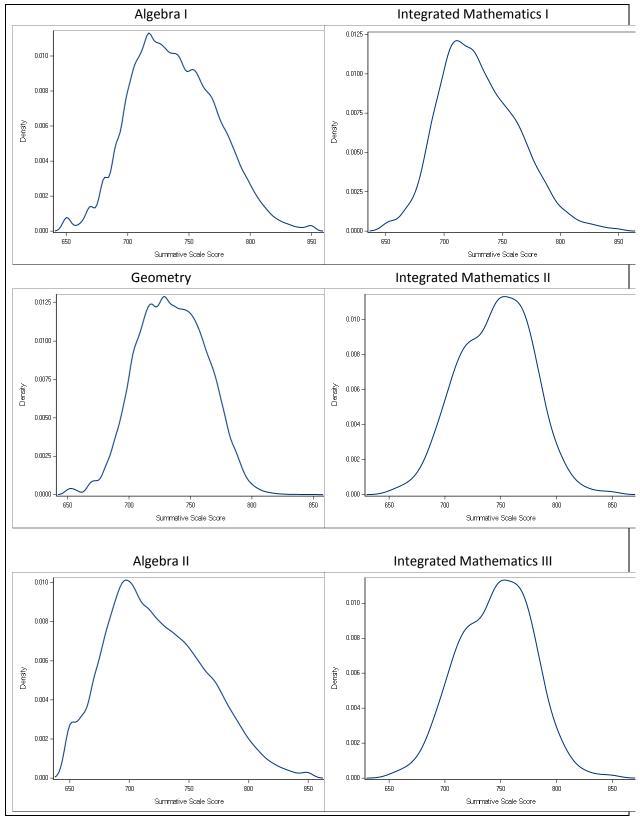


Figure 12.6 Distributions of Mathematics Scale Scores: High School

Groups

Grade 3 group statistics for mathematics scale scores are presented in Table 12.9.¹⁷ Mean scores were slightly higher for female students relative to male students. Mean scores were highest for Asian students followed by white students and were lowest for American Indian/Alaska native students. Economically disadvantaged students performed less well than students who are not economically disadvantaged. English learners (EL) performed less well than non-EL students. Students with disabilities (SWD) performed less well than students without disabilities.

Table 12.9 Subgroup Performance for Mathematics Scale Scores: Grade 3

Group	N	Mean	SD	Min	Max
Full Summative Score		742.22	37.08	650	850
Female	208,739	742.47	35.83	650	850
Male	217,005	741.98	38.25	650	850
American Indian/Alaska Native	5,920	724.13	31.47	650	845
Asian	25,182	772.99	36.36	650	850
Black or African American	73,166	726.20	34.03	650	850
Hispanic/Latino	122,975	730.60	33.67	650	850
Native Hawaiian or Pacific Islander	684	746.93	38.61	650	850
Multiple Race Selected	15,061	745.90	37.32	650	850
White	181,746	752.53	34.61	650	850
Economically Disadvantaged	213,460	728.31	33.58	650	850
Not Economically Disadvantaged	211,662	756.19	35.11	650	850
English Learner (EL)	66,662	723.87	33.05	650	850
Non-English Learner	349,729	745.55	36.74	650	850
Students with Disabilities (SWD)	62,252	718.87	37.60	650	850
Students without Disabilities	362,041	746.23	35.47	650	850
	Female Male American Indian/Alaska Native Asian Black or African American Hispanic/Latino Native Hawaiian or Pacific Islander Multiple Race Selected White Economically Disadvantaged Not Economically Disadvantaged English Learner (EL) Non-English Learner Students with Disabilities (SWD)	Female 208,739 Male 217,005 American Indian/Alaska Native 5,920 Asian 25,182 Black or African American 73,166 Hispanic/Latino 122,975 Native Hawaiian or Pacific Islander 684 Multiple Race Selected 15,061 White 181,746 Economically Disadvantaged 213,460 Not Economically Disadvantaged 211,662 English Learner (EL) 66,662 Non-English Learner 349,729 Students with Disabilities (SWD) 62,252	Female 208,739 742.47 Male 217,005 741.98 American Indian/Alaska Native 5,920 724.13 Asian 25,182 772.99 Black or African American 73,166 726.20 Hispanic/Latino 122,975 730.60 Native Hawaiian or Pacific Islander 684 746.93 Multiple Race Selected 15,061 745.90 White 181,746 752.53 Economically Disadvantaged 213,460 728.31 Not Economically Disadvantaged 211,662 756.19 English Learner (EL) 66,662 723.87 Non-English Learner 349,729 745.55 Students with Disabilities (SWD) 62,252 718.87	Female 208,739 742.47 35.83 Male 217,005 741.98 38.25 American Indian/Alaska Native 5,920 724.13 31.47 Asian 25,182 772.99 36.36 Black or African American 73,166 726.20 34.03 Hispanic/Latino 122,975 730.60 33.67 Native Hawaiian or Pacific Islander 684 746.93 38.61 Multiple Race Selected 15,061 745.90 37.32 White 181,746 752.53 34.61 Economically Disadvantaged 213,460 728.31 33.58 Not Economically Disadvantaged 211,662 756.19 35.11 English Learner (EL) 66,662 723.87 33.05 Non-English Learner 349,729 745.55 36.74 Students with Disabilities (SWD) 62,252 718.87 37.60	Female 208,739 742.47 35.83 650 Male 217,005 741.98 38.25 650 American Indian/Alaska Native 5,920 724.13 31.47 650 Asian 25,182 772.99 36.36 650 Black or African American 73,166 726.20 34.03 650 Hispanic/Latino 122,975 730.60 33.67 650 Native Hawaiian or Pacific Islander 684 746.93 38.61 650 Multiple Race Selected 15,061 745.90 37.32 650 White 181,746 752.53 34.61 650 Economically Disadvantaged 213,460 728.31 33.58 650 Not Economically Disadvantaged 211,662 756.19 35.11 650 English Learner (EL) 66,662 723.87 33.05 650 Non-English Learner 349,729 745.55 36.74 650 Students with Disabilities (SWD) 62,252 718.87 37.6

Note: *Economic status was based on participation in National School Lunch Program (NSLP)—receipt of free or reduced-price lunch (FRL).

Generally similar patterns were observed in other grades, with some slight variations in the orderings of the ethnic groups. For example, American Indian/Alaska native students had slightly higher mean scores than black or African American students for some assessments. Corresponding tables for all grades are presented in Appendix 12.5.

Algebra I scale score statistics are presented in Table 12.10. Mean scores were higher for female students relative to male students. Mean scores were highest for Asian students followed by white students and were lowest for American Indian/Alaska native students. Economically disadvantaged students performed less well than students who are not economically disadvantaged. English learners

¹⁷ Table A.12.36 in Appendix 12.5 is identical to Table 12.9.

(EL) performed less well than non-EL students. Students with disabilities (SWD) performed less well than students without disabilities.

Table 12.10 Subgroup Performance for Mathematics Scale Scores: Algebra I

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		260,806	738.16	34.95	650	850
Gender	Female	126,562	739.22	33.69	650	850
	Male	134,244	737.17	36.07	650	850
Ethnicity	American Indian/Alaska Native	3,641	716.02	25.07	650	821
	Asian	18,079	770.12	36.40	650	850
	Black or African American	45,085	722.83	28.93	650	850
	Hispanic/Latino	74,965	724.45	29.81	650	850
	Native Hawaiian or Pacific Islander	452	746.57	35.29	650	850
	Multiple Race Selected	6,580	743.53	35.41	650	850
	White	111,446	748.89	32.87	650	850
Economic Status*	Economically Disadvantaged	106,203	723.39	29.35	650	850
	Not Economically Disadvantaged	153,948	748.42	34.85	650	850
English Learner Status	English Learner (EL)	20,325	707.78	24.46	650	850
	Non-English Learner	235,967	740.64	34.45	650	850
Disabilities	Students with Disabilities (SWD)	40,764	717.33	30.34	650	850
	Students without Disabilities	219,187	742.10	34.37	650	850

Note: *Economic status was based on participation in National School Lunch Program (NSLP)—receipt of free or reduced-price lunch (FRL).

Similar patterns were observed in the other high school tests with some of the previously mentioned exceptions in the ordering of the ethnicities applying to these tests as well. In Algebra II, males outperformed females by a small margin. Corresponding tables are presented in Appendix 12.5.

Integrated Mathematics I scale score statistics are presented in Table 12.11. Mean scores were higher for female students relative to male students. Mean scores were highest for native Hawaiian or Pacific Islander students followed by Asian students, and were lowest for American Indian/Alaska native students. Economically disadvantaged students performed less well than students who are not economically disadvantaged. English learners (EL) performed less well than non-EL students. Students with disabilities (SWD) performed less well than students without disabilities.

Table 12.11 Subgroup P	erformance for Mathematics Scal	le Scores: Integrated Mathematics I

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		10,964	730.40	33.72	650	850
Gender	Female	5,095	730.86	32.94	650	841
	Male	5,869	730.01	34.38	650	850
Ethnicity	American Indian/Alaska Native	149	716.07	26.71	650	790
	Asian	431	745.92	39.15	650	850
	Black or African American	809	721.63	30.23	650	821
	Hispanic/Latino	5,272	720.80	29.02	650	835
	Native Hawaiian or Pacific Islander	28	748.39	42.15	673	810
	Multiple Race Selected	272	734.92	33.37	650	850
	White	3,997	743.29	34.67	650	850
Economic Status*	Economically Disadvantaged	5,793	721.21	29.68	650	838
	Not Economically Disadvantaged	5,164	740.77	34.94	650	850
English Learner Status	English Learner (EL)	2,191	707.58	21.98	650	815
	Non-English Learner	6,506	734.82	32.28	650	850
Disabilities	Students with Disabilities (SWD)	1,356	709.29	28.29	650	830
	Students without Disabilities	9,601	733.42	33.34	650	848

Note: *Economic status was based on participation in National School Lunch Program (NSLP)—receipt of free or reduced-price lunch (FRL).

Somewhat similar patterns were observed in Integrated Mathematics II and Integrated Mathematics III, but sample sizes for some subgroups are very small, and caution should be used in interpretations. Tables for these tests can be found in Appendix 12.5.

12.5 Interpreting Claim Scores and Subclaim Scores

12.5.1 Interpreting Claim Scores

PARCC ELA/L assessments provide separate claim scale scores for both Reading and Writing. The claim scale scores and the summative scale score are on different scales; therefore, the sum of the scale scores for each claim will not equal the summative scale score. PARCC Reading scale scores range from 10 to 90 and PARCC Writing scale scores range from 10 to 60.

The claim scores can be interpreted by comparing a student's claim scale score to the average performance for the school, district, and state. The PARCC Individual Student Report (ISR) provides the student scale score results and the average scale score results for the school, district, and state.

12.5.2 Interpreting Subclaim Scores

Within each reporting category are specific skill sets (subclaims) students demonstrate on the PARCC assessments. Subclaim categories are not reported using scale scores or performance levels. Subclaim

performance for PARCC assessments is reported using graphical representations that indicate how the student performed relative to the Level 3 and Level 4 performance levels for the content area.

Subclaim indicators represent how well students performed in a subclaim category relative to Level 3 and Level 4 thresholds for the items associated with the subclaim category. To determine a student's subclaim performance, the Level 3 and Level 4 thresholds corresponding to the IRT based performance for the items for a given subclaim determined the reference points for *Approached Expectations* and *Did Not Yet Meet Expectations* or *Partially Met Expectations*, respectively.

Student performance for each subclaim is marked with a subclaim performance indicator.

- An 'up' arrow for the specified subclaim for *Meets or Exceeds Expectations* indicates that the student's performance for the subclaim was equal to or better than the threshold for Level 4 (i.e., students whose summative scale score was 750).
- A 'bidirectional' arrow for the specified subclaim for *Nearly Meets Expectations* indicates that the student's performance was below the Level 4 threshold (i.e., summative scale score was 750) but better than or equal to the Level 3 threshold (i.e., summative scale score was 725).
- A 'down' arrow for the specified subclaim for *Below Expectations* indicates that the student's
 performance for the subclaim was below the Level 3 threshold (i.e., summative scale score was
 725).

Section 13: Student Growth Measures

Student growth percentiles (SGPs) are normative measures of annual progress. Normative measures are useful in answering questions like "How does my academic progress compare with the academic progress of my peers?" In contrast to criterion-referenced measures of growth, which describe academic growth toward a particular goal, norm-referenced measures of growth describe students' growth relative to that of students who performed similarly in the past (Betebenner, 2009).

SGPs measure individual student progress by tracking student scores from one year to the next. SGPs compare a student's performance to that of his or her academic peers both within the state and across the consortium. Academic peers are defined as students in the norm group who took the same PARCC assessment as the student in prior years and achieved a similar score.

The SGP describes a student's location in the distribution of current test scores for all students who performed similarly in the past. SGPs indicate the percentage of academic peers above whom the student scored. With a range of 1 to 99, higher numbers represent higher growth and lower numbers represent lower growth. For example, a SGP of 60 on grade 7 ELA/L means that the student scored better than 60 percent of the students in the state or consortium who took grade 7 ELA/L in spring 2017 and who had achieved a similar score as this student on the grade 6 ELA/L assessment in spring 2016 and the grade 5 ELA/L assessment in spring 2015. A SGP of 50 represents typical (median) student growth for the state or consortium. Because students are only compared with other students who performed similarly in the past, all students, regardless of starting point, can demonstrate high or low growth.

The 2016–2017 academic year is the third year of PARCC test administration, allowing for the calculation of SGPs using two prior year scores, if available. Students in states that participated in the consortium in spring 2015 and spring 2016 generally received SGPs based on two prior scores. Students in states that participated in the consortium in spring 2016 received SGPs based on one prior score. Students who do not have a previous PARCC test score, which include any new testers and all grade 3 students, do not receive an SGP.

13.1 Norm groups

The norm groups consisted of students with the same prior scores based on grade or content area progressions (academic peers). SGPs were based on up to two years of prior test scores from spring 2015 and spring 2016 PARCC administrations. States administering traditional mathematics PARCC assessments in fall 2015 or fall 2016 may also have SGPs based on these prior scores. Tables 13.1–13.8

¹⁸ Note: Because regression modeling is used to establish the relationship between prior and current scores, the SGP is for students with the exact same prior scores. This often leads to confusion among non-technical stakeholders who often ask, "How many students are there with exactly the same prior scores?" To avoid explaining regression to non-technical stakeholders, the "similar scores" is often used to finesse the idea of regression without mentioning it.

list the grade or content area progressions required for SGPs based on one prior or two prior test scores for ELA/L grades 3 through 11, mathematics grades 3 through 8, Algebra I, Geometry, Algebra II, Integrated Mathematics I, II, and III, respectively. In general, the progressions of grade levels and content areas are consecutive. The traditional and integrated mathematics courses have progressions that are not consecutive but reflect student progression for high school mathematics courses. SGPs were calculated for all norm groups with at least 1,000 students. Some progressions did not meet the minimum sample size for SGP calculations.

Table 13.1 ELA/L Grade-Level Progressions for One-year and Two-year Prior Test Scores

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
N/A	N/A	Grade 3*
N/A	Grade 3	Grade 4
Grades 3 and 4	Grade 4	Grade 5
Grades 4 and 5	Grade 5	Grade 6
Grades 5 and 6	Grade 6	Grade 7
Grades 6 and 7	Grade 7	Grade 8
Grades 7 and 8	Grade 8	Grade 9
Grades 8 and 9	Grade 9	Grade 10
Grades 9 and 10	Grade 10	Grade 11

^{*}SGP not calculated for grade 3 since there are no prior scores.

Table 13.2 Mathematics Grade-Level Progressions for One-year and Two-year Prior Test Scores

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
N/A	N/A	Grade 3*
N/A	Grade 3	Grade 4
Grades 3 and 4	Grade 4	Grade 5
Grades 4 and 5	Grade 5	Grade 6
Grades 5 and 6	Grade 6	Grade 7
Grades 6 and 7	Grade 7	Grade 8

^{*}SGP not calculated for grade 3 since there are no prior scores.

Table 13.3 Algebra I Grade/Content Area Progressions for One-year and Two-year Prior Test Scores

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
Grades 5 and 6	Grade 6	Algebra I
Grades 6 and 7	Grade 7	Algebra I
Grades 6 or 7 and 8	Grade 8	Algebra I
Grades 6, 7, or 8 and	Geometry	Algebra I
Geometry		
Grade 8 and Integrated Math I	Integrated Mathematics I	Algebra I
Integrated Mathematics I and	Integrated Mathematics II	Algebra I
Integrated Mathematics II		-

Table 13.4 Geometry Grade/Content Area Progressions for One-year and Two-year Prior Test Scores

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
Grades 5 and 6	Grade 6	Geometry
Grades 6 and 7	Grade 7	Geometry
Grades 6 or 7 and 8	Grade 8	Geometry
Grades 6, 7, or 8 and Algebra I	Algebra I	Geometry
Grade 8 and Integrated	Integrated Mathematics I	Geometry
Mathematics I		
Integrated Mathematics I and	Integrated Mathematics II	Geometry
Integrated Mathematics II		

Table 13.5 Algebra II Grade/Content Area Progressions for One-year and Two-year Prior Test Scores

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
Grades 6 and 7	Grade 7	Algebra II
Grades 7 and 8	Grade 8	Algebra II
Grades 7 or 8 and Algebra I	Algebra I	Algebra II
Grade 8 or Algebra I and	Geometry	Algebra II
Geometry		
Grade 8 and Integrated	Integrated Mathematics I	Algebra II
Mathematics I		
Integrated Mathematics I and	Integrated Mathematics II	Algebra II
Integrated Mathematics II		

Table 13.6 Integrated Mathematics I Grade/Content Area Progressions for One-year and Two-year Prior Test Scores

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
Grades 5 and 6	Grade 6	Integrated Mathematics I
Grades 6 and 7	Grade 7	Integrated Mathematics I
Grades 6 or 7 and 8	Grade 8	Integrated Mathematics I
Grades 7 or 8 and Algebra I	Algebra I	Integrated Mathematics I
Grade 8 or Algebra I and	Geometry	Integrated Mathematics I
Geometry		

Table 13.7 Integrated Mathematics II Grade/Content Area Progressions for One-year and Two-year Prior Test Scores

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
Grades 6 and 7	Grade 7	Integrated Mathematics II
Grades 7 and 8	Grade 8	Integrated Mathematics II
Grades 7 or 8 and Integrated	Algebra I	Integrated Mathematics II
Mathematics I		

Table 13.8 Integrated Mathematics II Grade/Content Area Progressions for One-year and Two-year	
Prior Test Scores	

Two Prior Year Test Scores	One Prior Year Test Score	Current Year Test Score
Grades 6 and 7	Grade 7	Integrated Mathematics III
Grades 7 and 8	Grade 8	Integrated Mathematics III
Grades 7 or 8 and Integrated	Algebra I	Integrated Mathematics III
Mathematics I		
Integrated Mathematics I and	Integrated Mathematics II	Integrated Mathematics III
Integrated Mathematics II	-	-

13.2 Student Growth Percentile Estimation

SGPs are calculated using quantile regression, which describes the conditional distribution of the response variable with greater precision than traditional linear regression, which describes only the conditional mean (Betebenner, 2009). This application of quantile regression uses B-spline smoothing to fit a curvilinear relationship between a norm group's prior and current scores. Cubic B-spline basis functions are used when calculating SGPs to better model the heteroscedasticity, nonlinearity, and skewness in assessment data.

For each group, the quantile regression fits 100 relationships (one for each percentile) between students' prior and current scores. The result is a single coefficient matrix that relates students' prior achievement to their current achievement at each percentile. The National Center for the Improvement of Educational Assessment (NCIEA) performed the analyses using Betebenner's (2009) non-linear quantile-regression based SGP. The analysis was done in the SGP package in R (Betebenner, Van Iwaarden, Domingue, & Shang, 2017). For details on student growth percentiles, see Betebenner's A Technical Overview of the Student Growth Percentile Methodology: Student Growth Percentiles and Percentile Growth Projections/Trajectories (2011).

Betebenner's (2009) SGP model uses Koenker's (2005) quantile regression approach to estimate the conditional density associated with a student's score at administration t conditioned on the student's prior score(s). Quantile regression functions represent the solution to a loss function much like least squares regression represents the solution to a minimization of squared deviations. The conditional quantile functions are parametrized as a linear combination of B-spline basis functions (Wei and He, 2006) to smooth irregularities found in the data. For PARCC scores from administration t (where $t \ge 2$), the τ th quantile function for Y_t conditional on prior scores (Y_{t-1}, \ldots, Y_1) is

$$Q_{\mathrm{Y}t}\left(\tau\mid\mathsf{Y}_{t\text{-}1},\ldots,\mathsf{Y}_{1}\right)=\textstyle\sum_{j=1}^{t-1}\sum_{i=1}^{n}\emptyset_{ij}\left(Y_{j}\right)\beta_{ij}(\tau),$$

where $\phi_{i,j}$ (i=1,2,..., n students; j=1, ..., t-1 administrations) represent the B-spline basis functions. The SGP of each student i is the midpoint between the two consecutive τ s whose quantile scores capture the

student's current score, multiplied by 100. For example, a student with a current score that lies between the fitted value for $\tau = .595$ and $\tau = .605$ would receive a SGP of 60.

SGPs are assumed to be uniformly distributed and uncorrelated with prior achievement. Scale score conditional standard errors of measurement (CSEMs) were incorporated for calculation of SGP standard errors of measurement (SEMs). Goodness of fit results were checked (i.e., uniform distribution of SGPs by prior achievement) for indications of ceiling/floor effects for each SGP norm-group analysis.

13.3 Student Growth Percentile Results/Model Fit for Total Group

The estimation of SGPs was conducted for each student who had at least one prior score. Each analysis is defined by the norm cohort group (grade/sequence). A goodness of fit plot is produced for each analysis run in 2017. A ceiling/floor effects test identifies potential problems at the highest obtainable scale scores (HOSS) and lowest obtainable scale scores (LOSS). Other fit plots compare the observed conditional density of SGP estimates with the theoretical uniform density. If there is perfect model fit, 10 percent of the estimated growth percentiles are expected within each decile band. A Q-Q plot compares the observed distribution with the theoretical distribution; ideally the step function lines do not deviate much from the ideal line of perfect fit.

Tables 13.9 and 13.10 summarize SGP estimates for the total testing group for ELA/L and mathematics, respectively. SGPs were calculated at the consortium level and, if sample size was sufficient, the state level. Consortium-based median SGPs ranged from 49 to 51, with most having a median of 50. If the model is a perfect fit, the median is expected to be 50 with norm-referenced data. The minimum SGP is 1 and the maximum SGP is 99. The average standard error for the consortium-based SGPs is within expectations for these models.

In general, SGPs can be divided into three categories: below 30 indicating that a student is not meeting a year's worth of growth, a SGP of 30–70 indicating that a student did achieve a year's worth of growth, and a SGP over 70 indicating that the student surpassed a year's worth of growth. It is important to note that definitions such as these are not inherent to the SGP method, but rather require expert judgment (Betenbenner, 2009). The observed standard errors, ranging from 12–16, support these interpretations (Betenbenner et al., 2016).

Table 13.9 Summary of ELA/L SGP Estimates for Total Grou	Table 13.9	Summary	of ELA/L SGP	Estimates for Total Group
--	-------------------	---------	--------------	----------------------------------

Grade Level	Sample Size			Median SGP
4	398,880	49.99	13.05	50
5	391,394	50.05	14.26	50
6	382,695	50.01	13.12	50
7	381,508	49.95	13.44	50
8	374,408	49.95	13.64	50
9	9 160,493		13.37	50
10	10 102,861		13.10	49
11	82,079	49.58	11.77	49

Table 13.10 Summary of Mathematics SGP Estimates for Total Group

Grade Level	Sample Size	Average SGP	Average Standard Error	Median SGP
4	400,115	50.03	12.87	50
5	392,070	50.05	14.47	50
6	382,465	50.02	14.39	50
7	367,870	870 50.02		50
8	288,571	49.94	16.27	50
A1	205,209	50.33 15.67 51.01 14.17		50
GO	117,261			51
A2	91,238	49.56	16.00	49
M1	8,549	8,549 49.75 16.4		50
M2				
M3				

Note: "--" indicates insufficient sample for SGP calculation for these tests.

13.4 Student Growth Percentile Results for Subgroups of Interest

Median SGPs are provided for subgroups of interest. With norm-referenced data, the median of all SGPs is expected to be close to 50. Median subgroup growth percentiles below 50 represent growth lower than the consortium median, and median growth percentiles above 50 represent growth higher than the consortium median. Table 13.11 summarizes SGPs for groups of interest for ELA/L grade 4. The ELA/L tables for grades 5–11 are provided in the Appendix (Tables A.13.1 – A.13.8). Table 13.12 summarizes SGPs for groups of interest for mathematics grade 4; the other mathematics subgroup results are provided in the Appendix (Tables A.13.9 – A.13.17). All median SGPs for subgroups of interest fell within the band of 30–70, which is considered to be adequate growth.

Gender

English Language Arts/Literacy

The median SGP for females tended to be 4 to 7 points higher than the median SGPs for males, on average. The standard error for males and females were comparable to the total group.

Mathematics

There was no consistent pattern between median SGPs for females and males, with the median SGPs within two points, on average. The standard errors were similar to the total group. Integrated Mathematics II and III had insufficient sample size for SGP subgroup results to be reported.

Ethnicity

English Language Arts/Literacy

The African American group median SGP ranged between 45 and 50, with students in higher grades at the higher range. Asian/Pacific Islanders tended to have the highest median SGPs, over 60 for all tests but grade 11. American Indian/Alaska Native had a wide range in median SGPs across grades, with the lowest in grade 4 of 38 and the highest in grade 11 of 60. The median SGP for Hispanics and multiple ethnicities was around 50, plus or minus 3 points. The standard errors were similar to that of the total group.

Mathematics

The median SGP for African Americans ranged from 41 to 51, with the highest growth on the Integrated Mathematics I test. Asian/Pacific Islanders had the highest SGPs across all tests, with a minimum of 55 and a maximum of 62. American Indian/Alaska Native had higher median SGPs on the traditional mathematics tests, on average, than on grades 3 through 8; the minimum SGP was 39 and the maximum SGP was 58. The median SGP for Hispanics and multiple ethnicities varied slightly from 50. For all ethnicities, the standard errors for all groups were under 19 points.

Special Instructional Needs

English Arts/Literacy

Economically disadvantaged students showed similar or slightly lower median growth than students who were not economically disadvantaged. Except for grade 11, English learners had median SGPs up to five points lower than the total population. In grade 11, the median SGP was 52 for English learners. Students with disabilities tended to show lower growth compared to students without disabilities, with the minimum observed median SGP of 39 in grade 3 and the maximum observed median SGP of 45 in grades 9 and 10. The standard errors for these groups were similar to those observed for the total group.

Mathematics

Economically disadvantaged students tended to have lower median SGPs than those who were not economically disadvantaged, with medians up to five points below 50. Similarly, English learners tended to have median SGPs below the consortium average, with a range of 41–48. The range for students with

disabilities is 43–47. The standard errors for special education students tended to be slightly higher than the total group, but below 20 points.

Students Taking Spanish Forms

Mathematics

There was a wide range of median growth percentiles for students taking Spanish forms. The number of students in this group tended to be smaller, on average. Twenty-seven students taking Integrated Mathematics I on a Spanish form received an SGP. This test had the highest median SGP for Spanish forms of 58. In Algebra II, 775 students received a SGP. Algebra II had the lowest SGP median of 34. Typically, the Spanish form median SGP was within 5 points of 50. These forms had a higher standard error on average, likely due to lower sample sizes in the norm groups relative to the total population. Nonetheless, the highest average standard error for this group was just over 21.

Table 13.11 Summary of SGP Estimates for Subgroups: Grade 4 ELA/L

			Average	
	Total	Average	Standard	Median
	Sample Size	SGP	Error	SGP
Gender				
Male	203,109	48.22	13.13	47
Female	195,771	51.83	12.97	53
Ethnicity				
White	174,974	52.27	12.88	53
African American	67,347	44.70	13.24	43
Asian/Pacific Islander	23,183	59.11	12.56	63
American Indian/Alaska Native	5,114	41.26	13.36	38
Hispanic	113,794	48.13	13.29	47
Multiple	13,626	49.88	13.00	50
Special Instructional Needs				
Economically Disadvantaged	195,933	46.12	13.27	45
Not-economically Disadvantaged	202,947	53.72	12.84	55
English Learner (EL)	34,649	45.78	13.91	44
Non English Learner	364,231	50.39	12.97	51
Students with Disabilities (SWD)	62,933	42.50	13.56	39
Students without Disabilities	335,947	51.39	12.96	52

Table 13.12 Summary of SGP Estimates for Subgroups: Grade 4 Mathematics

	Total		Average	
	Sample Size	Average SGP	Standard Error	Median SGP
Gender				
Male	203,729	50.77	12.87	51
Female	196,386	49.26	12.88	49
Ethnicity				
White	175,093	52.78	12.61	54
African American	67,242	44.15	13.24	42
Asian/Pacific Islander	23,477	58.94	12.86	62
American Indian/Alaska Native	5,093	43.69	13.24	41
Hispanic	114,750	47.67	13.06	47
Multiple	13,613	50.2	12.90	50
Special Instructional Needs				
Economically Disadvantaged	196,903	46.29	13.10	45
Not-economically Disadvantaged	203,212	53.65	12.66	55
English Learner (EL)	35,923	45.63	13.88	44
Non English Learner	364,192	50.46	12.78	51
Students with Disabilities (SWD)	62,799	45.94	13.77	44
Students without Disabilities	337,316	50.79	12.71	51
Spanish Language Form	2,628	44.32	13.70	42

Section 14: Quality Control Procedures

Quality control in a testing program is a comprehensive and ongoing process. This section describes procedures put into place to monitor the quality of the item bank, test form, and ancillary material development. The quality checks for scanning, image editing, scoring, and data screening during psychometric analyses are also outlined. Additional quality information can be found in the PARCC Program Quality Plan document.

14.1 Quality Control of the Item Bank

The PARCC summative item bank consists of test passages and items, their associated metadata, and status (e.g., operational-ready, field-test ready, released, etc.). The items on the 2016–2017 assessments were developed by Pearson and West Ed and put in the item bank once created.

The ABBI bank houses the passages and items, art, associated metadata, rubrics, alternate text for use on accommodated forms, and text complexity documentation. It provides an item previewer that allows items to be viewed and interacted with in the same way students see and interact with items and tools, and manages versioning of items with a date/time stamp. It allows PARCC reviewers to vote on item acceptance, and to record and retain their review notes for later reconciliation and reference. PARCC item and passage review committee participants conducted their review in the item banking system. The committee members viewed the items as the student would, and could vote to alter the item, accept or reject the item, and record their comments in the system. After each meeting, reports were forwarded to Parcc Inc. The reports were generated by the item banking system and summarized feedback from the committee reviewers.

All new development for the PARCC assessments is being created within the ABBI system, which employs templates to control the consistency of the underlying scoring logic and QTI creation for each item type. The ABBI system incorporates a previewer that allows the PARCC reviewers to validate the content of the item and validate the expected scoring of tasks. It supports the full range of PARCC review activities, including content review, bias and sensitivity review, expert editorial review, data review, and test construction review. It provides insight into the item edit process through versioning. A series of metadata validations at key points in the development cycle provide support for metadata consistency. The bank can be queried on the full range of PARCC metadata values to support bank analysis.

14.2 Quality Control of Test Form Development

Test forms were built based upon targets and the established blueprints set by PARCC. The construction process started with specification and requirement capture to create the test specification document. From there items were pulled into forms based on the criteria approved in the test specifications document. After forms composition, the forms went through a review process that involved groups from Pearson and the PARCC states. Quality control steps were conducted on the items and forms evaluating several item characteristics (e.g., content accuracy, completeness, style guide conformity,

tools function). Revisions were incorporated into the forms before final review and approval. Section 2.2 provides more details on the form development process.

The forms quality assurance was performed by Pearson's Assessment and Information Quality (AIQ) organization. AIQ completed a comprehensive review of all *online* forms for the PARCC administration cycle. This group is part of Pearson's larger Organizational Quality group and operates exclusively to validate form operability. The group validates that the functionality of every online form is working to specifications. The overall functionality and maneuverability of each form is checked, and the behavior of each item within the form is verified. (Quality processes for paper forms are described in section 14.3.)

The items within each form were tested to verify that they operated as expected for test takers. As a further aspect of the testing process, AIQ confirmed that forms were loaded correctly and that the audio was correct when compared to text. Sections and overviews were reviewed. Technology-enhanced items also were tested as an additional measure. As enumerated in the *Technology Guidelines for PARCC Assessments*, ¹⁹ user interfaces were compatible with a range of common computer devices, operating systems, and browsers.

Pearson also performed QC tests to verify that a standard set of responses was outputted to the XML as expected after PARCC had approved the final version of the form. These responses were based on the keys provided in the test map or a standard open-ended (OE) responses string that contained a valid range of characters. The test maps also were validated against the form layout and item types for correctness as part of these tests.

Pearson conducted a multifaceted validation of all item layout, rendering, and functionality. Reviewers conducted comparisons between the approved item and the item as it appeared in the field-test form, validated that tools and functions in the test delivery system, TestNav, were accurately applied, and verified that the style and layout met requirements documented in the *PARCC Publishing Style Guide* as part of the *PARCC Item Development Technical Guide*.²⁰ In addition, all answer keys were validated through a formal key review process. More details on the test development procedures are provided in Section 2.

14.3 Quality Control of Test Materials

Pearson provided high quality materials in a timely and efficient manner to meet PARCC's test administration needs. Since the majority of printing work was done in-house, it was possible to fully control the production environment, press schedule, and quality process for print materials. Additionally, strict security requirements were employed to protect secure materials production; Section 3 provides details on the secure handling of test materials. Materials were produced according to the PARCC style guide and to the detailed specifications supplied in the materials list.

¹⁹ This document is available online from: http://avocet.pearson.com/PARCC/Home#10429

²⁰ The PARCC Item Development Technical Guide is available online from: https://parcc-assessment.org/

Pearson Print Service operates within the sanctions of an ISO 9001:2008 Quality Management System, and practices process improvement through Lean principles and employee involvement.

Raw materials (paper and ink) used for scannable forms production were manufactured exclusively for Pearson Print Service using specifications created by Pearson Print Service. Samples of ink and paper were tested by Pearson prior to use in production. Project specialists were the point of contact for incoming production.

Purchase orders and other order information were assessed against manufacturing capabilities and assigned to the optimal production methodology. PARCC expectations, quality requirements, and cost considerations were foremost in these decisions. Prior to release for manufacture, order information was checked against PARCC specifications, technical requirements, and other communication that includes expected outcomes. Records of these checks were maintained.

Files for image creation flow through one of two file preparation functions: digital pre-press (DPP) for digital print methodology, or plateroom for offset print methodology. Both the DPP and plateroom functions verify content, file naming, imposition, pagination, numbering stream, registration of technical components, color mapping, workflow, and file integrity. Records of these checks are created and saved.

Offset production requires printing that uses a lithographic process. Offline finishing activities are required to create books and package offset output. Digital output may flow through an inkjet digital production line (DPL) or a sheet-fed toner application process in the Xpress Center. A battery of quality checks was performed in these areas. The checks included color match, correct file selection, content match to proof, litho-code to serial number synchronization, registration of technical components, ink density controlled by densitometry, inspection for print flaws, perforations, punching, pagination, scanning requirements, and any unique features specified for the order. Records of these checks and samples pulled from planned production points were maintained. Offline finishing included cutting, shrink-wrapping, folding, and collating. The collation process has three robust inline detection systems that inspected each book for:

- Caliper validation that detects too few or too many pages. This detector will stop the collator if an incorrect caliper reading is registered.
- An optical reader that will only accept one sheet. Two or zero sheets will result in a collator stoppage.
- The correct bar code for the signature being assembled. An incorrect or upside down signature will be rejected by the bar code scanner and will result in a collator stoppage.

Pearson's Quality Assurance (QA) department personnel inspected print output prior to collation and shipment. QA also supported process improvement, work area documentation, audited process adherence, and established training programs for employees.

14.4 Quality Control of Scanning

Establishing and maintaining the accuracy of scanning, editing, and imaging processes is a cornerstone of the Pearson scoring process. While the scanners are designed to perform with great precision,

Pearson implements other quality assurance processes to confirm that the data captured from scan processing produce a complete and accurate map to the expected results.

Pearson pioneered optical mark reading (OMR) and image scanning, and continues to improve in-house scanners for this purpose. Software programs drive the capture of student demographic data and student responses from the test materials during scan processing. Routinely scheduled maintenance and adjustments to the scanner components (e.g., camera) maintain scanner calibration. Test sheets inserted into every batch test scanner accuracy and calibration.

Controlled processes for developing and testing software specifications included a series of validation and verification procedures to confirm the captured data can be mapped accurately and completely to the expected results and that editing application rules are properly applied.

14.5 Quality Control of Image Editing

The final step in producing accurate data for scoring is the editing process. Once information from the documents was captured in the scanning process, the scan program file was executed, comparing the data captured from the student documents to the project specifications. The result of the comparison was a report (or edit listing) of documents needing corrections or validation. Image Editing Services performed the tasks necessary to correct and verify the student data prior to scoring.

Using the report, editors verified that all unscanned documents were scanned, or the data were imported into the system through some other method such as flatbed scan or key entry.

Documents with missing or suspect data were pulled, verified, and corrections or additional data were entered. Standard edits included:

- Incorrect or double gridding
- Incorrect dates (including birth year)
- Mismatches between pre-ID label and gridded information
- Incomplete names

When all edits were resolved, corrections were incorporated into the document file containing student records.

Additional quality checks were also performed. These included student N-count checks to make certain:

- students were placed under the correct header,
- all sheets belonged to the appropriate document,
- · documents were not scanned twice, and
- no blank documents existed.

Finally, accuracy checks were performed by checking random documents against scanned data to verify the accuracy of the scanning process.

Once all corrections were made, the scan program was tested a second time to verify all data were valid. When the resulting output showed that no fields were flagged as suspect, the file was considered clean

and scoring began. Once all scanning was completed, the right/wrong response data were securely handed off.

14.6 Quality Control of Answer Document Processing and Scoring

Quality control of answer document processing and scoring involves all aspects of the scoring procedures, including key-based and rule-based machine scoring and hand-scoring for constructed-response items and performance tasks.

For the 2015 PARCC operational administration, Pearson's validation team prepared test plans used throughout the scoring process. Test plan preparation was organized around detailed specifications.

Based on lessons learned from previous administrations, the following quality steps were implemented:

- Raw score validation (e.g., score key validation; evidence statement, field-test non-score; double-grid combinations; possible correct combination, if applicable; out-of-range/negative test cases)
- Matching (e.g., validation of high-confidence criteria, low-confidence criteria, cross document, external or forced matching by customer; prior to and after data updates; extract file of matched and unmatched documents)
- Demographic update tests (e.g., verification of data extract against corresponding layout; valid values for updatable fields; invalid values for updatable/non-updatable fields; negative test for non-existing record or empty file)

The following components were added to the quality control process specifically for the PARCC program. These additional steps were introduced to address issues with item-level scoring that were identified in the 2014 PARCC field-test administration:

- XML Validation: A combination of automated validation against 100 percent of item XMLs and human inspection of XML from selected difficult item types or composite items.
- Administration/End-to-End Data Validation: An automated generation of response data from approved test maps that have known conditions against the operational scoring systems and data generation systems to verify scoring accuracy.
- Psychometric Validation: Verification of data integrity using criteria typically used in psychometric processes (e.g., statistical keychecks) and categorization of identified issues to help inform investigation by other groups.
- Content Validation: An examination, by subject matter experts, of all items using a combination of automated tools to generate response and scoring data.

In addition to the steps described above, the following quality control process for answer keys and scoring that was implemented for the first PARCC operational administration was used:

- 1. Pearson's psychometrics team conducted empirical analyses based on preliminary data files and flagged items based on statistical criteria;
- 2. Pearson content team reviewed the flagged items and provided feedback on the accuracy of content, answer keys, and scoring;
- 3. Items potentially requiring changes were added to the product validation (PV) log for further investigation by other Pearson teams;

- 4. PARCC staff was notified of items for which keys or scoring changes were recommended;
- 5. PARCC approved/rejected scoring changes; and
- 6. All approved scoring changes were implemented and validated prior to the generation of the data files used for psychometric processing.

14.7 Quality Control of Psychometric Processes

High quality psychometric work for the 2016–2017 PARCC operational administrations was necessary to provide accurate and reliable results of student performance. Pearson, HumRRO, and Measured Progress implemented quality control procedures to ensure the quality of the work including:

- 1. Well-defined psychometric specifications
- 2. Consistently applied data cleaning rules
- 3. Clear and frequent communication
- 4. Test run analyses
- 5. Quality checks of the analyses
- 6. Checklists for statistical procedures

14.7.1 Pearson Psychometric Quality Control Process

Pearson was responsible for the psychometric analyses of the 2016–2017 PARCC operational administration and implemented measures to ensure the quality of work. The psychometric analyses were all conducted according to well-defined specifications. Data cleaning rules were clearly articulated and applied consistently throughout the process. Results from all analyses underwent comprehensive quality checks by a team of psychometricians and data analysts. Detailed checklists were used by members of the team for each statistical procedure.

Described below is an overview of the quality control steps performed at different stages of the psychometric analyses. Greater detail is provided in Sections 6 (Classical Item Analysis), 7 (Differential Item Functioning), 10 (IRT Calibration and Scaling), and 12 (Scale Scores).

Data Screening

Data screening is an important first step to ensure quality data input for meaningful analysis. The Pearson Customer Data Quality (CDQ) team validated all student data files used in the operational psychometric analyses. The data validation for the student data files (SDF) and item response files (IRF) included the following steps:

- 1. Validated variables in the data file for values in acceptable ranges.
- 2. Validated that the test form ID, unique item numbers (UINs), and item sequence on the data file were consistent with the test form values on the corresponding test map.
- 3. Computed the composite raw score, claim raw scores, and subclaim raw scores, given the item scores in the student data file.
- 4. Compared computed raw scores to the raw scores in the student data file.
- 5. Compared the student item response block (SIRB) to the item scores.
- 6. Flagged student records with inconsistencies for further investigation.

Pearson Psychometrics and HumRRO established predefined valid case criteria, which were implemented consistently throughout the process. Refer to Section 5.3 for rules for inclusion of students in analyses and Section 10.2 for IRT calibration data preparation criteria and procedures.

Classical Item Analysis

Classical item analysis (IA) produces item level statistics (e.g., item difficulty and item-total correlations). The IA results were reviewed by Pearson psychometricians. Items flagged for unusual statistical properties were reviewed by the content team. A subset of items identified as having key issues, scoring issues, or content issues was presented to the PARCC Priority Alert Task Force, which made decisions on whether to exclude them from the IRT calibration process and, consequently, the calculation of reported student scores. Refer to Section 6.4 for classical IA item flagging criteria.

Calibrations

Creation of item response theory (IRT) sparse data matrices is an important step before the calibrations can begin. Using the same scored item response data, Pearson and HumRRO teams filtered the data and generated their own sparse data matrices independently. Processing of all data was done in parallel by two psychometricians and compared for *n*-counts. This verification of the data preparation was important to ensure that student exclusion rules were applied consistently across the analyses.

During the calibration process, checks were made to ensure that the correct options for the analyses were selected. Checks were also made on the number of items, number of test takers with valid scores, IRT item difficulties, standard errors for the item difficulties, and the consistency between selected IRT statistics to the corresponding statistics obtained during item analyses. Psychometricians also performed detailed reviews of statistics to investigate the extent to which the assumptions of the model fit the observed data. Refer to Section 10.4 for IRT model fit evaluation criteria.

Scaling

During the scaling process, checks were made on the number of linking items, the number of items that were excluded from linking during the stability check of the scaling process, and the scaling constants. Linking items that did not meet the anchor criteria were excluded as linking items. For example, C-DIF items flagged in the mode comparability study were dropped. Additionally, items with large weighted root mean square difference (WRMSD) values in Round 1 of scaling were excluded as linking items in Round 2. Finally, reviewers computed the linking constants and then checked that the linking constants were correctly applied. Refer to Section 10.6 for description of scaling process.

Conversion Tables

Conversion tables must be accurate because they are used to generate reported scores for test takers. Comprehensive records were meticulously maintained on item-level decisions, and thorough checks were made to ensure that the correct items were included in the final score. All conversion tables were processed in parallel by Pearson and HumRRO and completely matched. A reasonableness check was also conducted by psychometricians for each content and grade level to make sure the results were in alignment with observations during the analyses prior to conversion table creation. Refer to Section 12.3 for the procedure to create conversion tables.

Delivering Item Statistics

Item statistics based on classical item analyses and IRT analyses were obtained during the psychometric analysis process. The statistics were compiled by two data analysts independently to ensure that the correct statistics were delivered for the item bank.

14.7.2 HumRRO Psychometric Quality Control Process

HumRRO served as the psychometric replicator for the 2016–2017 PARCC operational administration. HumRRO replicated the IRT analyses, scaling analyses, and the conversion file creations. The following steps outline the replication process:

- 1. Calibrated online and paper data separately.
- 2. Scaled the paper item parameter estimates to the online scale.
- 3. Sent the item parameter estimates and scaling constants to Measured Progress for comparison.
- 4. Reconciled differences, if any, in results with Pearson and Measured Progress.
- 5. Sent data files to Measured Progress for comparison and reconciled differences, if any.
- 6. Generated the performance levels, summative, claim, and subclaim conversion tables.
- 7. Sent conversion tables to Measured Progress for comparison and reconciled differences, if any.

14.7.3 Measured Progress Psychometric Quality Control Process

Measured Progress (MP) served as the external evaluator for the 2016–2017 PARCC operational administration. MP's main task was to evaluate the reasonableness of IRT calibration results, and to compare to the IRT calibration results, scaling constants, summative, claim, and subclaim conversion tables created by HumRRO and Pearson.

IRT Calibrations Comparison

MP reviewed and compared the psychometric IRT calibrations performed primarily by Pearson and HumRRO for all grade levels in ELA/L and mathematics administered both online and on paper.

Pearson and HumRRO each provided comparison files containing IRT item parameter estimates, IRT model fit statistics, and classical item statistics (item-level mean score, item-total correlation). Pearson also provided the IRT model fit plots for the items. For each test, the reasonableness of IRT parameters and the comparability of IRT parameter estimates between Pearson and HumRRO were evaluated on the following aspects:

- Number of items and types of interventions in the IRT calibration process
- Descriptive statistics of the IRT a-, b-, and d-parameter estimates
- Scatterplot of IRT a-, b-, and d-parameter estimates
- Absolute differences in IRT *a-*, *b-*, and *d-*parameter estimates
- Mean absolute difference (MAD) and root mean square difference (RMSD) in IRT-modelpredicted item mean scores if there were nontrivial absolute differences in IRT parameter estimates

- IRT model fit statistics and plots
- Item parameter linking status for paper forms

IRT Comparison Results

In general, MP observed highly comparable IRT item parameter estimates between Pearson and HumRRO across all grades and subjects and in both online and paper forms in the 2016–2017 PARCC operational analyses. The largest differences in item parameter estimates occurred at the fourth decimal place. In general, model fit ranged from good to reasonable, with a few items illustrating more variability when sample sizes were small. For a very few items across all the tests, MP observed extreme IRT parameter estimates and/or standard errors, and sent the findings to Pearson for further investigation. Those items were sent to the Priority Alert Task Force for review, and they were either spoiled in operational scoring or flagged for re-field-testing with larger sample sizes.

Conversion Files Comparison

MP provided comparison results for the scaling constants, the summative, claim, and subclaim score conversion tables and their performance levels of both regular and accommodated forms in each of the grades 3 through 8 and high school tests.

The conversion tables were evaluated and compared in the following aspects:

- Form ID and the number of total score points
- Minimum and maximum score points
- Raw cut-scores
- Theta and scaled scores associated with each raw score point

Conversion Files Comparison Results

MP observed identical lower and upper limits of scale scores for summative and subclaim performance levels in each test. In the final comparison files and after any observed differences were reconciled, MP observed identical form IDs and number of raw score points for each test. The largest differences in the theta points only showed on the fourth decimals across all the conversion tables. Only very few scale score points differed by one point due to rounding out of the numerous forms across the grades and subjects. None of the differences occurred on the scale cut-scores. Overall, the final conversion files provided by HumRRO and Pearson were highly comparable.

References

- American Educational Research Association, American Psychological Association, & National Council on Measurement in Education (2014). *Standards for educational and psychological testing*.

 Washington, DC: American Educational Research Association.
- Beimers, J. N., Way, W. D., McClarty, K. L., & Miles, J. A. (2012, January). Evidence based standard setting: Establishing cut scores by integrating research evidence with expert content judgments. Austin, TX: Pearson. Retrieved from http://researchnetwork.pearson.com/wp-content/uploads/Bulletin21 Evidence Based Standard Setting.pdf
- Betebenner, D. W. (2009). *Norm-and criterion-referenced student growth.* Educational Measurement: Issues and Practice, 28(4), 42-51.
- Betebenner, D. W. (2011). A technical overview of the student growth percentile methodology: Student growth percentiles and percentile growth projections/trajectories. The National Center for the Improvement of Educational Assessment.
- Betebenner, D. W., DePascale, C., Marion, S., Domaleski, C., Martineau, J. (2016). *Precision, interpretability, and utility of SGPs: A Response to why we should abandon student growth percentiles by Sireci, Wells, and Keller.* The National Center for the Improvement of Educational Assessment.
- Betebenner, D. W., Van Iwaarden, A., Domingue, B. and Shang, Y. (2017). SGP: Student Growth Percentiles & Percentile Growth Trajectories. (R package version 1.7-7.13)
- Brennan, R. L. (2004). BB-CLASS [Computer software]. Iowa City, IA: Center for Advanced Studies in Measurement and Assessment (CASMA).
- Cai, L., Thissen, D., & du Toit, S. (2011). IRTPRO 2.1 [Computer software]. Lincolnwood, IL: Scientific Software International.
- Council of Chief State School Officers. (2015). Common Core State Standards Initiative. Retrieved from http://www.corestandards.org/
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, 16, 297–334.
- Doorey, N. & Polikoff, M. (2016). *Evaluating the Content and Quality of Next Generation Assessments*. Washington, DC: Thomas B. Fordham Institute.
- Dorans, N. J., & Schmitt, A. P. (1991). *Constructed response and differential item functioning: A pragmatic approach. (ETS Research Report No. 91-47).* Princeton, NJ: Educational Testing Service.

- Dorans, N. J., & Holland, P. W. (1993). DIF detection and description: Mantel-Haenszel and standardization. In P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 35-66). Hillsdale, NJ: Erlbaum.
- Dorans, N. J. (2013). ETS Contributions to the Quantitative Assessment of Item, Test and Score Fairness (ETS R&D Science and Policy Contributions Series, ETS SPC-13-04). Princeton, NJ: Educational Testing Service.
- Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). *Fundamentals of item response theory.*Newbury Park, CA: Sage.
- Holland, P. W., & Thayer, D. T. (1988). Differential item performances and the Mantel-Haenszel procedure. In H. Wainer & H. I. Braun (Eds.), *Test validity* (pp. 129-145). Hillsdale, NJ: Erlbaum.
- Holland, P. W. (1990). On the sampling theory foundations of item response theory models. *Psychometrika*, 55, 577-601.
- Huynh, Huynh & Meyer, Patrick (2010). Use of Robust z in Detecting Unstable Items in Item Response Theory Models. *Practical Assessment, Research & Evaluation*, 15(2). Available online: http://pareonline.net/getvn.asp?v=15&n=2
- Kim, S., & Kolen M. J. (2004). STUIRT: A Computer Program for Scale Transformation under Unidimensional Item Response Theory Models. University of Iowa. Version 1.0.
- Kolen, M.J., & Brennan, R.L. (2004). *Test equating, scaling, and linking: Methods and practices*. New York: Springer.
- Kolen, M. J. (2004). POLYCSEM windows console version [Computer software]. Iowa City, IA: The Center for Advanced Studies in Measurement and Assessment (CASMA), The University of Iowa.
- Kolen, M. J., Zeng, L., & Hanson, B. A. (1996). Conditional standard errors of measurement for scale scores using IRT. *Journal of Educational Measurement*, 33(2), 129-140.
- Landis, J.R.; Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics. 33 (1): 159–174.
- Lord, F. M., & Wingersky, M.S. (1984). Comparison of IRT true score and equipercentile observed-score "equatings." *Applied Psychological Measurement*, *8*, 453-461.
- Mantel, N. (1963). Chi-square tests with one degree of freedom: Extensions of the Mantel-Haenszel procedure. *Journal of the American Statistical Association*, *58*, 690-700.
- Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. *Journal of the National Cancer Institute, 22,* 719-748.
- McClary, K. L., Kobrin, J. L., Moyer, E, Griffin, S., Huth, K., Carey, S., & Medberry, S. (2015). *PARCC Benchmarking Study*. Pearson Educational Measurement, Iowa City, IA: Pearson.

- McClarty, K. L., Way, W. D., Porter, A. C., Beimers, J. N., & Miles, J. A. (2013). Evidence-based standard setting: establishing a validity framework for cut scores. *Educational Researcher*, 42(2), 78-88.
- Muraki, E., & Bock R. D. (2003). PARSCALE: IRT Item Analysis and Test Scoring for Rating-Scale Data. Chicago, IL: Scientific Software International. Version 4.1.
- Liu, J., Brown, T., Chen, J., Ali, U., Hou, L., & Costanzo, K. (2016). *Mode Comparability Study Based on Spring 2015 Operational Test Data*. Princeton, NJ: Educational Testing Service.
- Olsson, U., Drasgow, F., & Dorans, N. J. (1982), "The Polyserial Correlation Coefficient," *Biometrika*, 47, 337–347.
- Plake, B. S., Ferdous, A. A., Impara, J. C., & Buckendahl, C. W. (2005). Setting Multiple Performance Standards Using the Yes/No Method: An Alternative Item Mapping Method. *Meeting of the National Council on Measurement in Education*. Montreal. Canada.
- Schultz, S. R., Michaels, H. R., Dvorak, R. N., & Wiley, C. R. H. (2016). *Evaluating the Content and Quality of Next Generation High School Assessments*. (HumRRO Report 2016 No. 001). Alexandria, VA: Human Resources Research Organization.
- Schultz, S. R., Michaels, H. R., Norman-Dvorak, R. N., & Chen, J. (2017). Evaluating the Quality and Alignment of PARCC ELA/Literacy and Mathematics Assessments: Grades 3, 4, 6, and 7. (HumRRO Report 2017). Alexandria, VA: Human Resources Research Organization.
- Sireci, S. G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests. *Journal of Educational Measurement*, 28, 237-247.
- Steedle, J., McBride, M. Johnson, M., & Keng, L. (2015). *Spring 2015 Digital Devices Comparability Research Study*. Pearson Educational Measurement, Iowa City, IA: Pearson.
- Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. *Applied Psychological Measurement*, 7, 201-210.
- Thacker, A., Sinclair, A., Wise, L., & Becker, S. (April 10, 2014). PARCC validity studies including predictive and longitudinal studies memorandum (HumRRO Report 2014 No. 020). Alexandria, VA: Human Resources Research Organization.
- Thompson, S. J., Johnstone, C. J., & Thurlow, M. L. (2002). Universal Design Applied to Large Scale Assessments. Synthesis Report.
- Wainer, H., & Thissen, D. (2001). Test scoring. Mahwah, NJ: Erlbaum.
- Wang, T., Kolen, M. J., & Harris, D. J. (2000). Psychometric properties of scale scores and performance levels for performance assessments using polytomous IRT. *Journal of Educational Measurement*, 37(2), 141-162.

- Williamson, D. M., Xi, X., & Breyer, F. J. (2012). A framework for evaluation and use of automated scoring. *Educational Measurement: Issues and Practices, 31, 2*–13.
- Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. *Applied Psychological Measurement*, *8*, 125-145.
- Zenisky, A. L., Hambleton, R. K., & Sireci, S.C. (2003). *Effects of local dependence on the validity of IRT item test, and ability statistics*. (Technical Report). American College Admissions Test.
- Zieky, M. (1993). Practical questions in the use of DIF statistics in test development. In P. Holland & H. Wainer (Eds.), *Differential item functioning* (pp. 337–348). Hillsdale, NJ: Erlbaum
- Zwick, R., Thayer, D. T., & Mazzeo, J. (1997). *Describing and Categorizing DIF in Polytomous Items (ETS Research Report RR-97-05)*. Princeton, NJ: Educational Testing Service.

Appendices

Appendix 5: Test Takers by Grade and Mode, for Each State

Table A.5.1 ELA/L Test Takers, by State, and Grade

		English Language Arts/Literacy									
State	Category	Total	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11
PARCC	N of Students	2,938,091	420,496	423,098	414,461	406,705	406,201	399,371	188,201	171,965	107,593
PARCC	N of CBT	2,764,202	363,304	374,192	399,511	389,472	390,667	385,257	185,251	170,101	106,447
PARCC	% of CBT	94.1	86.4	88.4	96.4	95.8	96.2	96.5	98.4	98.9	98.9
PARCC	N of PBT	173,889	57,192	48,906	14,950	17,233	15,534	14,114	2,950	1,864	1,146
PARCC	% of PBT	5.9	13.6	11.6	3.6	4.2	3.8	3.5	1.6	1.1	1.1
BIE	N of Students	8,762	1,493	1,445	1,398	1,301	1,087	1,080	175	196	587
BIE	% of PARCC Data	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BIE	N of CBT	2,000	275	277	267	241	316	339	36	39	210
BIE	% of CBT	22.8	18.4	19.2	19.1	18.5	29.1	31.4	20.6	19.9	35.8
BIE	N of PBT	6,762	1,218	1,168	1,131	1,060	771	741	139	157	377
BIE	% of PBT	77.2	81.6	80.8	80.9	81.5	70.9	68.6	79.4	80.1	64.2
СО	N of Students	416,423	63,505	64,065	63,350	60,776	58,706	56,118	49,903	n/a	n/a
CO	% of PARCC Data	14.2	2.2	2.2	2.2	2.1	2.0	1.9	1.7	n/a	n/a
CO	N of CBT	394,006	58,352	59,938	59,882	57,781	56,140	53,956	47,957	n/a	n/a
CO	% of CBT	94.6	91.9	93.6	94.5	95.1	95.6	96.1	96.1	n/a	n/a
CO	N of PBT	22417	5153	4127	3468	2995	2566	2162	1946	n/a	n/a
CO	% of PBT	5.4	8.1	6.4	5.5	4.9	4.4	3.9	3.9	n/a	n/a
DC	N of Students	39,012	6,349	6,062	5,385	4,800	4,365	4,290	3,425	4,273	63
DC	% of PARCC Data	1.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0
DC	N of CBT	38,787	6,288	5,997	5,340	4,777	4,354	4,282	3,419	4,267	63
DC	% of CBT	99.4	99.0	98.9	99.2	99.5	99.7	99.8	99.8	99.9	100
DC	N of PBT	225	61	65	45	23	11	8	6	6	0
DC	% of PBT	0.6	1.0	1.1	0.8	0.5	0.3	0.2	0.2	0.1	0.0

State	Category	Total	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11
TL	% of PARCC Data	29.6	5.0	5.0	4.9	4.9	5.0	4.9	n/a	n/a	n/a
IL	N of CBT	757,086	105,259	107,125	134,849	136,006	138,936	134,911	n/a	n/a	n/a
IL	% of CBT	86.9	71.9	72.6	93.2	94.2	95.5	94.6	n/a	n/a	n/a
IL	N of PBT	113,905	41,106	40,419	9,796	8,378	6,505	7,701	n/a	n/a	n/a
IL	% of PBT	13.1	28.1	27.4	6.8	5.8	4.5	5.4	n/a	n/a	n/a
MD	N of Students	467,310	68,754	68,080	66,143	63,391	63,335	62,810	1,907	56,882	16,008
MD	% of PARCC Data	15.9	2.3	2.3	2.3	2.2	2.2	2.1	0.1	1.9	0.5
MD	N of CBT	442,577	60,174	66,129	66,043	58,941	58,072	59,796	1,873	55,784	15,765
MD	% of CBT	94.7	87.5	97.1	99.8	93.0	91.7	95.2	98.2	98.1	98.5
MD	N of PBT	24,733	8,580	1,951	100	4,450	5,263	3,014	34	1,098	243
MD	% of PBT	5.3	12.5	2.9	0.2	7.0	8.3	4.8	1.8	1.9	1.5
NJ	N of Students	847,529	98,793	100,248	98,416	97,313	98,834	98,712	98,239	87,388	69,586
NJ	% of PARCC Data	28.8	3.4	3.4	3.3	3.3	3.4	3.4	3.3	3.0	2.4
NJ	N of CBT	845,081	98,615	100,030	98,207	97,161	98,654	98,511	97,714	86,967	69,222
NJ	% of CBT	99.7	99.8	99.8	99.8	99.8	99.8	99.8	99.5	99.5	99.5
NJ	N of PBT	2,448	178	218	209	152	180	201	525	421	364
NJ	% of PBT	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.5
NM	N of Students	214,366	24,701	24,885	24,580	24,359	23,852	23,437	24,096	23,107	21,349
NM	% of PARCC Data	7.3	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7
NM	N of CBT	212,864	24,566	24,756	24,454	24,226	23,657	23,230	23,863	22,925	21,187
NM	% of CBT	99.3	99.5	99.5	99.5	99.5	99.2	99.1	99.0	99.2	99.2
NM	N of PBT	1,502	135	129	126	133	195	207	233	182	162
NM	% of PBT	0.7	0.5	0.5	0.5	0.5	0.8	0.9	1.0	0.8	0.8
RI	N of Students	73,517	10,529	10,764	10,534	10,375	10,574	10,304	10,437	n/a	n/a
RI	% of PARCC Data	2.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	n/a	n/a
RI	N of CBT	71,620	9,768	9,935	10,459	10,333	10,531	10,224	10,370	n/a	n/a
RI	% of CBT	97.4	92.8	92.3	99.3	99.6	99.6	99.2	99.4	n/a	n/a
RI	N of PBT	1,897	761	829	75	42	43	80	67	n/a	n/a
RI	% of PBT	2.6	7.2	7.7	0.7	0.4	0.4	0.8	0.6	n/a	n/a
											_

Note: CBT = computer-based test; PBT = paper-based test; n/a = not applicable.

Table A.5.2 Mathematics Test Takers, by State, and Grade

		Mathematics												
State	Category	Total	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	A1	GO	A2	M1	M2	M3
PARCC	N of Students	2,920,820	425,744	426,609	416,556	408,664	393,942	314,484	260,806	137,530	122,710	10964	2243	568
PARCC	N of CBT	2,742,041	367,726	376,664	400,631	391,131	379,753	302,002	254,419	136,043	120,173	10892	2047	560
PARCC	% of CBT	93.9	86.4	88.3	96.2	95.7	96.4	96.0	97.6	98.9	97.9	99.3	91.3	98.6
PARCC	N of PBT	178,779	58,018	49,945	15,925	17,533	14,189	12,482	6,387	1,487	2,537	72	196	8
PARCC	% of PBT	6.1	13.6	11.7	3.8	4.3	3.6	4.0	2.4	1.1	2.1	0.7	8.7	1.4
BIE	N of Students	8,749	1,489	1,441	1,399	1,299	1,081	1,065	175	199	375	21	198	7
BIE	% of PARCC Data	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BIE	N of CBT	1,990	274	274	268	239	310	325	51	71	170	2	6	0
BIE	% of CBT	22.7	18.4	19.0	19.2	18.4	28.7	30.5	29.1	35.7	45.3	9.5	3.0	0.0
BIE	N of PBT	6,759	1,215	1,167	1,131	1,060	771	740	124	128	205	19	192	7
BIE	% of PBT	77.3	81.6	81.0	80.8	81.6	71.3	69.5	70.9	64.3	54.7	90.5	97.0	100
СО	N of Students	419,002	65,313	64,910	63,391	60,856	56,101	43,011	40,763	10,693	2,278	9,875	1,621	190
CO	% of PARCC Data	14.3	2.2	2.2	2.2	2.1	1.9	1.5	1.4	0.4	0.1	0.3	0.1	0.0
CO	N of CBT	388,447	59,430	59,941	58,931	56,351	52,038	39,992	37,832	10,068	2,192	9,861	1,621	190
CO	% of CBT	92.7	91.0	92.3	93.0	92.6	92.8	93.0	92.8	94.2	96.2	99.9	100.0	100.0
CO	N of PBT	30555	5883	4969	4460	4505	4063	3019	2931	625	86	14	0	0
CO	% of PBT	7.3	9.0	7.7	7.0	7.4	7.2	7.0	7.2	5.8	3.8	0.1	0.0	0.0
DC	N of Students	38,684	6,410	6,102	5,408	4,862	4,280	3,609	3,288	4,319	291	n/a	115	n/a
DC	% of PARCC Data	1.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0	n/a	0.0	n/a
DC	N of CBT	38,448	6,354	6,036	5,364	4,837	4,255	3,599	3,282	4,315	291	n/a	115	n/a
DC	% of CBT	99.4	99.1	98.9	99.2	99.5	99.4	99.7	99.8	99.9	100	n/a	100	n/a
DC	N of PBT	236	56	66	44	25	25	10	6	4	0	n/a	0	n/a
DC	% of PBT	0.6	0.9	1.1	0.8	0.5	0.6	0.3	0.2	0.1	0.0	n/a	0.0	n/a
IL	N of Students	872,611	146,790	147,821	144,901	144,642	144,794	138,847	4,293	409	114	n/a	n/a	n/a
IL	% of PARCC Data	29.9	5.0	5.1	5.0	5.0	5.0	4.8	0.1	0.0	0.0	n/a	n/a	n/a
IL	N of CBT	758,419	105,459	107,269	135,124	136,268	138,320	131,244	4,212	409	114	n/a	n/a	n/a
IL	% of CBT	86.9	71.8	72.6	93.3	94.2	95.5	94.5	98.1	100	100	n/a	n/a	n/a
IL	N of PBT	114,192	41,331	40,552	9,777	8,374	6,474	7,603	81	0	0	n/a	n/a	n/a
IL	% of PBT	13.1	28.2	27.4	6.7	5.8	4.5	5.5	1.9	0.0	0.0	n/a	n/a	n/a

							Math	ematics						
State	Category	Total	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	A1	GO	A2	M1	M2	M3
MD	N of Students	465,290	69,328	68,554	66,593	63,800	57,201	37,819	65,853	10,202	25,940	n/a	n/a	n/a
MD	% of PARCC Data	15.9	2.4	2.3	2.3	2.2	2.0	1.3	2.3	0.3	0.9	n/a	n/a	n/a
MD	N of CBT	444,055	60,908	66,556	66,492	60,564	54,764	37,142	63,400	10,078	24,151	n/a	n/a	n/a
MD	% of CBT	95.4	87.9	97.1	99.8	94.9	95.7	98.2	96.3	98.8	93.1	n/a	n/a	n/a
MD	N of PBT	21,235	8,420	1,998	101	3,236	2,437	677	2,453	124	1,789	n/a	n/a	n/a
MD	% of PBT	4.6	12.1	2.9	0.2	5.1	4.3	1.8	3.7	1.2	6.9	n/a	n/a	n/a
NJ	N of Students	828,775	99,913	101,271	99,367	98,235	95,960	63,595	109,499	87,151	73,779	n/a	5	n/a
NJ	% of PARCC Data	28.4	3.4	3.5	3.4	3.4	3.3	2.2	3.7	3.0	2.5	n/a	0.0	n/a
NJ	N of CBT	826,338	99,718	101,044	99,152	98,077	95,776	63,407	108,967	86,732	73,460	n/a	5	n/a
NJ	% of CBT	99.7	99.8	99.8	99.8	99.8	99.8	99.7	99.5	99.5	99.6	n/a	100	n/a
NJ	N of PBT	2,437	195	227	215	158	184	188	532	419	319	n/a	0	n/a
NJ	% of PBT	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.5	0.5	0.4	n/a	0.0	n/a
NM	N of Students	213,072	25,824	25,627	24,856	24,505	23,835	19,093	26,100	21,815	19,708	1,049	289	371
NM	% of PARCC Data	7.3	0.9	0.9	0.9	0.8	0.8	0.7	0.9	0.7	0.7	0.0	0.0	0.0
NM	N of CBT	211,638	25,684	25,496	24,728	24,374	23,644	18,931	25,913	21,633	19,570	1,010	285	370
NM	% of CBT	99.3	99.5	99.5	99.5	99.5	99.2	99.2	99.3	99.2	99.3	96.3	98.6	99.7
NM	N of PBT	1,434	140	131	128	131	191	162	187	182	138	39	4	1
NM	% of PBT	0.7	0.5	0.5	0.5	0.5	0.8	0.8	0.7	0.8	0.7	3.7	1.4	0.3
RI	N of Students	74,456	10,670	10,878	10,631	10,459	10,683	7,437	10,731	2,742	225	n/a	n/a	n/a
RI	% of PARCC Data	2.5	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.1	0.0	n/a	n/a	n/a
RI	N of CBT	72,525	9,892	10,043	10,562	10,415	10,639	7,354	10,658	2,737	225	n/a	n/a	n/a
RI	% of CBT	97.4	92.7	92.3	99.4	99.6	99.6	98.9	99.3	99.8	100.0	n/a	n/a	n/a
RI	N of PBT	1,931	778	835	69	44	44	83	73	5	0	n/a	n/a	n/a
RI	% of PBT	2.6	7.3	7.7	0.6	0.4	0.4	1.1	0.7	0.2	0.0	n/a	n/a	n/a

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics II, M3 = Integrated Mathematics III. CBT = computer-based test; PBT = paper-based test; n/a = not applicable.

Table A.5.3 Spanish-Language Mathematics Test Takers, by State, and Grade

Mathematics (Spanish-Language forms)

State*	Category	Total	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	A1	GO	A2	M1	M2	М3
PARCC	N of Students	28,279	6,399	3,971	3,021	2,736	2,617	2,573	4,032	1,755	1,085	88	1	1
PARCC	N of CBT	26,347	5,498	3,532	2,944	2,694	2,572	2,532	3,646	1,755	1,084	88	1	1
PARCC	% of CBT	93.2	85.9	88.9	97.5	98.5	98.3	98.4	90.4	100	99.9	100	100	100
PARCC	N of PBT	1,932	901	439	77	42	45	41	386	n/a	1	n/a	n/a	n/a
PARCC	% of PBT	6.8	14.1	11.1	2.5	1.5	1.7	1.6	9.6	n/a	0.1	n/a	n/a	n/a
BIE	N of Students	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
BIE	N of CBT	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
BIE	% of CBT	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
BIE	N of PBT	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
BIE	% of PBT	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
СО	N of Students	3,373	1,413	718	319	219	225	261	161	3	n/a	54	n/a	n/a
СО	% of PARCC Data	11.9	5.0	2.5	1.1	0.8	0.8	0.9	0.6	0.0	n/a	0.2	n/a	n/a
СО	N of CBT	3,089	1,322	656	258	201	203	240	152	3	n/a	54	n/a	n/a
CO	% of CBT	91.6	93.6	91.4	80.9	91.8	90.2	92.0	94.4	100	n/a	100	n/a	n/a
CO	N of PBT	284	91	62	61	18	22	21	9	n/a	n/a	n/a	n/a	n/a
СО	% of PBT	8.4	6.4	8.6	19.1	8.2	9.8	8.0	5.6	n/a	n/a	n/a	n/a	n/a
DC	N of Students	447	67	83	67	60	55	53	38	24	n/a	n/a	n/a	n/a
DC	% of PARCC Data	1.6	0.2	0.36	0.2	0.2	0.2	0.2	0.1	0.1	n/a	n/a	n/a	n/a
DC	N of CBT	446	67	83	67	60	54	53	38	24	n/a	n/a	n/a	n/a
DC	% of CBT	99.8	100	100	100	100	98.2	100	100	100	n/a	n/a	n/a	n/a
DC	N of PBT	1	n/a	n/a	n/a	n/a	1	n/a	n/a	n/a	n/a	n/a	n/a	n/a
DC	% of PBT	0.2	n/a	n/a	n/a	n/a	1.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a
IL	N of Students	6,123	2,267	1,102	1,026	842	444	442	n/a	n/a	n/a	n/a	n/a	n/a
IL	% of PARCC Data	21.7	8.0	3.9	3.6	3.0	1.6	1.6	n/a	n/a	n/a	n/a	n/a	n/a
IL	N of CBT	4,943	1,481	741	1,014	831	439	437	n/a	n/a	n/a	n/a	n/a	n/a
IL	% of CBT	80.7	65.3	67.2	98.8	98.7	98.9	98.9	n/a	n/a	n/a	n/a	n/a	n/a
IL	N of PBT	1,180	786	361	12	11	5	5	n/a	n/a	n/a	n/a	n/a	n/a
IL	% of PBT	19.3	34.7	32.8	1.2	1.3	1.1	1.1	n/a	n/a	n/a	n/a	n/a	n/a

	Mathematics (Spanish-Language forms)													
State*	Category	Total	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	A1	GO	A2	M1	M2	М3
MD	N of Students	825	26	53	59	57	51	74	497	n/a	8	n/a	n/a	n/a
MD	% of PARCC Data	2.9	0.1	0.2	0.2	0.2	0.2	0.3	1.8	n/a	0.0	n/a	n/a	n/a
MD	N of CBT	450	26	53	59	55	49	67	133	n/a	8	n/a	n/a	n/a
MD	% of CBT	54.5	100	100	100	96.5	96.1	90.5	26.8	n/a	100	n/a	n/a	n/a
MD	N of PBT	375	n/a	n/a	n/a	2	2	7	364	n/a	n/a	n/a	n/a	n/a
MD	% of PBT	45.5	n/a	n/a	n/a	3.5	3.9	9.5	73.2	n/a	n/a	n/a	n/a	n/a
NJ	N of Students	13,039	1,380	1,188	1,144	1,244	1,458	1,387	2,719	1,543	976	n/a	n/a	n/a
NJ	% of PARCC Data	46.1	4.9	4.2	4.0	4.4	5.2	4.9	9.6	5.5	3.5	n/a	n/a	n/a
NJ	N of CBT	12,967	1,363	1,177	1,140	1,235	1,445	1,383	2,706	1,543	975	n/a	n/a	n/a
NJ	% of CBT	99.4	98.8	99.1	99.7	99.3	99.1	99.7	99.5	100	99.9	n/a	n/a	n/a
NJ	N of PBT	72	17	11	4	9	13	4	13	n/a	1	n/a	n/a	n/a
NJ	% of PBT	0.6	1.2	0.9	0.3	0.7	0.9	0.3	0.5	n/a	0.1	n/a	n/a	n/a
NM	N of Students	3,406	1,105	742	299	212	257	233	262	159	101	34	1	n/a
NM	% of PARCC Data	12.0	3.9	2.6	1.1	0.7	0.9	0.8	0.9	0.6	0.4	0.1	0.0	n/a
NM	N of CBT	3,398	1,102	740	299	211	256	232	262	159	101	34	1	n/a
NM	% of CBT	99.8	99.7	99.7	100	99.5	99.6	99.6	100	100	100	100	100	n/a
NM	N of PBT	8	3	2	n/a	1	1	1	n/a	n/a	n/a	n/a	n/a	n/a
NM	% of PBT	0.2	0.3	0.3	n/a	0.5	0.4	0.4	n/a	n/a	n/a	n/a	n/a	n/a
RI	N of Students	1,065	141	85	107	102	127	123	354	26	n/a	n/a	n/a	n/a
RI	% of PARCC Data	3.8	0.5	0.3	0.4	0.4	0.4	0.4	1.3	0.1	n/a	n/a	n/a	n/a
RI	N of CBT	1,053	137	82	107	101	126	120	354	26	n/a	n/a	n/a	n/a
RI	% of CBT	98.9	97.2	96.5	100	99	99.2	97.6	100	100	n/a	n/a	n/a	n/a
RI	N of PBT	12	4	3	n/a	1	1	3	n/a	n/a	n/a	n/a	n/a	n/a
RI	% of PBT	1.1	2.8	3.5	n/a	1.0	0.8	2.4	n/a	n/a	n/a	n/a	n/a	n/a

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III. CBT = computer-based test; PBT = paper-based test; n/a = not applicable.

^{*}No students in BIE tested in mathematics using Spanish-language forms.

Table A.5.4 All States Combined: ELA/L Test Takers by Grade, Mode, and Gender

		V-II-I C		Gende	er	
Grade	Mode	Valid Cases —	Female		Male	
		N	N	%	N	%
3	All	420,496	206,149	49.0	214,347	51.0
3	CBT	363,304	177,828	48.9	185,476	51.1
3	PBT	57,192	28,321	49.5	28,871	50.5
4	All	423,098	207,393	49.0	215,705	51.0
4	CBT	374,192	183,247	49.0	190,945	51.0
4	PBT	48,906	24,146	49.4	24,760	50.6
5	All	414,461	203,177	49.0	211,284	51.0
5	CBT	399,511	196,067	49.1	203,444	50.9
5	PBT	14,950	7,110	47.6	7,840	52.4
6	All	406,705	198,893	48.9	207,812	51.1
6	CBT	389,472	190,608	48.9	198,864	51.1
6	PBT	17,233	8,285	48.1	8,948	51.9
7	All	406,201	198,297	48.8	207,904	51.2
7	CBT	390,667	190,734	48.8	199,933	51.2
7	PBT	15,534	7,563	48.7	7,971	51.3
8	All	399,371	194,852	48.8	204,519	51.2
8	CBT	385,257	188,111	48.8	197,146	51.2
8	PBT	14,114	6,741	47.8	7,373	52.2
9	All	188,201	90,951	48.3	97,250	51.7
9	CBT	185,251	89,626	48.4	95,625	51.6
9	PBT	2,950	1,325	44.9	1,625	55.1
10	All	171,965	89,918	48.8	88,047	51.2
10	CBT	170,101	83,064	48.8	87,037	51.2
10	PBT	1,864	854	45.8	1,010	54.2
11	All	107,593	51,199	47.6	56,394	52.4
11	CBT	106,447	50,716	47.6	55,731	52.4
11	PBT	1,146	483	42.1	663	57.9

Note: CBT = computer-based tests; PBT = paper-based tests.

Table A.5.5 All States Combined: All Mathematics Test Takers by Grade, Mode, and Gender

		V 1:10		Gender		
Grade	Mode	Valid Cases —	Female		Male	
		N	N	%	N	%
3	All	425,744	208,739	49.0	217,005	51.0
3	CBT	367,726	179,993	48.9	187,733	51.1
3	PBT	58,018	28,746	49.5	29,272	50.5
4	All	426,609	209,075	49.0	217,534	51.0
4	CBT	376,664	184,410	49.0	192,254	51.0
4	PBT	49,945	24,665	49.4	25,280	50.6
5	All	416,556	204,220	49.0	212,336	51.0
5	CBT	400,631	196,608	49.1	204,023	50.9
5	PBT	15,925	7,612	47.8	8,313	52.2
6	All	408,664	199,820	48.9	208,844	51.1
6	CBT	391,131	191,410	48.9	1999,721	51.1
6	PBT	17,533	8,410	48.0	9,123	52.0
7	All	393,942	192,605	48.9	201,337	51.1
7	CBT	379,753	185,734	48.9	194,019	51.1
7	PBT	14,189	6,871	48.4	7,318	51.6
8	All	314,484	151,133	48.1	163,351	51.9
8	CBT	302,002	145,209	48.1	156,793	51.9
8	PBT	12,482	5,924	47.5	6,558	52.5
A1	All	260,806	126,562	48.5	134,244	51.5
A1	CBT	254,419	123,595	48.6	130,824	51.4
A1	PBT	6,387	2,967	48.5	3,420	53.5
GO	All	137,530	67,407	49.0	70,123	51.0
GO	CBT	136,043	66,716	49.0	69,327	51.0
GO	PBT	1,487	691	46.5	796	53.5
A2	All	122,710	61,281	49.9	61,429	50.1
A2	CBT	120,173	60,114	50.0	60,059	50.0
A2	PBT	2,537	1,167	46.0	1,370	54.0
M1	All	10,964	5,095	46.5	5,869	53.5
M1	CBT	10,892	5,063	46.5	5,829	53.5
M1	PBT	72	32	44.4	40	55.6
M2	All	2,243	1,102	49.1	1,141	50.9
M2	CBT	2,047	1,005	49.1	1,042	50.9
M2	PBT	196	97	49.5	99	50.5
M3	All	568	274	48.2	294	51.8
M3	CBT	560	272	48.6	288	51.4
M3	PBT	8	2	25.0	6	75.0

Note: Includes students taking English-language mathematics tests, students taking Spanish-language mathematics tests, and students taking accommodated forms. A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III. CBT = computer-based test; PBT = paper-based test; and n/a = not applicable.

Table A.5.6 All States Combined: Spanish-Language Mathematics Test Takers, by Grade, Mode, and Gender

		Valid Cases —		Gender		
Grade	Mode	valid Cases	Female		Male	
		N	N	%	N	%
3	All	6,399	3,188	49.8	3,211	50.2
3	CBT	5,498	2,733	49.7	2,765	50.3
3	PBT	901	455	50.5	446	49.5
4	All	3,971	1,879	47.3	2,092	52.7
4	CBT	3,532	1,657	46.9	1,875	53.1
4	PBT	439	222	50.6	217	49.4
5	All	3,021	1,448	47.9	1,573	52.1
5	CBT	2,944	1,405	47.7	1,539	52.3
5	PBT	77	43	55.8	34	44.2
6	All	2,736	1,288	47.1	1,448	52.9
6	CBT	2,694	1,266	47.0	1,428	53.0
6	PBT	42	22	52.4	20	47.6
7	All	2,617	1,230	47.0	1,387	53.0
7	CBT	2,572	1,217	47.3	1,355	52.7
7	PBT	45	13	28.9	32	71.:
8	All	2,573	1,230	47.8	1,343	52.2
8	CBT	2,532	1,213	47.9	1,319	52.:
8	PBT	41	17	41.5	24	58.5
A1	All	4,032	1,762	43.7	2,270	56.3
A1	CBT	3,646	1,596	43.8	2,050	56.2
A1	PBT	386	166	43.0	220	57.0
GO	All	1,755	834	47.5	921	52.5
GO	CBT	1,755	834	47.5	921	52.5
GO	PBT	n/a	n/a	n/a	n/a	n/a
A2	All	1,085	521	48.0	564	52.0
A2	CBT	1,084	520	48.0	564	52.0
A2	PBT	1	1	100	n/a	n/a
M1	All	88	41	46.6	47	53.4
M1	CBT	88	41	46.6	47	53.4
M1	PBT	n/a	n/a	n/a	n/a	n/
M2	All	n/a	n/a	n/a	1	100
M2	CBT	n/a	n/a	n/a	1	100
M2	PBT	n/a	n/a	n/a	n/a	n/a
M3	All	n/a	1	100	n/a	n/
M3	CBT	n/a	1	100	n/a	n/:
M3	PBT	n/a	n/a	n/a	n/a	n/a

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III. CBT = computer-based test; PBT = paper-based test; and n/a = not applicable.

2017 Technical Report

PARCC

Table A.5.7 Demographic Information for Grade 3 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	49.8	99.1	44.9	79.3	54.7	45.1	40.1	73.2	51.8
SWD (%)	14.7	12.3	12.5	15.4	14.2	13.3	17.6	15.8	15.7
EL (%)	14.5	33.4	15.1	10.4	21.1	11.3	6.5	17.0	11.7
Male (%)	51.0	48.3	51.3	50.2	50.8	51.3	50.9	51.1	50.6
Female (%)	49.0	51.7	48.7	49.8	49.2	48.7	49.1	48.9	49.4
AmInd/ANat (%)	1.4	99.5	0.7	n/r	0.7	0.4	0.1	10.2	0.7
Asian (%)	5.9	n/r	3.1	1.4	4.9	6.4	10.6	1.0	3.5
Black/AA (%)	17.4	n/r	4.8	68.0	17.6	34.0	15.3	2.1	8.5
Hisp/Lat (%)	28.3	n/r	33.3	17.0	26.5	17.3	28.3	60.9	26.8
Wh/Caus (%)	35.1	n/r	0.3	10.4	46.3	36.9	42.6	23.5	55.5
NtvHawaii/Pacific (%)	8.2	n/r	53.3	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.6	n/r	4.6	2.0	3.6	4.9	2.3	2.2	4.7
Unknown (%)	0.2	n/r	n/r	0.9	0.2	n/r	0.6	n/r	0.2

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported.

PARCC

Table A.5.8 Demographic Information for Grade 4 ELA/L, Overall and by State

Demographic Demographic	PARCC	BIE	со	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	49.2	98.8	45.2	78.7	53.9	44.0	39.6	73.4	51.7
SWD (%)	15.8	14.2	13.1	17.3	15.2	14.5	19.0	16.4	15.8
EL (%)	9.4	39.0	13.3	8.9	11.4	7.0	4.1	14.0	7.9
Male (%)	51.0	50.9	51.3	50.5	50.8	51.2	50.9	51.1	51.1
Female (%)	49.0	49.1	48.7	49.5	49.2	48.8	49.1	48.9	48.9
AmInd/ANat (%)	1.4	99.0	0.7	n/r	0.6	0.3	0.1	10.3	0.6
Asian (%)	5.7	n/r	3.1	1.3	4.8	6.3	10.2	1.1	3.1
Black/AA (%)	17.0	n/r	4.7	68.1	17.1	33.5	15.2	1.8	8.7
Hisp/Lat (%)	28.6	n/r	34.4	16.8	26.9	17.3	28.4	61.6	25.8
Wh/Caus (%)	35.6	n/r	0.3	10.8	46.8	37.7	43.0	23.2	56.7
NtvHawaii/Pacific (%)	8.1	n/r	52.4	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.4	n/r	4.5	1.9	3.5	4.7	2.2	2.0	4.8
Unknown (%)	0.2	n/r	n/r	0.9	0.3	n/r	0.6	n/r	n/r

PARCC

Table A.5.9 Demographic Information for Grade 5 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	48.3	99.6	45.1	77.9	53.0	42.8	38.4	72.7	49.2
SWD (%)	16.3	15.3	13.7	18.2	15.4	15.5	19.4	17.0	16.4
EL (%)	7.0	49.2	12.7	7.7	7.2	4.7	2.8	12.3	5.7
Male (%)	51.0	46.9	51.2	50.8	50.8	51.3	50.9	50.7	51.7
Female (%)	49.0	53.1	48.8	49.2	49.2	48.7	49.1	49.3	48.3
AmInd/ANat (%)	1.3	99.8	0.7	n/r	0.6	0.3	0.1	10.3	0.6
Asian (%)	5.8	n/r	3.1	1.4	4.9	6.5	10.3	1.1	3.2
Black/AA (%)	16.6	n/r	4.6	68.5	16.7	33.5	15.0	1.8	8.0
Hisp/Lat (%)	28.3	n/r	34.5	17.5	26.7	16.7	27.3	61.5	25.5
Wh/Caus (%)	36.3	n/r	0.2	9.7	47.6	38.2	44.5	23.2	58.3
NtvHawaii/Pacific (%)	8.2	n/r	52.7	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.3	n/r	4.1	1.9	3.4	4.6	2.0	2.1	4.2
Unknown (%)	0.2	n/r	n/r	0.7	0.1	n/r	0.6	n/r	n/r

PARCC

Table A.5.10 Demographic Information for Grade 6 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	47.2	99.5	44.8	74.9	51.8	42.3	37.2	69.8	48.5
SWD (%)	16.3	15.9	13.5	18.4	15.2	15.6	19.5	17.1	17.4
EL (%)	5.9	46.4	10.6	5.9	6.1	4.1	2.4	10.2	5.2
Male (%)	51.1	49.4	51.3	50.3	51.3	50.8	51.1	50.6	51.0
Female (%)	48.9	50.6	48.7	49.8	48.7	49.2	48.9	49.4	49.0
AmInd/ANat (%)	1.2	99.5	0.7	n/r	0.4	0.3	0.1	9.7	0.8
Asian (%)	5.9	n/r	3.4	1.3	5.0	6.8	10.2	1.2	2.9
Black/AA (%)	16.4	n/r	4.6	70.9	16.3	33.6	14.7	1.9	8.3
Hisp/Lat (%)	28.1	n/r	35.3	15.5	26.5	15.9	26.8	61.9	24.4
Wh/Caus (%)	37.2	n/r	0.3	9.8	48.3	39.0	45.7	23.5	59.3
NtvHawaii/Pacific (%)	7.8	n/r	51.7	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.1	n/r	4.0	1.9	3.2	4.4	1.8	1.8	4.1
Unknown (%)	0.2	n/r	n/r	n/r	0.1	n/r	0.5	n/r	n/r

PARCC

Table A.5.11 Demographic Information for Grade 7 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	45.6	99.3	43.6	75.1	50.4	40.3	35.3	69.8	46.6
SWD (%)	16.1	14.0	13.0	20.4	15.1	15.8	19.3	16.6	17.3
EL (%)	5.7	39.4	10.7	6.2	5.5	4.1	2.4	11.4	4.9
Male (%)	51.2	50.3	51.5	49.4	51.2	51.0	51.3	50.9	51.7
Female (%)	48.8	49.7	48.5	50.6	48.8	49.0	48.7	49.1	48.3
AmInd/ANat (%)	1.2	99.5	0.8	n/r	0.3	0.2	0.1	10.5	0.8
Asian (%)	6.0	n/r	3.4	1.4	5.0	6.6	10.3	1.2	3.2
Black/AA (%)	16.3	n/r	4.5	70.9	16.1	33.8	14.7	2.0	8.3
Hisp/Lat (%)	27.4	n/r	35.1	15.8	26.1	14.9	25.7	61.9	24.0
Wh/Caus (%)	38.3	n/r	0.2	9.7	49.1	40.0	47.0	22.9	59.7
NtvHawaii/Pacific (%)	7.6	n/r	52.2	n/r	0.1	0.1	0.2	n/r	0.2
Two or More (%)	3.0	n/r	3.7	1.6	3.2	4.4	1.6	1.7	3.7
Unknown (%)	0.2	n/r	n/r	n/r	0.1	n/r	0.4	n/r	n/r

PARCC

Table A.5.12 Demographic Information for Grade 8 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	44.9	99.7	43.1	75.0	50.0	39.1	34.3	69.2	45.6
SWD (%)	15.9	15.8	13.1	19.5	14.9	15.5	19.1	15.6	17.8
EL (%)	5.7	41.4	11.0	6.0	5.2	4.3	2.6	11.0	5.6
Male (%)	51.2	49.6	51.5	50.3	51.5	51.0	51.1	50.4	51.3
Female (%)	48.8	50.4	48.5	49.7	48.5	49.0	48.9	49.6	48.7
AmInd/ANat (%)	1.1	99.6	0.7	n/r	0.3	0.2	0.1	10.0	0.6
Asian (%)	6.0	n/r	3.4	1.9	4.9	6.7	10.3	1.2	2.7
Black/AA (%)	16.5	n/r	4.6	71.5	16.2	33.4	15.1	1.9	8.3
Hisp/Lat (%)	27.2	n/r	35.7	15.6	26.0	15.0	24.9	62.3	23.9
Wh/Caus (%)	38.8	n/r	0.3	9.0	49.3	40.1	47.8	22.8	61.0
NtvHawaii/Pacific (%)	7.4	n/r	51.7	n/r	0.1	0.1	0.2	n/r	n/r
Two or More (%)	2.8	n/r	3.6	1.5	3.0	4.5	1.3	1.7	3.3
Unknown (%)	0.1	n/r	n/r	n/r	0.1	n/r	0.4	n/r	n/r

2017 Technical Report

Table A.5.13 Demographic Information for Grade 9 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	41.6	98.3	42.2	79.4	n/r	47.5	34.3	62.3	46.0
SWD (%)	16.0	16.6	12.6	17.9	n/r	13.7	17.9	14.7	17.1
EL (%)	8.3	33.7	12.2	8.4	n/r	3.0	5.6	12.0	6.1
Male (%)	51.7	51.4	52.7	50.4	n/r	54.2	51.2	51.1	52.1
Female (%)	48.3	48.6	47.3	49.6	n/r	45.8	48.8	48.9	47.9
AmInd/ANat (%)	1.8	100	8.0	n/r	n/r	n/r	0.1	11.1	0.7
Asian (%)	6.5	n/r	3.5	1.5	n/r	2.0	9.9	1.2	3.1
Black/AA (%)	11.2	n/r	5.1	69.9	n/r	16.0	14.7	2.0	8.4
Hisp/Lat (%)	33.1	n/r	36.4	17.1	n/r	8.6	26.6	61.2	24.3
Wh/Caus (%)	31.6	n/r	0.2	8.9	n/r	66.3	46.8	22.9	60.0
NtvHawaii/Pacific (%)	13.5	n/r	50.4	n/r	n/r	n/r	0.2	n/r	n/r
Two or More (%)	2.0	n/r	3.5	1.3	n/r	6.7	1.2	1.6	3.1
Unknown (%)	0.3	n/r	n/r	0.8	n/r	n/r	0.5	n/r	0.2

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported due to n<20; n/a = not applicable.

PARCC

Table A.5.14 Demographic Information for Grade 10 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	39.0	98.0	n/r	77.6	n/r	35.4	34.2	58.4	n/r
SWD (%)	16.6	14.3	n/r	19.6	n/r	15.0	18.2	13.4	n/r
EL (%)	5.5	26.5	n/r	8.7	n/r	4.8	4.7	9.6	n/r
Male (%)	51.2	46.9	n/r	50.1	n/r	50.6	51.7	50.7	n/r
Female (%)	48.8	53.1	n/r	49.9	n/r	49.4	48.3	49.3	n/r
AmInd/ANat (%)	1.6	98.5	n/r	n/r	n/r	0.2	0.1	10.1	n/r
Asian (%)	7.6	n/r	n/r	1.3	n/r	7.1	9.9	1.4	n/r
Black/AA (%)	21.5	n/r	n/r	71.3	n/r	35.2	15.3	1.9	n/r
Hisp/Lat (%)	26.8	n/r	n/r	16.4	n/r	14.3	26.6	60.9	n/r
Wh/Caus (%)	40.0	n/r	n/r	6.4	n/r	39.1	46.4	24.1	n/r
NtvHawaii/Pacific (%)	0.1	n/r	n/r	n/r	n/r	0.1	0.2	n/r	n/r
Two or More (%)	2.1	n/r	n/r	2.5	n/r	3.9	1.0	1.6	n/r
Unknown (%)	0.3	n/r	n/r	2.0	n/r	n/r	0.4	n/r	n/r

Table A.5.15 Demographic Information for Grade 11 ELA/L, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MA	MD	NJ	NM	RI
Econ Dis (%)	42.0	98.1	n/r	77.8	n/r	43.4	36.4	57.5	n/r	42.0
SWD (%)	17.7	12.4	n/r	38.1	n/r	17.0	19.6	12.5	n/r	17.7
EL (%)	4.9	20.3	n/r	n/r	n/r	1.7	4.7	7.7	n/r	4.9
Male (%)	52.4	52.0	n/r	60.3	n/r	53.3	52.8	50.5	n/r	52.4
Female (%)	47.6	48.0	n/r	39.7	n/r	46.7	47.2	49.5	n/r	47.6
AmInd/ANat (%)	2.8	99.0	n/r	n/r	n/r	0.3	0.1	10.5	n/r	2.8
Asian (%)	6.1	n/r	n/r	n/r	n/r	1.8	8.5	1.3	n/r	6.1
Black/AA (%)	19.9	n/r	n/r	n/r	n/r	58.5	16.5	2.3	n/r	19.9
Hisp/Lat (%)	32.0	n/r	n/r	65.1	n/r	10.2	28.6	60.1	n/r	32.0
Wh/Caus (%)	37.4	n/r	n/r	n/r	n/r	26.4	44.4	24.1	n/r	37.4
NtvHawaii/Pacific (%)										
	0.2	n/r	n/r	n/r	n/r	0.1	0.2	n/r	n/r	0.2
Two or More (%)	1.4	n/r	n/r	n/r	n/r	2.6	1.1	1.6	n/r	1.4
Unknown (%)	0.4	n/r	n/r	n/r	n/r	n/r	0.6	n/r	n/r	0.4

Table A.5.16 Demographic Information for Grade 3 Mathematics, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	50.1	99.1	46.2	79.3	54.7	45.2	40.3	74.3	51.9
SWD (%)	14.6	12.2	12.4	15.3	14.1	13.2	17.4	15.6	15.6
EL (%)	15.7	33.4	17.4	11.3	21.4	12.1	7.6	20.7	12.9
Male (%)	51.0	48.2	51.3	50.4	50.8	51.3	50.9	51.1	50.4
Female (%)	49.0	51.8	48.7	49.6	49.2	48.7	49.1	48.9	49.6
AmInd/ANat (%)	1.4	99.5	0.6	n/r	0.7	0.4	0.1	9.8	0.7
Asian (%)	5.9	n/r	3.0	1.5	5.0	6.5	10.6	1.0	3.6
Black/AA (%)	17.2	n/r	4.6	67.3	17.6	33.8	15.2	2.0	8.5
Hisp/Lat (%)	28.9	n/r	35.1	17.6	26.5	17.7	28.7	62.5	27.2
Wh/Caus (%)	34.8	n/r	0.3	10.4	46.3	36.6	42.2	22.6	55.0
NtvHawaii/Pacific (%)	8.1	n/r	51.9	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.5	n/r	4.5	2.0	3.6	4.9	2.3	2.1	4.7
Unknown (%)	0.2	n/r	n/r	0.9	0.2	n/r	0.6	n/r	0.2

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported.

Table A.5.17 Demographic Information for Grade 4 Mathematics, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	49.4	98.8	45.9	78.8	53.9	44.1	39.8	74.1	51.9
SWD (%)	15.6	14.2	13.0	17.2	15.1	14.3	18.8	16.2	15.6
EL (%)	10.3	39.1	14.5	9.6	11.8	7.8	5.2	16.6	9.0
Male (%)	51.0	50.9	51.3	50.5	50.8	51.2	50.9	51.2	51.1
Female (%)	49.0	49.1	48.7	49.5	49.2	48.8	49.1	48.8	48.9
AmInd/ANat (%)	1.3	99.0	0.7	n/r	0.6	0.3	0.1	10.0	0.6
Asian (%)	5.8	n/r	3.0	1.4	4.9	6.4	10.3	1.1	3.2
Black/AA (%)	16.8	n/r	4.6	67.6	17.0	33.3	15.1	1.8	8.8
Hisp/Lat (%)	29.1	n/r	35.3	17.3	26.9	17.7	28.8	62.7	26.1
Wh/Caus (%)	35.3	n/r	0.3	10.7	46.7	37.5	42.7	22.6	56.3
NtvHawaii/Pacific (%)	8.0	n/r	51.7	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.4	n/r	4.4	1.8	3.5	4.6	2.1	2.0	4.7
Unknown (%)	0.3	n/r	n/r	0.9	0.3	n/r	0.6	n/r	n/r

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported; n/a = not applicable.

Table A.5.18 Demographic Information for Grade 5 Mathematics, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	48.3	99.6	45.1	78.0	53.1	43.0	38.6	72.9	49.3
SWD (%)	16.2	15.3	13.7	18.0	15.3	15.3	19.2	16.8	16.2
EL (%)	7.6	49.2	12.8	8.4	7.5	5.5	3.8	13.4	6.7
Male (%)	51.0	47.0	51.2	50.6	50.8	51.3	50.9	50.7	51.7
Female (%)	49.0	53.0	48.8	49.4	49.2	48.7	49.1	49.3	48.3
AmInd/ANat (%)	1.3	99.8	0.7	n/r	0.6	0.3	0.1	10.1	0.6
Asian (%)	5.9	n/r	3.1	1.5	4.9	6.5	10.3	1.1	3.3
Black/AA (%)	16.5	n/r	4.6	67.9	16.6	33.3	14.9	1.8	8.0
Hisp/Lat (%)	28.5	n/r	34.6	18.1	26.7	17.1	27.6	61.9	25.8
Wh/Caus (%)	36.2	n/r	0.2	9.7	47.6	38.0	44.2	23.0	57.8
NtvHawaii/Pacific (%)	8.1	n/r	52.7	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.3	n/r	4.1	1.9	3.4	4.6	2.0	2.1	4.1
Unknown (%)	0.2	n/r	n/r	0.8	0.1	n/r	0.7	n/r	n/r

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported.

2017 Technical Report

Table A.5.19 Demographic Information for Grade 6 Mathematics, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	47.3	99.4	44.8	74.9	51.8	42.7	37.5	70.1	48.7
SWD (%)	16.2	16.1	13.5	18.0	15.1	15.5	19.4	16.8	17.2
EL (%)	6.5	46.5	10.8	7.1	6.4	5.0	3.5	11.1	6.3
Male (%)	51.1	49.6	51.3	50.3	51.3	50.8	51.1	50.6	50.9
Female (%)	48.9	50.4	48.7	49.7	48.7	49.2	48.9	49.4	49.1
AmInd/ANat (%)	1.2	99.4	0.7	n/r	0.4	0.3	0.1	9.6	0.8
Asian (%)	6.0	n/r	3.4	1.3	5.0	6.7	10.2	1.2	2.9
Black/AA (%)	16.4	n/r	4.6	70.1	16.3	33.4	14.7	1.9	8.4
Hisp/Lat (%)	28.3	n/r	35.3	16.3	26.6	16.4	27.2	62.2	24.7
Wh/Caus (%)	37.1	n/r	0.3	9.9	48.2	38.7	45.3	23.2	58.8
NtvHawaii/Pacific (%)	7.8	n/r	51.7	n/r	0.1	0.2	0.2	n/r	n/r
Two or More (%)	3.1	n/r	4.0	1.9	3.2	4.3	1.8	1.8	4.1
Unknown (%)	0.2	n/r	n/r	n/r	0.1	n/r	0.5	n/r	n/r

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported.

2017 Technical Report

Table A.5.20 Demographic Information for Grade 7 Mathematics, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	46.9	99.3	45.2	76.9	50.6	43.5	36.6	70.4	46.9
SWD (%)	16.5	14.0	13.4	20.5	15.1	16.9	19.8	16.5	17.2
EL (%)	6.5	39.5	11.4	7.2	5.8	5.4	3.7	12.6	6.0
Male (%)	51.1	50.3	51.2	49.5	51.2	50.8	51.2	50.8	51.6
Female (%)	48.9	49.7	48.8	50.5	48.8	49.2	48.8	49.2	48.4
AmInd/ANat (%)	1.2	99.5	0.8	n/r	0.3	0.2	0.1	10.4	0.9
Asian (%)	5.4	n/r	3.1	1.3	5.0	4.7	9.1	1.1	3.2
Black/AA (%)	16.5	n/r	4.7	72.0	16.0	35.7	15.0	2.0	8.4
Hisp/Lat (%)	28.4	n/r	36.3	16.7	26.2	16.5	26.8	62.5	24.4
Wh/Caus (%)	38.1	n/r	0.2	8.0	49.0	38.5	46.8	22.4	59.1
NtvHawaii/Pacific (%)	7.4	n/r	51.1	n/r	0.1	0.1	0.2	n/r	0.2
Two or More (%)	2.9	n/r	3.7	1.5	3.2	4.2	1.5	1.7	3.7
Unknown (%)	0.2	n/r	n/r	n/r	0.1	n/r	0.5	n/r	n/r

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported.

Table A.5.21 Demographic Information for Grade 8 Mathematics, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	50.6	99.7	50.3	81.3	50.3	49.4	42.3	74.3	53.2
SWD (%)	18.6	16.1	15.9	21.7	15.1	21.1	25.9	18.7	23.1
EL (%)	7.6	41.4	14.2	7.0	5.6	7.3	5.1	14.3	8.8
Male (%)	51.9	50.0	51.7	50.7	51.5	52.9	52.7	51.1	53.0
Female (%)	48.1	50.0	48.3	49.3	48.5	47.1	47.3	48.9	47.0
AmInd/ANat (%)	1.3	99.6	0.8	n/r	0.3	0.3	0.1	10.7	0.7
Asian (%)	4.0	n/r	2.8	1.6	4.8	3.1	5.1	0.8	2.2
Black/AA (%)	17.8	n/r	5.3	76.7	16.2	40.7	18.8	2.0	9.0
Hisp/Lat (%)	30.1	n/r	41.3	15.0	26.0	17.2	30.0	65.2	27.9
Wh/Caus (%)	37.5	n/r	0.3	5.1	49.4	34.7	44.0	19.5	56.5
NtvHawaii/Pacific (%)	6.4	n/r	46.1	n/r	0.1	0.1	0.2	n/r	n/r
Two or More (%)	2.7	n/r	3.4	1.1	3.0	3.9	1.2	1.7	3.3
Unknown (%)	0.2	n/r	n/r	n/r	0.1	n/r	0.6	n/r	0.3

Note: PARCC = data from all participating states combined. Econ Dis = Economically Disadvantaged; SWD = Student with Disabilities; EL = English learner; AmInd/ANat = American Indian/Alaska Native; Black/AA = Black/African American; Hisp/Lat = Hispanic/Latino; Wh/Caus = White/Caucasian; NtvHawaii/Pacific = Native Hawaiian or Other Pacific Islander; Two or More = two or more races reported; n/r = not reported; n/a = not applicable.

PARCC

Table A.5.22 Demographic Information for Algebra I, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	40.7	98.9	39.3	84.0	42.1	38.5	35.1	63.6	46.6
SWD (%)	15.6	17.1	12.4	17.9	4.3	14.7	17.9	15.1	14.1
EL (%)	7.8	25.7	10.1	13.8	1.4	7.6	5.7	13.0	9.0
Male (%)	51.5	51.4	52.7	51.6	49.3	51.1	51.3	51.5	51.5
Female (%)	48.5	48.6	47.3	48.4	50.7	48.9	48.7	48.5	48.5
AmInd/ANat (%)	1.4	100	0.7	n/r	n/r	0.3	0.1	10.8	0.8
Asian (%)	6.9	n/r	3.4	1.4	10.5	7.0	9.9	1.3	3.0
Black/AA (%)	17.3	n/r	4.3	67.9	16.8	33.8	15.2	2.1	9.1
Hisp/Lat (%)	28.7	n/r	33.3	22.0	24.6	16.9	27.0	61.5	26.4
Wh/Caus (%)	34.3	n/r	0.2	5.4	44.2	37.8	45.9	22.7	56.9
NtvHawaii/Pacific (%)	8.6	n/r	54.3	n/r	n/r	0.1	0.2	n/r	n/r
Two or More (%)	2.5	n/r	3.7	2.1	3.1	4.1	1.3	1.6	3.3
Unknown (%)	0.2	n/r	n/r	1.0	0.5	n/r	0.4	n/r	0.3

PARCC

Table A.5.23 Demographic Information for Geometry, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	36.6	98.0	17.9	76.5	n/r	24.3	33.1	58.9	24.9
SWD (%)	15.1	12.1	4.3	19.2	n/r	9.4	17.8	13.0	5.2
EL (%)	5.1	18.6	1.8	8.9	n/r	3.5	4.3	10.2	3.0
Male (%)	51.0	45.2	51.1	50.7	55.7	53.1	51.0	50.5	47.4
Female (%)	49.0	54.8	48.9	49.3	44.3	46.9	49.0	49.5	52.6
AmInd/ANat (%)	2.0	98.5	0.4	n/r	n/r	0.2	0.1	10.7	n/r
Asian (%)	8.0	n/r	5.7	1.2	23.2	13.2	9.8	1.4	3.9
Black/AA (%)	13.5	n/r	2.1	69.2	n/r	19.6	14.7	1.8	5.7
Hisp/Lat (%)	29.3	n/r	17.6	17.1	n/r	10.5	26.2	61.1	13.8
Wh/Caus (%)	39.5	n/r	0.2	7.7	67.0	50.9	47.5	23.4	73.7
NtvHawaii/Pacific (%)	5.6	n/r	69.8	n/r	n/r	n/r	0.2	n/r	n/r
Two or More (%)	1.8	n/r	4.1	2.7	5.1	5.5	1.1	1.7	2.3
Unknown (%)	0.3	n/r	n/r	1.8	n/r	n/r	0.4	n/r	n/r

PARCC

Table A.5.24 Demographic Information for Algebra II, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	35.5	97.3	9.4	30.6	n/r	30.2	32.8	54.5	19.1
SWD (%)	12.6	10.9	3.5	11.3	n/r	9.7	14.6	10.1	8.9
EL (%)	3.7	11.5	n/r	n/r	n/r	1.4	3.7	7.0	n/r
Male (%)	50.1	52.0	56.5	47.1	54.4	48.4	50.6	49.5	47.1
Female (%)	49.9	48.0	43.5	52.9	45.6	51.6	49.4	50.5	52.9
AmInd/ANat (%)	2.1	99.5	n/r	n/r	n/r	0.3	0.1	10.2	n/r
Asian (%)	8.6	n/r	9.9	n/r	17.5	6.2	11.4	1.5	n/r
Black/AA (%)	17.4	n/r	1.2	27.8	n/r	37.9	15.0	2.1	n/r
Hisp/Lat (%)	27.3	n/r	10.6	19.9	n/r	9.4	26.0	58.7	n/r
Wh/Caus (%)	40.9	n/r	n/r	42.6	64.9	42.2	45.7	25.9	78.7
NtvHawaii/Pacific (%)	1.5	n/r	73.8	n/r	n/r	0.1	0.2	n/r	n/r
Two or More (%)	1.8	n/r	4.2	n/r	n/r	3.8	1.1	1.7	n/r
Unknown (%)	0.3	n/r	n/r	n/r	n/r	n/r	0.6	n/r	n/r

Table A.5.25 Demographic Information for Integrated Mathematics I, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	52.8	95.2	51.7	n/r	n/r	n/r	n/r	63.6	n/r
SWD (%)	12.4	n/r	12.0	n/r	n/r	n/r	n/r	15.7	n/r
EL (%)	20.0	n/r	20.1	n/r	n/r	n/r	n/r	18.2	n/r
Male (%)	53.5	n/r	53.1	n/r	n/r	n/r	n/r	57.0	n/r
Female (%)	46.5	n/r	46.9	n/r	n/r	n/r	n/r	43.0	n/r
AmInd/ANat (%)	1.4	100	0.9	n/r	n/r	n/r	n/r	3.3	n/r
Asian (%)	3.9	n/r	4.3	n/r	n/r	n/r	n/r	n/r	n/r
Black/AA (%)	7.4	n/r	7.7	n/r	n/r	n/r	n/r	4.7	n/r
Hisp/Lat (%)	48.1	n/r	46.0	n/r	n/r	n/r	n/r	69.2	n/r
Wh/Caus (%)	2.6	n/r	0.3	n/r	n/r	n/r	n/r	22.4	n/r
NtvHawaii/Pacific (%)	34.1	n/r	37.9	n/r	n/r	n/r	n/r	n/r	n/r
Two or More (%)	2.5	n/r	2.8	n/r	n/r	n/r	n/r	n/r	n/r
Unknown (%)	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r

Table A.5.26 Demographic Information for Integrated Mathematics II, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	46.3	99.5	33.6	41.7	n/r	n/r	n/r	84.1	n/r
SWD (%)	6.6	13.6	3.0	n/r	n/r	n/r	n/r	18.0	n/r
EL (%)	7.7	42.4	3.1	n/r	n/r	n/r	n/r	12.8	n/r
Male (%)	50.9	51.5	50.4	49.6	n/r	n/r	n/r	50.9	n/r
Female (%)	49.1	48.5	49.6	50.4	n/r	n/r	n/r	49.1	n/r
AmInd/ANat (%)	9.3	99.0	n/r	n/r	n/r	n/r	n/r	n/r	n/r
Asian (%)	4.9	n/r	6.2	n/r	n/r	n/r	n/r	n/r	n/r
Black/AA (%)	8.5	n/r	7.3	58.3	n/r	n/r	n/r	n/r	n/r
Hisp/Lat (%)	28.7	n/r	25.7	n/r	n/r	n/r	n/r	75.8	n/r
Wh/Caus (%)	4.8	n/r	n/r	22.6	n/r	n/r	n/r	20.4	n/r
NtvHawaii/Pacific (%)	40.5	n/r	55.8	n/r	n/r	n/r	n/r	n/r	n/r
Two or More (%)	3.2	n/r	4.2	n/r	n/r	n/r	n/r	n/r	n/r
Unknown (%)	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r

Table A.5.27 Demographic Information for Integrated Mathematics III, Overall and by State

Demographic	PARCC	BIE	СО	DC	IL	MD	NJ	NM	RI
Econ Dis (%)	66.4	n/r	n/r	n/r	n/r	n/r	n/r	96.5	n/r
SWD (%)	8.8	n/r	n/r	n/r	n/r	n/r	n/r	12.1	n/r
EL (%)	6.9	n/r	n/r	n/r	n/r	n/r	n/r	10.0	n/r
Male (%)	51.8	n/r	54.2	n/r	n/r	n/r	n/r	50.1	n/r
Female (%)	48.2	n/r	45.8	n/r	n/r	n/r	n/r	49.9	n/r
AmInd/ANat (%)	19.2	n/r	N /r	n/r	n/r	n/r	n/r	28.0	n/r
Asian (%)	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r
Black/AA (%)	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r
Hisp/Lat (%)	36.8	n/r	n/r	n/r	n/r	n/r	n/r	53.1	n/r
Wh/Caus (%)	10.6	n/r	n/r	n/r	n/r	n/r	n/r	15.9	n/r
NtvHawaii/Pacific (%)	28.9	n/r	86.3	n/r	n/r	n/r	n/r	n/r	n/r
Two or More (%)	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r
Unknown (%)	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r	n/r

Appendix 7: Summary of Differential Item Function (DIF) Results

Table A.7.1 Differential Item Functioning for ELA/L Grade 3

-		Total N		Total N of	C-	DIF	B-	DIF	Α	DIF	В+	DIF	C+	DIF
DIF Comparisons	Mode	of Unique	Total N of Item	Item Occurrences s Included in O DIF Analysis	N of Occurrence	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	90	105	105			1	1	102	97	2	2	•	•
	PBT	29	35	35		<u>.</u>		•	35	100			•	•
White vs AmerIndian	СВТ	90	105	105			1	1	104	99				
	PBT	29	35	35			2	6	33	94				
White vs Asian	СВТ	90	105	105					104	99	1	1		
	PBT	29	35	35					34	97	1	3		
White vs Black	СВТ	90	105	105		•	1	1	104	99		,		
	PBT	29	35	35			1	3	34	97				
White vs Hispanic	СВТ	90	105	105		•	,		105	100		,	,	
	PBT	29	35	35		•	3	9	32	91		,	,	
White vs Pacific Islander	СВТ	90	105	105		•	2	2	103	98			•	
	PBT	29	35	35		•	•	•	33	94	•	•	•	•
White vs Multiracial	СВТ	90	105	105			•	_	105	100			-	•
	PBT	29	35	35		·	<u>, </u>	•	35	100		<u>, </u>		•
NoEcnDis vs EcnDis	СВТ	90	105	105					105	100				
•	PBT	29	35	35					35	100				
ELN vs ELY	СВТ	90	105	105			2	2	103	98				
	PBT	29	35	35					35	100				
SWDN vs SWDY	СВТ	90	105	105					105	100				
-	PBT	29	35	35		•	1	3	34	97			•	•

Note: AmerIndian = American Indian/Alaska Native, Black = Black/African American, Hispanic = Hispanic/Latino, Pacific Islander = Native Hawaiian or Pacific Islander, Multiracial = Multiple Race Selected, NoEcnDis = not economically disadvantaged, EcnDis = economically disadvantaged, ELN = not an English learner, ELY = English learner, SWDN = not student with disability, SWDY = student with disability.

Table A.7.2 Differential Item Functioning for ELA/L Grade 4

		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of	Item Occurrences Included in DIF Analysis	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	94	111	111			2	2	103	93	6	5		
	PBT	31	35	35				•	34	97	1	3		
White vs AmerIndian	СВТ	94	111	111	1	1		•	110	99		,		•
	PBT	31	35	35	1	3	1	3	33	94		,		•
White vs Asian	СВТ	94	111	111	1	1		•	110	99		,		•
	PBT	31	35	35		*	1	3	34	97		,		•
White vs Black	СВТ	94	111	111					111	100				
	PBT	31	35	35	1	3	1	3	33	94				
White vs Hispanic	СВТ	94	111	111			1	1	110	99				
-	PBT	31	35	35	1	3		•	34	97				
White vs Pacific Islander	СВТ	94	111	111			3	3	107	96	1	1		•
·	PBT	31	35	35					35	100		·		
White vs Multiracial	СВТ	94	111	111					111	100				
	PBT	31	35	35					35	100				
NoEcnDis vs EcnDis	СВТ	94	111	111				•	111	100				•
	PBT	31	35	35		•	1	3	34	97		·		•
ELN vs ELY	СВТ	94	111	111		•	•	•	111	100				•
	PBT	31	35	35		•	4	11	31	89				•
SWDN vs SWDY	СВТ	94	111	111					111	100				
	PBT	31	35	35					35	100				

Table A.7.3 Differential Item Functioning for ELA/L Grade 5

		Total N		Total N of	C-	DIF	B-	DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of Unique	Total N of Item	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF
Male vs Female	СВТ	93	109	109	1	1	3	3	98	90	7	6		
	PBT	32	32	32				•	30	94	2	6		•
White vs AmerIndian	СВТ	93	109	109	•		2	2	107	98		•	-	*
•	PBT	32	32	32	5	16	3	9	24	75		•		•
White vs Asian	СВТ	93	109	109		•	1	1	108	99				
	PBT	32	32	32		•		•	32	100				
White vs Black	СВТ	93	109	109			1	1	108	99				
	PBT	32	32	32					32	100				
White vs Hispanic	СВТ	93	109	109			2	2	107	98				
	PBT	32	32	32		,	1	3	31	97		•		
White vs Pacific Islander	СВТ	93	109	109	1	1	5	5	100	92	3	3		
	PBT	32	32	32					32	100				
White vs Multiracial	СВТ	93	109	109					109	100				
	PBT	32	32	32					32	100				
NoEcnDis vs EcnDis	СВТ	93	109	109				•	109	100				
	PBT	32	32	32				•	32	100		•		•
ELN vs ELY	СВТ	93	109	109	2	2	3	3	104	95			-	*
-	PBT	32	32	32	1	3	1	3	30	94		•		•
SWDN vs SWDY	СВТ	93	109	109					109	100				
	PBT	32	32	32					32	100				

Table A.7.4 Differential Item Functioning for ELA/L Grade 6

-		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of Item Occurrences	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF
Male vs Female	СВТ	113	129	129	1	1	8	6	111	86	9	7		
	PBT	38	42	42	1	2	5	12	34	81			2	5
White vs AmerIndian	СВТ	113	129	129		•	7	5	117	91	5	4	-	*
	PBT	38	42	42	3	7	4	10	35	83		•	-	*
White vs Asian	СВТ	113	129	129	•	•	1	1	128	99		•	•	•
	PBT	38	42	42	•		1	2	36	86	5	12		•
White vs Black	СВТ	113	129	129					129	100				
	PBT	38	42	42			1	2	41	98				
White vs Hispanic	СВТ	113	129	129			1	1	128	99				
	PBT	38	42	42	1	2	1	2	40	95			-	
White vs Pacific Islander	СВТ	113	129	86			5	6	76	88	5	6		
	PBT	38	42	42					42	100				
White vs Multiracial	СВТ	113	129	129					129	100				
	PBT	38	42	42					42	100				
NoEcnDis vs EcnDis	СВТ	113	129	129					129	100		•		•
	PBT	38	42	42					42	100				
ELN vs ELY	СВТ	113	129	129		•	2	2	127	98			-	
	PBT	38	42	42		•	4	10	38	90			-	
SWDN vs SWDY	СВТ	113	129	129					129	100				
	PBT	38	42	42	2	5			40	95				

Table A.7.5 Differential Item Functioning for ELA/L Grade 7

-		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of Item Occurrences	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	105	129	129	1	1	11	9	105	81	12	9		
	PBT	36	44	44			3	7	40	91	1	2	•	
White vs AmerIndian	СВТ	105	129	129	•	*	3	2	126	98		*	•	
	PBT	36	44	44	2	5	3	7	37	84	2	5		
White vs Asian	СВТ	105	129	129	•		2	2	127	98				
	PBT	36	44	44	•		1	2	40	91	3	7		
White vs Black	СВТ	105	129	129			1	1	128	99				
	PBT	36	44	44			2	5	42	95				
White vs Hispanic	СВТ	105	129	129			2	2	127	98				
	PBT	36	44	44	1	2	1	2	42	95			-	
White vs Pacific Islander	СВТ	105	129	43		•	1	2	38	88	4	9		•
	PBT	36	44	44			2	5	42	95				
White vs Multiracial	СВТ	105	129	129					129	100				
	PBT	36	44	44					44	100				
NoEcnDis vs EcnDis	СВТ	105	129	129					129	100				
	PBT	36	44	44				•	44	100				
ELN vs ELY	СВТ	105	129	129	3	2	3	2	118	91	5	4	-	•
	PBT	36	44	44	1	2	1	2	41	93	1	2	-	•
SWDN vs SWDY	СВТ	105	129	129					129	100				
	PBT	36	44	44					44	100				

Table A.7.6 Differential Item Functioning for ELA/L Grade 8

Total N of Item of % of Total % o			Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
PBT 36 50 50 2 4 8 16 40 80	DIF Comparisons	Mode	of	Total N of	Occurrences Included in	N of Occurrences			Occurrences		Occurrences		Occurrences		Occurrences
White vs Amerindian	Male vs Female	СВТ	112	129	129			11	9	115	89	3	2		
PBT 36 50 50 6 12 3 6 41 82		PBT	36	50	50	2	4	8	16	40	80		,	•	,
White vs Asian CBT 112 129 129 100 PBT 36 50 50 45 90 5 10 White vs Black CBT 112 129 129 1 1 128 99 White vs Hispanic CBT 112 129 129 1 1 128 99 White vs Hispanic CBT 112 129 129 1 1 128 99 White vs Pacific Islander CBT 112 129 43 1 2 4 48 96 White vs Multiracial CBT 112 129 43 1 2 41 95 1 2 PBT 36 50 50 50 100 White vs Multiracial CBT 112 129 129 129 100 NoEcnDis vs EcnDis CBT 112 129 129 3 2 4 3 122 95 ELN vs ELY CBT 112 129 129 12 4	White vs AmerIndian	СВТ	112	129	129	1	1	9	7	117	91	2	2	•	
PBT 36 50 50 10 128 99		PBT	36	50	50	6	12	3	6	41	82			•	
White vs Black CBT 112 129 129 1 1 128 99 White vs Hispanic CBT 112 129 129 1 1 128 99 White vs Hispanic CBT 112 129 129 1 1 128 99 White vs Pacific Islander CBT 112 129 43 1 2 41 95 1 2 PBT 36 50 50 50 100 100 100 White vs Multiracial CBT 112 129 129 129 100 PBT 36 50 50 50 100 NoEcnDis vs EcnDis CBT 112 129 129 129 100 PBT 36 50 50 50 100 100 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95	White vs Asian	СВТ	112	129	129			*	*	129	100			•	
PBT 36 50 50 1 2 49 98 White vs Hispanic CBT 112 129 129 1 1 128 99 White vs Pacific Islander CBT 112 129 43 1 2 41 95 1 2 White vs Multiracial CBT 112 129 129 100 100 White vs Multiracial CBT 112 129 129 100 100 NoEcnDis vs EcnDis CBT 112 129 129 129 100 PBT 36 50 50 50 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 100 120		PBT	36	50	50				•	45	90	5	10	•	
White vs Hispanic CBT 112 129 129 1 1 128 99 PBT 36 50 50 2 4 48 96 White vs Pacific Islander CBT 112 129 43 1 2 41 95 1 2 PBT 36 50 50 50 100 100 100 White vs Multiracial CBT 112 129 129 100 100 NoEcnDis vs EcnDis CBT 112 129 129 129 100 PBT 36 50 50 50 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 100	White vs Black	СВТ	112	129	129			1	1	128	99				
PBT 36 50 50 2 4 48 96 White vs Pacific Islander CBT 112 129 43 1 2 41 95 1 2 PBT 36 50 50 50 100 White vs Multiracial CBT 112 129 129 100 PBT 36 50 50 50 100 NoEcnDis vs EcnDis CBT 112 129 129 129 100 PBT 36 50 50 50 100 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 100 129 100		PBT	36	50	50			1	2	49	98				
White vs Pacific Islander CBT 112 129 43 1 2 41 95 1 2 PBT 36 50 50 100 White vs Multiracial CBT 112 129 129 100 PBT 36 50 50 100 NoEcnDis vs EcnDis CBT 112 129 129 PBT 36 50 50 50 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 100 129 100	White vs Hispanic	СВТ	112	129	129			1	1	128	99				
Signature CB1 112 129 43 1	-	PBT	36	50	50		•	2	4	48	96		•	•	,
White vs Multiracial CBT 112 129 129 100 PBT 36 50 50 50 100 NoEcnDis vs EcnDis CBT 112 129 129 100 PBT 36 50 50 50 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 129 100		СВТ	112	129	43			1	2	41	95	1	2	•	•
PBT 36 50 50 50 100 NoEcnDis vs EcnDis CBT 112 129 129 129 100 PBT 36 50 50 50 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 50 1 2 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129		PBT	36	50	50					50	100				
NoEcnDis vs EcnDis CBT 112 129 129 100 PBT 36 50 50 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 100 129 100	White vs Multiracial	СВТ	112	129	129					129	100				
PBT 36 50 50 50 100 ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 50 1 2 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 129 129 129 129 129 100		PBT	36	50	50					50	100				
ELN vs ELY CBT 112 129 129 3 2 4 3 122 95 PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 100	NoEcnDis vs EcnDis	СВТ	112	129	129				•	129	100			•	
PBT 36 50 50 1 2 2 4 46 92 1 2 SWDN vs SWDY CBT 112 129 129 129 100		PBT	36	50	50			*	*	50	100			•	
SWDN vs SWDY	ELN vs ELY	СВТ	112	129	129	3	2	4	3	122	95		•		
	-	PBT	36	50	50	1	2	2	4	46	92	1	2	•	•
PBT 36 50 50 50 50 100	SWDN vs SWDY	СВТ	112	129	129					129	100				
		PBT	36	50	50					50	100				

Table A.7.7 Differential Item Functioning for ELA/L Grade 9

-		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	102	129	129	4	3	9	7	111	86	5	4		
	PBT	36	53	53			4	8	48	91	1	2	•	•
White vs AmerIndian	СВТ	102	129	129	1	1	4	3	124	96		*	•	*
-	PBT	36	53	53	3	6	2	4	48	91		•		•
White vs Asian	СВТ	102	129	129	1	1		•	128	99			-	
	PBT	36	53	53				•	53	100			-	
White vs Black	СВТ	102	129	129			4	3	125	97				
	PBT	36	53	53	1	2	1	2	51	96				
White vs Hispanic	СВТ	102	129	129			2	2	127	98				
	PBT	36	53	53		•	2	4	51	96				
White vs Pacific Islander	СВТ	102	129	129			4	3	125	97				
	PBT	36	53	53					53	100				
White vs Multiracial	СВТ	102	129	129					129	100				
	PBT	36	53	53			1	2	52	98				
NoEcnDis vs EcnDis	СВТ	102	129	129					129	100				
	PBT	36	53	53				•	53	100		•	•	•
ELN vs ELY	СВТ	102	129	129			1	1	128	99		*	-	
	PBT	36	53	53	2	4	4	8	47	89		*	-	
SWDN vs SWDY	СВТ	102	129	129					129	100				
	PBT	36	53	53			1	2	52	98				

Table A.7.8 Differential Item Functioning for ELA/L Grade 10

-		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of Item Occurrences	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	112	129	129			10	8	115	89	4	3		
	PBT	36	42	42	•		3	7	39	93				•
White vs AmerIndian	СВТ	112	129	129	3	2	3	2	116	90	7	5		*
	PBT	36	42	42	1	2	3	7	38	90				*
White vs Asian	СВТ	112	129	129			1	1	128	99				*
	PBT	36	42	42			2	5	40	95				*
White vs Black	СВТ	112	129	129			3	2	126	98				
	PBT	36	42	42					42	100				
White vs Hispanic	СВТ	112	129	129	1	1	1	1	127	98				
	PBT	36	42	42	•		1	2	41	98				
White vs Pacific Islander	СВТ	112	129	0	,				,	,		•	,	
	PBT	36	42	42					42	100				
White vs Multiracial	СВТ	112	129	129			1	1	128	99				
	PBT	36	42	42			2	5	40	95				
NoEcnDis vs EcnDis	СВТ	112	129	129		,			129	100				•
	PBT	36	42	42					42	100				
ELN vs ELY	СВТ	112	129	129	2	2	2	2	125	97				
	PBT	36	42	42	1	2	2	5	39	93				
SWDN vs SWDY	СВТ	112	129	129					129	100				
	PBT	36	42	42					42	100				

Table A.7.9 Differential Item Functioning for ELA/L Grade 11

		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of Item Occurrences	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	114	129	129			5	4	121	94	3	2		
	PBT	34	50	50			4	8	46	92			•	
White vs AmerIndian	СВТ	114	129	129	9	7	15	12	90	70	6	5	9	7
	PBT	34	50	50	1	2	9	18	40	80				
White vs Asian	СВТ	114	129	129				•	129	100				
	PBT	34	50	50			1	2	47	94	2	4		
White vs Black	СВТ	114	129	129			3	2	125	97	1	1		
	PBT	34	50	50					50	100				
White vs Hispanic	СВТ	114	129	129	2	2	7	5	115	89	5	4		
	PBT	34	50	50			1	2	49	98			•	
White vs Pacific Islander	СВТ	114	129	0		· · · · · · · · · · · · · · · · · · ·				•				
	PBT	34	50	50			2	4	48	96				
White vs Multiracial	СВТ	114	129	129			1	1	128	99				
	PBT	34	50	50					50	100				
NoEcnDis vs EcnDis	СВТ	114	129	129			4	3	125	97			•	
	PBT	34	50	50				•	50	100			•	
ELN vs ELY	СВТ	114	129	129	6	5	4	3	111	86	8	6	•	
	PBT	34	50	50	1	2	2	4	47	94		•		•
SWDN vs SWDY	СВТ	114	129	129					129	100				
	PBT	34	50	50			2	4	47	94	1	2		

Table A.7.10 Differential Item Functioning for Mathematics Grade 3

Note Comparisons Mode Occurrences Note Cocurrences Note Note Note Cocurrences Note Note	C+ DIF	C+	DIF	B+	DIF	A	DIF	B-	DIF	C-	Total N of		Total N		
PBT 43 63 63 63 1 2 62 98 White vs AmerIndian CBT 113 124 124 124 3 2 1 1 118 95 2 2 2 PBT 43 63 63 63 1 2 3 5 57 90 2 3 White vs Asian CBT 113 124 124 1 1 1 107 86 13 10 PBT 43 63 63 63 63 63 60 60 95 2 3 White vs Black CBT 113 124 124 5 4 5 4 5 4 105 85 9 7 PBT 43 63 63 63 3 5 58 92 2 3 White vs Hispanic CBT 113 124 124 124 4 3 119 96 1 1 PBT 43 63 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 124 124 124 123 123 99 1 1 White vs Multiracial CBT 113 124 124 124 124 124 124 124 124 124 124	% of Total Occurrences ces in DIF	N of Occurrences	Occurrences		Occurrences		Occurrences		Occurrences		Occurrences Included in	Item	of Unique	Mode	DIF Comparisons
White vs AmerIndian CBT 113 124 124 3 2 1 1 118 95 2 2 PBT 43 63 63 1 2 3 5 57 90 2 3 White vs Asian CBT 113 124 124 1 1 107 86 13 10 PBT 43 63 63 3 60 95 2 3 White vs Black CBT 113 124 124 5 4 5 4 105 85 9 7 PBT 43 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 124 1 1 1 PBT 43 63 63 3 5 9 9 1 1			1	1	97	120	2	3			124	124	113	СВТ	Male vs Female
PBT 43 63 63 1 2 3 5 57 90 2 3 White vs Asian CBT 113 124 124 1 1 107 86 13 10 PBT 43 63 63 60 95 2 3 White vs Black CBT 113 124 124 5 4 5 4 105 85 9 7 PBT 43 63 63 3 5 58 92 2 3 White vs Hispanic CBT 113 124 124 4 3 119 96 1 1 PBT 43 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 1 1 123 99 1 1 PBT 43 63					98	62	2	1			63	63	43	PBT	
White vs Asian CBT 113 124 124 1 1 107 86 13 10 PBT 43 63 63 60 95 2 3 White vs Black CBT 113 124 124 5 4 5 4 105 85 9 7 PBT 43 63 63 3 5 58 92 2 3 White vs Hispanic CBT 113 124 124 4 3 119 96 1 1 PBT 43 63 63 3 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 123 99 1 1 PBT 43 63 63 63 59 94 4 6 White vs Multiracial CBT 113 124 124 1 1 121	-		2	2	95	118	1	1	2	3	124	124	113	СВТ	White vs AmerIndian
PBT 43 63 63 63 60 95 2 3 White vs Black CBT 113 124 124 124 5 4 5 4 105 85 9 7 PBT 43 63 63 63 63 3 5 58 92 2 2 3 White vs Hispanic CBT 113 124 124 4 3 119 96 1 1 1 PBT 43 63 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 124 124 123 99 1 1 1 PBT 43 63 63 63 59 94 4 6 4 6 White vs Multiracial CBT 113 124 124 1 1 1 121 98 2 2 2 PBT 43 63 63 63 63 63 62 98 1 2 2 NoEcnDis vs EcnDis CBT 113 124 124 124 124 123 99			3	2	90	57	5	3	2	1	63	63	43	PBT	
White vs Black CBT 113 124 124 5 4 5 4 105 85 9 7 PBT 43 63 63 63 3 5 58 92 2 3 White vs Hispanic CBT 113 124 124 4 3 119 96 1 1 PBT 43 63 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 124 123 99 1 1 PBT 43 63 63 63 59 94 4 6 White vs Multiracial CBT 113 124 124 1 1 121 98 2 2 PBT 43 63 63 63 62 98 1 2 NoEcnDis vs EcnDis CBT 113 124 124 <td>2</td> <td>3</td> <td>10</td> <td>13</td> <td>86</td> <td>107</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>124</td> <td>124</td> <td>113</td> <td>СВТ</td> <td>White vs Asian</td>	2	3	10	13	86	107			1	1	124	124	113	СВТ	White vs Asian
PBT 43 63 63 3 5 58 92 2 3 White vs Hispanic CBT 113 124 124 4 3 119 96 1 1 PBT 43 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 124 123 99 1 1 PBT 43 63 63 63 59 94 4 6 White vs Multiracial CBT 113 124 124 1 1 121 98 2 2 2 NoEcnDis vs EcnDis CBT 113 124 124 124 1 1 123 99 1 2	2	1	3	2	95	60			,		63	63	43	PBT	
White vs Hispanic CBT 113 124 124 4 3 119 96 1 1 PBT 43 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 124 123 99 1 1 PBT 43 63 63 63 59 94 4 6 White vs Multiracial CBT 113 124 124 1 1 121 98 2 2 PBT 43 63 63 63 62 98 1 2 NoEcnDis vs EcnDis CBT 113 124 124 1 1 123 99			7	9	85	105	4	5	4	5	124	124	113	СВТ	White vs Black
PBT 43 63 63 3 5 58 92 2 3 White vs Pacific Islander CBT 113 124 124 124 123 99 1 1 PBT 43 63 63 59 94 4 6 White vs Multiracial CBT 113 124 124 1 1 121 98 2 2 PBT 43 63 63 62 98 1 2 NoEcnDis vs EcnDis CBT 113 124 124 124 123 99			3	2	92	58	5	3			63	63	43	PBT	
White vs Pacific Islander CBT 113 124 124 124 124 123 99 1 1 PBT 43 63 63 59 94 4 6 White vs Multiracial CBT 113 124 124 1 1 121 98 2 2 PBT 43 63 63 63 62 98 1 2 NoEcnDis vs EcnDis CBT 113 124 124 124 123 99			1	1	96	119	3	4			124	124	113	СВТ	White vs Hispanic
PBT 43 63 63 63 59 94 4 6			3	2	92	58	5	3			63	63	43	PBT	·
White vs Multiracial CBT 113 124 124 1 1 121 98 2 2 PBT 43 63 63 62 98 1 2 NoEcnDis vs EcnDis CBT 113 124 124 123 99	· · · · · · · · · · · · · · · · · · ·		1	1	99	123					124	124	113	СВТ	
PBT 43 63 63 62 98 1 2 NoEcnDis vs EcnDis CBT 113 124 124 123 99			6	4	94	59					63	63	43	PBT	
NoEcnDis vs EcnDis CBT 113 124 124 123 99			2	2	98	121	1	1			124	124	113	СВТ	White vs Multiracial
			2	1	98	62					63	63	43	PBT	
PPT 42 C2 C2 C2	1	1			99	123					124	124	113	СВТ	NoEcnDis vs EcnDis
PBI 43 63 63 61 97 1 2	2	1	2	1	97	61					63	63	43	PBT	
ELN vs ELY CBT 113 124 124 2 2 122 98					98	122	2	2			124	124	113	СВТ	ELN vs ELY
PBT 43 63 63 1 2 62 98					98	62	2	1			63	63	43	PBT	
SWDN vs SWDY CBT 113 124 124 2 2 3 2 117 94 2 2			2	2	94	117	2	3	2	2	124	124	113	СВТ	SWDN vs SWDY
PBT 43 63 63 1 2 61 97 1 2			2	1	97	61	2	1			63	63	43	PBT	

Table A.7.11 Differential Item Functioning for Mathematics Grade 4

		Total N		Total N of	C-	DIF	B	DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of Unique	Total N of Item	Item Occurrences Included in DIF Analysis	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	99	104	104			6	6	96	92	2	2		
	PBT	40	61	61			3	5	58	95				
White vs AmerIndian	СВТ	99	104	104	4	4	7	7	93	89				
	PBT	40	61	61	2	3	4	7	53	87	2	3		
White vs Asian	СВТ	99	104	104		•			98	94	5	5	1	1
	PBT	40	61	61			1	2	58	95	1	2	1	2
White vs Black	СВТ	99	104	104	1	1	8	8	95	91			-	
	PBT	40	61	61	1	2	4	7	54	89	2	3		
White vs Hispanic	СВТ	99	104	104			3	3	101	97				
	PBT	40	61	61			2	3	59	97				
White vs Pacific Islander	СВТ	99	104	104				•	104	100				
	PBT	40	61	61				•	60	98			1	2
White vs Multiracial	СВТ	99	104	104	1	1			102	98	1	1		
	PBT	40	61	61					60	98	1	2		
NoEcnDis vs EcnDis	СВТ	99	104	104			1	1	103	99				
	PBT	40	61	61		,	4	7	56	92	1	2		•
ELN vs ELY	СВТ	99	104	104	2	2	7	7	95	91			•	
	PBT	40	61	61			4	7	57	93			•	
SWDN vs SWDY	СВТ	99	104	104			2	2	102	98				
	PBT	40	61	61			3	5	57	93	1	2		

Table A.7.12 Differential Item Functioning for Mathematics Grade 5

-		Total N		Total N of	C-	DIF	B-	DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of Item	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	103	113	113			3	3	109	96	1	1		
	PBT	40	56	56			2	4	54	96				
White vs AmerIndian	СВТ	103	113	113			3	3	109	96	1	1		
	PBT	40	56	56					56	100				
White vs Asian	СВТ	103	113	113	,	•	,	•	112	99	,		1	1
	PBT	40	56	56	,	•	,	•	56	100	,		•	
White vs Black	СВТ	103	113	113	1	1	3	3	109	96	,		•	
	PBT	40	56	56	1	2			55	98				
White vs Hispanic	СВТ	103	113	113					113	100				
	PBT	40	56	56					56	100				
White vs Pacific Islander	СВТ	103	113	113		*		*	113	100		•	,	
	PBT	40	56	56	•	•	•	•	56	100	•	•	•	•
White vs Multiracial	СВТ	103	113	113			3	3	110	97				
	PBT	40	56	56					56	100				
NoEcnDis vs EcnDis	СВТ	103	113	113			1	1	112	99				
	PBT	40	56	56			1	2	54	96	1	2		
ELN vs ELY	СВТ	103	113	113	2	2	3	3	108	96	,	•	•	
	PBT	40	56	56	1	2	1	2	54	96	,	•	•	
SWDN vs SWDY	СВТ	103	113	113			3	3	107	95	1	1	2	2
	PBT	40	56	56			2	4	52	93			2	4

Table A.7.13 Differential Item Functioning for Mathematics Grade 6

		Total N		Total N of	C-	DIF	B-	DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of Unique	Total N of Item	Item Occurrences Included in DIF Analysis	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	95	103	103			3	3	98	95	2	2		
	PBT	38	51	51					51	100				
White vs AmerIndian	СВТ	95	103	103			2	2	100	97	1	1		
	PBT	38	51	51	2	4			49	96				
White vs Asian	СВТ	95	103	103		•		•	94	91	8	8	1	1
	PBT	38	51	51		•		•	50	98	1	2	-	·*
White vs Black	СВТ	95	103	103	1	1	3	3	99	96			-	·*
	PBT	38	51	51					50	98	1	2		
White vs Hispanic	СВТ	95	103	103			2	2	101	98				
	PBT	38	51	51			1	2	50	98				
White vs Pacific Islander	СВТ	95	103	103			1	1	102	99				
	PBT	38	51	51		•	1	2	49	96	1	2		•
White vs Multiracial	СВТ	95	103	103	1	1	1	1	99	96	2	2		
	PBT	38	51	51					51	100				
NoEcnDis vs EcnDis	СВТ	95	103	103					103	100				
	PBT	38	51	51		,		·	51	100		,		•
ELN vs ELY	СВТ	95	103	103	1	1	6	6	96	93			-	•
	PBT	38	51	51		•	1	2	50	98			-	•
SWDN vs SWDY	СВТ	95	103	103	2	2	7	7	92	89			2	2
	PBT	38	51	51			1	2	49	96			1	2

Table A.7.14 Differential Item Functioning for Mathematics Grade 7

		Total N		Total N of	C-	DIF	В	- DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of Unique	Total N of Item	Item Occurrences Included in DIF Analysis	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	97	103	103	2	2	5	5	96	93				
	PBT	38	49	49					49	100				
White vs AmerIndian	СВТ	97	103	103	3	3	2	2	98	95				
	PBT	38	49	49			2	4	47	96				
White vs Asian	СВТ	97	103	103		•	3	3	95	92	4	4	1	1
	PBT	38	49	49		•	4	8	39	80	5	10	1	2
White vs Black	СВТ	97	103	103	1	1	8	8	93	90	1	1	,	*
	PBT	38	49	49					48	98	1	2		
White vs Hispanic	СВТ	97	103	103			2	2	101	98				
	PBT	38	49	49			1	2	48	98				
White vs Pacific Islander	СВТ	97	103	103					103	100		•	•	
	PBT	38	49	49				•	49	100		•	•	•
White vs Multiracial	СВТ	97	103	103			1	1	101	98	1	1		
	PBT	38	49	49					49	100				
NoEcnDis vs EcnDis	СВТ	97	103	103					103	100				
	PBT	38	49	49		,		•	49	100		·		
ELN vs ELY	СВТ	97	103	103	1	1	11	11	89	86	2	2	•	
	PBT	38	49	49			4	8	44	90	1	2	•	
SWDN vs SWDY	СВТ	97	103	103			2	2	99	96	2	2		
	PBT	38	49	49					49	100				

Table A.7.15 Differential Item Functioning for Mathematics Grade 8

		Total N		Total N of	C-	DIF	В	- DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of Unique	Total N of Item	Item Occurrences Included in DIF Analysis	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	91	100	100			2	2	98	98				
	PBT	36	53	53			4	8	49	92				
White vs AmerIndian	СВТ	91	100	100	3	3	3	3	94	94				
	PBT	36	53	53			1	2	52	98				
White vs Asian	СВТ	91	100	100	1	1	1	1	91	91	6	6	1	1
	PBT	36	53	53		,			48	91	5	9	-	
White vs Black	СВТ	91	100	100	1	1	3	3	96	96		*	-	
	PBT	36	53	53			1	2	51	96	1	2		
White vs Hispanic	СВТ	91	100	100	1	1	1	1	98	98				
	PBT	36	53	53					53	100				
White vs Pacific Islander	СВТ	91	100	100			1	1	99	99				
·	PBT	36	53	53			1	2	52	98				
White vs Multiracial	СВТ	91	100	100					100	100				
	PBT	36	53	53					52	98	1	2		
NoEcnDis vs EcnDis	СВТ	91	100	100	1	1	1	1	98	98				
	PBT	36	53	53		,	1	2	52	98				•
ELN vs ELY	СВТ	91	100	100	1	1	3	3	95	95	1	1		
	PBT	36	53	53			1	2	52	98		•	•	
SWDN vs SWDY	СВТ	91	100	100	1	1	3	3	96	96				
	PBT	36	53	53			1	2	52	98				

Table A.7.16 Differential Item Functioning for Mathematics Algebra I

		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of	Item Occurrences Included in DIF Analysis	Occurrence	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	104	108	108	3	3			103	95	2	2		
	PBT	42	57	57	2	4	2	4	53	93				
White vs AmerIndian	СВТ	104	108	108	2	2	2	2	104	96				
	PBT	42	57	57					57	100				
White vs Asian	СВТ	104	108	108	1	1	2	2	95	88	8	7	2	2
•	PBT	42	57	57			1	2	50	88	5	9	1	2
White vs Black	СВТ	104	108	108		•	4	4	104	96			,	
	PBT	42	57	57			1	2	56	98				
White vs Hispanic	СВТ	104	108	108					108	100				
	PBT	42	57	57					57	100				
White vs Pacific Islander	СВТ	104	108	108					106	98	2	2	•	
·	PBT	42	57	57		, , , , , , , , , , , , , , , , , , ,	1	2	55	96	1	2	·	
White vs Multiracial	СВТ	104	108	108			4	4	103	95	1	1		_
	PBT	42	57	57			1	2	56	98				_
NoEcnDis vs EcnDis	СВТ	104	108	108			2	2	106	98				
	PBT	42	57	57		·		<u>, </u>	57	100				,
ELN vs ELY	СВТ	104	108	108	•	•	2	2	105	97	1	1	•	.
•	PBT	42	57	57	•	•		*	57	100			•	.
SWDN vs SWDY	СВТ	104	108	108			3	3	105	97				
	PBT	42	57	57					57	100				

Table A.7.17 Differential Item Functioning for Mathematics Geometry

		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of Unique	Total N of Item	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	110	121	121	2	2	4	3	115	95				
	PBT	43	65	65	1	2	2	3	62	95				
White vs AmerIndian	СВТ	110	121	121			1	1	119	98	1	1		
	PBT	43	65	65	2	3	1	2	62	95				
White vs Asian	СВТ	110	121	121			3	2	109	90	9	7	•	•
	PBT	43	65	65			1	2	58	89	4	6	2	3
White vs Black	СВТ	110	121	121			6	5	112	93	2	2	1	1
	PBT	43	65	65			2	3	62	95	1	2		
White vs Hispanic	СВТ	110	121	121			4	3	117	97				
	PBT	43	65	65					65	100				
White vs Pacific Islander	СВТ	110	121	121			1	1	120	99		•	•	
·	PBT	43	65	65					64	98	1	2	·	
White vs Multiracial	СВТ	110	121	121			2	2	119	98				
	PBT	43	65	65			2	3	63	97				
NoEcnDis vs EcnDis	СВТ	110	121	121			4	3	117	97				
	PBT	43	65	65		,	1	2	64	98		·		
ELN vs ELY	СВТ	110	121	121	5	4	12	10	99	82	3	2	2	2
	PBT	43	65	65			4	6	60	92	1	2		•
SWDN vs SWDY	СВТ	110	121	121	2	2	9	7	109	90	1	1		
	PBT	43	65	65	1	2	4	6	59	91	1	2		

Table A.7.18 Differential Item Functioning for Mathematics Algebra II

		Total N		Total N of	C-	DIF	B-	DIF	Α	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of Item	Item Occurrences Included in DIF Analysis	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	102	111	111	1	1	4	4	106	95				
	PBT	41	59	59					59	100				
White vs AmerIndian	СВТ	102	111	111					111	100				
	PBT	41	59	59					59	100				
White vs Asian	СВТ	102	111	111	1	1			85	77	20	18	5	5
•	PBT	41	59	59	1	2	1	2	54	92	3	5		
White vs Black	СВТ	102	111	111	2	2	2	2	107	96				
	PBT	41	59	59	2	3			56	95	1	2		
White vs Hispanic	СВТ	102	111	111			1	1	110	99				
	PBT	41	59	59			3	5	56	95				
White vs Pacific Islander	СВТ	102	111	111					111	100				
	PBT	41	59	59				•	59	100		•	•	•
White vs Multiracial	СВТ	102	111	111					111	100				
	PBT	41	59	59			2	3	57	97				
NoEcnDis vs EcnDis	СВТ	102	111	111			1	1	110	99				
	PBT	41	59	59			1	2	58	98				
ELN vs ELY	СВТ	102	111	111	1	1	4	4	105	95	1	1	-	•
	PBT	41	59	59	1	2			58	98			-	•
SWDN vs SWDY	СВТ	102	111	111			6	5	103	93	2	2		
	PBT	41	59	59			3	5	55	93	1	2		

Table A.7.19 Differential Item Functioning for Integrated Mathematics I

		Total N		Total N of	C-	DIF	B-	DIF	А	DIF	B+	DIF	C+	DIF
DIF Comparisons	Mode	of	Total N of	Item Occurrences Included in DIF Analysis	Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrence	% of Total Occurrences s in DIF	N of Occurrences	% of Total Occurrences in DIF	N of Occurrences	% of Total Occurrences in DIF
Male vs Female	СВТ	42	51	51	2	4	4	8	44	86	1	2		
	PBT	42	64	64			2	3	61	95	1	2		
White vs AmerIndian	СВТ	42	51	51					51	100				
	PBT	42	64	64			1	2	63	98				
White vs Asian	СВТ	42	51	51	1	2	1	2	45	88	3	6	1	2
	PBT	42	64	64		*	1	2	62	97	1	2	•	
White vs Black	СВТ	42	51	51		*	3	6	48	94	,		•	
	PBT	42	64	64			1	2	63	98				
White vs Hispanic	СВТ	42	51	51			2	4	49	96				
	PBT	42	64	64	1	2	2	3	61	95				
White vs Pacific Islander	СВТ	42	51	51	,	•		*	51	100		•	,	
	PBT	42	64	64	•	•		•	64	100	•	•	•	
White vs Multiracial	СВТ	42	51	51			1	2	50	98				_
	PBT	42	64	64			1	2	62	97	1	2		
NoEcnDis vs EcnDis	СВТ	42	51	51			1	2	50	98				
	PBT	42	64	64		·		·	63	98	1	2	•	•
ELN vs ELY	СВТ	42	51	51	3	6	2	4	46	90			•	
	PBT	42	64	64	4	6	2	3	58	91			•	
SWDN vs SWDY	СВТ	42	51	51			2	4	49	96				
	PBT	42	64	64	1	2	4	6	59	92				

Appendix 8: Reliability of Classification by Content and Grade Level

Table A.8.1 Reliability of Classification: Grade 3 ELA/L

		Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 - 699	0.15	0.02	0.00	0.00	0.00	0.18
	Decision	700 - 724	0.03	0.11	0.04	0.00	0.00	0.19
	Accuracy	725 - 749	0.00	0.04	0.15	0.04	0.00	0.23
		750 - 809	0.00	0.00	0.04	0.31	0.02	0.37
CPT		810 - 850	0.00	0.00	0.00	0.01	0.02	0.03
CBT		650 – 699	0.15	0.04	0.00	0.00	0.00	0.19
	Decision	700 - 724	0.04	0.09	0.05	0.01	0.00	0.19
	Consistency	725 - 749	0.00	0.04	0.11	0.05	0.00	0.22
		750 - 809	0.00	0.01	0.06	0.28	0.02	0.37
		810 - 850	0.00	0.00	0.00	0.02	0.02	0.04
		650 – 699	0.17	0.03	0.00	0.00	0.00	0.19
	Decision	700 - 724	0.04	0.11	0.04	0.00	0.00	0.20
	Accuracy	725 - 749	0.00	0.04	0.12	0.05	0.00	0.22
		750 - 809	0.00	0.00	0.04	0.29	0.02	0.36
PBT		810 - 850	0.00	0.00	0.00	0.01	0.02	0.03
PDI		650 – 699	0.16	0.04	0.01	0.00	0.00	0.21
	Decision	700 - 724	0.04	0.09	0.05	0.01	0.00	0.19
	Consistency	725 - 749	0.01	0.05	0.09	0.06	0.00	0.21
		750 - 809	0.00	0.01	0.06	0.26	0.02	0.35
		810 - 850	0.00	0.00	0.00	0.02	0.02	0.04

Table A.8.2 Reliability of Classification: Grade 4 ELA/L

	-	Full Summative	Lovel 1	Laval 3	Laval 2	Lovel 4	Lovel	Category
		Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.10	0.02	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.03	0.12	0.04	0.00	0.00	0.19
	Accuracy	725 - 749	0.00	0.04	0.17	0.05	0.00	0.26
		750 - 789	0.00	0.00	0.05	0.27	0.03	0.35
СВТ		790 - 850	0.00	0.00	0.00	0.02	0.07	0.08
СВТ		650 – 699	0.09	0.03	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.03	0.10	0.06	0.00	0.00	0.19
	Consistency	725 - 749	0.00	0.05	0.14	0.06	0.00	0.25
		750 - 789	0.00	0.00	0.06	0.24	0.03	0.34
		790 - 850	0.00	0.00	0.00	0.04	0.06	0.10
		650 – 699	0.11	0.02	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.03	0.13	0.05	0.00	0.00	0.21
	Accuracy	725 - 749	0.00	0.05	0.19	0.05	0.00	0.29
		750 - 789	0.00	0.00	0.06	0.24	0.03	0.33
DDT		790 - 850	0.00	0.00	0.00	0.01	0.03	0.04
PBT		650 - 699	0.10	0.04	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.10	0.07	0.01	0.00	0.21
	Consistency	725 - 749	0.00	0.05	0.15	0.06	0.00	0.27
		750 - 789	0.00	0.01	0.08	0.21	0.03	0.32
		790 - 850	0.00	0.00	0.00	0.03	0.03	0.05

Table A.8.3 Reliability of Classification: Grade 5 ELA/L

		Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.09	0.02	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.03	0.13	0.04	0.00	0.00	0.19
	Accuracy	725 - 749	0.00	0.04	0.17	0.05	0.00	0.26
		750 - 798	0.00	0.00	0.05	0.33	0.02	0.40
СВТ		799 - 850	0.00	0.00	0.00	0.01	0.03	0.04
СВТ		650 - 699	0.09	0.03	0.00	0.00	0.00	0.12
	Decision	700 - 724	0.03	0.10	0.05	0.00	0.00	0.19
	Consistency	725 - 749	0.00	0.05	0.14	0.06	0.00	0.25
		750 - 798	0.00	0.00	0.06	0.30	0.02	0.39
		799 - 850	0.00	0.00	0.00	0.02	0.03	0.05
		650 - 699	0.09	0.02	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.03	0.14	0.04	0.00	0.00	0.22
	Accuracy	725 - 749	0.00	0.05	0.19	0.05	0.00	0.29
		750 - 798	0.00	0.00	0.05	0.29	0.02	0.37
PBT		799 - 850	0.00	0.00	0.00	0.00	0.01	0.01
FDI		650 - 699	0.09	0.03	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.04	0.11	0.06	0.01	0.00	0.21
	Consistency	725 - 749	0.00	0.06	0.15	0.07	0.00	0.28
		750 - 798	0.00	0.01	0.07	0.27	0.02	0.36
		799 - 850	0.00	0.00	0.00	0.01	0.01	0.03

Table A.8.4 Reliability of Classification: Grade 6 ELA/L

		Full Summative	Lovel 1	Laval 3	Laval 2	Laval 4	Lovel	Category
		Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.08	0.01	0.00	0.00	0.00	0.09
	Decision	700 - 724	0.02	0.16	0.03	0.00	0.00	0.22
	Accuracy	725 - 749	0.00	0.04	0.21	0.04	0.00	0.29
		750 - 789	0.00	0.00	0.04	0.28	0.02	0.34
СВТ		790 - 850	0.00	0.00	0.00	0.01	0.05	0.06
СВТ		650 - 699	0.08	0.03	0.00	0.00	0.00	0.10
	Decision	700 - 724	0.03	0.13	0.05	0.00	0.00	0.21
	Consistency	725 - 749	0.00	0.05	0.18	0.06	0.00	0.28
		750 - 789	0.00	0.00	0.06	0.26	0.02	0.33
		790 - 850	0.00	0.00	0.00	0.02	0.05	0.07
		650 – 699	0.09	0.01	0.00	0.00	0.00	0.10
	Decision	700 - 724	0.02	0.14	0.03	0.00	0.00	0.20
	Accuracy	725 - 749	0.00	0.04	0.20	0.04	0.00	0.29
		750 - 789	0.00	0.00	0.04	0.30	0.02	0.37
DDT		790 - 850	0.00	0.00	0.00	0.01	0.03	0.05
PBT		650 - 699	0.08	0.03	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.03	0.12	0.05	0.00	0.00	0.20
	Consistency	725 - 749	0.00	0.05	0.17	0.06	0.00	0.28
		750 - 789	0.00	0.00	0.06	0.27	0.03	0.36
		790 - 850	0.00	0.00	0.00	0.03	0.03	0.06

Table A.8.5 Reliability of Classification: Grade 7 ELA/L

	·	Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.11	0.02	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.03	0.11	0.04	0.00	0.00	0.18
	Accuracy	725 - 749	0.00	0.03	0.16	0.04	0.00	0.24
		750 - 784	0.00	0.00	0.04	0.24	0.03	0.31
CRT		785 - 850	0.00	0.00	0.00	0.02	0.11	0.14
CBT		650 - 699	0.11	0.03	0.00	0.00	0.00	0.14
	Decision	700 - 724	0.03	0.09	0.05	0.00	0.00	0.18
	Consistency	725 - 749	0.00	0.04	0.13	0.06	0.00	0.23
		750 - 784	0.00	0.00	0.06	0.21	0.03	0.30
		785 - 850	0.00	0.00	0.00	0.04	0.11	0.15
		650 – 699	0.12	0.02	0.00	0.00	0.00	0.14
	Decision	700 - 724	0.03	0.12	0.04	0.00	0.00	0.19
	Accuracy	725 - 749	0.00	0.04	0.16	0.05	0.00	0.25
		750 - 784	0.00	0.00	0.05	0.23	0.03	0.31
DDT		785 - 850	0.00	0.00	0.00	0.03	0.09	0.11
PBT		650 - 699	0.12	0.03	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.09	0.06	0.01	0.00	0.19
	Consistency	725 - 749	0.00	005	0.13	0.06	0.00	0.24
		750 - 784	0.00	0.00	0.06	0.19	0.04	0.30
		785 - 850	0.00	0.00	0.00	0.04	0.08	0.13

Table A.8.6 Reliability of Classification: Grade 8 ELA/L

	•	Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.12	0.02	0.00	0.00	0.00	0.14
	Decision	700 - 724	0.03	0.12	0.04	0.00	0.00	0.19
	Accuracy	725 - 749	0.00	0.04	0.16	0.04	0.00	0.24
		750 - 793	0.00	0.00	0.04	0.28	0.02	0.34
CRT		794 - 850	0.00	0.00	0.00	0.02	0.07	0.09
СВТ		650 - 699	0.12	0.03	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.10	0.05	0.00	0.00	0.18
	Consistency	725 - 749	0.00	0.04	0.13	0.06	0.00	0.23
		750 - 793	0.00	0.00	0.06	0.25	0.03	0.33
		794 - 850	0.00	0.00	0.00	0.03	0.07	0.10
		650 - 699	0.12	0.02	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.14	0.05	0.00	0.00	0.22
	Accuracy	725 - 749	0.00	0.05	0.17	0.05	0.00	0.26
		750 - 793	0.00	0.00	0.05	0.24	0.02	0.31
PBT		794 - 850	0.00	0.00	0.00	0.01	0.05	0.07
FDI		650 - 699	0.12	0.04	0.00	0.00	0.00	0.16
	Decision	700 - 724	0.03	0.11	0.06	0.01	0.00	0.21
	Consistency	725 - 749	0.00	0.05	0.14	0.06	0.00	0.25
		750 - 793	0.00	0.01	0.07	0.21	0.03	0.31
		794 - 850	0.00	0.00	0.00	0.03	0.05	0.08

Table A.8.7 Reliability of Classification: Grade 9 ELA/L

	•	Full Summative	Lovel 4	Laval 3	Laval 3	Lovel (LovelF	Category
		Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.13	0.02	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.12	0.03	0.00	0.00	0.18
	Accuracy	725 - 749	0.00	0.03	0.17	0.04	0.00	0.24
		750 - 790	0.00	0.00	0.04	0.27	0.02	0.34
СВТ		791 - 850	0.00	0.00	0.00	0.02	0.07	0.09
CBI		650 - 699	0.13	0.03	0.00	0.00	0.00	0.16
	Decision	700 - 724	0.03	0.10	0.05	0.00	0.00	0.18
	Consistency	725 - 749	0.00	0.04	0.14	0.05	0.00	0.23
		750 - 790	0.00	0.00	0.05	0.25	0.03	0.33
		791 - 850	0.00	0.00	0.00	0.03	0.07	0.10
		650 – 699	0.21	0.03	0.00	0.00	0.00	0.24
	Decision	700 - 724	0.04	0.15	0.04	0.00	0.00	0.23
	Accuracy	725 - 749	0.00	0.04	0.16	0.04	0.00	0.24
		750 - 790	0.00	0.00	0.04	0.19	0.02	0.24
DDT		791 - 850	0.00	0.00	0.00	0.01	0.04	0.05
PBT		650 - 699	0.21	0.04	0.00	0.00	0.00	0.25
	Decision	700 - 724	0.04	0.12	0.06	0.00	0.00	0.22
	Consistency	725 - 749	0.00	0.05	0.13	0.05	0.00	0.23
		750 - 790	0.00	0.00	0.05	0.17	0.02	0.24
		791 - 850	0.00	0.00	0.00	0.02	0.04	0.06

Table A.8.8 Reliability of Classification: Grade 10 ELA/L

	•	Full Summative	Laural 4	Laural 3	Laval 2	Laval 4	LavelF	Category
		Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.18	0.02	0.00	0.00	0.00	0.20
	Decision	700 - 724	0.03	0.09	0.04	0.00	0.00	0.15
	Accuracy	725 - 749	0.00	0.03	0.11	0.04	0.00	0.19
		750 - 793	0.00	0.00	0.04	0.24	0.03	0.32
СВТ		794 - 850	0.00	0.00	0.00	0.03	0.11	0.14
CBI		650 - 699	0.17	0.03	0.01	0.00	0.00	0.21
	Decision	700 - 724	0.03	0.07	0.05	0.01	0.00	0.15
	Consistency	725 - 749	0.00	0.04	0.09	0.05	0.00	0.18
		750 - 793	0.00	0.01	0.05	0.21	0.04	0.31
		794 - 850	0.00	0.00	0.00	0.05	0.10	0.15
		650 – 699	0.21	0.02	0.00	0.00	0.00	0.23
	Decision	700 - 724	0.03	0.09	0.04	0.00	0.00	0.16
	Accuracy	725 - 749	0.00	0.03	0.11	0.04	0.00	0.18
		750 - 793	0.00	0.00	0.04	0.22	0.03	0.29
PBT		794 - 850	0.00	0.00	0.00	0.02	0.12	0.14
PDI		650 - 699	0.20	0.04	0.00	0.00	0.00	0.24
	Decision	700 - 724	0.04	0.07	0.04	0;01	0.00	0.16
	Consistency	725 - 749	0.00	0.04	0.08	0.05	0.00	0.17
		750 – 793	0.00	0.01	0.05	0.19	0.03	0.28
		794 - 850	0.00	0.00	0.00	0.04	0.11	0.15

Table A.8.9 Reliability of Classification: Grade 11 ELA/L

	•	Full Summative	·		Laval 2	Laval 4	LavelF	Category
		Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.18	0.02	0.00	0.00	0.00	0.20
	Decision	700 – 724	0.03	0.13	0.04	0.00	0.00	0.20
	Accuracy	725 - 749	0.00	0.04	0.15	0.04	0.00	0.23
		750 - 791	0.00	0.00	0.04	0.24	0.02	0.30
СВТ		792 - 850	0.00	0.00	0.00	0.02	0.06	0.08
CDI		650 - 699	0.17	004	0.00	0.00	0.00	0.21
	Decision	700 - 724	0.04	0.10	0.05	0.00	0.00	0.20
	Consistency	725 - 749	0.00	0.04	0.12	0.05	0.00	0.22
		750 - 791	0.00	0.00	0.05	0.21	0.02	0.29
		792 - 850	0.00	0.00	0.00	0.03	0.06	0.08
		650 – 699	0.16	0.03	0.00	0.00	0.00	0.19
	Decision	700 - 724	0.05	0.12	0.05	0.00	0.00	0.23
	Accuracy	725 - 749	0.00	0.05	0.15	0.05	0.00	0.26
		750 - 791	0.00	0.00	0.05	0.21	0.03	0.30
DDT		792 - 850	0.00	0.00	0.00	0.01	0.02	0.05
PBT		650 – 699	0.15	0.04	0.01	0.00	0.00	0.21
	Decision	700 - 724	0.05	0.10	0.06	0.01	0.00	0.22
	Consistency	725 - 749	0.01	0.05	0.12	0.06	0.00	0.24
		750 - 791	0.00	0.01	0.07	0.18	0.03	0.29
		792 - 850	0.00	0.00	0.00	0.03	0.02	0.05

Table A.8.10 Reliability of Classification: Grade 3 Mathematics

	•	Full Summative	Level 1	Level 2	Level 3	Level 4	Lovel	Category
		Scale Score	revei 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.10	0.02	0.00	0.00	0.00	0.12
	Decision	700 - 724	0.02	0.13	0.03	0.00	0.00	0.19
	Accuracy	725 - 749	0.00	0.03	0.18	0.04	0.00	0.26
		750 - 789	0.00	0.00	0.04	0.27	0.02	0.34
СВТ		790 - 850	0.00	0.00	0.00	0.02	0.08	0.10
CDI		650 – 699	0.10	0.03	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.03	0.11	0.05	0.00	0.00	0.19
	Consistency	725 - 749	0.00	0.04	0.15	0.05	0.00	0.25
		750 - 789	0.00	0.00	0.06	0.25	0.03	0.33
		790 - 850	0.00	0.00	0.00	0.03	0.08	0.11
		650 – 699	0.12	0.02	0.00	0.00	0.00	0.14
	Decision	700 - 724	0.03	0.14	0.04	0.00	0.00	0.22
	Accuracy	725 - 749	0.00	0.04	0.20	0.04	0.00	0.28
		750 - 789	0.00	0.00	0.04	0.24	0.02	0.30
DDT		790 - 850	0.00	0.00	0.00	0.01	0.06	0.07
PBT		650 - 699	0.11	0.03	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.12	0.06	0.00	0.00	0.21
	Consistency	725 - 749	0.00	0.05	0.16	0.05	0.00	0.26
		750 - 789	0.00	0.00	0.06	0.21	0.02	0.30
		790 - 850	0.00	0.00	0.00	0.02	0.05	0.08

Table A.8.11 Reliability of Classification: Grade 4 Mathematics

		Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.11	0.02	0.00	0.00	0.00	0.12
	Decision	700 - 724	0.02	0.17	0.03	0.00	0.00	0.23
	Accuracy	725 - 749	0.00	0.04	0.21	0.04	0.00	0.28
		750 - 795	0.00	0.00	0.04	0.28	0.01	0.33
CDT		796 - 850	0.00	0.00	0.00	0.01	0.03	0.04
CBT		650 - 699	0.10	0.03	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.03	0.14	0.05	0.00	0.00	0.22
	Consistency	725 - 749	0.00	0.05	0.17	0.05	0.00	0.27
		750 - 795	0.00	0.00	0.05	0.26	0.01	0.33
		796 - 850	0.00	0.00	0.00	0.01	0.03	0.04
		650 – 699	0.16	0.03	0.00	0.00	0.00	0.19
	Decision	700 - 724	0.03	0.20	0.04	0.00	0.00	0.28
	Accuracy	725 - 749	0.00	0.04	0.20	0.04	0.00	0.27
		750 - 795	0.00	0.00	0.03	0.20	0.01	0.24
РВТ		796 - 850	0.00	0.00	0.00	0.00	0.02	0.03
PDI		650 - 699	0.15	0.04	0.00	0.00	0.00	0.20
	Decision	700 - 724	0.04	0.17	0.06	0.00	0.00	0.27
	Consistency	725 - 749	0.00	0.06	0.16	0.05	0.00	0.26
		750 - 795	0.00	0.00	0.05	0.18	0.01	0.24
		796 - 850	0.00	0.00	0.00	0.01	0.02	0.03

Table A.8.12 Reliability of Classification: Grade 5 Mathematics

	•	Full Summative	Laural 1	Laural 3	Laval 2	Laval 4	LavelF	Category
		Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.09	0.02	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.02	0.17	0.04	0.00	0.00	0.24
	Accuracy	725 - 749	0.00	0.04	0.22	0.04	0.00	0.30
		750 - 789	0.00	0.00	0.04	0.25	0.02	0.30
СВТ		790 - 850	0.00	0.00	0.00	0.01	0.04	0.05
СБТ		650 - 699	0.09	0.03	0.00	0.00	0.00	0.12
	Decision	700 - 724	0.03	0.15	0.06	0.00	0.00	0.23
	Consistency	725 - 749	0.00	0.05	0.18	0.05	0.00	0.29
		750 - 789	0.00	0.00	0.06	0.22	0.02	0.30
		790 - 850	0.00	0.00	0.00	0.02	0.04	0.06
		650 – 699	0.12	0.03	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.23	0.05	0.00	0.00	0.31
	Accuracy	725 - 749	0.00	0.05	0.21	0.04	0.00	0.30
		750 - 789	0.00	0.00	0.03	0.17	0.01	0.21
PBT		790 - 850	0.00	0.00	0.00	0.01	0.02	0.03
PDI		650 - 699	0.11	0.05	0.00	0.00	0.00	0.16
	Decision	700 - 724	0.04	0.20	0.07	0.00	0.00	0.30
	Consistency	725 - 749	0.00	0.06	0.18	0.04	0.00	0.29
		750 - 789	0.00	0.00	0.05	0.16	0.01	0.22
		790 - 850	0.00	0.00	0.00	0.01	0.02	0.03

Table A.8.13 Reliability of Classification: Grade 6 Mathematics

	-	Full Summative	Level 1	Level 2	Level 3	Level 4	Level 5	Category
		Scale Score	revert	Level 2	Level 5	Level 4	Level 5	Total
		650 – 699	0.12	0.02	0.00	0.00	0.00	0.14
	Decision	700 - 724	0.03	0.18	0.04	0.00	0.00	0.25
	Accuracy	725 - 749	0.00	0.04	0.21	0.04	0.00	0.29
		750 - 787	0.00	0.00	0.03	0.23	0.01	0.28
СВТ		788 - 850	0.00	0.00	0.00	0.01	0.04	0.05
CDI		650 – 699	0.12	0.03	0.00	0.00	0.00	0.15
	Decision	700 - 724	0.03	0.16	0.05	0.00	0.00	0.24
	Consistency	725 - 749	0.00	0.05	0.18	0.05	0.00	0.28
		750 - 787	0.00	0.00	0.05	0.21	0.02	0.27
		788 - 850	0.00	0.00	0.00	0.02	0.04	0.05
		650 – 699	0.09	0.02	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.02	0.20	0.04	0.00	0.00	0.26
	Accuracy	725 - 749	0.00	0.04	0.25	0.04	0.00	0.29
		750 - 787	0.00	0.00	0.04	0.25	0.02	0.31
DDT		788 - 850	0.00	0.00	0.00	0.01	0.06	0.07
PBT		650 - 699	0.08	0.03	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.03	0.15	0.05	0.00	0.00	0.23
	Consistency	725 - 749	0.00	0.06	0.17	0.05	0.00	0.28
		750 - 787	0.00	0.00	0.05	0.23	0.02	0.30
		788 - 850	0.00	0.00	0.00	0.02	0.05	0.08

Table A.8.14 Reliability of Classification: Grade 7 Mathematics

		Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 - 699	0.09	0.02	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.02	0.20	0.04	0.00	0.00	0.26
	Accuracy	725 - 749	0.00	0.04	0.25	0.04	0.00	0.34
		750 - 785	0.00	0.00	0.04	0.21	0.01	0.26
CDT		786 - 850	0.00	0.00	0.00	0.01	0.02	0.03
CBT		650 - 699	0.09	0.03	0.00	0.00	0.00	0.12
	Decision	700 - 724	0.03	0.17	0.06	0.00	0.00	0.26
	Consistency	725 - 749	0.00	0.06	0.21	0.05	0.00	0.32
		750 - 785	0.00	0.00	0.06	0.19	0.01	0.26
		786 - 850	0.00	0.00	0.00	0.01	0.02	0.03
		650 – 699	0.09	0.02	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.03	0.22	0.05	0.00	0.00	0.30
	Accuracy	725 - 749	0.00	0.05	0.26	0.05	0.00	0.36
		750 - 785	0.00	0.00	0.04	0.17	0.01	0.22
DDT		786 - 850	0.00	0.00	0.00	0.00	0.01	0.01
PBT		650 - 699	0.09	0.04	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.03	0.18	0.07	0.00	0.00	0.29
	Consistency	725 - 749	0.00	0.07	0.21	0.05	0.00	0.33
		750 - 785	0.00	0.00	0.06	0.15	0.01	0.23
		786 - 850	0.00	0.00	0.00	0.01	0.01	0.02

Table A.8.15 Reliability of Classification: Grade 8 Mathematics

		Full Summative	Lovel 1	Lovel 3	Lovel 2	Lovel A	LovelF	Category
		Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.23	0.03	0.00	0.00	0.00	0.26
	Decision	700 - 724	0.04	0.15	0.05	0.00	0.00	0.24
	Accuracy	725 - 749	0.00	0.04	0.16	0.04	0.00	0.24
		750 - 800	0.00	0.00	0.04	0.19	0.01	0.24
СВТ		801 - 850	0.00	0.00	0.00	0.00	0.01	0.02
СВТ		650 - 699	0.22	0.05	0.00	0.00	0.00	0.27
	Decision	700 - 724	0.05	0.12	0.06	0.00	0.00	0.24
	Consistency	725 - 749	0.00	0.05	0.13	0.05	0.00	0.23
		750 - 800	0.00	0.00	0.05	0.17	0.01	0.24
		801 - 850	0.00	0.00	0.00	0.01	0.01	0.02
		650 - 699	0.20	0.04	0.00	0.00	0.00	0.24
	Decision	700 - 724	0.04	0.15	0.05	0.00	0.00	0.24
	Accuracy	725 - 749	0.00	0.05	0.13	0.05	0.00	0.23
		750 - 800	0.00	0.00	0.04	0.19	0.02	0.25
DDT		801 - 850	0.00	0.00	0.00	0.01	0.02	0.03
PBT		650 - 699	0.19	0.06	0.01	0.00	0.00	0.26
	Decision	700 - 724	0.05	0.11	0.06	0.01	0.00	0.23
	Consistency	725 - 749	0.01	0.06	0.10	0.05	0.00	0.21
		750 - 800	0.00	0.01	0.06	0.17	0.02	0.26
		801 – 850	0.00	0.00	0.00	0.02	0.02	0.04

Table A.8.16 Reliability of Classification: Algebra I

	•	Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.11	0.02	0.00	0.00	0.00	0.13
	Decision	700 - 724	0.03	0.19	0.03	0.00	0.00	0.25
	Accuracy	725 - 749	0.00	0.04	0.18	0.04	0.00	0.26
		750 - 804	0.00	0.00	0.03	0.29	0.01	0.33
СВТ		805 - 850	0.00	0.00	0.00	0.01	0.02	0.03
CDI		650 - 699	0.11	0.04	0.00	0.00	0.00	0.14
	Decision	700 - 724	0.03	0.16	0.05	0.00	0.00	0.24
	Consistency	725 - 749	0.00	0.05	0.15	0.05	0.00	0.25
		750 - 804	0.00	0.00	0.05	0.27	0.01	0.33
		805 - 850	0.00	0.00	0.00	0.01	0.02	0.03
		650 - 699	0.13	0.03	0.00	0.00	0.00	0.17
	Decision	700 - 724	0.03	0.20	0.04	0.00	0.00	0.27
	Accuracy	725 - 749	0.00	0.05	0.14	0.04	0.00	0.24
		750 - 804	0.00	0.00	0.03	0.27	0.01	0.31
DDT		805 - 850	0.00	0.00	0.00	0.01	0.02	0.02
PBT		650 - 699	0.13	0.05	0.00	0.00	0.00	0.18
	Decision	700 - 724	0.04	0.16	0.05	0.00	0.00	0.25
	Consistency	725 - 749	0.00	0.06	0.11	0.06	0.00	0.24
		750 - 804	0.00	0.00	0.04	0.25	0.01	0.31
		805 - 850	0.00	0.00	0.00	0.01	0.02	0.03

Table A.8.17 Reliability of Classification: Geometry

		Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.07	0.02	0.00	0.00	0.00	0.09
	Decision	700 - 724	0.02	0.22	0.03	0.00	0.00	0.27
	Accuracy	725 - 749	0.00	0.04	0.25	0.04	0.00	0.33
		750 - 782	0.00	0.00	0.03	0.23	0.01	0.28
CDT		783 - 850	0.00	0.00	0.00	0.01	0.03	0.04
CBT		650 – 699	0.07	0.03	0.00	0.00	0.00	0.10
	Decision	700 - 724	0.02	0.20	0.05	0.00	0.00	0.27
	Consistency	725 - 749	0.00	0.05	0.22	0.05	0.00	0.32
		750 - 782	0.00	0.00	0.03	0.23	0.01	0.28
		783 - 850	0.00	0.00	0.00	0.01	0.03	0.04
		650 – 699	0.09	0.02	0.00	0.00	0.00	0.10
	Decision	700 - 724	0.02	0.24	0.04	0.00	0.00	0.29
	Accuracy	725 - 749	0.00	0.04	0.27	0.04	0.00	0.35
		750 - 782	0.00	0.00	0.03	0.21	0.01	0.25
DDT		783 - 850	0.00	0.00	0.00	0.00	0.00	0.00
PBT		650 - 699	0.08	0.03	0.00	0.00	0.00	0.11
	Decision	700 - 724	0.03	0.21	0.05	0.00	0.00	0.29
	Consistency	725 - 749	0.00	0.06	0.23	0.05	0.00	0.34
		750 - 782	0.00	0.00	0.04	0.20	0.00	0.25
		783 - 850	0.00	0.00	0.00	0.00	0.00	0.01

Table A.8.18 Reliability of Classification: Algebra II

	•	Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.29	0.04	0.00	0.00	0.00	0.33
	Decision	700 - 724	0.04	0.15	0.04	0.00	0.00	0.23
	Accuracy	725 - 749	0.00	0.04	0.11	0.04	0.00	0.19
		750 - 807	0.00	0.00	0.03	0.20	0.01	0.23
CRT		808 - 850	0.00	0.00	0.00	0.00	0.02	0.02
CBT		650 – 699	0.28	0.05	0.00	0.00	0.00	0.33
	Decision	700 - 724	0.05	0.12	0.05	0.00	0.00	0.22
	Consistency	725 - 749	0.00	0.05	0.09	0.04	0.00	0.18
		750 - 807	0.00	0.00	0.04	0.18	0.01	0.24
		808 - 850	0.00	0.00	0.00	0.01	0.02	0.03
		650 - 699	0.19	0.02	0.00	0.00	0.00	0.21
	Decision	700 - 724	0.03	0.12	0.04	0.00	0.00	0.20
	Accuracy	725 - 749	0.00	0.04	0.16	0.04	0.00	0.23
		750 - 807	0.00	0.00	0.04	0.28	0.01	0.33
PBT		808 - 850	0.00	0.00	0.00	0.01	0.02	0.02
FDI		650 - 699	0.18	0.04	0.00	0.00	0.00	0.22
	Decision	700 - 724	0.04	0.10	0.06	0.00	0.00	0.20
	Consistency	725 - 749	0.00	0.04	0.12	0.05	0.00	0.22
		750 - 807	0.00	0.01	0.06	0.25	0.01	0.33
		808 - 850	0.00	0.00	0.00	0.01	0.02	0.01

Table A.8.19 Reliability of Classification: Integrated Mathematics I

	,	Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.15	0.03	0.00	0.00	0.00	0.18
	Decision	700 - 724	0.04	0.20	0.05	0.00	0.00	0.28
	Accuracy	725 - 749	0.00	0.04	0.19	0.04	0.00	0.27
		750 - 798	0.00	0.00	0.03	0.20	0.01	0.24
СВТ		799 - 850	0.00	0.00	0.00	0.00	0.02	0.03
СВТ		650 - 699	0.14	0.05	0.00	0.00	0.00	0.19
	Decision	700 - 724	0.05	0.16	0.06	0.00	0.00	0.27
	Consistency	725 - 749	0.00	0.06	0.15	0.05	0.00	0.26
		750 - 798	0.00	0.00	0.05	0.19	0.01	0.25
		799 - 850	0.00	0.00	0.00	0.01	0.02	0.03

Table A.8.20 Reliability of Classification: Integrated Mathematics II

		Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.05	0.01	0.00	0.00	0.00	0.05
	Decision	700 - 724	0.02	0.11	0.03	0.00	0.00	0.16
	Accuracy	725 - 749	0.00	0.04	0.20	0.05	0.00	0.29
		750 - 784	0.00	0.00	0.05	0.31	0.03	0.39
СВТ		785 - 850	0.00	0.00	0.00	0.02	0.07	0.10
CDI		650 - 699	0.05	0.02	0.00	0.00	0.00	0.07
	Decision	700 - 724	0.02	0.09	0.05	0.00	0.00	0.17
	Consistency	725 - 749	0.00	0.04	0.16	0.07	0.000	0.28
		750 - 784	0.00	0.00	0.07	0.27	0.03	0.37
		785 - 850	0.00	0.00	0.00	0.04	0.07	0.12
		650 – 699	0.23	0.07	0.00	0.00	0.00	0.31
	Decision	700 - 724	0.06	0.28	0.04	0.00	0.00	0.38
	Accuracy	725 - 749	0.00	0.06	0.10	0.03	0.00	0.19
		750 - 784	0.00	0.00	0.01	0.09	0.01	0.11
PBT		785 - 850	0.00	0.00	0.00	0.00	0.01	0.02
PDI		650 - 699	0.22	0.10	0.00	0.00	0.00	0.32
	Decision	700 - 724	0.07	0.22	0.04	0.00	0.00	0.34
	Consistency	725 - 749	0.00	0.08	0.08	0.04	0.00	0.20
		750 - 784	0.00	0.00	0.02	0.08	0.01	0.12
		785 - 850	0.00	0.00	0.00	0.01	0.01	0.02

Table A.8.21 Reliability of Classification: Integrated Mathematics III

		Full Summative	Level 1	Level 2	Level 3	Level 4	Level 5	Category
		Scale Score	revei 1	Level 2	Level 5	Level 4	Level 5	Total
		650 – 699	0.35	0.02	0.00	0.00	0.00	0.38
	Decision	700 - 724	0.04	0.09	0.03	0.00	0.00	0.16
	Accuracy	725 - 749	0.00	0.03	0.09	0.04	0.00	0.16
		750 - 803	0.00	0.00	0.03	0.23	0.01	0.27
СВТ		804 - 850	0.00	0.00	0.00	0.01	0.02	0.02
СВТ		650 - 699	0.34	0.04	0.00	0.00	0.00	0.38
	Decision	700 - 724	0.05	0.07	0.04	0.01	0.00	0.17
	Consistency	725 - 749	0.01	0.03	0.07	0.05	0.00	0.16
		750 - 803	0.00	0.00	0.04	0.21	0.01	0.26
		804 - 850	0.00	0.00	0.00	0.02	0.01	0.03

PARCC

Appendix 10.1: IRT Results for Spring 2017 English Language Arts/Literacy (ELA/L)

Table A.10.1 CBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade

		Item	No. of	No. of	b	Estimates	s Summary	<i>-</i>	а	Estimates	Summar	y
Mode	Grade	Grouping	Score Points	Items	Mean	SD	Min	Max	Mean	SD	Min	Max
CBT	E03	All Items	180	82	0.47	1.05	-1.40	3.44	0.55	0.2	0.11	1.00
СВТ	E03	Reading	132	66	0.15	0.91	-1.40	3.44	0.49	0.16	0.11	0.81
СВТ	E03	Writing	48	16	1.77	0.35	1.16	2.22	0.83	0.11	0.51	1.00
CBT	E04	All Items	193	86	0.20	1.43	-6.48	4.99	0.49	0.22	0.13	0.97
СВТ	E04	Reading	140	70	-0.04	1.48	-6.48	4.99	0.41	0.14	0.13	0.77
СВТ	E04	Writing	53	16	1.24	0.40	0.53	1.98	0.85	0.08	0.68	0.97
CBT	E05	All Items	192	85	0.65	1.21	-6.27	3.56	0.47	0.23	0.13	1.00
СВТ	E05	Reading	138	69	0.45	1.22	-6.27	3.56	0.38	0.13	0.13	0.65
СВТ	E05	Writing	54	16	1.50	0.67	0.70	2.69	0.88	0.09	0.64	1.00
СВТ	E06	All Items	233	106	0.53	0.87	-0.97	4.45	0.48	0.19	0.15	0.96
СВТ	E06	Reading	184	92	0.44	0.89	-0.97	4.45	0.43	0.14	0.15	0.90
СВТ	E06	Writing	49	14	1.14	0.42	0.43	1.97	0.81	0.09	0.66	0.96
CBT	E07	All Items	217	98	0.35	0.89	-2.17	3.82	0.48	0.23	0.14	1.11
СВТ	E07	Reading	168	84	0.29	0.94	-2.17	3.82	0.40	0.14	0.14	0.74
СВТ	E07	Writing	49	14	0.71	0.41	0.18	1.47	0.91	0.14	0.66	1.11
CBT	E08	All Items	232	104	0.27	0.95	-2.39	3.30	0.46	0.26	0.09	1.10
СВТ	E08	Reading	176	88	0.21	1.01	-2.39	3.30	0.37	0.14	0.09	0.74
СВТ	E08	Writing	56	16	0.59	0.43	-0.20	1.32	0.97	0.11	0.67	1.10
СВТ	E09	All Items	210	96	0.58	0.83	-1.04	3.59	0.47	0.28	0.10	1.40
СВТ	E09	Reading	168	84	0.54	0.88	-1.04	3.59	0.37	0.13	0.10	0.76
СВТ	E09	Writing	42	12	0.83	0.29	0.37	1.33	1.14	0.13	0.96	1.40
СВТ	E10	All Items	232	104	0.69	0.80	-1.27	3.06	0.48	0.23	0.16	1.09

PARCC

2017 Technical Report

		Item	No. of	No. of	b	Estimates	s Summary	1	a Estimates Summary				
Mode	Grade	Grouping	Score Points	Items	Mean	SD	Min	Max	Mean	SD	Min	Max	
СВТ	E10	Reading	176	88	0.67	0.85	-1.27	3.06	0.40	0.14	0.16	0.93	
СВТ	E10	Writing	56	16	0.79	0.33	0.27	1.35	0.92	0.10	0.77	1.09	
СВТ	E11	All Items	236	106	0.91	0.82	-0.54	3.77	0.48	0.19	0.14	0.91	
СВТ	E11	Reading	180	90	0.87	0.87	-0.54	3.77	0.43	0.16	0.14	0.88	
СВТ	E11	Writing	56	16	1.13	0.33	0.61	1.88	0.74	0.07	0.65	0.91	

Table A.10.2 PBT IRT Summary Parameter Estimates for All Items for ELA/L by Grade

			No. of			b Estimate	s Summary			a Estimate	s Summary	
		Item	Score	No. of								
Mode	Grade	Grouping	Points	Items	Mean	SD	Min	Max	Mean	SD	Min	Max
PBT	E03	All Items	70	32	0.82	0.96	-0.90	3.35	0.50	0.18	0.12	0.82
PBT	E03	Reading	52	26	0.68	1.00	-0.90	3.35	0.45	0.14	0.12	0.74
PBT	E03	Writing	18	6	1.44	0.39	1.01	2.14	0.74	0.11	0.51	0.82
PBT	E04	All Items	76	34	0.51	1.09	-1.08	4.96	0.48	0.24	0.17	0.99
PBT	E04	Reading	56	28	0.45	1.17	-1.08	4.96	0.39	0.14	0.17	0.77
PBT	E04	Writing	20	6	0.83	0.45	0.39	1.47	0.90	0.08	0.80	0.99
PBT	E05	All Items	76	34	1.03	0.83	-0.97	2.99	0.43	0.22	0.13	0.94
PBT	E05	Reading	56	28	1.04	0.90	-0.97	2.99	0.35	0.13	0.13	0.67
PBT	E05	Writing	20	6	0.98	0.49	0.54	1.69	0.82	0.11	0.63	0.94
PBT	E06	All Items	89	40	0.51	0.78	-0.74	2.37	0.44	0.19	0.15	0.96
PBT	E06	Reading	68	34	0.45	0.82	-0.74	2.37	0.39	0.15	0.15	0.68
PBT	E06	Writing	21	6	0.85	0.38	0.41	1.39	0.73	0.16	0.53	0.96
PBT	E07	All Items	89	40	0.38	0.80	-1.38	2.15	0.38	0.16	0.19	0.84
PBT	E07	Reading	68	34	0.32	0.84	-1.38	2.15	0.33	0.08	0.19	0.53
PBT	E07	Writing	21	6	0.67	0.41	-0.03	1.15	0.71	0.10	0.58	0.84
PBT	E08	All Items	89	40	0.35	0.78	-1.39	1.90	0.43	0.19	0.10	0.84
PBT	E08	Reading	68	34	0.38	0.83	-1.39	1.90	0.38	0.16	0.10	0.77
PBT	E08	Writing	21	6	0.14	0.39	-0.32	0.57	0.69	0.11	0.52	0.84
PBT	E09	All Items	89	40	0.58	0.77	-1.07	2.22	0.44	0.21	0.18	0.96
PBT	E09	Reading	68	34	0.50	0.79	-1.07	2.22	0.37	0.13	0.18	0.83
PBT	E09	Writing	21	6	1.05	0.42	0.51	1.62	0.83	0.11	0.70	0.96
PBT	E10	All Items	89	40	0.48	0.73	-1.05	1.88	0.51	0.19	0.18	0.90
PBT	E10	Reading	68	34	0.44	0.77	-1.05	1.88	0.46	0.15	0.18	0.83
PBT	E10	Writing	21	6	0.75	0.40	0.23	1.23	0.80	0.07	0.68	0.90

PARCC

2017 Technical Report

			No. of		b Estimates Summary					a Estimates Summary			
Mode	Grade	Item Grouping	Score Points	No. of Items	Mean	SD	Min	Max	Mean	SD	Min	Max	
PBT	E11	All Items	89	40	1.35	1.00	-0.58	3.75	0.41	0.21	0.15	0.90	
PBT	E11	Reading	68	34	1.39	1.07	-0.58	3.75	0.36	0.19	0.15	0.90	
PBT	E11	Writing	21	6	1.12	0.39	0.60	1.53	0.67	0.06	0.57	0.72	

Table A.10.3 CBT IRT Standard Errors of Parameter Estimates for All Items for ELA/L by Grade

			No. of			SE of b	stimates			SE of a E	stimates	
		Item	Score	No. of								
Mode	Grade	Grouping	Points	Items	Mean	SD	Min	Max	Mean	SD	Min	Max
CBT	E03	All Items	180	82	0.009	0.007	0.004	0.053	0.004	0.002	0.002	0.010
CBT	E03	Reading	132	66	0.008	0.007	0.004	0.053	0.004	0.001	0.002	0.007
СВТ	E03	Writing	48	16	0.014	0.004	0.008	0.020	0.008	0.001	0.006	0.010
СВТ	E04	All Items	193	86	0.013	0.022	0.004	0.163	0.004	0.002	0.002	0.010
СВТ	E04	Reading	140	70	0.014	0.024	0.004	0.163	0.003	0.001	0.002	0.007
СВТ	E04	Writing	53	16	0.011	0.005	0.004	0.026	0.008	0.001	0.006	0.010
CBT	E05	All Items	192	85	0.012	0.017	0.004	0.140	0.004	0.002	0.002	0.010
СВТ	E05	Reading	138	69	0.012	0.018	0.004	0.140	0.003	0.001	0.002	0.005
СВТ	E05	Writing	54	16	0.015	0.011	0.004	0.039	0.008	0.001	0.004	0.010
CBT	E06	All Items	233	106	0.010	0.010	0.004	0.093	0.004	0.002	0.002	0.010
СВТ	E06	Reading	184	92	0.010	0.010	0.004	0.093	0.004	0.001	0.002	0.007
СВТ	E06	Writing	49	14	0.010	0.005	0.004	0.023	0.008	0.001	0.005	0.010
СВТ	E07	All Items	217	98	0.010	0.008	0.004	0.067	0.005	0.002	0.002	0.012
CBT	E07	Reading	168	84	0.011	0.008	0.005	0.067	0.004	0.001	0.002	0.006
СВТ	E07	Writing	49	14	0.007	0.003	0.004	0.013	0.009	0.002	0.006	0.012
CBT	E08	All Items	232	104	0.012	0.010	0.004	0.075	0.005	0.003	0.002	0.013
СВТ	E08	Reading	176	88	0.013	0.011	0.005	0.075	0.004	0.001	0.002	0.007
СВТ	E08	Writing	56	16	0.008	0.004	0.004	0.018	0.010	0.002	0.007	0.013
СВТ	E09	All Items	210	96	0.012	0.011	0.004	0.067	0.005	0.003	0.002	0.017
СВТ	E09	Reading	168	84	0.013	0.011	0.005	0.067	0.004	0.001	0.002	0.006
СВТ	E09	Writing	42	12	0.006	0.002	0.004	0.010	0.012	0.002	0.009	0.017
CBT	E10	All Items	232	104	0.015	0.010	0.005	0.080	0.006	0.003	0.003	0.016
СВТ	E10	Reading	176	88	0.016	0.011	0.006	0.080	0.005	0.001	0.003	0.010

2017 Technical Report

			No. of			SE of b	stimates			SE of a E	stimates	
Mode	Grade	Item Grouping	Score Points	No. of Items	Mean	SD	Min	Max	Mean	SD	Min	Max
CBT	E10	Writing	56	16	0.010	0.003	0.005	0.015	0.013	0.002	0.010	0.016
СВТ	E11	All Items	236	106	0.010	0.005	0.003	0.013	0.013	0.002	0.010	0.016
СВТ	E11	Reading	180	90	0.020	0.015	0.007	0.099	0.006	0.003	0.003	0.010
CBT	E11	Writing	56	16	0.015	0.005	0.009	0.031	0.012	0.002	0.009	0.016

Table A.10.4 CBT IRT Model Fit for All Items for ELA/L by Grade

			No. of				G ²			(Q_1	
		Item	Score	No. of								
Mode	Grade	Grouping	Points	Items	Mean	SD	Min	Max	Mean	SD	Min	Max
CBT	E03	All Items	180	82	2628.5	2558.7	182.3	11676.5	2524.8	2468.9	178.9	10234.5
СВТ	E03	Reading	132	66	3012.4	2714.2	182.3	11676.5	2889.7	2622.2	178.9	10234.5
СВТ	E03	Writing	48	16	1044.9	327.1	526.7	1767.3	1019.5	342	517.9	1755.5
CBT	E04	All Items	193	86	2566	2756.7	391.7	20517.1	2488.4	2633.2	373.6	17734.4
СВТ	E04	Reading	140	70	2820.5	2994	391.7	20517.1	2730.9	2858.1	373.6	17734.4
СВТ	E04	Writing	53	16	1452.7	450.4	1007.7	2423.1	1427.5	488.6	945.6	2420.5
СВТ	E05	All Items	192	85	3010.8	3148.6	132.3	20149.4	9706.6	62643.1	129.6	579715.1
СВТ	E05	Reading	138	69	3325.4	3405	132.3	20149.4	3207.8	3458.5	129.6	22452.8
СВТ	E05	Writing	54	16	1654	732.5	1023	3810.2	37732.6	144530.1	1014.7	579715.1
СВТ	E06	All Items	233	106	2033.8	1846.4	227.5	12312.5	1964.5	1828.4	222.5	12034
СВТ	E06	Reading	184	92	2096.1	1957.8	227.5	12312.5	2042.6	1937.7	222.5	12034
СВТ	E06	Writing	49	14	1624.7	704.7	865.8	3583.5	1450.8	625.7	786.1	3191.6
СВТ	E07	All Items	217	98	2007	2081.5	189.3	11308.1	1979.5	2096.7	180.7	10699.5
СВТ	E07	Reading	168	84	2069.8	2225.5	189.3	11308.1	2060.9	2242	180.7	10699.5
СВТ	E07	Writing	49	14	1629.8	726.7	896.5	3542.2	1491.1	641.2	815.3	3109.7
СВТ	E08	All Items	232	104	1922.6	1726.3	164.2	9222.1	1853.3	1678.6	152.6	8390.7
СВТ	E08	Reading	176	88	1978.9	1852.7	164.2	9222.1	1926.5	1799.7	152.6	8390.7
СВТ	E08	Writing	56	16	1612.9	658.6	922.3	3385.1	1450.6	599.1	819.6	3049.7
СВТ	E09	All Items	210	96	1683.8	1348.7	150.2	5455.1	1671.9	1443.7	148.7	7125.8
СВТ	E09	Reading	168	84	1708.7	1420	150.2	5455.1	1706.4	1516.9	148.7	7125.8
СВТ	E09	Writing	42	12	1508.9	675.2	807.7	2529.8	1430.6	751.9	693.6	3132.4
СВТ	E10	All Items	232	104	1154.7	1286	58.1	11355.6	1127.9	1500.8	57.2	14014.8
СВТ	E10	Reading	176	88	1159.9	1387.4	58.1	11355.6	1156.9	1623.6	57.2	14014.8

2017 Technical Report

			No. of				G ²				Q ₁	
Mode	Grade	Item Grouping	Score Points	No. of Items	Mean	SD	Min	Max	Mean	SD	Min	Max
СВТ	E10	Writing	56	16	1126.3	436.8	682.7	2219.3	968	380.8	604.1	1927.5
СВТ	E11	All Items	236	106	747.9	700.2	74.9	5082.1	700.3	665	75.6	4584.2
СВТ	E11	Reading	180	90	713	740.8	74.9	5082.1	678.8	708.7	75.6	4584.2
СВТ	E11	Writing	56	16	944.2	356.8	625	1986.5	821.4	311.7	541.3	1711.7

Appendix 10.2: IRT Results for Spring 2017 Mathematics

Table A.10.5 CBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject

			No. of			b Estimates	Summary			a Estimat	es Summar	у
		Item	Score	No. of								
Mode	Grade	Grouping	Points	Items	Mean	SD	Min	Max	Mean	SD	Min	Max
CBT	M03	All Items	172	113	-0.01	1.13	-3.00	2.81	0.77	0.25	0.22	1.42
CBT	M03	SSMC	24	24	-0.28	1.08	-2.56	1.99	0.69	0.28	0.26	1.31
CBT	M03	CR	148	89	0.07	1.14	-3.00	2.81	0.80	0.24	0.22	1.42
CBT	M03	Type I	106	96	-0.15	1.13	-3.00	2.35	0.81	0.25	0.22	1.42
CBT	M03	Type II	36	10	0.51	0.87	-0.16	2.81	0.58	0.15	0.40	0.82
CBT	M03	Type III	30	7	1.16	0.23	0.78	1.46	0.53	0.14	0.30	0.76
СВТ	M04	All Items	155	99	0.13	0.93	-1.98	2.10	0.76	0.19	0.29	1.23
CBT	M04	SSMC	11	11	-0.82	0.75	-1.98	0.65	0.70	0.09	0.49	0.80
CBT	M04	CR	144	88	0.25	0.88	-1.78	2.10	0.77	0.20	0.29	1.23
CBT	M04	Type I	101	84	-0.04	0.86	-1.98	2.10	0.79	0.19	0.34	1.23
CBT	M04	Type II	30	9	1.02	0.86	-0.94	2.06	0.64	0.17	0.29	0.84
CBT	M04	Type III	24	6	1.11	0.61	0.26	2.10	0.59	0.19	0.33	0.85
CBT	M05	All Items	164	103	0.22	1.08	-2.44	2.61	0.68	0.25	0.22	1.45
CBT	M05	SSMC	14	14	-0.25	1.02	-1.55	1.56	0.71	0.32	0.22	1.36
CBT	M05	CR	150	89	0.29	1.08	-2.44	2.61	0.67	0.23	0.23	1.45
CBT	M05	Type I	108	87	0.05	1.08	-2.44	2.61	0.69	0.26	0.22	1.45
CBT	M05	Type II	32	9	1.06	0.57	-0.21	1.71	0.53	0.13	0.30	0.68
CBT	M05	Type III	24	7	1.16	0.52	0.54	2.14	0.68	0.17	0.42	0.89
CBT	M06	All Items	163	95	0.28	1.10	-2.98	2.46	0.72	0.25	0.26	1.38
CBT	M06	SSMC	16	16	-0.22	1.23	-2.70	1.69	0.56	0.20	0.26	1.03
CBT	M06	CR	147	79	0.38	1.05	-2.98	2.46	0.75	0.24	0.29	1.38
CBT	M06	Type I	99	78	0.12	1.12	-2.98	2.46	0.76	0.25	0.26	1.38
CBT	M06	Type II	34	10	1.01	0.68	-0.15	2.37	0.51	0.14	0.29	0.76
CBT	M06	Type III	30	7	1.00	0.65	0.07	1.73	0.58	0.09	0.42	0.72
СВТ	M07	All Items	163	97	1.07	1.08	-1.76	3.47	0.70	0.28	0.24	1.71
CBT	M07	SSMC	16	16	-0.05	0.91	-1.76	1.55	0.56	0.21	0.24	0.87
CBT	M07	CR	147	81	1.29	0.96	-1.04	3.47	0.73	0.28	0.29	1.71

			No. of			b Estimates	Summary			a Estimat	es Summar	У
Mode	Grade	Item Grouping	Score Points	No. of Items	Mean	SD	Min	Max	Mean	SD	Min	Max
СВТ	M07	Type I	106	81	1.01	1.11	-1.76	3.47	0.72	0.29	0.24	1.71
CBT	M07	Type II	36	10	1.32	0.63	0.09	2.28	0.60	0.14	0.35	0.82
CBT	M07	Type III	21	6	1.44	1.22	0.14	3.16	0.59	0.15	0.41	0.78
CBT	M08	All Items	166	91	1.10	1.07	-1.80	3.92	0.65	0.26	0.23	1.35
CBT	M08	SSMC	24	24	0.32	1.01	-1.80	1.99	0.48	0.16	0.23	0.82
CBT	M08	CR	142	67	1.38	0.94	-0.73	3.92	0.70	0.26	0.25	1.35
CBT	M08	Type I	100	74	0.95	1.09	-1.80	3.92	0.67	0.27	0.23	1.35
CBT	M08	Type II	36	10	1.82	0.54	0.74	2.50	0.53	0.17	0.31	0.76
CBT	M08	Type III	30	7	1.71	0.82	0.12	2.31	0.52	0.09	0.41	0.63
CBT	A1	All Items	191	104	1.53	0.92	-0.73	5.30	0.67	0.28	0.23	1.34
CBT	A1	SSMC	22	22	0.98	0.86	-0.73	2.74	0.46	0.15	0.25	0.71
CBT	A1	CR	169	82	1.68	0.88	-0.20	5.30	0.73	0.28	0.23	1.34
CBT	A1	Type I	115	85	1.52	0.95	-0.73	5.30	0.68	0.31	0.23	1.34
CBT	A1	Type II	28	8	1.69	0.74	0.20	2.54	0.65	0.14	0.48	0.88
CBT	A1	Type III	48	11	1.49	0.79	0.39	2.59	0.60	0.10	0.48	0.79
CBT	GO	All Items	206	110	1.14	0.98	-1.77	3.88	0.77	0.33	0.16	1.86
CBT	GO	SSMC	15	15	0.09	0.89	-1.77	1.60	0.51	0.19	0.16	0.83
CBT	GO	CR	191	95	1.30	0.89	-0.36	3.88	0.82	0.33	0.19	1.86
CBT	GO	Type I	123	90	0.98	1.01	-1.77	3.88	0.79	0.35	0.16	1.86
CBT	GO	Type II	29	8	1.80	0.33	1.32	2.28	0.75	0.19	0.45	1.11
CBT	GO	Type III	54	12	1.85	0.47	0.99	2.52	0.72	0.21	0.39	1.06
CBT	A2	All Items	194	102	1.56	0.91	-0.51	4.21	0.70	0.33	0.18	1.56
CBT	A2	SSMC	17	17	0.81	0.88	-0.51	2.26	0.52	0.18	0.20	0.89
CBT	A2	CR	177	85	1.71	0.84	-0.24	4.21	0.73	0.34	0.18	1.56
CBT	A2	Type I	116	82	1.41	0.91	-0.51	4.21	0.70	0.35	0.18	1.56
CBT	A2	Type II	36	10	2.10	0.62	0.72	3.14	0.69	0.25	0.33	1.04
CBT	A2	Type III	42	10	2.28	0.56	1.40	2.96	0.66	0.25	0.31	1.01
CBT	M1	All Items	81	42	1.15	1.07	-0.95	3.94	0.64	0.22	0.18	1.28
CBT	M1	SSMC	11	11	0.28	0.93	-0.95	2.25	0.52	0.24	0.22	0.92
CBT	M1	CR	70	31	1.46	0.95	-0.19	3.94	0.68	0.21	0.18	1.28

			No. of			b Estimates	Summary			a Estimat	es Summar	У
Mode	Grade	Item Grouping	Score Points	No. of Items	Mean	SD	Min	Max	Mean	SD	Min	Max
CBT	M1	Type I	49	34	0.97	0.98	-0.95	3.08	0.65	0.24	0.18	1.28
CBT	M1	Type II	14	4	1.55	1.63	0.28	3.94	0.62	0.14	0.46	0.78
CBT	M1	Type III	18	4	2.28	0.44	1.86	2.85	0.55	0.10	0.49	0.70
CBT	M2	All Items	80	41	1.90	1.45	-0.74	5.99	0.53	0.27	0.12	1.18
CBT	M2	SSMC	14	14	1.01	1.21	-0.74	3.24	0.37	0.13	0.12	0.56
CBT	M2	CR	66	27	2.36	1.37	0.04	5.99	0.62	0.29	0.17	1.18
CBT	M2	Type I	48	33	1.81	1.53	-0.74	5.99	0.52	0.29	0.12	1.18
CBT	M2	Type II	14	4	2.87	0.82	2.04	3.76	0.56	0.11	0.43	0.68
CBT	M2	Type III	18	4	1.65	0.98	0.20	2.27	0.64	0.16	0.47	0.79
CBT	M3	All Items	81	40	1.27	1.08	-2.27	4.28	0.59	0.27	0.16	1.27
CBT	M3	SSMC	12	12	0.84	1.71	-2.27	4.28	0.44	0.15	0.23	0.66
CBT	M3	CR	69	28	1.46	0.61	-0.04	2.79	0.66	0.29	0.16	1.27
CBT	M3	Type I	49	32	1.20	1.17	-2.27	4.28	0.58	0.29	0.16	1.27
CBT	M3	Type II	14	4	1.58	0.61	0.96	2.20	0.74	0.08	0.63	0.83
CBT	M3	Type III	18	4	1.57	0.57	0.90	2.11	0.53	0.20	0.30	0.76

Note: M03 through M08 = mathematics grades 3 through 8, A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics II, M2 = Integrated Mathematics III.

Table A.10.6 PBT IRT Summary Parameter Estimates for All Items for Mathematics by Grade/Subject

			No. of			b Estimat	es Summary			a Estima	tes Summa	ry
Mode	Grade	Item Grouping	Score Points	No. of Items	Mean	SD	Min	Max	Mean	SD	Min	Max
PBT	M03	All Items	66	43	-0.27	1.04	-2.44	2.08	0.74	0.26	0.29	1.42
PBT	M03	SSMC	14	14	-0.73	1.10	-2.44	0.69	0.72	0.15	0.41	0.92
PBT	M03	CR	52	29	-0.05	0.95	-2.16	2.08	0.74	0.30	0.29	1.42
PBT	M03	Type I	40	36	-0.43	1.04	-2.44	2.08	0.79	0.24	0.29	1.42
PBT	M03	Type II	14	4	0.54	0.68	-0.32	1.35	0.43	0.09	0.37	0.56
PBT	M03	Type III	12	3	0.56	0.42	0.19	1.02	0.49	0.11	0.37	0.57
PBT	M04	All Items	66	40	-0.18	1.12	-2.11	2.10	0.75	0.23	0.42	1.28
PBT	M04	SSMC	10	10	-0.76	1.22	-2.11	1.44	0.74	0.25	0.43	1.19
PBT	M04	CR	56	30	0.01	1.03	-1.83	2.10	0.75	0.23	0.42	1.28
PBT	M04	Type I	40	33	-0.44	1.03	-2.11	1.53	0.78	0.23	0.43	1.28
PBT	M04	Type II	14	4	1.25	0.68	0.65	2.10	0.68	0.15	0.50	0.86
PBT	M04	Type III	12	3	0.71	0.60	0.26	1.39	0.53	0.11	0.42	0.64
PBT	M05	All Items	66	40	0.00	1.16	-2.27	2.28	0.71	0.23	0.40	1.36
PBT	M05	SSMC	15	15	-0.78	1.01	-2.27	1.14	0.73	0.27	0.40	1.36
PBT	M05	CR	51	25	0.47	0.98	-1.49	2.28	0.70	0.21	0.40	1.27
PBT	M05	Type I	40	33	-0.24	1.10	-2.27	2.28	0.73	0.25	0.40	1.36
PBT	M05	Type II	14	4	0.88	0.70	-0.03	1.47	0.58	0.09	0.48	0.68
PBT	M05	Type III	12	3	1.49	0.47	0.97	1.89	0.63	0.19	0.42	0.78
PBT	M06	All Items	66	38	0.27	1.32	-3.54	3.59	0.64	0.24	0.23	1.40
PBT	M06	SSMC	15	15	-0.41	1.46	-3.54	1.64	0.59	0.23	0.23	1.09
PBT	M06	CR	51	23	0.71	1.03	-0.89	3.59	0.68	0.24	0.30	1.40
PBT	M06	Type I	40	31	0.14	1.41	-3.54	3.59	0.67	0.26	0.23	1.40
PBT	M06	Type II	14	4	0.61	0.54	-0.15	1.13	0.53	0.11	0.38	0.65
PBT	M06	Type III	12	3	1.19	0.61	0.48	1.57	0.54	0.07	0.47	0.61
PBT	M07	All Items	66	38	0.93	1.20	-1.66	3.06	0.61	0.21	0.34	1.06
PBT	M07	SSMC	14	14	-0.09	1.06	-1.66	1.79	0.51	0.14	0.34	0.79
PBT	M07	CR	52	24	1.53	0.81	-0.17	3.06	0.67	0.22	0.34	1.06

			No. of			b Estimat	es Summary			a Estima	tes Summa	ry
		Item	Score	No. of								
Mode	Grade	Grouping	Points	Items	Mean	SD	Min	Max	Mean	SD	Min	Max
PBT	M07	Type I	40	31	0.82	1.27	-1.66	3.06	0.62	0.22	0.34	1.06
PBT	M07	Type II	14	4	1.48	0.48	0.89	2.00	0.64	0.06	0.55	0.69
PBT	M07	Type III	12	3	1.36	1.08	0.14	2.22	0.54	0.12	0.45	0.68
PBT	M08	All Items	66	36	1.04	1.17	-1.17	3.22	0.56	0.24	0.18	1.23
PBT	M08	SSMC	14	14	0.60	1.28	-1.17	2.44	0.45	0.16	0.18	0.64
PBT	M08	CR	52	22	1.32	1.02	-0.48	3.22	0.64	0.25	0.27	1.23
PBT	M08	Type I	40	29	0.87	1.13	-1.17	2.58	0.57	0.25	0.18	1.23
PBT	M08	Type II	14	4	2.09	0.98	1.11	3.22	0.56	0.25	0.27	0.87
PBT	M08	Type III	12	3	1.29	1.34	-0.25	2.09	0.50	0.03	0.48	0.53
PBT	A1	All Items	81	42	1.05	1.14	-1.16	3.27	0.54	0.20	0.17	1.01
PBT	A1	SSMC	17	17	0.25	0.92	-1.16	2.41	0.47	0.17	0.17	0.73
PBT	A1	CR	64	25	1.59	0.96	-0.77	3.27	0.59	0.21	0.20	1.01
PBT	A1	Type I	49	34	0.87	1.12	-1.16	3.05	0.51	0.21	0.17	1.01
PBT	A1	Type II	14	4	2.18	0.90	1.11	3.27	0.64	0.07	0.59	0.75
PBT	A1	Type III	18	4	1.45	1.03	0.10	2.47	0.66	0.19	0.48	0.92
PBT	GO	All Items	81	43	1.02	1.10	-1.10	3.60	0.71	0.32	0.24	1.41
PBT	GO	SSMC	16	16	0.48	1.39	-1.10	3.60	0.51	0.23	0.24	0.98
PBT	GO	CR	65	27	1.33	0.75	-0.17	2.54	0.83	0.31	0.30	1.41
PBT	GO	Type I	49	35	0.82	1.13	-1.10	3.60	0.71	0.34	0.24	1.41
PBT	GO	Type II	14	4	2.01	0.26	1.72	2.30	0.78	0.25	0.51	1.11
PBT	GO	Type III	18	4	1.69	0.37	1.39	2.22	0.68	0.13	0.55	0.82
PBT	A2	All Items	81	41	1.75	1.87	-1.39	9.06	0.61	0.29	0.12	1.41
PBT	A2	SSMC	11	11	1.72	2.89	-1.39	9.06	0.49	0.30	0.12	1.12
PBT	A2	CR	70	30	1.76	1.39	-0.81	6.66	0.65	0.28	0.24	1.41
PBT	A2	Type I	49	33	1.70	2.07	-1.39	9.06	0.59	0.30	0.12	1.41
PBT	A2	Type II	14	4	2.00	0.67	1.36	2.95	0.78	0.24	0.50	1.04
PBT	A2	Type III	18	4	1.88	0.47	1.30	2.33	0.56	0.24	0.28	0.80
PBT	M1	All Items	81	42	1.22	1.31	-1.25	5.41	0.59	0.28	0.00	1.36
PBT	M1	SSMC	16	16	0.31	0.93	-1.25	2.38	0.51	0.27	0.17	1.24
PBT	M1	CR	65	26	1.78	1.19	-0.11	5.41	0.65	0.28	0.00	1.36

			No. of			b Estimat	tes Summary			a Estima	tes Summa	ry
Mode	Grade	Item Grouping	Score Points	No. of Items	Mean	SD	Min	Max	Mean	SD	Min	Max
PBT	M1	Type I	49	34	0.95	1.28	-1.25	5.41	0.57	0.29	0.00	1.36
PBT	M1	Type II	14	4	2.34	0.84	1.12	2.99	0.70	0.17	0.46	0.86
PBT	M1	Type III	18	4	2.37	0.58	1.70	2.86	0.73	0.25	0.47	1.08
PBT	M2	All	80	42	1.67	1.14	-0.5	4.87	0.52	0.24	0.18	1.15
PBT	M2	SSMC	19	19	1.11	0.91	-0.17	3.63	0.41	0.14	0.18	0.71
PBT	M2	CR	61	23	2.13	1.13	-0.5	4.87	0.61	0.26	0.22	1.15
PBT	M2	1	48	34	1.65	1.2	-0.17	4.87	0.5	0.25	0.18	1.15
PBT	M2	II	14	4	2.14	0.18	1.94	2.34	0.63	0.09	0.51	0.7
PBT	M2	III	18	4	1.4	1.28	-0.5	2.27	0.6	0.14	0.47	0.79
PBT	M3	All	80	39	1.31	1.33	-2.27	4.61	0.56	0.26	0.13	1.24
PBT	M3	SSMC	12	12	0.73	1.67	-2.27	4.28	0.52	0.27	0.2	1.24
PBT	M3	CR	68	27	1.57	1.08	-0.35	4.61	0.58	0.26	0.13	1.1
PBT	M3	1	48	31	1.2	1.43	-2.27	4.61	0.54	0.27	0.13	1.24
PBT	M3	II	14	4	1.62	0.48	0.96	1.99	0.72	0.14	0.52	0.83
PBT	M3	Ш	18	4	1.87	0.95	0.71	2.99	0.53	0.23	0.25	0.76

Note: M03 through M08 = mathematics grades 3 through 8, A1 = Algebra I, GO = Geometry, A2 = Algebra II, M1 = Integrated Mathematics I, M2 = Integrated Mathematics III.

Appendix 12.1: Form Composition

Table A.12.1 Form Composition for ELA/L Grade 3

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	10 - 12	23 - 27
	Reading Informational Text	8 - 9	19 - 21
	Vocabulary	5 - 8	10 - 16
	Claim Total	26	58
Writing			
	Written Expression	2	27
	Knowledge of Conventions	1	9
	Claim Total	3	36
SUMMATIVE TOTA	AL	29	94

Note: This table is identical to Table 12.1 in Section 12.

Table A.12.2 Form Composition for ELA/L Grade 4

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	10 - 11	24 - 26
	Reading Informational Text	10 - 12	24 - 28
	Vocabulary	5 - 8	10 - 16
	Claim Total	28	64
Writing			
	Written Expression	2	33
	Knowledge of Conventions	1	9
	Claim Total	3	42
SUMMATIVE TOTAL		31	106

Table A.12.3 Form Composition for ELA/L Grade 5

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	9 - 11	22 - 26
	Reading Informational Text	9 - 11	22 - 26
	Vocabulary	7 - 8	14 - 16
	Claim Total	28	64
Writing			
	Written Expression	2	33
	Knowledge of Conventions	1	9
	Claim Total	3	42
SUMMATIVE TOTA	L	31	106

Table A.12.4 Form Composition for ELA/L Grade 6

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	9 - 11	22 - 26
	Reading Informational Text	14 - 16	32 - 36
	Vocabulary	7 - 9	14 - 18
	Claim Total	34	76
Writing			
	Written Expression	2	36
	Knowledge of Conventions	1	9
	Claim Total	3	45
SUMMATIVE TOTAL		37	121

Table A.12.5 Form Composition for ELA/L Grade 7

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	7 - 13	18 - 30
	Reading Informational Text	13 - 16	32 - 36
	Vocabulary	8 - 11	16 - 22
	Claim Total	34	76
Writing			
	Written Expression	2	36
	Knowledge of Conventions	1	9
	Claim Total	3	45
SUMMATIVE TOTAL		37	121

Table A.12.6 Form Composition for ELA/L Grade 8

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	7 - 12	18 - 28
	Reading Informational Text	12 - 19	28 - 42
	Vocabulary	7 - 10	14 - 20
	Claim Total	34	76
Writing			
	Written Expression	2	36
	Knowledge of Conventions	1	9
	Claim Total	3	45
SUMMATIVE TOTA	L	37	121

Table A.12.7 Form Composition for ELA/L Grade 9

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	8 - 15	20 - 34
	Reading Informational Text	12 - 18	28 - 40
	Vocabulary	7 - 9	14 - 18
	Claim Total	34	76
Writing			
	Written Expression	2	36
	Knowledge of Conventions	1	9
	Claim Total	3	45
SUMMATIVE TOTAL		37	121

Table A.12.8 Form Composition for ELA/L Grade 10

Claims	Subclaims	Number of Items	Number of Points
Reading			
	Reading Literary Text	8 - 14	20 - 32
	Reading Informational Text	13 - 19	30 - 42
	Vocabulary	7 - 9	14 - 18
	Claim Total	34	76
Writing			
	Written Expression	2	36
	Knowledge of Conventions	1	9
	Claim Total	3	45
SUMMATIVE TOTAL		37	121

Table A.12.9 Form Composition for ELA/L Grade 11

Subclaims	Number of Items	Number of Points
Reading Literary Text	8 - 14	20 - 32
Reading Informational Text	13 - 19	30 - 42
Vocabulary	7 - 9	14 - 18
Claim Total	34	76
Written Expression	2	36
Knowledge of Conventions	1	9
Claim Total	3	45
L	37	121
	Reading Literary Text Reading Informational Text Vocabulary Claim Total Written Expression Knowledge of Conventions	Reading Literary Text 8 - 14 Reading Informational Text 13 - 19 Vocabulary 7 - 9 Claim Total 34 Written Expression 2 Knowledge of Conventions 1 Claim Total 3

Table A.12.10 Form Composition for Mathematics Grade 3

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	26	30
	Additional & Supporting Content	10	10
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	3	12
TOTAL		43	66

Note: This table is identical to Table 12.3 in Section 12.

Table A.12.11 Form Composition for Mathematics Grade 4

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	25	31
	Additional & Supporting Content	8	9
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	3	12
TOTAL		40	66

Table A.12.12 Form Composition for Mathematics Grade 5

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	25	30
	Additional & Supporting Content	8	10
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	3	12
TOTAL		40	66

Table A.12.13 Form Composition for Mathematics Grade 6

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	20	26
	Additional & Supporting Content	11	14
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	3	12
TOTAL		38	66

Table A.12.14 Form Composition for Mathematics Grade 7

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	23	29
	Additional & Supporting Content	8	11
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	3	12
TOTAL		38	66

Table A.12.15 Form Composition for Mathematics Grade 8

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	21	27
	Additional & Supporting Content	8	13
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	3	12
TOTAL		36	66

Table A.12.16 Form Composition for Algebra I

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	21	28
	Additional & Supporting Content	13	21
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	4	18
TOTAL		42	81

Table A.12.17 Form Composition for Geometry

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	21	30
	Additional & Supporting Content	14	19
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	4	18
TOTAL		43	81

Table A.12.18 Form Composition for Algebra II

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	20	29
	Additional & Supporting Content	13	20
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	4	18
TOTAL		41	81

Table A.12.19 Form Composition for Integrated Mathematics I

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	21	31
	Additional & Supporting Content	13	18
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	4	18
TOTAL		42	81

Table A.12.20 Form Composition for Integrated Mathematics II

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	22	32
	Additional & Supporting Content	12	17
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	4	18
TOTAL		42	81

Table A.12.21 Form Composition for Integrated Mathematics III

	Subclaims	Number of Items	Number of Points
Mathematics			
	Major Content	19	26
	Additional & Supporting Content	13	23
	Expressing Mathematical Reasoning	4	14
	Modeling and Applications	4	18
TOTAL		40	81

Appendix 12.2: Scaling Constants and Associated Information

Table A.12.22 Threshold Scores and Scaling Constants for ELA/L Grades 3 to 8

PARCC Assessment	Threshold Cut	Theta	Scale Score	Α	В
	Level 2 Cut	-0.9648	700		
Grade 3 ELA	Level 3 Cut	-0.2840	726	36.7227	735.4297
Graue 5 ELA	Level 4 Cut	0.3968	750	50.7227	733.4237
	Level 5 Cut	2.0360	810		
	Level 2 Cut	-1.3004	700		
Grade 4 ELA	Level 3 Cut	-0.5079	725	31.5462	741.0214
Grade 4 ELA	Level 4 Cut	0.2846	750	31.3402	741.0214
	Level 5 Cut	1.5578	790		
	Level 2 Cut	-1.3411	700		
Grade 5 ELA	Level 3 Cut	-0.4924	726	20 4590	739.5050
Grade 5 ELA	Level 4 Cut	0.3563	750	29.4580	739.3030
	Level 5 Cut	2.0224	799	•	
	Level 2 Cut	-1.3656	700		
Grade 6 ELA	Level 3 Cut	-0.4827	725	28.3160	738.6673
Grade 6 ELA	Level 4 Cut	0.4002	750	20.3100	738.0073
	Level 5 Cut	1.8133	790		
	Level 2 Cut	-1.2488	700		
Grade 7 ELA	Level 3 Cut	-0.5117	725	33.9161	742.3542
Grade / ELA	Level 4 Cut	0.2254	750	35.9101	742.3342
	Level 5 Cut	1.2614	785		
	Level 2 Cut	-1.2730	700		
Grade 8 ELA	Level 3 Cut	-0.5402	725	34.1183	743.4330
Grade & ELA	Level 4 Cut	0.1925	750	34.1183	743.4330
	Level 5 Cut	1.4696	794	-	

Table A.12.23 Threshold Scores and Scaling Constants for Mathematics Grades 3 to 8

PARCC Assessment	Threshold Cut	Theta	Scale Score	Α	В	
	Level 2 Cut	-1.4141	700			
Crada 2 Mathamatica	Level 3 Cut	-0.6356	727	22 1125	745.4119	
Grade 3 Mathematics —	Level 4 Cut	0.1429	750	32.1135	745.4119	
	Level 5 Cut	1.3931	790			
	Level 2 Cut	-1.3840	700			
Grade 4 Mathematics —	Level 3 Cut	-0.5484	727	20.0167	741.4049	
Grade 4 Mathematics —	Level 4 Cut	0.2873	750	29.9167	741.4049	
	Level 5 Cut	1.8323	796			
	Level 2 Cut	-1.4571	700			
Grade 5 Mathematics —	Level 3 Cut	-0.5959	725	20.0204	742.2997	
Grade 5 Mathematics —	Level 4 Cut	0.2653	750	29.0301		
	Level 5 Cut	1.6262	790			
	Level 2 Cut	-1.3829	700			
Grade 6 Mathematics —	Level 3 Cut	-0.4948	725	30.1465	738.9252	
Grade 6 Mathematics —	Level 4 Cut	0.3935	750	28.1465	736.9232	
	Level 5 Cut	1.7567	788			
	Level 2 Cut	-1.4464	700			
Crada 7 Mathamatica	Level 3 Cut	-0.4505	725	25 1022	736.3102	
Grade 7 Mathematics —	Level 4 Cut	0.5453	750	25.1033	730.3102	
_	Level 5 Cut	1.9919	786	•		
	Level 2 Cut	-0.8851	700			
Crada Q Mathamatica	Level 3 Cut	-0.1264	728	22.0505	720 1640	
Grade 8 Mathematics —	Level 4 Cut	0.6323	750	32.9505	729.1640	
	Level 5 Cut	2.1896	801	-		

Table A.12.24 Threshold Scores and Scaling Constants for High School ELA

PARCC Assessment	Threshold Cut	Theta	Scale Score	Α	В
	Level 2 Cut	-1.1635	700		
Crada O ELA	Level 3 Cut	-0.4329	726	24 2474	739.8124
Grade 9 ELA -	Level 4 Cut	0.2977	750	34.2174	759.0124
	Level 5 Cut	1.5065	791		
	Level 2 Cut	-0.8909	700	43.1280 738	
- Canada 10 FLA	Level 3 Cut	-0.3112	725		738.4223
Grade 10 ELA -	Level 4 Cut	0.2684	750		730.4223
	Level 5 Cut	1.2858	794		
	Level 2 Cut	-1.1017	700		
Grade 11 ELA -	Level 3 Cut	-0.3859	726	34.9278	738.4801
	Level 4 Cut	0.3298	750	34.92/8	730.4601
	Level 5 Cut	1.5206	792		

Table A.12.25 Threshold Scores and Scaling Constants for High School Mathematics

PARCC Assessment	Threshold Cut	Theta	Scale Score	Α	В
	Level 2 Cut	-1.1781	700		
	Level 3 Cut	-0.3853	728	24 5225	737.1490
Algebra I	Level 4 Cut	0.4075	750	31.5325	737.1430
-	Level 5 Cut	2.1651	805		
	Level 2 Cut	-0.5759	700		
Algebra II	Level 3 Cut	0.0860	726	37.7676	721.7509
Algebra II	Level 4 Cut	0.7480	750	37.7676	721.7303
	Level 5 Cut	2.2728	808		
	Level 2 Cut	-1.3013	700		
Coomotry	Level 3 Cut	-0.3389	726	25.9775	733.8039
Geometry -	Level 4 Cut	0.6235	750		755.6055
	Level 5 Cut	1.8940	783		
	Level 2 Cut	-1.0919	700		734.9446
Integrated	Level 3 Cut	-0.3107	726	32.0043	
Mathematics I	Level 4 Cut	0.4704	750	32.0043	734.3440
	Level 5 Cut	1.9934	799		
	Level 2 Cut	-0.9175	700		
Integrated	Level 3 Cut	-0.0638	725	20.2865	726.8695
Mathematics II	Level 4 Cut	0.7898	750	29.2865	720.0093
	Level 5 Cut	1.9817	785		
	Level 2 Cut	-0.7076	700		
Integrated	Level 3 Cut	-0.0384	726	27.2540	726.4336
Mathematics III	Level 4 Cut	0.6309	750	37.3549	720.4330
	Level 5 Cut	2.0689	804		

Table A.12.26 Scaling Constants for Reading and Writing Grades 3 to 11 $\,$

			iting
\boldsymbol{A}_{R}	B _R	Aw	B w
14.6891	44.1719	7.3445	32.0859
12.6184	46.4086	6.3093	33.2043
11.7832	45.8019	5.8916	32.9010
11.3264	45.4669	5.6632	32.7335
13.5664	46.9416	6.7832	33.4708
13.6472	47.3732	6.8237	33.6866
13.6870	45.9250	6.8435	32.9625
17.2512	45.3690	8.6256	32.6845
13.9712	45.3920	6.9856	32.6961
	14.6891 12.6184 11.7832 11.3264 13.5664 13.6472 13.6870 17.2512	14.6891 44.1719 12.6184 46.4086 11.7832 45.8019 11.3264 45.4669 13.5664 46.9416 13.6472 47.3732 13.6870 45.9250 17.2512 45.3690	14.6891 44.1719 7.3445 12.6184 46.4086 6.3093 11.7832 45.8019 5.8916 11.3264 45.4669 5.6632 13.5664 46.9416 6.7832 13.6472 47.3732 6.8237 13.6870 45.9250 6.8435 17.2512 45.3690 8.6256

Appendix 12.3: IRT Test Characteristic Curves, Information Curves, and CSEM Curves

Figure A.12.1 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 3

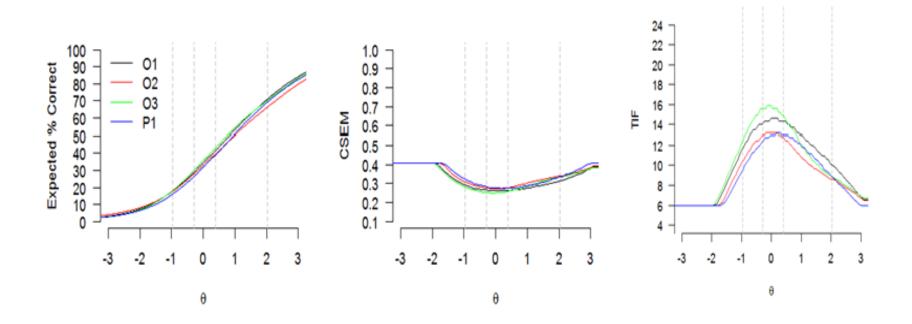


Figure A.12.2 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 4

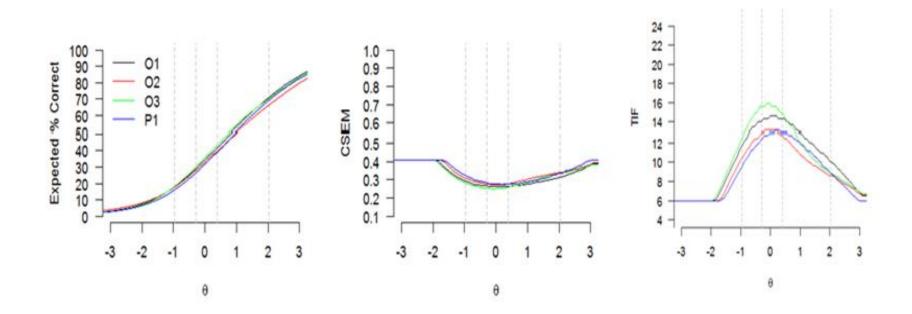


Figure A.12.3 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 5

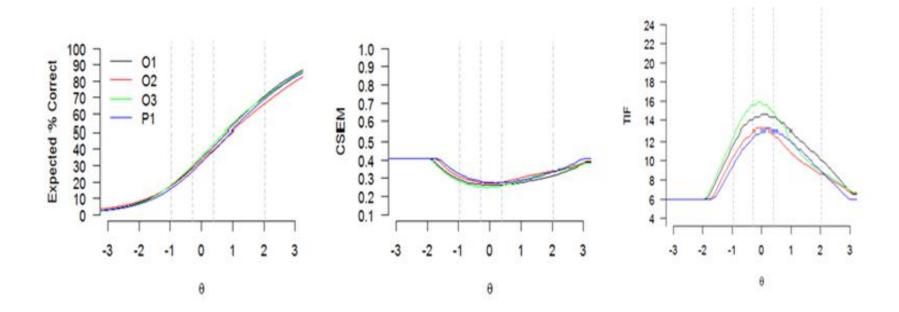


Figure A.12.4 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 6

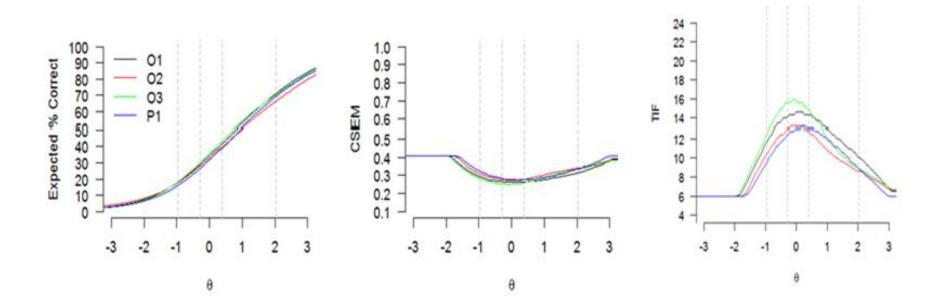


Figure A.12.5 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 7

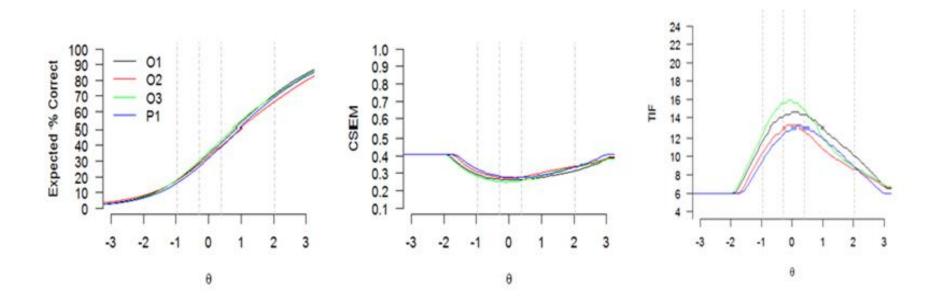


Figure A.12.6 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 8

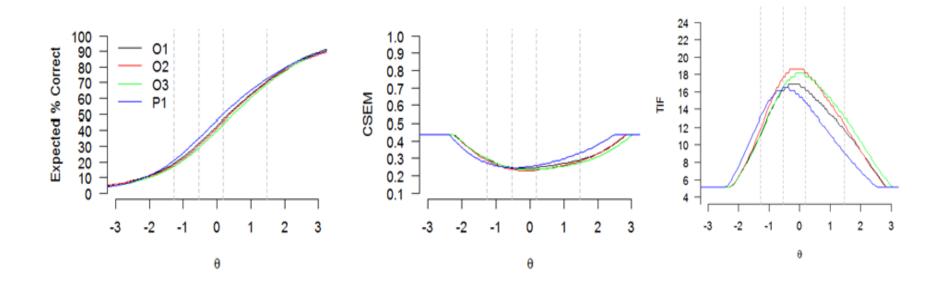


Figure A.12.7 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 9

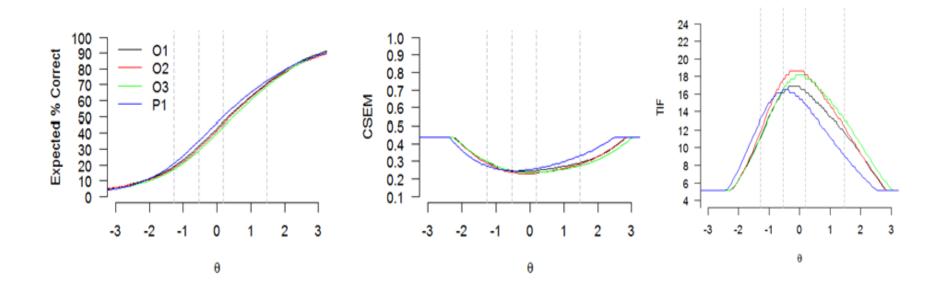


Figure A.12.8 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 10

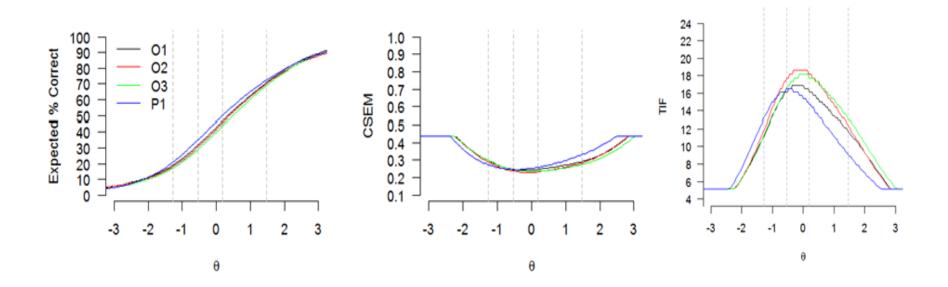


Figure A.12.9 IRT Test Characteristic Curves, Information Curves, and CSEM Curves ELA/L Grade 11

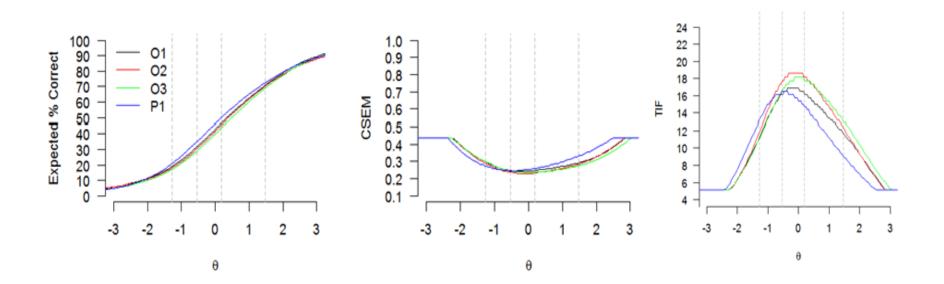


Figure A.12.10 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathematics Grade 3

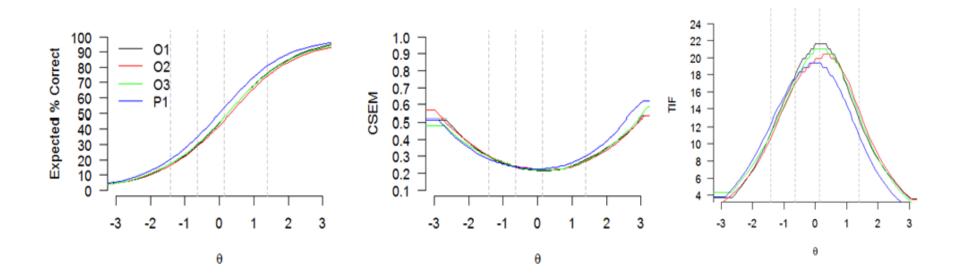


Figure A.12.11 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathematics Grade 4

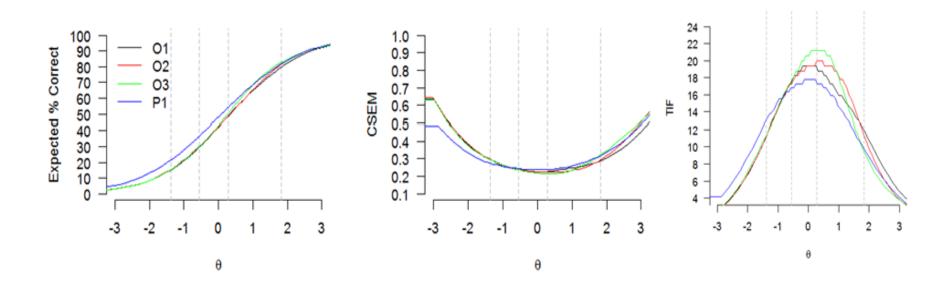


Figure A.12.12 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathematics Grade 5

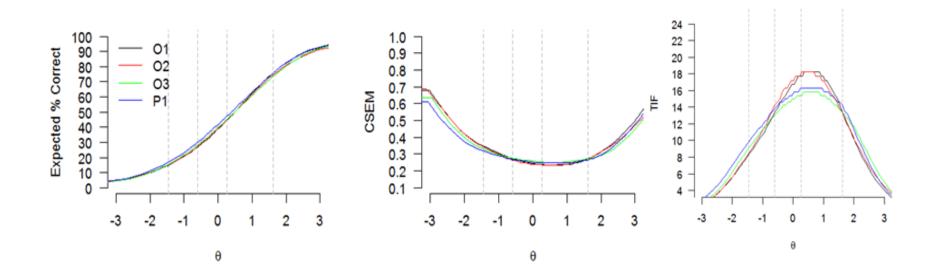


Figure A.12.13 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathematics Grade 6

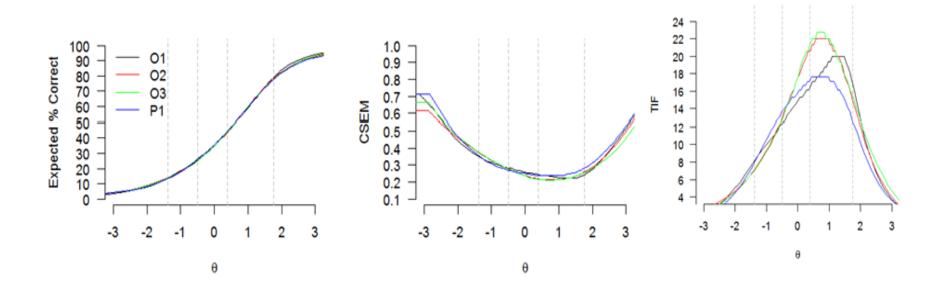


Figure A.12.14 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathematics Grade 7

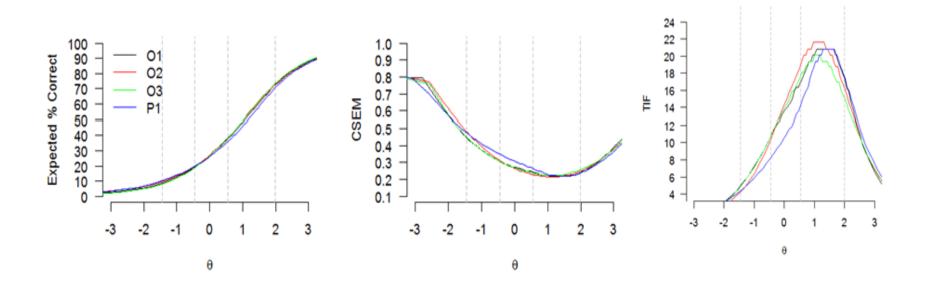


Figure A.12.15 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Mathematics Grade 8

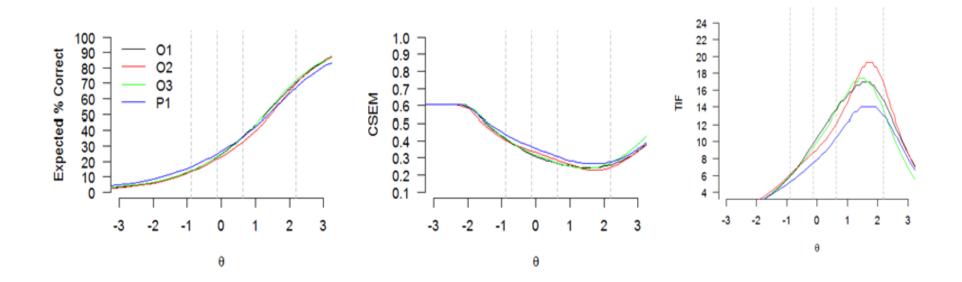


Figure A.12.16 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Algebra I

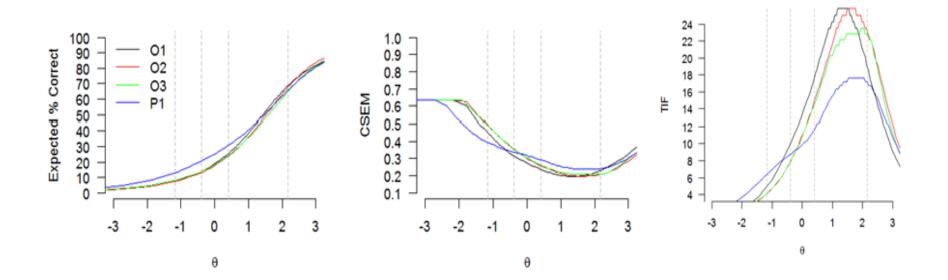


Figure A.12.17 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Geometry

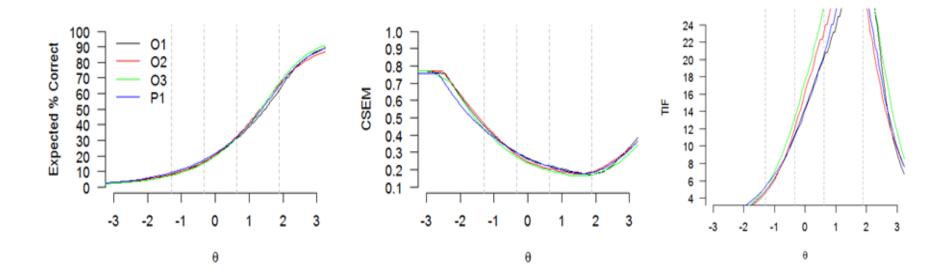


Figure A.12.18 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Algebra II

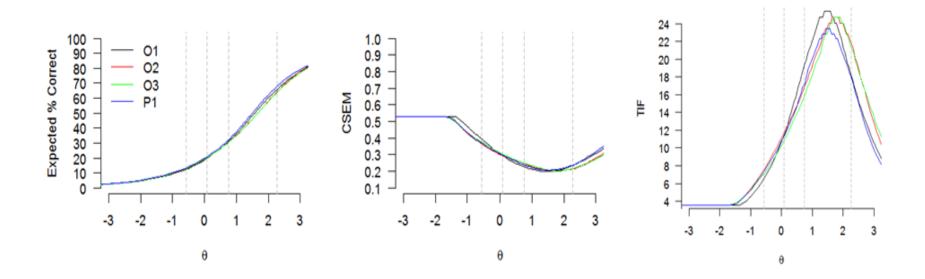


Figure A.12.19 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Integrated Mathematics I

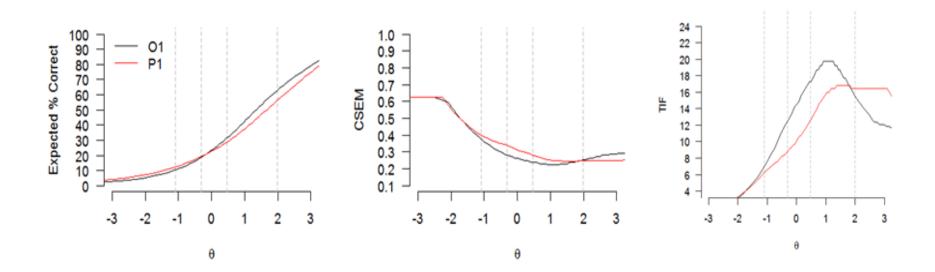


Figure A.12.20 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Integrated Mathematics II

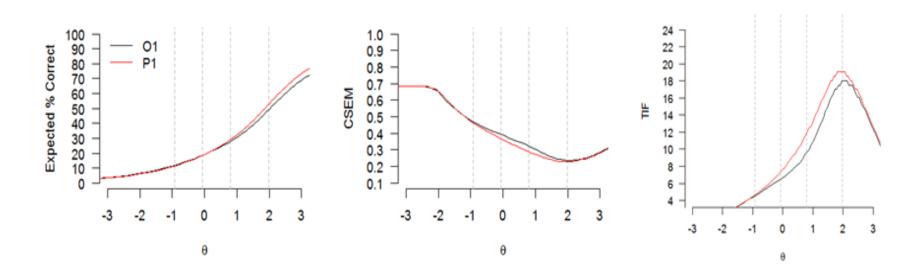
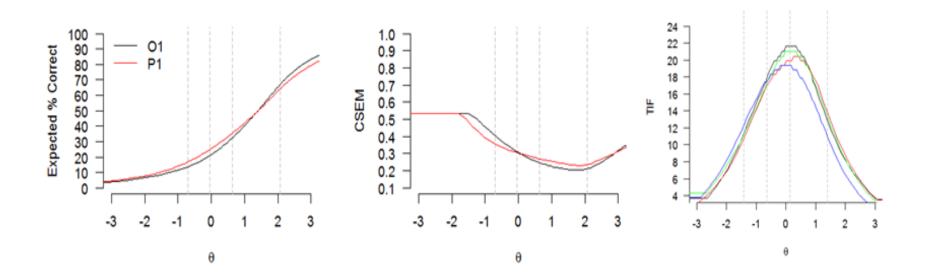



Figure A.12.21 IRT Test Characteristic Curves, Information Curves, and CSEM Curves Integrated Mathematics III

Appendix 12.4: Subgroup Scale Score Performance

Table A.12.27 Subgroup Performance for ELA/L Scale Scores: Grade 3

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	420,496	738.23	41.04	650	850
Gender	Female	206,149	743.10	41.14	650	850
	Male	214,347	733.54	40.40	650	850
Ethnicity	American Indian/Alaska Native	5,920	716.34	34.04	650	850
	Asian	24,650	766.38	39.94	650	850
	Black or African American	73,056	721.93	38.49	650	850
	Hispanic/Latino	118,820	725.02	37.91	650	850
	Native Hawaiian or Pacific Islander	672	745.66	42.15	650	850
	Multiple Race Selected	15,036	743.81	40.77	650	850
	White	181,382	749.85	38.43	650	850
Economic Status*	Economically Disadvantaged	209,280	722.50	37.11	650	850
	Not Economically Disadvantaged	210,597	753.81	38.74	650	850
English Learner Status	English Learner (EL)	61,177	712.91	34.21	650	850
	Non English Learner	349,974	742.44	40.55	650	850
Disabilities	Students with Disabilities (SWD)	61,999	709.57	38.69	650	850
	Students without Disabilities	357,072	743.21	39.37	650	850
Reading Score		420,496	45.36	16.33	10	90
Gender	Female	206,149	46.67	16.26	10	90
	Male	214,347	44.10	16.31	10	90
Ethnicity	American Indian/Alaska Native	5,920	36.35	13.27	10	90
	Asian	24,650	55.60	15.92	10	90
	Black or African American	73,056	38.82	14.94	10	90
	Hispanic/Latino	118,820	39.74	14.69	10	90
	Native Hawaiian or Pacific Islander	672	47.29	16.35	10	90
	Multiple Race Selected	15,036	47.96	16.36	10	90
	White	181,382	50.37	15.55	10	90
Economic Status*	Economically Disadvantaged	209,280	38.98	14.45	10	90
	Not Economically Disadvantaged	210,597	51.69	15.62	10	90
English Learner Status	English Learner (EL)	61,177	34.91	13.02	10	90
	Non English Learner	349,974	47.09	16.17	10	90
Disabilities	Students with Disabilities (SWD)	61,999	34.76	15.44	10	90
	Students without Disabilities	357,072	47.21	15.77	10	90
Writing Score		420,496	30.41	12.53	10	60
Gender	Female	206,149	32.48	12.13	10	60
	Male	214,347	28.43	12.58	10	60

Group Type	Group	N	Mean	SD	Min	Max
Ethnicity	American Indian/Alaska Native	5,920	25.71	11.67	10	60
	Asian	24,650	38.19	10.94	10	60
	Black or African American	73,056	26.50	12.48	10	60
	Hispanic/Latino	118,820	27.68	12.38	10	60
	Native Hawaiian or Pacific Islander	672	33.23	12.62	10	60
	Multiple Race Selected	15,036	31.22	12.46	10	60
	White	181,382	32.80	11.82	10	60
Economic Status*	Economically Disadvantaged	209,280	26.71	12.29	10	60
	Not Economically Disadvantaged	210,597	34.09	11.64	10	60
English Learner Status	English Learner (EL)	61,177	24.79	12.01	10	60
	Non English Learner	349,974	31.36	12.36	10	60
Disabilities	Students with Disabilities (SWD)	61,999	21.99	12.27	10	60
	Students without Disabilities	357,072	31.88	11.98	10	60

Note: This table is identical to Table 12.7 in Section 12.

^{*}Economic status was based on participation in National School Lunch Program (NSLP): receipt of free or reduced-price lunch (FRL).

Table A.12.28 Subgroup Performance for ELA/L Scale Scores: Grade 4

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	423,098	741.99	35.79	650	850
Gender	Female	207,393	746.75	35.54	650	850
	Male	215,705	737.41	35.43	650	850
Ethnicity	American Indian/Alaska Native	5,712	719.88	30.85	650	850
	Asian	24,252	767.86	34.55	650	850
	Black or African American	71,790	727.19	33.47	650	850
	Hispanic/Latino	121,196	730.79	32.91	650	850
	Native Hawaiian or Pacific Islander	712	752.00	34.01	650	850
	Multiple Race Selected	14,484	746.25	35.67	650	850
	White	183,920	752.05	33.49	650	850
Economic Status*	Economically Disadvantaged	208,196	727.96	32.43	650	850
	Not Economically Disadvantaged	214,097	755.60	33.56	650	850
English Learner Status	English Learner (EL)	39,762	709.56	27.58	650	849
	Non English Learner	373,645	745.22	34.80	650	850
Disabilities	Students with Disabilities (SWD)	66,696	714.35	34.61	650	850
	Students without Disabilities	354,908	747.19	33.55	650	850
Reading Score		423,098	46.67	14.22	10	90
Gender	Female	207,393	47.83	14.08	10	90
	Male	215,705	45.55	14.25	10	90
Ethnicity	American Indian/Alaska Native	5,712	37.56	12.20	10	88
	Asian	24,252	56.39	13.81	10	90
	Black or African American	71,790	40.76	12.93	10	90
	Hispanic/Latino	121,196	41.,89	12.79	10	90
	Native Hawaiian or Pacific Islander	712	49.75	13.31	10	90
	Multiple Race Selected	14,484	48.71	14.24	10	90
	White	183,920	50.95	13.49	10	90
Economic Status*	Economically Disadvantaged	208,196	40.99	12.65	10	90
	Not Economically Disadvantaged	214,097	52.17	13.47	10	90
English Learner Status	English Learner (EL)	39,762	3364	10.45	10	90
	Non English Learner	373,645	47.96	13.85	10	90
Disabilities	Students with Disabilities (SWD)	66,696	36.62	13.77	10	90
	Students without Disabilities	354,908	48.55	13.49	10	90
Writing Score		423,098	32.27	10.26	10	60
Gender	Female	207,393	34.17	9.67	10	60
	Male	215,705	30.44	10.47	10	60
Ethnicity	American Indian/Alaska Native	5,712	27.45	9.85	10	60

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	71,790	28.74	10.46	10	60
	Hispanic/Latino	121,196	29.94	10.18	10	60
	Native Hawaiian or Pacific Islander	712	35.50	9.20	10	60
	Multiple Race Selected	14,484	32.90	10.19	10	60
	White	183,920	34.42	9.46	10	60
Economic Status*	Economically Disadvantaged	208,196	29.03	10.19	10	60
	Not Economically Disadvantaged	214,097	35.41	9.30	10	60
English Learner Status	English Learner (EL)	39,762	24.53	9.97	10	60
	Non English Learner	373,645	33.04	9.94	10	60
Disabilities	Students with Disabilities (SWD)	66,696	24.30	10.96	10	60
	Students without Disabilities	354,908	33.77	9.39	10	60

Table A.12.29 Subgroup Performance for ELA/L Scale Scores: Grade 5

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	414,461	742.72	34.77	650	850
Gender	Female	203,177	748.37	34.54	650	850
	Male	211,284	737.28	34.11	650	850
Ethnicity	American Indian/Alaska Native	5,579	723.58	29.76	650	832
	Asian	24,081	767.80	33.97	650	850
	Black or African American	68,895	727.80	32.54	650	847
	Hispanic/Latino	117,135	731.87	32.37	650	850
	Native Hawaiian or Pacific Islander	640	749.92	36.22	654	837
	Multiple Race Selected	13,586	747.21	34.80	650	850
	White	183,710	752.17	32.27	650	850
Economic Status*	Economically Disadvantaged	199,992	728.95	31.70	650	849
	Not Economically Disadvantaged	213,846	755.57	32.51	650	850
English Learner Status	English Learner (EL)	29,084	706.57	26.54	650	827
	Non English Learner	375,848	745.29	33.75	650	850
Disabilities	Students with Disabilities (SWD)	67,384	715.48	32.54	650	850
	Students without Disabilities	345,765	748.03	32.65	650	850
Reading Score		414,461	47.01	13.93	10	90
Gender	Female	203,177	48.41	13.80	10	90
	Male	211,284	45.65	13.91	10	90
Ethnicity	American Indian/Alaska Native	5,579	39.38	11.89	10	87
	Asian	24,081	56.23	13.66	10	90
	Black or African American	68,895	41.27	12.89	10	90
	Hispanic/Latino	117,135	42.39	12.84	10	90
	Native Hawaiian or Pacific Islander	640	48.80	13.94	10	81
	Multiple Race Selected	13,586	49.30	14.04	10	90
	White	183,710	50.95	13.05	10	90
Economic Status*	Economically Disadvantaged	199,992	41.53	12.60	10	90
	Not Economically Disadvantaged	213,846	52.12	13.13	10	90
English Learner Status	English Learner (EL)	29,084	32.59	10.27	10	81
	Non English Learner	375,848	48.04	13.55	10	90
Disabilities	Students with Disabilities (SWD)	67,384	36.94	13.13	10	90
	Students without Disabilities	345,765	48.97	13.21	10	90
Writing Score		414,461	31.35	11.45	10	60
Gender	Female	203,177	33.85	10.60	10	60
	Male	211,284	28.95	11.73	10	60
Ethnicity	American Indian/Alaska Native	5,579	26.65	10.84	10	60

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	68,895	26.96	11.78	10	60
	Hispanic/Latino	117,135	28.83	11.42	10	60
	Native Hawaiian or Pacific Islander	640	34.00	11.58	10	57
	Multiple Race Selected	13,586	31.99	11.39	10	60
	White	183,710	33.76	10.50	10	60
Economic Status*	Economically Disadvantaged	199,992	27.63	11.51	10	60
	Not Economically Disadvantaged	213,846	34.83	10.24	10	60
English Learner Status	English Learner (EL)	29,084	21.37	10.92	10	57
	Non English Learner	375,848	32.06	11.14	10	60
Disabilities	Students with Disabilities (SWD)	67,384	22.46	11.88	10	60
	Students without Disabilities	345,765	33.09	10.53	10	60

Table A.12.30 Subgroup Performance for ELA/L Scale Scores: Grade 6

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	406,705	741.20	31.87	650	850
Gender	Female	198,893	747.48	31.42	650	850
	Male	207,812	735.19	31.13	650	850
Ethnicity	American Indian/Alaska Native	5,044	725.25	27.12	650	830
	Asian	24,173	765.99	31.58	650	850
	Black or African American	66,.708	726.83	28.74	650	850
	Hispanic/Latino	114,236	731.27	28.85	650	850
	Native Hawaiian or Pacific Islander	664	749.83	32.01	664	831
	Multiple Race Selected	12,609	744.11	32.12	650	850
	White	182,624	749.62	30.19	650	850
Economic Status*	Economically Disadvantaged	191,905	728.40	28.30	650	850
	Not Economically Disadvantaged	214,145	752.68	30.48	650	850
English Learner Status	English Learner (EL)	24,074	707.42	21.87	650	821
	Non English Learner	373,441	743.30	31.19	650	850
Disabilities	Students with Disabilities (SWD)	66,115	715.94	28.59	650	850
	Students without Disabilities	338,883	746.17	30.09	650	850
Reading Score		406,705	46.40	12.44	10	90
Gender	Female	198,893	48.04	12.32	10	90
	Male	207,812	44.82	12.34	10	90
Ethnicity	American Indian/Alaska Native	5,044	39.44	10.35	10	80
	Asian	24,173	55.53	12.36	10	90
	Black or African American	66,708	40.96	11.03	10	90
	Hispanic/Latino	114,236	42.26	11.05	10	90
	Native Hawaiian or Pacific Islander	664	48.88	12.21	17	79
	Multiple Race Selected	12,609	47.93	12.67	10	90
	White	182,624	49.85	11.93	10	90
Economic Status*	Economically Disadvantaged	191,905	41.33	10.87	10	90
	Not Economically Disadvantaged	214,145	50.93	12.00	10	90
English Learner Status	English Learner (EL)	24,074	33.17	7.92	10	78
	Non English Learner	373,441	47.21	12.20	10	90
Disabilities	Students with Disabilities (SWD)	66,115	37.20	11.20	10	90
	Students without Disabilities	338,883	48.20	11.86	10	90
Writing Score		406,705	30.97	11.26	10	60
Gender	Female	198,893	33.90	10.08	10	60
	Male	207,812	28.17	11.62	10	60
Ethnicity	American Indian/Alaska Native	5,044	27.72	10.84	10	60
Ethincity	/ incream maiari// ilaska reactive					

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	66,708	26.55	11.46	10	60
	Hispanic/Latino	114,236	28.51	11.21	10	60
	Native Hawaiian or Pacific Islander	664	34.24	10.80	10	60
	Multiple Race Selected	12,609	31.30	11.28	10	60
	White	182,624	33.23	10.39	10	60
Economic Status*	Economically Disadvantaged	191,905	27.39	11.29	10	60
	Not Economically Disadvantaged	214,145	34.20	10.20	10	60
English Learner Status	English Learner (EL)	24,074	20.80	10.79	10	60
	Non English Learner	373,441	31.62	10.97	10	60
Disabilities	Students with Disabilities (SWD)	66,115	22.21	11.60	10	60
	Students without Disabilities	338,883	32.70	10.35	10	60

Table A.12.31 Subgroup Performance for ELA/L Scale Scores: Grade 7

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	406,201	743.24	38.24	650	850
Gender	Female	198,297	751.57	37.05	650	850
	Male	207,904	735.31	37.67	650	850
Ethnicity	American Indian/Alaska Native	4,827	721.80	33.04	650	850
	Asian	24,425	772.55	37.08	650	850
	Black or African American	66,386	726.68	35.22	650	850
	Hispanic/Latino	111,338	730.89	35.62	650	850
	Native Hawaiian or Pacific Islander	561	753.27	39.52	650	850
	Multiple Race Selected	12,042	745.80	37.69	650	850
	White	186,004	753.10	35.62	650	850
Economic Status*	Economically Disadvantaged	185,213	727.72	34.82	650	850
	Not Economically Disadvantaged	220,327	756.31	36.04	650	850
English Learner Status	English Learner (EL)	23,215	700.53	27.75	650	850
	Non English Learner	374,221	745.80	37.21	650	850
Disabilities	Students with Disabilities (SWD)	65,523	712.24	34.94	650	850
	Students without Disabilities	339,130	749.29	35.87	650	850
Reading Score		406,201	47.02	15.06	10	90
Gender	Female	198,297	49.25	14.66	10	90
	Male	207,904	44.89	15.12	10	90
Ethnicity	American Indian/Alaska Native	4,827	38.32	12.83	10	90
	Asian	24,425	57.69	14.85	10	90
	Black or African American	66,386	40.71	13.67	10	90
	Hispanic/Latino	111,338	41.92	13.84	10	90
	Native Hawaiian or Pacific Islander	561	49.89	15.00	10	90
	Multiple Race Selected	12,042	48.62	15.04	10	90
	White	186,004	51.05	14.18	10	90
Economic Status*	Economically Disadvantaged	185,213	40.92	13.54	10	90
	Not Economically Disadvantaged	220,327	52.15	14.34	10	90
English Learner Status	English Learner (EL)	23,215	30.12	10.23	10	90
	Non English Learner	374,221	48.03	14.68	10	90
Disabilities	Students with Disabilities (SWD)	65,523	35.64	13.87	10	90
	Students without Disabilities	339,130	49.23	14.26	10	90
Writing Score		406,201	32.22	11.68	10	60
Gender	Female	198,297	35.42	10.50	10	60
	Male	207,904	29.17	11.92	10	60
Ethnicity	American Indian/Alaska Native	4,827	27.30	11.13	10	60
,						

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	66,386	27.73	11.71	10	60
	Hispanic/Latino	111,338	29.34	11.59	10	60
	Native Hawaiian or Pacific Islander	561	35.54	11.98	10	60
	Multiple Race Selected	12,042	32.31	11.55	10	60
	White	186,004	34.62	10.77	10	60
Economic Status*	Economically Disadvantaged	185,213	28.22	11.62	10	60
	Not Economically Disadvantaged	220,327	35.59	10.61	10	60
English Learner Status	English Learner (EL)	23,215	21.07	10.86	10	60
	Non English Learner	374,221	32.89	11.37	10	60
Disabilities	Students with Disabilities (SWD)	65,523	22.92	11.88	10	60
	Students without Disabilities	339,130	34.03	10.74	10	60

Table A.12.32 Subgroup Performance for ELA/L Scale Scores: Grade 8

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	399,371	742.13	39.11	650	850
Gender	Female	194,852	750.99	37.83	650	850
	Male	204,519	733.68	38.44	650	850
Ethnicity	American Indian/Alaska Native	4,579	723.18	32.78	650	850
	Asian	23,961	773.28	38.19	650	850
	Black or African American	65,952	725.07	35.72	650	850
	Hispanic/Latino	108,721	730.67	35.77	650	850
	Native Hawaiian or Pacific Islander	602	752.76	38.69	650	850
	Multiple Race Selected	11,226	744.91	39.58	650	850
	White	183,788	751.26	37.22	650	850
Economic Status*	Economically Disadvantaged	179,179	726.86	35.20	650	850
	Not Economically Disadvantaged	219,525	754.62	37.68	650	850
English Learner Status	English Learner (EL)	22,686	700.92	27.37	650	850
	Non English Learner	368,666	744.59	38.29	650	850
Disabilities	Students with Disabilities (SWD)	63,687	711.06	35.29	650	850
	Students without Disabilities	334,211	748.10	36.94	650	850
Reading Score		399,371	46.94	15.61	10	90
Gender	Female	194,852	49.42	15.24	10	90
	Male	204,519	44.58	15.60	10	90
Ethnicity	American Indian/Alaska Native	4,579	38.71	12.97	10	90
	Asian	23,961	58.62	15.47	10	90
	Black or African American	65,952	40.49	14.11	10	90
	Hispanic/Latino	108,721	42.05	14.10	10	90
	Native Hawaiian or Pacific Islander	602	50.07	15.17	10	90
	Multiple Race Selected	11,226	48.78	16.04	10	90
	White	183,788	50.72	15.00	10	90
Economic Status*	Economically Disadvantaged	179,179	40.84	13.88	10	90
	Not Economically Disadvantaged	219,525	51.93	15.17	10	90
English Learner Status	English Learner (EL)	22,686	30.34	10.15	10	90
	Non English Learner	368,666	47.93	15.31	10	90
Disabilities	Students with Disabilities (SWD)	63,687	35.24	14.09	10	90
	Students without Disabilities	334,211	49.19	14.88	10	90
Writing Score		399,371	31.97	11.51	10	60
Gender	Female	194,852	35.19	10.36	10	60
	Male	204,519	28.90	11.71	10	60
Ethnicity	American Indian/Alaska Native	4,579	28.25	10.49	10	60
- ····,						

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	65,952	27.34	11.43	10	60
	Hispanic/Latino	108,721	29.46	11.22	10	60
	Native Hawaiian or Pacific Islander	602	35.49	10.89	10	60
	Multiple Race Selected	11,226	32.04	11.51	10	60
	White	183,788	34.15	10.83	10	60
Economic Status*	Economically Disadvantaged	179,179	28.17	11.30	10	60
	Not Economically Disadvantaged	219,525	35.08	10.72	10	60
English Learner Status	English Learner (EL)	22,686	21.54	10.48	10	60
	Non English Learner	368,666	32.60	11.26	10	60
Disabilities	Students with Disabilities (SWD)	63,687	23.15	11.60	10	60
	Students without Disabilities	334,211	33.67	10.70	10	60

Table A.12.33 Subgroup Performance for ELA/L Scale Scores: Grade 9

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	ore	188,201	740.92	37.97	650	850
Gender	Female	90,951	748.89	36.81	650	850
	Male	97,250	733.47	37.53	650	850
Ethnicity	American Indian/Alaska Native	3,407	719.95	30.27	650	828
	Asian	12,192	771.45	37.59	650	850
	Black or African American	21,038	727.01	34.98	650	850
	Hispanic/Latino	62,335	726.81	35.14	650	850
	Native Hawaiian or Pacific Islander	373	749.01	37.05	650	850
	Multiple Race Selected	3,839	744.07	37.68	650	850
	White	84,482	751.22	34.90	650	850
Economic Status*	Economically Disadvantaged	78,341	725.35	34.39	650	850
	Not Economically Disadvantaged	109,453	752.17	36.42	650	850
English Learner Status	English Learner (EL)	15,584	698.36	26.51	650	846
	Non English Learner	166,483	745.00	36.44	650	850
Disabilities	Students with Disabilities (SWD)	30,113	713.88	34.03	650	850
	Students without Disabilities	157,483	746.20	36.43	650	850
Reading Score		188,201	46.54	15.34	10	90
Gender	Female	90,951	48.72	14.97	10	90
	Male	97,250	44.50	15.40	10	90
Ethnicity	American Indian/Alaska Native	3,407	37.37	12.13	10	79
	Asian	12,192	57.70	15.49	10	90
	Black or African American	21,038	40.82	13.91	10	90
	Hispanic/Latino	62,335	40.66	13.92	10	90
	Native Hawaiian or Pacific Islander	373	49.35	14.90	10	90
	Multiple Race Selected	3,839	48.46	15.45	10	90
	White	84,482	51.02	14.25	10	90
Economic Status*	Economically Disadvantaged	78,341	40.14	13.66	10	90
	Not Economically Disadvantaged	109,453	51.15	14.81	10	90
English Learner Status	English Learner (EL)	15,584	29.33	10.03	10	90
	Non English Learner	166,483	48.14	14.75	10	90
Disabilities	Students with Disabilities (SWD)	30,113	36.22	13.79	10	90
	Students without Disabilities	157,483	48.55	14.81	10	90
Writing Score		188,201	30.89	11.86	10	60
Gender	Female	90,951	34.13	10.64	10	60
	Male	97,250	27.86	12.14	10	60
Ethnicity	American Indian/Alaska Native	3,407	26.58	10.85	10	56
	•					

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	21,038	27.41	11.76	10	60
	Hispanic/Latino	62,335	27.42	11.84	10	60
	Native Hawaiian or Pacific Islander	363	33.33	11.47	10	60
	Multiple Race Selected	3,839	31.02	11.84	10	60
	White	84,482	33.28	10.92	10	60
Economic Status*	Economically Disadvantaged	78,341	26.95	11.76	10	60
	Not Economically Disadvantaged	109,453	33.76	11.07	10	60
English Learner Status	English Learner (EL)	15,584	19.49	10.69	10	60
	Non English Learner	166,483	32.04	11.37	10	60
Disabilities	Students with Disabilities (SWD)	30,113	22.92	11.79	10	60
	Students without Disabilities	157,483	32.45	11.23	10	60

Note: This table is identical to Table 12.8 in Section 12.

^{*}Economic status was based on participation in National School Lunch Program (NSLP): receipt of free or reducedprice lunch (FRL).

Table A.12.34 Subgroup Performance for ELA/L Scale Scores: Grade 10

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	171,965	741.35	46.94	650	850
Gender	Female	83,918	750.44	45.41	650	850
	Male	88,047	732.70	46.74	650	850
Ethnicity	American Indian/Alaska Native	2,750	721.90	37.66	650	850
	Asian	13,131	775.59	44.18	650	850
	Black or African American	36,910	724.52	43.33	650	850
	Hispanic/Latino	46,128	725.90	43.77	650	850
	Native Hawaiian or Pacific Islander	247	753.37	46.78	650	850
	Multiple Race Selected	3,625	753.99	45.85	650	850
	White	68,720	754.51	43.81	650	850
Economic Status*	Economically Disadvantaged	67,073	723.12	42.85	650	850
	Not Economically Disadvantaged	104,321	753.25	45.65	650	850
English Learner Status	English Learner (EL)	9,521	684.99	29.42	650	850
	Non English Learner	161,970	744.75	45.65	650	850
Disabilities	Students with Disabilities (SWD)	28,567	709.11	41.95	650	850
	Students without Disabilities	143,757	747.94	45.16	650	850
Reading Score		171,965	46.84	18.67	10	90
Gender	Female	83,918	49.30	18.14	10	90
	Male	88,047	44.50	18.87	10	90
Ethnicity	American Indian/Alaska Native	2,750	37.67	15.22	10	90
	Asian	13,131	59.53	17.95	10	90
	Black or African American	36,910	40.56	17.22	10	90
	Hispanic/Latino	46,128	40.49	17.16	10	90
	Native Hawaiian or Pacific Islander	247	50.52	18.15	10	90
	Multiple Race Selected	3,625	52.43	18.57	10	90
	White	68,720	52.20	17.59	10	90
Economic Status*	Economically Disadvantaged	67,073	39.53	16.81	10	90
	Not Economically Disadvantaged	104,321	51.61	18.27	10	90
English Learner Status	English Learner (EL)	9,521	24.89	11.24	10	90
	Non English Learner	161,970	48.16	18.21	10	90
Disabilities	Students with Disabilities (SWD)	28,567	34.78	16.89	10	90
	Students without Disabilities	142,757	49.31	18.05	10	90
Writing Score		171,965	31.48	13.05	10	60
Gender	Female	83,918	34.70	12.18	10	60
	Male	88,047	28.41	13.12	10	60
Ethnicity	American Indian/Alaska Native	2,750	28.49	11.11	10	60
	Asian	13,131	40.26	11.43	10	60

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	36,910	27.09	12.58	10	60
	Hispanic/Latino	46,128	28.02	12.69	10	60
	Native Hawaiian or Pacific Islander	247	35.29	12.62	10	60
	Multiple Race Selected	3,625	34.19	12.41	10	60
	White	68,720	34.51	12.25	10	60
Economic Status*	Economically Disadvantaged	67,073	27.18	12.60	10	60
	Not Economically Disadvantaged	104,321	34.30	12.56	10	60
English Learner Status	English Learner (EL)	9,521	17.37	9.82	10	60
	Non English Learner	161,970	32.33	12.74	10	60
Disabilities	Students with Disabilities (SWD)	28,567	22.91	12.29	10	60
	Students without Disabilities	142,757	33.23	12.50	10	60

Table A.12.35 Subgroup Performance for ELA/L Scale Scores: Grade 11

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	re	107,593	735.26	39.46	650	850
Gender	Female	51,199	743.05	38.61	650	850
	Male	56,394	728.19	38.89	650	850
Ethnicity	American Indian/Alaska Native	2,961	732.22	33.58	650	850
	Asian	6,512	756.36	41.69	650	850
	Black or African American	21,367	723.67	37.56	650	850
	Hispanic/Latino	34,428	732.48	37.52	650	850
	Native Hawaiian or Pacific Islander	168	745.58	37.98	656	838
	Multiple Race Selected	1,491	740.59	39.82	650	850
	White	40,252	740.54	39.75	650	850
Economic Status*	Economically Disadvantaged	45,210	728.62	37.54	650	850
	Not Economically Disadvantaged	62,173	740.13	40.13	650	850
English Learner Status	English Learner (EL)	5,288	701.08	27.83	650	850
	Non English Learner	102,058	737.06	39.18	650	850
Disabilities	Students with Disabilities (SWD)	19,094	711.38	34.59	650	850
	Students without Disabilities	88,265	740.46	38.54	650	850
Reading Score		107,593	44.44	15.36	10	90
Gender	Female	51,199	46.52	15.03	10	90
	Male	56,394	42.55	15.42	10	90
Ethnicity	American Indian/Alaska Native	2,961	41.20	12.66	10	90
	Asian	6,512	52.68	16.70	10	90
	Black or African American	21,367	39.94	14.33	10	90
	Hispanic/Latino	34,428	42.77	14.33	10	90
	Native Hawaiian or Pacific Islander	168	47.56	14.24	14	84
	Multiple Race Selected	1,491	47.19	15.91	10	90
	White	40,252	47.12	15.61	10	90
Economic Status*	Economically Disadvantaged	45,210	41.28	14.21	10	90
	Not Economically Disadvantaged	62,173	46.75	15.76	10	90
English Learner Status	English Learner (EL)	5,288	30.63	9.94	10	87
	Non English Learner	102,058	45.16	15.26	10	90
Disabilities	Students with Disabilities (SWD)	19,094	35.48	13.48	10	90
	Students without Disabilities	88,265	46.39	15.06	10	90
Writing Score		107,593	28.46	13.41	10	60
Gender	Female	51,199	31.74	12.80	10	60
	Male	56,394	25.48	13.25	10	60
Ethnicity	American Indian/Alaska Native	2,961	30.39	11.71	10	60
,						

Group Type	Group	N	Mean	SD	Min	Max
	Black or African American	21,367	25.21	13.22	10	60
	Hispanic/Latino	34,428	28.48	13.04	10	60
	Native Hawaiian or Pacific Islander	168	32.32	13.05	10	60
	Multiple Race Selected	1,491	29.21	13.29	10	60
	White	40,252	29.10	13.54	10	60
Economic Status*	Economically Disadvantaged	45,210	27.31	13.21	10	60
	Not Economically Disadvantaged	62,173	29.31	13.49	10	60
English Learner Status	English Learner (EL)	5,288	19.76	11.29	10	60
	Non English Learner	102,058	28.92	13.36	10	60
Disabilities	Students with Disabilities (SWD)	19,094	21.34	12.33	10	60
	Students without Disabilities	88,265	30.01	13.13	10	60

Table A.12.36 Subgroup Performance for Mathematics Scale Scores: Grade 3

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Scor	Full Summative Score		742.22	37.08	650	850
Gender	Female	208,739	742.47	35.83	650	850
	Male	217,005	741.98	38.25	650	850
Ethnicity	American Indian/Alaska Native	5,920	724.13	31.47	650	845
	Asian	25,182	772.99	36.36	650	850
	Black or African American	73,166	726.20	34.03	650	850
	Hispanic/Latino	122,975	730.60	33.67	650	850
	Native Hawaiian or Pacific Islander	684	746.92	38.61	650	850
	Multiple Race Selected	15,061	745.90	37.32	650	850
	White	181,746	752.53	34.61	650	850
Economic Status*	Economically Disadvantaged	213,460	728.31	33.58	650	850
	Not Economically Disadvantaged	211,662	756.19	35.11	650	850
English Learner Status	English Learner (EL)	66,662	723.87	33.05	650	850
	Non English Learner	349,729	745.55	36.74	650	850
Disabilities	Students with Disabilities (SWD)	62,252	718.87	37.60	650	850
	Students without Disabilities	362,041	746.23	35.47	650	850

Note: This table is identical to Table 12.9 in Section 12.

^{*}Economic status was based on participation in National School Lunch Program (NSLP): receipt of free or reducedprice lunch (FRL).

Table A.12.37 Subgroup Performance for Mathematics Scale Scores: Grade 4

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Scor	e	426,609	737.10	33.55	650	850
Gender	Female	209,075	737.16	32.72	650	850
	Male	217,534	737.05	34.34	650	850
Ethnicity	American Indian/Alaska Native	5,705	718.38	27.87	650	850
	Asian	24,736	766.79	33.47	650	850
	Black or African American	71,810	721.35	30.17	650	850
	Hispanic/Latino	123,935	726.31	29.81	650	850
	Native Hawaiian or Pacific Islander	715	744.38	33.79	650	841
	Multiple Race Selected	14,473	740.33	33.66	650	850
	White	184,163	746.82	31.31	650	850
Economic Status*	Economically Disadvantaged	210,906	723.79	29.72	650	850
	Not Economically Disadvantaged	214,884	750.13	31.92	650	850
English Learner Status	English Learner (EL)	43,770	710.80	26.21	650	850
	Non English Learner	373,143	740.02	32.96	650	850
Disabilities	Students with Disabilities (SWD)	66,741	715.00	32.25	650	850
	Students without Disabilities	358,337	741.22	32.15	650	850

Table A.12.38 Subgroup Performance for Mathematics Scale Scores: Grade 5

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Scor	Full Summative Score		737.24	32.52	650	850
Gender	Female	204,220	737.79	31.17	650	850
	Male	212,336	736.70	33.76	650	850
Ethnicity	American Indian/Alaska Native	5,580	720.52	26.88	650	845
	Asian	24,451	766.83	33.01	650	850
	Black or African American	68,885	721.33	28.61	650	850
	Hispanic/Latino	118,549	727.02	28.67	650	850
	Native Hawaiian or Pacific Islander	644	743.80	33.68	650	850
	Multiple Race Selected	13,600	740.50	33.39	650	850
	White	183,969	746.12	30.54	650	850
Economic Status*	Economically Disadvantaged	201,378	724.29	28.50	650	850
	Not Economically Disadvantaged	214,549	749.37	31.34	650	850
English Learner Status	English Learner (EL)	31,670	709.73	25.56	650	850
	Non English Learner	375.372	739.41	31.96	650	850
Disabilities	Students with Disabilities (SWD)	67,302	716.02	30.35	650	850
	Students without Disabilities	347,916	741.36	31.30	650	850

Table A.12.39 Subgroup Performance for Mathematics Scale Scores: Grade 6

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Scor	Full Summative Score		734.27	32.60	650	850
Gender	Female	199,820	735.71	31.57	650	850
	Male	208,844	732.90	33.49	650	850
Ethnicity	American Indian/Alaska Native	5,042	717.64	27.43	650	850
	Asian	24.338	763.71	33.14	650	850
	Black or African American	66,837	717.35	28.51	650	850
	Hispanic/Latino	115,760	723.53	28.72	650	850
	Native Hawaiian or Pacific Islander	662	741.97	32.04	653	825
	Multiple Race Selected	12,593	737.29	33.35	650	850
	White	182,724	743.60	30.26	650	850
Economic Status*	Economically Disadvantaged	193,487	720.71	28.45	650	850
	Not Economically Disadvantaged	214,515	746.51	31.22	650	850
English Learner Status	English Learner (EL)	26,712	703.04	25.01	650	850
	Non English Learner	372,753	736.38	31.92	650	850
Disabilities	Students with Disabilities (SWD)	66,046	711.27	29.84	650	850
	Students without Disabilities	340,885	738.76	31.20	650	850

Table A.12.40 Subgroup Performance for Mathematics Scale Scores: Grade 7

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Scor	Full Summative Score		733.72	28.66	650	850
Gender	Female	192,605	734.89	27.81	650	850
	Male	201,337	732.61	29.40	650	850
Ethnicity	American Indian/Alaska Native	4,796	717.58	24.23	650	815
	Asian	21,135	757.71	29.39	650	850
	Black or African American	64,993	719.87	25.22	650	850
	Hispanic/Latino	111,808	724.67	25.81	650	850
	Native Hawaiian or Pacific Islander	556	740.00	31.37	650	818
	Multiple Race Selected	11,406	735.07	28.52	650	850
	White	178,577	741.95	26.88	650	850
Economic Status*	Economically Disadvantaged	184,824	722.52	25.53	650	850
	Not Economically Disadvantaged	208,531	743.66	27.60	650	850
English Learner Status	English Learner (EL)	25,770	707.16	22.60	650	842
	Non English Learner	360,002	735.56	28.11	650	850
Disabilities	Students with Disabilities (SWD)	64,851	713.13	26.97	650	850
	Students without Disabilities	327,631	737.83	27.20	650	850

Table A.12.41 Subgroup Performance for Mathematics Scale Scores: Grade 8

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Scor	re	314,484	725.57	36.97	650	850
Gender	Female	151,133	728.13	36.05	650	850
	Male	163,351	723.20	37.64	650	850
Ethnicity	American Indian/Alaska Native	4,122	711.03	30.63	650	850
	Asian	12,711	756.71	41.20	650	850
	Black or African American	56,058	708.85	31.90	650	850
	Hispanic/Latino	94,511	716.61	33.24	650	850
	Native Hawaiian or Pacific Islander	431	732.96	37.09	650	850
	Multiple Race Selected	8,480	727.93	38.36	650	850
	White	137,601	735.96	35.93	650	850
Economic Status*	Economically Disadvantaged	159,178	714.27	33.23	650	850
	Not Economically Disadvantaged	154,827	737.23	37.01	650	850
English Learner Status	English Learner (EL)	23,917	697.30	27.68	650	850
	Non English Learner	284,477	727.85	36.65	650	850
Disabilities	Students with Disabilities (SWD)	58,599	701.62	32.08	650	850
	Students without Disabilities	254,694	731.13	35.81	650	850

Table A.12.42 Subgroup Performance for Mathematics Scale Scores: Algebra I

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		260,806	738.16	34.95	650	850
Gender	Female	126,562	739.22	33.69	650	850
	Male	134,244	737.17	36.07	650	850
Ethnicity	American Indian/Alaska Native	3,641	716.02	25.07	650	821
	Asian	18,079	770.12	36.40	650	850
	Black or African American	45,085	722.83	28.93	650	850
	Hispanic/Latino	74,965	724.45	29.81	650	850
	Native Hawaiian or Pacific Islander	452	746.57	35.29	650	850
	Multiple Race Selected	6,580	743.53	35.41	650	850
	White	111,446	748.89	32.87	650	850
Economic Status*	Economically Disadvantaged	106,203	723.39	29.35	650	850
	Not Economically Disadvantaged	153,948	748.42	34.85	650	850
English Learner Status	English Learner (EL)	20,325	707.78	24.46	650	850
	Non English Learner	235,967	740.64	34.45	650	850
Disabilities	Students with Disabilities (SWD)	40,764	717.33	30.34	650	850
	Students without Disabilities	219,187	742.10	34.37	650	850

Note: This table is identical to Table 12.10 in Section 12.

^{*}Economic status was based on participation in National School Lunch Program (NSLP): receipt of free or reducedprice lunch (FRL).

Table A.12.43 Subgroup Performance for Mathematics Scale Scores: Geometry

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		137,530	734.93	27.79	650	850
Gender	Female	67,407	735.42	26.83	650	850
	Male	70,123	734.46	28.69	650	850
Ethnicity	American Indian/Alaska Native	2,683	721.24	21.31	650	803
	Asian	11,018	759.75	26.88	650	850
	Black or African American	18,568	719.22	23.89	650	837
	Hispanic/Latino	40,276	723.41	23.69	650	850
	Native Hawaiian or Pacific Islander	227	741.45	24.88	671	825
	Multiple Race Selected	2,537	744.66	27.92	650	830
	White	61,782	743.06	25.39	650	850
Economic Status*	Economically Disadvantaged	50,295	721.59	23.50	650	830
	Not Economically Disadvantaged	86,682	742.76	27.13	650	850
English Learner Status	English Learner (EL)	7,054	709.24	20.40	650	844
	Non English Learner	128,566	736.13	27.42	650	850
Disabilities	Students with Disabilities (SWD)	20,741	715.33	24.88	650	830
	Students without Disabilities	116,084	738.54	26.80	650	850

Table A.12.44 Subgroup Performance for Mathematics Scale Scores: Algebra II

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		122,710	723.30	40.84	650	850
Gender	Female	61,281	723.18	39.05	650	850
	Male	61,429	723.42	42.55	650	850
Ethnicity	American Indian/Alaska Native	2,554	703.78	29.02	650	829
	Asian	10,596	760.57	43.34	650	850
	Black or African American	21,403	702.08	32.00	650	850
	Hispanic/Latino	33,483	709.10	33.05	650	850
	Native Hawaiian or Pacific Islander	203	732.89	40.78	650	825
	Multiple Race Selected	2,245	733.06	41.23	650	850
	White	51,809	734.35	39.42	650	850
Economic Status*	Economically Disadvantaged	43,516	706.64	32.76	650	850
	Not Economically Disadvantaged	78,920	732.49	41.94	650	850
English Learner Status	English Learner (EL)	4,544	690.65	29.05	650	850
	Non English Learner	117,481	724.41	40.65	650	850
Disabilities	Students with Disabilities (SWD)	15,431	698.34	33.98	650	850
	Students without Disabilities	106,970	726.91	40.49	650	850

Table A.12.45 Subgroup Performance for Mathematics Scale Scores: Integrated Mathematics I

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		10,964	730.40	33.72	650	850
Gender	Female	5,095	730.86	32.94	650	841
	Male	5,869	730.01	34.38	650	850
Ethnicity	American Indian/Alaska Native	149	716.07	26.71	650	790
	Asian	431	745.92	39.15	650	850
	Black or African American	809	721.63	30.23	650	821
	Hispanic/Latino	5,272	720.80	29.02	650	835
	Native Hawaiian or Pacific Islander	28	748.39	42.15	673	810
	Multiple Race Selected	272	734.92	33.37	650	850
	White	3,997	743.29	34.67	650	850
Economic Status*	Economically Disadvantaged	5,793	721.21	29.68	650	838
	Not Economically Disadvantaged	5,164	740.77	34.94	650	850
English Learner Status	English Learner (EL)	2,191	707.58	21.98	650	815
	Non English Learner	6,506	734.82	32.28	650	850
Disabilities	Students with Disabilities (SWD)	1,356	709.29	28.29	650	830
	Students without Disabilities	9,601	733.42	33.34	650	848

Note: This table is identical to Table 12.11 in Section 12.

^{*}Economic status was based on participation in National School Lunch Program (NSLP): receipt of free or reducedprice lunch (FRL).

Table A.12.46 Subgroup Performance for Mathematics Scale Scores: Integrated Mathematics II

	'					
Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		2,243	745.46	32.67	650	850
Gender	Female	1,102	745.34	31.75	650	848
	Male	1,141	746.57	33.55	650	850
Ethnicity	American Indian/Alaska Native	209	717.52	28.91	655	803
	Asian	109	767.69	33.58	678	848
	Black or African American	191	736.93	32.09	650	798
	Hispanic/Latino	644	735.01	32.10	650	812
	Native Hawaiian or Pacific Islander	8	760.38	24.41	702	804
	Multiple Race Selected	72	754.68	34.62	684	828
	White	1,008	756.44	26.67	650	850
Economic Status*	Economically Disadvantaged	1,039	732.16	32.31	650	817
	Not Economically Disadvantaged	1,203	756.97	28.34	650	839
English Learner Status	English Learner (EL)	172	709.35	24.81	650	783
	Non English Learner	2,048	747.97	31.11	650	839
Disabilities	Students with Disabilities (SWD)	149	719.26	35.86	650	822
	Students without Disabilities	2,093	747.34	31.62	650	820

Table A.12.47 Subgroup Performance for Mathematics Scale Scores: Integrated Mathematics III

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		568	722.72	44.51	650	850
Gender	Female	274	720.48	45.44	650	850
	Male	294	724.81	43.60	650	850
Ethnicity	American Indian/Alaska Native	109	701.26	27.77	650	796
	Asian	7	769.00	65.52	650	811
	Black or African American	6	710.83	15.01	650	824
	Hispanic/Latino	209	694.69	33.70	650	850
	Native Hawaiian or Pacific Islander	1	814.00	n/r	699	699
	Multiple Race Selected	13	749.38	50.97	650	809
	White	223	756.38	33.22	650	850
Economic Status*	Economically Disadvantaged	377	700.30	32.13	650	837
	Not Economically Disadvantaged	191	766.97	30.04	650	850
English Learner Status	English Learner (EL)	39	676.90	20.75	650	805
	Non English Learner	529	726.10	43.93	650	850
Disabilities	Students with Disabilities (SWD)	50	687.94	36.87	650	805
	Students without Disabilities	518	726.08	43.76	650	821

Note: *Economic status was based on participation in National School Lunch Program (NSLP): receipt of free or reduced-price lunch (FRL). n/r = not reported due to n<25.

Appendix 12.5: Scale Score Cumulative Frequencies

Table A.12.48 Scale Score Cumulative Frequencies: ELA/L Grade 3

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	6,344	1.51	6,344	1.51
655-659	3,275	0.78	9,619	2.29
660-664	2,525	0.60	12,144	2.89
665-669	5,950	1.41	18,094	4.30
670-674	8,899	2.12	26,993	6.42
675-679	7,765	1.85	34,758	8.27
680-684	10,115	2.41	44,873	10.67
685-689	12,166	2.89	57,039	13.56
690-694	9,284	2.21	66,323	15.77
695-699	13,791	3.28	80,114	19.05
700-704	15,155	3.60	95,269	22.66
705-709	12,562	2.99	107,831	25.64
710-714	16,942	4.03	124,773	29.67
715-719	14,859	3.53	139,632	33.21
720-724	15,231	3.62	154,863	36.83
725-729	21,692	5.16	176,555	41.99
730-734	18,616	4.43	195,171	46.41
735-739	17,864	4.25	213,035	50.66
740-744	21,166	5.03	234,201	55.70
745-749	17,846	4.24	252,047	59.94
750-754	18,501	4.40	270,548	64.34
755-759	17,453	4.15	288,001	68.49
760-764	18,065	4.30	306,066	72.79
765-769	18,572	4.42	324,638	77.20
770-774	13,993	3.33	338,631	80.53
775-779	12,853	3.06	351,484	83.59
780-784	12,441	2.96	363,925	86.55
785-789	11,907	2.83	375,832	89.38
790-794	8,934	2.12	384,766	91.50
795-799	7,441	1.77	392,207	93.27
800-804	6,254	1.49	398,461	94.76
805-809	4,478	1.06	402,939	95.82
810-814	4,345	1.03	407,284	96.86
815-819	3,052	0.73	410,336	97.58
820-824	2,821	0.67	413,157	98.25
825-829	1,645	0.39	414,802	98.65
830-834	1,781	0.42	416,583	99.07
835-839	1,052	0.25	417,635	99.32
840-844	782	0.19	418,417	99.51
845-850	2,079	0.49	420,496	100.00

Table A.12.49 Scale Score Cumulative Frequencies: ELA/L Grade 4

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2,498	0.59	2,498	0.59
655-659	1,164	0.28	3,662	0.87
660-664	2,040	0.48	5,702	1.35
665-669	2,432	0.57	8,134	1.92
670-674	3,870	0.91	12,004	2.84
675-679	7,679	1.81	19,683	4.65
680-684	6,257	1.48	25,940	6.13
685-689	7,893	1.87	33,833	8.00
690-694	9,126	2.16	42,959	10.15
695-699	10,847	2.56	53,806	12.72
700-704	11,192	2.65	64,998	15.36
705-709	14,967	3.54	79,965	18.90
710-714	15,778	3.73	95,743	22.63
715-719	19,251	4.55	114,994	27.18
720-724	16,011	3.78	131,005	30.96
725-729	21,843	5.16	152,848	36.13
730-734	22,392	5.29	175,240	41.42
735-739	20,655	4.88	195,895	46.30
740-744	24,517	5.79	220,412	52.09
745-749	22,186	5.24	242,598	57.34
750-754	22,063	5.21	264,661	62.55
755-759	23,471	5.55	288,132	68.10
760-764	20,070	4.74	308,202	72.84
765-769	20,332	4.81	328,534	77.65
770-774	15,115	3.57	343,649	81.22
775-779	15,583	3.68	359,232	84.91
780-784	13,333	3.15	372,565	88.06
785-789	12,688	3.00	385,253	91.06
790-794	8,667	2.05	393,920	93.10
795-799	7,970	1.88	401,890	94.99
800-804	5,154	1.22	407,044	96.21
805-809	4,724	1.12	411,768	97.32
810-814	3,440	0.81	415,208	98.14
815-819	2,114	0.50	417,322	98.63
820-824	1,986	0.47	419,308	99.10
825-829	1,140	0.27	420,448	99.37
830-834	956	0.23	421,404	99.60
835-839	571	0.13	421,975	99.73
840-844	391	0.09	422,366	99.83
845-850	732	0.17	423,098	100.00

Table A.12.50 Scale Score Cumulative Frequencies: ELA/L Grade 5

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2,189	0.53	2,189	0.53
655-659	626	0.15	2,815	0.68
660-664	1,702	0.41	4,517	1.09
665-669	2,139	0.52	6,656	1.61
670-674	3,883	0.94	10,539	2.54
675-679	5,212	1.26	15,751	3.80
680-684	6,326	1.53	22,077	5.33
685-689	7,087	1.71	29,164	7.04
690-694	7,428	1.79	36,592	8.83
695-699	12,672	3.06	49,264	11.89
700-704	10,565	2.55	59,829	14.44
705-709	14,167	3.42	73,996	17.85
710-714	17,166	4.14	91,162	22.00
715-719	14,930	3.60	106,092	25.60
720-724	19,687	4.75	125,779	30.35
725-729	17,797	4.29	143,576	34.64
730-734	22,381	5.40	165,957	40.04
735-739	22,746	5.49	188,703	45.53
740-744	22,079	5.33	210,782	50.86
745-749	22,264	5.37	233,046	56.23
750-754	24,559	5.93	257,605	62.15
755-759	22,962	5.54	280,567	67.69
760-764	20,162	4.86	300,729	72.56
765-769	20,512	4.95	321,241	77.51
770-774	17,019	4.11	338,260	81.61
775-779	15,418	3.72	353,678	85.33
780-784	13,406	3.23	367,084	88.57
785-789	11,361	2.74	378,445	91.31
790-794	8,469	2.04	386,914	93.35
795-799	7,358	1.78	394,272	95.13
800-804	6,370	1.54	400,642	96.67
805-809	3,762	0.91	404,404	97.57
810-814	3,437	0.83	407,841	98.40
815-819	1,919	0.46	409,760	98.87
820-824	1,617	0.39	411,377	99.26
825-829	1,227	0.30	412,604	99.55
830-834	704	0.17	413,308	99.72
835-839	454	0.11	413,762	99.83
840-844	318	0.08	414,080	99.91
845-850	381	0.09	414,461	100.00

Table A.12.51 Scale Score Cumulative Frequencies: ELA/L Grade 6

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	486	0.12	486	0.12
655-659	88	0.02	574	0.14
660-664	653	0.16	1,227	0.30
665-669	1,244	0.31	2,471	0.61
670-674	1,974	0.49	4,445	1.09
675-679	2,854	0.70	7,299	1.79
680-684	4,930	1.21	12,229	3.01
685-689	6,483	1.59	18,712	4.60
690-694	11,499	2.83	30,211	7.43
695-699	12,641	3.11	42,852	10.54
700-704	14,501	3.57	57,353	14.10
705-709	13,931	3.43	71,284	17.53
710-714	17,196	4.23	88,480	21.76
715-719	18,920	4.65	107,400	26.41
720-724	20,197	4.97	127,597	31.37
725-729	21,637	5.32	149,234	36.69
730-734	21,737	5.34	170,971	42.04
735-739	23,286	5.73	194,257	47.76
740-744	24,782	6.09	219,039	53.86
745-749	24,506	6.03	243,545	59.88
750-754	22,416	5.51	265,961	65.39
755-759	22,949	5.64	288,910	71.04
760-764	20,482	5.04	309,392	76.07
765-769	17,547	4.31	326,939	80.39
770-774	17,475	4.30	344,414	84.68
775-779	14,109	3.47	358,523	88.15
780-784	12,367	3.04	370,890	91.19
785-789	9,340	2.30	380,230	93.49
790-794	7,177	1.76	387,407	95.26
795-799	5,271	1.30	392,678	96.55
800-804	4,086	1.00	396,764	97.56
805-809	3,174	0.78	399,938	98.34
810-814	2,420	0.60	402,358	98.93
815-819	1,587	0.39	403,945	99.32
820-824	871	0.21	404,816	99.54
825-829	669	0.16	405,485	99.70
830-834	519	0.13	406,004	99.83
835-839	229	0.06	406,233	99.88
840-844	173	0.04	406,406	99.93
845-850	299	0.07	406,705	100.00

Table A.12.52 Scale Score Cumulative Frequencies: ELA/L Grade 7

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2,823	0.69	2,823	0.69
655-659	1,127	0.28	3,950	0.97
660-664	2,537	0.62	6,487	1.60
665-669	4,318	1.06	10,805	2.66
670-674	5,902	1.45	16,707	4.11
675-679	6,356	1.56	23,063	5.68
680-684	5,171	1.27	28,234	6.95
685-689	9,929	2.44	38,163	9.40
690-694	8,318	2.05	46,481	11.44
695-699	11,201	2.76	57,682	14.20
700-704	9,895	2.44	67,577	16.64
705-709	14,247	3.51	81,824	20.14
710-714	11,375	2.80	93,199	22.94
715-719	16,295	4.01	109,494	26.96
720-724	15,391	3.79	124,885	30.74
725-729	20,723	5.10	145,608	35.85
730-734	16,140	3.97	161,748	39.82
735-739	19,884	4.90	181,632	44.71
740-744	21,781	5.36	203,413	50.08
745-749	20,408	5.02	223,821	55.10
750-754	21,562	5.31	245,383	60.41
755-759	21,289	5.24	266,672	65.65
760-764	17,377	4.28	284,049	69.93
765-769	19,876	4.89	303,925	74.82
770-774	16,837	4.14	320,762	78.97
775-779	14,186	3.49	334,948	82.46
780-784	14,202	3.50	349,150	85.95
785-789	11,493	2.83	360,643	88.78
790-794	9,964	2.45	370,607	91.24
795-799	8,094	1.99	378,701	93.23
800-804	5,814	1.43	384,515	94.66
805-809	5,666	1.39	390,181	96.06
810-814	4,702	1.16	394,883	97.21
815-819	2,951	0.73	397,834	97.94
820-824	2,415	0.59	400,249	98.53
825-829	1,733	0.43	401,982	98.96
830-834	1,289	0.32	403,271	99.28
835-839	1,004	0.25	404,275	99.53
840-844	679	0.17	404,954	99.69
845-850	1,247	0.31	406,201	100.00

Table A.12.53 Scale Score Cumulative Frequencies: ELA/L Grade 8

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2,647	0.66	2,647	0.66
655-659	1,871	0.47	4,518	1.13
660-664	2,429	0.61	6,947	1.74
665-669	4,408	1.10	11,355	2.84
670-674	4,019	1.01	15,374	3.85
675-679	7,715	1.93	23,089	5.78
680-684	6,799	1.70	29,888	7.48
685-689	10,429	2.61	40,317	10.10
690-694	9,922	2.48	50,239	12.58
695-699	10,204	2.56	60,443	15.13
700-704	12,625	3.16	73,068	18.30
705-709	12,580	3.15	85,648	21.45
710-714	14,264	3.57	99,912	25.02
715-719	14,755	3.69	114,667	28.71
720-724	16,363	4.10	131,030	32.81
725-729	17,160	4.30	148,190	37.11
730-734	20,666	5.17	168,856	42.28
735-739	19,262	4.82	188,118	47.10
740-744	19,133	4.79	207,251	51.89
745-749	19,354	4.85	226,605	56.74
750-754	19,075	4.78	245,680	61.52
755-759	20,445	5.12	266,125	66.64
760-764	18,101	4.53	284,226	71.17
765-769	16,095	4.03	300,321	75.20
770-774	13,692	3.43	314,013	78.63
775-779	15,765	3.95	329,778	82.57
780-784	12,989	3.25	342,767	85.83
785-789	10,618	2.66	353,385	88.49
790-794	9,480	2.37	362,865	90.86
795-799	7,487	1.87	370,352	92.73
800-804	6,336	1.59	376,688	94.32
805-809	6,157	1.54	382,845	95.86
810-814	3,940	0.99	386,785	96.85
815-819	3,261	0.82	390,046	97.67
820-824	2,451	0.61	392,497	98.28
825-829	1,918	0.48	394,415	98.76
830-834	1,364	0.34	395,779	99.10
835-839	1,015	0.25	396,794	99.35
840-844	992	0.25	397,786	99.60
845-850	1,585	0.40	399,371	100.00

Table A.12.54 Scale Score Cumulative Frequencies: ELA/L Grade 9

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	1,350	0.72	1,350	0.72
655-659	638	0.34	1,988	1.06
660-664	1,471	0.78	3,459	1.84
665-669	1,973	1.05	5,432	2.89
670-674	2,319	1.23	7,751	4.12
675-679	2,817	1.50	10,568	5.62
680-684	3,917	2.08	14,485	7.70
685-689	4,900	2.60	19,385	10.30
690-694	5,611	2.98	24,996	13.28
695-699	5,432	2.89	30,428	16.17
700-704	4,871	2.59	35,299	18.76
705-709	5,710	3.03	41,009	21.79
710-714	6,250	3.32	47,259	25.11
715-719	7,179	3.81	54,438	28.93
720-724	7,223	3.84	61,661	32.76
725-729	8,955	4.76	70,616	37.52
730-734	8,169	4.34	78,785	41.86
735-739	9,928	5.28	88,713	47.14
740-744	9,927	5.27	98,640	52.41
745-749	9,716	5.16	108,356	57.57
750-754	9,684	5.15	118,040	62.72
755-759	9,302	4.94	127,342	67.66
760-764	8,095	4.30	135,437	71.96
765-769	8,986	4.77	144,423	76.74
770-774	7,979	4.24	152,402	80.98
775-779	6,554	3.48	158,956	84.46
780-784	5,735	3.05	164,691	87.51
785-789	5,109	2.71	169,800	90.22
790-794	4,000	2.13	173,800	92.35
795-799	4,026	2.14	177,826	94.49
800-804	2,515	1.34	180,341	95.82
805-809	2,138	1.14	182,479	96.96
810-814	1,481	0.79	183,960	97.75
815-819	1,229	0.65	185,189	98.40
820-824	895	0.48	186,084	98.88
825-829	623	0.33	186,707	99.21
830-834	524	0.28	187,231	99.48
835-839	363	0.19	187,594	99.68
840-844	134	0.07	187,728	99.75
845-850	473	0.25	188,201	100.00

Table A.12.55 Scale Score Cumulative Frequencies: ELA/L Grade 10

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	6,691	3.89	6,691	3.89
655-659	1,759	1.02	8,450	4.91
660-664	2,676	1.56	11,126	6.47
665-669	2,907	1.69	14,033	8.16
670-674	2,846	1.65	16,879	9.82
675-679	3,843	2.23	20,722	12.05
680-684	3,449	2.01	24,171	14.06
685-689	4,151	2.41	28,322	16.47
690-694	3,781	2.20	32,103	18.67
695-699	4,388	2.55	36,491	21.22
700-704	4,196	2.44	40,687	23.66
705-709	4,247	2.47	44,934	26.13
710-714	4,887	2.84	49,821	28.97
715-719	5,657	3.29	55,478	32.26
720-724	5,704	3.32	61,182	35.58
725-729	5,756	3.35	66,938	38.93
730-734	6,874	4.00	73,812	42.92
735-739	6,692	3.89	80,504	46.81
740-744	6,716	3.91	87,220	50.72
745-749	7,226	4.20	94,446	54.92
750-754	7,376	4.29	101,822	59.21
755-759	6,570	3.82	108,392	63.03
760-764	6,373	3.71	114,765	66.74
765-769	7,014	4.08	121,779	70.82
770-774	6,024	3.50	127,803	74.32
775-779	5,723	3.33	133,526	77.65
780-784	5,922	3.44	139,448	81.09
785-789	5,013	2.92	144,461	84.01
790-794	4,687	2.73	149,148	86.73
795-799	3,771	2.19	152,919	88.92
800-804	3,476	2.02	156,395	90.95
805-809	3,323	1.93	159,718	92.88
810-814	2,327	1.35	162,045	94.23
815-819	2,303	1.34	164,348	95.57
820-824	1,756	1.02	166,104	96.59
825-829	1,450	0.84	167,554	97.43
830-834	1,046	0.61	168,600	98.04
835-839	974	0.57	169,574	98.61
840-844	580	0.34	170,154	98.95
845-850	1,811	1.05	171,965	100.00

Table A.12.56 Scale Score Cumulative Frequencies: ELA/L Grade 11

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	1,014	0.94	1,014	0.94
655-659	989	0.92	2,003	1.86
660-664	553	0.51	2,556	2.38
665-669	1,679	1.56	4,235	3.94
670-674	2,146	1.99	6,381	5.93
675-679	2,445	2.27	8,826	8.20
680-684	2,598	2.41	11,424	10.62
685-689	4,539	4.22	15,963	14.84
690-694	3,333	3.10	19,296	17.93
695-699	3,291	3.06	22,587	20.99
700-704	3,524	3.28	26,111	24.27
705-709	4,070	3.78	30,181	28.05
710-714	3,670	3.41	33,851	31.46
715-719	5,217	4.85	39,068	36.31
720-724	3,316	3.08	42,384	39.39
725-729	4,898	4.55	47,282	43.95
730-734	5,233	4.86	52,515	48.81
735-739	4,616	4.29	57,131	53.10
740-744	5,408	5.03	62,539	58.13
745-749	4,593	4.27	67,132	62.39
750-754	5,415	5.03	72,547	67.43
755-759	5,007	4.65	77,554	72.08
760-764	4,756	4.42	82,310	76.50
765-769	3,345	3.11	85,655	79.61
770-774	, 3,995	3.71	89,650	83.32
775-779	3,442	3.20	93,092	86.52
780-784	2,660	2.47	95,752	88.99
785-789	2,534	2.36	98,286	91.35
790-794	1,988	1.85	100,274	93.20
795-799	1,696	1.58	101,970	94.77
800-804	1,396	1.30	103,366	96.07
805-809	1,106	1.03	104,472	97.10
810-814	, 744	0.69	105,216	97.79
815-819	629	0.58	105,845	98.38
820-824	531	0.49	106,376	98.87
825-829	318	0.30	106,694	99.16
830-834	286	0.27	106,980	99.43
835-839	172	0.16	107,152	99.59
840-844	140	0.13	107,292	99.72
845-850	301	0.28	107,593	100.00

Table A.12.57 Scale Score Cumulative Frequencies: Mathematics Grade 3

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	4,919	1.16	4,919	1.16
655-659	368	0.09	5,287	1.24
660-664	3,641	0.86	8,928	2.10
665-669	2,342	0.55	11,270	2.65
670-674	4,032	0.95	15,302	3.59
675-679	5,405	1.27	20,707	4.86
680-684	7,005	1.65	27,712	6.51
685-689	7,627	1.79	35,339	8.30
690-694	9,456	2.22	44,795	10.52
695-699	9,882	2.32	54,677	12.84
700-704	12,397	2.91	67,074	15.75
705-709	14,929	3.51	82,003	19.26
710-714	14,304	3.36	96,307	22.62
715-719	17,557	4.12	113,864	26.74
720-724	19,277	4.53	133,141	31.27
725-729	20,494	4.81	153,635	36.09
730-734	21,715	5.10	175,350	41.19
735-739	24,580	5.77	199,930	46.96
740-744	19,577	4.60	219,507	51.56
745-749	25,025	5.88	244,532	57.44
750-754	20,836	4.89	265,368	62.33
755-759	23,335	5.48	288,703	67.81
760-764	18,611	4.37	307,314	72.18
765-769	21,270	5.00	328,584	77.18
770-774	16,611	3.90	345,195	81.08
775-779	13,912	3.27	359,107	84.35
780-784	14,260	3.35	373,367	87.70
785-789	9,815	2.31	383,182	90.00
790-794	9,409	2.21	392,591	92.21
795-799	9,208	2.16	401,799	94.38
800-804	4,167	0.98	405,966	95.35
805-809	4,846	1.14	410,812	96.49
810-814	3,894	0.91	414,706	97.41
815-819	2,649	0.62	417,355	98.03
820-824	2,412	0.57	419,767	98.60
825-829	1,250	0.29	421,017	98.89
830-834	1,210	0.28	422,227	99.17
835-839	1,182	0.28	423,409	99.45
840-844	414	0.10	423,823	99.55
845-850	1,921	0.45	425,744	100.00

Table A.12.58 Scale Score Cumulative Frequencies: Mathematics Grade 4

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2,110	0.49	2,110	0.49
655-659	739	0.17	2,849	0.67
660-664	2,096	0.49	4,945	1.16
665-669	1,283	0.30	6,228	1.46
670-674	4,522	1.06	10,750	2.52
675-679	6,159	1.44	16,909	3.96
680-684	7,257	1.70	24,166	5.66
685-689	8,555	2.01	32,721	7.67
690-694	10,844	2.54	43,565	10.21
695-699	15,211	3.57	58,776	13.78
700-704	15,503	3.63	74,279	17.41
705-709	19,607	4.60	93,886	22.01
710-714	21,485	5.04	115,371	27.04
715-719	20,576	4.82	135,947	31.87
720-724	20,356	4.77	156,303	36.64
725-729	25,095	5.88	181,398	42.52
730-734	21,868	5.13	203,266	47.65
735-739	21,562	5.05	224,828	52.70
740-744	26,322	6.17	251,150	58.87
745-749	22,451	5.26	273,601	64.13
750-754	21,513	5.04	295,114	69.18
755-759	21,936	5.14	317,050	74.32
760-764	16,895	3.96	333,945	78.28
765-769	18,638	4.37	352,583	82.65
770-774	15,120	3.54	367,703	86.19
775-779	13,694	3.21	381,397	89.40
780-784	10,653	2.50	392,050	91.90
785-789	9,082	2.13	401,132	94.03
790-794	7,609	1.78	408,741	95.81
795-799	3,833	0.90	412,574	96.71
800-804	4,813	1.13	417,387	97.84
805-809	2,306	0.54	419,693	98.38
810-814	1,940	0.45	421,633	98.83
815-819	1,664	0.39	423,297	99.22
820-824	1,223	0.29	424,520	99.51
825-829	573	0.13	425,093	99.64
830-834	485	0.11	425,578	99.76
835-839	387	0.09	425,965	99.85
840-844	118	0.03	426,083	99.88
845-850	526	0.12	426,609	100.00

Table A.12.59 Scale Score Cumulative Frequencies: Mathematics Grade 5

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	1,786	0.43	1,786	0.43
655-659	454	0.11	2,240	0.54
660-664	2,025	0.49	4,265	1.02
665-669	2,059	0.49	6,324	1.52
670-674	3,509	0.84	9,833	2.36
675-679	1,665	0.40	11,498	2.76
680-684	6,707	1.61	18,205	4.37
685-689	8,824	2.12	27,029	6.49
690-694	9,949	2.39	36,978	8.88
695-699	12,735	3.06	49,713	11.93
700-704	19,901	4.78	69,614	16.71
705-709	13,443	3.23	83,057	19.94
710-714	25,093	6.02	108,150	25.96
715-719	15,553	3.73	123,703	29.70
720-724	24,591	5.90	148,294	35.60
725-729	23,517	5.65	171,811	41.25
730-734	27,578	6.62	199,389	47.87
735-739	24,470	5.87	223,859	53.74
740-744	23,128	5.55	246,987	59.29
745-749	24,611	5.91	271,598	65.20
750-754	20,303	4.87	291,901	70.07
755-759	20,964	5.03	312,865	75.11
760-764	18,417	4.42	331,282	79.53
765-769	16,537	3.97	347,819	83.50
770-774	14,390	3.45	362,209	86.95
775-779	12,516	3.00	374,725	89.96
780-784	10,386	2.49	385,111	92.45
785-789	8,402	2.02	393,513	94.47
790-794	6,177	1.48	399,690	95.95
795-799	5,041	1.21	404,731	97.16
800-804	2,931	0.70	407,662	97.86
805-809	3,499	0.84	411,161	98.70
810-814	1,313	0.32	412,474	99.02
815-819	1,114	0.27	413,588	99.29
820-824	921	0.22	414,509	99.51
825-829	729	0.18	415,238	99.68
830-834	158	0.04	415,396	99.72
835-839	494	0.12	415,890	99.84
840-844	162	0.04	416,052	99.88
845-850	504	0.12	416,556	100.00

Table A.12.60 Scale Score Cumulative Frequencies: Mathematics Grade 6

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2,933	0.72	2,933	0.72
655-659	1,601	0.39	4,534	1.11
660-664	830	0.20	5,364	1.31
665-669	4,188	1.02	9,552	2.34
670-674	1,435	0.35	10,987	2.69
675-679	6,467	1.58	17,454	4.27
680-684	8,244	2.02	25,698	6.29
685-689	9,123	2.23	34,821	8.52
690-694	7,284	1.78	42,105	10.30
695-699	18,829	4.61	60,934	14.91
700-704	18,958	4.64	79,892	19.55
705-709	14,600	3.57	94,492	23.12
710-714	19,661	4.81	114,153	27.93
715-719	20,867	5.11	135,020	33.04
720-724	25,068	6.13	160,088	39.17
725-729	23,535	5.76	183,623	44.93
730-734	22,296	5.46	205,919	50.39
735-739	27,786	6.80	233,705	57.19
740-744	19,169	4.69	252,874	61.88
745-749	23,664	5.79	276,538	67.67
750-754	21,303	5.21	297,841	72.88
755-759	17,095	4.18	314,936	77.06
760-764	18,878	4.62	333,814	81.68
765-769	16,208	3.97	350,022	85.65
770-774	13,977	3.42	363,999	89.07
775-779	10,279	2.52	374,278	91.59
780-784	9,027	2.21	383,305	93.79
785-789	6,885	1.68	390,190	95.48
790-794	5,608	1.37	395,798	96.85
795-799	4,216	1.03	400,014	97.88
800-804	2,478	0.61	402,492	98.49
805-809	1,532	0.37	404,024	98.86
810-814	1,272	0.31	405,296	99.18
815-819	1,050	0.26	406,346	99.43
820-824	843	0.21	407,189	99.64
825-829	504	0.12	407,693	99.76
830-834	170	0.04	407,863	99.80
835-839	123	0.03	407,986	99.83
840-844	212	0.05	408,198	99.89
845-850	466	0.11	408,664	100.00

Table A.12.61 Scale Score Cumulative Frequencies: Mathematics Grade 7

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2,080	0.53	2,080	0.53
655-659	659	0.17	2,739	0.70
660-664	14	0.00	2,753	0.70
665-669	1,650	0.42	4,403	1.12
670-674	3,921	1.00	8,324	2.11
675-679	123	0.03	8,447	2.14
680-684	9,863	2.50	18,310	4.65
685-689	2,907	0.74	21,217	5.39
690-694	11,344	2.88	32,561	8.27
695-699	13,002	3.30	45,563	11.57
700-704	17,183	4.36	62,746	15.93
705-709	17,150	4.35	79,896	20.28
710-714	20,563	5.22	100,459	25.50
715-719	26,519	6.73	126,978	32.23
720-724	20,989	5.33	147,967	37.56
725-729	25,097	6.37	173,064	43.93
730-734	27,844	7.07	200,908	51.00
735-739	28,593	7.26	229,501	58.26
740-744	25,400	6.45	254,901	64.71
745-749	25,198	6.40	280,099	71.10
750-754	21,496	5.46	301,595	76.56
755-759	18,765	4.76	320,360	81.32
760-764	15,776	4.00	336,136	85.33
765-769	15,805	4.01	351,941	89.34
770-774	11,751	2.98	363,692	92.32
775-779	8,810	2.24	372,502	94.56
780-784	6,187	1.57	378,689	96.13
785-789	5,689	1.44	384,378	97.57
790-794	3,418	0.87	387,796	98.44
795-799	2,174	0.55	389,970	98.99
800-804	1,438	0.37	391,408	99.36
805-809	854	0.22	392,262	99.57
810-814	656	0.17	392,918	99.74
815-819	399	0.10	393,317	99.84
820-824	198	0.05	393,515	99.89
825-829	131	0.03	393,646	99.92
830-834	84	0.02	393,730	99.95
835-839	86	0.02	393,816	99.97
840-844	21	0.01	393,837	99.97
845-850	105	0.03	393,942	100.00

Table A.12.62 Scale Score Cumulative Frequencies: Mathematics Grade 8

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	7,653	2.43	7,653	2.43
655-659	1,401	0.45	9,054	2.88
660-664	2,915	0.93	11,969	3.81
665-669	5,864	1.86	17,833	5.67
670-674	4,605	1.46	22,438	7.13
675-679	7,565	2.41	30,003	9.54
680-684	11,739	3.73	41,742	13.27
685-689	12,192	3.88	53,934	17.15
690-694	15,969	5.08	69,903	22.23
695-699	15,853	5.04	85,756	27.27
700-704	9,156	2.91	94,912	30.18
705-709	18,981	6.04	113,893	36.22
710-714	15,569	4.95	129,462	41.17
715-719	13,272	4.22	142,734	45.39
720-724	13,119	4.17	155,853	49.56
725-729	20,134	6.40	175,987	55.96
730-734	13,302	4.23	189,289	60.19
735-739	15,770	5.01	205,059	65.20
740-744	13,197	4.20	218,256	69.40
745-749	14,913	4.74	233,169	74.14
750-754	12,753	4.06	245,922	78.20
755-759	10,956	3.48	256,878	81.68
760-764	9,358	2.98	266,236	84.66
765-769	10,002	3.18	276,238	87.84
770-774	6,806	2.16	283,044	90.00
775-779	7,185	2.28	290,229	92.29
780-784	5,200	1.65	295,429	93.94
785-789	4,637	1.47	300,066	95.42
790-794	3,325	1.06	303,391	96.47
795-799	2,730	0.87	306,121	97.34
800-804	1,876	0.60	307,997	97.94
805-809	1,631	0.52	309,628	98.46
810-814	1,296	0.41	310,924	98.87
815-819	850	0.27	311,774	99.14
820-824	563	0.18	312,337	99.32
825-829	575	0.18	312,912	99.50
830-834	457	0.15	313,369	99.65
835-839	244	0.08	313,613	99.72
840-844	187	0.06	313,800	99.78
845-850	684	0.22	314,484	100.00

Table A.12.63 Scale Score Cumulative Frequencies: Algebra I

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	1,681	0.64	1,681	0.64
655-659	335	0.13	2,016	0.77
660-664	705	0.27	2,721	1.04
665-669	2,358	0.90	5,079	1.95
670-674	626	0.24	5,705	2.19
675-679	2,065	0.79	7,770	2.98
680-684	4,804	1.84	12,574	4.82
685-689	3,237	1.24	15,811	6.06
690-694	7,224	2.77	23,035	8.83
695-699	13,251	5.08	36,286	13.91
700-704	6,576	2.52	42,862	16.43
705-709	15,113	5.79	57,975	22.23
710-714	10,102	3.87	68,077	26.10
715-719	18,239	6.99	86,316	33.10
720-724	15,447	5.92	101,763	39.02
725-729	10,666	4.09	112,429	43.11
730-734	14,470	5.55	126,899	48.66
735-739	15,006	5.75	141,905	54.41
740-744	12,893	4.94	154,798	59.35
745-749	11,913	4.57	166,711	63.92
750-754	10,314	3.95	177,025	67.88
755-759	11,867	4.55	188,892	72.43
760-764	10,428	4.00	199,320	76.42
765-769	10,080	3.86	209,400	80.29
770-774	10,342	3.97	219,742	84.25
775-779	7,261	2.78	227,003	87.04
780-784	7,447	2.86	234,450	89.89
785-789	5,947	2.28	240,397	92.17
790-794	4,690	1.80	245,087	93.97
795-799	4,013	1.54	249,100	95.51
800-804	3,198	1.23	252,298	96.74
805-809	2,334	0.89	254,632	97.63
810-814	1,869	0.72	256,501	98.35
815-819	995	0.38	257,496	98.73
820-824	911	0.35	258,407	99.08
825-829	515	0.20	258,922	99.28
830-834	601	0.23	259,523	99.51
835-839	356	0.14	259,879	99.64
840-844	205	0.08	260,084	99.72
845-850	722	0.28	260,806	100.00

Table A.12.64 Scale Score Cumulative Frequencies: Geometry

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	468	0.34	468	0.34
655-659	161	0.12	629	0.46
660-664	1	0.00	630	0.46
665-669	396	0.29	1,026	0.75
670-674	942	0.68	1,968	1.43
675-679	230	0.17	2,198	1.60
680-684	1,270	0.92	3,468	2.52
685-689	2,620	1.91	6,088	4.43
690-694	2,994	2.18	9,082	6.60
695-699	3,504	2.55	12,586	9.15
700-704	6,500	4.73	19,086	13.88
705-709	6,842	4.97	25,928	18.85
710-714	8,893	6.47	34,821	25.32
715-719	9,486	6.90	44,307	32.22
720-724	6,914	5.03	51,221	37.24
725-729	9,035	6.57	60,256	43.81
730-734	9,225	6.71	69,481	50.52
735-739	7,013	5.10	76,494	55.62
740-744	9,047	6.58	85,541	62.20
745-749	8,143	5.92	93,684	68.12
750-754	8,457	6.15	102,141	74.27
755-759	7,245	5.27	109,386	79.54
760-764	6,226	4.53	115,612	84.06
765-769	6,005	4.37	121,617	88.43
770-774	5,005	3.64	126,622	92.07
775-779	3,890	2.83	130,512	94.90
780-784	2,369	1.72	132,881	96.62
785-789	2,038	1.48	134,919	98.10
790-794	1,153	0.84	136,072	98.94
795-799	626	0.46	136,698	99.40
800-804	352	0.26	137,050	99.65
805-809	195	0.14	137,245	99.79
810-814	117	0.09	137,362	99.88
815-819	65	0.05	137,427	99.93
820-824	52	0.04	137,479	99.96
825-829	15	0.01	137,494	99.97
830-834	1	0.00	137,495	99.97
835-839	15	0.01	137,510	99.99
840-844	9	0.01	137,519	99.99
845-850	11	0.01	137,530	100.00

Table A.12.65 Scale Score Cumulative Frequencies: Algebra II

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	3,415	2.78	3,415	2.78
655-659	1,256	1.02	4,671	3.81
660-664	2,402	1.96	7,073	5.76
665-669	2,293	1.87	9,366	7.63
670-674	3,096	2.52	12,462	10.16
675-679	4,656	3.79	17,118	13.95
680-684	2,931	2.39	20,049	16.34
685-689	6,369	5.19	26,418	21.53
690-694	7,262	5.92	33,680	27.45
695-699	6,989	5.70	40,669	33.14
700-704	6,132	5.00	46,801	38.14
705-709	5,435	4.43	52,236	42.57
710-714	4,879	3.98	57,115	46.54
715-719	4,545	3.70	61,660	50.25
720-724	5,963	4.86	67,623	55.11
725-729	4,399	3.58	72,022	58.69
730-734	5,690	4.64	77,712	63.33
735-739	2,963	2.41	80,675	65.74
740-744	4,888	3.98	85,563	69.73
745-749	4,388	3.58	89,951	73.30
750-754	4,424	3.61	94,375	76.91
755-759	3,561	2.90	97,936	79.81
760-764	3,146	2.56	101,082	82.37
765-769	3,187	2.60	104,269	84.97
770-774	3,626	2.95	107,895	87.93
775-779	2,179	1.78	110,074	89.70
780-784	2,722	2.22	112,796	91.92
785-789	1,817	1.48	114,613	93.40
790-794	1,741	1.42	116,354	94.82
795-799	1,301	1.06	117,655	95.88
800-804	1,267	1.03	118,922	96.91
805-809	823	0.67	119,745	97.58
810-814	731	0.60	120,476	98.18
815-819	530	0.43	121,006	98.61
820-824	363	0.30	121,369	98.91
825-829	389	0.32	121,758	99.22
830-834	225	0.18	121,983	99.41
835-839	221	0.18	122,204	99.59
840-844	122	0.10	122,326	99.69
845-850	384	0.31	122,710	100.00

Table A.12.66 Scale Score Cumulative Frequencies: Integrated Mathematics I

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	35	0.32	35	0.32
655-659	61	0.56	96	0.88
660-664	21	0.19	117	1.07
665-669	155	1.41	272	2.48
670-674	22	0.20	294	2.68
675-679	235	2.14	529	4.82
680-684	34	0.31	563	5.13
685-689	406	3.70	969	8.84
690-694	532	4.85	1,501	13.69
695-699	553	5.04	2,054	18.73
700-704	593	5.41	2,647	24.14
705-709	554	5.05	3,201	29.20
710-714	549	5.01	3,750	34.20
715-719	898	8.19	4,648	42.39
720-724	394	3.59	5,042	45.99
725-729	740	6.75	5,782	52.74
730-734	560	5.11	6,342	57.84
735-739	565	5.15	6,907	63.00
740-744	451	4.11	7,358	67.11
745-749	593	5.41	7,951	72.52
750-754	363	3.31	8,314	75.83
755-759	482	4.40	8,796	80.23
760-764	421	3.84	9,217	84.07
765-769	255	2.33	9,472	86.39
770-774	326	2.97	9,798	89.37
775-779	262	2.39	10,060	91.75
780-784	206	1.88	10,266	93.63
785-789	136	1.24	10,402	94.87
790-794	164	1.50	10,566	96.37
795-799	72	0.66	10,638	97.03
800-804	67	0.61	10,705	97.64
805-809	63	0.57	10,768	98.21
810-814	43	0.39	10,811	98.60
815-819	31	0.28	10,842	98.89
820-824	33	0.30	10,875	99.19
825-829	29	0.26	10,904	99.45
830-834	20	0.18	10,924	99.64
835-839	16	0.15	10,940	99.78
840-844	4	0.04	10,944	99.82
845-850	20	0.18	10,964	100.00

Table A.12.67 Scale Score Cumulative Frequencies: Integrated Mathematics II

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	2	0.09	2	0.09
655-659	10	0.45	12	0.53
660-664	0	0.00	12	0.53
665-669	14	0.62	26	1.16
670-674	0	0.00	26	1.16
675-679	23	1.03	49	2.18
680-684	21	0.94	70	3.12
685-689	15	0.67	85	3.79
690-694	55	2.45	140	6.24
695-699	59	2.63	199	8.87
700-704	63	2.81	262	11.68
705-709	92	4.10	354	15.78
710-714	79	3.52	433	19.30
715-719	80	3.57	513	22.87
720-724	90	4.01	603	26.88
725-729	153	6.82	756	33.70
730-734	76	3.39	832	37.09
735-739	62	2.76	894	39.86
740-744	150	6.69	1,044	46.54
745-749	171	7.62	1,215	54.17
750-754	74	3.30	1,289	57.47
755-759	125	5.57	1,414	63.04
760-764	163	7.27	1,577	70.31
765-769	107	4.77	1,684	75.08
770-774	147	6.55	1,831	81.63
775-779	101	4.50	1,932	86.13
780-784	95	4.24	2,027	90.37
785-789	57	2.54	2,084	92.91
790-794	41	1.83	2,125	94.74
795-799	22	0.98	2,147	95.72
800-804	39	1.74	2,186	97.46
805-809	14	0.62	2,200	98.08
810-814	17	0.76	2,217	98.84
815-819	2	0.09	2,219	98.93
820-824	6	0.27	2,225	99.20
825-829	7	0.31	2,232	99.51
830-834	0	0.00	2,232	99.51
835-839	4	0.18	2,236	99.69
840-844	2	0.09	2,238	99.78
845-850	5	0.22	2,243	100.00

Table A.12.68 Scale Score Cumulative Frequencies: Integrated Mathematics III

Score Band	Count	Percent	Cumulative Count	Cumulative Percent
650-654	28	4.93	28	4.93
655-659	0	0.00	28	4.93
660-664	26	4.58	54	9.51
665-669	0	0.00	54	9.51
670-674	31	5.46	85	14.96
675-679	32	5.63	117	20.60
680-684	2	0.35	119	20.95
685-689	51	8.98	170	29.93
690-694	28	4.93	198	34.86
695-699	27	4.75	225	39.61
700-704	0	0.00	225	39.61
705-709	30	5.28	255	44.89
710-714	19	3.35	274	48.24
715-719	19	3.35	293	51.58
720-724	11	1.94	304	53.52
725-729	27	4.75	331	58.27
730-734	13	2.29	344	60.56
735-739	12	2.11	356	62.68
740-744	19	3.35	375	66.02
745-749	19	3.35	394	69.37
750-754	22	3.87	416	73.24
755-759	11	1.94	427	75.18
760-764	21	3.70	448	78.87
765-769	10	1.76	458	80.63
770-774	23	4.05	481	84.68
775-779	16	2.82	497	87.50
780-784	11	1.94	508	89.44
785-789	14	2.46	522	91.90
790-794	17	2.99	539	94.89
795-799	8	1.41	547	96.30
800-804	6	1.06	553	97.36
805-809	4	0.70	557	98.06
810-814	1	0.18	558	98.24
815-819	2	0.35	560	98.59
820-824	3	0.53	563	99.12
825-829	2	0.35	565	99.47
830-834	0	0.00	565	99.47
835-839	1	0.18	566	99.65
840-844	1	0.18	567	99.82
845-850	1	0.18	568	100.00

Appendix 13: Growth

Appendix 13 provides the summary growth results for subgroups for grade 4-11 ELA/L and mathematics 3-8 and high school. Integrated mathematics II and III do not have sufficient sample sizes for subgroup summary analysis.

Table A.13.1 Summary of SGP Estimates for Subgroups: Grade 4 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	203,109	48.22	13.13	47
Female	195,771	51.83	12.97	53
Ethnicity				
White	174,974	52.27	12.88	53
African American	67,347	44.70	13.24	43
Asian/Pacific Islander	23,183	59.11	12.56	63
American Indian/Alaska Native	5,114	41.26	13.36	38
Hispanic	113,794	48.13	13.29	47
Multiple	13,626	49.88	13.00	50
Special Instructional Needs				
Economically Disadvantaged	195,933	46.12	13.27	45
Not-economically Disadvantaged	202,947	53.72	12.84	55
English Learner (EL)	34,649	45.78	13.91	44
Non English Learner	364,231	50.39	12.97	51
Students with Disabilities (SWD)	62,933	42.50	13.56	39
Students without Disabilities	335,947	51.39	12.96	52

Table A.13.2 Summary of SGP Estimates for Subgroups: Grade 5 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	199,403	47.81	14.40	47
Female	191,991	52.38	14.12	53
Ethnicity				
White	174,782	50.70	14.11	51
African American	64,655	46.24	14.54	44
Asian/Pacific Islander	23,143	58.00	13.80	61
American Indian/Alaska Native	5,011	47.86	14.71	48
Hispanic	110,390	49.71	14.44	50
Multiple	12,755	49.33	14.19	49
Special Instructional Needs				
Economically Disadvantaged	188,470	47.95	14.51	47
Not-economically Disadvantaged	202,924	52.00	14.03	53
English Learner (EL)	24,491	46.14	15.77	45
Non English Learner	366,903	50.31	14.16	50
Students with Disabilities (SWD)	63,630	45.30	15.35	43
Students without Disabilities	327,764	50.97	14.05	51

Table A.13.3 Summary of SGP Estimates for Subgroups: Grade 6 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	199,403	47.81	14.40	47
Female	191,991	52.38	14.12	53
Ethnicity				
White	174,782	50.70	14.11	51
African American	64,655	46.24	14.54	44
Asian/Pacific Islander	23,143	58.00	13.80	61
American Indian/Alaska Native	5,011	47.86	14.71	48
Hispanic	110,390	49.71	14.44	50
Multiple	12,755	49.33	14.19	49
Special Instructional Needs				
Economically Disadvantaged	188,470	47.95	14.51	47
Not-economically Disadvantaged	202,924	52.00	14.03	53
English Learner (EL)	24,491	46.14	15.77	45
Non English Learner	366,903	50.31	14.16	50
Students with Disabilities (SWD)	63,630	45.30	15.35	43
Students without Disabilities	327,764	50.97	14.05	51

Table A.13.4 Summary of SGP Estimates for Subgroups: Grade 7 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	195,045	47.17	13.49	46
Female	186,463	52.86	13.39	54
Ethnicity				
White	175,996	51.07	13.34	52
African American	61,941	46.67	13.63	45
Asian/Pacific Islander	23,459	58.08	13.62	61
American Indian/Alaska Native	3,294	46.54	13.68	45
Hispanic	105,102	48.48	13.46	48
Multiple	11,278	48.21	13.42	47
Special Instructional Needs				
Economically Disadvantaged	173,077	47.75	13.51	47
Not-economically Disadvantaged	208,431	51.77	13.39	52
English Learner (EL)	18,886	46.80	14.76	46
Non English Learner	362,622	50.11	13.38	50
Students with Disabilities (SWD)	61,503	45.89	14.40	44
Students without Disabilities	320,005	50.73	13.26	51

Table A.13.5 Summary of SGP Estimates for Subgroups: Grade 8 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	191,653	47.82	13.64	47
Female	182,755	52.19	13.64	53
Ethnicity				
White	173,307	49.74	13.52	50
African American	61,709	46.85	13.75	46
Asian/Pacific Islander	23,127	57.46	14.11	60
American Indian/Alaska Native	3,218	51.97	13.77	53
Hispanic	102,198	50.52	13.66	51
Multiple	10,474	48.78	13.59	48
Special Instructional Needs				
Economically Disadvantaged	167,012	48.78	13.67	48
Not-economically Disadvantaged	207,396	50.89	13.61	51
English Learner (EL)	18,522	49.68	14.90	50
Non English Learner	355,886	49.96	13.57	50
Students with Disabilities (SWD)	59,220	45.95	14.51	44
Students without Disabilities	315,188	50.70	13.48	51

Table A.13.6 Summary of SGP Estimates for Subgroups: Grade 9 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	82,811	48.45	13.43	48
Female	77,682	51.53	13.30	52
Ethnicity				
White	73,130	50.58	13.13	51
African American	17,730	47.27	13.47	46
Asian/Pacific Islander	11,084	58.09	13.66	61
American Indian/Alaska Native	2,538	51.44	14.10	52
Hispanic	52,481	48.30	13.58	48
Multiple	3,223	48.13	13.08	48
Special Instructional Needs				
Economically Disadvantaged	66,273	48.14	13.56	47
Not-economically Disadvantaged	94,220	51.22	13.23	52
English Learner (EL)	9,779	47.00	14.85	46
Non English Learner	150,714	50.14	13.27	50
Students with Disabilities (SWD)	25,709	46.12	14.38	45
Students without Disabilities	134,784	50.68	13.18	51

Table A.13.7 Summary of SGP Estimates for Subgroups: Grade 10 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	52,864	48.23	13.04	47
Female	50,000	50.95	13.18	51
Ethnicity				
White	42,767	48.89	12.81	48
African American	14,127	48.13	13.11	47
Asian/Pacific Islander	8,646	53.39	13.65	55
American Indian/Alaska Native	2,163	54.85	13.47	57
Hispanic	33,721	49.67	13.32	50
Multiple	1,165	49.68	13.00	51
Special Instructional Needs				
Economically Disadvantaged	40,998	49.65	13.28	50
Not-economically Disadvantaged	61,866	49.49	12.99	49
English Learner (EL)	4,583	46.22	14.56	45
Non English Learner	98,281	49.71	13.04	50
Students with Disabilities (SWD)	17,685	46.06	13.66	45
Students without Disabilities	85,179	50.28	12.99	50

Table A.13.8 Summary of SGP Estimates for Subgroups: Grade 11 ELA/L

			Average	
	Total Sample	Average	Standard	Median
	Size	SGP	Error	SGP
Gender				
Male	42,943	47.48	11.95	46
Female	39,223	51.85	11.58	53
Ethnicity				
White	33,122	46.42	11.24	44
African American	10,385	49.97	12.16	50
Asian/Pacific Islander	5,907	49.04	11.28	48
American Indian/Alaska Native	2,058	57.48	12.95	60
Hispanic	29,501	52.51	12.25	54
Multiple	921	49.18	11.67	49
Special Instructional Needs				
Economically Disadvantaged	33,509	52.13	12.31	53
Not-economically Disadvantaged	48,657	47.80	11.41	47
English Learner (EL)	3,511	50.96	14.57	52
Non English Learner	78,655	49.50	11.65	49
Students with Disabilities (SWD)	14,458	45.84	13.45	44
Students without Disabilities	67,708	50.36	11.42	51

Table A.13.9 Summary of SGP Estimates for Subgroups: Grade 4 Mathematics

	Total Sample Size	Average SGP	Average Standard Error	Median SGP
Gender				
Male	203,729	50.77	12.87	51
Female	196,386	49.26	12.88	49
Ethnicity				
White	175,093	52.78	12.61	54
African American	67,242	44.15	13.24	42
Asian/Pacific Islander	23,477	58.94	12.86	62
American Indian/Alaska Native	5,093	43.69	13.24	41
Hispanic	114,750	47.67	13.06	47
Multiple	13,613	50.2	12.90	50
Special Instructional Needs				
Economically Disadvantaged	196,903	46.29	13.10	45
Not-economically Disadvantaged	203,212	53.65	12.66	55
English Learner (EL)	35,923	45.63	13.88	44
Non English Learner	364,192	50.46	12.78	51
Students with Disabilities (SWD)	62,799	45.94	13.77	44
Students without Disabilities	337,316	50.79	12.71	51
Spanish Language Form	2,628	44.32	13.70	42

Table A.13.10 Summary of SGP Estimates for Subgroups: Grade 5 Mathematics

	Total Sample Size	Average SGP	Average Standard Error	Median SGP
Gender				
Male	199,744	49.85	14.42	50
Female	192,326	50.26	14.53	50
Ethnicity				
White	174,975	51.07	14.17	52
African American	64,597	45.68	15.00	44
Asian/Pacific Islander	23,456	57.85	14.11	61
American Indian/Alaska Native	4,983	48.61	14.87	48
Hispanic	110,647	49.43	14.71	49
Multiple	12,748	49.45	14.52	49
Special Instructional Needs				
Economically Disadvantaged	188,948	48.09	14.80	47
Not-economically Disadvantaged	203,122	51.87	14.17	53
English Learner (EL)	25,304	48.76	15.72	48
Non English Learner	366,766	50.14	14.39	50
Students with Disabilities (SWD)	63,447	47.21	15.19	46
Students without Disabilities	328,623	50.60	14.34	51
Spanish Language Form	1,774	45.95	15.40	44

Table A.13.11 Summary of SGP Estimates for Subgroups: Grade 6 Mathematics

	Total Average Sample Size SGP	Average		
		Average	Standard	Median
		SGP	Error	SGP
Gender				
Male	195,186	49.03	14.39	49
Female	187,279	51.06	14.39	51
Ethnicity				
White	172,709	52.40	13.98	53
African American	62,017	44.58	15.08	42
Asian/Pacific Islander	23,278	56.53	13.96	59
American Indian/Alaska Native	4,502	47.55	14.99	47
Hispanic	107,713	48.06	14.73	47
Multiple	11,753	49.73	14.37	49
Special Instructional Needs				
Economically Disadvantaged	180,485	47.11	14.86	46
Not-economically Disadvantaged	201,980	52.63	13.97	54
English Learner (EL)	20,704	44.76	16.15	43
Non English Learner	361,761	50.32	14.29	50
Students with Disabilities (SWD)	61,982	45.19	15.47	43
Students without Disabilities	320,483	50.96	14.18	51
Spanish Language Form	1,418	46.80	15.91	45

Table A.13.12 Summary of SGP Estimates for Subgroups: Grade 7 Mathematics

	Total Sample Size	Total Average		Median
		SGP	Standard Error	SGP
Gender				
Male	187,774	49.73	15.98	50
Female	180,096	50.32	15.88	50
Ethnicity				
White	168,681	51.42	15.31	52
African American	60,577	47.36	17.03	46
Asian/Pacific Islander	20,178	56.93	14.66	60
American Indian/Alaska Native	3,261	42.20	17.27	39
Hispanic	104,081	48.22	16.51	47
Multiple	10,645	49.57	15.84	49
Special Instructional Needs				
Economically Disadvantaged	171,535	47.86	16.73	47
Not-economically Disadvantaged	196,335	51.90	15.24	53
English Learner (EL)	19,631	46.43	18.37	45
Non English Learner	348,239	50.22	15.79	50
Students with Disabilities (SWD)	60,794	44.74	17.65	42
Students without Disabilities	307,076	51.06	15.59	51
Spanish Language Form	1,102	48.44	18.15	46

Table A.13.13 Summary of SGP Estimates for Subgroups: Grade 8 Mathematics

	Total Sample Size	Average SGP	Average Standard Error	Median SGP
Gender				
Male	149,935	48.71	16.31	48
Female	138,636	51.27	16.23	52
Ethnicity				
White	128,198	51.49	15.60	52
African American	51,210	45.75	17.35	44
Asian/Pacific Islander	11,803	57.15	14.97	60
American Indian/Alaska Native	2,731	49.44	17.71	49
Hispanic	86,506	49.19	16.78	49
Multiple	7,762	49.23	16.28	49
Special Instructional Needs				
Economically Disadvantaged	145,380	48.34	16.89	48
Not-economically Disadvantaged	143,191	51.56	15.64	52
English Learner (EL)	18,197	48.69	18.27	48
Non English Learner	270,374	50.02	16.14	50
Students with Disabilities (SWD)	54,206	46.32	17.84	45
Students without Disabilities	234,365	50.78	15.91	51
Spanish Language Form	1,202	53.61	17.66	53

Table A.13.14 Summary of SGP Estimates for Subgroups: Algebra I

	Total Sample Size		Average	Median
		Average	Standard	
		SGP	Error	SGP
Gender				
Male	105,870	51.08	15.67	52
Female	102,340	49.34	15.62	49
Ethnicity				
White	91,375	52.44	14.46	53
African American	35,994	47.55	17.43	47
Asian/Pacific Islander	15,830	56.22	12.98	58
American Indian/Alaska Native	2,637	45.88	18.75	43
Hispanic	56,707	46.85	17.08	45
Multiple	5,373	50.76	15.04	51
Special Instructional Needs				
Economically Disadvantaged	82,463	46.82	17.28	46
Not-economically Disadvantaged	125,747	52.46	14.57	54
English Learner (EL)	9,850	47.59	19.55	47
Non English Learner	198,360	50.36	15.45	51
Students with Disabilities (SWD)	30,860	47.94	18.31	47
Students without Disabilities	177,350	50.62	15.18	51
Spanish Language Form	1,152	46.41	19.14	45

Table A.13.15 Summary of SGP Estimates for Subgroups: Geometry

	Total Sample Size	Average SGP	Average Standard Error	Median SGP
Gender				
Male	60,636	51.81	14.17	53
Female	58,538	50.12	14.18	50
Ethnicity				
White	54,741	53.57	13.16	55
African American	15,410	43.60	16.02	41
Asian/Pacific Islander	10,196	57.84	12.26	61
American Indian/Alaska Native	2,144	55.91	16.01	58
Hispanic	34,258	47.63	15.48	47
Multiple	2,176	55.19	12.84	57
Special Instructional Needs				
Economically Disadvantaged	42,277	46.39	15.74	45
Not-economically Disadvantaged	76,897	53.51	13.31	55
English Learner (EL)	4,025	43.64	17.99	41
Non English Learner	115,149	51.24	14.04	52
Students with Disabilities (SWD)	17,890	45.82	17.03	44
Students without Disabilities	101,284	51.89	13.67	53
Spanish Language Form	1,121	49.21	19.16	49

Table A.13.16 Summary of SGP Estimates for Subgroups: Algebra II

	Total Sample Size	_	Average	
		Average SGP	Standard Error	Median SGP
Gender	Jumple 5126		2.101	
Male	46,329	50.10	15.93	50
Female	45,431	48.98	16.04	48
Ethnicity				
White	39,921	50.02	15.05	50
African American	11,606	45.98	17.61	44
Asian/Pacific Islander	9,251	54.57	13.98	57
American Indian/Alaska Native	1,743	48.01	18.35	47
Hispanic	27,695	48.73	17.22	48
Multiple	1,308	50.74	15.10	51
Special Instructional Needs				
Economically Disadvantaged	32,208	47.97	17.35	47
Not-economically Disadvantaged	59,552	50.40	15.25	51
English Learner (EL)	2,533	46.65	19.43	45
Non English Learner	89,227	49.63	15.89	49
Students with Disabilities (SWD)	11,966	44.93	18.55	43
Students without Disabilities	79,794	50.24	15.60	50
Spanish Language Form	775	40.09	18.12	34

Table A.13.17 Summary of SGP Estimates for Subgroups: Integrated Mathematics I

		_	Average	
	Total Sample Size	Average SGP	Standard Error	Median SGP
Gender	Sumple Size	301	LITOI	301
Male	4,707	50.56	16.40	51
Female	4,068	48.58	16.59	48
Ethnicity				
White	3,174	50.88	15.24	52
African American	666	51.18	17.61	51
Asian/Pacific Islander	394	54.66	15.35	55
American Indian/Alaska Native	92	47.22	17.80	50
Hispanic	4,222	47.96	17.34	47
Multiple	224	51.54	16.55	54
Special Instructional Needs				
Economically Disadvantaged	4,677	49.54	17.29	50
Not-economically Disadvantaged	4,098	49.77	15.58	49
English Learner (EL)	1,746	47.78	18.99	46
Non English Learner	7,029	50.11	15.87	50
Students with Disabilities (SWD)	1,111	47.24	19.30	45
Students without Disabilities	7,664	49.99	16.08	50
Spanish Language Form	27	59.07	21.39	58

Addendum: Statistical Summary of the Fall/Winter Block 2016 Administration

The addendum presents the results of analyses for the fall/winter block 2016 operational administration. These results are reported separately from the spring 2017 results because fall testing involved a nonrepresentative subset of students testing only for ELA/L grades 9, 10, and 11, as well as Algebra I, Geometry, and Algebra II. Both online and paper test forms were administered for each test.

To organize the addendum, tables are numbered sequentially according to the section represented by the tables. The reader can refer back to the corresponding section in the technical report for related information on the topic. For example, the first addendum table for Section 5 is numbered ADD.5.1, the second addendum table for Section 5 is numbered ADD.5.2, and so on.

Addendum 5: Test Taker Characteristics

Table ADD.5.1 State Participation in ELA/L Fall 2016 Operational Tests, by Grade

			English Language Arts/Literacy					
State	Category	Total	Grade 9	Grade 10	Grade 11			
	N of Students	29,841	4,891	9,608	15,342			
	N of CBT	29,629	4,877	9,587	15,165			
PARCC	% of CBT	99.3	99.7	99.8	98.8			
	N of PBT	212	14	21	177			
	% of PBT	1.7	0.3	0.2	1.2			
	N of Students	83	-	-	83			
	% of PARCC Data	0.3	-	-	0.3			
DI	N of CBT	19	-	-	19			
ВІ	% of CBT	22.9	-	-	22.9			
	N of PBT	64	-	-	64			
	% of PBT	77.1	-	-	77.1			
	N of Students	10,539	514	5,457	4,568			
	% of PARCC Data	35.3	1.7	18.3	15.3			
1.40	N of CBT	10,509	511	5,444	4,554			
MD	% of CBT	99.7	99.4	99.8	99.7			
	N of PBT	30	3	13	14			
	% of PBT	1.1	0.6	0.2	0.3			
	N of Students	11,884	4,043	3,871	3,960			
	% of PARCC Data	39.8	13.6	13.0	13.3			
	N of CBT	11,851	4,043	3,863	3,945			
NJ	% of CBT	99.7	99.8	99.8	99.6			
	N of PBT	33	10	8	15			
	% of PBT	0.8	0.2	0.2	0.4			

	Catagory		English Lang	uage Arts/Litera	су
State	Category	Total	Grade 9	Grade 10	Grade 11
	N of Students	7,334	323	280	6,731
	% of PARCC Data	24.6	1.1	0.9	22.6
	N of CBT	7,249	322	280	6,647
NM	% of CBT	98.8	99.7	100	98.8
	N of PBT	85	1	-	84
	% of PBT	1.5	0.3	-	1.2
	N of Students	1	1	-	-
	% of PARCC Data	0.0	0.0	-	-
	N of CBT	1	1	-	-
RI	% of CBT	100	100	-	-
	N of PBT	-	_	_	-
	% of PBT	-	_	_	_

Table ADD.5.2 State Participation in Mathematics Fall 2016 Operational Tests, by Grade

State	Category		M	athematics	
Jiaie	Category	Total	A1	GO	A2
	N of Students	29,633	7,159	6,827	15,647
	N of CBT	29,452	7,104	6,794	15,554
ARCC	% of CBT	99.4	99.2	99.5	99.4
	N of PBT	181	55	33	93
	% of PBT	0.6	0.8	0.5	0.6
	N of Students	21	4	1	16
	% of PARCC Data	0.1	0.0	0.0	0.1
DI	N of CBT	21	4	1	16
BI	% of CBT	100	100	100	100
	N of PBT	_	-	-	-
	% of PBT	-	-	-	-
	N of Students	9,488	3,834	758	4,896
	% of PARCC Data	32.0	12.9	2.6	16.5
	N of CBT	9,454	3,819	755	4,880
MD	% of CBT	99.6	99.6	99.6	99.7
	N of PBT	34	15	3	16
	% of PBT	0.4	0.4	0.4	0.3
	N of Students	10,471	2,638	3,928	3,905
	% of PARCC Data	35.3	8.9	13.3	13.2
	N of CBT	10,446	2,635	3,916	3,895
NJ	% of CBT	99.8	99.9	99.7	99.7
	N of PBT	25	3	12	10
	% of PBT	0.2	0.1	0.3	0.3
	N of Students	9,570	613	2,127	6,830
	% of PARCC Data	32.3	2.1	7.2	23.0
N.I.N. 4	N of CBT	9,448	576	2,109	6,763
NM	% of CBT	98.7	94.0	99.2	99.0
	N of PBT	122	37	18	67
	% of PBT	1.3	6.0	0.8	1.0
	N of Students	83	70	13	-
	% of PARCC Data	0.3	0.2	0.0	-
DI	N of CBT	83	70	13	-
RI	% of CBT	100	100	100	-
	N of PBT	-	-	-	-
	% of PBT	_	_	-	_

Table ADD.5.3 State Participation in Spanish Mathematics Fall 2016 Operational Tests, by Grade

Ctata	Catagoni		Mat	thematics	
State	Category	Total	A1	GO	A2
	N of Students	170	41	76	53
	N of CBT	170	41	76	53
PARCC	% of CBT	100	100	100	100
	N of PBT	-	-	-	-
	% of PBT	-	-	-	-
	N of Students	16	16	-	-
	% of PARCC Data	9.4	9.4	-	-
MD	N of CBT	16	16	-	-
	% of CBT	100	100	-	-
	N of PBT	-	-	-	-
	% of PBT	-	-	-	-
	N of Students	81	21	50	10
	% of PARCC Data	47.6	12.4	29.4	5.9
	N of CBT	81	21	50	10
NJ	% of CBT	100	100	100	100
	N of PBT	-	-	-	-
	% of PBT	-	-	-	-
	N of Students	73	4	26	43
	% of PARCC Data	42.9	2.4	15.3	25.3
N.I.N. 4	N of CBT	73	4	26	43
NM	% of CBT	100	100	100	100
	N of PBT	-	-	-	-
	% of PBT	-	-	-	-

Table ADD.5.4 All States Combined: Fall 2016 ELA/L Test Takers by Grade and Gender

		Valid Cases		Gender				
Grade	Mode	e valid cases	Fem	ale	Ma	ile		
	_	N	N	%	N	%		
	ALL	4,891	2,492	51.0	2,399	49.0		
9	CBT	4,877	2,485	51.0	2,392	49.0		
	PBT	14	7	50.0	7	50.0		
	ALL	9,608	4,829	50.3	4,779	49.7		
10	CBT	9,587	4,822	50.3	4,765	49.7		
	PBT	21	7	33.3	14	66.7		
	ALL	15,342	6,817	44.4	8,525	55.6		
11	CBT	15,165	6,736	44.4	8,429	55.6		
	PBT	177	81	45.8	96	54.2		

Table ADD.5.5 All States Combined: Fall 2016 Mathematics Test Takers by Grade and Gender

		Valid Cases				
Grade	Mode		Fem	ale	Male	
	_	N	N	%	N	%
	ALL	7,159	3,524	49.2	3,635	50.8
A1	CBT	7,104	3,507	49.4	3,597	50.6
	PBT	55	17	30.9	38	69.1
	ALL	6,827	3,416	50.0	3,411	50.0
GO	CBT	6,794	3,401	50.1	3,393	49.9
	PBT	33	15	45.5	18	54.5
	ALL	15,647	7,953	50.8	7,694	49.2
A2	CBT	15,554	7,902	50.8	7,652	49.2
	PBT	93	51	54.8	42	45.2

Table ADD.5.6 All States Combined: Fall 2016 Spanish-Language Mathematics Test Takers by Grade and Gender

		Valid Cases		Gend	der	
Grade	Mode	valiu Cases	Fem	ale	Ma	ale
		N	N	%	N	%
	ALL	41	12	29.3	29	70.7
A1	СВТ	41	12	29.3	29	70.7
	PBT	-	-	-	-	-
	ALL	76	34	44.7	42	55.3
GO	СВТ	76	34	44.7	42	55.3
	PBT	-	-	-	-	-
	ALL	53	29	54.7	24	45.3
A2	СВТ	53	29	54.7	24	45.3
	PBT	-	-	-	-	-

Table ADD.5.7 Demographic Information for Fall 2016 Grade 9 ELA/L, Overall and by State

Demographic	PARCC	ВІ	MD	NJ	NM	RI
Econ Dis (%)	34.9	n/a	34.8	35.5	27.9	n/a
SWD (%)	18.7	n/a	16.3	19.9	6.5	n/a
EL (%)	2.1	n/a	n/r	1.4	11.8	n/a
Male (%)	49.0	n/a	54.1	48.8	44.6	n/a
Female (%)	51.0	n/a	45.9	51.2	55.4	n/a
AmInd/ANat (%)	n/r	n/a	n/r	n/r	n/r	n/a
Asian (%)	5.4	n/a	n/r	6.2	n/r	n/a
Black/AA (%)	19.6	n/a	12.8	22.0	n/r	n/a
Hisp/Lat (%)	20.4	n/a	9.1	18.4	63.5	n/a
Wh/Caus (%)	51.0	n/a	71.0	50.7	22.3	n/a
NtvHawaii/Pacific (%)	n/r	n/a	n/r	n/r	n/r	n/a
Two Or More (%)	2.2	n/a	5.1	1.8	n/r	n/a
Unknown (%)	0.9	n/a	n/r	n/r	9.0	n/a

Table ADD.5.8 Demographic Information for Fall 2016 Grade 10 ELA/L, Overall and by State

Demographic	PARCC	ВІ	MD	NJ	NM	RI
Econ Dis (%)	37.9	n/a	36.4	39.0	51.1	n/a
SWD (%)	15.9	n/a	13.4	20.3	n/r	n/a
EL (%)	6.7	n/a	10.7	1.1	7.1	n/a
Male (%)	49.7	n/a	49.9	49.6	47.9	n/a
Female (%)	50.3	n/a	50.1	50.4	52.1	n/a
AmInd/ANat (%)	0.3	n/a	0.4	n/r	n/r	n/a
Asian (%)	4.0	n/a	3.2	5.3	n/r	n/a
Black/AA (%)	27.3	n/a	29.2	26.3	n/r	n/a
Hisp/Lat (%)	19.5	n/a	18.6	17.7	60.0	n/a
Wh/Caus (%)	46.1	n/a	45.4	48.7	23.2	n/a
NtvHawaii/Pacific (%)	n/r	n/a	n/r	n/r	n/a	n/a
Two Or More (%)	2.5	n/a	3.2	1.4	n/r	n/a
Unknown (%)	0.3	n/a	n/a	n/r	7.9	n/a

Table ADD.5.9 Demographic Information for Fall 2016 Grade 11 ELA/L, Overall and by State

Demographic	PARCC	ВІ	MD	NJ	NM	RI
Econ Dis (%)	47.6	41.0	41.9	36.5	58.2	n/a
SWD (%)	20.2	n/r	20.3	19.4	20.7	n/a
EL (%)	7.3	n/r	2.4	1.0	14.3	n/a
Male (%)	55.6	47.0	56.9	50.3	57.9	n/a
Female (%)	44.4	53.0	43.1	49.7	42.1	n/a
AmInd/ANat (%)	5.8	42.2	n/r	n/r	12.3	n/a
Asian (%)	2.3	n/r	2.1	5.2	0.8	n/a
Black/AA (%)	20.4	n/r	42.3	26.2	2.5	n/a
Hisp/Lat (%)	36.4	n/r	11.7	18.4	64.1	n/a
Wh/Caus (%)	31.2	n/r	40.6	48.1	15.2	n/a
NtvHawaii/Pacific (%)	n/r	n/r	n/r	n/r	n/r	n/a
Two Or More (%)	1.9	n/r	2.8	1.6	1.4	n/a
Unknown (%)	1.9	57.8	n/r	n/r	3.6	n/a

Table ADD.5.10 Demographic Information for Fall 2016 Algebra I, Overall and by State

					<u> </u>	
Demographic	PARCC	BI	MD	NJ	NM	RI
Econ Dis (%)	37.2	n/a	33.5	43.4	36.4	n/r
SWD (%)	14.9	n/a	13.1	16.1	20.9	n/r
EL (%)	5.3	n/a	5.9	2.8	12.7	n/r
Male (%)	50.8	n/a	51.4	49.8	52.4	42.9
Female (%)	49.2	n/a	n/r	n/r	n/r	n/r
AmInd/ANat (%)	0.4	n/a	n/r	n/r	n/r	n/r
Asian (%)	3.8	n/a	3.5	5.2	n/r	n/r
Black/AA (%)	27.3	n/a	31.8	27.0	n/r	n/r
Hisp/Lat (%)	20.6	n/a	12.6	23.6	59.9	n/r
Wh/Caus (%)	43.7	n/a	48.7	41.3	17.6	88.6
NtvHawaii/Pacific (%)	n/r	n/a	n/r	n/r	n/r	n/r
Two Or More (%)	2.4	n/a	3.1	2.0	n/r	n/r
Unknown (%)	1.6	n/a	n/r	n/r	16.8	n/r

Table ADD.5.11 Demographic Information for Fall 2016 Geometry, Overall and by State

Demographic	PARCC	ВІ	MD	NJ	NM	RI
Econ Dis (%)	42.7	n/a	33.9	37.4	55.3	n/a
SWD (%)	17.2	n/a	18.7	17.7	15.9	n/a
EL (%)	5.3	n/a	3.3	2.3	11.7	n/a
Male (%)	50.0	n/a	54.0	49.4	49.7	n/a
Female (%)	50.0	n/a	46.0	50.6	50.3	n/a
AmInd/ANat (%)	2.9	n/a	n/r	n/r	8.7	n/a
Asian (%)	3.8	n/a	n/r	5.9	n/r	n/a
Black/AA (%)	16.4	n/a	20.2	23.0	2.7	n/a
Hisp/Lat (%)	33.1	n/a	13.5	20.4	63.6	n/a
Wh/Caus (%)	40.2	n/a	60.2	48.5	17.8	n/a
NtvHawaii/Pacific (%)	n/r	n/a	n/a	n/r	n/r	n/a
Two Or More (%)	1.9	n/a	3.6	1.7	1.7	n/a
Unknown (%)	1.6	n/a	n/a	n/r	4.9	n/a

Table ADD.5.12 Demographic Information for Fall 2016 Algebra II, Overall and by State

Demographic	PARCC	ВІ	MD	NJ	NM	RI
Econ Dis (%)	45.1	n/a	35.5	35.0	57.6	n/a
SWD (%)	12.2	n/a	12.1	14.1	11.2	n/a
EL (%)	5.7	n/a	2.0	1.8	10.5	n/a
Male (%)	49.2	n/a	49.2	50.6	48.4	n/a
Female (%)	50.8	n/a	50.8	49.4	51.6	n/a
AmInd/ANat (%)	6.6	n/a	n/r	n/r	14.6	n/a
Asian (%)	3.3	n/a	3.7	7.0	0.8	n/a
Black/AA (%)	17.4	n/a	34.8	22.9	1.8	n/a
Hisp/Lat (%)	35.8	n/a	13.6	18.1	51.8	n/a
Wh/Caus (%)	33.7	n/a	43.8	49.9	17.3	n/a
NtvHawaii/Pacific (%)	n/r	n/a	n/r	n/r	n/r	n/a
Two Or More (%)	2.1	n/a	3.8	1.5	1.1	n/a
Unknown (%)	1.1	n/a	n/a	n/r	2.4	n/a

Addendum 8: Reliability

Table ADD.8.1 shows the total group level reliability estimates and raw score SEM for the fall 2016 forms. Tables ADD.8.2 – ADD.8.9 show the subgroup reliability estimates and raw score SEM. A minimum sample size of 100 per core form was required for calculating the reliability estimates for subgroups; therefore, the subgroup totals may not equal the total group sample size. Tables ADD.8.10 – ADD.8.12 provide the claim and subclaim reliability and raw score SEM estimates for the fall 2016 forms. The paper-based tests did not have sufficient sample sizes for reliability analyses.

Table ADD.8.1 Summary of Test Reliability Estimates for Fall 2016 Total Group

Content	Grade/ Course	Mode	Number of forms	Maximum Possible Score	Avg. Raw Score SEM	Avg. Reliability	Min. Sample Size	Min. Reliability	Max. Sample Size	Max. Reliability
ELA/L	9	CBT	2	121	5.87	0.93	166	0.86	4,651	0.94
ELA/L	10	CBT	2	121	6.01	0.94	156	0.87	9,290	0.94
ELA/L	11	CBT	2	121	5.74	0.91	151	0.88	8,812	0.92
Mathematics	A1	CBT	2	81	4.00	0.92	1,312	0.89	5,105	0.92
Mathematics	GO	CBT	2	81	3.44	0.92	623	0.86	3,942	0.93
Mathematics	A2	CBT	2	81	3.46	0.94	610	0.91	7,655	0.94

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II. ELA/L grades 9 and 10, Algebra I, and Algebra II had insufficient sample sizes for PBT.

Table ADD.8.2 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Grade 9 ELA/L

				CBT			
	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw Score	Avg. SEM	Relia- bility	Sample Size	Relia- bility	Sample Size	Relia- bility
Gender							
Male	121	5.66	0.93	104	0.85	2,252	0.94
Female	121	6.10	0.93	2,399	0.93	2,399	0.93
Ethnicity							
White	121	6.02	0.94	2,404	0.94	2,404	0.94
African American	121	5.76	0.91	874	0.91	874	0.91
Asian/Pacific Islander	121	6.22	0.92	273	0.92	273	0.92
Am. Indian/Alaska Native							
Hispanic	121	5.70	0.92	946	0.92	946	0.92
Multiple	121	5.93	0.94	104	0.94	104	0.94
Special Instructional Needs							
Economically	121	5.79	0.92	1,570	0.92	1,570	0.92
Disadvantaged	121	0170	0.0_	_,0 / 0	0.52	_,0	0.5 =
Not Economically Disadvantaged	121	6.00	0.94	2,943	0.94	2,943	0.94
English Learner							
Non-English Learner	121	5.90	0.93	164	0.86	4,489	0.94
Students with Disabilities	121	5.06	0.90	166	0.86	733	0.91
Students w/o Disabilities	121	6.05	0.93	3,785	0.93	3,785	0.93
Students Taking							
Accommodated Forms							
A: ASL							
C: Closed Caption							
R: Screen Reader							
T: Text-to-Speech	121	4.58	0.86	165	0.86	165	0.86

Table ADD.8.3 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Grade 10 ELA/L

Table ADD.8.3 Sulfilliary of Te		•		СВТ	<u> </u>		<u> </u>
	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility
Gender							
Male	121	5.77	0.94	106	0.86	4,591	0.94
Female	121	6.25	0.94	4,699	0.94	4,699	0.94
Ethnicity							
White	121	6.30	0.93	4,343	0.93	4,343	0.93
African American	121	5.58	0.92	2,476	0.92	2,476	0.92
Asian/Pacific Islander	121	6.30	0.94	385	0.94	385	0.94
Am. Indian/Alaska Native							
Hispanic	121	5.76	0.93	1,808	0.93	1,808	0.93
Multiple	121	6.30	0.93	235	0.93	235	0.93
Special Instructional Needs							
Economically	121	5.78	0.92	3483	0.92	3,483	0.92
Disadvantaged	121	3.70	0.52	3.03	0.32	3, 103	0.52
Not Economically	121	6.16	0.94	5,715	0.94	5,715	0.94
Disadvantaged	121	4.49	0.76	629	0.76	629	0.76
English Learner	121	6.09	0.70	152	0.70	8,611	0.70
Non-English Learner	121	5.46	0.94	156	0.87		0.94
Students with Disabilities						1,345	
Students w/o Disabilities	121	6.10	0.94	7,824	0.94	7,824	0.94
Students Taking							
•							
	121	155	0.84	151	0.84	151	0.84
r. rext-to-speech	121	7.33	0.04	131	0.04	131	0.04
Accommodated Forms A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech	121	4.55	0.84	151	0.84	151	0.84

Table ADD.8.4 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Grade 11 ELA/L

Tuble Nob.8.4 Summary of Tes		•		СВТ	<u> </u>		
	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw Score	Avg. SEM	Relia- bility	Sample Size	Relia- bility	Sample Size	Relia- bility
Gender							
Male	121	5.45	0.91	4,566	0.91	4,566	0.91
Female	121	6.07	0.91	4,246	0.91	4,246	0.91
Ethnicity							
White	121	5.97	0.92	3,587	0.92	3,587	0.92
African American	121	5.47	0.88	2,712	0.88	2,712	0.88
Asian/Pacific Islander	121	6.25	0.93	317	0.93	317	0.93
Am. Indian/Alaska Native	121	5.55	0.89	148	0.89	148	0.89
Hispanic	121	5.68	0.91	1,825	0.91	1,825	0.91
Multiple	121	5.97	0.92	3,587	0.92	3,587	0.92
Special Instructional Needs							
Economically	121	5.78	0.90	179	0.90	179	0.90
Disadvantaged	121	3.70	0.50	175	0.50	173	0.50
Not Economically Disadvantaged	121	5.58	0.89	3,360	0.89	3,360	0.89
English Learner	121	5.87	0.92	5,365	0.92	5,365	0.92
Non-English Learner	121	4.62	0.80	247	0.80	247	0.80
Students with Disabilities	121	5.77	0.91	146	0.89	8,525	0.91
Students w/o Disabilities	121	5.04	0.87	1,513	0.87	151	0.88
Students Taking							
Accommodated Forms							
A: ASL							
C: Closed Caption							
R: Screen Reader							
T: Text-to-Speech	121	4.49	0.88	146	0.88	146	0.88

Table ADD.8.5 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Algebra I

Table ADD.0.5 Summary of Te		,		СВТ			
	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility
Gender							
Male	81	3.93	0.92	691	0.90	2,504	0.93
Female	81	4.07	0.91	621	0.89	2,601	0.92
Ethnicity							
White	81	4.14	0.91	880	0.88	2,086	0.92
African American	81	3.51	0.89	173	0.86	1,525	0.89
Asian/Pacific Islander	81	4.19	0.91	223	0.91	223	0.91
Am. Indian/Alaska Native							
Hispanic	81	3.77	0.89	179	0.87	1,078	0.90
Multiple	81	4.18	0.93	135	0.93	135	0.93
Special Instructional Needs							
Economically	81	3.74	0.89	366	0.88	1,941	0.89
Disadvantaged	01	3., .	0.03	300	0.00	2,3 . 2	0.05
Not Economically	81	4.09	0.92	946	0.89	3,089	0.93
Disadvantaged	81	2.78	0.70	230	0.70	230	0.70
English Learner	81	4.02	0.70	1,229	0.70	4,827	0.70
Non-English Learner						4,827 581	
Students with Disabilities	81	3.45	0.89	253	0.89		0.89
Students w/o Disabilities	81	4.04	0.92	1,058	0.89	4,442	0.92
Students Taking Accommodated Forms							
A: ASL							
C: Closed Caption							
R: Screen Reader	81	4.06	0.89	1,285	0.89	1,285	0.89
T: Text-to-Speech Students Taking Translated	91	4.00	0.05	1,203	0.63	1,203	0.03
Forms							
Spanish-Language Form							

Table ADD.8.6 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Geometry

Table ADD.8.6 Sulfillary of Tes		,		СВТ	a.o.g. o a.p	<u></u>	1
	Max.		Avg.	Min.	Min.	Max.	Max.
	Raw	Avg.	Relia-	Sample	Relia-	Sample	Relia-
	Score	SEM	bility	Size	bility	Size	bility
Gender							
Male	81	3.39	0.92	327	0.87	1,979	0.93
Female	81	3.48	0.91	296	0.85	1,963	0.92
Ethnicity							
White	81	3.61	0.91	366	0.84	1,922	0.92
African American	81	3.06	0.85	100	0.77	769	0.86
Asian/Pacific Islander	81	3.98	0.92	229	0.92	229	0.92
Am. Indian/Alaska Native							
Hispanic	81	3.12	0.88	135	0.74	906	0.90
Multiple							
Special Instructional Needs							
Economically	81	3.16	0.87	213	0.78	1,429	0.89
Disadvantaged	01	3.10	0.07	213	0.70	1,423	0.05
Not Economically	81	3.57	0.92	410	0.86	2,419	0.93
Disadvantaged						,	
English Learner							
Non-English Learner	81	3.45	0.92	561	0.86	3,809	0.92
Students with Disabilities	81	2.83	0.84	202	0.72	593	0.87
Students w/o Disabilities	81	3.54	0.92	420	0.86	3,190	0.92
Students Taking							
Accommodated Forms							
A: ASL							
C: Closed Caption							
R: Screen Reader							
T: Text-to-Speech	81	3.19	0.86	610	0.86	610	0.86
Students Taking Translated							
Forms							
Spanish-Language Form							

Table ADD.8.7 Summary of Test Reliability Estimates for Fall 2016 Subgroups: Algebra II

Max. Raw Avg. Relia- Sample Size Min. Size Min. Sample Size Min. Sample Size Min. Size Mi	Table ADD.0.7 Sulfillary of Te				СВТ	0 1	0	
Gender Male 81 3.43 0.94 318 0.91 3,744 0.95 Female 81 3.43 0.94 318 0.91 3,744 0.95 Ethnicity 81 3.79 0.93 347 0.90 3,198 0.94 Mhite 81 3.79 0.93 347 0.90 3,198 0.94 African American 81 2.87 0.86 2,061 0.86 2,061 0.86 Asian/Pacific Islander 81 4.02 0.94 437 0.94 437 0.94 Am. Indian/Alaska Native 81 2.98 0.87 101 0.87 101 0.87 Hispanic 81 3.11 0.89 115 0.85 1627 0.89 Multiple 81 3.06 0.89 205 0.87 2,642 0.89 Special Instructional Needs 81 3.64 0.94 405 0.91 4,931 0.94		Max.		Avg.	Min.	Min.	Max.	Max.
Gender Male 81 3.43 0.94 318 0.91 3,744 0.95 Female 81 3.49 0.93 292 0.91 3,911 0.93 Ethnicity White 81 3.79 0.93 347 0.90 3,198 0.94 African American 81 2.87 0.86 2,061 0.86 2,061 0.86 Asian/Pacific Islander 81 4.02 0.94 437 0.94 437 0.94 Am. Indian/Alaska Native 81 2.98 0.87 101 0.87 101 0.87 Hispanic 81 3.11 0.89 115 0.85 1627 0.89 Multiple 81 3.56 0.94 191 0.94 191 0.94 Special Instructional Needs 81 3.64 0.94 405 0.91 4,931 0.94 Special Instructional Needs 81 3.64 0.94 405 0.91			_		•		•	
Male 81 3.43 0.94 318 0.91 3,744 0.95 Female 81 3.49 0.93 292 0.91 3,911 0.93 Ethnicity White 81 3.79 0.93 347 0.90 3,198 0.94 African American 81 2.87 0.86 2,061 0.86 2,061 0.86 Asian/Pacific Islander 81 4.02 0.94 437 0.94 437 0.94 Am. Indian/Alaska Native 81 2.98 0.87 101 0.87 101 0.87 Hispanic 81 3.11 0.89 115 0.85 1627 0.89 Multiple 81 3.56 0.94 191 0.94 191 0.94 Special Instructional Needs Economically 81 3.66 0.89 205 0.87 2,642 0.89 Disadvantaged 81 3.64 0.94 405 0.91 4,931 0.94 English Learner 81 3.48		Score	SEM	bility	Size	bility	Size	bility
Female 81 3.49 0.93 292 0.91 3,911 0.93 Ethnicity White 81 3.79 0.93 347 0.90 3,198 0.94 African American 81 2.87 0.86 2,061 0.86 2,061 0.86 Asian/Pacific Islander 81 4.02 0.94 437 0.94 437 0.94 Am. Indian/Alaska Native 81 2.98 0.87 101 0.87 101 0.87 Hispanic 81 3.11 0.89 115 0.85 1627 0.89 Multiple 81 3.56 0.94 191 0.94 191 0.94 Special Instructional Needs 81 3.06 0.89 205 0.87 2,642 0.89 Disadvantaged 81 3.64 0.94 405 0.91 4,931 0.94 English Learner 81 3.48 0.94 534 0.91 7,452 0.94 <td>Gender</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Gender							
Ethnicity White	Male						-	
White 81 3.79 0.93 347 0.90 3,198 0.94 African American 81 2.87 0.86 2,061 0.86 2,061 0.86 Asian/Pacific Islander 81 4.02 0.94 437 0.94 437 0.94 Am. Indian/Alaska Native 81 2.98 0.87 101 0.87 101 0.87 Hispanic 81 3.11 0.89 115 0.85 1627 0.89 Multiple 81 3.56 0.94 191 0.94 191 0.94 Special Instructional Needs Economically 81 3.56 0.94 191 0.94 191 0.94 Special Instructional Needs 81 3.66 0.89 205 0.87 2,642 0.89 Special Instructional Needs 81 3.64 0.94 405 0.91 4,931 0.94 B1 3.64 0.94 405 0.91 4,931 0.94 0.94 Subject of Students with Disabilities 81 3.48 0.94<	Female	81	3.49	0.93	292	0.91	3,911	0.93
African American Asian/Pacific Islander Asian/Pacific Islander Am. Indian/Alaska Native Hispanic Multiple Special Instructional Needs Economically Disadvantaged Not Economically Disadvantaged English Learner Non-English Learner Students With Disabilities A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81 2.87 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.86 2,061 0.84 2,061 0.87 0.94 437 0.94 437 0.94 437 0.94 437 0.94 437 0.94 439 0.94 191 0.94 9.89 9.89 9.89 9.89 9.89 9.89 9.89 9	Ethnicity							
Asian/Pacific Islander Am. Indian/Alaska Native Hispanic Multiple Special Instructional Needs Economically Disadvantaged Not Economically Disadvantaged English Learner Non-English Learner Students W/o Disabilities Students Taking Accommodated Forms Asian/Pacific Islander 81	White	81	3.79	0.93	347	0.90	3,198	0.94
Am. Indian/Alaska Native Hispanic Multiple Special Instructional Needs Economically Disadvantaged Not Economically Disadvantaged English Learner Non-English Learner Students W/O Disabilities Students Taking Accommodated Forms A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81	African American	81	2.87	0.86	2,061	0.86	2,061	0.86
Hispanic Multiple 81 3.11 0.89 115 0.85 1627 0.89 Multiple Special Instructional Needs Economically Disadvantaged Not Economically Disadvantaged English Learner Non-English Learner Students with Disabilities Students Taking Accommodated Forms 81 3.47 0.91 599 0.91 599 0.91 81 3.47 0.91 599 0.91 Students Taking Translated Forms 81 3.47 0.91 599 0.91 Students Taking Translated Forms	Asian/Pacific Islander	81	4.02	0.94	437	0.94	437	0.94
Multiple 81 3.56 0.94 191 0.94 191 0.94 Special Instructional Needs	Am. Indian/Alaska Native	81	2.98	0.87	101	0.87	101	0.87
Special Instructional Needs 81 3.06 0.89 205 0.87 2,642 0.89 Disadvantaged 81 3.64 0.94 405 0.91 4,931 0.94 Disadvantaged 81 2.58 0.75 174 0.75 174 0.75 Non-English Learner 81 3.48 0.94 534 0.91 7,452 0.94 Students with Disabilities 81 2.91 0.91 171 0.85 857 0.92 Students W/o Disabilities 81 3.52 0.94 439 0.91 6,674 0.94 Students Taking Accommodated Forms A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech 81 3.47 0.91 599 0.91 599 0.91 Students Taking Translated Forms Forms 7 7 7 7 7 7 7 9 0.91 7 9 0.91 9 0.91 9 0.91 9	Hispanic	81	3.11	0.89	115	0.85	1627	0.89
Students Taking Screen Reader T: Text-to-Speech Students Taking Translated Forms Students Taking Translated Students Taking Translated Forms Students Taking Translated Forms Students Taking Translated Forms Students Taking Translated Forms Students Taking Translated Students Taking Translated Total Taking Translated Students Taking Translated Total Taking Translated Students Taking Translated Total Taking Translated Total Taking Translated Students Taking Translated Total Takin	Multiple	81	3.56	0.94	191	0.94	191	0.94
Disadvantaged Not Economically Disadvantaged English Learner Non-English Learner Students with Disabilities Students Taking Accommodated Forms R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81	Special Instructional Needs							
Disadvantaged 81 3.64 0.94 405 0.91 4,931 0.94 Disadvantaged 81 3.64 0.94 405 0.91 4,931 0.94 English Learner 81 2.58 0.75 174 0.75 174 0.75 Non-English Learner 81 3.48 0.94 534 0.91 7,452 0.94 Students with Disabilities 81 2.91 0.91 171 0.85 857 0.92 Students W/o Disabilities 81 3.52 0.94 439 0.91 6,674 0.94 Students Taking Accommodated Forms 81 3.47 0.91 599 0.91 599 0.91 Students Taking Translated Forms	•	81	3.06	0.89	205	0.87	2 642	0.89
Disadvantaged English Learner Ron-English Learner Students with Disabilities Students Taking Accommodated Forms R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81	_	01	3.00	0.03	203	0.07	2,012	0.03
English Learner 81 2.58 0.75 174 0.75 174 0.75 Non-English Learner 81 3.48 0.94 534 0.91 7,452 0.94 Students with Disabilities 81 2.91 0.91 171 0.85 857 0.92 Students Taking 81 3.52 0.94 439 0.91 6,674 0.94 Students Taking R: Screen Reader 7: Text-to-Speech 81 3.47 0.91 599 0.91 599 0.91 Students Taking Translated Forms 81 3.47 0.91 599 0.91 599 0.91	•	81	3.64	0.94	405	0.91	4,931	0.94
Non-English Learner 81 3.48 0.94 534 0.91 7,452 0.94	-	01	2 50	0.75	174	0.75	174	0.75
Students with Disabilities Students w/o Disabilities Students Taking Accommodated Forms A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81 2.91 0.91 171 0.85 857 0.92 82 439 0.91 6,674 0.94 83 3.52 0.94 439 0.91 6,674 84 3.52 0.94 439 0.91 5.99 85 5 6,674 0.94 86 7 7 8 8 7 8 8 7 8 8 7 8 9 8 8 7 8 9 9 9 9	· ·							
Students W/o Disabilities Students Taking Accommodated Forms A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81 3.52 0.94 439 0.91 6,674 0.94 439 0.91 6,674 0.94 51 0.94 52 0.94 439 0.91 5,674 0.94	ū						-	
Students Taking Accommodated Forms A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms								
Accommodated Forms A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms A: ASL 0: Closed Caption 81 3.47 0.91 599 0.91 599 0.91		81	3.52	0.94	439	0.91	6,674	0.94
A: ASL C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81 3.47 0.91 599 0.91 599 0.91 Students Taking Translated	<u> </u>							
C: Closed Caption R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81 3.47 0.91 599 0.91 599 0.91 Students Taking Translated								
R: Screen Reader T: Text-to-Speech Students Taking Translated Forms 81 3.47 0.91 599 0.91 599 0.91 Students Taking Translated								
T: Text-to-Speech 81 3.47 0.91 599 0.91 599 0.91 Students Taking Translated Forms	•							
Students Taking Translated Forms		81	3 /17	0 91	599	O 91	599	0 91
Forms	•	01	J. + /	0.51	333	0.51	333	0.51
Spanish-Language Form								

Table ADD.8.8 Fall 2016 Average ELA/L Reliability Estimates for Reading Total and Subscores

		Readi Tota	•	Readi Literat	•	Readi Informa	•	Readi Vocabu	•
Grade Level	Mode	Max Possible Raw Score	Reliability						
9	СВТ	76	0.90	20	0.71	40	0.84	16	0.63
10	CBT	76	0.91	32	0.77	30	0.84	14	0.63
11	CBT	76	0.86	28	0.70	32	0.73	16	0.55

Table ADD.8.9 Fall 2016 Average ELA/L Reliability Estimates for Writing Total and Subscores

		Writing: Total		Writing: Written Expre		Writing: Knowledge Langu Conventior	_
Grade Level	Mode	Max Possible Raw Score	Reliability	Max Possible Raw Score	Reliability	Max Possible Raw Score	Reliability
9	СВТ	45	0.88	36	0.88	9	0.89
10	CBT	45	0.88	36	0.89	9	0.90
11	CBT	45	0.87	36	0.87	9	0.87

Table ADD.8.10 Fall 2016 Average Mathematics Reliability Estimates for Total Test and Subscores

		Major	Content		ional & ng Content		ematics soning	Modelin	g Practice
Grade Level	Mode	Max Possible Raw Score	Reliability	Max Possible Raw Score	Reliability	Max Possible Raw Score	Reliability	Max Possible Raw Score	Reliability
A1	СВТ	28	0.81	21	0.74	14	0.65	18	0.64
GO	СВТ	30	0.83	19	0.66	14	0.56	18	0.68
A2	СВТ	27	0.80	22	0.76	14	0.79	18	0.72

Tables ADD.8.11 and ADD.8.12 provide information about the accuracy and the consistency of two classifications made on the basis of the scores on the fall block 2016 English language arts/literacy and mathematics assessments respectively. The columns labeled "Exact level" provide the classification of the student into one of five achievement levels. The columns labeled "Level 4 or higher vs. 3 or lower" provide the classification of the student as being either in one of the upper two levels (Levels 4 and 5) or in one of the lower three levels (Levels 1, 2, and 3).

Tables ADD.8.13 to ADD.8.18 provide more detailed information about the accuracy and the consistency of the classification of students into proficiency levels for each fall block 2016 PARCC assessment. Each cell in the 5-by-5 table shows the estimated proportion of students who would be classified into a particular combination of proficiency levels. The sum of the five **bold** values on the diagonal should equal the exact level of decision accuracy or consistency presented in Tables ADD.8.11 or ADD.8.12 for the corresponding PARCC assessment. For "Level 4 and higher vs. 3 and lower" found in Tables ADD.8.11 or ADD.8.12, the sum of the shaded values in Tables ADD.8.13 to ADD.8.18 should equal the level of decision accuracy or consistency for the corresponding PARCC assessment in ADD.8.11 or ADD.8.12. Note that the sums based on values may not match exactly to the values due to truncation and rounding.

PARCC

Table ADD.8.11 Reliability of Classification: Summary for ELA/L Fall Block 2016

		Decision Accuracy: Proportion Accurately Classified		Proportion	Consistency: Consistently ssified
Grade	Testing	Level 4 or higher vs. 3 or			Level 4 or higher vs. 3 or
Level	Mode	Exact level	lower	Exact level	lower
9	CBT	0.76	0.92	0.67	0.89
10	CBT	0.75	0.93	0.66	0.90
11	CBT	0.74	0.94	0.64	0.91

Table ADD.8.12 Reliability of Classification: Summary for Mathematics Fall Block 2016

		Decision	Decision Accuracy:		Consistency:
		Proportio	Proportion Accurately P		Consistently
		Clas	sified	Clas	sified
	•		Level 4 or		Level 4 or
Grade	Testing		higher vs. 3 or		higher vs. 3 or
Level	Mode	Exact Level	lower	Exact Level	lower
A1	CBT	0.77	0.92	0.68	0.88
ΑI	PBT				
GO	CBT	0.78	0.95	0.70	0.92
GO	PBT				
A2	CBT	0.82	0.96	0.75	0.95
AZ	PBT				

Note: A1 = Algebra I, GO = Geometry, A2 = Algebra II. "--" means insufficient sample size (< 100 students).

Table ADD.8.13 Reliability of Classification: Grade 9 ELA/L

		Full						Catagory
		Summative	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		Scale Score						illai
		650 – 699	0.09	0.01	0.00	0.00	0.00	0.11
	Decision	700 – 724	0.02	0.11	0.03	0.00	0.00	0.17
	Accuracy	725 – 749	0.00	0.03	0.18	0.04	0.00	0.25
		750 – 809	0.00	0.00	0.04	0.29	0.03	0.36
СВТ		810 – 850	0.00	0.00	0.00	0.02	0.08	0.10
СВІ		650 – 699	0.09	0.02	0.00	0.00	0.00	0.12
	Decision	700 – 724	0.03	0.10	0.05	0.00	0.00	0.17
	Consistency	725 – 749	0.00	0.04	0.15	0.06	0.00	0.24
		750 – 809	0.00	0.00	0.06	0.26	0.03	0.35
		810 – 850	0.00	0.00	0.00	0.03	0.08	0.11

Table ADD.8.14 Reliability of Classification: Grade 10 ELA/L

		Full						Category
		Summative	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		Scale Score						Total
		650 – 699	0.23	0.02	0.00	0.00	0.00	0.25
	Decision	700 – 724	0.03	0.09	0.04	0.00	0.00	0.16
	Accuracy	725 – 749	0.00	0.03	0.11	0.04	0.00	0.18
		750 – 809	0.00	0.00	0.04	0.22	0.02	0.28
CDT		810 – 850	0.00	0.00	0.00	0.02	0.10	0.12
СВТ		650 – 699	0.22	0.03	0.01	0.00	0.00	0.26
	Decision	700 – 724	0.04	0.07	0.05	0.01	0.00	0.16
	Consistency	725 – 749	0.00	0.04	0.09	0.05	0.00	0.18
		750 – 809	0.00	0.01	0.05	0.19	0.03	0.27
		810 – 850	0.00	0.00	0.00	0.04	0.10	0.13

Table ADD.8.15 Reliability of Classification: Grade 11 ELA/L

		Full						Catagory
		Summative	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		Scale Score						illai
		650 – 699	0.26	0.04	0.00	0.00	0.00	0.30
	Decision	700 – 724	0.04	0.19	0.05	0.00	0.00	0.29
	Accuracy	725 – 749	0.00	0.05	0.14	0.03	0.00	0.23
		750 – 809	0.00	0.00	0.03	0.12	0.01	0.16
CDT		810 – 850	0.00	0.00	0.00	0.00	0.02	0.02
CBT		650 – 699	0.24	0.06	0.00	0.00	0.00	0.31
	Decision	700 – 724	0.05	0.15	0.06	0.00	0.00	0.27
	Consistency	725 – 749	0.00	0.06	0.11	0.04	0.00	0.22
		750 – 809	0.00	0.00	0.04	0.11	0.01	0.17
		810 – 850	0.00	0.00	0.00	0.01	0.02	0.03

Table ADD.8.16 Reliability of Classification: Algebra I

		Full	Laural 1	Laural 2	Lavel 2	Lovel 4	LavelF	Category
		Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		650 – 699	0.14	0.03	0.00	0.00	0.00	0.16
	Decision	700 – 724	0.03	0.16	0.03	0.00	0.00	0.22
	Accuracy	725 – 749	0.00	0.05	0.14	0.05	0.00	0.23
		750 – 809	0.00	0.00	0.03	0.32	0.01	0.37
СВТ		810 – 850	0.00	0.00	0.00	0.01	0.01	0.02
СБІ		650 – 699	0.13	0.04	0.00	0.00	0.00	0.18
	Decision	700 – 724	0.04	0.13	0.04	0.00	0.00	0.21
	Consistency	725 – 749	0.00	0.06	0.11	0.06	0.00	0.23
		750 – 809	0.00	0.00	0.05	0.30	0.01	0.36
		810 – 850	0.00	0.00	0.00	0.01	0.01	0.03

Table ADD.8.17 Reliability of Classification: Geometry

		Full						Category
		Summative	Level 1	Level 2	Level 3	Level 4	Level 5	Total
		Scale Score						iotai
		650 – 699	0.12	0.03	0.00	0.00	0.00	0.15
	Decision	700 – 724	0.03	0.31	0.04	0.00	0.00	0.38
	Accuracy	725 – 749	0.00	0.05	0.22	0.03	0.00	0.30
		750 – 809	0.00	0.00	0.02	0.14	0.01	0.16
CDT		810 – 850	0.00	0.00	0.00	0.00	0.01	0.01
CBT		650 – 699	0.11	0.05	0.00	0.00	0.00	0.16
	Decision	700 – 724	0.04	0.26	0.06	0.00	0.00	0.36
	Consistency	725 – 749	0.00	0.07	0.19	0.04	0.00	0.29
		750 – 809	0.00	0.00	0.04	0.13	0.01	0.17
		810 – 850	0.00	0.00	0.00	0.01	0.01	0.01

Table ADD.8.18 Reliability of Classification: Algebra II

		Full Summative Scale Score	Level 1	Level 2	Level 3	Level 4	Level 5	Category Total
		650 – 699	0.45	0.04	0.00	0.00	0.00	0.49
	Decision	700 – 724	0.04	0.18	0.03	0.00	0.00	0.25
	Accuracy	725 – 749	0.00	0.03	0.09	0.02	0.00	0.14
		750 – 809	0.00	0.00	0.01	0.10	0.00	0.12
СВТ		810 – 850	0.00	0.00	0.00	0.00	0.00	0.01
СВТ		650 – 699	0.43	0.06	0.00	0.00	0.00	0.50
	Decision	700 – 724	0.05	0.15	0.03	0.00	0.00	0.24
	Consistency	725 – 749	0.00	0.04	0.07	0.02	0.00	0.14
		750 – 809	0.00	0.00	0.02	0.09	0.00	0.12
		810 – 850	0.00	0.00	0.00	0.00	0.00	0.01

Addendum 9: Validity

The intercorrelations for the fall 2016 tests are presented in Tables ADD.9.1 through ADD.9.3 for ELA/L grades 9, 10, and 11 and Tables ADD.9.4 though ADD.9.6 for the traditional mathematics courses (A1, GO, A2). Like the spring intercorrelations, the ELA/L all have moderate to high values with the writing subclaims being highly intercorrelated. The mathematics intercorrelations have moderate values. Tables ADD.9.7 through ADD.9.9 are the correlations between ELA/L and mathematics from the fall block.

Table ADD.9.1 Average Intercorrelations and Reliability between Grade 9 ELA/L Subclaims

				CBT			
	RD	RL	RI	RV	WR	WE	WKL
RD	0.90	4,855	4,855	4,855	4,855	4,855	4,855
RL	0.87	0.71	4,855	4,855	4,855	4,855	4,855
RI	0.96	0.76	0.84	4,855	4,855	4,855	4,855
RV	0.84	0.65	0.72	0.63	4,855	4,855	4,855
WR	0.75	0.71	0.73	0.55	0.88	4,855	4,855
WE	0.75	0.71	0.73	0.55	1.00	0.88	4,855
WKL	0.75	0.70	0.73	0.55	0.98	0.97	0.89

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table.

Table ADD.9.2 Average Intercorrelations and Reliability between Grade 10 ELA/L Subclaims

				CBT			
	RD	RL	RI	RV	WR	WE	WKL
RD	0.91	9,533	9,533	9,533	9,533	9,53	9,533
RL	0.93	0.77	9,533	9,533	9,533	9,533	9,533
RI	0.94	0.80	0.84	9,533	9,533	9,533	9,533
RV	0.82	0.67	0.71	0.63	9,533	9,533	9,533
WR	0.80	0.75	0.77	0.60	0.88	9,533	9,533
WE	0.79	0.75	0.77	0.60	1.00	0.89	9,533
WKL	0.79	0.74	0.77	0.61	0.98	0.97	0.90

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table.

Table ADD.9.3 Average Intercorrelations and Reliability between Grade 11 ELA/L Subclaims

		СВТ								
	RD	RL	RI	RV	WR	WE	WKL			
RD	0.86	9,230	9,230	9,230	9,230	9,230	9,230			
RL	0.91	0.70	9,230	9,230	9,230	9,230	9,230			
RI	0.91	0.71	0.73	9.230	9,230	9,230	9,230			
RV	0.80	0.50	0.52	0.55	9,230	9,230	9,230			
WR	0.76	0.70	0.74	0.52	0.87	9,230	9,230			
WE	0.76	0.70	0.73	0.52	1.00	0.87	9,230			
WKL	0.75	0.69	0.73	0.52	0.98	0.96	0.87			

Note: RD = Reading, RL = Reading Literature, RI = Reading Information, RV = Reading Vocabulary, WR = Writing, WE = Written Expression, and WKL = Writing Knowledge and Conventions. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table.

Table ADD.9.4 Average Intercorrelations and Reliability between Algebra I Subclaims

		СВТ								
	MC	ASC	MR	MP						
MC	081	6,892	6,892	6,892						
ASC	0.80	0.74	6,892	6,892						
MR	0.74	0.72	0.65	6,892						
MP	0.79	0.75	0.71	0.64						

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table.

Table ADD.9.5 Average Intercorrelations and Reliability between Geometry Subclaims

		СВТ						
	MC	ASC	MR	MP				
MC	0.83	5,148	5,148	5,148				
ASC	0.74	0.66	5,148	5,148				
MR	0.71	0.62	0.56	5,148				
MP	0.78	0.68	0.70	0.68				

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table.

Table ADD.9.6 Average Intercorrelations and Reliability between Algebra II Subclaims

	СВТ						
	MC	ASC	MR	MP			
MC	0.80	8,958	8,958	8,958			
ASC	0.78	0.76	8,958	8,958			
MR	0.78	0.79	0.79	8,958			
MP	0.79	0.76	0.77	0.72			

Note: MC = Major Content, ASC = Additional and Supporting Content, MR = Mathematical Reasoning, and MP = Modeling Practice. The shaded values along the diagonal are the reliabilities as reported in Section 8. The average intercorrelations are provided in the lower portion of the table and the total sample sizes are provided in the upper portion of the table.

Table ADD.9.7 Average Correlations between ELA/L and Mathematics for High School

ELA/L	СВТ							
,	A1	GO	A2					
9	0.75	0.73						
	(1,052)	(459)						
10	0.67	0.68	0.80					
	(714)	(1,032)	(963)					
11	0.42	0.47	0.52					
	(292)	(1,528)	(5,713)					

Note: ELA/L = English language arts/literacy, A1 = Algebra I, GO = Geometry, A2 = Algebra II. The correlations are provided with the sample sizes, below in parentheses.

Table ADD.9.8 Average Correlations between Reading and Mathematics for High School

RD	CBT							
	A1	GO	A2					
9	0.73	0.71						
	(1,052)	(459)						
10	0.67	0.66	0.80					
	(714)	(1,032)	(963)					
11	0.45	0.46	0.52					
	(292)	(1,528)	(5,713)					

Note: RD = Reading, A1 = Algebra I, GO = Geometry, A2 = Algebra II. The correlations are provided with the sample sizes, below in parentheses.

Table ADD.9.9 Average Correlations between Writing and Mathematics for High School

WR		CBT	
	A1	GO	A2
9	0.68	0.64	
	(1,052)	(459	
10	0.55	0.58	0.70
	(714)	(1,032)	(963)
11	0.26	0.35	0.41
	(292)	(1,528)	(5,713)

Note: WR = Writing, A1 = Algebra I, GO = Geometry, A2 = Algebra II. The average correlations are provided with the sample sizes, below in parentheses.

Addendum 12: Scale Scores

Table ADD.12.1 Fall 2016 Subgroup Performance for ELA/L Scale Scores: Grade 9

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sco	ore	4,891	745.15	36.10	650	850
Gender	Female	2,492	752.37	34.88	650	850
	Male	2,399	737.65	35.83	650	843
Ethnicity	American Indian/Alaska Native	n/r	n/r	n/r	n/r	n/r
	Asian	265	767.18	30.93	669	840
	Black or African American	960	731.12	32.22	650	837
	Hispanic/Latino	1,000	733.54	33.30	650	843
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	2,493	753.18	35.40	650	850
	White	107	739.84	36.92	650	830
Economic Status*	Economically Disadvantaged	1,709	732.77	33.90	650	840
	Not Economically Disadvantaged	3,040	752.59	35.26	650	850
English Learner	English Learner (EL)	101	699.38	26.64	655	796
Status	Non English Learner	4,718	746.05	35.62	650	850
Disabilities	Students with Disabilities (SWD)	914	715.68	30.53	650	826
	Students without Disabilities	3,840	752.06	33.85	650	850
Reading Score		4,891	47.27	14.20	10	90
Gender	Female	2,492	49.13	13.77	10	90
	Male	2,399	45.34	14.39	10	90
Ethnicity	American Indian/Alaska Native	n/r	51.25	20.20	19	78
	Asian	265	55.35	12.53	19	88
	Black or African American	960	42.06	12.47	10	90
	Hispanic/Latino	1,000	42.52	12.77	10	90
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	2,493	50.40	14.11	10	90
	White	107	45.46	14.91	12	85
Economic Status*	Economically Disadvantaged	1,709	42.49	13.04	10	90
	Not Economically Disadvantaged	3,040	50.15	14.04	10	90
English Learner Status	English Learner (EL)	101	30.68	10.25	13	62
	Non English Learner	4,718	47.61	14.05	10	90
Disabilities	Students with Disabilities (SWD)	914	36.59	12.15	10	88
	Students without Disabilities	3,840	49.78	13.49	10	90
Writing Score		4,891	31.89	12.54	10	60
Gender	Female	2,492	35.08	11.32	10	60

Group Type	Group	N	Mean	SD	Min	Max
	Male	2,399	28.57	12.89	10	56
Ethnicity	American Indian/Alaska Native	n/r	32.50	14.95	10	56
	Asian	265	38.57	9.50	10	56
	Black or African American	960	27.56	12.62	10	56
	Hispanic/Latino	1,000	28.92	12.63	10	60
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	2,493	34.16	11.90	10	60
	White	107	30.27	12.63	10	52
Economic Status*	Economically Disadvantaged	1,709	28.16	12.95	10	56
	Not Economically Disadvantaged	3,040	34.11	11.77	10	60
English Learner Status	English Learner (EL)	101	16.01	10.21	10	48
	Non English Learner	4,718	32.19	12.38	10	60
Disabilities	Students with Disabilities (SWD)	914	22.07	12.28	10	52
	Students without Disabilities	3,840	34.18	11.48	10	60

Table ADD.12.2 Fall 2016 Subgroup Performance for ELA/L Scale Scores: Grade 10

Full Summative Score			Mean	SD	Min	Max
- Tun Summative Secre		9,608	736.54	48.40	650	850
Gender Fe	male	4,829	744.21	48.34	650	850
M	ale	4,779	728.79	47.21	650	850
Ethnicity An	nerican Indian/Alaska Native	33	730.03	42.61	653	811
As	ian	381	760.69	48.96	650	850
Bla	ack or African American	2,620	712.07	40.95	650	850
His	spanic/Latino	1,872	716.00	42.04	650	850
Na	ative Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
M	ultiple Race Selected	4,431	757.25	44.50	650	850
W	hite	238	748.90	43.33	650	850
Economic Status* Ec	onomically Disadvantaged	3,638	716.38	41.02	650	850
No	ot Economically Disadvantaged	5,865	749.01	48.45	650	850
English Learner En	glish Learner (EL)	645	684.49	24.19	650	770
No	on English Learner	8,900	740.20	47.51	650	850
Disabilities Sto	udents with Disabilities (SWD)	1,532	709.15	42.41	650	850
Sto	udents without Disabilities	7,942	741.51	47.74	650	850
Reading Score		9,608	44.39	18.36	10	90
Gender Fe	male	4,829	46.17	18.11	10	90
M	ale	4,779	42.59	18.43	10	90
Ethnicity An	nerican Indian/Alaska Native	33	39.91	15.64	14	82
As	ian	381	52.87	19.26	10	90
Bla	ack or African American	2,620	35.68	15.36	10	90
His	spanic/Latino	1,872	36.58	15.71	10	90
Na	ative Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
M	ultiple Race Selected	4,431	51.99	17.30	10	90
W	hite	238	48.74	17.00	10	90
Economic Status* Ec	onomically Disadvantaged	3,638	37.06	15.46	10	90
No	ot Economically Disadvantaged	5,865	48.94	18.54	10	90
English Learner Status	glish Learner (EL)	645	25.40	9.21	10	58
No	on English Learner	8,900	45.73	18.08	10	90
Disabilities St	udents with Disabilities (SWD)	1,532	34.78	16.46	10	90
Sti	udents without Disabilities	7,942	46.12	18.13	10	90
Writing Score		9,608	30.54	14.17	10	60
Gender Fe	male	4,829	33.54	13.79	10	60
M	ale	4,779	27.50	13.90	10	60

Group Type	Group	N	Mean	SD	Min	Max
Ethnicity	American Indian/Alaska Native	33	30.64	13.53	10	51
	Asian	381	37.39	13.24	10	60
	Black or African American	2,620	23.74	12.86	10	60
	Hispanic/Latino	1,872	25.38	13.06	10	60
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	4,431	36.04	12.86	10	60
	White	238	34.06	12.57	10	60
Economic Status*	Economically Disadvantaged	3,638	25.18	12.82	10	60
	Not Economically Disadvantaged	5,865	33.83	13.98	10	60
English Learner Status	English Learner (EL)	645	16.44	8.89	10	44
	Non English Learner	8,900	31.52	13.94	10	60
Disabilities	Students with Disabilities (SWD)	1,532	22.83	12.93	10	60
	Students without Disabilities	7,942	31.93	13.95	10	60

Table ADD.12.3 Fall 2016 Subgroup Performance for ELA/L Scale Scores: Grade 11

Full Summative Summativ	Group Type	Group	N	Mean	SD	Min	Max
Male	Full Summative Sco	ore	15,342	719.57	35.17	650	850
Ehnicity American Indian/Alaska Native 889 714.67 27.70 650 820 Asian 357 739.67 41.11 650 850 Black or African American 3,132 712.03 32.64 650 331 Hispanic/Latino 5,581 713.45 31.71 650 849 Multiple Race Selected n/r	Gender	Female	6,817	726.83	36.24	650	850
Asian 357 739.67 41.11 650 850 Black or African American 3,132 712.03 32.64 650 831 Hispanic/Latino 5,581 713.45 31.71 650 849 Autive Hawaiian or Pacific Islander n/r		Male	8,525	713.76	33.16	650	850
Black or African American 3,132 712.03 32.64 650 831 Hispanic/Latino 5,581 713.45 31.71 650 849 Native Hawaiian or Pacific Islander n/r n/r n/r n/r Multiple Race Selected 4,781 730.97 38.08 650 850 White 285 722.29 34.25 650 810 Recommic Status Economically Disadvantaged 7,667 726.50 37.25 650 810 Recommically Disadvantaged 7,667 726.50 37.25 650 810 726.5	Ethnicity	American Indian/Alaska Native	896	714.67	27.70	650	824
Hispanic/Latino 5,581 713.45 31.71 650 849 Native Hawaiian or Pacific Islander n/r n	Lumbery	Asian	357	739.67	41.11	650	850
Reading Score Female 6,817 m/r		Black or African American	3,132	712.03	32.64	650	831
Multiple Race Selected 4,781 730.97 38.08 650 850 White 285 722.29 34.25 650 810 Economic Status* Economically Disadvantaged 7,308 712.09 31.29 650 849 English Learner (EL) 1,122 697.53 24.03 650 781 Disabilities Students with Disabilities (SWD) 3,095 721.28 35.36 650 850 Reading Score Students with Disabilities (SWD) 3,095 701.08 28.80 650 822 Reading Score Temale 11,903 724.20 35.12 650 822 Reading Score Female 6,817 40.04 14.15 10 90 Echnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 90		Hispanic/Latino	5,581	713.45	31.71	650	849
White 285 722.29 34.25 650 810 Economic Status* Economically Disadvantaged 7,308 712.09 31.29 650 849 Inglish Learner Status English Learner (EL) 1,122 697.53 24.03 650 850 English Learner 13,892 721.28 35.36 650 850 Disabilities Students with Disabilities (SWD) 3,095 701.08 28.80 650 820 Reading Score 15,342 38.49 13.84 10 90 Gender Female 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American American 3,132 35.54 10.75 10 90 Ethnicity American American 3,132 35.54 12.55 10 80 Ethnicity Milipale Race Selected 7,7 7,7 7,7 7,7 7,7		Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
Economic Status* Economically Disadvantaged 7,308 712.09 31.29 650 849 Inglish Learner Status English Learner (EL) 1,122 697.53 24.03 650 850 Disabilities English Learner 13,892 721.28 35.36 650 850 Disabilities Students with Disabilities (SWD) 3,095 701.08 28.80 650 822 Students without Disabilities 11,903 724.20 35.12 650 850 Reading Score 15,342 38.49 13.84 10 90 Gender Female 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American American 3,132 35.54 10.75 10 90 Ethnicity Milipale Race Selected 4,781 36.01 12.40 10 89 Miliple Race Selected 4,781 36.01 12.40		Multiple Race Selected	4,781	730.97	38.08	650	850
English Learner Status English Learner (EL) 1,122 697.53 24.03 650 781 Disabilities Students with Disabilities (SWD) 3,995 721.28 35.36 650 850 Disabilities Students with Disabilities (SWD) 3,095 701.08 28.80 650 822 Reading Score 15,342 38.49 13.84 10 90 Gender Female 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American American 3,132 35.54 10.35 10 90 Ethnicity American American 3,132 35.54 10.35 10 90 Hispanic/Latino 5,581 36.01 12.40 10 89 Multiple Race Selected 4,781 43.30 15.10 10 <td></td> <td>White</td> <td>285</td> <td>722.29</td> <td>34.25</td> <td>650</td> <td>810</td>		White	285	722.29	34.25	650	810
English Learner Status English Learner (EL) 1,122 697.53 24.03 650 781 Non English Learner 13,892 721.28 35.36 650 850 Disabilities Students with Disabilities (SWD) 3,095 701.08 28.80 650 822 Reading Score 11,903 724.20 35.12 650 850 Reading Score 15,342 38.49 13.84 10 90 Gender Female 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity Augenta Marican American 3,132 35.41 12.55 <	Economic Status*	Economically Disadvantaged	7,308	712.09	31.29	650	849
Status English Learner (EL) 1,122 697.53 24.03 650 781 Disabilities Non English Learner 13,892 721.28 35.36 650 850 Disabilities Students with Disabilities (SWD) 3,095 701.08 28.80 650 822 Reading Score 11,903 724.20 35.12 650 850 Reading Score 15,342 38.49 13.84 10 90 Gender Female 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.44 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.44 10.75 10 80 Miller Stain 35.34 12.55 10 80		Not Economically Disadvantaged	7,667	726.50	37.25	650	850
Disabilities Students with Disabilities (SWD) 3,095 701.08 28.80 650 822 Reading Score 11,903 724.20 35.12 650 850 Gender Female 15,342 38.49 13.84 10 90 Edmale 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Asian 357 45.88 16.33 10 90 Black or African American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 89 Multiple Race Selected 4,781 43.30 15.10 10 90 Economic Status* Economically Disadvantaged 7,308 35.49 12.21 10 90 English Learner Status English Learner (EL) 1,122 29.49 9.19 10 61 Disabilities Students with Disabilities	-	English Learner (EL)	1,122	697.53	24.03	650	781
Reading Score 11,903 724.20 35.12 650 850 Gender Female 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Black or African American 3,132 35.54 16.33 10 90 Hispanic/Latino 5,581 36.01 12.40 10 89 Multiple Race Selected 4,781 43.30 15.10 10 90 Economic Status* Economically Disadvantaged 7,308 35.49 12.21 10 90 English Learner Status* Economically Disadvantaged 7,308 35.49 12.21 10 90 English Learner (EL) 1,122 29.49 9.19 10 61 That Status* Non English Learner (EL) 1,122 29.49 9.19 10 61 T		Non English Learner	13,892	721.28	35.36	650	850
Reading Score Female 15,342 38.49 13.84 10 90 Gender Female 6,817 40.40 14.15 10 90 Ethnicity Male 8,525 36.97 13.40 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Asian 357 45.88 16.33 10 90 Black or African American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 89 Multiple Race Selected 4,781 43.30 15.10 10 90 Economic Status Economically Disadvantaged 7,308 35.49 12.21 10 90 English Learner Status 1,122 29.49 9.19 10 90 English Learner (EL) 1,122 29.49 9.19 10 90 Disabilities Students with Disabilities (SWD) 3,095 <	Disabilities	Students with Disabilities (SWD)	3,095	701.08	28.80	650	822
Gender Female 6,817 40.40 14.15 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Asian 357 45.88 16.33 10 90 Black or African American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 89 Native Hawaiian or Pacific Islander n/r		Students without Disabilities	11,903	724.20	35.12	650	850
Ethnicity American Indian/Alaska Native 8,525 36.97 13.40 10 90 Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Asian 357 45.88 16.33 10 90 Black or African American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 89 Native Hawaiian or Pacific Islander n/r	Reading Score		15,342	38.49	13.84	10	90
Ethnicity American Indian/Alaska Native 896 35.46 10.75 10 90 Asian 357 45.88 16.33 10 90 Black or African American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 89 Native Hawaiian or Pacific Islander n/r	Gender	Female	6,817	40.40	14.15	10	90
Asian 357 45.88 16.33 10 90 Black or African American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 89 Native Hawaiian or Pacific Islander n/r n/r n/r n/r n/r Multiple Race Selected 4,781 43.30 15.10 10 90 White 285 39.78 13.69 10 79 Economic Status Economically Disadvantaged 7,308 35.49 12.21 10 90 Not Economically Disadvantaged 7,667 41.33 14.70 10 90 English Learner English Learner (EL) 1,122 29.49 9.19 10 61 Non English Learner (EL) 1,3892 39.21 13.91 10 90 Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Students without Disabilities 11,903 40.27 13.87 10 90 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60		Male	8,525	36.97	13.40	10	90
Black or African American 3,132 35.54 12.55 10 80 Hispanic/Latino 5,581 36.01 12.40 10 89 Native Hawaiian or Pacific Islander n/r n/r n/r n/r n/r Multiple Race Selected 4,781 43.30 15.10 10 90 White 285 39.78 13.69 10 79 Economic Status* Economically Disadvantaged 7,308 35.49 12.21 10 90 Not Economically Disadvantaged 7,667 41.33 14.70 10 90 English Learner (EL) 1,122 29.49 9.19 10 61 Non English Learner 13,892 39.21 13.91 10 90 Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Students without Disabilities 11,903 40.27 13.87 10 90 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60	Ethnicity	American Indian/Alaska Native	896	35.46	10.75	10	90
Hispanic/Latino 5,581 36.01 12.40 10 89 Native Hawaiian or Pacific Islander n/r		Asian	357	45.88	16.33	10	90
Native Hawaiian or Pacific Islander n/r		Black or African American	3,132	35.54	12.55	10	80
Multiple Race Selected 4,781 43.30 15.10 10 90 White 285 39.78 13.69 10 79 Economic Status* Economically Disadvantaged 7,308 35.49 12.21 10 90 Not Economically Disadvantaged 7,667 41.33 14.70 10 90 English Learner Status English Learner (EL) 1,122 29.49 9.19 10 61 Non English Learner 13,892 39.21 13.91 10 90 Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60		Hispanic/Latino	5,581	36.01	12.40	10	89
White 285 39.78 13.69 10 79 Economic Status* Economically Disadvantaged 7,308 35.49 12.21 10 90 English Learner Status English Learner (EL) 1,122 29.49 9.19 10 61 Non English Learner 13,892 39.21 13.91 10 90 Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60		Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
Economic Status* Economically Disadvantaged 7,308 35.49 12.21 10 90 English Learner Status English Learner (EL) 1,122 29.49 9.19 10 61 Non English Learner 13,892 39.21 13.91 10 90 Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Students without Disabilities 11,903 40.27 13.87 10 90 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60		Multiple Race Selected	4,781	43.30	15.10	10	90
Not Economically Disadvantaged 7,667 41.33 14.70 10 90		White	285	39.78	13.69	10	79
English Learner Status English Learner (EL) 1,122 29.49 9.19 10 61 Non English Learner 13,892 39.21 13.91 10 90 Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Students without Disabilities 11,903 40.27 13.87 10 90 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60	Economic Status*	Economically Disadvantaged	7,308	35.49	12.21	10	90
Status English Learner (EL) 1,122 29.49 9.19 10 61 Non English Learner 13,892 39.21 13.91 10 90 Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Students without Disabilities 11,903 40.27 13.87 10 90 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60		Not Economically Disadvantaged	7,667	41.33	14.70	10	90
Disabilities Students with Disabilities (SWD) 3,095 31.54 11.39 10 82 Students without Disabilities 11,903 40.27 13.87 10 90 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60	-	English Learner (EL)	1,122	29.49	9.19	10	61
Students without Disabilities 11,903 40.27 13.87 10 90 Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60		Non English Learner	13,892	39.21	13.91	10	90
Writing Score 15,342 24.07 12.39 10 60 Gender Female 6,817 27.35 12.25 10 60	Disabilities	Students with Disabilities (SWD)	3,095	31.54	11.39	10	82
Gender Female 6,817 27.35 12.25 10 60		Students without Disabilities	11,903	40.27	13.87	10	90
5,62	Writing Score		15,342	24.07	12.39	10	60
Male 8,525 21.44 11.87 10 60	Gender	Female	6,817	27.35	12.25	10	60
		Male	8,525	21.44	11.87	10	60

Group Type	Group	N	Mean	SD	Min	Max
Ethnicity	American Indian/Alaska Native	896	24.14	11.24	10	55
	Asian	357	30.43	12.68	10	60
	Black or African American	3,132	21.85	11.96	10	60
	Hispanic/Latino	5,581	22.53	11.73	10	60
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	4,781	26.80	12.99	10	60
	White	285	24.64	12.20	10	48
Economic Status*	Economically Disadvantaged	7,308	22.02	11.72	10	60
	Not Economically Disadvantaged	7,667	25.91	12.74	10	60
English Learner Status	English Learner (EL)	1,122	18.39	10.14	10	44
	Non English Learner	13,892	24.49	12.46	10	60
Disabilities	Students with Disabilities (SWD)	3,095	18.33	10.71	10	49
	Students without Disabilities	11,903	25.47	12.38	10	60

Table ADD.12.4 Fall 2016 Subgroup Performance for Mathematics Scale Scores: Algebra I

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Sc	ore	7,159	736.05	36.66	650	850
Gender	Female	3,524	738.85	35.91	650	848
	Male	3,635	733.33	37.17	650	850
Ethnicity	American Indian/Alaska Native	32	724.84	38.66	653	817
	Asian	275	756.39	32.19	657	848
	Black or African American	1,952	715.57	31.45	650	821
	Hispanic/Latino	1,477	724.09	31.91	650	837
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	3,126	752.80	33.10	650	850
	White	172	747.98	38.03	650	819
Economic Status*	Economically Disadvantaged	2,660	722.49	32.32	650	831
	Not Economically Disadvantaged	4,348	744.92	36.63	650	850
English Learner Status	English Learner (EL)	380	702.63	22.41	650	800
	Non English Learner	6,657	738.11	36.45	650	850
Disabilities	Students with Disabilities (SWD)	1,064	712.48	31.42	650	827
	Students without Disabilities	5,937	740.50	36.06	650	850

Table ADD.12.5 Fall 2016 Subgroup Performance for Mathematics Scale Scores: Geometry

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		6,827	724.81	25.85	650	811
Gender	Female	3,416	725.95	25.65	650	800
	Male	3,411	723.68	26.01	650	811
Ethnicity	American Indian/Alaska Native	195	710.51	19.10	650	769
	Asian	258	749.70	27.08	650	799
	Black or African American	1,121	717.60	21.57	650	787
	Hispanic/Latino	2,260	714.52	21.42	650	800
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	2,745	735.49	25.36	650	811
	White	130	725.55	25.43	662	791
Economic Status*	Economically Disadvantaged	2,916	716.68	22.16	650	796
	Not Economically Disadvantaged	3,690	731.53	26.67	650	811
English Learner Status	English Learner (EL)	363	703.89	15.37	665	752
	Non English Learner	6,275	726.06	25.80	650	811
Disabilities	Students with Disabilities (SWD)	1,177	710.17	20.80	650	811
	Students without Disabilities	5,392	727.92	25.84	650	807

Table ADD.12.6 Fall 2016 Subgroup Performance for Mathematics Scale Scores: Algebra II

Group Type	Group	N	Mean	SD	Min	Max
Full Summative Score		15,647	706.60	35.49	650	850
Gender	Female	7,953	707.61	34.04	650	850
	Male	7,694	705.55	36.90	650	850
Ethnicity	American Indian/Alaska Native	1,034	693.19	22.07	650	825
	Asian	509	743.16	41.58	650	850
	Black or African American	2,724	694.47	28.17	650	831
	Hispanic/Latino	5,596	696.20	26.24	650	834
	Native Hawaiian or Pacific Islander	n/r	n/r	n/r	n/r	n/r
	Multiple Race Selected	5,271	722.86	39.86	650	850
	White	321	716.53	39.16	650	831
Economic Status*	Economically Disadvantaged	7,055	695.77	27.24	650	831
	Not Economically Disadvantaged	8,336	715.97	39.06	650	850
English Learner Status	English Learner (EL)	890	684.13	21.44	650	778
	Non English Learner	14,542	708.09	35.79	650	850
Disabilities	Students with Disabilities (SWD)	1,909	689.01	28.76	650	847
	Students without Disabilities	13,436	709.14	35.72	650	850