Towards Closing the Loop: Bridging Machine-induced
Pedagogical Policies to Learning Theories

Guojing Zhou, Jianxun Wang, Collin F. Lynch, Min Chi
Department of Computer Science
North Carolina State University
Raleigh, NC 27695
{gzhou3,jwang75,cflynch,mchi}@ncsu.edu

ABSTRACT

In this study, we applied decision trees (DT) to extract
a compact set of pedagogical decision-making rules from
an original full set of 3,702 Reinforcement Learning (RL)-
induced rules, referred to as the DT-RL rules and Full-RL
rules respectively. We then evaluated the effectiveness of
the two rule sets against a baseline Random condition in
which the tutor made random yet reasonable decisions. We
explored two types of trees (weighted and unweighted) as
well as two pruning strategies (pre- and post-pruning). We
found that post-pruned weighted trees produced the best re-
sults with 529 DT-RL rules. The empirical evaluation was
conducted in a classroom study using an existing Intelligent
Tutoring System (ITS) named Pyrenees. 153 students were
randomly assigned to three conditions. The procedure was
the same for all students with domain content and required
steps strictly controlled. The only substantive differences
between the three conditions were the policy: (Full-RL vs.
DT-RL vs. Random). Our result showed that as expected
the machine induced policies (Full-RL and DT-RL) are sig-
nificantly more effective than the random policy; more im-
portantly, no significant difference was found between the
Full-RL and DT-RL policies though the number of DT-RL
rules is less than 15% of the number of the Full-RL rules
and the former group also took significantly less time than
the latter.

1. INTRODUCTION

Intelligent Tutoring Systems (ITSs) are interactive e-learning
environments that support students’ learning by providing
instruction, scaffolded practice, and on-demand help. The
system’s behaviors can be viewed as a sequential decision-
making process where at each step the system chooses an
appropriate action from a set of options. Pedagogical strate-
gies are the policies used to decide what action to take next
in the face of alternatives. Each system decision will affect
the user’s subsequent actions and performance. Its impact
on outcomes cannot always be immediately observed and the
effectiveness of each decision depends upon the effectiveness

Proceedings of the 10th International Conference on Educational Data Mining

of subsequent actions. Ideally, an effective learning environ-
ment will adapt its decisions to users’ specific needs [1, 11].
However, there is no existing well-established theory on how
to make these system decisions effectively. Generally speak-
ing, prior research on pedagogical policies can be divided
into two general categories: top-down or theory-driven, and
bottom-up or data-driven.

In theory-driven approaches, ITSs employ hand-coded ped-
agogical rules that seek to implement existing cognitive or
learning theories [1, 10, 17]. While existing learning liter-
ature gives helpful guidance on the design of pedagogical
rules, such guidance is often too general to implement as
effective immediate decisions. For example, the aptitude-
treatment interaction (ATI) theory states that instructors
should match their interventions to the aptitude of the learner
[5]. While the principle behind this theory is understand-
able, it is not clear how to implement that rule for each
decision. How do we represent learner’s aptitude for each
equation, how exact should be the system’s adaptation, and
S0 on.

Data-driven approaches, on the other hand, derive peda-
gogical policies directly from prior data. Here the policies
specify the pedagogical decisions at a detailed level. Rein-
forcement Learning (RL), which we use here, is one popular
approach that is able to derive pedagogical policies directly
from student-system interaction logs. These policies are de-
fined as a set of state-action mapping rules, which give the
best decision to take in each state. The states are typically
represented as sets of features and the actions are pedagog-
ical actions such as presenting a worked example (WE) or
requiring the student to solve problems (PS). When the sys-
tem presents a worked example, the students will be given a
detailed example showing a complete expert solution for the
problem or the best step to take given their current solution
state. In Problem Solving, by contrast, students are tasked
with solving a problem using the ITS or with completing an
individual problem-solving step.

For this project, our original complete RL-induced policy in-
volves the following seven features representing the students’
learning process from different perspectives!.

In the format of: [Feature-Name] (Discretization Proce-
dure): Explanation of the feature.

112

1. [nWESincePS] (0 — 0;(0,1] — 1;(1,+00) — 2):
The number of worked example (WE) steps received
since the last problem solving (PS) step.

2. [timeInSession] ([0,2290] — 0; (2290, 4775] — 1;
(4775,7939] — 2;(7939,+00) — 3): The total time
spent in the current session.

3. [avgTimeOnStepPS] ([0,29.01] — 0; (29.01,
48.71] — 1;(48.71,400) — 2): The average amount of
time spent on each PS step.

4. [avgTimeOnStepSessionPS] ([0, 23.51] — 0;
(23.51,36.56] — 1;(36.56,55] — 2;(55,+00) — 3):
The average amount of time spent on each PS step in
the current session.

5. [nStepSinceLastWrongKC] ([0,1] — 0; (1,7]
— 1;(7,25] — 2;(25,4+00) — 3): The number of steps
received since the last wrong PS step on the current
knowledge component (KC).

6. [nWEStepSinceLastWrong)] ([0,1] — 0; (1, 4]
— 1;(4,10] — 2;(10,4+00) — 3): The number of WE
steps since the last wrong PS step.

7. [nCorrectPSStepSinceLastWrongKCSession]
(0 — 0;(0,3] — 1;(3,10] — 2;(10,400) — 3): The
number of correct PS steps since the last wrong PS
step on the current KC in the current session.

With this feature set, a state can be represented as a 7-
dimensional vector where each element denotes a discretized
feature value. Then, the rules can then be represented as:

(0:0:0:0:0:0:0) -> PS
(0:0:0:0:0:0:1) -> PS
(0:0:0:0:0:1:0) -> PS
(0:0:0:0:0:1:1) -> WE

In this study we discretized the features into three-four val-
ues producing a seven-feature state. This results in a state
space of 32%45 = 9216, that is 9216 rules in one RL-induced
policy. While these types of polices can specify the exact
action to take in each case, they are usually too narrow to
be aligned to existing learning theories. Each of the rules
covers only a very specific case and the relationship between
rules is unknown. Thus it is impossible to explain the power
of those rules from the perspective of learning theory. The
opacity of those induced rules not only hinders us in improv-
ing data-driven methodologies when they go wrong, it also
prevents us from advancing learning science research more
generally. Moreover, it is possible that some of the decisions
are environment-specific and may not generalize to other
contexts. This in turn prevents translating these induced
policies to environments other than the one from which they
are induced. Therefore, a general method is needed to shed
some light on the extracted detailed data-driven policies.

Decision tree (DT) induction is a robust data mining ap-
proach which can be used to extract a compact set of rules
from a set of specific examples. It builds a tree-like hierar-
chical decision-making pattern which represents the knowl-
edge it learned. Each path from root to leaf represents a
single rule which may be dealt with separately. Prior stud-
ies have shown that DTs can match training examples in
most cases, even with relatively small trees. Davidson et

al., for example, built a DT for predicting the extinction
risk of mammals [6]. Each of the species was described by
11 ecological features (e.g body mass, geographic range and
population density) and were labeled with their extinction
risk (threatened vs. non-threatened). Their tree contained
20 general rules which covered 4500 training examples, with
a decision accuracy over 80%. Additionally, Reinchard et al.
built a DT for predicting the invasiveness of woody plants
[13]. The resulting DT encoded 15 rules from 235 examples,
with a decision accuracy over 76%. Therefore, in our study,
we will apply DT to extract general pedagogical decision-
making rules from the detailed RL-induced policies.

In short, our primary research question is: is DT an ef-
fective methodology for extracting more general pedagogical
rules from the detailed RL-induced pedagogical rules? In or-
der to investigate this question, we will build DTs using the
rules in a RL-induced policy as training examples and em-
pirically evaluate the effectiveness of the extracted set of DT
rules by comparing it to the full set of RL-induced rules in a
classroom study. The state features in the RL-induced poli-
cies are the input features for the DT and the pedagogical
actions are the output labels. In our empirical evaluation,
we separate the pedagogical decisions from the instructional
content, strictly controlling the content so that it is equiva-
lent for all participants by 1) using an ITS which provides
equal support for all learners; and 2) focusing on tutorial
decisions that cover the same domain content, in this case
WE versus PS.

2. BACKGROUND

2.1 Applying RL to ITSs

Beck et al. applied RL to induce pedagogical policies that
would minimize the time students take to complete prob-
lems on AnimalWatch, an ITS for grade school arithmetic
[2]. They trained the model with simulated students. The
low cost of generated data allowed them to apply a model-
free RL method, Temporal Difference learning. During the
test phase, the induced policies were added to AnimalWatch
and the new system was empirically compared with the orig-
inal system. Their results showed that the policy group
spent significantly less time per problem than their no-policy
peers. Note that their primary goal was to reduce the amount
of time per problem, however faster problem-solving does
not always result in better learning performance. Nonethe-
less, their results showed that RL can be successfully applied
to induce pedagogical policies for ITSs.

Iglesias et al., on the other hand, focused on applying RL to
improve the effectiveness of an Intelligent Educational Sys-
tem that teaches students DataBase Design [8, 9]. They
applied another model-free RL algorithm, Q-learning to in-
duce policies that provide students with direct navigation
support through the system’s content. They used simulated
students to induce the policy and empirically evaluated its
effectiveness on real students. Their results showed that
while the policy led to more effective system usage behav-
iors from students, the policy students did not outperform
the no-policy peers in terms of learning outcomes.

Shen investigated the impact of both immediate and de-
layed reward functions on RL-induced policies and empiri-
cally evaluated the effectiveness of the induced policies within

Proceedings of the 10th International Conference on Educational Data Mining 113

an Intelligent Tutoring System called Deep Thought [15].
The induced pedagogical policies are used to decide whether
the next task should be WE or PS. They found that some
learners benefited significantly more from effective pedagog-
ical policies than others.

Finally, Chi et al. applied model-based RL to induce peda-
gogical policies to improve the effectiveness of an Intelligent
Natural Language Tutoring System for college-level physics
called Cordillera [4]. The authors collected an exploratory
corpus by training human students on an ITS that makes
random decisions and then applied RL to induce pedagogi-
cal policies from the corpus. They showed that the induced
policies were significantly more effective than the prior ones.

In short, prior studies have shown that RL-induced ped-
agogical policies can improve students’ learning or reduce
training time. However, all of these studies focused on the
effectiveness of the RL-induced policies. None of them con-
sidered extracting more general rules from the induced poli-
cies.

2.2 Extracting General Rules

In addition to the work of Davidson et al. [6] and Reinchard
et al. [13], DTs have been used for other tasks. Vayssiers
et al., for example, applied Classification And Regression
Trees to predict the presence of 3 species of oak in Califor-
nia [18]. Their training examples were Vegetation Type Map
records for 2085 unique locations. Each record consisted of
25 climatic and geographic features as well as 3 labels show-
ing the presence of the species (Quercus agrifolia, Quercus
douglasii and Quercus lobata). One DT was induced for
each type. The DTs were tested on another dataset which
contains the same type of records for 2016 locations. For
Quercus agrifolia, the induced tree had 10 leaf nodes and
94.9% of its predictions are correct for the locations that
have the presence of this oak (sensitivity) while 86.7% of
its predictions are correct for cases without the oak (speci-
ficity). For Quercus douglasii, the induced tree had 22 leaf
nodes and a sensitivity and specificity of 87% and 79.9%
respectively. For Quercus lobata, the tree had 6 leaves but
reached a sensitivity of 77% and a specificity of 73.3%.

Thus, prior studies have shown that DT can effectively ex-
tract a small set of general decision-making rules from a
large set of specific examples. However, all the examples
used by these studies were observations of existing phenom-
ena. So far as we know, this work is the only relevant re-
search on the application of DT to extract a compact set
of decision-making rules directly from full RL-induced rules
and empirically evaluated the two sets of the rules.

2.3 Applying DT to RL

Prior research on incorporating DT with RL has largely
focused on seeking a better representation of state space
or policy for RL. Boutilier et al [3]. proposed representa-
tional and computational techniques for Markov Decision
Processes (MDPs) to reduce the size of the state space.
They used dynamic Bayesian networks and DTs to repre-
sent stochastic actions as well as DT's to represent rewards.
Based upon this representation, they then developed algo-
rithms to find conditional optimal policies. Their method
was empirically evaluated on several planning problems and

they showed significant savings in both time and space for
some types of problems. Gupta et al. proposed the Policy
Tree algorithm for RL. This algorithm is designed to directly
induce a functional representation of the conditional optimal
policies as a DT. They evaluated it on a variety of domains
and showed that it was able to make splits properly [7].

In short, prior researchers have shown that properly com-
bining DT with RL can result in a large amount of savings
in time and space for finding good policies. However, none
of these studies directly applied DT on RL-induced policies.

3. INDUCE FULL SET OF RL-POLICY

Previously, researchers have typically used the Markov De-
cision Process (MDP) [16] framework to model user-system
interactions. The central idea behind this approach is to
transform the problem of inducing effective pedagogical poli-
cies on what action the agent should take to the problem of
computing an optimal policy for an MDP.

3.1 Markov Decision Process

An MDP is a mathematical framework for representing an
RL task. It is defined by: a tuple (S, A, T, R). Where S =
{S1, S2, ..., Sn } denotes the state space; A = {A1, Az, ..., A }
represents a set of agent’s possible actions; and 7 : S x A X
S — [0,1] is a transition probability table, where each el-
ement is T§,5, = p(S;[Si,a). This in turn indicates the
probability of transiting from state S; to state S; by tak-
ing an action a while R : § x A x S — R assigns rewards
to state transitions given actions. The policy is defined as
m: S — A, mapping state S into action A with the goal of
maximizing the expected reward.

After defining an MDP, we can transfer the student-system
interaction dialog into the trajectory which can then be rep-
resented as follows:

A1,Rq Az,Ra Asz,R3

S1 So S3 ...~ SN

Where S; ﬂ) Si+1 means that the tutor executed action
A; and received reward R; in state S;, and then transferred
to the next state S;41. In general, the reward can be divided
into two categories, immediate and delayed, where immedi-
ate rewards are received during the state transition, and
delayed are available after reaching to goal state.

3.2 Training Datasets

Our training dataset was collected from three exploratory
studies in which students were trained on an ITS which made
random yet reasonable pedagogical decisions. The studies
were given as homework assignments during CSC226: Dis-
crete Mathematics, a core CS course offered at NCSU dur-
ing the Fall 2014, Spring 2015 and Fall 2015 semesters. The
dataset contains a total of 149 students’ interaction logs.
All students used the same ITS, followed the same general
procedure, studied the same training materials, and worked
through the same training problems. In order to model the
students’ learning process, we extracted a total of 142 state
feature variables, which can be grouped into five categories:

1. Autonomy (AM): the amount of work done by the stu-
dent: such as the number of problems solved so far PSCount
or the number of hints requested hintCount.

Proceedings of the 10th International Conference on Educational Data Mining 114

2. Temporal Situation (TS): the time related informa-
tion about the work process: such as the average time taken
per problem avgTime, or the total time spent solving a prob-
lem TotalPSTime.

3. Problem Solving (PS): information about the current
problem solving context, such as the difficulty of the current
problem probDiff, or whether the student changes the diffi-
culty level NewLewvel.

4. Performance (PM): information about the student’s
performance during problem solving: such as the number of
right application of rules RightApp.

5. Student Action (SA): the statistical measurement of
student’s behavior: such as the number of non-empty-click
actions that students take actionCount, or the number of
clicks for derivation AppCount.

3.3 Inducing RL Policies

In order to apply RL to induce pedagogical policies, we
first defined the pedagogical decision-making problem as an
MDP. The state representation includes all of the relevant
features available at the beginning of each step. The ac-
tions are WE and PS at the step level. The transition ta-
bles were calculated on our training dataset, and our reward
function includes two types of reward: delayed and imme-
diate. Our most important reward is based on normalized
learning gain (NLG) (%), which measures the
students’ learning gains irrespective of their incoming com-
petence. This reward was given as a delayed reward as NLG
scores can only be calculated after students finish the entire
training process. However, Shen et al. [15] showed that giv-
ing immediate rewards can lead to the production of more
effective policies when compared to delayed rewards. This
is known as the credit-assignment problem. The more that
we delay success measures from a series of sequential deci-
sions, the more difficult it becomes to identify which of the
decision(s) in the sequence are responsible for our final suc-
cess or failure. Therefore, for the purposes of this study we
also assigned immediate rewards based upon the students’
performance during training on the system.

The value iteration algorithm was applied to find the optimal
policy. This algorithm operates by finding the optimal value
for each state V*(s). The optimal value for a given state is
the expected discounted reward that the agent will gain if
it starts in s and follows the optimal policy to the goal.
Generally speaking, V*(s) can be obtained by the optimal
value function for each state-action pair Q(s,a) which is
defined as the expected discounted reward the agent will
gain if it takes an action a in a state s and follows the optimal
policy to the end. The optimal state value V*(s) and value
function Q*(s,a) can be obtained by iteratively updating
V(s) and Q(s,a) via equations 1 and 2 until they converge:

Q(s;a) = R(s,a)+7 > p(S;|Sha)V(s) (1)

s'esS

V(s) max Q(s,a) (2)

Here, p(S;|S;, a) is the estimated transition model T', R(s, a)
is the estimated reward model and 0 < v < 1 is a discount
factor.

To induce effective pedagogical policies, we combined RL

based methods and an ensemble method and capped the
maximum number of state feature size to be eight. More
details of our feature selection methods are described in [14].
The final resulting RL policy involves seven state features
and 3706 rules.

4. EXTRACTING COMPACT DT-RL SETS

In order to extract a more compact set of decision-making
rules from the full set of RL-induced rules, we implemented
the ID3 algorithm to build DTs [12]. Each rule in the final
RL-induced policy was used as a training example. Two
types of decision trees were built: unweighted and weighted,
as well as two types of pruning strategies were implemented:
pre- and post-pruning. Next, we will discuss each of them
in turn.

4.1 Unweighted vs. Weighted Tree

The decision to give a WE vs. PS may impact students’
learning differently in different situations. We therefore built
two types of decision trees: unweighted and weighted. Un-
weighted trees treated each decision equally while weighted
trees take account of the relative importance of each peda-
gogical rule. When applying the value iteration algorithm
to induce the optimal policy, we generate the optimal value
function Q*(s,a), which gives the expected discounted re-
ward each agent will gain if it takes an action a in a state s
and follows the optimal policy to the end. For a given state
s, a large difference between the values of Q(s, “PS”) and
Q(s, “WE”) indicates that it is more important for the ITS
to follow the optimal decision in the state s. We therefore
used the absolute difference between the Q values for each
state s to weight each RL pedagogical rule.

The ID3 algorithm builds a tree recursively from root to
leaves. On each iteration of the construction process the
algorithm will check the state of the dataset for the current
branch. It will then select a test feature for the current
node based upon the weighted information gain. The current
node will then be expanded by adding branches to it, each
of which represents a possible value for the selected feature.
The data will be partitioned over the branches according to
the value of the test feature. The selected feature cannot
be used again by its children. Weighted information gain is
defined by the difference between the weighted entropy of the
examples before it is selected and after they are separated
by feature value. The weighted entropy of a node can be
calculated by equation 3

J
H(G) == p(i|G)logzp(i|G) 3)

i=1
J is the total number of output label classes. In our case,
it is the number of pedagogical actions (WE or PS) which
is 2. p(¢|G) is the weighted frequency defined by the equa-

tion: p(i|G) = % Zz@. w, is the total weight of the
examples which are in node G and which belong to class .
And Zyeg wy is the total weights of examples in node G.
The information gain of spliting the current set of training
examples using feature F' can be calculated by equation 4:

IG(F,G) = H(G) — Y _p(t;|G)H(t;) (4)

with various feature selections including 10 types of correlation- =1

Proceedings of the 10th International Conference on Educational Data Mining 115

p(t;]G) is the weighted frequency of the examples in node G:
zp=t,aeG Wz

p(41G) = ===
of examples in nodes G whose value of feature F' is j and
Zy < Wy is the total weight of examples in nodes G.

. Za:p:t,acGG w; is the total weights

4.2 Pre-Pruning and Post-Pruning

To control the size of rules induced by DT, we examined
two types of pruning strategy: pre- and post-pruning. The
pre-pruning is conducted during the process of building the
tree and it used the information gain to determine whether
to expand or to terminate. Only nodes with an information
gain greater than a threshold times its depth: IG(F,G) >
0 x Dg will be expanded and others will be made as a leaf.
0 is a fixed threshold and D¢ is the depth of node G.

Post-Pruning is conducted after the whole decision tree is
built and it used the error rate as the pruning measure. The

error rate before a node is expanded is defined as: eq =
Yier wi
1G]
by node G and |G| is the total number of examples in the
node G. The error rate after a node is expanded is defined

as: ec = % C' is the set of children nodes
of G after it is expanded and I. is the set of the decisions
incorrectly classified by the node c. In post-pruning, if the
difference of a node’s error rate from before to after split is
less than a threshold, the node will be pruned by removing

all of its branches to make it a leaf node.

I is the set of the decisions incorrectly classified

4.3 The Compact Set of DT-RL Rules

In order to induce a compact set of DT-RL rules, we ap-
plied the DT's to the full set of 3706 RL-induced rules. The
induced unweighted and weighted DTs without pruning has
2527 and 2456 rules (leaf nodes) respectively. Thus, with-
out pruning, DTs are already able to extract a smaller set
of rules: it reduced the total number of rules by over 1000.

Figure 1 shows the relationship between the number of leaf
nodes (x-axis) and the inverted weighted accuracy (y-axis).
Weighted accuracy (W A) is the weighted percentage of deci-
sions correctly made, which can be calculated by the equa-

tion: WA = M

D4, Wi

made by a DT and w; is the weight of decision ¢. The in-
verted weighted accuracy (IWA) is IWA = WA, the
lower the better. Since our goal is to find a good balance
point between the IWA and the number of leaf nodes, we
applied a widely used strategy called the Elbow Method,
to select the best tree. As we can see in the figure, the
elbows for the two unweighted tree approaches are around
800 and 1700 rules (x-axis) for the pre and post pruning
respectively while the elbows for the two weighted tree ap-
proaches are around 250 and 500 for the pre and post prun-
ing respectively. So it seems that weighted tree can extract
more compact set of rules than the unweighted trees. While
the weighted pre-pruning approach has around 250 rules,
its IWA is much higher than the weighted post-pruning ap-
proach. Therefore, we chose the weighted tree with post-
pruning strategy which has the an elbow at about 500 leaf
nodes and reasonable IWA.

. T is the set of correct predictions

To further justify our DT choice, Table 1 shows the relation-
ship between the pruning thresholds, W A and the number

4 - Weighted Pre

i —Weighted Post
~-Unweighted Pre
—Unweighted Post

[}
o

Inverted Weighted Accuracy
N B
°. 8

T

500 1000 1500 2000 2500

o
o

Number of leaf nodes

Figure 1: Leaf Nodes - Accuracy

of leaf nodes for the weighted tree with post-pruning. Ta-
ble 1 shows that the tree with the closest number of leaves
to 500 is the 529 one. It can be obtained by apply a pruning
threshold of 0.8 and the result tree has a weighted accuracy
of 0.76. The rules in the resulted tree will be the rules used
in the DT-RL condition.

In short, we applied DT on RL-induced pedagogical policies
to extract a more compact set of decision-making rules. The
effectiveness of the original full set and the compact set of
policies were empirically compared against a baseline policy
which makes random yet reasonable decisions: PS vs. WE.
Thus, we have three conditions:

1. Full-RL: the full set of 3706 RL-induced rules.
2. DT-RL: the compact set of 529 DT-induced RL rules.
3. Random: the random yet reasonable policy.

5. EMPIRICAL EXPERIMENT

Participants: This study was conducted in the under-
graduate Discrete Mathematics course at the Department
of Computer Science at NC State University in the Fall of
2016. 153 students participated in this study, which was
given as their final homework assignment.

Conditions: Students in the study were assigned to three
conditions via balanced random assignment based upon their
course section and performance on the class mid-term exam.
Since the primary goal of this work is to examine the ef-
fectiveness of the two RL based policies, we assigned more
students to the Full-RL and DT-RL conditions than in the
random condition. The final group sizes were: N = 61 (Full-
RL), N =51 (DT-RL), and N = 41 (Random).

Due to preparations for exams and length of the experiment,
126 students completed the experiment. 5 students were
excluded from the subsequent analysis due to perfect pretest
scores, working in group or gaming the system during the
training. The remaining 121 students were distributed as
follows: N = 45 for Full-RL; N = 41 for RL-DT; N = 35
for Random. We performed a x? test of the relationship
between students’ condition and their rate of completion
and found no significant difference among the conditions:
x*(2) = 0.955, p = 0.620.

Probability Tutor: Pyrenees is a web-based I'TS for prob-
ability. It covers 10 major principles of probability, such
as the Complement Theorem and Bayes’ Rule. Pyrenees

Proceedings of the 10th International Conference on Educational Data Mining 116

Table 1: Weighted DT with Post-pruning

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 | 0.9
WA 1.00 | 0.99 | 0.98 | 0.96 | 0.93 | 0.89 | 0.85 | 0.79 | 0.76 | 0.68
leaves 2456 | 2217 | 2029 | 1809 | 1608 | 1383 | 1043 | 758 | 529 | 231

provides step-by-step instruction and immediate feedback.
Pyrenees can also provide on-demand hints prompting the
student with what they should do next. As with other sys-
tems, help in Pyrenees is provided via a sequence of in-
creasingly specific hints. The last hint in the sequence, the
bottom-out hint, tells the student exactly what to do. For
the purposes of this study we incorporated three distinct
pedagogical decision modes into Pyrenees to match the three
conditions.

Procedure: In this experiment, students were required to
complete 4 phases: 1) pre-training, 2) pre-test, 3) training on
Pyrenees, and 4) post-test. During the pre-training phase,
all students studied the domain principles through a proba-
bility textbook, reviewed some examples, and solved certain
training problems. The students then took a pre-test which
contained 14 problems. The textbook was not available at
this phase and students were not given feedback on their an-
swers, nor were they allowed to go back to earlier questions.
This was also true of the post-test.

During phase 3, students in all three conditions received
the same 12 rather complicated problems in the same order
on Pyrenees. Each main domain principle was applied at
least twice. The minimal number of steps needed to solve
each training problem ranged from 20 to 50. These steps
included defining variables, applying principles, and solv-
ing equations. The number of domain principles required to
solve each problem ranged from 3 to 11. All of the students
could access the corresponding pre-training textbook dur-
ing this phase. Each step in the problems could have been
provided as either a WE or PS based upon the condition
policy. Finally, all of the students completed a post-test
with 20 problems. 14 of the problems were isomorphic to
the pre-test given in phase 2. The remaining six were non-
isomorphic complicated problems.

Grading Criteria: The test problems required students to
derive an answer by writing and solving one or more equa-
tions. We used three scoring rubrics: binary, partial credit,
and one-point-per-principle. Under the binary rubric, a so-
lution was worth 1 point if it was completely correct or 0
if not. Under the partial credit rubric, each problem score
was defined by the proportion of correct principle applica-
tions evident in the solution. A student who correctly ap-
plied 4 of 5 possible principles would get a score of 0.8. The
one-point-per-principle rubric in turn gave a point for each
correct principle application. All of the tests were graded in
a double-blind manner by a single experienced grader. The
results presented below are based upon the partial-credit
rubric but the same results hold for the other two. For
comparison purposes, all test scores were normalized to the
range of [0,1].

Proceedings of the 10th International Conference on Educational Data Mining

6. EMPIRICAL RESULTS

Since both the Full-RL and DT-RL policies are based on an
RL-induced policy, we combined the two conditions together
as the Induced group to evaluate the effectiveness the RL-
induced policy. The evaluation was conducted by comparing
the Induced group with the baseline Random condition on
learning performance and training time. Moreover, in or-
der to further discover to what extent the compact policy
retained the power of the full policy, we compared the Full-
RL and DT-RL conditions on the same measures. Next, we
will discuss each of the comparisons in turn.

6.1 Induced vs. Random

We measured Students’ incoming competence via the pre-
test scores collected before training took place. Table 2
shows a comparison between the Induced group and the
Random group in terms of learning performance. The paren-
thesized values following the group names in row 1 denote
the number of students in each group. The second row in this
table shows the pre-test scores. The last column shows the
pairwise t-test results. Pairwise t-tests on students’ pre-test
scores show that there is no significant difference between
the two groups: ¢(119) = —0.346, p = 0.730, d = 0.069.
Thus, despite attrition, the two groups remained balanced
in terms of incoming competence. Next, we will compare the
two groups in terms of learning performance in the post-test
and training time.

Rows 2 - 4 in Table 2 show a comparison of the pre-test, iso-
morphic post-test (14 isomorphic questions), and adjusted
post-test scores between the two groups along with the mean
and SD for each. In order to examine the students’ im-
provement through training on Pyrenees, we compared their
scores on the pre-test and isomorphic post-test questions.
A repeated measures analysis using test type (pre-test and
isomorphic post-test) as factors and test score as the depen-
dent measure showed a main effect for test type: F(1,119) =
98.75, p < 0.0001. Further comparisons on group by group
basis showed that on the isomorphic questions, both groups
scored significantly higher in the post-test than in the pre-
test: F'(1,85) = 81.30, p < 0.0001 for Induced and F(1,34) =
18.30, p = 0.0001 for Random respectively. This suggests
that the basic practice and problems, domain exposure, and
interactivity of our ITS might help students to learn even
when pedagogical decisions are made randomly.

In order to investigate the effectiveness of the induced poli-
cies, we compared students’ overall learning performance,
which was evaluated by their adjusted post-test scores, be-
tween the two groups. A one-way ANCOVA analysis was
conducted on their overall post-test scores (20 questions),
using the pretest scores as a covariate to factor out the in-
fluence of their incoming competence. The result shows a
significant main effect: F(1,118) = 4.628, p = 0.033. That
is, the Induced group significantly outperformed the Ran-
dom group on adjusted post-test scores, which is shown in

117

Table 2: Induced vs. Random

Cond Induced(86) | Random(35) T-test Result

Pro 686(.194) 600(.171) | {(119) = —0.346, p = 0.730, d = 0.069

Tso Post 851(.155) 812(.195) | ¢(119) = 1.141, p = 0.256, d = 0.229
Adjusted Post | .751(.144) 680(.133) | #(119) = 2.162, p = 0.033, d = 0.433
Time 105.87(34.30) | 111.18(27.33) | {(119) = —0.815, p = 0.417, d = 0.163
WE steps 205.74(62.73) | 189.46(11.39) t(119) = 1.522, p = 0.131, d = 0.305
PS steps 173.69(61.14) | 190.26(10.28) | ¢t(119) = —1.591, p = 0.114, d = 0.319
WE pct(%) | 54.16(16.35) | 49.89(2.78) | ((119) = 1.532, p = 0.128, d = 0.307

the fourth row of Table 2. Therefore, the results showed that
the induced policies are significantly more effective than the
random policy.

The fifth row in Table 2 shows the average amount of total
training time (in minutes) students spent on our ITS for each
group. Pairwise t-test showed no significant difference in
training time between the two groups: ¢(119) = —0.815, p =
0.417, d = 0.163. The results suggest that when compared
to the random policy, the induced policies generally do not
have a significant different impact on students’ training time.

The last three rows in Table 2 show the number of WE
and PS steps given as well as the percentage of WE steps
received by the Induced and the Random group. Pairwise
t-tests showed that there is no significant difference between
the two groups on these three measures.

6.2 Full-RL vs. DT-RL

We then performed the same comparison between the Full-
RL and DT-RL conditions in order to examine the effective-
ness of the DT-extracted compact policy. The second row
in Table 3 shows the pre-test scores for each condition. A
pairwise t-test on the scores shows no significant difference
between the two conditions: ¢(84) = —0.168, p = 0.867,
d = 0.036. Thus the two conditions were balanced in terms
of incoming competence.

The pre-test, isomorphic post-test and adjusted post-test
scores are shown in rows 2 - 4 of Table 3. A repeated mea-
sures analysis using test type (pre-test and isomorphic post-
test) as factors and test score as dependent measure showed
a main effect for test type: F(1,85) = 81.30, p < 0.0001.
Further comparisons on group by group basis showed that
both conditions scored significantly higher in isomorphic
post-test than in pre-test: F(1,44) = 42.16, p < 0.0001
for Full-RL and F(1,40) = 39.16, p < 0.0001 for DT-RL.
These results suggest that the students can effectively learn
from Pyrenees with the full and compact policies.

In order to discover to what degree the compact policy re-
tained the effectiveness of the full policy, we compared the
post-test scores between the two conditions. The results
of a pairwise t-test showed no significant different between
them on isomorphic post-test: ¢(84) = 0.505, p = 0.615,
d = 0.109. We also conducted an ANCOVA analysis on the
overall post-test scores using the pretest scores as a covari-
ate and still found no significant different between the two
conditions: F(1,83) = 0.348, p = 0.557. In short, while on
post-test scores, the DT-RL condition scored slightly lower
than the Full-RL condition, the difference is not significant.

Proceedings of the 10th International Conference on Educational Data Mining

The fifth row of Table 3 shows the average amount of time
students spent on training. As the row shows, the Full-
RL condition spent significantly more time than the DT-RL
condition: #(84) = 3.829, p = 0.0002, d = 0.827. Thus
the Full-RL and DT-RL policies have significant different
impact upon the students’ training time.

The last three rows of Table 3 show the number of WE
and PS steps given and the percentage of WE steps re-
ceived by the Full-RL and the DT-RL condition. Pair-
wise t-tests showed that comparing to the DT-RL condi-
tion, the Full-RL condition received significantly fewer WE
steps: t(84) = —4.952, p < 0.0001, d = 1.069; received a
lower percentage of WE steps: ¢(84) = —4.955, p < 0.0001,
d = 1.070; and completed more PS steps: ¢(84) = 4.999,
p < 0.0001, d = 1.079. These results suggest that the peda-
gogical decisions made by the compact and full policies are
substantively different.

7. DISCUSSION

In this study, we applied DT to extract a compact set of
pedagogical rules from the full set of RL-induced rules and
empirically evaluated the effectiveness of two sets of rules in
a classroom study. Our goal was to shed some light on the
RL-induced policies and we think this is only the first step
towards narrowing the gap and building a bridge between
machine-induced pedagogical policies and learning theories.

In order to find the best DT, we explored two types of tree:
unweighted and weighted; and for each of them, we con-
ducted two types of pruning strategy: pre- and post-pruning.
After comparing the performance among them, we selected
the weighted tree with the post-pruning strategy to perform
the extraction of general decision-making rules. The RL-
induced policy contains 3706 specific rules, and the compact
DT-RL consisted of 529 rules with a weighted decision ac-
curacy of 76%.

In our empirical experiment, we were able to strictly control
the domain content and thus to isolate the impact of ped-
agogy from content. Based on this isolation, we compared
students’ performance with the Full-RL policy, the DT-RL
policy and the baseline random policy. Our results showed
that students in all three conditions learned significantly af-
ter training on Pyrenees, this suggests that the basic training
of the ITS is effective, even when the pedagogical decisions
are made randomly. To evaluate the effectiveness of the two
machine induced policies (Full-RL policy and DT-RL pol-
icy), we combined the Full-RL and DT-RL condition as the
Induced group and compared its learning performance with
the Random group. Our results showed that the Induced

118

Table 3: Full-RL vs. DT-RL
Cond Full-RL(45) DT-RL (41) T-test Result

Pro 1683(.205) 600(.184) | #(84) = —0.168, p = 0.867, d = 0.036

Tso Post 850(.145) 812(.168) #(84) = 0.505, p = 0.615, d = 0.109

Adjusted Post | .757(.144) 730(.145) #(81) = 0.504, p = 0.554, d = 0.128
Time 118.42(35.000) | 92.10(27.95) | #(84) = 3.829, p = 0.0002, d = 0.827
WE steps | 177.44(48.86) | 236.80(62.03) | #(84) = —4.952, p < 0.0001, d = 1.069
PS steps 201.47(47.22) | 143.20(60.57) t(84) = 4.999, p < 0.0001, d = 1.079
WE pct(%) | 46.77(12.78) | 62.26(16.13) | {(34) = —4.955, p < 0.0001, d = 1.070

group significantly outperform the Random group. These
results suggest that the machine induced policies are indeed
more effective than the random policy.

Finally, in order to examine to what extent the compact DT-
RL policy retained the power of the full RL-induced policy,
we compared the learning performance of the Full-RL and
the DT-RL conditions. Our results suggest that while some
of the power was lost in the general rules extraction, the rel-
ative performance difference between the Full-RL and the
DT-RL condition is not significant. In addition, our results
on the pedagogical decisions made in training revealed that
the compact DT-RL policy selected significant more WE
than the Full-RL policy. This suggests that the two sets
of policies indeed made materially different decisions. How-
ever, since the weighted DT took account of the importance
of each rule, the DT-RL policy aims to retain maximal de-
cision effectiveness from the Full-RL policy while the size of
the former is less than 15% of the size of the Full-RL rules.
In the future, we will apply existing learning theories to the
decision-making process generated by decision tree to find
a theoretical basis for the DT-induced general pedagogical
decision-making rules.

8. ACKNOWLEDGEMENTS

This research was supported by the NSF Grant #1432156:
“Educational Data Mining for Individualized Instruction in
STEM Learning Environments” and #1651909: “Improving
Adaptive Decision Making in Interactive Learning Environ-
ments”.

9. REFERENCES

[1] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and
R. Pelletier. Cognitive tutors: Lessons learned. The
journal of the learning sciences, 4(2):167-207, 1995.
J. Beck, B. P. Woolf, and C. R. Beal. Advisor: A
machine learning architecture for intelligent tutor
construction. AAAI/TAAI 2000:552-557, 2000.
C. Boutilier, R. Dearden, and M. Goldszmidt.
Stochastic dynamic programming with factored
representations. Artificial intelligence, 121(1):49-107,
2000.
M. Chi, K. VanLehn, D. Litman, and P. Jordan.
FEmpirically evaluating the application of
reinforcement learning to the induction of effective
and adaptive pedagogical strategies. User Modeling
and User-Adapted Interaction, 21(1-2):137-180, 2011.
L. J. Cronbach and R. E. Snow. Aptitudes and
instructional methods: A handbook for research on
interactions. Irvington, 1977.

2

3

4

[5

[6] A. D. Davidson and et al. Multiple ecological pathways
to extinction in mammals. Proceedings of the National
Academy of Sciences, 106(26):10702—-10705, 2009.

[7] U. D. Gupta, E. Talvitie, and M. Bowling. Policy tree:
Adaptive representation for policy gradient. In AAAIL
pages 2547-2553, 2015.

[8] A. Iglesias, P. Martinez, R. Aler, and F. Ferndndez.
Learning teaching strategies in an adaptive and
intelligent educational system through reinforcement
learning. Applied Intelligence, 31(1):89-106, 2009.

[9] A. Iglesias, P. Martinez, R. Aler, and F. Ferndndez.
Reinforcement learning of pedagogical policies in
adaptive and intelligent educational systems.
Knowledge-Based Systems, 22(4):266-270, 2009.

[10] K. R. Koedinger and et al. Intelligent tutoring goes to

school in the big city. IJAIED, 8(1):30-43, 1997.

[11] P. Phobun and J. Vicheanpanya. Adaptive intelligent

tutoring systems for e-learning systems.
Procedia-Social and Behavioral Sciences,
2(2):4064-4069, 2010.

[12] J. R. Quinlan. Induction of decision trees. Machine

learning, 1(1):81-106, 1986.

[13] S. H. Reichard and C. W. Hamilton. Predicting

invasions of woody plants introduced into north
america. Conservation Biology, 11(1):193-203, 1997.

[14] S. Shen and M. Chi. Aim low: Correlation-based

feature selection for model-based reinforcement
learning. EDM, 2016.

[15] S. Shen and M. Chi. Reinforcement learning: the

sooner the better, or the later the better? In UMAP,
pages 37-44. ACM, 2016.

[16] R. S. Sutton and A. G. Barto. Reinforcement learning:

An introduction, volume 1. MIT press Cambridge,
1998.

[17] K. Vanlehn. The behavior of tutoring systems.

IJAIED, 16(3):227-265, 2006.

[18] M. P. Vayssieres, R. E. Plant, and B. H. Allen-Diaz.

Classification trees: An alternative non-parametric
approach for predicting species distributions. Journal
of vegetation science, 11(5):679-694, 2000.

Proceedings of the 10th International Conference on Educational Data Mining 119

