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ABSTRACT
MOOCs and online courses have notoriously high attrition [1]. One
challenge is that it can be difficult to tell if students fail to complete
because of disinterest or because of course difficulty. Utilizing a
Deep Knowledge Tracing framework, we account for student en-
gagement by including course interaction covariates. With these,
we find that we can predict a student’s next item response with
over 88% accuracy. Using these predictions, targeted interventions
can be offered to students and targeted improvements can be made
to courses. In particular, this approach would allow for gating of
content until a student has reasonable likelihood of succeeding.
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1 INTRODUCTION
Massively Open Online Courses (MOOCs) offer the possibility of
providing tremendous learning opportunities to students in a scal-
able form. However, because this population of students is substan-
tially different in terms of the degree of interest, background, and
other characteristics, a MOOC offers relatively few opportunities
for assessment and personalization. As such the only way to assess
a student’s performance is often after they have passed or failed
a class. In this paper we propose an early warning system that
will predict subsequent course performance by incorporating video
interaction features from a course as well as item data. This is an
incremental but important step in identifying points where inter-
ventions could meaningfully improve students’ learning outcomes.

The input to our model is a time series of feature vectors asso-
ciated with an individual student’s experience in an introductory
MOOC on statistical learning. Each vector at “time” t is associated
with the t th question (questions will be henceforth referred to as
items) in the MOOC. The features for xt are the item correctness
and seven features related to course structure and the student’s
interaction with the course. The first five are related directly to how
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the student engaged with the video associated with that question
and include playback speed, whether or not the video was paused,
fast forwarded or rewound and whether or not the video was com-
pleted. Playback speed is a value between 0.5 and 2.0, while the
other variables are dichotomously coded. The final two features are
a dichotomous variable for whether or not the item was attempted
(defined as submitted with an answer selected) and whether or not
the item was a part of an end-of-unit quiz. If the item was a quiz
item, the video features are set to the average across all relevant fea-
tures for the videos associated with the items on that quiz. These are
fed into an recurrent neural network (RNN) with tanh activations
and a sigmoid output layer, where the final output corresponds to
the predicted probability of answering item t + 1 correctly.

Our works is rooted in two fields in the realm of learning ana-
lytics. The first, Bayesian Knowledge Tracing (BKT), is the most
common approach used for predicting subsequent performance in
a class. BKT [2] models a student’s knowledge of a concept as a
binary indicator and predicts that if a student has that knowledge,
a student will get subsequent items correct. While there have been
extensions of this model, critics contend that BKT doesn’t allow for
multidimensional items (items that depend on knowledge in more
than one topic) nor continuous latent traits (knowledge that is not
all or nothing and can be partially mastered)[3].

Neural networks have further been used to extend learning in
online environments in several key ways. Some work in this space
have suggested that Neural Networks can accurately predict student
dropout in MOOCs using sentiment analysis and discussion forum
posts [4]. Piech first used RNNs to predict student performance as
well as cluster items by skill domain in a technique he called Deep
Knowledge Tracing (DKT)[5]. The original paper only uses item
correctness and an item classification as input features. The advan-
tages for this method include accuracy of prediction, flexibility of
input features and an ability to identify latent categories in items
without explicit identification. In an extension of DKT, other work
has found that course interactions beyond strict item correctness
and category are also predictive of student performance [6]. As
such we thought a natural extension would be to combine DKT
with course interaction covariates.

With respect to clickstream and video interaction covariates,
there is a body of work that mines video engagement behavior
patterns to predict course engagement and subsequent course be-
havior. In particular, there’s work that suggests sequences of click
activities can be used to predict persisting in a course [7]. This
approach requires complex feature generation from video log data
relative to our approach. Concurrently, there’s a growing body
of work that argues that these approaches also need to be com-
bined with process-oriented feedback such that interventions can
be thoughtfully targeted [8].
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anon_name feature index1 index2 · · · index103

38fqh9dy items attempted 103 · · ·
38fqh9dy correct 0 1 · · · 1
38fqh9dy playback_speed 1 1.25 · · · 0
38fqh9dy pauses 1 0 · · · 0
38fqh9dy seek_back 0 0 · · · 0
38fqh9dy seek_forward 0 0 · · · 0
38fqh9dy video_completed 0 0 · · · 0
38fqh9dy attempt 1 1 · · · 0
38fqh9dy quiz 0 0 · · · 0

Figure 1: Example entry in the data set for one student
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Figure 2: The structure of the model

2 DATASET AND FEATURES
We collected item response and video interaction data for 12,007
students in a Stanford statistical learning MOOC [9]. In this course,
students interacted with 77 videos which were associated with 103
individual items. From the videos, we took clickstream data and
reduced it five video interaction features. Playback speed was coded
in terms of amultiplier that ranged from 0.5 to 2.0. Pauses, seek back,
seek forward and video completed were all dichotomous features
coded as 0 if they did not occur during a video or 1 if they did occur
during the video. If the student submitted an answer to a question,
the “attempt” feature was coded 1 (and 0 otherwise) and the “quiz”
feature was coded as 1 if the item was part of a summative (end of
unit) quiz. Item correctness was also dichotomously coded with a 0
if incorrect and a 1 if correct. One uniquely appealing feature about
this course compared other candidate MOOCs we had access to was
that the structure of the course was such that almost every item was
embedded into the videos in a “check for understanding” format.
As such, it was trivial to map each item to its related video content.
Figure 1 shows an example entry for an example student. The first
line, “items attempted,” was used by the code segment that read in
the .csv of data and constructed the vectors for ourmodel to produce
appropriately padded vectors of consistent shape. Our model was
ultimately evaluated with an 80/20 train/test split. The rationale
for this choice is that we possessed a relatively small amount of
training data and also wanted to experiment with training and
evaluating on a subgroup of the most engaged students.

3 METHODS
Code for ourmodel can be found at https://github.com/klintkanopka/dkt2
. The model consists of a recurrent layer with 128 hidden units and
tanh activation. At the last time step, the model passes the activa-
tions through a dense layer with a sigmoid activation to produce

Inputs
Type GRU LSTM Simple RNN

Response only 0.8726 0.8826 0.8668
Response and
clickstream

0.8818 0.8830 0.8834

Figure 3: Comparison of the accuracy of different variants
of the model

the probability that the next response will be correct. The model is
constructed is such a way that the exact kind of RNN cells used can
be changed easily. This was done so we could evaluate simple RNNs,
GRUs and LSTMs in our architecture search. The implementation is
also capable of automatically adapting the dimensions of the RNN
layer to match the input data set.

.All of the RNN models we investigated are designed to work on
sequenced data, with each one feeding information about previous
time steps into each subsequent iteration. By design, LSTMs should
have the largest capacity for memory, followed by GRUs, followed
by simple RNNs. This comes at the cost of computational efficiency,
however. While the gated networks ought to outperform the simple
RNN [10], we evaluated all three.

For our cost function, we used binary cross-entropy loss with
L2 regularization,

J = − 1
m

m∑
i=1

(yloд(ŷ) + (1 − y)loд(1 − ŷ)) + λ

2m

L∑
l=1

| |w[l ] | |2F ,

because our model is performing a binary classification task
(correct or incorrect) with estimated probabilities. L2 regularization
was selected because it smoothed oscillations in the training loss.
We explored RNN implementations using gradient clipping, but our
model did not seem to need/benefit from that so it was left out. Our
model also uses the Adam optimization algorithm, an optimization
algorithm that uses the running averages of the previous gradients
to adjust parameter updates during training. In addition, we im-
plemented a variable learning rate that was automatically reduced
during training if the validation loss failed to decrease after a few
epochs.

The actual model itself was built from scratch using NumPy[11],
scikit-learn[12], TensorFlow[13], and Keras [14].

4 EXPERIMENTS, RESULTS, & DISCUSSION
While conducting our hyperparameter search, we primarily experi-
mented with the number of epochs, the type of recurrent layer, the
number of hidden units, the learning rate and the regularization
parameter. Throughout the training, accuracy was our primary
evaluation metric. We chose to keep the parameters associated with
the Adam optimizer constant during this search. Since our model
trained relatively quickly, we chose to experiment with many hy-
perparameters across all three architectures before finally settling
on the simple RNN. For all three architectures, 128 hidden units
was a better balance of speed and accuracy than 64 or 256 hidden
units. Similarly, we tried a variety of values for the learning rate and
regularization parameter before settling on the simple RNN with
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Figure 4: Training and test accuracy and loss for the final
model (128 hidden unit RNN)

variable learning rate and a regularization parameter of λ = 0.01,
which yielded a test accuracy of 88.4%.

In our research, we found that a simple RNN produced the high-
est accuracy for our dataset. This was not what was expected, as
conventional wisdom seems to be that LSTMs outperform other
types of RNNs. One potential explanation is that handling longer
memory was not as important in this dataset as we would have
expected. Past work suggests that there might be transition points
in which a student’s behavior changes during a course. Past studies
of this particular course have shown that students tend to disengage
after obtaining a passing mark in the course [15], further reducing
the need for the advanced memory capabilities of gated models.

Another finding from our dataset is that the gains from including
our engagement covariates are relatively small. Subsequent analysis
of our datasets found that by the end of the course, nearly three
quarters of students had no video interactions but still actively
attempted items. This suggests that our gains from including the
additional covariates are likely understated. Future work will focus
on expanding this approach to additional courses in search of a
generalizable model.

5 CONCLUSION/FUTUREWORK
We found that a simple RNN and binarized engagement covariates
can predict correct item responses with over 88% accuracy. The
model we have presented here shows promise for implementation
in live MOOCs as a tool to target students for support interven-
tions and as a post hoc diagnostic for targeting segments of the
course for improvement in future iterations. The performance of
the simple RNN was something of a surprise, so we recommend
still considering GRUs and LSTMs for future work.

For future work, there are a few directions we would like to
explore. First, we would use the data from more courses to exam-
ine the problem in different contexts. If different courses behave
similarly, it might suggest that a common architecture could be
recommended to MOOC designers who wish to employ this type of
modeling. Second, our project worked with a streamlined feature

set, because we asked questions like, “did the student complete the
video,” and fed the model a binarized result. A larger and more
sophisticated set of features might provide additional predictive
power for the model.
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