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ABSTRACT
“Wheel spinning” is the phenomenon in which a student fails
to master a Knowledge Component (KC), despite significant
practice. Ideally, an intelligent tutoring system would de-
tect this phenomenon early, so that the system or a teacher
could try alternative instructional strategies. Prior work
has put forward several criteria for wheel spinning and has
demonstrated that wheel spinning can be detected reason-
ably early. Yet the literature lacks systematic comparisons
among the multiple wheel spinning criteria, features, and
models that have been proposed, across multiple evaluation
criteria (e.g., earliness, precision, and generalizability) and
datasets. In our experiments, we constructed six wheel spin-
ning detectors and compared their performance under two
different wheel spinning criteria with three datasets. The
results show that two prominent criteria for wheel spinning
diverge substantially, and that a Random Forest model has
the most consistent performance in early detection of wheel
spinning across datasets and wheel spinning criteria. In ad-
dition, we found that a simple model overlooked by previous
research (Logistic Regression trained on a single feature) is
able to detect wheel spinning at an early stage with decent
performance. This work brings us closer to unifying strands
of prior work on wheel spinning (e.g., understanding how
different criteria compare) and to early detection of wheel
spinning in educational practice.
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1. INTRODUCTION
Intelligent tutoring systems (ITS) aim to guide students to-
wards mastery of knowledge components by providing step-
by-step personalized guidance. However, there are cases
where students persistently work on problems without mak-
ing progress towards mastery. This phenomenon of unpro-
ductive student persistence has been called “wheel spinning”

[1]. If ITSs were able to detect potential wheel spinning as
early as possible, they might be able to adjust their instruc-
tional strategies accordingly to avoid wasting students’ time.

Beck & Gong [1] operationalized wheel spinning as failing to
get three attempts correct in a row within the first 10 prac-
tice opportunities. We refer to this as “three correct in a row
criterion.” They presented evidence in [3] that wheel spin-
ning is not a rare phenomenon. Other operationalizations
of unproductive persistence have since been proposed. For
example, Predictive Stability (PS) is a when-to-stop policy
for ITSs proposed in [5], which stops when the probability of
a student getting the next step correct stabilizes. The pol-
icy uses student performance at each step to decide whether
the ITS should stop giving more questions, either because
of mastery or wheel spinning. The Predictive Stability++
(PS++) policy [5] provides further analysis about mastery
after the PS policy would have stopped. This policy can de-
tect wheel spinning under various student models. Although
the two operationalizations are, at the surface, rather differ-
ent, prior work has not investigated how they compare.

More generally, although prior work has introduced various
machine learning models for the early detection of wheel
spinning, fitted on a variety of datasets, we are not aware of
any systematic comparison across models, datasets, and op-
erationalizations. This makes it difficult for researchers to
compare and establish global evaluations, which is impor-
tant both for practical and theoretical reasons. Therefore,
in this study, we conducted a comprehensive examination
to address the following questions: (1) To what extent do
different operationalizations of wheel spinning agree or dis-
agree? (2) Which set of features leads to better predictions?
(3) What is the simplest set of features that can be effec-
tive? (4) What are some good methods for early detection
of wheel spinning? and (5) How early can these methods
detect wheel spinning with decent performance?

2. DATASET
We used three datasets in our experiments. Two of the
datasets were collected from two sections of Algebra con-
tent in the MATHia ITS [9] during the 2017-18 school year.
Sections within MATHia, which is built on Cognitive Tutor
technology from Carnegie Learning, provide instruction and
practice on a series of KCs via multi-step problem solving
tasks, each problem providing practice on several KCs (we
will refer to this as the “CL1 dataset” and “CL2 dataset”).



There are 132,551 student-KC pairs in CL1 dataset and
419,832 student-KC pairs in CL2 dataset. The third dataset
is from a high school geometry tutor [6] (we will refer to
this as the“Geometry dataset”) with 8175 student-KC pairs.
The datasets used in these experiments were exported from
DataShop data [10].

2.1 Label Generation
We labeled each (student, KC) pair in our three datasets
according to both the three correct in a row criterion and
the PS++ policy [5]. With each criterion, there are three
possible label values: mastered, wheel spinning, and indeter-
minate. A (student, KC) pair was labeled indeterminate if
there were not enough steps to determine whether the stu-
dent has or will master the KC. Following [1], we discarded
(student, KC) pairs labeled as ‘indeterminate’ before train-
ing our models, given insufficient data to apply the criterion.

2.1.1 Three Correct in a Row
We generated labels for the three correct in a row crite-
rion as follows: For each (student, KC) pair, if there were
three or more contiguous correct attempts within the first
10 steps, then the (student, KC) pair was labeled mastered
(even if there were less than 10 steps). The (student, KC)
pairs that did not reach mastery with 10 or more steps were
labeled wheel spinning. The (student, KC) pairs with less
than 10 steps and no occurrence of three contiguous cor-
rect steps were labeled indeterminate. Under this criterion,
the frequency of wheel spinning in CL1, CL2 and Geometry
dataset is 6.6%, 0.56%, and 10.2% of (student, KC) pairs,
respectively.

2.1.2 Predictive Stability++
The second set of labels are derived from the PS++ pol-
icy, which is defined as not reaching a mastery condition
after a student model’s predictions of next step correctness
have stabilized to a steady state [5]. In our analysis, we
used Bayesian Knowledge Tracing (BKT) as the student
model. On the Geometry dataset, we used BKT param-
eters obtained by fitting the model to data. In the other
two datasets, we used the “shipped parameters,” that is, the
parameters actually used by the ITS. For each step in a (stu-
dent, KC) pair, BKT calculates PC(t), which is the probabil-
ity of getting a correct response for the current step, as well
as PC|0(t) = P (Ct+1|¬Ct) and PC|1(t) = P (Ct+1|Ct), the
probabilities of a correct response on the next step, condi-
tioned on a correct or incorrect response on the current step.
When PC|0(t) and PC|1(t) converge, the stopping criterion
defined in PS [5] is reached. We then determine the label of
the (student, KC) pair as follows: According to PS++ [5],
after convergence, when PC(t) is close enough to its upper
bound, we consider the student has mastered this KC. Oth-
erwise the (student, KC) pair is labeled as wheel spinning.
For those (student, KC) pairs where the stopping criterion
has never been met, we assign indeterminate as the label.
Under this criterion, the frequency of wheel spinning in CL1,
CL2 and Geometry dataset is 24.2%, 2.17%, and 13.2% of
(student, KC) pairs, respectively.

2.2 Features
As we explored ways of creating early detectors for wheel
spinning, we used a total of 28 features. Among these, 15

were introduced by [3]. These 15 features are extracted
to analyze and record three aspects of students’ learning
progress. The first aspect is students’ learning performance
like ‘correct response count’ and ‘prior problem count with
hint request’, which indicate whether the student is doing
well on a particular KC. The second aspect is the ‘seri-
ousness’ of students, including ‘prior problem fast correct’
and ‘prior problem slow incorrect’. These features indicate
whether the student appears to be making a deliberate ef-
fort on a particular KC. The third category of the features
includes general features like ‘skill id’. In addition, we used
7 features introduced by [4], and 6 new features based on
our previous research and our explorations on the Carnegie
Learning dataset. A complete list of features and their de-
scriptions can be found in the online appendix.1

3. EXPERIMENTS AND DISCUSSION
We conducted the following experiments and analyses to an-
swer the research questions listed in section 1.

3.1 Compatibility of Operationalizations
3.1.1 Comparing Operationalizations

Regarding Research Question (1) (to what extent do differ-
ent operationalizations of wheel spinning agree or disagree?),
a first observation is that the overall frequency of wheel
spinning, reported above, differs substantially under the two
operationalizations, with no clear pattern of one predicting
more wheel spinning than the other. The confusion matrices
(Figure 1, 2, 3) that compare the two operationalizations on
each of the three datasets provide further insight into this
divergence. For instance, in the CL1 dataset, among all
(student, kc) pairs that are labeled as wheel spinning by
either operationalization, the two operationalizations agree
on only 22.2% of them. In CL2 dataset, the same wheel
spinning agreement percentage is 14.1%. In the Geometry
dataset, it is 41.6%. The agreement on wheel spinning is
generally less than 50%.

Figure 1: Comparison of two different criteria for wheel spin-
ning in the CL1 dataset.

Figure 2: Comparison of two different criteria for wheel spin-
ning in the CL2 dataset.

1https://tinyurl.com/edm19supplement



Figure 3: Comparison of two different criteria for wheel spin-
ning in the Geometry dataset.

To investigate the divergence between the two operational-
izations in more detail, we present examples of (student,
KC) pairs where the criteria disagree (see Figures 4 and
5). These visualizations show the student first attempted
response on each step together with different wheel spin-
ning metrics. Specifically, the student’s correct answers, in-
correct answers, and hints for the given KC are visualized
at the bottom of each graph. When there are 3 contigu-
ous green dots within the first 10 steps (shown in a dash-
lined box), the KC will be considered mastered under the
three correct in a row criterion. Shown above are PC(t)
,PC|0(t),PC|1(t), Pmaster, and upper bound of PC(t). A ver-
tical, dashed line shows the stopping step for PS; the x-axis
denotes the practice opportunity using a 0-based index. In
most of the cases in which the three correct in a row criterion
and PS++ agree with each other, there is a clear pattern in
students’ responses towards mastery or wheel spinning. For
example, many contiguous corrects will generally result in
mastery under both criteria; many contiguous incorrect at-
tempts will result in agreement for wheel spinning. Figure
4 shows one case where PS++ detects wheel spinning but
the three correct in a row criterion detects mastery. For this
specific (student, KC) pair, mastery (under both criteria)
occurs past the point where PS stopped; the initial string of
incorrect responses appears to have been influential.

Figure 4: An example of (student, KC) where the three
correct in a row criterion detects mastery and PS++ detects
wheel spinning.

Figure 5 shows the opposite situation, where PS++ gives
a mastery label but the three correct in a row criterion is
detecting wheel spinning. In this instance, mastery under
the various criteria happens past the 10 step cutoff.

Figure 5: An example of (student, KC) where the three
correct in a row criterion detects wheel spinning and PS++
detects mastery.

3.1.2 Discussion
We found some overlap but also substantial disagreement
between the two operationalizations of wheel spinning, the
three correct in a row criterion and PS++. The operational-
izations tend to agree when the student’s performance is ob-
vious and steady (e.g. the student is doing extremely well or
poorly on a KC, or when, as is common, there is a gradual in-
crease in performance). However, these criteria can disagree
when students’ responses fluctuate. One of the reasons is
that the two operationalizations judge mastery in different
ways. The three correct in a row criterion, with the explicit
10-step (or other configurable number of steps) cutoff, fo-
cuses on mastery in the early stage. Student performance
after the cutoff is not taken into account. In contrast, PS++
may consider long-term performance; its mastery judgment
can be made using more data, although, as seen in one of
our examples, PS++ may stop too early on KCs with lower
Plearn and an early string of incorrect responses.

3.2 Feature Effectiveness
In this section, we aim to explore the effectiveness of features
we are using. In particular, we focus on Research Questions
(2): Which set of features lead to better predictions; and (3):
What is the simplest set of features that can be effective?

3.2.1 Feature Importance with Random Forest
In order to find a set of features for better prediction, we
trained a Random Forest model and generated the feature
importance graph. Feature importance of a Random Forest
is measured by the total decrease in Gini impurity averaged
over all the trees in the ensemble [2]. We rely on [8]’s im-
plementation of Random Forest and feature importance and
used the default hyperparameters. Figure 6 is an example of
the feature importance graph. Among the set of 28 features,
four are repeatedly identified as important by the Random
Forest model. In all 6 scenarios (three datasets with two
wheel spinning criteria), at least three of the four selected
features appear in the top five most important features. Two
of these features are related to students’ performance: ‘Cor-
rect Response Count’ and ‘Correct Response Percentage’.
The other two features are related to the speed and atten-
tiveness of students: ‘Exp Mean Response Time Z-Score’



Figure 6: An example of feature importance, trained on CL1
dataset under PS++ criterion.

and ‘Prior Step Count Normal Correct’.

3.2.2 Fitting Single-feature Logistic Regression
The predictive power of very simple wheel spinning detec-
tors is under-explored in prior literature. Here, we are in-
terested in finding out the predictive value of individual fea-
tures. Therefore, we picked 6 features that were repeatedly
deemed as important in the work reported in section 3.2.1
and built 6 Logistic Regression models, each trained on one
of the 6 features. We used [8]’s implementation of Logistic
Regression and applied the default hyperparameters.

The results show that the detectors trained on ‘Correct Re-
sponse Count’, ‘Correct Response Percentage’, ‘Correct Re-
sponse in a Row Count’ and ‘Prior Step Count Normal Cor-
rect’ achieve high precision and recall when predicting the
PS++ label. For example, a Logistic Regression model,
trained with ‘Correct Response Percentage’ as the single
feature, detected wheel spinning with 93.5% precision and
77.1% recall after just 4 steps. Generally, features involv-
ing correctness seem to be highly effective in wheel spinning
detection. In addition, although the detector trained on
‘Assistance Score’ (i.e. the sum of the number of errors and
the number of hints on a step) somewhat surprisingly didn’t
perform as well as the rest, it still reached 68.4% precision
and 60% recall in the fourth step.

3.2.3 Discussion
In our experiment, we found that the features that involve
correctness of steps tend to be effective in predicting wheel
spinning, independent of the criteria or datasets used. These
results make sense because intuitively, if a student can get a
large percentage of steps correct, then this student is likely
on their way to mastering the given KC. They also lead to
the question of whether we can build an effective detector
that relies on correctness only. The results above show that
a Logistic Regression model trained with ‘Correct Response
Percentage’ is able to give us comparable result to other
models, although it suffers more from the cold start problem
and fluctuates more than other detectors. In addition, other
aspects of the step-solving process, including time and help
requested, can also be useful, as ‘Exp Mean Response Time
Z-Score’ and ‘Assistance Score’ also have high feature impor-
tance while training Random Forest model. These findings
indicate that certain aspects in students’ learning perfor-
mance help predict wheel spinning regardless of the problem

setting and tutoring system.

3.3 Early Detection Models
To answer Research Question (4) and (5), we trained mul-
tiple machine learning models to study their performance
on early detection. We used a Logistic Regression model,
trained on the same set of features as in [1], as a baseline.
Another detector based on Logistic Regression was trained
with the full set of 28 features. In addition, we include one
of the detectors used in section 3.2.2, namely, a Logistic Re-
gression model trained on ‘Correct Response Percentage’,
to compare the performance of a simple model with that of
other more complex ones. Inspired by [4], we also included
a Random Forest model. Finally, we trained two neural-
network-based detectors: a 5-layer fully-connected artificial
neural network and a 3-layer LSTM. We split our dataset
into training and testing data with a 6:4 ratio.

In order to study how early the detectors could accurately
detect wheel spinning - by early we mean early in the op-
portunity count for any given (student, KC) pair - we fitted
Random Forest, Logistic Regression and MLP models sep-
arately for each practice opportunity - that is, separately
with data up to and including opportunity N, for N from
1 to the available data for the given (student, KC) pair.
(The labels were computed based on all data, as described
above.) Doing so was necessary for these three models as
they do not have a recurrent structure to handle variable
length steps and most of our features are accumulative. By
contrast LSTMs are inherently recurrent, so we trained it
on data from every step. We rely on [8]’s implementation of
Logistic Regression, Random Forest and Multi-Layer Per-
ceptron (MLP) and [7]’s implementation of LSTM. For Lo-
gistic Regression and Random Forest, we used the default
hyperparameter provided by [8]. For MLP, we had 3 hidden
layers with 64, 32, 16 units, respectively. For LSTM, we
used 2 layers with 64 hidden units. For each dataset, we
evaluated our detectors on the corresponding test data, and
computed precision and recall for the wheel spinning class.
Figure 7 shows the detectors’ performance on early detec-
tion, with two (precision, recall) plot pairs for each detector
on ‘wheel spinning’ class, one pair for each of the two wheel
spinning operationalizations.

3.3.1 Model Performance
We found that these detectors in general perform well under
the PS++ criterion. Most of them reached more than 60%
precision and recall after the fourth step, and more than 80%
precision and accuracy after the sixth step. Under three cor-
rect in a row criterion, the detectors in general perform worse
in terms of both precision and recall compared to PS++ cri-
terion. In particular, in CL2 dataset, we observed extremely
low recall using all the models. As foreshadowed in section
3.2.2, the single-feature Logistic Regression model (blue line
in Figure 7) achieved decent performance compared to other
more complex models, except for CL2 dataset. Although it
tends to have lower precision and recall in earlier steps, after
step 4, its performance improves and is comparable to those
of Logistic Regression trained on 15 features and Logistic
Regression trained on full set of features.

The two most accurate models are Random Forest (red line
in Figure 7) and MLP (purple line in Figure 7). In par-
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Figure 7: Detectors’ early detection Precision and Recall on ‘wheel spinning’ class in testing data.

ticular, at the fourth step, Random Forest exhibits (77.2%,
63.5%) precision and recall on three correct in a row and
(90.8%, 81.4%) on PS++. MLP obtained (71.9%, 58.9%)
precision and recall on three correct in a row and (82.4%,
77.2%) on PS++. In comparison, under the same settings,
the baseline model achieves (74.9%, 58.2%) and (75.3%,
59.9%). To support comparison, we kept the hyperparam-
eters consistent across all situations. However, if one is in-
terested in getting even better performance, we recommend
further tuning these parameters based on specific situation.

3.3.2 Discussion
The models differed in how well they generalize across datasets
and wheel spinning criteria. Among them, Random Forest
and MLP are those with the most competitive results. Be-
sides its performance, Random Forest also provides us with
feature importance evaluation (as in section 3.2.1) and pos-
sibly greater interpretability. In addition, to our surprise, we
found that the detector trained on a single feature related
to correctness consistently produces results not far behind
from other detectors. Features unrelated to correctness, on
the other hand, are more dependent on the context, such
as the different usage of different ITSs and difficulty of the
underlying domain. However, the downside of using a sin-
gle correctness-related feature is that correctness only mea-
sures one (albeit important) aspect of the students’ behav-
ior while solving steps. Detectors like this may overlook the

fact that some students can learn from solving the steps and
reach mastery slightly later (e.g. getting the first four steps
wrong but answering correctly on the next four) in the pro-
cess. Nonetheless, this shortcoming should not undermine
the power of this model. We recommend its use as a baseline
model in future research.

We also find that the detectors perform worse in general un-
der three correct in a row criterion. Even in CL2, where
over 97% (student, KC) pairs are under mastery class after
discarding the indeterminate class, their performance are
extremely low under three correct in a row criterion while
decent under PS++ criterion. We failed to come up with a
definite explanation to such a phenomenon, but we hypoth-
esize that three correct in a row criterion may not need com-
plicated features to predict, so adding new features merely
introduces noise for detectors. Another common issue we
found is that these models suffer from the “cold start” prob-
lem in every dataset, model, and operationalization. Almost
all models had lower than 20% precision and recall in the
first three steps in all datasets and metrics on the three cor-
rect in a row criterion. This is understandable, since at the
first two or three steps, the features collected are often insuf-
ficient to determine whether a student has reached mastery
or is wheel spinning.

4. CONCLUSION AND FUTURE WORK



In the current work, we aim to move toward clarity and unity
in investigations of early detection of wheel spinning. Prior
investigations have not compared across different models for
early detection across datasets and operationalizations. To
begin addressing this gap, we compared two prominent oper-
ationalizations of wheel spinning ([1] and [5]) and compared,
across three datasets, the performance of several detectors
that were trained with different sets of features. First, the
frequency of wheel spinning across the three datasets, 0.56%-
10.2% under 3-in-a-row and 2.17%-24.2% under PS++ was
in line with what previously studies have reported. For ex-
ample, in the two datasets used by [3], the wheel spinning ra-
tio was 16% and 6%. Further, we found that two well-known
operationalizations of wheel spinning diverge substantially
in our three datasets, which is not desirable from either a
practical or a theoretical perspective, as we do do not know
which one to apply or build on. Some typical cases on which
they do not agree include getting more KC opportunities
correct after [1]’s threshold and answering several consecu-
tive steps incorrectly early followed by much improved per-
formance on later steps. We also found that our models
predict PS++ more accurately than they predict [1]’s crite-
rion, most dramatically in the CL2 dataset, but also in the
other two data sets (see section 3.3). This finding is surpris-
ing especially if one considers that our feature sets included
features engineered for prior detectors of three correct in a
row reported in the literature [1, 3, 4]. Therefore, it appears
unlikely that the more accurate prediction of PS++ is just
an artifact of the particular choice of features. What may
play a role is that the three correct in a row criterion, in con-
trast to PS++, does not allow for the fact that KCs vary in
difficulty (i.e., require different numbers of practice oppor-
tunities, on average, to reach mastery), as is by now well-
established [3]. It would be highly desirable to investigate
whether our key findings, the discrepancy of the two criteria
and the more accurate prediction of PS++, are replicated
in a wider range of datasets.

Further, when we evaluated the predictive value of 28 fea-
tures, we found there is a set of common features that are
effective across different datasets and criteria, namely those
having to do with step correctness and assistance gained
from the system. These features are essential aspects of
the learning process to capture for early detection of wheel
spinning. Of the 6 wheel spinning detectors we built, the
Random Forest model performed consistently well across
datasets and operationalizations. Combined with its abil-
ity to evaluate feature importance and its potential for in-
terpretability, we recommend trying Random Forest when
developing a wheel spinning detector for a tutoring system.
In addition, to our surprise, a Logistic Regression model
trained on a single feature ‘Correct Response Percentage’
achieved results that were not far behind those of more com-
plex models like MLP. Addressing our research question of
how early we could predict wheel spinning, our best model
was able to make predictions with decent precision and re-
call as early as step 4, namely, on CL1 dataset. These results
compare favorably with the accuracy achieved by prior early
detectors for wheel spinning, discussed in the introduction.
Note that we are not trying to recommend using the fourth
step as a definitive criterion for earliness. We merely note
that, as our results show, machine-learned models can do
well from that particular step onward.

There are several limitations of our work that could be stud-
ied further in future work. For example, it would be worth-
while to continue to study agreement and disagreement of
additional operationalizations of wheel spinning (e.g., [6]),
given that the two we studied agreed to a lesser extent than
expected. In addition, some hyperparameters in PS++ can
be tuned for a given system, which may further support
comparisons.
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