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ABSTRACT 

A key affordance of game-based learning environments is their 

potential to unobtrusively assess student learning without 

interfering with gameplay. In this paper, we introduce a temporal 

analytics framework for stealth assessment that analyzes students’ 

problem-solving strategies. The strategy-based temporal analytic 

framework uses long short-term memory network-based evidence 

models and clusters sequences of students’ problem-solving 

behaviors across consecutive tasks. We investigate this strategy-

based temporal analytics framework on a dataset of problem-

solving behaviors collected from student interactions with a game-

based learning environment for middle school computational 

thinking. The results of an evaluation indicate that the strategy-

based temporal analytics framework significantly outperforms 

competitive baseline models with respect to stealth assessment 

predictive accuracy.  
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1. INTRODUCTION 
Recent years have seen significant growth in investigations of 

game-based learning. Game-based learning environments utilize 

the motivational elements of games to foster students’ learning and 

engagement [7, 34, 36]. Studies have shown that learners who 

engage in game-based learning experience higher motivation 

compared to those who learn with conventional methods [8, 39]. 

Intelligent game-based learning environments integrate the 

adaptive learning support of intelligent tutoring systems and the 

motivational elements of games [15]. Like intelligent tutoring 

systems, they utilize students’ interactions with the learning 

environment to infer student models of cognitive, affective, and 

metacognitive states [20, 26, 40]. The resulting student models can 

then guide tailored problem-solving scenarios, cognitive feedback, 

affective support [1,25]. 

In contrast to traditional assessment, stealth assessment of student 

learning can rely solely on student interaction trace data from the 

game-based learning environment without disrupting the natural 

flow of learning [38]. Stealth assessment infers students’ 

competency with respect to knowledge, skills, and performance 

using evidence derived from students’ game-based learning 

activities often based on evidence-centered design (ECD) [27]. 

ECD utilizes task, evidence, and competency models to assess 

students’ relevant competency and proficiency [35]. In game-based 

learning environments, stealth assessment can monitor granular 

game-based behaviors across multiple tasks in the game to generate 

evidence, which can then be used to dynamically infer a 

competency model of the student. Operating in this fashion, stealth 

assessment has been examined to unobtrusively perform 

assessments of a wide range of constructs [40], and provide 

formative feedback to students and teachers to inform instruction 

and enhance learning [39, 5, 18]. 

Although an abundance of data can be readily captured from 

student interactions within game-based learning environments, a 

key challenge posed by stealth assessment is translating the raw 

data into meaningful representations to model students’ 

competencies and performance [39]. This problem is exacerbated 

by the fact that student behavior unfolds over time in a manner 

dependent on prior actions. In this work, we present an approach to 

stealth assessment that leverages temporal analytics based on 

students’ problem-solving strategies. Building on findings that 

problem-solving strategies significantly influence learning 

outcomes [11, 33], we introduce a strategy-based temporal 

analytics method using n-gram features and investigate whether 

problem-solving strategies identified from clustering students’ 

interaction patterns can improve the predictive accuracy of 

evidence models for stealth assessment.  

After clustering students based on their problem-solving behaviors, 

we predict their post-test performance using their cluster 

assignments as predictive features for a suite of classifiers. This 

approach is based on the intuition that as students’ progress through 

a series of learning tasks, their choice of strategy affects their 

learning outcomes. For example, if a student first pursues a trial-

and-error strategy for initial tasks and later in the learning session 

begins to adopt a more effective strategy, her strategy shift may 

lead to higher post-test scores. We hypothesize that drawing 
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inferences about strategy shifts may serve as the basis for accurate 

predictions of learning performance.  

Because strategies and strategy shifts are inherently time-based 

phenomena, we propose a strategy-based temporal analytics 

approach to stealth assessment based on long short-term memory 

networks (LSTMs). In this approach, we develop predictive models 

that capture the temporal dependencies between students’ 

dynamically changing problem-solving behaviors. We find that the 

strategy-based temporal analytics framework outperforms baseline 

models that do not capture strategic temporal dependencies on 

predictive accuracy. Further, we find that the strategy-based 

temporal analytics framework utilizing both student problem-

solving behavior traces and pre-test performance outperforms a 

model that uses only pre-test data. The results suggest that strategy-

based temporal analytics can serve as the foundation for effective 

stealth assessment in game-based learning. 

2. RELATED WORK 
Game-based learning leverages game design elements to foster 

engagement in learning [7]. Because of its potential to create 

motivating learning experiences, game-based learning has been 

explored for a broad range of subjects including science [29], 

mathematics [17], computer science [3, 24], and public policy [36]. 

A notable family of game-based learning environments, intelligent 

game-based learning environments, integrate intelligent tutoring 

system functionalities and game-based learning [15, 20]. Intelligent 

game-based learning environments can embed stealth assessments, 

which have emerged as a promising approach to assessing game-

based learning [37, 31, 39]. In stealth assessment, student 

competencies are assessed unobtrusively by drawing inferences 

from observations of students’ learning interactions. 

In one approach to stealth assessment, a directed graphical model 

was built based on relevant competencies, and related variables 

were extracted from the observed data to be used as evidence for 

the targeted competencies [19]. In another approach, Falakmasir 

and colleagues investigated two hidden Markov models (HMMs) 

that were trained for high-performing and low-performing students 

[12]. Subsequently, for observed sequences of events, log-

likelihoods were calculated for each HMM. Finally, the difference 

between the two log-likelihoods was used in a linear regression 

model to predict post-test scores. This approach reduces the need 

for labor-intensive domain knowledge engineering. 

Work on deep learning-based stealth assessment, DeepStealth, 

offers an alternate approach that uses artificial neural networks to 

perform stealth assessment [24]. DeepStealth used a deep 

feedforward neural network (FFNN) to learn multi-level, 

hierarchical representations of the input data for evidence 

modeling. In subsequent work, structural limitations in the FFNNs 

were addressed with a long short-term memory network-based 

stealth assessment framework that directly uses students’ raw 

interaction data as input [25]. The strategy-based temporal 

analytics framework we propose in this paper builds on this prior 

work, but while the previous work focused primarily on 

computational methods to model evidence within ECD, the 

approach introduced in this paper derives temporal evidence from 

students’ dynamic in-game strategy use throughout their problem 

solving. We cluster students to categorize them based on in-game 

strategy utilization per task, and then use sequences of in-game 

strategy features over multiple tasks to predict post-test 

performance. 

Previous work has also explored approaches to detect students’ 

problem-solving strategies using trace data. For example, one effort 

focused on building a probabilistic model that jointly represent 

students’ knowledge and strategies [16], which was effective at 

predicting learning outcomes. Another approach focused on 

selecting features for classifying students’ efficiency in solving 

challenges [22]. The temporal analytics framework we introduce in 

the paper uses problem-solving strategies that are automatically 

discovered through clustering based on n-grams of players’ 

sequences of interactions with a game-based learning environment, 

thus obviating the need for labeling or expert knowledge. 

3. EXPERIMENTAL SETUP 
We investigate the strategy-based temporal analytics approach for 

stealth assessment with data collected from middle school students’ 

interactions with a game-based learning environment for 

computational thinking. We describe the learning environment, its 

in-game problem-solving challenges, and the dataset generated 

from students’ interactions with the game-based learning 

environment. 

3.1 ENGAGE Game-based Learning 

Environment 
ENGAGE is a game-based learning environment designed to 

introduce computational thinking to middle school students (ages 

11-13) (Figure 1). The game was developed with the Unity multi-

platform game engine and features a rich, immersive 3D storyworld 

for learning computing concepts [3, 24]. The game-based learning 

environment aims to promote computational thinking skills 

including abstraction and algorithmic thinking through problem 

solving and programming. The computational challenges within the 

game were designed to prepare middle school students for 

computer science work in high school, and to promote positive 

attitudes toward computer science. 

A diverse set of over 300 middle school students participated in 

focus group activities, pilot tests, and classroom studies with the 

game. Of the students who provided demographic information, 

47% were female; 24% were African American or Black,16% were 

Hispanic or Latino/a, 17% were Asian, 38% were White, and 5% 

of the students were Multiracial. The research team worked closely 

with a similarly diverse group of teachers throughout the project. A 

subset of teachers helped to co-design the game-based learning 

activities, providing iterative feedback throughout development. 

Each of the teachers implementing the game in their classrooms 

attended either one or two summer professional development 

workshops that introduced computational thinking concepts and the 

ENGAGE game-based learning environment. 

In the game, students play the role of the protagonist who is sent to 

investigate an underwater research facility that has lost 

communications with the outside world. As students progress 

through the game, they discover that a nefarious villain has taken 

control of the computing devices within the facility. Students 

navigate through a series of interconnected rooms and solve a set 

of computational challenges. Each of the challenges can be solved 

either by programming devices or interacting with devices in 

reference to their pre-written programs. Students use a visual block-

based programming language to program the devices [25]. They are 

supported throughout the game by a cast of non-player characters 

who help them progress through the narrative, offer clues, and 

provide feedback while they navigate the game and solve 

computational challenges [24]. 

The game consists of three major levels: the Introductory Level, in 

which students learn the basics of the game and simple 

programming; the Digital World Level, in which students learn 
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how digital data is represented with binary sequences; and the Big 

Data Level, in which students have the opportunity to work with 

various datasets and retrieve hidden information by cycling through 

data and filtering it based on different conditions. 

The work presented in this paper focuses on students’ problem-

solving activities within the Digital World level. The first set of 

tasks in this level consists of binary locks that are programmed to 

open if the binary representation of a specific base-ten number is 

generated by the students. Similarly, the second set of tasks 

(Figure 2) in the Digital World level features lift devices that are 

activated when students generate the target base-ten value by 

flipping binary tiles and execute the program associated with the 

lift. For example, students can find the target number by reviewing 

an existing program (Figure 2, right) associated with the binary lift 

device. Each lift provides students with five consecutive flip tiles 

representing bits of a five-digit binary number. Players can toggle 

each bit between 0 and 1 by flipping the corresponding tile on the 

tile panel. The decimal representation of their generated binary 

number will be presented on a small screen above the panel. To 

teach variations of binary representations, the game enables 

students to flip tiles between ‘0’ and ‘1’, ‘black’ and ‘white’, and 

‘F’ (False) and ‘T’ (True), as in (Figure 2, left).  

To advance to the next task, students must flip binary tiles on the 

binary lift device to generate the target decimal number (Figure 2, 

left) execute its program, and lift up the binary device. Through 

these tasks, students learn about the concept of bits in binary 

numbers and the weight assigned to each bit. In the analyses 

reported here, we used behavior trace data from students’ 

interactions with 11 binary tasks from the Digital World level, 

where students learn the weight associated with each of the five bits 

through the first five tasks and then learn how to combine multiple 

bits to make more complex numbers with binary representations. 

3.2 Dataset 
We analyzed 244 students’ behavior trace data obtained from a 

teacher-led study in four public middle school classrooms in the 

urban area in the United States. The four schools reported an 

average percentage of free or reduced lunch as 34.75%, 41.07%, 

31.65%, and 63.17% during the years of data collection, 

respectively. Furthermore, three of the schools were magnets for 

gifted and talented students and the fourth was a magnet for 

leadership and innovation. To support collaborative learning, 

which is prominent in computer science education [3], we collected 

student behavior trace interaction data from pairs of students in 

which they took turns serving as navigator (traversing the game) 

and driver (action planning). Pre- and post-test assessments 

measuring content knowledge (e.g., binary representation) were 

completed individually by students before starting the Digital 

World level (pre-test) and immediately after finishing it (post-test). 

Both pre-test and post-test are on a scale of 0 to 1. Out of 244 

students, 168 students completed the pre-test and post-test for 

content knowledge as well as all 11 binary representation tasks for 

this level. The results of conducting a paired t-test on students’ 

content knowledge pre-test (M=0.44, SD=0.20) and post-test 

(M=0.59, SD=0.24) revealed a significant improvement from pre-

test to post-test scores (t(167) =11.24, p<0.001).  

4. MODELING STUDENTS’ PROBLEM-

SOLVING STRATEGIES 
Students exhibited a broad spectrum of problem-solving strategies 

while solving the binary challenges in the Digital World level. For 

example, some students pursued random trial-and-error strategies 

to find solutions, while at the other end of the spectrum, some 

students pursued thoughtful systematic approaches to solve the 

challenge. As would be expected, some students fell in the middle 

of this spectrum by utilizing more thoughtful trial-and-error. 

Figure 1. ENGAGE game-based learning environment: students write a program that loops over a binary grid. 

Proceedings of the 11th International Conference on Educational Data Mining 210



For each of the 11 consecutive binary challenges, we used students’ 

tile-flip sequences to cluster them into distinct groups. 

Subsequently, we interpreted these clusters in terms of the problem-

solving strategy exhibited by members of each cluster. Below we 

first describe the process of clustering students’ task-level 

strategies based on their binary tile flip sequences and then describe 

the representative problem-solving strategy in each cluster. 

4.1 Methodology 
In order to group students based on their problem-solving 

strategies, we first derived features from students’ binary tile flip 

sequences. We encoded the flip sequences as n-grams, commonly 

used as a representation for sequential data such as text and speech 

[41], as well as for sequential trace data [12]. The n-gram 

representation extracts sequences of n adjacent elements from the 

original string. We consider each unique n-gram as a feature in our 

n-gram based feature vector, while we use the frequency of each n-

gram occurrence in a flip string as a value in this work. 

For each of the 11 binary challenges, students’ behaviors (i.e., the 

flip sequence generated for that specific task) were clustered based 

on the extracted n-gram features, resulting in 11 sequential cluster-

memberships per student. Since each task differed slightly from the 

other tasks, we analyzed students problem-solving behavior 

separately for each task. In the following sections, we describe how 

we identified different problem-solving strategies using the 

proposed clustering method.  

4.1.1 Feature Engineering 
We extracted students’ interactions with binary flips in the format 

of a string containing students’ consecutive flips of the binary tiles 

for each task. Each task is associated with a decimal number to 

operate the device (e.g., 26 in Figure 2), where the binary number 

displayed on the five tiles is set to 00000 by default. For example, 

considering tiles’ indices starting at one from the right most tile, if 

a student has flipped tile number four (i.e., 01000 with the decimal 

representation of 8), followed by flipping tile number five (i.e., 

11000 with the decimal representation of 24), their tile flip string 

would become {4, 5}. 

In order to capture the most fine-grained information present in the 

series of flips, we used n-grams with varying lengths of n. 

Preliminary explorations showed including sequences of lengths 

larger than four exponentially increases the sparsity of the dataset. 

To eliminate the sparsity issue, we capped the n-gram size at 4. Our 

final feature set ranges from sequences of length one (i.e., unigram 

features) to sequences of length four (i.e., 4-grams) that are 

repeated at least three times throughout our dataset. We used the 

natural language processing toolkit (NLTK) library for Python to 

extract n-grams and their associated frequency from each flip 

string. For example, for one of the tasks, a total of 2,495 unique n-

grams with at least three occurrences were generated from the 

student flip strings for that task. These n-gram feature vectors were 

then used to cluster students’ in-game strategy use per task, where 

an n-gram feature vector per student was generated separately for 

each of the 11 tasks.  

Flip strings provide a fine-grained representation of students’ 

problem-solving behaviors in solving binary representation 

challenges, and these features offer a method to identify students’ 

adopted strategies. As an example, consecutive flips of the same 

tile by a student can be an indicator of the student’s intention to 

learn the weight assigned to that binary digit. Further, the overall 

number of flips conducted to generate the target base-ten value can 

be used to gauge the students’ overall efficiency in solving the 

problem. 

4.1.2 Clustering  
Next, we applied the expectation-maximization (EM) clustering 

technique to students’ flip behaviors represented using an n-gram 

feature vectors to identify students’ problem-solving strategies. 

Because each of the 11 tasks in the Digital World level targets a 

different base-ten number, the binary code needed to solve the task 

is different. Consequently, flip sequences obtained from students’ 

interactions with a binary device reveal information specific to the 

target value designed for the task. Thus, clustering was performed 

separately for each of the 11 tasks. We used the MClust package in 

R to cluster the feature vectors. EM clustering can explore a range 

of cluster numbers and return the (local) optimal number of clusters 

based on the maximum likelihood estimation. A different optimal 

number of clusters was identified for each task. Three, four, and 

nine clusters emerged most frequently when we explored the 

number of clusters between two to ten. A preliminary investigation 

on these different number of clusters found that three clusters 

Figure 2. (Left) A binary lock device that students must unlock. The T (true) tiles indicate the bits are 1, whereas F (false) tiles 

denote 0. The current binary number is 11010 and the corresponding base-ten number, 26, is displayed on the device as 

immediate feedback. (Right) The visual programming interface displaying the binary lock's program. 
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showed coherent patterns for problem-solving strategies across all 

tasks, and we thus chose three as the number of clusters for all tasks 

in this work. 

4.2 Interpreting Clusters  
To interpret student problem-solving strategies using the clusters as 

identified above, we present two novel methods that measure the 

error between the target value and the student-generated value. To 

analyze students’ problem-solving patterns for each cluster of each 

task, we calculated the average error at each flip relative to the 

solution target of students who belong to the same cluster. All 

students start from the difference between the default value zero 

and the target decimal value. Since we analyzed students who 

completed a task, the average error for each cluster decays toward 

zero, and we expected to observe distinct error-decay patterns 

across the three clusters. We introduce two error calculation metrics 

that measure students’ error based on the distance from the current 

value to the targeted value: the decimal error and binary error. 

These two approaches are described below. 

4.2.1 Decimal Error 
The decimal error is the absolute difference between the target 

base-ten value and the base-ten representation of the student-

generated binary string. Each student starts with an error equal to 

the target value and ends with an error equal to zero. We calculate 

the decimal error after every new flip. As a result, a sequence of 

decimal errors is generated for each student per flip action when 

completing each of the 11 tasks. We then plot the average decimal 

error where the y-axis shows students in the same cluster 

(separately for each task), and the x-axis shows the maximum 

number of flips observed in the cluster as in Figure 3 (left). Because 

the total number of flips is different for each student in a cluster, 

we use the decimal error value of zero for students who already 

completed the task and calculate the average decimal error over all 

students in the cluster.  

For example, suppose there are two students in a cluster, where 

student A’s decimal error sequence is {2, 1, 2, 0} and student B’s 

error sequence is {2, 0} in the task of making the value two in base-

ten. We use the maximum length of sequence, four, obtained from 

student A, and reformulate student B’s sequence to {2, 0, 0, 0}. In 

this case, the average decimal error sequence becomes {2, 0.5, 1, 

0}. The average error at each flip for the eighth binary challenge 

where the student is asked to find the binary number for the target 

26 is shown in Figure 3 (left). For this task 118 students were 

grouped in the first cluster, 108 students were grouped in the second 

cluster, and 19 students were grouped in the third cluster. In 

Figure 3, because the target value for this task is 26, the average 

error for students is 26 in the beginning, which becomes zero at the 

end, while decay patterns differ across clusters. Students in each 

cluster solved the problem within a varying number of flips. The 

error for students who finished earlier is represented with zero. We 

show the percentage of students still working on the challenge at 

each flip using a color coding scheme. In Figure 3, green points 

mark flips where between 70% to 100% of the population is 

present, blue points indicate the presence of 50% to 70% of the 

population, yellow points mark 30% to 50% of the population, and 

red points indicate flips were less than 30% of the population of 

that cluster are still working on the problem. These percentages are 

derived from the cumulative density functions (CDFs) of clusters’ 

Figure 3. Students' average decimal error and the CDF of the present population at each flip. 
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present population at each flip that are plotted in Figure 3 (right). 

The clusters for the other ten binary representation tasks in the 

Digital World level follow similar error-decay patterns.  

4.2.2 Binary Error 
Binary error is the Hamming distance, the number of different 

elements in two strings with the same size, between the current state 

of the student-generated binary string and the binary representation 

of the target base-ten value. The approach for plotting the binary 

error is similar to the approach for plotting the decimal error. Figure 

4 shows binary (right) and decimal (left) error plots for each cluster 

of the challenge, finding the binary representation of the number, 

26. As the binary error plots are generated from the same cluster-

based population used for generating decimal error plots, the same 

CDFs as in (Figure 3, right) hold for binary error plots. 

4.2.3 Resulting Strategies 
The same general patterns apply to other challenges analyzed in this 

study. As seen in Figure 4, there is a coherence in the error decay 

pattern between the decimal and the binary error. The decimal error 

captures students’ strategies to make the base-ten errors between 

the target number and current binary representations as small as 

possible, while the binary error places more emphasis on the 

representational difference between binary sequences focusing on 

students’ understanding on each bit and its associated weight. The 

analyses reveal a clear distinction in students’ problem-solving 

strategies in solving the in-game challenges. After clustering, the 

following distinct groups emerge for all analyzed tasks: 

 Students who completed the task more quickly than the 

other groups and with fewer trial-and-error attempts (Cluster 

1). 

 Students who had a moderate number of flips and 

demonstrated error decaying continuously toward zero with 

some trial-and-error attempts (Cluster 2). 

 Students who completed the activity with many more flips 

compared to students in the other clusters, which may be an 

indicator of less thoughtful trial-and-error attempts    

(Cluster 3). 

The binary and the decimal error decay patterns paralleled each 

other for every cluster of every task. The analyses reveal that the 

two error metrics similarly capture n-gram-encoded student 

behaviors, while students’ per-task behaviors naturally fall into one 

of the three groups. We used these identified clusters as game 

strategy features for our evidence model for stealth assessment. 

5. STEALTH ASSESSMENT 
Modeling students’ strategies can contribute to improving their 

learning outcomes [11, 33]. In this work, we aim to evaluate the 

predictive power of models of students’ in-game problem-solving 

strategies over time to predict their post-test performance. We seek 

to determine if the in-game strategies observed in students’ 

interactions with the game environment can be used as evidence for 

stealth assessment.  

The feature set implicitly represents rich temporal dependencies 

among student behaviors over the course of interactions with the 

Figure 4. Students' average binary and decimal error at each flip. 
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ENGAGE game-based learning environment. To effectively model 

temporal dependencies in the feature set we investigate an evidence 

model based on long short-term memory network (LSTM) [14]  to 

infer students’ post-test performance based on their in-game 

strategy use over time. We also examine two baseline classification 

techniques, random forest (RF) [1] and support vector machines 

(SVM) [9], to predict students’ post-test performance. It is 

important to note that, in contrast to the LSTM approach, neither 

the random forest nor the support vector machine approaches 

explicitly capture the temporal relationships in students’ strategies. 

Thus, they treat in-game strategy features as independent features 

in their predictions. 

We devise two LSTM-based evidence models, one model utilizing 

a feature set that contains pre-test performance only and another 

model utilizing both pre-test performance and in-game strategy 

features, to isolate the effects of incorporating the temporal 

dependencies captured by the LSTM-based model. 

5.1 Data Preparation 
For the classification task, we use data from 168 students who 

finished both pre- and post-tests and also completed all 11 binary 

challenge tasks within the game. We excluded data for students 

who did not complete all 11 tasks as we intended to perform a 

temporal analysis across these tasks. Initially, the dataset included 

pre- and post-test scores along with students’ flip sequences, which 

were then transformed into n-gram features for each of the 11 tasks. 

We divide the data into training and held-out test sets. We first 

perform clustering using students’ n-gram feature vectors in the 

training set. After identifying distinct clusters for each challenge in 

the training set, we use the Gaussian finite mixture models 

estimated by the MClust package to cluster students’ data in the test 

set. This maintains the independence of the training and test sets. 

Students’ data in both the training and test sets are represented with 

sequences of in-game strategies across the 11 binary-representation 

tasks along with their pre-test performance (i.e., high, medium, 

low), a categorical representation of the pre-test score based on a 

tertile split obtained from the distributions of the pre-test scores. 

We use these input features to predict post-test performance also 

using the three labels, which are obtained based on a tertile split of 

students’ post-test scores. We chose tertiles to create a balanced 

distribution among all classes. The initial pre- and post-test scores 

are continuous variables, ranging between 0 to 1. For the pre-test, 

scores between (0 ≤ score ≤ 0.36) are categorized as low, scores 

between (0.36 < score ≤ 0.54) as medium, and scores between (0.54 

< score ≤ 1.00) as high. Similarly, for the post-test, scores between 

(0 ≤ score ≤ 0.45) are categorized as low, scores between (0.45 < 

score ≤ 0.72) as medium, and scores between (0.72 < score ≤ 1.00) 

are categorized as high. Table 1 presents the distribution of students 

(n=168) with respect to students’ pre- and post-test performance. 

To transform the data into a trainable representation, we use one-

hot encoding on the categorical variables (i.e., pre-test performance 

and the 11 in-game strategy changes) in preparation for the 

classification task. One-hot encoding is a feature representation 

method for a categorical variable, where a feature vector whose 

length is the size of the possible values is created, and only the 

associated feature bit is on (i.e., 1) while all other feature bits are 

off (i.e., 0). We also prepare two distinct feature sets to evaluate the 

predictive power of the in-game strategy features: 

 Full feature set: For RF and SVM, 36 features including 33 

one-hot encoded features representing the cluster 

membership among the three clusters for each of the 11 

binary tasks and three one-hot encoding-based features (i.e., 

low, medium, and high) representing students’ pre-test 

performance and 3 features to represent students’ pre-test 

performance. For LSTMs, since they take as input the pre-

test performance (3 features) and a task-specific in-game 

strategy (3 features) per time step, it utilizes six features. 

 Pre-test performance feature set: Three one-hot encoding-

based features (i.e., low, medium, and high) representing 

students’ pre-test performance. 

5.2 Classification Methods 
We use ‘randomForest’ [21] and ‘e1071’ [23] packages in R to train 

random forest and SVM classifiers, respectively. For LSTM-based 

evidence models, we use the Keras [6] and scikit-learn [30] libraries 

in Python. 

We use 5-fold cross-validation within the training data to tune the 

hyperparameters of the classification techniques based on the full 

feature set. After optimizing the hyperparameters, we train each of 

the classifiers using the full training set and evaluate them on the 

held-out test set. After comparing classifiers, we take the best 

performing classification technique and train an additional model 

based on the other feature set, pre-test performance feature-set, 

using the same test/train data split used for the full feature set-

level analysis. The classification process for each classifier and 

their results are described below. 

5.2.1 Baseline Method 
The majority class-based method assigns the most frequent label in 

the dataset as the predicted label for all data instances. Since the 

most common label is the grade ‘low’, all labels will simply be 

predicted as the first class (i.e., low post-performance). The result 

of applying the baseline method on the full feature set achieves an 

accuracy of 35.71%. The macro average for recall is 33.33%. The 

precision and F1-score are undefined here since the baseline 

method predicts the most frequent label for all instances, while 

producing no other labels. 

5.2.2 Random Forest Method 
The random forest technique generates multiple decision trees 

using different subsets of the training data using bagging. A random 

forest tree is generated by trying a random subset of available 

features at each split. It then classifies each point in the test set 

using all the trees and uses the majority vote for classifying the test 

point. We use the set (10, 25, 50, 100, 200) to tune the number of 

trees for the model. Using a 5-fold cross-validation approach on our 

training set we found 25 to be the best number of trees for the full 

feature set.  

Random forest classifiers are subject to randomness when being 

trained on a dataset. They perform feature bagging (i.e., a random 

selection of the features at each candidate split), and thus the 

predictive performance of random forests trained utilizing the same 

set of hyperparameters can vary depending on the random 

procedure. As a result, each round of training and evaluation on the 

same training/test sets will result in slightly different accuracies. 

Hence, we report the average result of 100 rounds of training and 

Table 1. Distribution of students (n=168) in 

relation to their pre- and post-test performance 

Test Low Medium High 

Pre-test 74 53 41 

Post-test 60 59 49 
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evaluating the classifier. The mean and standard deviation of the 

results are shown in Table 2. The results of applying the random 

forest classifier on the full feature set achieve an average accuracy 

of 50.43%, an average precision of 52.20%, an average recall of 

50.98%, and an average F1-score of 51.03%. The precision, recall 

and F1 measures are calculated using a macro-average of all three 

classes (i.e., simple average of the relative measurement of all three 

classes).  

5.2.3 SVM Method 
Support vector machines (SVMs) can be used for both regression 

and classification tasks. In classification tasks for which data are 

not linearly separable, data will be transformed to a higher-

dimensional space for linear separability, and SVMs are applied to 

classify the transformed data. For this classification task, we use a 

third-degree polynomial kernel. We tune C as the hyperparameter 

of our SVM model. C is the regularization parameter that controls 

models’ tolerance for incorrect classifications during training. We 

explore a set of values (0.01, 0.1, 1, 10, 15) to tune C on the full 

feature set. Using a 5-fold cross-validation approach on the training 

set, we found C = 1 to be the best parameter to be used in the model. 

The results of applying the SVM model on the test set show an 

accuracy of 41.17%, a precision of 44.14%, a recall of 39.25%, and 

an F1-score of 35.44%. Similar to the RF classifier we report the 

average result of 100 rounds of training and evaluating the trained 

classifier. Since there is no random parameter for this method, the 

standard deviation for the estimated accuracies is 0. 

Both the random forest and SVM approaches achieve higher 

accuracies compared to the simple majority class baseline, 

suggesting that these methods are effective for stealth assessment. 

We hypothesize that the accuracy could be increased by explicitly 

modeling the temporal relationships across students’ sequential 

problem-solving tasks. We next describe the LSTM-based 

approach and the results it produces. 

5.2.4 LSTM Method 
LSTMs are a type of recurrent neural networks (RNNs), a class of 

deep learning methods that are capable of learning temporal 

patterns in data. This characteristic makes LSTMs a promising 

candidate for classifying sequential data, such as time-series data 

of students’ strategy uses across the 11 binary challenges they solve 

during gameplay. A sequence of cluster types (i.e., in-game 

problem-solving strategies for the 11 in-game binary representation 

tasks) can reveal students’ problem-solving progressions as they 

unfold over learning sessions to predict students’ learning 

outcomes. We investigate LSTMs to model dynamic changes in 

students’ problem-solving strategies, motivated by LSTMs’ ability 

to preserve long-term dependencies through their three gating units 

(i.e., input, forget, and output gates).  

We tune the number of LSTM layers and the number of hidden 

units within each layer by conducting a 5-fold cross validation on 

the training set. We explore 15 different hyperparameter 

combinations with different numbers of hidden layers (1, 2, 3) and 

different numbers of hidden units in each layer (10, 15, 25, 50, 100). 

We found that networks with 2 layers with 15 units per produced 

the best results for predictive accuracy. 

Like random forest models, the LSTM-based approach also results 

in different models each time it is trained on the same training set. 

Hence, evaluating these models on the same test-set generates 

slightly different outputs. This is due to the fact that deep learning 

approaches are sensitive to the random weights used to initialize 

the network. In addition, these types of techniques are trained on 

batches and the input order of the batches influence the models that 

are generated. We report an average of 100 runs of training and 

evaluating the LSTM classifier on the same training and test set. 

The results of applying this LSTM on the held-out test set achieve 

an average accuracy of 64.82%, an average precision of 63.88%, an 

average recall of 65.14%, and an F1-score of 63.68%. 

Table 2 provides a summary of the results of the classification 

methods. The highest score per metric is indicated in bold. The 

baseline and SVM approaches are deterministic so their metrics’ 

standard deviations are zero. All classification methods outperform 

the majority class baseline. Because reasoning about students’ 

problem-solving strategy adoption over time can inform predictions 

about the strength of their learning as measured by post-test 

performance, the LSTM-based evidence model yields considerable 

improvement over the other approaches. The results indicate that 

the LSTM model appears to successfully capture the latent 

temporal dependencies among features in students’ problem 

solving. 

Table 2. Performance ( standard deviation) of classifiers 

Method Accuracy Precision Recall F1 

Baseline 

RF 

35.7(0.0) 

50.4(2.5) 

N/A 

52.2(2.7) 

33.3(0.0) 

51.0(2.4) 

N/A 

51.0(2.6) 

SVM 

LSTM 

41.2(0.0) 

64.8(2.7) 

44.1(0.0) 

63.9(2.8) 

39.3(0.0) 

65.1(2.8) 

35.4(0.0) 

63.7(2.5) 

 

5.3  In-game Strategy for Stealth Assessment 
To further investigate the effectiveness of the in-game strategy 

features in predicting students’ post-test performance, we compare 

two versions of the LSTM-based model, our best performing 

classification technique. We create a version of the LSTM-based 

model trained on the full feature set (pre-test features together with 

in-game strategy features) and compare it to a partial feature set 

version (pre-test features only). The results of this evaluation are 

shown in Table 3, where the highest score per metric is indicated in 

bold. 

 

The results demonstrate that incorporating the in-game strategy 

features into the model significantly contributes to predictive 

accuracy. Compared to the 44.66% accuracy achieved by the partial 

feature set version (pre-test features only), the model that uses in-

game strategy features in addition to pre-test features achieves an 

accuracy of 64.82%. The significantly higher accuracy achieved by 

the full-set model suggests that the strategy-based approach that 

uses sequences of strategies as represented by strategy clusters 

appears to capture an important quality of students’ problem-

solving strategies that are predictive of learning performance. 

6. DISCUSSION 
Stealth assessment relies on accurate evidence models inferred 

from student behavior traces, and we found that student behavior 

Table 3. Results of applying LSTM on pre-test only, in-

game strategy, and full features feature sets 

Feature 

set 
Accuracy Precision Recall F1 

Full FS 64.8 (2.7) 63.9(2.8) 65.1(2.8) 63.7(2.5) 

Pre-test 

FS 
44.7(7.9) N/A 42.8(8.3) N/A 
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traces can serve as the foundation for evidence models that are 

driven by students’ in-game problem-solving strategies.  

Building on previous work on stealth assessment we have presented 

a novel problem-solving-strategy-based temporal analytics 

framework leveraging a clustering approach, which notably does 

not require a labor-intensive process of labeling data. While the 

previous work focused on computational methods to model 

evidence within ECD using deep learning networks, we have 

investigated temporal evidence derived from students’ dynamic in-

game strategy uses throughout their game play, and have 

demonstrated the effectiveness of LSTM-based evidence models 

that predict students’ post-test performance.  

For each of the 11 problem-solving tasks in the ENGAGE game-

based learning environment, we first transformed sequences of 

student behavior interactions into sequences of n-gram features to 

capture the temporal information that spans interaction sequences 

and clustered them with EM Clustering. The results revealed clear 

distinctions in students’ approaches toward solving these 

computational thinking challenges. The clustering grouped 

students into those who solved the problem in a few flips and a few 

attempts, those who solved the problem with a moderate number of 

flips and with thoughtful trial-and-error, and those who solved the 

problem with a long sequence of flips and with seemingly random 

trial-and-error. While in our game settings students could try the 

problems as many times as they wanted, other game environments 

might take number of trials into account using a point system that 

could affect players’ problem-solving strategies.  

We then used students’ cluster memberships across different tasks 

as an indicator of their in-game problem-solving strategy and used 

these problem-solving strategies to inform the evidence model for 

predicting students’ post-test performance. The results 

demonstrated that the in-game strategy features provide strong 

predictive capacity for LSTM-based evidence models and more 

generally for the use of stealth assessment. It has been shown that 

LSTM-based ECD evidence models with in-game strategy features 

effectively capture the temporal relationships between strategies, as 

supported by the models’ highest predictive accuracy rate, 

precision rate, recall rate, and F1 scores outperforming competitive 

non-sequential baseline approaches in predicting students' post-test 

performance. We used a relatively small dataset, 168 students for 

this analysis. after collecting more data, we can further verify our 

results. 

It is important to note that the in-game strategy features are derived 

directly from log data and are generated based on an unsupervised 

method, EM Clustering. This automated process of extracting 

students’ in-game problem-solving strategy makes it a promising 

approach for evidence modeling. The approach can be readily used 

for evidence modeling design for learning environments that center 

on students solving problems by performing sequences of actions 

from a limited pool of available actions. However, the proposed 

approach is not appropriate for analyzing ill-defined problems 

where players are not bound to certain actions.  

Evidence models such as those induced in this paper can be used 

by intelligent game-based learning environments to infer students’ 

problem-solving strategies from trace data analysis. When the 

learning environments are signaled by the evidence models that a 

student is following a strategy associated with a poor learning 

outcome, it can intervene to guide students towards more 

productive strategies. In addition to strategy scaffolding, the 

evidence models can also work in tandem with knowledge 

modeling to support knowledge scaffolding. For example, in the 

ENGAGE game-based learning environment, students’ generating a 

desired binary sequence through long series of flips and random 

trial-and-error might be an indicator of lack of knowledge about 

digit weights in a binary string, which could be addressed with a 

timely explanation of binary digit weights. The results of the work 

reported here, as well as those found in related work on inferring 

student problem-solving strategies from behavior trace data [18], 

suggest that modeling students’ problem-solving strategies may 

contribute to improved assessment and also lead to learning 

environments that can adapt more effectively to students’ needs.   

7. CONCLUSION 
Stealth assessment holds considerable potential for game-based 

learning. Although high volumes of dynamic student interaction 

data can be readily captured from game-based learning 

environments, effective stealth assessment poses significant 

challenges. We have introduced a strategy-based temporal analytics 

framework for stealth assessment that uses an LSTM-based 

evidence model trained on sequences of student problem-solving 

strategies learned from clustering n-gram representations of student 

in-game behaviors. In an evaluation of predictive accuracy for 

student learning, the strategy-based temporal analytics framework 

outperformed baseline models that did not capture the temporal 

dependencies of strategy use. In future work, it will be important to 

investigate multiple granularities of strategy representations that 

may lend themselves to hierarchical deep learning methods. It will 

also be instructive to incorporate the LSTM-based models into 

game-based learning environments to explore how they can provide 

classic stealth assessment functionalities while simultaneously 

supporting adaptive scaffolding. 
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