
Improving Stealth Assessment in Game-based Learning
with LSTM-based Analytics

Bita Akram
North Carolina State University

Raleigh, NC 27695

bakram@ncsu.edu

Bradford Mott
North Carolina State University

Raleigh, NC 27695

bwmott@ncsu.edu

Wookhee Min
North Carolina State University

Raleigh, NC 27695

wmin@ncsu.edu

Kristy Elizabeth Boyer
University of Florida

Gainesville, FL 32611

keboyer@ufl.edu

Eric Wiebe
North Carolina State University

Raleigh, NC 27695

wiebe@ncsu.edu

James Lester
North Carolina State University

Raleigh, NC 27695

lester@ncsu.edu

ABSTRACT

A key affordance of game-based learning environments is their

potential to unobtrusively assess student learning without

interfering with gameplay. In this paper, we introduce a temporal

analytics framework for stealth assessment that analyzes students’

problem-solving strategies. The strategy-based temporal analytic

framework uses long short-term memory network-based evidence

models and clusters sequences of students’ problem-solving

behaviors across consecutive tasks. We investigate this strategy-

based temporal analytics framework on a dataset of problem-

solving behaviors collected from student interactions with a game-

based learning environment for middle school computational

thinking. The results of an evaluation indicate that the strategy-

based temporal analytics framework significantly outperforms

competitive baseline models with respect to stealth assessment

predictive accuracy.

Keywords

Game-based Learning, Stealth Assessment, Temporal Analytics,

LSTM, Strategy Use

1. INTRODUCTION
Recent years have seen significant growth in investigations of

game-based learning. Game-based learning environments utilize

the motivational elements of games to foster students’ learning and

engagement [7, 34, 36]. Studies have shown that learners who

engage in game-based learning experience higher motivation

compared to those who learn with conventional methods [8, 39].

Intelligent game-based learning environments integrate the

adaptive learning support of intelligent tutoring systems and the

motivational elements of games [15]. Like intelligent tutoring

systems, they utilize students’ interactions with the learning

environment to infer student models of cognitive, affective, and

metacognitive states [20, 26, 40]. The resulting student models can

then guide tailored problem-solving scenarios, cognitive feedback,

affective support [1,25].

In contrast to traditional assessment, stealth assessment of student

learning can rely solely on student interaction trace data from the

game-based learning environment without disrupting the natural

flow of learning [38]. Stealth assessment infers students’

competency with respect to knowledge, skills, and performance

using evidence derived from students’ game-based learning

activities often based on evidence-centered design (ECD) [27].

ECD utilizes task, evidence, and competency models to assess

students’ relevant competency and proficiency [35]. In game-based

learning environments, stealth assessment can monitor granular

game-based behaviors across multiple tasks in the game to generate

evidence, which can then be used to dynamically infer a

competency model of the student. Operating in this fashion, stealth

assessment has been examined to unobtrusively perform

assessments of a wide range of constructs [40], and provide

formative feedback to students and teachers to inform instruction

and enhance learning [39, 5, 18].

Although an abundance of data can be readily captured from

student interactions within game-based learning environments, a

key challenge posed by stealth assessment is translating the raw

data into meaningful representations to model students’

competencies and performance [39]. This problem is exacerbated

by the fact that student behavior unfolds over time in a manner

dependent on prior actions. In this work, we present an approach to

stealth assessment that leverages temporal analytics based on

students’ problem-solving strategies. Building on findings that

problem-solving strategies significantly influence learning

outcomes [11, 33], we introduce a strategy-based temporal

analytics method using n-gram features and investigate whether

problem-solving strategies identified from clustering students’

interaction patterns can improve the predictive accuracy of

evidence models for stealth assessment.

After clustering students based on their problem-solving behaviors,

we predict their post-test performance using their cluster

assignments as predictive features for a suite of classifiers. This

approach is based on the intuition that as students’ progress through

a series of learning tasks, their choice of strategy affects their

learning outcomes. For example, if a student first pursues a trial-

and-error strategy for initial tasks and later in the learning session

begins to adopt a more effective strategy, her strategy shift may

lead to higher post-test scores. We hypothesize that drawing

Proceedings of the 11th International Conference on Educational Data Mining 208

inferences about strategy shifts may serve as the basis for accurate

predictions of learning performance.

Because strategies and strategy shifts are inherently time-based

phenomena, we propose a strategy-based temporal analytics

approach to stealth assessment based on long short-term memory

networks (LSTMs). In this approach, we develop predictive models

that capture the temporal dependencies between students’

dynamically changing problem-solving behaviors. We find that the

strategy-based temporal analytics framework outperforms baseline

models that do not capture strategic temporal dependencies on

predictive accuracy. Further, we find that the strategy-based

temporal analytics framework utilizing both student problem-

solving behavior traces and pre-test performance outperforms a

model that uses only pre-test data. The results suggest that strategy-

based temporal analytics can serve as the foundation for effective

stealth assessment in game-based learning.

2. RELATED WORK
Game-based learning leverages game design elements to foster

engagement in learning [7]. Because of its potential to create

motivating learning experiences, game-based learning has been

explored for a broad range of subjects including science [29],

mathematics [17], computer science [3, 24], and public policy [36].

A notable family of game-based learning environments, intelligent

game-based learning environments, integrate intelligent tutoring

system functionalities and game-based learning [15, 20]. Intelligent

game-based learning environments can embed stealth assessments,

which have emerged as a promising approach to assessing game-

based learning [37, 31, 39]. In stealth assessment, student

competencies are assessed unobtrusively by drawing inferences

from observations of students’ learning interactions.

In one approach to stealth assessment, a directed graphical model

was built based on relevant competencies, and related variables

were extracted from the observed data to be used as evidence for

the targeted competencies [19]. In another approach, Falakmasir

and colleagues investigated two hidden Markov models (HMMs)

that were trained for high-performing and low-performing students

[12]. Subsequently, for observed sequences of events, log-

likelihoods were calculated for each HMM. Finally, the difference

between the two log-likelihoods was used in a linear regression

model to predict post-test scores. This approach reduces the need

for labor-intensive domain knowledge engineering.

Work on deep learning-based stealth assessment, DeepStealth,

offers an alternate approach that uses artificial neural networks to

perform stealth assessment [24]. DeepStealth used a deep

feedforward neural network (FFNN) to learn multi-level,

hierarchical representations of the input data for evidence

modeling. In subsequent work, structural limitations in the FFNNs

were addressed with a long short-term memory network-based

stealth assessment framework that directly uses students’ raw

interaction data as input [25]. The strategy-based temporal

analytics framework we propose in this paper builds on this prior

work, but while the previous work focused primarily on

computational methods to model evidence within ECD, the

approach introduced in this paper derives temporal evidence from

students’ dynamic in-game strategy use throughout their problem

solving. We cluster students to categorize them based on in-game

strategy utilization per task, and then use sequences of in-game

strategy features over multiple tasks to predict post-test

performance.

Previous work has also explored approaches to detect students’

problem-solving strategies using trace data. For example, one effort

focused on building a probabilistic model that jointly represent

students’ knowledge and strategies [16], which was effective at

predicting learning outcomes. Another approach focused on

selecting features for classifying students’ efficiency in solving

challenges [22]. The temporal analytics framework we introduce in

the paper uses problem-solving strategies that are automatically

discovered through clustering based on n-grams of players’

sequences of interactions with a game-based learning environment,

thus obviating the need for labeling or expert knowledge.

3. EXPERIMENTAL SETUP
We investigate the strategy-based temporal analytics approach for

stealth assessment with data collected from middle school students’

interactions with a game-based learning environment for

computational thinking. We describe the learning environment, its

in-game problem-solving challenges, and the dataset generated

from students’ interactions with the game-based learning

environment.

3.1 ENGAGE Game-based Learning

Environment
ENGAGE is a game-based learning environment designed to

introduce computational thinking to middle school students (ages

11-13) (Figure 1). The game was developed with the Unity multi-

platform game engine and features a rich, immersive 3D storyworld

for learning computing concepts [3, 24]. The game-based learning

environment aims to promote computational thinking skills

including abstraction and algorithmic thinking through problem

solving and programming. The computational challenges within the

game were designed to prepare middle school students for

computer science work in high school, and to promote positive

attitudes toward computer science.

A diverse set of over 300 middle school students participated in

focus group activities, pilot tests, and classroom studies with the

game. Of the students who provided demographic information,

47% were female; 24% were African American or Black,16% were

Hispanic or Latino/a, 17% were Asian, 38% were White, and 5%

of the students were Multiracial. The research team worked closely

with a similarly diverse group of teachers throughout the project. A

subset of teachers helped to co-design the game-based learning

activities, providing iterative feedback throughout development.

Each of the teachers implementing the game in their classrooms

attended either one or two summer professional development

workshops that introduced computational thinking concepts and the

ENGAGE game-based learning environment.

In the game, students play the role of the protagonist who is sent to

investigate an underwater research facility that has lost

communications with the outside world. As students progress

through the game, they discover that a nefarious villain has taken

control of the computing devices within the facility. Students

navigate through a series of interconnected rooms and solve a set

of computational challenges. Each of the challenges can be solved

either by programming devices or interacting with devices in

reference to their pre-written programs. Students use a visual block-

based programming language to program the devices [25]. They are

supported throughout the game by a cast of non-player characters

who help them progress through the narrative, offer clues, and

provide feedback while they navigate the game and solve

computational challenges [24].

The game consists of three major levels: the Introductory Level, in

which students learn the basics of the game and simple

programming; the Digital World Level, in which students learn

Proceedings of the 11th International Conference on Educational Data Mining 209

how digital data is represented with binary sequences; and the Big

Data Level, in which students have the opportunity to work with

various datasets and retrieve hidden information by cycling through

data and filtering it based on different conditions.

The work presented in this paper focuses on students’ problem-

solving activities within the Digital World level. The first set of

tasks in this level consists of binary locks that are programmed to

open if the binary representation of a specific base-ten number is

generated by the students. Similarly, the second set of tasks

(Figure 2) in the Digital World level features lift devices that are

activated when students generate the target base-ten value by

flipping binary tiles and execute the program associated with the

lift. For example, students can find the target number by reviewing

an existing program (Figure 2, right) associated with the binary lift

device. Each lift provides students with five consecutive flip tiles

representing bits of a five-digit binary number. Players can toggle

each bit between 0 and 1 by flipping the corresponding tile on the

tile panel. The decimal representation of their generated binary

number will be presented on a small screen above the panel. To

teach variations of binary representations, the game enables

students to flip tiles between ‘0’ and ‘1’, ‘black’ and ‘white’, and

‘F’ (False) and ‘T’ (True), as in (Figure 2, left).

To advance to the next task, students must flip binary tiles on the

binary lift device to generate the target decimal number (Figure 2,

left) execute its program, and lift up the binary device. Through

these tasks, students learn about the concept of bits in binary

numbers and the weight assigned to each bit. In the analyses

reported here, we used behavior trace data from students’

interactions with 11 binary tasks from the Digital World level,

where students learn the weight associated with each of the five bits

through the first five tasks and then learn how to combine multiple

bits to make more complex numbers with binary representations.

3.2 Dataset
We analyzed 244 students’ behavior trace data obtained from a

teacher-led study in four public middle school classrooms in the

urban area in the United States. The four schools reported an

average percentage of free or reduced lunch as 34.75%, 41.07%,

31.65%, and 63.17% during the years of data collection,

respectively. Furthermore, three of the schools were magnets for

gifted and talented students and the fourth was a magnet for

leadership and innovation. To support collaborative learning,

which is prominent in computer science education [3], we collected

student behavior trace interaction data from pairs of students in

which they took turns serving as navigator (traversing the game)

and driver (action planning). Pre- and post-test assessments

measuring content knowledge (e.g., binary representation) were

completed individually by students before starting the Digital

World level (pre-test) and immediately after finishing it (post-test).

Both pre-test and post-test are on a scale of 0 to 1. Out of 244

students, 168 students completed the pre-test and post-test for

content knowledge as well as all 11 binary representation tasks for

this level. The results of conducting a paired t-test on students’

content knowledge pre-test (M=0.44, SD=0.20) and post-test

(M=0.59, SD=0.24) revealed a significant improvement from pre-

test to post-test scores (t(167) =11.24, p<0.001).

4. MODELING STUDENTS’ PROBLEM-

SOLVING STRATEGIES
Students exhibited a broad spectrum of problem-solving strategies

while solving the binary challenges in the Digital World level. For

example, some students pursued random trial-and-error strategies

to find solutions, while at the other end of the spectrum, some

students pursued thoughtful systematic approaches to solve the

challenge. As would be expected, some students fell in the middle

of this spectrum by utilizing more thoughtful trial-and-error.

Figure 1. ENGAGE game-based learning environment: students write a program that loops over a binary grid.

Proceedings of the 11th International Conference on Educational Data Mining 210

For each of the 11 consecutive binary challenges, we used students’

tile-flip sequences to cluster them into distinct groups.

Subsequently, we interpreted these clusters in terms of the problem-

solving strategy exhibited by members of each cluster. Below we

first describe the process of clustering students’ task-level

strategies based on their binary tile flip sequences and then describe

the representative problem-solving strategy in each cluster.

4.1 Methodology
In order to group students based on their problem-solving

strategies, we first derived features from students’ binary tile flip

sequences. We encoded the flip sequences as n-grams, commonly

used as a representation for sequential data such as text and speech

[41], as well as for sequential trace data [12]. The n-gram

representation extracts sequences of n adjacent elements from the

original string. We consider each unique n-gram as a feature in our

n-gram based feature vector, while we use the frequency of each n-

gram occurrence in a flip string as a value in this work.

For each of the 11 binary challenges, students’ behaviors (i.e., the

flip sequence generated for that specific task) were clustered based

on the extracted n-gram features, resulting in 11 sequential cluster-

memberships per student. Since each task differed slightly from the

other tasks, we analyzed students problem-solving behavior

separately for each task. In the following sections, we describe how

we identified different problem-solving strategies using the

proposed clustering method.

4.1.1 Feature Engineering
We extracted students’ interactions with binary flips in the format

of a string containing students’ consecutive flips of the binary tiles

for each task. Each task is associated with a decimal number to

operate the device (e.g., 26 in Figure 2), where the binary number

displayed on the five tiles is set to 00000 by default. For example,

considering tiles’ indices starting at one from the right most tile, if

a student has flipped tile number four (i.e., 01000 with the decimal

representation of 8), followed by flipping tile number five (i.e.,

11000 with the decimal representation of 24), their tile flip string

would become {4, 5}.

In order to capture the most fine-grained information present in the

series of flips, we used n-grams with varying lengths of n.

Preliminary explorations showed including sequences of lengths

larger than four exponentially increases the sparsity of the dataset.

To eliminate the sparsity issue, we capped the n-gram size at 4. Our

final feature set ranges from sequences of length one (i.e., unigram

features) to sequences of length four (i.e., 4-grams) that are

repeated at least three times throughout our dataset. We used the

natural language processing toolkit (NLTK) library for Python to

extract n-grams and their associated frequency from each flip

string. For example, for one of the tasks, a total of 2,495 unique n-

grams with at least three occurrences were generated from the

student flip strings for that task. These n-gram feature vectors were

then used to cluster students’ in-game strategy use per task, where

an n-gram feature vector per student was generated separately for

each of the 11 tasks.

Flip strings provide a fine-grained representation of students’

problem-solving behaviors in solving binary representation

challenges, and these features offer a method to identify students’

adopted strategies. As an example, consecutive flips of the same

tile by a student can be an indicator of the student’s intention to

learn the weight assigned to that binary digit. Further, the overall

number of flips conducted to generate the target base-ten value can

be used to gauge the students’ overall efficiency in solving the

problem.

4.1.2 Clustering
Next, we applied the expectation-maximization (EM) clustering

technique to students’ flip behaviors represented using an n-gram

feature vectors to identify students’ problem-solving strategies.

Because each of the 11 tasks in the Digital World level targets a

different base-ten number, the binary code needed to solve the task

is different. Consequently, flip sequences obtained from students’

interactions with a binary device reveal information specific to the

target value designed for the task. Thus, clustering was performed

separately for each of the 11 tasks. We used the MClust package in

R to cluster the feature vectors. EM clustering can explore a range

of cluster numbers and return the (local) optimal number of clusters

based on the maximum likelihood estimation. A different optimal

number of clusters was identified for each task. Three, four, and

nine clusters emerged most frequently when we explored the

number of clusters between two to ten. A preliminary investigation

on these different number of clusters found that three clusters

Figure 2. (Left) A binary lock device that students must unlock. The T (true) tiles indicate the bits are 1, whereas F (false) tiles

denote 0. The current binary number is 11010 and the corresponding base-ten number, 26, is displayed on the device as

immediate feedback. (Right) The visual programming interface displaying the binary lock's program.

Proceedings of the 11th International Conference on Educational Data Mining 211

showed coherent patterns for problem-solving strategies across all

tasks, and we thus chose three as the number of clusters for all tasks

in this work.

4.2 Interpreting Clusters
To interpret student problem-solving strategies using the clusters as

identified above, we present two novel methods that measure the

error between the target value and the student-generated value. To

analyze students’ problem-solving patterns for each cluster of each

task, we calculated the average error at each flip relative to the

solution target of students who belong to the same cluster. All

students start from the difference between the default value zero

and the target decimal value. Since we analyzed students who

completed a task, the average error for each cluster decays toward

zero, and we expected to observe distinct error-decay patterns

across the three clusters. We introduce two error calculation metrics

that measure students’ error based on the distance from the current

value to the targeted value: the decimal error and binary error.

These two approaches are described below.

4.2.1 Decimal Error
The decimal error is the absolute difference between the target

base-ten value and the base-ten representation of the student-

generated binary string. Each student starts with an error equal to

the target value and ends with an error equal to zero. We calculate

the decimal error after every new flip. As a result, a sequence of

decimal errors is generated for each student per flip action when

completing each of the 11 tasks. We then plot the average decimal

error where the y-axis shows students in the same cluster

(separately for each task), and the x-axis shows the maximum

number of flips observed in the cluster as in Figure 3 (left). Because

the total number of flips is different for each student in a cluster,

we use the decimal error value of zero for students who already

completed the task and calculate the average decimal error over all

students in the cluster.

For example, suppose there are two students in a cluster, where

student A’s decimal error sequence is {2, 1, 2, 0} and student B’s

error sequence is {2, 0} in the task of making the value two in base-

ten. We use the maximum length of sequence, four, obtained from

student A, and reformulate student B’s sequence to {2, 0, 0, 0}. In

this case, the average decimal error sequence becomes {2, 0.5, 1,

0}. The average error at each flip for the eighth binary challenge

where the student is asked to find the binary number for the target

26 is shown in Figure 3 (left). For this task 118 students were

grouped in the first cluster, 108 students were grouped in the second

cluster, and 19 students were grouped in the third cluster. In

Figure 3, because the target value for this task is 26, the average

error for students is 26 in the beginning, which becomes zero at the

end, while decay patterns differ across clusters. Students in each

cluster solved the problem within a varying number of flips. The

error for students who finished earlier is represented with zero. We

show the percentage of students still working on the challenge at

each flip using a color coding scheme. In Figure 3, green points

mark flips where between 70% to 100% of the population is

present, blue points indicate the presence of 50% to 70% of the

population, yellow points mark 30% to 50% of the population, and

red points indicate flips were less than 30% of the population of

that cluster are still working on the problem. These percentages are

derived from the cumulative density functions (CDFs) of clusters’

Figure 3. Students' average decimal error and the CDF of the present population at each flip.

Proceedings of the 11th International Conference on Educational Data Mining 212

present population at each flip that are plotted in Figure 3 (right).

The clusters for the other ten binary representation tasks in the

Digital World level follow similar error-decay patterns.

4.2.2 Binary Error
Binary error is the Hamming distance, the number of different

elements in two strings with the same size, between the current state

of the student-generated binary string and the binary representation

of the target base-ten value. The approach for plotting the binary

error is similar to the approach for plotting the decimal error. Figure

4 shows binary (right) and decimal (left) error plots for each cluster

of the challenge, finding the binary representation of the number,

26. As the binary error plots are generated from the same cluster-

based population used for generating decimal error plots, the same

CDFs as in (Figure 3, right) hold for binary error plots.

4.2.3 Resulting Strategies
The same general patterns apply to other challenges analyzed in this

study. As seen in Figure 4, there is a coherence in the error decay

pattern between the decimal and the binary error. The decimal error

captures students’ strategies to make the base-ten errors between

the target number and current binary representations as small as

possible, while the binary error places more emphasis on the

representational difference between binary sequences focusing on

students’ understanding on each bit and its associated weight. The

analyses reveal a clear distinction in students’ problem-solving

strategies in solving the in-game challenges. After clustering, the

following distinct groups emerge for all analyzed tasks:

 Students who completed the task more quickly than the

other groups and with fewer trial-and-error attempts (Cluster

1).

 Students who had a moderate number of flips and

demonstrated error decaying continuously toward zero with

some trial-and-error attempts (Cluster 2).

 Students who completed the activity with many more flips

compared to students in the other clusters, which may be an

indicator of less thoughtful trial-and-error attempts

(Cluster 3).

The binary and the decimal error decay patterns paralleled each

other for every cluster of every task. The analyses reveal that the

two error metrics similarly capture n-gram-encoded student

behaviors, while students’ per-task behaviors naturally fall into one

of the three groups. We used these identified clusters as game

strategy features for our evidence model for stealth assessment.

5. STEALTH ASSESSMENT
Modeling students’ strategies can contribute to improving their

learning outcomes [11, 33]. In this work, we aim to evaluate the

predictive power of models of students’ in-game problem-solving

strategies over time to predict their post-test performance. We seek

to determine if the in-game strategies observed in students’

interactions with the game environment can be used as evidence for

stealth assessment.

The feature set implicitly represents rich temporal dependencies

among student behaviors over the course of interactions with the

Figure 4. Students' average binary and decimal error at each flip.

Proceedings of the 11th International Conference on Educational Data Mining 213

ENGAGE game-based learning environment. To effectively model

temporal dependencies in the feature set we investigate an evidence

model based on long short-term memory network (LSTM) [14] to

infer students’ post-test performance based on their in-game

strategy use over time. We also examine two baseline classification

techniques, random forest (RF) [1] and support vector machines

(SVM) [9], to predict students’ post-test performance. It is

important to note that, in contrast to the LSTM approach, neither

the random forest nor the support vector machine approaches

explicitly capture the temporal relationships in students’ strategies.

Thus, they treat in-game strategy features as independent features

in their predictions.

We devise two LSTM-based evidence models, one model utilizing

a feature set that contains pre-test performance only and another

model utilizing both pre-test performance and in-game strategy

features, to isolate the effects of incorporating the temporal

dependencies captured by the LSTM-based model.

5.1 Data Preparation
For the classification task, we use data from 168 students who

finished both pre- and post-tests and also completed all 11 binary

challenge tasks within the game. We excluded data for students

who did not complete all 11 tasks as we intended to perform a

temporal analysis across these tasks. Initially, the dataset included

pre- and post-test scores along with students’ flip sequences, which

were then transformed into n-gram features for each of the 11 tasks.

We divide the data into training and held-out test sets. We first

perform clustering using students’ n-gram feature vectors in the

training set. After identifying distinct clusters for each challenge in

the training set, we use the Gaussian finite mixture models

estimated by the MClust package to cluster students’ data in the test

set. This maintains the independence of the training and test sets.

Students’ data in both the training and test sets are represented with

sequences of in-game strategies across the 11 binary-representation

tasks along with their pre-test performance (i.e., high, medium,

low), a categorical representation of the pre-test score based on a

tertile split obtained from the distributions of the pre-test scores.

We use these input features to predict post-test performance also

using the three labels, which are obtained based on a tertile split of

students’ post-test scores. We chose tertiles to create a balanced

distribution among all classes. The initial pre- and post-test scores

are continuous variables, ranging between 0 to 1. For the pre-test,

scores between (0 ≤ score ≤ 0.36) are categorized as low, scores

between (0.36 < score ≤ 0.54) as medium, and scores between (0.54

< score ≤ 1.00) as high. Similarly, for the post-test, scores between

(0 ≤ score ≤ 0.45) are categorized as low, scores between (0.45 <

score ≤ 0.72) as medium, and scores between (0.72 < score ≤ 1.00)

are categorized as high. Table 1 presents the distribution of students

(n=168) with respect to students’ pre- and post-test performance.

To transform the data into a trainable representation, we use one-

hot encoding on the categorical variables (i.e., pre-test performance

and the 11 in-game strategy changes) in preparation for the

classification task. One-hot encoding is a feature representation

method for a categorical variable, where a feature vector whose

length is the size of the possible values is created, and only the

associated feature bit is on (i.e., 1) while all other feature bits are

off (i.e., 0). We also prepare two distinct feature sets to evaluate the

predictive power of the in-game strategy features:

 Full feature set: For RF and SVM, 36 features including 33

one-hot encoded features representing the cluster

membership among the three clusters for each of the 11

binary tasks and three one-hot encoding-based features (i.e.,

low, medium, and high) representing students’ pre-test

performance and 3 features to represent students’ pre-test

performance. For LSTMs, since they take as input the pre-

test performance (3 features) and a task-specific in-game

strategy (3 features) per time step, it utilizes six features.

 Pre-test performance feature set: Three one-hot encoding-

based features (i.e., low, medium, and high) representing

students’ pre-test performance.

5.2 Classification Methods
We use ‘randomForest’ [21] and ‘e1071’ [23] packages in R to train

random forest and SVM classifiers, respectively. For LSTM-based

evidence models, we use the Keras [6] and scikit-learn [30] libraries

in Python.

We use 5-fold cross-validation within the training data to tune the

hyperparameters of the classification techniques based on the full

feature set. After optimizing the hyperparameters, we train each of

the classifiers using the full training set and evaluate them on the

held-out test set. After comparing classifiers, we take the best

performing classification technique and train an additional model

based on the other feature set, pre-test performance feature-set,

using the same test/train data split used for the full feature set-

level analysis. The classification process for each classifier and

their results are described below.

5.2.1 Baseline Method
The majority class-based method assigns the most frequent label in

the dataset as the predicted label for all data instances. Since the

most common label is the grade ‘low’, all labels will simply be

predicted as the first class (i.e., low post-performance). The result

of applying the baseline method on the full feature set achieves an

accuracy of 35.71%. The macro average for recall is 33.33%. The

precision and F1-score are undefined here since the baseline

method predicts the most frequent label for all instances, while

producing no other labels.

5.2.2 Random Forest Method
The random forest technique generates multiple decision trees

using different subsets of the training data using bagging. A random

forest tree is generated by trying a random subset of available

features at each split. It then classifies each point in the test set

using all the trees and uses the majority vote for classifying the test

point. We use the set (10, 25, 50, 100, 200) to tune the number of

trees for the model. Using a 5-fold cross-validation approach on our

training set we found 25 to be the best number of trees for the full

feature set.

Random forest classifiers are subject to randomness when being

trained on a dataset. They perform feature bagging (i.e., a random

selection of the features at each candidate split), and thus the

predictive performance of random forests trained utilizing the same

set of hyperparameters can vary depending on the random

procedure. As a result, each round of training and evaluation on the

same training/test sets will result in slightly different accuracies.

Hence, we report the average result of 100 rounds of training and

Table 1. Distribution of students (n=168) in

relation to their pre- and post-test performance

Test Low Medium High

Pre-test 74 53 41

Post-test 60 59 49

Proceedings of the 11th International Conference on Educational Data Mining 214

evaluating the classifier. The mean and standard deviation of the

results are shown in Table 2. The results of applying the random

forest classifier on the full feature set achieve an average accuracy

of 50.43%, an average precision of 52.20%, an average recall of

50.98%, and an average F1-score of 51.03%. The precision, recall

and F1 measures are calculated using a macro-average of all three

classes (i.e., simple average of the relative measurement of all three

classes).

5.2.3 SVM Method
Support vector machines (SVMs) can be used for both regression

and classification tasks. In classification tasks for which data are

not linearly separable, data will be transformed to a higher-

dimensional space for linear separability, and SVMs are applied to

classify the transformed data. For this classification task, we use a

third-degree polynomial kernel. We tune C as the hyperparameter

of our SVM model. C is the regularization parameter that controls

models’ tolerance for incorrect classifications during training. We

explore a set of values (0.01, 0.1, 1, 10, 15) to tune C on the full

feature set. Using a 5-fold cross-validation approach on the training

set, we found C = 1 to be the best parameter to be used in the model.

The results of applying the SVM model on the test set show an

accuracy of 41.17%, a precision of 44.14%, a recall of 39.25%, and

an F1-score of 35.44%. Similar to the RF classifier we report the

average result of 100 rounds of training and evaluating the trained

classifier. Since there is no random parameter for this method, the

standard deviation for the estimated accuracies is 0.

Both the random forest and SVM approaches achieve higher

accuracies compared to the simple majority class baseline,

suggesting that these methods are effective for stealth assessment.

We hypothesize that the accuracy could be increased by explicitly

modeling the temporal relationships across students’ sequential

problem-solving tasks. We next describe the LSTM-based

approach and the results it produces.

5.2.4 LSTM Method
LSTMs are a type of recurrent neural networks (RNNs), a class of

deep learning methods that are capable of learning temporal

patterns in data. This characteristic makes LSTMs a promising

candidate for classifying sequential data, such as time-series data

of students’ strategy uses across the 11 binary challenges they solve

during gameplay. A sequence of cluster types (i.e., in-game

problem-solving strategies for the 11 in-game binary representation

tasks) can reveal students’ problem-solving progressions as they

unfold over learning sessions to predict students’ learning

outcomes. We investigate LSTMs to model dynamic changes in

students’ problem-solving strategies, motivated by LSTMs’ ability

to preserve long-term dependencies through their three gating units

(i.e., input, forget, and output gates).

We tune the number of LSTM layers and the number of hidden

units within each layer by conducting a 5-fold cross validation on

the training set. We explore 15 different hyperparameter

combinations with different numbers of hidden layers (1, 2, 3) and

different numbers of hidden units in each layer (10, 15, 25, 50, 100).

We found that networks with 2 layers with 15 units per produced

the best results for predictive accuracy.

Like random forest models, the LSTM-based approach also results

in different models each time it is trained on the same training set.

Hence, evaluating these models on the same test-set generates

slightly different outputs. This is due to the fact that deep learning

approaches are sensitive to the random weights used to initialize

the network. In addition, these types of techniques are trained on

batches and the input order of the batches influence the models that

are generated. We report an average of 100 runs of training and

evaluating the LSTM classifier on the same training and test set.

The results of applying this LSTM on the held-out test set achieve

an average accuracy of 64.82%, an average precision of 63.88%, an

average recall of 65.14%, and an F1-score of 63.68%.

Table 2 provides a summary of the results of the classification

methods. The highest score per metric is indicated in bold. The

baseline and SVM approaches are deterministic so their metrics’

standard deviations are zero. All classification methods outperform

the majority class baseline. Because reasoning about students’

problem-solving strategy adoption over time can inform predictions

about the strength of their learning as measured by post-test

performance, the LSTM-based evidence model yields considerable

improvement over the other approaches. The results indicate that

the LSTM model appears to successfully capture the latent

temporal dependencies among features in students’ problem

solving.

Table 2. Performance (standard deviation) of classifiers

Method Accuracy Precision Recall F1

Baseline

RF

35.7(0.0)

50.4(2.5)

N/A

52.2(2.7)

33.3(0.0)

51.0(2.4)

N/A

51.0(2.6)

SVM

LSTM

41.2(0.0)

64.8(2.7)

44.1(0.0)

63.9(2.8)

39.3(0.0)

65.1(2.8)

35.4(0.0)

63.7(2.5)

5.3 In-game Strategy for Stealth Assessment
To further investigate the effectiveness of the in-game strategy

features in predicting students’ post-test performance, we compare

two versions of the LSTM-based model, our best performing

classification technique. We create a version of the LSTM-based

model trained on the full feature set (pre-test features together with

in-game strategy features) and compare it to a partial feature set

version (pre-test features only). The results of this evaluation are

shown in Table 3, where the highest score per metric is indicated in

bold.

The results demonstrate that incorporating the in-game strategy

features into the model significantly contributes to predictive

accuracy. Compared to the 44.66% accuracy achieved by the partial

feature set version (pre-test features only), the model that uses in-

game strategy features in addition to pre-test features achieves an

accuracy of 64.82%. The significantly higher accuracy achieved by

the full-set model suggests that the strategy-based approach that

uses sequences of strategies as represented by strategy clusters

appears to capture an important quality of students’ problem-

solving strategies that are predictive of learning performance.

6. DISCUSSION
Stealth assessment relies on accurate evidence models inferred

from student behavior traces, and we found that student behavior

Table 3. Results of applying LSTM on pre-test only, in-

game strategy, and full features feature sets

Feature

set
Accuracy Precision Recall F1

Full FS 64.8 (2.7) 63.9(2.8) 65.1(2.8) 63.7(2.5)

Pre-test

FS
44.7(7.9) N/A 42.8(8.3) N/A

Proceedings of the 11th International Conference on Educational Data Mining 215

traces can serve as the foundation for evidence models that are

driven by students’ in-game problem-solving strategies.

Building on previous work on stealth assessment we have presented

a novel problem-solving-strategy-based temporal analytics

framework leveraging a clustering approach, which notably does

not require a labor-intensive process of labeling data. While the

previous work focused on computational methods to model

evidence within ECD using deep learning networks, we have

investigated temporal evidence derived from students’ dynamic in-

game strategy uses throughout their game play, and have

demonstrated the effectiveness of LSTM-based evidence models

that predict students’ post-test performance.

For each of the 11 problem-solving tasks in the ENGAGE game-

based learning environment, we first transformed sequences of

student behavior interactions into sequences of n-gram features to

capture the temporal information that spans interaction sequences

and clustered them with EM Clustering. The results revealed clear

distinctions in students’ approaches toward solving these

computational thinking challenges. The clustering grouped

students into those who solved the problem in a few flips and a few

attempts, those who solved the problem with a moderate number of

flips and with thoughtful trial-and-error, and those who solved the

problem with a long sequence of flips and with seemingly random

trial-and-error. While in our game settings students could try the

problems as many times as they wanted, other game environments

might take number of trials into account using a point system that

could affect players’ problem-solving strategies.

We then used students’ cluster memberships across different tasks

as an indicator of their in-game problem-solving strategy and used

these problem-solving strategies to inform the evidence model for

predicting students’ post-test performance. The results

demonstrated that the in-game strategy features provide strong

predictive capacity for LSTM-based evidence models and more

generally for the use of stealth assessment. It has been shown that

LSTM-based ECD evidence models with in-game strategy features

effectively capture the temporal relationships between strategies, as

supported by the models’ highest predictive accuracy rate,

precision rate, recall rate, and F1 scores outperforming competitive

non-sequential baseline approaches in predicting students' post-test

performance. We used a relatively small dataset, 168 students for

this analysis. after collecting more data, we can further verify our

results.

It is important to note that the in-game strategy features are derived

directly from log data and are generated based on an unsupervised

method, EM Clustering. This automated process of extracting

students’ in-game problem-solving strategy makes it a promising

approach for evidence modeling. The approach can be readily used

for evidence modeling design for learning environments that center

on students solving problems by performing sequences of actions

from a limited pool of available actions. However, the proposed

approach is not appropriate for analyzing ill-defined problems

where players are not bound to certain actions.

Evidence models such as those induced in this paper can be used

by intelligent game-based learning environments to infer students’

problem-solving strategies from trace data analysis. When the

learning environments are signaled by the evidence models that a

student is following a strategy associated with a poor learning

outcome, it can intervene to guide students towards more

productive strategies. In addition to strategy scaffolding, the

evidence models can also work in tandem with knowledge

modeling to support knowledge scaffolding. For example, in the

ENGAGE game-based learning environment, students’ generating a

desired binary sequence through long series of flips and random

trial-and-error might be an indicator of lack of knowledge about

digit weights in a binary string, which could be addressed with a

timely explanation of binary digit weights. The results of the work

reported here, as well as those found in related work on inferring

student problem-solving strategies from behavior trace data [18],

suggest that modeling students’ problem-solving strategies may

contribute to improved assessment and also lead to learning

environments that can adapt more effectively to students’ needs.

7. CONCLUSION
Stealth assessment holds considerable potential for game-based

learning. Although high volumes of dynamic student interaction

data can be readily captured from game-based learning

environments, effective stealth assessment poses significant

challenges. We have introduced a strategy-based temporal analytics

framework for stealth assessment that uses an LSTM-based

evidence model trained on sequences of student problem-solving

strategies learned from clustering n-gram representations of student

in-game behaviors. In an evaluation of predictive accuracy for

student learning, the strategy-based temporal analytics framework

outperformed baseline models that did not capture the temporal

dependencies of strategy use. In future work, it will be important to

investigate multiple granularities of strategy representations that

may lend themselves to hierarchical deep learning methods. It will

also be instructive to incorporate the LSTM-based models into

game-based learning environments to explore how they can provide

classic stealth assessment functionalities while simultaneously

supporting adaptive scaffolding.

8. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation

under Grants CNS-1138497 and DRL-1640141. Any opinions,

findings, and conclusions expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

9. REFERENCES
[1] L. Breiman. Random forests. Machine Learning, 45(1):5-32,

2001.

[2] P. Brusilovsky and E. Millán. User models for adaptive

hypermedia and adaptive educational systems. The Adaptive

Web, pages 3–53, 2007.

[3] P. Buffum, M. Frankosky, K. Boyer, E. Wiebe, B. Mott, and

J. Lester. Collaboration and gender equity in game-based

learning for middle school computer science. IEEE

Computing in Science and Engineering, 18(2), 18-28, 2016.

[4] G. Chen, S. Gully, and D. Eden. Validation of a new general

self-efficacy scale. Organizational Research Methods,

4(1):62–83, 2001

[5] M. Cheng, L. Rosenheck, C. Lin, and E. Klopfer. Analyzing

gameplay data to inform feedback loops in the radix

endeavor. Computers & Education, 111:60–73, 2017.

[6] F. Chollet. Keras. https://github.com/keras-team/keras, 2015

[7] D. Clark, E. Tanner-Smith, and S. Killingsworth. Digital

games, design, and learning: A systematic review and meta-

analysis. Review of Educational Research, 86(1):79–122,

2016.

[8] D. Cordova and M. Lepper. Intrinsic motivation and the

process of learning: Beneficial effects of contextualization,

Proceedings of the 11th International Conference on Educational Data Mining 216

personalization, and choice. Journal of Educational

Psychology, 88(4):715–730, 1996.

[9] C. Cortes and V. Vapnik, Support-vector networks. Machine

Learning, 20(3):273-297, 1995.

[10] M. d’Aquin and N. Jay. Interpreting data mining results with

linked data for learning analytics: motivation, case study and

directions. In Proceedings of the Third International

Conference on Learning Analytics and Knowledge, pages

155–164, 2013.

[11] M. Eagle and T. Barnes. Exploring differences in problem

solving with data-driven approach maps. In Proceedings of

the 7th International Conference on Educational Data

Mining, pages 76–83, 2014.

[12] M. Falakmasir, J. Gonzalez-Brenes, G. Gordon, and K.

DiCerbo. A data-driven approach for inferring student

proficiency from game activity logs. In Proceedings of the

Third ACM Conference on Learning@ Scale, pages 341–

349. 2016.

[13] J. Harley, C. Carter, N. Papaionnou, F. Bouchet, R. Landis,

R. Azevedo, and L. Karabachian. Examining the predictive

relationship between personality and emotion traits and

learners’ agent-direct emotions. In proceedings of the 7th

International Conference on Artificial Intelligence in

Education, pages 145–154, 2015.

[14] S. Hochreiter, J. Schmidhuber. Long short-term

memory. Neural Computation, 9(8):1735–1780, 1997.

[15] G. Jackson and D. McNamara. Motivation and performance

in a game-based intelligent tutoring system. Journal of

Educational Psychology, 105(4):1036–1049, 2013.

[16] T. Käser, N. Hallinen, and D. Schwartz. Modeling

exploration strategies to predict student performance within a

learning environment and beyond. In Proceedings of the 7th

International Conference on Learning Analytics and

Knowledge, pages 31–40, 2017.

[17] M. Kebritchi, A. Hirumi, and H. Bai. The effects of modern

mathematics computer games on mathematics achievement

and class motivation. Computers & Education, 55(2):427–

443, 2010.

[18] D. Kerr and G. Chung. Identifying key features of student

performance in educational video games and simulations

through cluster analysis. Journal of Educational Data

Mining, 4(1):144–182, 2012.

[19] Y. Kim, R. Almond, and V. Shute. Applying evidence-

centered design for the development of game-based

assessments in physics playground. International Journal of

Testing, 16(2):142–163, 2016

[20] J. Lester, E. Ha, S. Lee, B. Mott, J. Rowe, and J. Sabourin.

Serious games get smart: Intelligent game-based learning

environments. Artificial Intelligence Magazine, 34(4):31–45,

2013.

[21] A. Liaw and M. Wiener. Classification and regression by

randomForest. R News. 2(3):18–22, 2002.

[22] L. Malkiewich, R. Baker, V. Shute, S. Kai, and L. Paquette.

Classifying behavior to elucidate elegant problem solving in

an educational game. In Proceedings of the 9th International

Conference on Educational Data Mining, pages 448–453,

2016.

[23] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and

Friedrich Leisch. e1071: Misc functions of the Department of

Statistics, Probability Theory Group, TU Wien, 2017.

[24] W. Min, M. Frankosky, B. Mott, E. Wiebe, K. Boyer, and J.

Lester. DeepStealth: Leveraging deep learning models for

stealth assessment in game-based learning environments.

In proceedings of the 7th International Conference on

Artificial Intelligence in Education, pages 277-286, 2015.

[25] W. Min, M. Frankosky, B. Mott, E. Wiebe, K. Boyer, and J.

Lester. Inducing stealth assessors from game interaction data.

In proceedings of the 9th International Conference on

Artificial Intelligence in Education, pages 212-223, 2017.

[26] W. Min, B. W. Mott, J. P. Rowe, B. Liu, and J. C. Lester.

Player goal recognition in open-world digital games with

long short-term memory networks. In proceedings of the 25th

International Joint Conference on Artificial Intelligence,

pages 2590–2596, 2016.

[27] R. Mislevy, L. Steinberg, and R. Almond. Focus article: on

the structure of educational assessments. Measurement:

Interdisciplinary Research and Perspectives, 1(1):3–62,

2003.

[28] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K. Yang, C.

Miller, and S. Balik. Improving the CS1 experience with pair

programming. In Proceedings of 34th SIGCSE Technical

Symposium, pages 359–362, 2003.

[29] B. C. Nelson, Y. Kim, C. Foshee, and K. Slack. Visual

signaling in virtual world-based assessments: The save

science project. Information Sciences, 264:32–40, 2014.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, and J. Vanderplas. Scikit-learn: Machine

learning in Python. Journal of machine learning research,

2825-2830, 2011.

[31] E. Quellmalz, M. Timms, M. Silberglitt, and B. Buckley.

Science assessments for all: Integrating science simulations

into balanced state science assessment systems. Journal of

Research in Science Teaching, 49(3):363–393, 2012.

[32] D. Quigley, J. Ostwald, and T. Sumner. Scientific modeling:

using learning analytics to examine student practices and

classroom variation. In Proceedings of the 7th International

Conference on Learning Analytics and Knowledge, pages

329–338, 2017.

[33] E. Rowe, R. Baker, J. Asbell-Clarke, E. Kasman, and W.

Hawkins. Building automated detectors of gameplay

strategies to measure implicit science learning. In

Proceedings of the 7th International Conference on

Educational Data Mining, pages 337–338, 2014.

[34] J. Rowe, L. Shores, B. Mott, and J. Lester, Integrating

learning, problem solving, and engagement in narrative-

centered learning environments. International Journal of

Artificial Intelligence in Education, 21(1-2):115-133, 2011.

[35] A. Rupp, M. Gushta, R. Mislevy, and D. Shaffer. Evidence-

centered design of epistemic games: Measurement principles

for complex learning environments. The Journal of

Technology, Learning and Assessment, 8(4), 2010.

[36] J. Sabourin and J. Lester. Affect and engagement in game-

based learning environments. IEEE Transactions on Affective

Computing, 5(1):45–56, 2014.

Proceedings of the 11th International Conference on Educational Data Mining 217

[37] S. Sahebi, Y. Huang, and P. Brusilovsky. Predicting student

performance in solving parameterized exercises. In

proceedings of the 12th International Conference on

Intelligent Tutoring Systems, pages 496–503, 2014.

[38] V. Shute. Stealth assessment in computer-based games to

support learning. Computer Games and Instruction,

55(2):503–524, 2011.

[39] V. Shute and M. Ventura. Measuring and supporting

learning in games: Stealth assessment. The MIT press, 2013.

[40] P. Wouters, C. Van Nimwegen, H. Van Oostendorp, and E.

Van Der Spek. A meta-analysis of the cognitive and

motivational effects of serious games. Journal of educational

psychology, 105(2), 249–265, 2013.

[41] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence

classification. ACM SIGKDD Explorations Newsletter,

12(1): 40–48,2010

Proceedings of the 11th International Conference on Educational Data Mining 218

