Preschoolers’ alphabet learning: Cognitive, teaching sequence and English proficiency influences

Theresa A. Roberts
Patricia F. Vadasy
Elizabeth A. Sanders

Theresa A. Roberts, Oregon Research Institute, Sacramento, California. U.S.; Patricia F. Vadasy, Oregon Research Institute, Seattle, Washington, U.S.; Elizabeth A. Sanders, University of Washington, Seattle, Washington, U.S.

This research was supported by the Institute of Education Sciences (IES), U.S. Department of Education, Grant No. R305A150005. Any opinions, findings, and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Institute of Education Sciences.

Correspondence concerning this article should be addressed to Theresa Roberts, 8548 Sunset Avenue, Fair Oaks, CA 95628, U.S. E-mail: robertst@csus.edu
Abstract

This study addressed two areas of inquiry: 1) the influence of enlisting three underlying cognitive learning processes (CLPs) in alphabet learning, and 2) order effects for letter name and letter sound instruction. Alphabet instruction was designed to enlist Paired Associate Learning (PAL) only, PAL plus Orthographic Learning (OL), or PAL plus Articulatory Learning (AL). Subjects were 94 preschool children in eight public preschool classrooms with low-income eligibility thresholds, including 35 dual language learners (DLLs). Children were randomly assigned within classroom to small groups that were randomly assigned to one of the three treatments, and one of two orders in which letter names and sounds were taught. Research assistants provided 10 weeks of instruction, 15 minutes/day, for four days/week. All children in the three treatments made significant growth from pretest to posttest on all measures of alphabet learning. Children in the PAL only condition had significantly higher gains than the sample average on four of five alphabet measures. Posthoc tests showed that PAL only significantly outperformed the other two conditions on four of the five measures, but only for native English-speaking children. No evidence of differences among treatments was found for DLL children. Additionally, there was no main effect for order of name or sound instruction, although teaching sounds before names was statistically significantly better in the PAL only treatment. Findings support explicit alphabet instruction emphasizing the relationship between verbal letter labels and letter forms that enlists PAL processes.

Keywords: alphabet, letter names and letter sounds, paired-associate learning, preschool, dual language learner, English language learners
Introduction

Acquisition of English alphabet knowledge requires children to learn initially 26 letter names and their most typical associated letter sounds in both uppercase and lowercase letter forms, a large number of associations. In spite of its apparent simplicity, learning these arbitrary correspondences between letter forms and their names or sounds presents a challenge for many young children. This challenge may be acutely daunting for children whose early literacy experiences include less English print exposure and English speech-sound exposure. Reading is so recent a cultural invention that learning to recognize print has required modification of brain anatomy (Dehaene, Cohen, Sigman, & Vinckier, 2005). Brain studies have revealed that an extended time of up to four years is required for automatic and integrated letter-sound processing (Froyen, Bonte, van Atteveldt, & Bloomert, 2008). In this paper, we use the term alphabet knowledge to refer to children’s competence in accurately and quickly identifying printed letter names and letter sounds.

The importance of high levels of alphabet knowledge is underscored by two findings: letter name knowledge is a powerful predictor of both learning to read, and of later reading achievement, including comprehension (Foulin, 2005; Snow, Burns, & Griffin, 1998). The challenge of learning the alphabet is verified by evaluations of the Early Reading First initiative which found modest levels of alphabet learning by the end of one year of preschool attendance (Jackson et al., 2007), a troubling rate of progress for those children who enter preschool with the lowest levels of English alphabet knowledge.¹ Failure or delay in acquisition of alphabet knowledge predicts risk for reading difficulties (e.g., O’Connor & Jenkins, 1999;

¹ Throughout this paper, the term preschool conforms to the conventional usage of referring to programs serving children ages three to five prior to kindergarten entry.
Snow et al., 1998; Snowling, Gallagher, & Frith, 2003). There is stability in the predictive utility of preschool predictors for later reading (Stanovich, 1986), and a strong preschool literacy foundation is protective against reading difficulty (see Duncan et al., 2007). The influence of alphabet knowledge in children’s journey to becoming literate and the learning challenges it presents for many underscores the importance of developing effective alphabet instruction.

Yet the National Early Literacy Panel (2008) reviewed only three studies of alphabet instruction only (not combined with other instructional components) meeting inclusion criteria. The most recent meta-analysis of alphabet instruction concluded that it was not possible to extract meaningful information on the features of alphabet instruction leading to learning because there were too few studies detailing the instruction (Piasta & Wagner, 2010a). Previous studies have not disaggregated the findings for dual language learners. ²

Our review of these studies and a limited number of others published since this meta-analysis (e.g., Cardoso-Martins, Mesquita, & Ehri, 2011; McGinty, Breit-Smith, Fan, Justice, & Kaderavek, 2011) revealed that few studies set forth a principled model of instruction that took into account how children learn letters. In addition, we found no studies that systematically compared the order of teaching letter names or letter sounds in spite of the theoretical interest in the possibility that letter name knowledge may pave the way for learning letter sounds.

Heeding the call for research to examine more closely the elements of effective alphabet instruction and our analysis of the instructional design of existing studies, we identify three cognitive learning processes (CLPs) that are central to alphabet learning and design instruction to draw upon and activate them to differing extents. We use the term “cognitive learning processes”

² The term dual language learner in this study refers to children who are learning English as a second language based on parent report, teacher confirmation, and a test of overall English proficiency. It is largely synonymous with the terms English learner, English language learner and emergent bilingual.
to refer to a suite of three internal thinking processes central to alphabet learning. These three processes are paired associate learning, articulatory learning, and orthographic learning. We test, using a randomized control trial, the effect on alphabet learning of adding more of each CLP to an instructional baseline of PAL, which is obligatory in alphabet learning. In addition, we test the conceptual idea that letter name instruction may bootstrap the effectiveness of letter sound instruction by varying the order in which letter names and letter sounds were taught.

Relationships among Alphabet Knowledge, Phonemic Awareness, Reading, and Spelling

Alphabet knowledge is necessary for word reading. One reason for this is that letter sound knowledge, along with phonemic awareness (Byrne & Fielding-Barnsley, 1989; 1990), are necessary to acquire the alphabetic principle, the insight that print systematically maps speech. Children’s informal encounters with letters and printed words, and experience with high-quality explicit instruction leads to the understanding that the relationship is systematic (de Graaff, Bosman, Hasselman, & Verhoeven, 2009). Acquisition of the alphabetic principle supports a rudimentary understanding of decoding. When children have a deep understanding of the details of the alphabetic principle in the form of extensive knowledge for how printed letters in words map onto the sounds in spoken words, it benefits learning to read words accurately and automatically, and forming strong memories between word pronunciations and spellings (Ehri, 2005; Fielding-Barnsley, 1997).

Knowledge of letter names and letter forms also lead children into the initial stage of spelling. Children use their emerging knowledge of letter names and letter writing in their invented spelling. For example, children may use their knowledge of the initial sound in the letter B and the letter name L to spell the word bell as BL. This phonological spelling made
possible by children’s knowledge of letter names and letter sounds is a first step in learning conventional spelling skills (Treiman, 1994).

Many studies indicate that preschoolers’ alphabet knowledge (most often letter names) and phonological awareness are closely related and bidirectional in influence (Burgess & Lonigan, 1998; Foulin, 2005; McBride-Chang, 1999, Share, 2004), although others do not (de Jong, 2007; Treiman, Pennington, Shriberg, & Boada, 2008). Both competencies independently contribute to learning to read, spell, and write (Ehri, 2014). Finally, preschool competence in both predicts subsequent reading acquisition (Lonigan, Burgess, & Anthony, 2000). Predictive and causal relationships between phonological awareness, decoding, and word recognition are well established (for review, see Ehri et al., 2001).

Cognitive Learning Processes

Three cognitive learning processes central to alphabet learning are paired associate learning, articulatory learning, and orthographic learning. These processes differ in the degree to which they are specific to literacy. Paired associate learning is a fundamental process of human cognitive architecture and is robustly involved in many types of learning. Articulatory learning is language-specific and involves movements of the speech apparatus. Orthographic learning is specific to literacy and refers to learning the written symbols used to represent speech sounds. Individual letters, multi-letter spelling patterns, and spellings for whole words are components of orthography. We label them as “processes” to highlight our interest in and focus on their dynamic engagement during instruction.

Paired-Associate Learning (PAL)

Learning to read involves associative learning - associating the names and sounds that systematically correspond to the written letters - and securing those connections into long-term
memory (Ehri, 2005; McBride-Chang, 1999). Other examples of associative learning are pairing spoken words with printed pictures or symbols. PAL is activated and exhibited when children pair the printed letters of the alphabet with their names and sounds and form memories of the pairing. Thus, in alphabet learning PAL links orthographic information and speech (Adams, 1990; Bond & Dykstra, 1967; Muter, Hulme, Snowling, & Taylor, 1998). Individual differences in PAL are related to reading acquisition and ability (Hulme, Goetz, Gooch, Adams, & Snowling, 2007; Kalashnikova & Burnham, 2016; Litt, de Jong, van Bergen, & Nation, 2013; Litt & Nation, 2014; Warmington & Hulme, 2012; Windfuhr & Snowling, 2001). Children typically are first tasked with learning the 26 letter names and 26 letter sounds (short vowels and most common consonant sounds) of the printed letters of the alphabet. Learning this large number of initial associations is very challenging for novices (Kilpatrick, 2015; Seidenberg, 2013). Mastery of letter name knowledge is present in only 70% of kindergarten children after a year’s instruction by teachers receiving extensive professional development (Paige, Rupley, Smith, Olinger, & Leslie, 2018). Alphabetic knowledge sufficient to benefit early word reading is demonstrated when children produce the correct verbal label in response to presentation of the letter form. This task is commonly called letter identification.

Various problems may arise. Children may struggle learning to recognize the letter forms, learning the individual names or sounds that go with the letter forms, or making the association between the letter forms and the labels (Hulme et al., 2007). The challenges inherent in learning to associate letter names and letter sounds with printed letters is further complicated because English has more phonemes than graphemes, and children must eventually learn how approximately 44 English phonemes map on to single- and multi- letter strings. The well-established relationship of PAL and reading outcomes warrants study of alphabet instruction that
explicitly supports forming rudimentary connections between speech and written letters. In the first treatment in this study, more PAL was included in alphabet instruction by explicit and contiguous presentation of letter forms and their verbal labels, and many opportunities for children to produce pairings between written letters and verbal labels during all instructional routines.

Articulatory learning (PAL+AL)

The alphabet represents letter sounds (phonemes) that are produced by articulatory gestures, the rudimentary motoric elements of language. These motor patterns are imbedded and interleaved in speech. Brain studies and other studies indicate that articulatory mouth movements contribute to phoneme perception (Brown, 1978; D’Ausilio et al., 2009; Liberman, 1999; Liberman & Mattingly, 1985; van Atteveldt, Formisano, Goebel, & Blomert, 2004). Measures of speech production accuracy index phonological representations in preschool children (Anthony et al., 2011). Children from low SES families and English learners with limited English language exposure may have difficulty perceiving these English phonemes with the precision and accuracy needed to represent distinct English letter sounds (Mauer & Kahmi, 1996). In a study of kindergarten DLLs, Roberts (2005) found that English articulation accuracy was significantly and as strongly associated with kindergarten phonemic awareness and with first-grade nonword reading as was letter sound knowledge.

Training studies have featured strategies to draw children’s attention to articulatory gestures. Interventions with older children to learn the categories of mouth shapes and gestures associated with English letter sounds, including practice to improve articulation quality, report benefits for word and nonword reading (Ehri, 2014; Torgesen et al., 1999; Wise, Ring, & Olson, 1999). The benefits of articulation training with preschool-age children have also been reported
In the second treatment in this study, we examined alphabet instruction comprised of basic PAL routines + routines to reference articulation of letter names and sounds in order to draw children’s attention to articulatory gestures and thereby to sharpen their phoneme representations and strengthen memory and retrieval of the verbal label component of pairings of verbal labels and written letters. Activities were designed to increase children’s awareness of mouth gestures via pictures of mouth movements, exploration of mouth movements with mirrors, and feeling the speech apparatus as letter names and letter sounds were articulated.

Orthographic Learning (PAL+OL)

In orthographic learning children learn to attach verbal labels (names or sounds) to the visual alphabet symbols, the printed letters (Hulme, 1981). The ability to process orthographic information required for reading is dependent upon reshaping innate basic perceptual abilities to include an orthographic-specific visuo-perceptual processing ability (Dehaene, 2009; Dehaene et al., 2010). This reshaping is accompanied by growing proficiency that occurs from encountering and learning about print.

Most research on orthographic learning, conducted with children who can read words, has utilized tasks involving whole words. There has been limited study of orthographic learning in young children or non-readers (Castles & Nation, 2008) and of learning of the basic orthographic symbols (individual letters). As children apply their alphabet knowledge to decode words, they slowly build orthographic knowledge of whole words and letter sequences (see Share, 1995). This process is called *self-teaching*.

At an early stage of literacy, orthographic learning reflects children’s ability to learn the forms of printed letters that represent sounds, and to store and retrieve these letters or clusters of letters. Children’s ability to visualize the printed letters may provide a memory aid for retrieving
abstract and acoustically fleeting letter names and sounds (Castles, Wilson, & Coltheart, 2011). Preschooler’s (Apel et al., 2006) and kindergartener’s (Apel, 2011; Wolter & Apel, 2010) knowledge of these representations uniquely contributes to early reading and spelling.

Early literacy experiences that develop English orthographic knowledge such as English parent-child book reading interactions and English letter writing activities may have occurred less frequently for lower SES and DLL children (Levin & Aram, 2004; Mol & Bus, 2011) and may slow the momentum of self-teaching when learning to read in English (Castles, Holmes, Neath, & Kinoshita, 2003). The motor-perceptual links and sensory integration established in letter writing help to establish letter representations and associative links between printed letter forms and their sounds and names (Cunningham & Stanovich, 1990; Hulme & Bradley, 1984; Hulme, 1979; James, Jao, & Berninger, 2016; Longcamp, Anton, Roth, & Velay, 2003; 2005). In Hulme, Monk and Ives (1987) experiments to determine whether and how tracing letters helps children learn letter names (for the 3-4 year olds), or abstract letter-like forms (for the older children), Hulme et al. (1987) found that tracing and naming the letter or symbol, compared to only naming the letter or symbol, improved children’s paired-associate learning.

In the third treatment in the present study, children were provided alphabet instruction comprised of basic PAL routines + multiple experiences and practice in studying, forming, and writing letters. This orthographic referencing was designed to support children’s learning of the orthographic component of paired associates between letter labels and letter forms by strengthening memory for letter shapes and a motor scheme for forming the letters.

Relationship between Features of Letter Names and Letter Sounds and Order of Alphabet Instruction
The relationship between letter names and letter sounds, children’s learning of each, the utility of each in learning to read, and the implications of these relationships for the order in which letter names and letter sounds should be taught has engendered interest and debate amongst researchers and practitioners. Indeed, order of teaching letter names and letter sounds was so important in the UK that since 2007 their National Literacy Strategy requires teaching letter sounds before letter names (Rose, 2006). Ellefson, Treiman, & Kessler’s (2009) descriptive comparison of U.S. and English children raises the interesting possibility that whichever learning occurs first (names or sounds) serves to bootstrap the other. This is based on evidence of letter-name-to-sound facilitation for US children who are more likely to learn names first, and letter-sound-to-name facilitation for UK children who are more likely to learn sounds first. While suggestive, group differences and the correlational nature of the findings leave this conclusion uncertain.

There are three features of alphabet knowledge that may influence the instructional effectiveness of teaching letter names or letter sounds first. The first is that most letters contain clues to their typical sounds (e.g., the name of letter B features the /b/ sound in the initial position). The second feature is that the speech characteristics of letter names and letter sounds are different in ways that may influence ease of learning (e.g., the similarity of voicing and mouth position for the vowels makes them easily confusable). The third feature, derived from the first two, is that letter sounds are more difficult to learn than letter names.

Theory (Adams, 1990; Ehri, 1986) and research (e.g., Cardoso-Martins et al., 2011; Treiman & Tincoff, 1997; Treiman, Tincoff, Rodriguez, Mouzaki, & Francis, 1998) indicate that knowledge of letter names helps children learn letter sounds. Most letter names contain some information about their sounds, and only a few do not (e.g., “y” and “w”) (Share, 2004; Treiman
et al., 1998; Treiman, Weatherston, & Berch, 1994). Children may use letter names to learn letter sounds in particular for letters that have their sound at the beginning of their names (e.g., “B”, “V”) (e.g., Share, 2004; Treiman et al., 2008). It may also be helpful to teach letter names first because speech production of them is less fleeting and more distinctive than is production of letter sounds (Boyer & Ehri, 2011; Ehri & Roberts, 2006; Piasta & Wagner, 2010b). In addition, letter names provide a whole word label that may help establish initial memories and efficient retrieval of letter form and verbal label pairings. This advantage may be particularly important for three- and four- year-old children whose representations of individual English phonemes are still developing, for children who have not had extensive exposure to the English alphabet and phonemes, and for children with lower levels of English vocabulary because vocabulary growth leads to refinement of phoneme representations (Metsala & Walley, 1998).

On the other hand, letter sound knowledge is more directly involved in conventional literacy skills such as decoding and spelling than is letter name knowledge, suggesting instruction in letter sounds may be more beneficial to later authentic reading and spelling. Moreover, letter names do not always map directly to phonemes in words, creating potential confusion in early decoding. We study further the bootstrapping possibility of letter names, which may fundamentally modify current understanding of the relationship between letter names and sounds and their instruction. If learning letter sounds is more difficult than learning names (Boyer & Ehri, 2011; Ehri et al., 2006: Roberts, Vadasy, & Sanders, 2018; Trieman & Kessler, 2003), and if learning letter names bootstraps learning of letter sounds, this may suggest a principled sequence for teaching letter names and sounds. We examined this question by comparing two sequences of letter instruction: teaching either letter names or sounds first, followed by teaching the alternate sounds or names.
Dual Language Learner Preschool Children

Effective instruction crafted to support DLLs in alphabet learning in order to capitalize on their potential to learn second language phonemes and their associated letter names and sounds is necessary. There is a large and growing numbers of DLL children in U.S. schools (National Clearing House for English Language Acquisition, 2012). More than 66% of EL children come from households with incomes below 200% of the federal poverty level (EPE Research Center, 2009). Spanish-speaking students are the largest subgroup of school-age English language learners; in 2015 75% of the total U.S. English learner student population spoke Spanish (Ruiz Soto, Hooker, & Batalova, 2015), and 2015 NAEP data report a 24-point gap in average reading scores between white and Hispanic fourth graders (NAEP, 2015).

Disparities in early literacy skills between DLLs and English-only students are present at school entry and influence later reading performance. Potential difficulty perceiving and manipulating English phonemes, particularly when they are not present in the phonemic inventory of the first language, presents an added challenge in learning elusive letter sounds. Preschool teachers report uncertainty about how to teach phonological awareness and vocabulary skills to English learners (O’Leary, Cockburn, Powell, & Diamond, 2010).

Instruction that affords practice in oral production, with auditory feedback coming from this practice and teacher modeling of correct English sounds, and with frequent learning trials to increase English phoneme production practice (DeKeyser & Sokalski, 2001) should be helpful to young DLLs. A secondary question in this study is whether alphabet instruction that emphasizes PAL, or that references orthographic or articulatory learning, bringing hand and mouth motor practice and focus to the task of learning alphabet abstractions, offers differential benefits for DLL preschool children.
Earlier Findings with Combined Cognitive Learning Processes (CLPs)

In an earlier experimental training study (Roberts et al., 2018a), we examined the content of alphabet teaching for preschool children in treatments where they were taught letter names only (LN-Only), letter sounds only (LS-Only), or letter names and letter sounds (LN+LS). Each experimental alphabet treatment incorporated activities that specifically enlisted PAL, AL, and OL. The combined experimental LN+LS instruction resulted in significantly greater learning in both names and sounds compared to a business-as-usual LN+LS treatment. Because the experimental LN+LS instruction was most effective in the earlier study, we teach that double alphabet content in the current study.

Our purpose in the present study was to continue to identify effective features of alphabet instruction for both DLLs and non-DLLs by examining the effects on alphabetic learning of incorporating different amounts of PAL, AL, or OL. Our hypothesis was that instruction that explicitly enlisted more visual-verbal PAL would most strongly facilitate English alphabet learning (Hulme et al., 2007; Litt et al., 2013; Litt & Nation, 2014). However, instruction that features more AL and OL may have differential effects on letter sound knowledge or letter writing, respectively. Finally, we examine the order for teaching names and sounds, and whether teaching letter names first bootstraps learning of letter sounds.

Methods

Research Sites

Four elementary schools were recruited in suburban districts near a western U.S. city. The schools had a mix of half-day and full-day preschool classrooms, all with low-income eligibility thresholds. Two school district employed teachers with early childhood teaching certification were assigned to each classroom. Under a Memorandum of Understanding (MOU)
with the district, participating preschool teachers agreed to defer explicit whole-class alphabet instruction from late August until mid-December when the study was completed. The following numbers of preschool teachers participated at each school: four, four, two, and two.

Sample and Random Assignment Procedures

Randomization was performed after 106 four-year-old children were determined to be eligible based on letter name screening. Children who knew more than four of the letter names for the eight letters targeted for instruction were excluded. Children were randomly assigned within each of the eight classrooms into 27 small groups of 3-4 children each. Within each classroom, three small groups were assigned to one of the CLP conditions; with the three extra groups randomly assigned across classrooms. Finally, each small group within each classroom was randomly assigned to either letter names first or letter sounds first. The three CLP conditions included Paired associated learning only (PAL), PAL + Articulatory learning (PAL+AL), or PAL + Orthographic learning (PAL+OL), with nine small groups per condition. Attrition included 12 children: three in the PALonly condition, five in the PAL+AL condition, and four in the PAL+OL condition.

The final sample of 94 children included 32 children (9 small groups; 13 DLLs) in PAL, 32 children (9 small groups; 13 DLLs) in PAL+AL, and 30 children (nine small groups, 9 DLLs) in PAL+OL. There were 39 males and 55 females, and 35 children were dual language learners (DLLs) whereas 59 were native English speakers (non-DLLs). DLL status was based on parent report that their child spoke a language other than English at home and teacher confirmation. All children were administered the IDEA Pre-IPT Oral Language Proficiency test (pre-IPT; Stevens, 2010), an assessment of overall English proficiency for children ages 3-5. Of the 35 DLL children in the study, 10 tested at Level A, 16 at Level B, 4 at Level C, and 5 at Level D.
According to the testing manual levels A through D correspond to non-English Speaking (Level A) or Limited English-speaking (Levels B, C, and D). The mean age at pretest was 4.08 years ($SD = 0.56$).

Training

A team of six Research Assistant (RA) assessors and instructors included a former assessment coordinator, one graduate student, three experienced early childhood educators with master’s degrees, and two trained elementary school teachers. The first author and project coordinator presented all trainings. In the training for the assessors, administration for each measure was demonstrated, and assessors practiced administering all assessments and received corrective feedback from researchers and peers. The training for instructors included demonstration of the teaching activities for each treatment. Training emphasized achieving high levels of response accuracy from the children, adding explicit verbal models, monitoring student progress, and prompting oral responses. Following the two full-day trainings, all RAs spent time in the preschool classrooms in which they were assigned to meet the children and teachers, and to familiarize children with grouping and assessment procedures.

Alphabet Content

Eight letters were selected for instruction: T, A, D, M, H, S, L, K. Letters were chosen to balance letter features known to affect ease of learning: acrophonic (T, D, K), nonacrophonic (M, S, L), position in the alphabet (A, D, H, beginning; K, L, M, middle; S, T, end), most widely (A) and less well known (H) by young children and those having greater visual distinctiveness. Eight letter names and eight letter sounds were taught in each condition. Two of the selected letter sounds do not overlap with the Spanish phonemic inventory. All letters were presented for
instruction in uppercase because uppercase letters are easier than lowercase letters for preschool children (Drouin, Horner, & Sondergeld, 2012).

Alphabet Instruction by CLP Emphasis

Children assigned to each of the three alphabet treatments received 5 weeks of Monday-Thursday instruction of the assigned CLP emphasis instruction (PAL Only, PAL+AL; PAL+OL) of either names or sounds, followed by 5 weeks of instruction in the other type of alphabet content (names or sounds). Two new letter names or letter sounds were introduced each week followed by 1 week of review (approximate total of 20 - 24 minutes for each letter name and letter sound; approximately 4-5 minutes for daily review and cumulative week’s review for each letter name and letter sound). The same instructional routines were included in letter name first and letter sound first instruction. Instructors corrected errors and elicited responses from non-responders. Lessons across treatments were equated for a duration of 10-12 minutes, for the number of teacher-references to letters, and the number of times children were prompted to speak letter names and/or sounds. The Appendix shows the features of instruction unique to each condition.

Paired-Associate Learning (PAL) Only Instruction

Warm up review. The instructor used 5 x 8 cards to review all letters taught to date. Children were prompted to respond chorally and corrective feedback was provided.

Introduce the letter. The instructor presented the new letter card saying: “This letter (name or sound) is ____.” “Say ____.” Children were told to look at the letter and respond chorally.

Find the new letter. The instructor presented cards for the new letter and three previously taught letters, handed one card to each child and asked, “Who has the new letter
(name or sound)?” The child with the new letter card showed it to the group and children chorally said the label. The instructor repeated this procedure three times.

Find your letters. Given a strip printed with four blank boxes and four small letter cards (the new letter and three previously taught letters), children were directed to “Put a letter in each box (in any order they chose). Point to the letter (name or sound). Say the letter (name or sound).” The sequence was repeated three times.

The animal game. Each child was given three small letter cards and a picture of an animal whose name began with the target letter (e.g., a kangaroo picture for letter K). The instructor directed the children to “Close your eyes. Mix up the letters. Feed the (animal) letter (name or sound) ___ and say (name or sound).” Each child played the animal game four times.

Cumulative review. Each child was given a small booklet containing the eight letters taught, one letter to a page. Children were directed to point and chorally read each letter (name or sound) page by page that had been taught to date. Teachers provided correction or responses to individual children as needed. Children were taught to tap their head and say, “think,” “think” to help them reflect and regulate their inclination to sometimes call out the first letter name or sound that came to mind.

Articulatory Learning (PAL+AL) Instruction

Warm up review. This was the same procedure used in the PAL only instruction for each of the eight taught letter names and letter sounds.

Introduce the new letter. The procedure was similar to PAL only. In addition the instructor presented a mouth picture for the letter, saying “Watch my mouth say the letter (name or sound),” said the letter, and circled her mouth, and prompted children to chorally respond.
Articulation referencing. Using the mouth picture of the new letter the instructor first reviewed the mouth part labels as follows: “Say tongue (sticking out her tongue). Say mouth (circling her mouth). Say lips (puckering and pulling back her lips). Say throat (touching her throat). Say teeth (showing her teeth).” Children repeated the labels with the instructor once and then repeated the review. Next, the instructor showed how the new letter (name or sound) was articulated: “See how you say the letter (name or sound). Look at the mouth picture.” She held the mouth picture below her mouth and said the name or sound, exaggerating mouth movements. Children did this with the instructor two times. Next, the children were given small mirrors. The instructor modeled looking in the mirror while saying the new letter (name or sound): “Look at me. Think (tap head). Show how your mouth makes ___ (name or sound). Look at your mouth and say ___. ” Then children were directed to “Look at the mouth movements that make letter (name or sound). Say ___. ” Children repeated saying the letter with their mirrors three times.

The animal game. This was the same procedure used in the PAL only instruction.

Cumulative review. Each child had a small alphabet book containing the taught letters. In addition, the mouth picture for each letter being reviewed was presented. Children were directed to look at the mouth picture, point and read each letter (name or sound) that had been taught to date. Teachers provided correction or responses to individual children as needed. Children were taught to tap their head and say, “think,” “think” to help them reflect and regulate their inclination to sometimes call out the first letter name or sound that came to mind.

Orthographic Learning (PAL+OL) Instruction

Warm up review. This was the same procedure used in the PAL only instruction for each of the eight taught letter names and letter sounds.
Introduce the new letter. The procedure was similar to PAL only. In addition, the instructor modeled writing the letter while the children watched.

Orthographic referencing. Placing the new letter card on a small easel, the instructor said, “See how you write the letter (name or sound). I’ll write and say the lines for each letter.” The letter forms were described with the terms “down,” “up,” “across,” “slant,” “around,” which were taught in the first lessons. For example, when teaching the letter M, the instructor would say the letter lines: down, slant, slant, down. Children used white boards and markers to practice following the instructor’s model for copying and writing the letter and saying the lines. After doing this two times, children were directed to: “Think (tapped head). Write the new letter (name or sound). Say the lines and write.” Children wrote the letter, saying the lines, three times. The instructor modeled writing the letter and saying the lines one more time, and asked children to chorally say the name and sound.

The animal game. This was the same procedure used in the PAL only instruction.

Cumulative review. Each child had a small alphabet book containing the taught letters. Children were directed to point and trace on their letter card with their finger each letter (name or sound) that had been taught to date, and then say the letter (name or sound). Teachers provided correction or responses to individual children as needed. Children were taught to tap their head and say, “think,” “think” to help them reflect and regulate their inclination to sometimes call out the first letter name or sound that came to mind.

Review Week Instruction

The week before posttest, children in each treatment reviewed all eight taught letters (names and sounds). Each day a different group of letters was reviewed. Basic activities were similar to week 1-9 lesson activities for each treatment. After being taught both names and sounds, children were
reminded that letters have both names and sounds. The instructor provided several opportunities each review day for children to say both the name and sound for the letters. The small letter book reading included reading each letter name and sound.

Treatment Integrity

To assess integrity of the three treatments, two measures were used: observations of implementation, and daily attendance. Implementation observations of each small group were conducted during the first and second half of the intervention. Observer reliability was established with dual codings of four small groups (each type of instruction) (100% agreement). Elements of each lesson were coded with yes or no for correct treatment, letter content, and lesson activity. Instructional delivery was rated with a 3-point rating scale (1 = low, 3 = high) using the following criteria: begins on time, uses full time allotted; materials organized; models letters correctly; insures all children are responding; engages and redirects as needed; warm and enthusiastic manner; and, pacing maintains focus. A total of 27 observations were conducted across the three treatment groups in the first half of the intervention, and 23 observations in the second half. Fidelity for correct treatment implementation for all three treatments was 100%, and for instructional delivery averaged 2.99 (out of 3). Finally, treatment intensity averaged 36 lessons, with no significant differences between groups, or between DLL and non-DLL children.

Measures

Standardized test measures were adapted for administration with young children by simplifying the language of test instructions, including one-two practice items and providing two success items at the end of each test. All children in participating classrooms were first screened on letter name identification. Measures were administered individually.
English language oral proficiency was measured at pretest only with the IDEA Pre-IPT Oral Language Proficiency test (pre-IPT; Stevens, 2010), an age-appropriate assessment of English for children ages 3-5. It is designed to follow a story line with opportunities for oral interaction between tester and child. Test materials include a large storyboard and story props. The tester uses the props to ask the child questions that require pointing, action, or verbal responses. Four domains of oral English are assessed: vocabulary, grammar, comprehension, and verbal expression. Raw scores range from 0-40. Reliability was .97.

Letter name and letter sound knowledge (accuracy). Taught and untaught letter name and sound knowledge were tested separately at pretest and posttest. The letters were separated into a deck of the taught letters (8) and another deck of the untaught letters (18). The tester shuffled each deck prior to each administration. For each measure, the tester presented a card with a single printed upper-case letter and asked the child to identify either the letter name or letter sound. Order of assessing identification of letter names and letter sounds was counterbalanced. Sample item-level reliabilities for taught letter names was .53 at pretest and .81 at posttest, with a pretest-posttest correlation of \(r = .51 \). Reliabilities for taught letter sounds were .28 at pretest and .81 at posttest, with a pretest-posttest correlation of \(r = .12 \). Pretest reliabilities were depressed by large numbers of zero scores.

Rapid letter naming (fluency). Children were tested separately on naming the eight taught letter names and sounds at pretest and posttest. For each test children were presented an 8” x 11” card with 32 upper-case letters randomly arranged in rows (different arrangements for the names and sounds tests). Each of the taught letters appeared four times. Assessors modeled and children repeated how to point and say each letter name or sound in a practice set of four untaught letters. Children were then asked to place their finger on the first letter, then to touch
and say each letter’s name or sound. 3 seconds were allowed for each item. The score for each measure was the total number of letter names or sounds correct in 30 secs. Scores range was from 0-32. Sample item-level reliabilities for rapid letter name naming were .65 at pretest and .92 at posttest; reliabilities for rapid letter sound naming were .75 at pretest and .88 at posttest.

Letter writing. Children were tested on writing four taught letters at pretest and posttest: T, A, S, H. The tester first modeled how to write the letter for two non-taught letters. For the test items the tester asked children to “Write the letter (name/sound).” The letter writing score was one point for each letter written (maximum letter writing score of 4 points). Sample item-level reliabilities were .59 at pretest and .75 at posttest, with a pretest-posttest correlation of $r = .51$.

Cognitive Learning Process (CLP) Measures

Paired Associate Learning (PAL). The PAL visual-verbal and verbal-visual tasks were adapted from and Hulme and Litt and colleagues (Hulme et al., 2007; Litt et al., 2013; Litt & Nation, 2014). To adapt the verbal-visual task for the young children in this study, children were instructed to point to rather than draw the correct symbols. Two sets of three-item visual-verbal and verbal-visual paired associates were counterbalanced at pretest and posttest. Each pair consisted of a letter-like symbol paired with a one-syllable pseudoword (e.g., *fim, pel*). Children were taught the associations in one practice trial and then participated in five testing trials for each in which they were shown the three abstract symbols and asked to either name a symbol (visual-verbal) or touch a symbol that the tester named (verbal-visual). Correction was given as needed after each item was presented and the symbol and label presented again for each pair for additional learning. The maximum score for each PAL task was 15. Sample item-level reliabilities across visual-verbal and verbal-visual sets (across sets A and B) averaged .81 at pretest and .73 at posttest, with a pretest-posttest correlation of $r = .38$.
Articulatory learning (AL). The task was drawn from the teaching tasks in Boyer and Ehri (2011). Children were taught the phonemes represented by photographs of mouth shapes. The test items featured pictures of mouth articulation for the letters M, F, H, S, and T. There were two practice items (W, J) and five learning trials. For each trial children were asked to speak the phoneme for each of the five mouth pictures. Errors and non-responses were retaught during each trial. The maximum score was 25 points. Sample item-level reliabilities at pretest and posttest were .92 and .88, respectively; the pretest-posttest correlation was $r = .47$.

Orthographic Learning (OL). The task is an adaptation of the Orthographic Learning Measure (Mental Graphemic Representations) (Apel et al., 2006). Task materials four short stories, including an initial practice story. The adapted stories featured four nonword items with high phonotactic/high orthotactic features (hess, chan, thug, gove). Four page stories with pictures and the target word printed in bolded capital letters were read (e.g., “A HESS is red.”). The target picture was quickly pointed to right after the word was spoken and pointed to. After the story children were shown a card with three foils and the target word, shown the picture of the item and asked to touch the word on the card that named it. The maximum score was 4 points. Sample item-level reliabilities at pretest and posttest were close to zero; however, for conceptual reasons it was not excluded from analyses.

Data Analysis Approach

A multilevel modeling (mixed modeling) approach was adopted since the appropriate primary unit of analysis is the small group, rather than child, given that instructional conditions were implemented in small groups. Further, the multilevel approach accounts for the magnitude of the nesting (non-independence) of small group variation within teachers. All models were
estimated using *SAS 9.4 proc mixed* procedure and Satterthwaite degrees of freedom for fixed effects tests.

Preliminary analyses. Preliminary analyses included testing for any pre-existing differences among instructional conditions, instructional orders, and DLLs vs. Non-DLLs, using three-level models (children nested within small groups, within teachers). Although DLL children were significantly lower than their non-DLL peers on language skills (pre-IPT) as well as one of the CLP measures (PAL) (*p* < .001), there were no significant differences found for condition, order, or DLL status on any other pretest (*p* > .05).

Finally, intercept-only models were estimated to determine the level of dependencies in the data (i.e., intraclass correlations). Results showed that children’s teachers explained from 0% to 12% of variation in pretests, from 0% to 4% in posttests, and 0% to 14% in pretest-posttest gains; children’s small groups (within classrooms) explained from 0% to 11% in pretests, 0% to 20% in posttests, and 0% to 13% in pretest-posttest gains.

Alphabet outcome models. Alphabet outcome models were specified to test for instructional condition effects at the small-group level, controlling for pretest language and pretest letter-name knowledge at the child level, on pretest-posttest gains (Connor et al., 2017). These models also tested the effects of instructional order (letter names then sounds vs. letters sounds then names, at the small group level), DLL status (at the child level), and interactions. For ease of results interpretation, categorical predictors were effect coded and continuous predictors were standardized. Specifically, the three instructional conditions were effect-coded into a set of two predictors, with the first testing whether PAL had significant greater gains than the mean gain (PAL = +1, PAL+AL = 0, PAL+OL = -1), and the second testing whether PAL+AL had significantly greater gains than the mean gain (PAL = 0, PAL+AL = +1, PAL+OL
In other words, PAL+OL served as the reference condition. Just as in unilevel regression modeling, our choice of reference condition does not change model fit, model parameter estimates, or model-based predicted values for any condition; it only specifies which condition's gain will be directly tested against the average gain. Order was effect coded +1 = letter names, then sounds, and –1 = letter sounds, then names, and DLL was effect coded +1 = DLL and –1 = Non-DLL. Pretest language (using the pre-IPT) and pretest alphabet knowledge (total letters correctly named) were standardized in \(z \)-scores. Our general mixed model for each of our five alphabet outcomes was as follows.

\[
\text{Pre-Post Gain}_{ijk} = \gamma_{000} + \gamma_{100} Z\text{PreIPT}_{ijk} + \gamma_{200} Z\text{PreLetters}_{ijk} + \gamma_{300} Z\text{DLLeffect}_{ijk} + \gamma_{010} P\text{ALeffect}_{jk} + \gamma_{020} A\text{Leffect}_{jk} + \gamma_{030} Ordereffect_{jk} + \gamma_{040} P\text{AL*Order}_{jk} + \gamma_{050} A\text{L*Order}_{jk} + \gamma_{310} P\text{AL}_{jk}*\text{DLL}_{ijk} + \gamma_{320} A\text{L}_{jk}*\text{DLL}_{ijk} + \gamma_{330} Ordereffect_{jk}*\text{DLL}_{ijk} + U_{00k} + U_{0jk} + r_{ijk}.
\]

In the model above, the pretest-posttest gain for the \(i \)th student in the \(j \)th small group in the \(k \)th teacher’s classroom is estimated as equal to the sum of: the conditional mean gain (\(\gamma_{000} \)), the child-level effects of pretest language (pre-IPT) and alphabet knowledge (letter names) on gains in standard deviations (\(\gamma_{100} – \gamma_{200} \)), the child-level effect of DLL status (\(\gamma_{300} \)), the small-group level effects of instructional condition (\(\gamma_{010} – \gamma_{020} \)) and order (\(\gamma_{030} \)) as well as their interactions (\(\gamma_{040} – \gamma_{050} \)), all cross-level interactions between child DLL status and small group instructional condition and order (\(\gamma_{310} – \gamma_{350} \)), and the residual errors among teachers, small groups, and children (\(U_{00k}, U_{0jk}, \) and \(r_{ijk} \)).

CLP measure models. Our second set of models focused on the CLP measure pretest-posttest gains. These models were nearly identical to those for the alphabet outcomes; however, for these models CLP’s respective pretest was used as a covariate (standardized in \(z \)-scores), instead of pretest alphabet knowledge.
Pairwise comparisons. For the alphabet and CLP models, pairwise comparisons of the three instructional conditions, as well as simple effects for any significant interaction, were conducted using the /lsmeans statement within the proc mixed procedure of SAS 9.4. For these comparisons, we computed an *approximate* effect size (ES) as the difference between conditions in standard deviations, determined by dividing the model-estimated mean difference by the approximate pooled standard deviation. The approximate pooled standard deviation was computed by dividing the model-based standard error of the differences between means (approximate SE) by the square root of the inverse of three (conditions) divided by the total number of children (i.e., $SE \div \sqrt{3/94}$). To avoid inflating Type I error from three pairwise comparisons for each outcome, we employed a Dunn-Sidak p-value adjustment such that our per-comparison p-value threshold for significance is .017 rather than .05.

Results

Descriptive Statistics

Table 1 displays descriptive statistics for pretests, posttests, and pretest-posttest gains for each condition by dual language learner (DLL) status. The sample averaged $M = 66.44$ ($SD = 28.36$) on the norm-referenced (age-adjusted) standard score of the pre-IPT, which translates to rank below the 18th percentile nationally (below the 23rd percentile for non-DLLs and below the 9th percentile for DLLs). Zero-order correlations among all variables used in analyses are provided in Table 2 for both DLLs (upper triangle) and non-DLLs (lower triangle), but we note that these correlations are not adjusted for dependencies in the data.

Alphabet Outcomes Results

Mean pretest-posttest gains and covariate effects. Table 3 displays the fixed effect model results for each of the alphabet outcomes. First, we focus on the top three rows of
information (i.e., mean gains and covariate effects). The estimated mean pretest-posttest gains, across all children and conditions, were significantly greater than zero for each of the alphabet outcomes, with mean gains estimated at 2.42 taught letter names gained, 3.10 taught letter sounds gained, 3.50 rapid letter names gained, 4.14 rapid letter sounds gained, and 0.97 letters written gained. There were possible scores of 8, 8, 26, 26, and 4 letters on each of these measures, respectively; thus, children were predicted to gain 30% on taught letter names, 39% on taught letter sounds, 13% on rapid letter names, 17% on rapid letter sounds, and 24% on letter writing from pretest to posttest.

Pretest overall English proficiency skill positively predicted all but one of the five outcomes (taught letter names), and pretest letter-name knowledge also positively predicted all but one of the five outcomes (taught letter sounds). Specifically, for every standard deviation increase in pretest language skill, there was a predicted advantage of 0.83 letters gained from pretest to posttest in taught letter sounds, 1.44 letters gained in rapid letter names, 1.61 letters gained in rapid letter sounds, and 0.40 letters gained in letter writing. Similarly, for every standard deviation increase in pretest letter-name knowledge, there was a predicted advantage of 0.54 letters gained in taught letter names, 1.58 letters gained in rapid letter names, 0.88 letters gained in rapid letter sounds, and 0.29 letters gained in letter writing. The bottom portion of the fixed effect alphabet model results (Table 3) showed that there was no significant DLL effect on pretest-posttest gains, controlling for pretest language skill and letter-name knowledge.

Instructional condition effects. The middle rows of the results in Table 3 show a main effect of PAL only across all but one (writing) of the five alphabet outcomes. However, the main effect was moderated by a consistent interaction between DLL status and instructional condition on all of the alphabet outcomes. Pairwise comparisons (Table 4) of the adjusted means of the
three instructional conditions by DLL status (illustrated in Figure 1), adjusted for multiple group comparisons, showed that the PAL only condition was consistently advantageous for non-DLL children compared with both PAL+AL and PAL+OL conditions on four measures: letter name and letter sound identification accuracy and speeded identification of letter names and letter sounds. The associated effect sizes were moderate and ranged from 0.51 to 0.67. The largest effect size (0.67) in favor of the PAL only condition was on letter sound identification. In contrast, for DLL children there were no significant differences between conditions (Table 4).

A posthoc analysis comparing children’s learning of taught and not-taught letter names and letter sounds was performed to evaluate the extent to which pretest-posttest gains on letter name and letter sound identification were due to instruction. We computed percentage gain from pretest to posttest for the 8 taught and 18 untaught letter names and letter sounds. These gain percentages were arcsin transformed and then compared for both DLL children and non-DLL children. For both DLL and non-DLL children, both letter name and letter sound gains were statistically significantly higher for the taught than the untaught letters. For letter names, the results are DLLs $t(34) = 6.10, p < .000; M_{taught} = .23 (.22); M_{untaught} = .05 (.14)$ and for non-DLLs $t(59) = 7.38, p < .000; M_{taught} = .35 (.30); M_{untaught} = .10 (.15)$. For letter sounds, the results of the t-test comparisons for DLLs was $t(34) = 6.08, p < .000; M_{taught} = .32 (.31); M_{untaught} = .02 (.04)$ and for non-DLLs was $t(59) = 10.30, p < .000; M_{taught} = .43 (.32); M_{untaught} = .03 (.09)$.

Order of letter name and letter sound instruction effects. There was no main effect of instructional order (LN-LS vs. LS-LN) detected for any the alphabet outcomes. However, a significant interaction between order and condition was found for identification of taught letter sounds and rapid letter sounds. Simple effects tests comparing the two orders within each of the
three conditions showed that, for the PAL only condition, the second type of instructional order (LS-LN) resulted in greater gains in pretest-posttest letter sound identification accuracy and speed than did the first order (LN-LS) (for taught letter sounds: by 1.87 letters, unadjusted \(p = .028 \); for rapid letter sounds: by 3.19 letters, unadjusted \(p = .014 \)).

CLP Measures Results

The second set of models focused on the individual CLP measures and only differed from the alphabet outcome models in that each of the CLP measures’ respective pretests replaced pretest letter-name knowledge. Results (Table 5) showed that children made significant pretest-posttest gains on two of the three CLP measures (PAL and AL), and that each of the CLP pretests significantly *negatively* predicted gains. More specifically, for every standard deviation increase in pretest, there is a predicted 3.60 fewer points gained on PAL, 3.56 fewer points gained on AL, and 0.70 fewer points gained on the OL, all else held constant. Pairwise tests revealed no significant differences in CLP gains among the three conditions. The correlations between CLP initial status, CLP gains, and alphabet learning revealed that for DLLs there were modest positive correlations between PAL initial status and gains in rapid letter sound identification and letter writing. For DLLs, there were also significant but modest positive correlations between initial AL status and gains in letter name and letter sound identification, and rapid letter sound identification. These correlations were not significant for non-DLLs. Finally, gains in CLPs from pretest to posttest were not correlated with any measure of alphabet learning.

Discussion

This study was designed to investigate the effects of two important features of alphabet letter instruction on alphabet learning. One feature was the degree of emphasis during instruction on PAL, AL, and OL processes underlying alphabet learning. The second feature was the order
of letter name or letter sound instruction. A major finding was that instruction including the most PAL had distinct learning advantages. A second important finding was that we detected no advantage for teaching letter names before letter sounds and some indication that teaching letter sounds first might be advantageous. Language status moderated these relationships. We endeavored to better understand how treatments may have worked and how learning may have occurred by measuring individual differences in the three CLPs at pretest and gains at posttest, and their relationship to instruction and alphabet learning. Detailing of these findings follows.

Relative Emphasis on PAL, AL, and OL in Alphabet Instruction

Interpretation of the findings should be couched in the proper context that instruction was equated for time across all three conditions and that PAL, obligatory in learning letter names and letter sounds, occurred in all three conditions. Therefore we conclude that more PAL learning in which the *relationship* between the letter form and its verbal label (spoken name or sound) was emphasized was more effective for non-DLL children than was (a) instruction with less PAL + attention to the verbal label component of the pair (PAL+AL) or (b) instruction with less PAL + more attention to the letter form component of each pair (PAL+OL). PAL+OL instruction, the only condition to include letter writing instruction, did not lead to better letter writing or better letter identification accuracy or speed. For the non-DLL children, the PAL+OL and PAL+AL multisensory treatment features may not have offset the strength of having more PAL.

Review of the alphabet outcomes for DLLs in Figure 1 shows that DLLs did quite well in the PAL only condition compared to the other conditions on all alphabet outcomes; thus, the DLL pattern of no significant differences between treatments is unlikely to be explained by decreased learning in the PAL condition. The lack of significant differences between the three
treatments for DLLs coupled with significant pretest to posttest gain on letter name and letter sound identification - gains that can be reasonably attributed to instruction because gains for taught letter names and sounds was significantly greater than those for not-taught letters for both DLLs and non-DLLs - suggests that multisensory or multicomponent instruction drawing attention to (a) how the mouth articulates letter labels (names or sounds), or (b) the features of letter forms through writing, may have benefitted letter learning accuracy for DLLs. Further research testing this possibility is warranted. Alternatively, this pattern may indicate that DLL children’s skill in English PAL is simply not yet as efficient as it is in non-DLLs. We did not have a counterfactual for the measures of letter identification speed and are therefore unable to rule out maturation of some other intervening variable as contributing to the pretest to posttest gains on these measures.

The level of letter sound and letter name learning merits attention. In this study, a posthoc comparison showed that letter sound learning was on a par with letter name learning (Table 3). In addition, the multilevel models predicted the largest gain for letter sound identification accuracy (39%) compared to letter name identification accuracy (30%). The predicted gain for rapid naming of letter names and letter sounds was also higher for letter sound (17%) than letter name (13%) learning. PAL only instruction compared to PAL+AL had an overall effect size of $ES = 0.66$. These gains compare very favorably to others in the literature and accrued from brief instruction. It is often assumed that learning alphabet letters is a low-level, constrained skill that is accomplished easily and perhaps informally by exposure to a print rich environment. Recent evaluations of Head Start found an effect size of $ES = 0.25$ for four-year-old preschoolers on alphabet knowledge in a very large sample and no significant effect for alphabet knowledge for three-year-olds after a year in Head Start (Puma et al., 2010). Similarly, the Preschool
Curriculum Evaluation Research Consortium (2008) found that only one of the 15 curricula tested improved children’s letter/word performance at all, in spite of being well-funded programs with professional development (PCERC, 2008). Piasta & Wagner (2010) reported an average effect size of Hedges’s $g = 0.24$ across studies for letter sound learning.

The comparable level of letter sound learning compared to letter name learning and the findings identifying the benefits of emphasizing paired associate learning for both accuracy and speed of letter sound identification are particularly important given the evidence of the greater difficulty in learning sounds than names reported in several previous studies (Huang, Tortorelli, & Invernizzi, 2014; Roberts et al., 2018a). Participants in our study were younger and had lower entering language scores than those in most other studies. The study began just two weeks after the start of preschool. Yet effects sizes of 0.51 to 0.67 were found.

For three and four year old children just entering preschool, pretest English language proficiency and letter knowledge predicted pretest to posttest learning on four of five alphabet measures. These factors were significant even when instruction was designed to accommodate children’s potential challenges for accessing and learning English alphabet content created by their status as novice learners of English. These accommodations included explicitly teaching vocabulary used in instruction, using only essential language in instruction, consistent modeling of learning tasks, using gestures and illustrations, routinizing instructional procedures, and verbal elicitation strategies (Abedi, Hofstetter, & Lord, 2004; August & Shanahan, 2006; Roberts, 2003, 2005; Gersten & Geva, 2003; Icht & Mama, 2015). These results indicate the importance of supporting rich oral language development for alphabetic learning. They also suggest the importance of further research to clarify potential developmental opportunities and constraints on
when and how to provide print experiences to support alphabet learning prior to preschool entry at age four.

Teaching Letter Names or Letter Sounds First

Overall, the order for teaching the names and sounds for the eight target letters did not influence alphabet learning outcomes. Previous findings have shown children learned letters that included the letter sound in the letter name better than those that did not, or that children with higher levels of pre-existing letter name knowledge showed better learning of letter sounds. These findings have been interpreted to indicate that letter names may bootstrap letter sounds; thereby suggesting the potential advantage of being taught letter names prior to being taught letter sounds. Two training studies in which children were taught letter names or participated in activities drawing attention to written letter features (letter awareness) prior to letter-sound instruction reported partial letter name facilitation to letter sounds only for those letters in which the letter sound could be “heard” at the beginning of the letter name (e.g., /d/ in English), (Cardoso-Martins et al., Ehri, 2011) or no letter-name facilitation (Castles, Coltheart, Wilson, Valpied, & Wedgwood, 2009).

In the present study in which prior letter name knowledge was experimentally induced in a within-subjects design, in which DLL and non-DLL children alike began with initial low levels of letter name and letter sound knowledge, and in which both letter name and letter sound facilitation of alphabet learning was tested, no evidence was found for letter name bootstrapping of letter sounds. Children began the study knowing on average less than one of the taught letter names or letter sounds. Perhaps some threshold level of letter name knowledge is needed before children can extract the conceptual insight into the relationship between letter names and letter sounds, in which case bootstrapping from names to sounds may be detected. This idea could
account for the difference between this study and previous ones in which letter name knowledge was found to contribute to letter sound learning.

Of particular interest is the finding that in the PAL only condition in which the greatest gain in alphabet knowledge was made, overall DLL and non-DLL children who first received letter sound instruction made significantly larger gains on letter sound identification accuracy and speed. PAL only instruction was particularly advantageous for learning letter sounds. We speculate that teaching letter names first may actually have interfered with and created confusion for subsequent, more difficult letter sound learning for novices who did not yet have sufficient understanding that letters can have a name and a sound to manage the sequential learning of names and sounds in the quickly paced instruction in this study.

CLP Measures, Instruction, and Learning

Children made significant gains on measures of PAL, AL, and OL from pretest to posttest. Instruction designed to enlist and activate more of each of these CLPs did not lead to increased skill in the respective CLP. However, children who scored the lowest in PAL, OL, and AL at pretest experienced the most gain at posttest in the respective CLP resulting in a catching up effect in the CLP targeted by their instruction. Individual differences in children’s pretest PAL and AL cognitive learning processes (the two CLP measures with good reliability) correlated significantly with about half of the alphabet learning gains for DLLs, but not non-DLLs. These relationships suggest that for children with limited proficiency in English and the language in which they are learning letter names and letter sounds, a stronger foundation prior to instruction in the CLPs relied upon in instruction is a support for that learning. Finally, gains in CLPs did not correlate with alphabet learning or interact with instructional condition.

Instructional Implications
The findings support several recommendations for preschool English alphabet instruction. The multiple benefits of the instruction that included the most PAL recommend instruction of both letter names and letter sounds in which the pairing of verbal labels (name and sounds) and letter forms is emphasized. This instruction (a) included explicit and simple routines, (b) focused children’s attention on pairing of letter names and letter sounds and (c) did not require acquiring and managing instructional materials beyond printed letters and game-like activities. We emphasize that effective instruction included multiple teacher models of the visual-verbal correspondences during teacher-guided participation of the entire small group, assistance when needed by the teacher providing correct responses, and self-regulated opportunities for children to individually enact diverse and engaging letter label and letter form pairing activities. The teacher-guided activities ensured correct responses and quick pairing of the letter label and letter form with the contiguity of the labels and forms believed to promote initial correct learning. This was the format for the introduction of the letter routine in each lesson. Examples of child-regulated activities include the animal game during which each child had their own set of materials, discriminated between only three letters to find, say the label for, and feed to an animal (whose spoken name began with the target letter) the correct letter form. Letter writing activities, proceeded with children writing letters on individual white boards guided by their verbalization of writing strokes such as “down,” “around,” for letter “D”.

Another feature of the instruction was that the lesson routines were identical each day. Instruction was designed in this manner to assist children in anticipating and understanding the flow of each lesson, and to create efficiency in the management of instructional materials to support greater allocation of cognitive resources to letter learning. The instruction utilized materials that are widely available in preschool settings, and the few special materials (e.g.,
animal game cards) can be easily created thereby suggesting optimism that preschool teachers may implement PAL-focused instruction efficiently in preschool classrooms.

The interventions were implemented with small groups, a favored grouping constellation in preschool, and led to gains that were not significantly different between DLLs and non-DLLs in classrooms serving both DLL and non-DLL children. The learning gains affirm the capability of DLL preschool children and children from families with low incomes to learn challenging content when instruction was explicit, incorporated cognitive learning processes relied upon in alphabet learning, and was designed to ensure their success.

The finding that teaching letter sounds first when instruction included extensive PAL instruction benefitted both accurate and speeded letter sound learning overall for both DLL and non-DLL children recommends teaching letter sounds first. This teaching implication is particularly important considering previous recommendations for teaching letter names first. Implementation of the instruction, with practice retrieving taught associations throughout the day to build memory, coupled with opportunities for children to apply their growing letter knowledge within a variety of meaningful activities (e.g., storybook reading time, pointing out children’s names, and calling attention to environmental print) would likely enhance learning.

Limitations

Several limitations should be considered. The instruction was brief both in terms of length of lessons and total instructional time (10 weeks), averaging about 20-24 minutes per letter. Patterns of performance may have been different with a more comprehensive alphabet program of longer duration that differentiated the amount of instruction on easier- and harder-to-learn letters (Jones, Clark & Reutzel, 2013), and that began later in the year. The ability to investigate relationships among CLPs and instruction were limited by challenges in measuring
these processes and particularly so for our ability to evaluate orthographic learning. We did not find evidence of gain in individual differences in CLPs and alphabet learning; findings that would have added interpretive clarity to how the treatments worked. Floor effects on the posttest writing measure limited our evaluation of writing performance. Many children made limited gains; overall learning ranged from 16% to 40%. Continued effort to improve alphabet instruction to increase the rate of alphabet learning of all children is needed. Exploration of the potential value of multisensory instruction for DLL children is one direction that may be worthy of investigation. Finally, we were not able to evaluate the effect of the instruction and letter knowledge gains for later literacy competence.

Conclusion

Both non-DLL and DLL three- and four-year-old children attending public funded preschool programs experienced reliable gains in the explicit and letter-focused treatment conditions. Our results identify the prominent role of PAL in helping children on the road to mastery of the challenge inherent in learning letter names and letter sounds. The results also point to the benefit of teaching letter sounds before letter names when instructional routines provide ample learning opportunities to pair verbal labels and letter forms. Finally, the findings provide partial evidence of a relationship between preexisting individual differences in language and cognitive learning processes and letter learning.

The sensitivity of children’s alphabet learning to small variations in instructional content is highlighted in the findings on the advantages of more PAL and order of teaching letter names or sounds. Effect sizes ranging between 0.51 and 0.70 were found between closely matched treatments. The finding in favor of PAL only on letter identification accuracy and speed is amplified when considering that accuracy and speed in letter identification are unique predictors
of decoding ability (Araújo, Reis, Petersson, & Faisca, 2015), and previous findings of difficulty in experimentally increasing letter naming speed (de Jong & Vrielink, 2004).

Further important nuance was revealed in the finding that language status moderated children’s response to variation in instruction and the relationship of CLPs to alphabet learning. These moderation effects highlight the importance of: 1) enhancing children’s overall English proficiency, and 2) including sufficient numbers of DLLs and non-DLLs in preschool studies of early literacy to yield sufficient power to evaluate the effectiveness of instruction for DLL children. This research adds to the very limited knowledge base on effective methods for teaching young children English letter names and letter sounds (Piasta & Wagner, 2010b), particularly for children whose backgrounds may include alternative early language and literacy experiences than those more directly associated with accomplishing this necessary step in becoming literate in English.
References

http://psycnet.apa.org/doi/10.1037/0022-0663.82.1.159

https://doi.org/10.1016/j.cub.2009.01.017

doi:10.1080/10888430903001308

doi:10.1016/j.jecp.06.003

Fitzgerald, J. (Eds.), *Handbook of writing research (2nd Ed)* (pp. 116-129). New York: Guilford Press.

https://doi.org/10.1037/a0021890

doi:10.1006/jecp.1998.2453

Appendix

Comparison of Instructional Conditions

<table>
<thead>
<tr>
<th>PAL only Lesson</th>
<th>PAL+OL Lesson</th>
<th>PAL+AL Lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get Ready:</td>
<td>Get Ready:</td>
<td>Get Ready:</td>
</tr>
<tr>
<td>Big looking eyes!</td>
<td>Big looking eyes!</td>
<td>Big looking eyes!</td>
</tr>
<tr>
<td>Open listening ears!</td>
<td>Open listening ears!</td>
<td>Open listening ears!</td>
</tr>
<tr>
<td>Quiet body!</td>
<td>Quiet body!</td>
<td>Quiet body!</td>
</tr>
<tr>
<td>Daily Review</td>
<td>Daily Review</td>
<td>Daily Review</td>
</tr>
<tr>
<td>Gather big cards for all letters introduced to date. Shuffle cards.</td>
<td>Gather big cards for all letters introduced to date. Shuffle cards.</td>
<td>Gather big cards for all letters introduced to date. Shuffle cards.</td>
</tr>
<tr>
<td>Time to practice all the letter (names or sounds) we learned!</td>
<td>Time to practice all the letter (names or sounds) we learned!</td>
<td>Time to practice all the letter (names or sounds) we learned!</td>
</tr>
<tr>
<td>What letter (name or sound)? (Review for LN or LS as follows)</td>
<td>What letter (name or sound)? (Review for LN or LS as follows)</td>
<td>What letter (name or sound)? (Review for LN or LS as follows)</td>
</tr>
<tr>
<td>This letter sound is ____ (sound) Or</td>
<td>This letter sound is ____ (sound) Or</td>
<td>This letter sound is ____ (sound) Or</td>
</tr>
<tr>
<td>This letter name is ____ (name). Say it together. (circle group)</td>
<td>This letter name is ____ (name). Say it together. (circle group)</td>
<td>This letter name is ____ (name). Say it together. (circle group)</td>
</tr>
<tr>
<td>(Repeat for all letters taught so far)</td>
<td>(Repeat for all letters taught so far)</td>
<td>(Repeat for all letters taught so far)</td>
</tr>
<tr>
<td>Introduce the New Letter</td>
<td>Introduce the New Letter</td>
<td>Introduce the New Letter</td>
</tr>
<tr>
<td>Time to learn our new letter (name or sound)!</td>
<td>Time to learn our new letter (name or sound)!</td>
<td>Time to learn our new letter (name or sound)!</td>
</tr>
<tr>
<td>(Slowly pull out letter card)</td>
<td>(Show new letter card on easel)</td>
<td>(Place new mouth picture/s on easel)</td>
</tr>
<tr>
<td>This letter (name or sound) is ____ (LN or LS). Say ____. (LN or LS)</td>
<td>Watch me write letter (name or sound) (trace letter on easel) Say ____ (LN or LS) Say ____</td>
<td>Watch my mouth say letter (name or sound). (Say letter and circle mouth) Say ____ (LN or LS) Say ____</td>
</tr>
<tr>
<td>Look at letter (name or sound) ____. Say ____ (LN or LS) Say ____</td>
<td>(Pulse card forward and back)</td>
<td>(Pulse card forward and back)</td>
</tr>
<tr>
<td>PAL Learning—Find the New Letter</td>
<td>Orthographic Learning</td>
<td>Articulation Learning</td>
</tr>
<tr>
<td>Gather big card for the new letter, already taught letters and other letters to form a group of 4 letter cards)</td>
<td>Keep new letter card on easel. See how you write the letter (name or sound) _____. (point to letter card) Look at the letter. I’ll write and say the lines for each letter. (say letter lines) (Pass out white boards, markers, model placement) (Pick up white board facing children, write the new letter while saying each line listed in guide for today’s letter) Follow me. (Model uncapping pen) (Model writing letter while saying lines) You (point to children) write it!</td>
<td>Keep new letter mouth picture/s on easel. (Stick out tongue) Say tongue. (Circle your mouth) Say mouth. (Pucker and pull back your lips) Say lips. (Touch your throat) Say throat. (Show you teeth) Say teeth.</td>
</tr>
<tr>
<td>(Shuffle cards and pass out) Look. Wait. Wait. (model looking at children’s cards)</td>
<td></td>
<td>See how you say letter (name or sound) _____. (show mouth movement picture/s) Look at the mouth movement picture/s. (Hold mouth movement picture/s below your mouth and then say the LN or LS _____. (Exaggerate mouth movements)</td>
</tr>
<tr>
<td>Who has the new letter (name, sound) ____? Yes, ____ has letter (name, sound) _____. (Child with the correct card shows it to the rest of the group) Say ____. Let’s try again. (Shuffle cards and pass out).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Look. Wait. Wait. (model looking at each child's card)
Who has new letter (name, sound) __?
Yes, ___ has letter (name, sound) ___.
(Child with the correct card shows it to the rest of the group)
Say ___.
Let's try again.
(Shuffle cards and pass out).

PAL Learning—Find Your Letter Strips
(Pass out strips with 4 blank boxes and small lettercards.
Child lays a strip flat on table.)
Put a letter in each box. (model)
Point to letter (name or sound).
Say the letter (name or sound).
Children mix up cards, place them in boxes again, and repeat.
Put a letter in each box.
Point to letter (name or sound) ___.
Say the letter (name or sound) ___.
Put a letter in each box.
Point to letter (name or sound) ___.
Say letter (name or sound) ___.

The Bear Game
Let's have some fun. Time to feed letters to the ___.
Set up your board.
(Model, place 3 small letter cards on boards)
Close your eyes (model).
Mix up the letters (model).
Feed the (animal name) letter (name or sound) ___ and say ___ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
Feed the (animal) letter (name or sound) ___ and say ___ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
Feed the (animal) letter ____ and say ____ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
Feed the (animal) letter ____ and say ____ (LN or LS).

Look at the letter. Say ____.
(Help anyone having trouble to hold pen, form letter, say lines)
You (point to children) write it!
Look at the letter. Say ____.
(Help anyone having trouble to hold pen, form letter, say lines)

Look at me.
(Model looking at mouth in mirror and saying ____).
Think. (tap head) Show how your mouth makes ____! You (point to children) do it!

The Bear Game
Let's have some fun. Time to feed letters to the ___.
Set up your board.
(Model, place 3 small letter cards on boards)
Close your eyes (model).
Mix up the letters (model).
Feed the (animal name) letter (name or sound) ___ and say ___ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
Feed the (animal) letter (name or sound) ___ and say ___ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
Feed the (animal) letter ____ and say ____ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)

Say _____.
(Describe mouth movements for the letter)
Say ___.
(Pass out mirrors)
Think. (tap head) Show how your mouth makes ____! You (point to children) do it!

Say _____.
Look at your mouth and Say _____.
Look at your mouth and Say _____.
Look at your mouth and Say _____.

The Bear Game
Let's have some fun. Time to feed letters to the ___.
Set up your board.
(Model, place 3 small letter cards on boards)
Close your eyes (model).
Mix up the letters (model).
Feed the (animal name) letter (name or sound) ___ and say ___ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
Feed the (animal) letter (name or sound) ___ and say ___ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
Feed the (animal) letter ____ and say ____ (LN or LS).
Close your eyes. (model)
Mix up the letters. (model)
End of Lesson Review
Pass out little alphabet books
Quiet. (soft voice- place finger on lips).
Think. (tap head).

Look. This is letter (N or S).
Look. (tap and point to letter).
Say letter (name or sound) _____.
Lead children to tap and read each letter that has been taught as they go through their book. Correct all errors or non-reads.

Close Lesson
Today’s letter card on easel.
Today we learned about the new letter (name or sound) ___. What letter (name or sound)? I had fun with you.
We will learn more letters together.

Mix up your letters. (model)
Feed the (animal) letter (name or sound) _____ and say ____ (LN or LS).

End of Lesson Review
Pass out little alphabet books
Quiet. (soft voice- place finger on lips).
Think. (tap head).

Write. (trace letter, emphasize lines. Then say the letter (name or sound).
Look. (tap and point to letter).
Say letter (name or sound) _____.
Lead children to trace and read each letter (name or sound) that has been taught as they go through their books. Correct all errors or non-reads.

Close Lesson
Today’s letter card on easel.
Today we learned about the new letter (name or sound) ___. What letter (name or sound)? I had fun with you.
We will learn more letters together.

Feed (animal) letter (name or sound) _____ and say ____ (LN or LS).

End of Lesson Review
Pass out little alphabet books.
Quiet. (soft voice- place finger on lips).
Think. (tap head).

Mouth. (circle your mouth).

Look. (tap and point to letter).
Say letter (name or sound) _____.
Show the mouth picture/s for each letter. Lead children to tap and read each letter (name or sound) that has been taught as they go through their book. Correct all errors or non-reads.

Close Lesson
Today’s letter card on easel.
Today we learned the new letter (name or sound) ___. What letter (name or sound)?
(point to the mouth picture/s)
I had fun with you.
We will learn more letters together.

Mouth. (circle your mouth).
Author Statements

Theresa A. Roberts is Senior Research Associate, Oregon Research Institute, Sacramento, USA; e-mail robertst@csus.edu. Her research interests include early literacy instruction, language development and Dual language learners.

Patricia F. Vadasy is Senior Research Scientist, Oregon Research Institute, Seattle, USA; e-mail: patriciav@ori.org. Her research interests include early reading instruction, vocabulary development, and English learners.

Elizabeth A. Sanders is Associate Professor of Measurement & Statistics in the College of Education at the University of Washington, Seattle, USA; e-mail: lizz@uw.edu. Her focal research interests include quantitative methodology, literacy, and English learners.