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In the analysis of causal effects in non-experimental studies, conditioning on observable covariates is one

way to try to reduce unobserved confounder bias. However, a developing literature has shown that con-

ditioning on certain covariates may increase bias, and the mechanisms underlying this phenomenon have

not been fully explored. We add to the literature on bias-increasing covariates by first introducing a way to

decompose omitted variable bias into three constituent parts: bias due to an unobserved confounder, bias

due to excluding observed covariates, and bias due to amplification. This leads to two important findings.

Although instruments have been the primary focus of the bias amplification literature to date, we identify the

fact that the popular approach of adding group fixed effects can lead to bias amplification as well. This is an

important finding because many practitioners think that fixed effects are a convenient way to account for

any and all group-level confounding and are at worst harmless. The second finding introduces the concept

of bias unmasking and shows how it can be even more insidious than bias amplification in some cases.

After introducing these new results analytically, we use constructed observational placebo studies to illus-

trate bias amplification and bias unmasking with real data. Finally, we propose a way to add bias decom-

position information to graphical displays for sensitivity analysis to help practitioners think through the

potential for bias amplification and bias unmasking in actual applications.

1 Introduction

In the analysis of causal effects in non-experimental studies, the key assumption necessary for unbiased
estimation is that all confounders (pretreatment variables that are part of the data-generating mech-
anism for both treatment assignment and outcome) have been measured. In the social science litera-
ture, this assumption is often referred to as “selection on observables” (Heckman and Robb 1985,
1986), “conditional independence” (Lechner 2001), or “ignorability” (Rubin 1978), and it is well
known that violation of this assumption leads to biased inference. However, it is typically implausible
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to believe that we have measured all confounders, raising the question as to which of the available
covariates should be adjusted for (conditioned upon) in practice.

Advice in the extant literature on which variables to condition on is contradictory. One recom-
mendation has been that conditioning on more, rather than fewer, available (pretreatment)
covariates is the best way to minimize bias associated with unobserved sources of heterogeneity
(Rosenbaum 2002; Rubin 2002). Another recommendation says that those variables that are related
to the treatment assignment mechanism should be included in the analysis (D’Agostino 1998). Still
other advice is to choose covariates based on their relationship to the outcome, rather than to the
treatment (Austin, Grootendorst, and Anderson 2007; Hill 2007; Brookhart et al. 2010). There is
even some controversy within the controversy: in political science, Clarke (2005) contends that
researchers are encouraged to include as many covariates as possible, without regard to the poten-
tial for increased bias; relatedly, in most intermediate econometrics texts, the choice between fixed
and random effects is framed as a bias versus efficiency trade-off, with the approach that includes
more predictors, fixed effects, described as unbiased (under assumptions that we contend are overly
optimistic; see, e.g., Greene [2000]).

There are, however, two notable classes of covariates that most agree should be excluded from
the set of conditioning covariates. These are bias inducers and bias amplifiers. Bias inducers include
posttreatment variables such as mediators and colliders (Pearl 2000; Schisterman, Cole, and Platt
2009; Cole et al. 2010), and a particular group of pretreatment covariates (pretreatment colliders
that lead to M-bias or butterfly-bias; Pearl 2009; Sjlander 2009; Ding and Miratrix 2014). Such bias
inducers may not be troublesome in practice, however, either because they can be identified for
exclusion, as is sometimes the case for posttreatment variables, or because the bias they induce
tends to be small (Greenland 2002; Liu et al. 2012; Ding and Miratrix 2014).

Bias amplifiers have received recent attention as variables that should be excluded from the
conditioning set (Bhattacharya and Vogt 2007; Wooldridge 2009; Pearl 2010; Myers et al. 2011;
Pearl 2011; Wyss et al. 2014). These covariates cannot induce bias where there is none, but they
increase bias by modifying bias that is due to an unobserved confounder. Instruments, variables
that only affect the outcome through their impact on the treatment, are the canonical example of a
bias-amplifying covariate. Conditioning on an instrument can hurt but can never help. On the one
hand, this may seem like a trivial concern because it is unclear under what circumstances a re-
searcher would be unaware that a variable was a true instrument for their treatment variable.
However, even imperfect instruments can amplify bias (cf. Pearl 2010) and, as we will show
below, even non-instruments can amplify bias.

The purpose of this article is to clarify the relationship between predictor inclusion and bias through
a novel decomposition that serves to unify separate strands in the literature, which purport to make
recommendations for variable inclusion or exclusion. We then discuss specific conditions in which
fixed effects for groups can be detrimental (bias increasing), even though they are largely regarded as
addressing a form of omitted variable bias benignly. We show, using a placebo test in a constructed
observational study, how this decomposition and an enhanced graphical display devised for sensitivity
analysis can better inform variable selection in the context of bias from an unobserved confounder.

The outline of the article is as follows. In Section 2, we derive our main results, showing how
omitted variable bias may be decomposed into several constituent parts: bias attributable to the
unobserved confounder, bias due to omitting observed covariates, and bias due to amplification.
These decompositions lead naturally to key insights regarding bias-increasing covariates. First, we
show that fixed effects for groups can act as pure bias amplifiers. This is novel because fixed effects are
not instruments, which have been the focus of the bias amplification literature to date. Moreover,
fixed effects are often thought to be a canonical technique for absorbing unmeasured group-level
confounding, so demonstrating that they can increase bias in general runs counter to common
understanding and practice. Second, we introduce the concept of bias “unmasking,” which
explains why even variables that do not amplify bias per se may still lead to net increased bias. In
Section 3, we examine two case studies in which the causal effect is known, and where confounding is
likely to be present, to estimate and decompose biases into their constituent parts. In one case study,
amplification is a major contributor to net bias. In the other, the inclusion of covariates leads to a
larger net bias due to “unmasking” of unobserved confounder bias. These examples reinforce prior
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advice to avoid inadvertently controlling for instruments when trying to infer causal effects from data
where the causal variable was not randomized. They also illustrate why applied researchers might be
concerned about arbitrary use of fixed effects for groups in non-experimental studies. In Section 4, we
introduce an important addition to graphical displays for sensitivity analysis to help practitioners
assess the potential for amplification and unmasking. We summarize our findings in Section 5.

2 Bias Decomposition

In this section, we establish the conditions under which a researcher would want to condition on a
set of covariates, X, in estimating the effect of a treatment, Z, on an outcome, Y. To help make
ideas concrete, we will map this notation to the case study presented in Section 3. Therefore, we
conceptualize Z as a pre recorded get-out-the-vote (GOTV) phone call and Y as voter turnout.

Westart inSection2.1withasimplecasewhereX,amatrixofoneormorecovariates, isbeingconsidered
for inclusion or exclusion in its entirety. To fix ideas, first considerX to include only a randomized assign-
ment to receive theget-out-the-votecall,whichactsasan instrument (formoredetails, seeSection3).Then,
in Section 2.2, we generalize those results to the case where we want to knowwhether to include all of the
covariates inX in the conditioning set given that some of themwill be included in the conditioning set.We
start with the simpler case for clarity of exposition, and the generalization allows us to apply the bias
decompositions to more realistic data applications. We then provide conditions specific to models that
include fixed effects for groups to demonstrate how they may act as pure bias amplifiers.

2.1 The Case of a Single Set of Conditioning Variables

Mathematically, describing the magnitude of bias incurred by failure to satisfy the selection on
observables assumption requires additional assumptions about the relationships between variables.
We derive our results using the linear model, as has been done in related work (Clarke 2005, 2009;
Pearl 2010; Ding and Miratrix 2014; Steiner and Kim 2016) and which has the advantage of tying
this work into more general results regarding omitted variable bias.1

To proceed, consider a linear model relating voter turnout, Y, with the causal variable, contact
via a get-out-the-vote phone call, Z,

Y ¼ Ztþ X�y þUzy þ ey: ð1Þ

In general, X could represent a matrix of observed covariates; for our motivating example, we will
include only the randomized treatment assignment, which acts as an instrument. U is an unob-
served confounder; in this setting U might represent degree of political engagement. As in Carnegie,
Hill, and Harada (2014a) and Imbens (2003), we make the simplifying assumption that UoX. We
can justify this assumption by conceptualizing U as the portion of the political engagement that is
orthogonal to the randomized treatment assignment. For the sake of clarity, and without loss of
generality, we also assume that variables are mean centered.

To frame this model as a causal model, we need to explicitly incorporate potential outcomes that
formalize the counterfactual possibilities for the outcome under control and treatment conditions,
Y(0) and Y(1), respectively (Rubin 1974). These represent the voting behavior (voted or did not) if
not contacted and if contacted, respectively. Thus, we write the causal version of the model as
E½YðZÞjZ;X;U� ¼ Ztþ X�y þUzy: Although we do not posit the functional form of the uncon-
ditional relationship between Z and U, we do not rule out dependence between these variables; in
fact, if they were independent, then U would not be a confounder. For instance, in our example, we
expect that those who are contacted have a latent trait, a feature of their personality, that makes
them more prone to answering the phone that is correlated with a willingness to vote.

1We focus on the linear model; we expect that many of the results hold, broadly speaking, for generalized linear models
(GLM). However, GLM models come with a host of their own problems with respect to bias. For example, coefficients
from unadjusted and covariate adjusted logistic regression models are not comparable (Freedman 2008; VanderWeele and
Arahc 2011; Breen, Karlson, and Holm 2013), a problem sometimes referred to as “non-collapsibility” (cf. VanderWeele
2015). A discussion of the bias of adjusted and unadjusted GLM estimators is beyond the scope of this article.
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In order to identify a causal effect with this model, we need to assume ignorability holds con-

ditional on everything in these models. Formally, this requires fYðzÞgzeZoZjX;U; where Z is the set

of all possible levels of the treatment. In our context, this means that among those who are in the

treatment group if we subset on potential voters who are the same in terms of their willingness to

vote, then whether or not contact was actually made with them is randomly assigned. For the

remainder of the article, we will drop the potential outcome notation with the understanding that

the potential outcomes are implicit in our modeling assumptions.
Next we utilize bias expressions to examine the cases where X is omitted from the conditioning

set and when it is included in the conditioning set. We compare the two biases and show how to

decompose these into constituent parts. Our derivation relies on a partition of the predictor set, in

which letters S and O stand for included (“seen”) and omitted sets, respectively. See Section A of

the online Supplementary Materials for further details.
First, suppose one calculates the unadjusted estimate of � in equation (1) by simply regressing Y

on Z (ignoring known covariates X). This translates to substituting S ¼ ½Z� and O ¼ ½XU� in (A.2)

in the online Supplementary Materials and yields an expression for the omitted variable bias of the

crude estimator:

Bias½t̂YjZ� ¼ ðZ0ZÞ
�1Z0X�y þ ðZ0ZÞ�1Z0Uzy

¼ �þ u;
ð2Þ

where � � ðZ0ZÞ�1Z0X�y is the bias due to omitting X and u � ðZ0ZÞ�1Z0Uzy is the bias due to

omitting U.2 These make sense because the bias due to omitting X is made large when X is a strong

predictor of the outcome (as reflected in the magnitude of �y) conditional on the Z. The bias due to

omitting U is made large when U is a strong predictor of the outcome conditional on Z (as reflected

in �y).3 The symbols � and u are used as a shorthand to signify the constituent parts of the bias, as

these Greek letters most closely resemble their Latin alphabet counterparts.
To understand the impact of the randomized treatment assignment, X, on bias, we now calculate

the bias when estimating � in a new model that includes X in the conditioning set, S. This translates

to substituting S ¼ ½ZX� and O ¼ ½U� in (A.2) in the online Supplementary Materials. The bias can

be written in partitioned notation as follows:

Bias
t̂YjZX

�̂
y

" #
¼

Z0Z Z0X

X0Z X0X

" #�1
Z0

X0

" #
Uzy: ð3Þ

Using the inverse of the partition matrix and selecting off the element that corresponds to the

coefficient on the causal variable Z (see Section A of the online Supplementary Materials), write

Bias½t̂YjZX� ¼
�
Z0Z� Z0XðX0XÞ�1X0Z

��1
Z0Uzy

¼

�
Z0Z� Z0XðX0XÞ�1X0Z

��1
ðZ0ZÞðZ0ZÞ�1Z0Uzy

¼

�
Z0Z� Z0XðX0XÞ�1X0Z

��1
ðZ0ZÞ u

¼
Z0Z

ðZ0Z� Z0HXZÞ
u ¼

SST�

ðSST� � SSR�Þ
u

¼
1

1� r2ZjX

 !
u ¼ uþ

r2ZjX

1� r2ZjX

 !
u

¼ uþ �;

ð4Þ

2Following (Greene 2000), these expressions assume that X and Z and U are non-stochastic. Generalizing to stochastic
regressors involves taking the expectation of these expressions; these are omitted for the sake of clarity.

3In our example, this translates understanding whether the randomized treatment assignment is a stronger predictor of
whether or not someone will vote than the unobserved willingness to vote characteristic.
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where HX ¼ XðX0XÞ�1X0 is the hat matrix associated with the regression; since we assume E(Z) ¼ 0,

SST� ¼ SSTþ nEðZÞ2 is the total sum of squares, and SSR� ¼ SSRþ nEðZÞ2 is the regression sum

of squares, so that SSR/SST is r2ZjX, or the coefficient of determination, R-squared, in the regression

of Z on X. Last, we make the identification � �
r2
ZjX

1�r2
ZjX

� �
u. The term 1

1�r2
ZjX

� �
can be referred to as

the amplification factor; importantly, this term is identified. It reflects the extent to which the

covariates, in this case the assignment to receive a get-out-the-vote phone call, predict actually

receiving the treatment, the phone call.
The amplification factor is particularly problematic if X accounts for a great deal of variation in

Z, as noted by Pearl (2010). So, in our example, if most of the people assigned to receive a phone

call actually received the phone call, then this term would be large. The term � �
r2ZjX

1�r2
ZjX

� �
u gives the

change in bias attributable to amplification; call it the net amplification bias. See Section B in the

online Supplementary Materials for intuition and context provided by another example.
A careful comparison of equations (4) and (2) reveals two key insights about adding X to the

conditioning set of covariates. First, note the bias term in equation (2) associated with omitting X,

namely, � � ðZ0ZÞ�1Z0X�y. Again, this term is large when X is highly predictive of Y. This term is

absent in equation (4) because X is adjusted for in this model. Second, the bias due to omitting U is

modified from ðZ0ZÞ�1Z0Uzy in equation (2) to become
�
Z0Z� Z0XðX0XÞ�1X0Z

��1
Z0Uzy in

equation (4). The difference between these two terms results in the appearance of �Z0XðX0XÞ�1X0

Z in the denominator, a term which is necessarily less than or equal to zero because it is (�1 times)

a quadratic form with positive definite matrix ðX0XÞ�1 (cf. Greene 2000, Sections 2.8 and 2.8.1).

This term is large if X, here the instrument, is highly predictive of the treatment receipt. Therefore,

except when the term �Z0XðX0XÞ�1X0Z is zero (i.e., X is not correlated with Z), it shrinks the

denominator in equation (4) relative to equation (2), resulting in amplification of the bias due to the

unobserved U.
It is useful at this juncture to emphasize why instrumental variables (Angrist, Imbens, and Rubin

1996) have been a particular focus of attention in discussing bias amplifiers (Bhattacharya and Vogt

2007; Wooldridge 2009; Pearl 2010). When X is an instrument, as in our example, �y ¼ 0 by

definition. Therefore, the bias due to omitting X, �, in equation (2) equals 0 and there can be no

benefit due to removing � bias when going from equation (2) to equation (4) and the only change in

bias is an increase due to amplification, �. In that sense, instruments can be referred to as pure

amplifiers. When X is a pure amplifier, it is necessarily true that uþ � is larger in magnitude than

�þ u.
Amplification is only part of the story concerning change in bias when going from an unadjusted

to adjusted estimator, however. Whether conditioning on X increases or decreases the net bias

depends on the magnitude of equation (2) relative to the magnitude of equation (4). Formally, a

set of covariates, X, can be said to be net bias reducing only when

jðZ0ZÞ�1Z0Uzy þ ðZ0ZÞ�1Z0X�yj > j
�
Z0Z� Z0XðX0XÞ�1X0Z

��1
Z0Uzyj:

Or, using our bias decomposition notation, juþ �j > juþ �j: If u (the bias due to omitting U) and �
(the bias due to omitting X) have the same sign, then this implies that for X to be bias reducing,

j�j > j�j: When u and � have opposite signs, the requirement is j�j > j2uþ �j:
Clearly, conditioning on X can be net bias increasing in cases where the bias due to amplifica-

tion, �, is relatively large. This can happen, for instance, when the randomized treatment assign-

ment is a strong predictor of actual contact via a get-out-the-vote message. However, conditioning

on X can be net bias increasing even when r2ZjX ¼ 0 (and, hence, �¼ 0) if the bias due to omitting U,

u, and the bias due to omitting X, �, have opposite signs and j�j < 2juj. In that case, because � has

an opposite sign to u but similar magnitude, it can be said to be masking (or canceling) u in equation

(2). In that case, the � is a “good” bias because it cancels with u, rendering the net bias of the

unadjusted estimator closer to zero than that of the adjusted estimator.
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That bias due to omitting a known covariate X can be “good” bias (because its exclusion masks
bias due to the unobserved confounder) is troubling because it implies that even when X is known
to be predictive of Y, including it in the conditioning set of covariates may increase overall bias. To
know whether removing � bias improves net bias or not, one must know something about u that is
not identified. In light of this observation, it is clear that none of the existing recommendations for
practice provide complete guidance on whether to condition on a covariate, or a set of covariates.

2.2 The Case of Two Sets of Conditioning Variables

In this section, we generalize the above results to the case in which we want to decide whether to
include all of the covariates in X in the conditioning set given that some of them will be included in
the conditioning set. Notationally, first partition the matrix of covariates such that X ¼ ½X1X2�.
Now assume that X2 will certainly be in the conditioning set and the question is whether to also
include X1 in the conditioning set. This is a very common situation. The results for bias amplifi-
cation are analogous to the prior case—we simply condition on X2 throughout the derivation. We
omit unnecessary detail.

The model can now be written

Y ¼ Ztþ X1�
y
1 þ X2�

y
2 þUzy þ ey; ð5Þ

where the U is independent of both X1 and X2. Omitting X1 from the conditioning set leads to

Bias½t̂YjZX2
� ¼ �� þ u�; ð6Þ

where u� �
�

1
1�r2

ZjX2

�
u likewise, �� � ð 1

1�r2
ZjX2

Þ�1 and r2ZjX2
is the R-squared in the regression of Z on

X2.
Including X1 in the conditioning set leads to

Bias½t̂YjZX1X2
� ¼ u� þ ��: ð7Þ

Here the net amplification bias, �� � ð
r2ZjX1X2

�r2ZjX2
1�r2

ZjX1X2

Þu�, is defined only slightly differently from � above

and the amplification factor can be written ð
1�r2ZjX2
1�r2

ZjX1X2

Þ. Here r2ZjX1X2
is the R-squared in the regression

of Z on X1 and X2.
So, conditioning on X is bias reducing when ju� þ ��j > ju� þ ��j:When u� and �� have the same

sign, the requirement is that j��j > j��j. When u� and �� have different signs, the requirement is that
j��j > j2u� þ ��j.

2.3 The Important Special Case of Fixed Effects

As mentioned above, pure bias amplifiers such as instruments can be particularly problematic
because there cannot be any benefit to removing � from the bias equation since � ¼ 0. In this
section, we derive the conditions in which fixed effects can be pure amplifiers—amplifying bias but
providing no net improvement in bias due to removing � bias.

To consider fixed effects under the rubric presented above, simply imagine X as a matrix of
indicator variables representing groups. We ignore additional covariates in this development, but

the results hold for that case as well. Starting from this point of view, the term � � ðZ0ZÞ�1Z0X�y in

equation (2) can be written � �
PK
k¼1

ðZ0ZÞ�1Z0Xk�
yk; where Xk is the column vector from X

associated with the kth dummy variable, and �yk is the corresponding coefficient for the k th group.
Now consider the case where fixed effects are pure amplifiers—when the term

� �
Pk
k¼1

ðZ0ZÞ�1Z0Xk�
yk ¼ 0. Trivially, this term can be zero if the terms �yk are all zero, that is, if

the fixed effects are instruments, but it can also be zero because the positive and negative terms sum
to zero. When might those positive and negative terms net out to zero? To develop an intuition,
consider a model for the treatment, Z,
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Z ¼
XK
k¼1

Xk�
zk þUzz þ ez; ð8Þ

where U is defined as above. Now make the assumption, for the sake of simplifying the exposition,

that Z has unit variance (in addition to having mean zero) and that the size of the K groups

(associated with the fixed effects) are equal and thus E½Xk� ¼ 1=K. Then, we might write for the

k th dummy variable

ðZ0ZÞ�1Z0Xk ¼
1

n
Z0Xk

¼ CovðXk;ZÞ ¼ E½XkZ� � E½Xk�E½Z�

¼ E½ðXkÞð
X
j

Xj�
zj þUzz þ ezÞ� � E½Xk�E½

X
j

Xj�
zj þUzz þ ez�

¼ E½ðXkÞ
X
j

Xj�
zj� þ E½ðXkÞðUzz þ ezÞ� � E½Xk�E½

X
j

Xj�
zj�

¼ E½ðXkÞðXkÞ�
zk� �

1

K

X
j

E½Xj�
zj�

¼ E½ðXkÞ��
zk �

1

K

X
j

1

K
�zj

¼
1

K
�zk �

1

K2

XK
j¼1

�zj:

ð9Þ

We rely on XkXk ¼ Xk and XkXj ¼ 0n, for j 6¼ k, as well as E½XkU� ¼ E½Xk ez� ¼ 0, above. Utilizing

the above, we have

� �
XK
k¼1

ðZ0ZÞ�1Z0Xk�
yk ¼

XK
k¼1

CovðXk;ZÞ�
yk

¼
XK
k¼1

1

K
�zk �

1

K2

XK
j¼1

�zj

 !
�yk

¼
1

K

XK
k¼1

�zk�yk �
1

K

XK
k¼1

�yk

 !
1

K

XK
j¼1

�zj

 !

¼ Ek½�
zk�yk� � Ek½�

zj�Ek½�
yk�

¼ Covkð�
zk; �ykÞ;

ð10Þ

where we use the notation Covk to denote that covariance is to be taken across the K groups.

Likewise, Ek is expectation across the K groups.
The derivation provides us with conditions in which fixed effects will be pure bias amplifiers.

When Covkð�
zk; �ykÞ ¼ 0, pure amplification obtains, but clearly there should be concern when this

condition is approximately met as well. One way to interpret this situation is that the group-level

structure in Y does not covary (or covaries extremely weakly) with the group-level structure in Z. In

other words, the average of the products of the group effects is zero.
If the expression in the last line of equation (10) can be estimated, then the fixed effects can be

avoided when they are pure bias amplifiers (or close to it). Unfortunately, the term cannot

be estimated unbiasedly, or even meaningfully bounded. To see this, examine Bias½�̂
y
� in (A.5)

in the online Supplementary Materials. Instead, the usual regression estimator �yk converges in

probability to
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�yk � �zkðZ0Z� Z0X½X0X��1X0ZÞ�1Z0Uzy: ð11Þ

Asymptotically, then, a quantity that one might estimate is

Covkð�
zk; �ykÞ ¼ Covkð�

zk; �̂
yk
Þ

¼ Covk

�
�zk; �yk � �zkðZ0Z� Z0X½X0X��1X0ZÞ�1Z0Uzy

�
¼ Covkð�

zk; �ykÞ � Vkð�
zkÞðZ0Z� Z0X½X0X��1X0ZÞ�1Z0Uzy

¼ Covkð�
zk; �ykÞ � Vkð�

zkÞðuþ �Þ;

ð12Þ

where Vkð�
zkÞ represents the variance of the values of �zk. Because ðuþ �Þ may take on a potentially

wide range of values, equation (12) is not a useful estimator of equation (10).4

It is certainly plausible that the relationship between group effects for the treatment and outcome
are unrelated, net of controls. Since this cannot be determined empirically, a researcher must take
seriously the potential for this to occur. Moreover, even if fixed effects are not pure bias amplifiers,
they may be bias increasing due to bias unmasking. Thus, it is quite possible that including fixed
effects for groups will lead to increased absolute bias. The common rationale for including fixed
effects is that they “cannot hurt; often help” is not supported by this decomposition of bias
analysis.5 Moreover, emphasizing the choice between fixed and random effects as a bias versus
efficiency trade-off subverts an important consideration, which is bias increasing under the inclu-
sion of fixed effects in the presence of an unobserved confounder. While adjusting for group-level
confounding, the fixed effects approach potentially introduces the two types of bias characterized in
our decomposition.

3 Case Studies

3.1 Case Study I: The Effect of a Get-Out-the-Vote Intervention

In this subsection, we repurpose the data from a study of the effect of prerecorded get-out-the-vote
phone calls on voter turnout (Shaw et al. 2012) to illustrate the phenomenon of bias amplification.
Although the original study was a randomized experiment, we use the data to create a constructed
observational study.

In the original experiment, units were assigned to a condition that received a prerecorded tele-
phone message encouraging them to vote or to a “no message” condition. In 1597 precincts, ran-
domization was at the precinct level. In another 5838 precincts, households were randomly assigned
to treatment or control within precinct. We use the combined data file of 463,489 subjects.

Of interest in this study was the effect of contact, Z, on voter turnout, Y. However, individuals
who were actually contacted may be different from individuals who were not contacted in ways that
make them more likely to vote—for instance, they were less likely to have died or moved.
Therefore, naively regressing turnout on contact is likely to violate the selection on observables
assumption and thus yield a biased estimate of the effect of contact. Instrumental variables regres-
sion, using treatment assignment as the instrument, is the typical remedy in a situation like this with
randomized assignment to treatment and strong evidence that the only pathway between the
randomized assignment and the outcome is through treatment receipt. However, we are interested
in illustrating bias, so we do not use instrumental variables. And instead we make comparisons
between those contacted and those not contacted. Moreover, we construct a placebo test, using
turnout in prior elections as outcome measures. Since we know that contact in 2006 cannot affect

4That said, in a sensitivity analysis framework, then, estimates for Covkð�
zk; �ykÞ might be computed for posited values of

the bias term in equation (4).
5In work that supports this contention, Clarke (2009) concludes that despite some awareness of the potential for bias, the
common practice in political science is to include as many predictors as possible. The author does not specifically name
fixed effects in the admonitions and instead uses simulation studies to characterize absolute bias differences under
inclusion and exclusion of single predictors.
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the turnout in prior elections, the true treatment effect must be zero. Estimates that deviate from
zero thus reveal the bias inherent in the estimator.6

Within the context of our constructed observational placebo study, we can test whether two
types of variables act as bias amplifiers when included as covariates in the specified model. In
Section 3.2, we consider treatment assignment (an instrument for contact) as a bias amplifier. In
Section 3.3, we consider fixed effects for precinct as bias amplifiers. In both sections, estimates from
models that include the potential bias amplifier are compared to a simple regression of turnout on
contact to see which yields an estimate closer to the true parameter value of zero. If a model with
the potential bias amplifier yields an estimate that is further from zero, then this is evidence that the
potential bias amplifier caused a net increase in bias. Furthermore, because the causal parameter is
known to be zero, the constituent components of bias—�; u and �—are also identified. So for each
outcome, we can see if bias amplification is the cause of the net increase in bias.

3.2 Instrument as Bias Amplifier: Analysis and Results

Table 1, Panel A, shows the results for the analysis of the effect of conditioning on an instrument,
randomized treatment assignment, on bias.7

To describe the model specification, we refer back to model equation (1). Y is an ðn� 1Þ vector of
voter turnout indicators, Z is an ðn� 1Þ vector of indicators for contact, X is an ðn� 1Þ vector of
indicators of treatment assignment and U is the omitted confounder, assumed to have unit
variance. Each row of the table conducts the analysis for a different election. The column
labeled “OLS” presents the estimated coefficient on Z when regressing Y on Z only (OLS stands
for ordinary least squares). The column labeled “Inst.” presents the estimated coefficient on Z when
regressing Y on X and Z. The column “Diff” presents the difference between the two estimates
along with a bootstrapped standard error. In the columns labeled u, �, and �, the observed bias is
decomposed into constituent parts.

For the General Election 2004, the OLS estimate exhibits a bias of 0.138, whereas the model
controlling for treatment is much more biased at 0.478.8,9 The bias increase of 0.339 (an increase of
244%) is entirely due to bias amplification, �. That there is essentially no contribution to the bias
through � is expected given that instruments are known to be pure amplifiers. Not surprisingly,
then, the unadjusted estimator is better than one that adjusts for an instrument.

Results in Table 1, Panel A, from other election years show substantively similar results. As in
the case of the General Election 2004, adding the treatment indicator to the conditioning set of
covariates leads to increased bias. The increase in bias is attributable to bias amplification.

Results in Table 1, Panel B, repeat this analysis for models that include additional covariates
(turnout in prior elections) in the conditioning set. To describe this model specification, we refer
back to model equation (5). Y and Z are defined as in Panel A. X1 is the instrument, whereas X2 is an
ðn� kÞ matrix of indicators for turnout in k prior elections. For the General 2004 election outcome,
X2 included General 2002 turnout, General 2000 turnout, Primary 2004 turnout, Primary 2002
turnout, and Primary 2000 turnout. For the Primary 2004 election outcome, X2 included General
2002 turnout, General 2000 turnout, Primary 2002 turnout, and Primary 2000 turnout. The column
labeled “OLS” presents the estimated coefficient on Z when regressing Y on Z and X2. In the next
column, labeled “Inst.,” is the estimated coefficient on Z when regressing Y on Z, X2, and also X1.
The remaining columns give the difference between the two estimates and the bias decomposition.

Overall, the biases are smaller in Panel B. For example, in Panel A, for General 2004 the bias due
to omitting U, u, is estimated to be 0.140, or 14 percentage points. In Panel B, in contrast, the bias

6Another option would have been to use 2006 election turnout as the outcome and compare our observational estimates
to the experimental benchmark created by the instrumental variables estimate. The downside of this approach is that
this benchmark is itself noisy, making it more difficult to precisely partition the bias. We prefer using the sharp 0 of our
placebo tests as a comparison.

7For the data and replication files for all tables and figures herein, see Middleton (2016).
8The standard errors are so small as to suggest that the bias is measured with great precision.
9This is a tremendous amount of bias when one considers that the outcome is a binary, 0–1, outcome.
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due to omitting U, u�; is estimated to be 0.021 or 2 percentage points. This seems to suggest that the
prior vote history variables are themselves covariates that reduce bias in this example. However, we
note that 2.1 percentage points is still a substantively large bias. Moreover, the ratio ��

u� is similar to �
u

above; bias due to amplification, ��, is over 250% the size of the bias due to omitting U, u�.

3.3 Fixed Effects as Bias Amplifiers: Analysis and Results

Next, consider the implications for bias when adding fixed effects for precinct to the model speci-
fication. Table 2 presents these results. In Panel A, referring back to model equation (1), Y and Z
are defined as the turnout indicators and contact indicators, as above, whereas X is now an ðn� KÞ
matrix of dummy variable indicators for the K precincts.

Examining the results for 2004 election turnout, the fixed effects (FE) model is much more biased
than the model without fixed effects; when regressing Y on Z, only the estimate is 0.138, compared
with 0.272 when regressing Y on Z and X. The net increase in bias is 97%. Here again, the major
factor in the bias difference is bias amplification, �. Fixed effects are essentially pure bias amplifiers,
as evidenced by the fact that there is virtually no bias associated with omitting them (� ¼ 0:001).
We reiterate: group fixed effects have the potential to increase absolute bias by way of pure bias
amplification.

Results in Table 2, Panel A, from other election years show substantively similar results for
adding fixed effects to the model specification. Adding the fixed effects to the conditioning set of
covariates leads to increased bias due to bias amplification.

Panel B of Table 2 presents the analysis where additional covariates are included in the speci-
fication. Again, refer back to model equation (5) to see the model specification. Y and Z are
specified as in Panel A. Here, X1 is a matrix of dummy variables for precinct and X2 includes
the prior election turnout indicators as in Table 1, Panel B.

Results again show that fixed effects have amplified bias. Although the amount of bias starts off
lower for these models, the amplification factor is about the same, roughly doubling the bias of the
estimate.

Table 1 GOTV example with instrument as potential bias amplifier

A. No covariates OLS (SE) Inst. (SE) Diff (SE) � � �

General 2004 0.138 0.478 0.339 0.140 0.337 �0.002
(0.004) (0.004) (0.003)

General 2002 0.135 0.451 0.315 0.132 0.318 0.003

(0.005) (0.004) (0.004)
General 2000 0.131 0.451 0.32 0.132 0.318 �0.001

(0.005) (0.004) (0.004)

Primary 2004 0.094 0.285 0.192 0.084 0.202 0.01
(0.005) (0.004) (0.004)

Primary 2002 0.093 0.288 0.195 0.085 0.204 0.009

(0.004) (0.003) (0.004)
Primary 2000 0.113 0.37 0.257 0.109 0.261 0.004

(0.004) (0.004) (0.003)

B. With covariates OLS (SE) Inst. (SE) Diff (SE) �� �� ��

General 2004 0.017 0.077 0.06 0.021 0.056 �0.005
(0.002) (0.002) (0.002)

Primary 2004 0.025 0.062 0.037 0.017 0.045 0.008
(0.005) (0.003) (0.004)

Note: Results are displayed for estimates of the effect of the get-out-the-vote intervention on a number of pretreatment outcomes, thus
creating placebo tests. Column 1 reveals that linear regression results suffer from bias due to selection on unobservables. Column 2 displays
results from an extension of this analysis that could exacerbate the selection bias by including the indicator for the initial randomization,
which in this case acts as an instrument. The third column presents the raw difference between columns 1 and 2. The final three columns
decompose the bias into the constituent parts (see Sections 2 and 2.2).
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3.4 Case Study II: The Effect of Selecting a Disadvantaged Village Council President

In the previous case study, we demonstrated a situation where bias amplification resulted from
either adding an instrument or adding fixed effects to the conditioning set of covariates. This
amplification occurred whether or not there were additional conditioning covariates specified in
the model. In this section, we consider a case study that repurposes data from another study
(Dunning and Nilekani, 2013) to provide an example where bias amplification per se is not a
major concern but where fixed effects nonetheless lead to a large increase in net bias, as the bias
due to u is “unmasked.”

The original article examined the effect of having a village council president from a
disadvantaged group (scheduled cast or scheduled tribe) on programmatic spending in India. In
certain locations in India, council seats are reserved for disadvantaged groups on a rotating basis.
Villages were assigned to have a reserved seat by first creating a list of councils within each district
sorted by size of the population of the target disadvantaged group. Then, councils above a certain
cutoff had their presidencies reserved for a disadvantaged group. In subsequent elections, the list
was rotated so that a different set of villages had reserved seats. The original study capitalized on
the list rotation scheme to conduct a quasi-experimental study that compared cities just above the
cutoff to cities just below.

3.5 Analysis and Results

We reuse these data in a way not intended by the original study in order to induce confounding and
study the resulting bias. We induce confounding by using the entire data set, not just the quasi-
experimental pairs. Including data from all villages introduces confounding because villages higher
on the list are not valid counterfactual cases for those further down given that they were sorted by
the population of the disadvantaged groups.

Next, because outcome data exist for a time period before the assignment of the treatment, we
were able once again to conduct a placebo test, whereby the effect of the treatment on the outcomes
in a prior time period could be analyzed.10 As above, since the treatment cannot affect outcomes in

Table 2 GOTV example with set of fixed effects as potential bias amplifier

A. No covariates OLS (SE) FE (SE) Diff (SE) � � �

General 2004 0.138 0.272 0.134 0.137 0.135 0.001
(0.004) (0.004) (0.004)

General 2002 0.135 0.257 0.123 0.129 0.128 0.006

(0.005) (0.004) (0.005)
General 2000 0.131 0.257 0.126 0.129 0.128 0.002

(0.005) (0.004) (0.004)

Primary 2004 0.094 0.172 0.077 0.087 0.086 0.007
(0.005) (0.003) (0.005)

Primary 2002 0.093 0.174 0.081 0.087 0.086 0.006

(0.004) (0.003) (0.004)
Primary 2000 0.113 0.217 0.104 0.109 0.108 0.004

(0.004) (0.004) (0.003)

B. With covariates OLS (SE) FE (SE) Diff (SE) �� �� ��

General 2004 0.017 0.037 0.02 0.018 0.019 �0.001
(0.002) (0.001) (0.002)

Primary 2004 0.025 0.037 0.011 0.018 0.019 0.007
(0.005) (0.002) (0.005)

Note: The columns are otherwise similar to those in Table 1.

10We examined the “effect” of seats reserved in the 2007 election on outcomes from 2006. We also limited the data set to
those villages that did not have a reserved presidency in 2005–2006 election years.
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the past, the true value of the parameter is known to be zero. Estimates from the data can be
compared to the true benchmark of zero and deviations from zero can be considered evidence of bias.

Our analysis compared models with and without fixed effects for district for each of a number of
outcome measures. The estimates from the two models can be compared to see which is closer to
the true parameter value of zero. If the fixed effects model is further from zero, then this is evidence
that fixed effects cause a net increase in bias.

The outcome measures reflect seven government programs. Table 3 provides the names of the
programs. Outcomes are measured in thousands of rupees for the first five outcomes and in number
of latrines for the last two.

Table 3 presents our results. Again, referring back to the model in equation (1), Y is an ðn� 1Þ
vector of expenditures (or number of latrines for the last two outcomes), Z is an ðn� 1Þ vector of
indicators for treatment assignment (reserved council presidency), and X is an ðn� kÞ matrix of
indicators of district (taluk). In Panel A, Table 3, the column labeled “OLS” gives the estimated
coefficient on Z when regressing Y on Z only. The column labeled “FE” gives the estimated coef-
ficient on Z when regressing Y on Z and X.

Results in Panel A of Table 3 show that in three of seven cases (Ashraya, Latrines, and
Community Latrines), fixed effects appear to be moving estimates in the direction of zero. In
two other cases (Indira Awaas Yojana (IAY) Scheme and Ambedkar), the estimates are moving
away from zero but only slightly so. In the case of the Mahatma Ghandi National Rural
Employment Guarantee Act (MGNREGA) the result is a tossup, with bias moving from 0.5 to
�0.5 with the addition of the fixed effects.

Table 3 Village council presidency example with fixed effects

A. No Covariates OLS (SE) FE (SE) Diff (SE) � � �

Ashraya 3.4 0.4 �3.0 0.4 0.1 3.0
(2.6) (1.9) (2.8)

IAY 33.4 �34.0 �67.5 �30.0 �4.1 63.4

(12.4) (8.9) (9.5)
Ambedkar �0.6 �0.8 �0.2 �0.7 �0.1 0.1

(0.6) (0.8) (0.2)

MGNREGA 0.5 �0.5 �1.0 �0.5 0.0 1.0
(3.5) (2.7) (1.0)

Water Infrastructure 0.3 �10.2 �10.5 �9.0 �1.2 9.3

(3.9) (4.0) (2.6)
Latrines �12.3 �5.7 6.7 �5.0 �0.6 �7.3

(5.8) (5.3) (4.0)

Community Latrines 0.2 0.1 �0.2 0.0 0.0 0.2
(0.2) (0.1) (0.1)

B. With Covariates OLS (SE) FE (SE) Diff (SE) �� �� ��

Ashraya 1.1 1.5 0.4 1.3 0.2 �0.3
(1.7) (2.2) (1.8)

IAY �5.9 �10.0 �4.0 �8.9 �1.1 2.9
(7.5) (6.8) (5.4)

Ambedkar �0.8 �1.6 �0.8 �1.5 �0.1 0.6

(0.8) (1.5) (0.8)
MGNREGA �0.3 �0.6 �0.3 �0.6 0.0 0.3

(3.6) (3.2) (0.7)
Water Infrastructure 1.8 �4.1 �5.9 �3.6 �0.4 5.4

(3.5) (2.8) (1.8)
Latrines �5.1 �1.8 3.4 �1.6 �0.2 �3.6

(5.0) (5.5) (3.3)

Community Latrines 0.1 0.2 0.1 0.2 0.0 �0.1
(0.2) (0.2) (0.1)
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In the case of the Water Infrastructure, however, the fixed effects estimate is much further from
zero compared with the unadjusted estimate (0.3 compared with �10.2). The bootstrapped
standard error suggests that this is a statistically significant difference.

In the last three columns of the table, the observed biases are decomposed into constituent parts:
the bias due to the unobserved confounder (u), the bias due to amplification when controlling for X
(�), and the bias due to omitting X from the conditioning set (�). In decomposing this bias in the
case of Water Infrastructure, we can examine what is happening; the bias due to omitting X is
roughly of the same magnitude as the bias due to omitting U, but they have opposite signs. When
neither X nor U are controlled for in the model, the two biases cancel. In this sense, � can be said to
be “good” bias, which is masking u in the unadjusted model. Bias amplification (�) plays a role,
albeit a smaller one, accounting for about 9% (�0.6/�6.7) of the move away from zero when going
from the unadjusted to the adjusted estimator.

Panel B of Table 3 shows the results for the model that includes several additional covariates in
the conditioning set. Referring to model equation (5), Y and Z are defined as in Panel A. X1 is a
matrix of dummy variables for district. X2 is an ðn� 7Þ matrix of covariates including village
expenditures for the year, village population, population of scheduled caste members, population
of scheduled tribe members, size of the literate population, and size of the working population.

The values in the OLS column of Panel B, Table 3, are the estimated coefficient on Z when
regressing Y on Z and X2. The values in the FE column are the estimated coefficient on Z when
regressing Y on Z, X1, and X2.

Results confirm the main finding for Water Infrastructure. Including fixed effects in the model
unmasks the bias due to U, u�, making the total bias worse than when fixed effects are not included
in the model.

Interestingly, results in Panel B also show that when controlling for these other covariates, X2,
fixed effects actually increase bias for six out of seven outcomes compared with two out of seven in
Panel A. That additional covariates, X2, can alter whether fixed effects help or hurt greatly com-
plicates the question of what to include in the conditioning set for practitioners.

4 A Sensitivity Analysis Framework

For the case studies that we have examined, we have identified situations where adding an instru-
ment or fixed effects to a set of conditioning variables increases bias. We can see this increase in bias
because we have constructed these studies as placebo tests, whereby the true parameter value is
known to be zero because the outcomes occurred before the treatment. However, our case studies
provide little consolation to practitioners who do not know the true value of the parameter. The
question we consider in this section is whether sensitivity analysis could be used to alert a practi-
tioner to the potential for increases in bias that we have demonstrated.

Sensitivity analysis has been proposed as a way to visualize the potential for an unobserved
confounder to bias results of an analysis (c.f. Rosenbaum and Rubin 1983; Imbens 2003; Clarke
2005, 2009). These approaches posit the attributes of an unobserved confounder, U (usually its
association with treatment Y and outcome Z), that would be sufficient (in addition to observed
confounders) to satisfy the selection on observable assumption. Then, they calculate the amount of
bias induced by failing to include U in the conditional set. Typically a full sensitivity analysis
repeats this exercise across a range of possible attributes for U and the results can be visually
displayed. If the estimated outcome changes very little except in the face of very extreme confound-
ing by U, the results are said to be insensitive to omitted confounder bias. Similar attributes of
observed covariates (e.g., their associations with treatment and outcome) can be used as bench-
marks to help understand the range of plausible attribute values for “typical” covariates in that
setting.

We modify for our purposes a new sensitivity analysis package available in R: treatSens
(Carnegie, Hill, and Harada 2014a, 2014b). The tool takes a dual-parameter approach similar to
that of Imbens (2003).

For a given combination of values of the sensitivity parameters (the coefficients on U in the Y
and Z models: �z and �y, respectively), an estimate of the treatment effect, �, can be generated by
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first drawing candidate values of U, denoted :U:, from the distribution implied by the sensitivity
parameters and then estimating the parameters of the model regressing Y on Z, X1, X2, and :U:

using OLS. Call the estimate of the coefficient on Z, t̂ðzz; zyÞ. An average of this parameter estimate
is taken across twenty draws of :U: to reduce the uncertainty associated with the random draws
from the distribution of U.

The algorithm proceeds by considering a range of possible values of �z and �y in a grid. Values of
t̂ðzz; zyÞ can be computed for each cell in the grid. The values in the grid can be represented on a
plot with axes �z and �y and contours drawn representing constant values of t̂ðzz; zyÞ.

Note that for a given contour, all of the bias terms in our equations are identified. Therefore, we
modify the sensitivity analysis currently available in the treatSens package to label each contour
in the grid with the values of u�; ��, and ��, which are themselves implied by the values of the
sensitivity parameters, �z and �y, in addition to t̂ðzz; zyÞ. Additionally, we place a contour
demarcating the area in which given fixed group effects would increase bias, rather than decreasing
it. This modification allows the user to identify whether the areas of the parameter space where bias
increases due to this addition represent manifestations of the unobserved variable U that are
plausible.

To calibrate the strength of the sensitivity parameters, we follow Imbens (2003) in plotting the
coefficient estimates on the (standardized) observed covariates, X2 in the framework of Section 2.2,
in the data.

In the next section, we present a sensitivity analysis plot for the voter turnout experiment.
Section C in the online Supplementary Materials presents a figure for village expenditures in India.

4.1 Sensitivity Analysis of GOTV Outcomes

The sensitivity analysis for the GOTV outcomes, in Figure 1, examines the potential for fixed effects
to bias the estimates for the effect of contact on General 2004 turnout, presented in Panel B of
Table 2.

In interpreting Figure 1, consider the point (0.1, 0.05). It falls approximately on the line labeled
tau¼�0.007. The figure implies that if zz ¼ 0:1 and zy ¼ 0:05, then the true effect would be about
�0.007. The line also provides the decomposed bias u ¼ 0:021; � ¼ 0:023, and � ¼ 0:003. From
this, we can conclude that if zz ¼ 0:1 and zy ¼ 0:05, then the bias of the estimator without fixed
effects, uþ � ¼ 0:024, is smaller in magnitude than the bias when adjusting for fixed effects,
uþ � ¼ 0:044. The figure also alerts us that the net amplification bias, �, is relatively large in
this case, being roughly 100% of the value of the omitted confounder bias, u, throughout the
figure. As a helpful summary, the dashed line represents the threshold separating the region
where fixed effects are bias increasing from the region in which the fixed effects are bias
reducing. Above and to the right of the line, fixed effects are bias increasing; for all other values
of �z and �y, the fixed effects are bias reducing.

The plus signs in the figure represent estimated coefficients on the (standardized) covariates, X2,
from the outcome and treatment models. As in Carnegie, Hill, and Harada (2014a) and Imbens
(2003) we interpret the plus signs as providing benchmarks that help the researcher assess the
plausibility of an omitted confounder with similar properties. For example, the mark furthest
from the origin, at about (0.03, 0.19), is plotting the coefficients on the (standardized) indicator
of turnout in the 2000 general election. One interpretation is that it is likely that the sensitivity
parameters corresponding to the omitted confounder could have properties similar to that of the
indicator for turnout in the 2000 general election. Reassuringly, Figure 1 indeed would have
provided a researcher with a warning to be wary of fixed effects for this data set.

5 Discussion

We have discussed the ways in which additional control covariates can increase bias, including bias
amplification and bias unmasking. This decomposition made apparent a special case of pure bias
amplification, in particular, when fixed effects amplify bias. The canonical example of a (pure) bias-
amplifying covariate in the literature to date has been instruments. However, we have shown that
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fixed effects can be pure bias amplifiers even though they do not act as instruments and even though

they absorb heterogeneity in (and are causally related to) the outcome. Since fixed effects are often

characterized as simply inefficient, rather than biased, in the econometric framework, the potential

for amplification has been obscured to date. We then presented a method of visualizing the con-

ditions under which fixed effects are bias increasing (either via unmasking or amplification) to guide

the researcher via a calibrated sensitivity analysis.
Our bias decomposition delineates two scenarios in which bias increases upon inclusion of par-

ticular covariates. In the case of amplification, the bias formulas provided in this article help us

better understand the circumstances under which covariates may act as bias amplifiers or bias

unmaskers. Examining � � ð
r2ZjX

1�r2
ZjX

Þu provides some reassurance that amplification may not be a

major concern in practice. It is only greater than the bias due to omitting U, u, when r2ZjX >
1
2. In

other words, X would have to account for more than half of the variability in the assignment

mechanism for amplification to have the bias to be as large as the bias due to the unobserved

confounder.11 Fortunately, r2ZjX is identified, a fact that should give us some idea of whether bias

amplification should be a particular concern.
However, concern over the phenomenon of bias unmasking should rival concern over bias

amplification. In the second case study, for example, the Water Infrastructure outcome reveals

that the bias due to omitting fixed effects, �, can be large, but of opposite sign and similar mag-

nitude compared to the bias due to the unobserved confounder, u. Omitting both the fixed effects

and the unobserved confounder was preferable to adjusting for the fixed effects precisely because

the two biases counterbalanced one another in the unadjusted estimate. In practice, a researcher is

unlikely to know whether adjusting for covariates will unmask unobserved confounder bias. Similar

observations have led to somewhat pessimistic assessment of observational analysis, for example, in

Clarke (2005) and Frisell et al. (2012) (but see also Clarke [2009]).
Sensitivity analysis when considering unobserved confounders has been previously considered

elsewhere (e.g., Imbens 2003; Clarke 2009; Carnegie, Hill, and Harada 2014a). We proposed an

important modification to sensitivity plots aimed at increasing the information available about the

potential for bias amplification. Plotting the bias decompositions (�, u, and �) on each of the

contours should help practitioners consider bias amplification and bias unmasking.
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Fig. 1 Sensitivity plot for Shaw et al. (2012) data.

11In the case where X is a matrix of dummy variables for group, this condition is equivalent to saying that the intraclass
correlation (ICC) is greater than 0.5.
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Although better study designs are always the best way to address concerns over the dangers
caused by failing to control for all potential confounders in observational studies, the reality is that
many questions of interest are difficult or impossible to study using randomized experiments. In the
absence of controlled or natural experiments, we need more tools to help applied researchers make
the best choices regarding how to perform their analyses. Thoughtful consideration about the
potential for bias amplification and unmasking should be part of this process. We hope that the
methodology presented in this article can assist the researcher and make these ideas more concrete
and fully contextualized.
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