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Abstract

A robust finding across research on early childhood educational interventions is that the treatment 

effect diminishes over time, with children not receiving the intervention eventually catching up to 

children who did. One popular explanation for fadeout of early mathematics interventions is that 

elementary school teachers may not teach the kind of advanced content that children are prepared 

for after receiving the intervention, so lower-achieving children in the control groups of early 

mathematics interventions catch up to the higher-achieving children in the treatment groups. An 

alternative explanation is that persistent individual differences in children’s long-term 

mathematical development result more from relatively stable pre-existing differences in their skills 

and environments than from the direct effects of previous knowledge on later knowledge. We 

tested these two hypotheses using data from an effective preschool mathematics intervention 

previously known to show a diminishing treatment effect over time. We compared the intervention 

group to a matched subset of the control group with a similar mean and variance of scores at the 

end of treatment. We then tested the relative contributions of factors that similarly constrain 

learning in children from treatment and control groups with the same level of post-treatment 

achievement and pre-existing differences between these two groups to the fadeout of the treatment 

effect over time. We found approximately 72% of the fadeout effect to be attributable to pre-

existing differences between children in treatment and control groups with the same level of 

achievement at post-test. These differences were fully statistically attenuated by children’s prior 

academic achievement.
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Fadeout in an Early Mathematics Intervention: Constraining Content or Pre-

existing Differences?

Early childhood educational interventions aim to provide children, often those who are 

economically disadvantaged, with essential skills for academic and school readiness. Many 

of these interventions have raised disadvantaged children’s academic achievement in the 

short-term. Unfortunately, a consistent finding across early childhood interventions targeting 

mathematics and other achievement-related skills that is that initial treatment effects fade 

over time, with children not receiving the intervention catching up to children who did 

(Bailey, Duncan, Odgers, & Yu, 2015; Currie and Thomas, 1995; Clements, Sarama, Wolfe, 

& Spitler, 2013; Leak, Duncan, Li, Magnuson, Schindler, & Yoshikawa, 2010; Puma et al., 

2010). Understanding the causes of this fadeout pattern may offer key insight into how to 

increase the persistence of early childhood educational intervention treatment effects. 

However, because the factors that likely lead treatment effects to diminish or persist over 

time – most notably children’s post-treatment skills and their post-treatment school 

environments – are seldom randomly assigned, the mechanisms underlying fadeout of the 

treatment effect on children’s achievement are not well understood.

The “Constraining Content” Hypothesis

The current study differentiates between two broad explanations of fadeout. First, a 

prominent explanation is that fadeout is attributable to school environmental factors that fail 

to successfully build on the skills children gained during the intervention. Early childhood 

educational interventions primarily target low-income children who, after the intervention, 

often enter lower resourced elementary schools with lower quality instruction (Crosnoe & 

Cooper, 2010; McLoyd, 1998; Pianta, Belsky, Houts, & Morrison, 2007; Stipek, 2004). 

Specifically, this means that many teachers may be unaware that some of their students have 

already mastered the material that they intend to cover in class (Sarama & Clements, 2015). 

Therefore, to ensure that all children receive basic skills training, elementary school teachers 

may not teach the kind of advanced content that children are prepared for after receiving an 

effective early mathematics intervention (Bodovski & Farkas, 2007; Crosnoe et al., 2010; 

Engel, Claessens, & Finch, 2013). Engel and colleagues (2013) found that most kindergarten 

teachers taught mathematics content at a level appropriate only for the lowest achieving 

students. Teachers reported spending more time on basic skills, such as counting and shape 

recognition, than any other skills, even though the majority of the children had already 

mastered these skills at school entry.

Taken together, these ideas suggest that a lack of exposure to advanced content may impose 

a ceiling on higher achieving children’s subsequent achievement trajectories. Thus, children 

who benefit from early mathematics interventions may experience flatter mathematics 

achievement trajectories in subsequent years. In contrast, children who did not receive the 
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intervention and thus enter kindergarten with low levels of early mathematics skills may 

benefit more from basic instruction and catch up to their higher achieving peers. We refer to 

this hypothesis for fadeout of treatment effects in early mathematics interventions as the 

constraining content hypothesis: although children’s school readiness skills may improve 

from high quality preschool interventions, elementary school instruction remains the same, 

thus constraining higher achieving children’s subsequent learning opportunities.

However, evidence for the constraining content explanation of fadeout is ambiguous. 

Inconsistent with a strong equalizing role of mathematics instruction implied by the 

constraining content hypothesis, gaps between socioeconomically advantaged children’s and 

socioeconomically disadvantaged children’s mathematics achievement scores do not 

undergo large changes during the school years in kindergarten and first grade (Downey, Von 

Hippel, & Broh, 2004). In this large correlational study, a standard deviation of SES was 

associated with 2.40 additional points on a mathematics achievement test on the first day of 

kindergarten. This gap grew by only .05 points per month during kindergarten and shrank by 

only .05 points per month during first grade. These associations between SES and growth 

rates were statistically significant in both grades, but were small compared to the initial SES 

gap and cancelled each other out.

One correlational analysis indicated that children who subsequently received higher quality 

instruction or lower class sizes showed less persistent positive effects of attending preschool 

than their peers with lower quality subsequent school environments (Magnuson, Ruhm, & 

Waldfogel, 2007). Most relevantly, a recent analysis using stronger experimental data found 

no evidence that treatment effects for two early childhood educational interventions were 

more persistent for children in higher quality kindergarten and first grade classrooms 

(Jenkins et al., 2015). Still, it remains possible that a large majority of early elementary 

mathematics instruction is aimed at a low enough level that children in control conditions of 

early intervention studies will catch up to their peers who received the treatment. Of course, 

the current study cannot address whether substantial improvements in the quality of schools 

would change the long-term effectiveness of early academic interventions. Thus, the focus of 

the current study is on the narrower question of whether fadeout of the treatment effects of 

an early mathematics intervention can be attributed to the low-level (and therefore 

constraining) content children encounter in their subsequent schooling.

The Pre-Existing Differences Hypothesis

As noted above, the constraining content hypothesis posits that fadeout is attributable to 

environmental factors that reduce the skill variation among treatment and control students 

after the intervention ends. Alternatively, fadeout might result from relatively stable 

differences between children that cause them to revert back to their previous individual 

achievement trajectories after an effective early childhood intervention. These factors likely 

include a combination of domain-general cognitive abilities, relatively stable academic 

skills, motivation, home conditions and other environmental conditions that vary between 

children, and other factors that affect children’s mathematics achievement across time.

One recent study provides empirical support for the pre-existing differences hypothesis. The 

authors found that relatively stable factors across development explained the correlations 
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among children’s mathematics achievement scores at different time points, as opposed to the 

unique effects of children’s previous achievement on their later achievement (Bailey, Watts, 

Littlefield, & Geary, 2014). However, both appeared to influence children’s mathematical 

development. If this is true, then children’s higher mathematics achievement at the end of an 

effective early mathematics intervention might subsequently drift to levels that would be 

predicted based on their pre-existing skills, motivation, and environmental conditions. Put 

differently, this work suggests that even though children’s skills are susceptible to early 

school-based intervention, their longer term mathematics outcomes are primarily influenced 

by factors that are outside the scope of early mathematics interventions, and thus will not be 

substantially altered by them. We refer to this hypothesis for fadeout of treatment effects in 

early mathematics interventions as the pre-existing differences hypothesis.

Indeed, a number of child characteristics that are not specifically targeted by early 

mathematics interventions also likely contribute to children’s mathematical development. 

These characteristics include family income (Duncan, Morris, & Rodrigues, 2011), and 

other aspects of children’s home environments (Blevins-Knabe & Musun-Miller, 1996; 

Levine, Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010), working memory (Geary, 

Hoard, Nugent, & Bailey, 2012; Szücs, Devine, Soltesz, Nobes, & Gabriel, 2014), attention 

(Zentall, 2007), beliefs and expectancies (Meece, Wigfield, & Eccles, 1990), motivation 

(Murayama, Pekrun, Lichtenfeld, & vom Hofe, 2013), and general intelligence (Deary et al., 

2007). If these factors generate most of the variance in individual differences in children’s 

later mathematics learning, effects of early childhood interventions that do not permanently 

affect these factors will decay over time.

The constraining content and pre-existing differences hypotheses generate different 

predictions about children’s subsequent achievement trajectories following the conclusion of 

an effective early mathematics achievement intervention. The constraining content 

hypothesis posits that a lack of advanced instruction in early schooling imposes a ceiling on 

higher achieving children’s mathematics learning. This ceiling will be present both for 

children whose skills were boosted by the intervention as well as control-group children 

with similar math skills to treatment-group children following the intervention.

The pre-existing differences hypothesis presumes that children in the control group with 

similar scores on the post-intervention assessment to children in the treatment group are 

advantaged on pre-existing differences, having reached the same level of achievement 

without the benefit of the effective early mathematics intervention. If this is true, the 

relatively high-achieving control students who enter kindergarten with similar mathematics 

achievement to their peers in the treatment group are predicted to experience greater 

achievement gains during the kindergarten year. We illustrate the conflicting predictions of 

the constraining content hypothesis and the pre-existing differences hypothesis in Figure 1.

The existence of fadeout does not imply that both of these hypotheses must be true. In 

principle, either factors that make children more similar after the intervention ends 

(specifically, the constraining content) or pre-existing differences between children could 

account for the entire fadeout effect. Based on prior research, we hypothesize that fadeout is 

attributable to some combination of these factors, but that the majority of the fadeout effect 
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can be explained by pre-existing differences between children influencing children’s long-

term mathematics outcomes.

We tested these two hypotheses using data from an effective early mathematics intervention 

with an initial treatment effect that faded out over time. Specifically, we compared children 

from the control group with similar post-intervention achievement scores to children in the 

treatment group, testing whether their subsequent learning trajectories differed.

Method

Participants

The current study used data from the Technology-enhanced, Research-based, Instruction, 

Assessment, and professional Development (TRIAD) intervention evaluation (Clements et 

al., 2011; Clements et al., 2013) designed to investigate the effects of an early mathematics 

curriculum tested in 42 low-resource schools across two sites. The intervention in the pre-

kindergarten year included the Building Blocks mathematics curriculum and professional 

development for teachers implementing the curriculum. Schools were rank-ordered on their 

school-wide standardized mathematics scores within each site, creating blocks with three 

schools with similar scores. They were then randomly assigned within block to one of three 

treatment groups: (1) pre-kindergarten only treatment; (2) pre-kindergarten to first grade 

treatment; (3) control condition. In pre-kindergarten, the two treatment groups received 

identical intervention, but in the pre-kindergarten to first grade treatment conditions, 

teachers had knowledge of the pre-kindergarten intervention and were provided with 

strategies to build upon that knowledge. Our primary analyses included children who were 

in the pre-kindergarten only treatment and the control condition, since the largest fadeout 

effect occurred between these groups.

Professional development for teachers in the treatment group was designed to inform them 

of the rationale for the instructional design of the curriculum’s activities, each of which were 

based on empirically supported developmental progressions for children learning 

mathematics. Children and teachers in the control group received alternative curricula that 

also included professional development1. Children were assessed immediately after the 

intervention and then one year later at the end of the kindergarten year. Our resulting sample 

included 396 children in the control group and 484 children in the treatment group who had 

valid mathematics achievement scores in pre-kindergarten and kindergarten for a total of 779 

children. Students came predominantly from low-income households: 85% of students 

qualified for free or reduced price lunch. Descriptive statistics for this sample are presented 

in Table 1.

Missing data—Only children with mathematics achievement scores at all three time points 

were included in the analyses. This requirement dropped 101 children who were missing 

scores at the end of kindergarten due to attrition. We used the Full Information Maximum 

Likelihood (FIML) procedure in Stata 13.0 to account for missing data (Enders, 2001). We 

1The Massachusetts and New York research sites used a different curriculum for the control group. For more detail on curricula in the 
control classrooms, see Clements et al. (2011).
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compared the descriptive statistics of covariates for the included and excluded sample and 

found that there were significant differences between the samples on end of pre-kindergarten 

mathematics achievement, age, literacy and language achievement scores, and whether the 

mother attended some college. This information is presented in Appendix Table A. As a 

robustness check and to ensure that our missing data strategy did not bias our final results, 

we alternatively used missing dummy variables in our models and found similar results. 

These analyses are included in Appendix Table B.

Our analyses referred to three different key time points: the pre-test is just before the start of 

the pre-kindergarten intervention; post-test is the end of pre-kindergarten in the spring; and 

follow-up is one year after the post-test in the spring of kindergarten. The curriculum 

produced substantial gains in the treatment group with an effect size of .72 (Clements et al., 

2011); this treatment effect persisted into the third year of the study, but the effect 

diminished over time (Clements et al., 2013).

Measures

Mathematics achievement—Children’s mathematics achievement was assessed using 

the Research-based Early Mathematics Assessment (REMA). The measure is validated and 

specifically designed for early mathematics (Clements, Sarama, & Liu, 2008). It contained 

two sections: Part A assessed children’s counting, number recognition, and addition and 

subtraction skills and Part B assessed children’s patterning, measurement, and shape 

recognition skills. This measure defined mathematics achievement as a latent trait using the 

Rasch model, which produced a score with a consistent metric that places children on a 

common ability scale (Bond & Fox, 2001; Clements et al., 2011; Linacre, 2005; Watson, 

Callingham, & Kelly, 2007). The Rasch model allowed for accurate comparisons of scores 

across ages and has been particularly useful for when pre-intervention scores differ between 

groups (Clements et al., 2011; Wright & Stone, 1979). Test items are ordered by difficulty, 

and testing is concluded after four consecutive incorrect answers.

Pre-existing differences—To test which pre-existing differences statistically attenuated 

matched control children’s higher follow-up scores, we included measures of socioeconomic 

status and academic skills as covariates. We describe these measures briefly here. For a more 

thorough discussion of these measures, see Sarama et al. (2012).

Socioeconomic status: Measures of children’s socioeconomic status included whether the 

child received free or reduced price lunch measured in the kindergarten year (dummy coded 

as 0 or 1) and mother’s highest level of education. For mother’s level of education, we 

created dummy coded variables indicating the highest level of formal schooling the mother 

attained: no high school, high school, some college, or college (with the mother attaining a 

high school diploma as the reference group).

Literacy skills: Language and literacy skills were included as measures of children’s 

reading achievement, which may directly influence students’ mathematics learning, and also 

serve as proxies for students’ more general cognitive skills. Literacy skills were measured in 

the spring of Pre-K with the Phonological Awareness Literacy Screening – PreK edition 
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(PALS – PreK; Invernizzi, Sullivan, Swank, & Meier, 2004) and MCLASS: CIRCLE 

(Landry, 2007)2. Both are commonly used literacy measures for early childhood programs, 

measuring recognition of upper and lowercase letters. We used standardized scores for these 

measures in all analyses.

Language skills: Language skills were measured in the fall of kindergarten with the 

Renfrew Bus Story – North American Edition (RBS; Glasgow & Cowley, 1994). This 

measure assessed oral language using narrative retell. The narrative retell required children 

to remember the key concepts of the story, know the meaning of the words representing the 

concepts to correctly use them in the retell, and understand the story structure to use the 

words and concepts in the appropriate sequence. Scores from this assessment provided 

indicators of aspects of children’s oral language, such as sentence length and complexity of 

utterances (Sarama et al., 2012). Trained coders transcribed and coded the responses based 

on three primary subtests: information, complexity, and sentence length. Three additional 

subtests included two inferential reasoning items and independence. The information subtest 

is scored by how many of the 32 concepts from the story the children used in their narrative 

retell. The complexity subtest is scored as the number of complex utterances used in 

children’s narrative retell. Sentence length is scored as the mean of the child’s five longest 

utterances. The inferential reasoning subtest asked children to answer two questions at the 

end of the assessment. Responses were scored based on the degree to which the child 

demonstrated causal reasoning, made reference to the story, showed evidence of empathizing 

with characters in the story, and showed evidence of practical and moral reasoning in the 

retell. The independence score is based on the amount of guidance or prompting the child 

needed from the test administrator to retell the story (Sarama et al., 2012). The raw score 

was then converted to a standardized score and a Rasch score. We used children’s Rasch 

scores in our analyses.

Schools—We controlled for unmeasured preschool and elementary school factors (e.g., 

quality) by including fixed effects for school random assignment block.

Analytic Strategy

The analysis plan involved comparing the treatment group to a subset of the control group 

selected by matching children with similar scores on the post-test assessment immediately 

following the intervention to test both the pre-existing differences and constraining content 

hypotheses. Each treated child was matched to a corresponding child in the control group 

who had a nearly identical post-test score, within a random assignment block3.

The reason we matched children on their post-test score was to induce differences between 

treatment and control groups on both observed and likely unobserved characteristics. This 

manufactured differences in mathematics achievement (e.g., pretest scores), along with 

2Language and literacy were measured after the intervention, and a previous analysis reported an effect of the intervention on 
children’s language skills (Sarama et al., 2012). Though this is not ideal, we note that any treatment effect on these covariates will 
make us less likely to find that children’s skills statistically attenuate post-test matched control children’s higher follow-up scores, as 
they will decrease measured skill advantages of matched control children over the matched treatment children.
3We use the user created module PSMATCH2 (Leuven & Sianesi, 2003) in Stata 13.0 to match children. Our results were robust to a 
variety of matching specifications displayed in Appendices C and D.
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socioeconomic factors, such as mother’s education and literacy. Because there was a 

treatment effect, the post-test matched controls were also higher achieving at the pre-test 

than the matched treatment children (see Figs. 1 and 2). Table 2 displays the means of the 

matched treatment and control groups.. All children had the same level of achievement at 

post-test since they were matched on scores at that time point, but children in the matched 

control group had higher average mathematics achievement at the follow-up.

We then were able to test whether students’ pre-existing differences explain fadeout by 

comparing the achievement of students in these matched treatment and control groups at 

follow-up. To test for the specific factors accounting for differences in these groups’ 

trajectories between post-test and follow-up, we regressed follow-up achievement on the 

matched group (matched treatment = 1; matched control = 0) and different sets of predictors, 

adjusting for child age at pre-test. If the constraining content hypothesis explained fadeout, 

there will be no differences between the matched treatment and control groups at follow up. 

This is because the instruction children receive following the intervention will similarly 

affect children in the control and treatment groups with the same level of achievement at the 

post-test.

We conceptualized the fadeout effect as a combination of two sets of factors:

1. Pre-existing differences (likely influenced by a combination of genes, 

early environments, and relatively stable home environmental conditions, 

although this cannot be directly tested in the current study), which differ 
between children in the treatment and control groups with the same level 

of achievement at the post-test, and would subsequently cause the matched 

control children to outperform the matched treatment children, and

2. the low level of mathematics instruction children receive following the 

intervention, which would similarly affect children in the control and 

treatment groups with the same level of achievement at the post-test.

The pre-existing differences hypothesis posits that the first set of factors accounts for the 

fadeout of early academic intervention effects, whereas the second explanation is a 

restatement of the constraining content hypothesis.

The logic and equations underlying the following calculations are displayed in Figure 2. To 

estimate the percent of variance attributable to stable factors that differ between children and 

factors that similarly affect children, we first estimated the fadeout effect. A major advantage 

of the measure of mathematics achievement used in the current study is that performance is 

characterized by a Rasch score, which allows us to directly compare scores across years. 

Thus, the fadeout effect can be calculated as the Rasch score achievement difference 

between the unmatched original treatment and control groups at the post-test minus the 

Rasch score achievement difference between the unmatched groups at the follow-up 

assessment. Then, we calculated the difference between the post-test matched control group 

and the post-test matched treatment group at the follow-up assessment. Finally, we divided 

the latter group difference by the total fadeout effect to estimate the proportion of fadeout 

attributable to pre-existing differences.
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To test whether subsequently aligned instruction reduced the proportion of fadeout explained 

by the constraining content effect, we replicated the analysis and matched group 

comparisons described above, comparing the control group to the second treatment group, 

who received the follow-through treatment.

As an additional test of predictions of the constraining content hypothesis, we replicated the 

analysis and matched group comparisons described above on children who performed above 

and below the median score at the pretest. If a ceiling imposed by the low level of instruction 

holds back the higher achieving students in both groups (depicted in Figure 1), two 

additional predictions follow:

1. Because the constraining content hypothesis predicts disproportionately 

negative effects for the highest achieving children, the effect of pre-

existing differences (depicted in Figure 2) will be smaller among the 

higher achieving children. Therefore, higher achieving, post-test matched 

treatment and control children will differ less from each other at the 

follow-up assessment than lower achieving, post-test matched treatment 

and control children. Pre-existing differences will advantage matched 

control children in both the higher and lower achieving groups; however, 

the highest achieving children of all – the higher achieving, post-test 

matched control children – will be hindered most by this low level of 

instruction to the extent that they learn the most difficult material to which 

they are exposed and lack opportunities to learn more difficult material. In 

contrast, the higher achieving, post-test matched treatment children may 

be hindered some by this ceiling, while lower achieving children from 

both groups will not.

2. The lower-achieving matched control group will catch up to the higher 

achieving matched control group between the posttest and the follow-up 

assessments. Indeed, the constraining content hypothesis, as depicted in 

Figure 1, predicts no fadeout during this developmental period unless 

lower achieving control children are catching up to the higher achieving 

treatment and control children4. The prediction unique to the constraining 

content hypothesis, though, is that the lower achieving control children 

will catch up to the higher achieving control children during this time 

(both hypotheses make the same prediction about lower achieving control 

children learning more than higher achieving treatment children).

To indirectly examine which pre-existing differences (SES, achievement related skills, 

preschool quality, or some combination) most contributed to fadeout, we estimated models 

represented by the following equations at the time of the follow-up assessment:

(1)

4We thank an anonymous reviewer for pointing this out.
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where AchievementiFollow–up is the math achievement of child i at the time of follow-up; 

MatchediPost–test is the child’s group (post-test matched treatment or control, with treatment 

coded as 1); Agei serves as a control variable for child age at first test administration at pre-

test5. ai is a constant and eit is an error term. b1, the difference between the matched control 

and treatment groups at post-test, is our key coefficient in all models.

In subsequent models, the covariates that attenuate the matched group difference are most 

highly correlated with the pre-existing differences that contribute to fadeout. We first tested 

the extent to which pre-existing differences in socioeconomic status attenuate the matched 

group difference in the following model:

(2)

where Childi and Familyi are child and family characteristics all measured prior to or at the 

time of pre-test. These characteristics include whether the child qualifies for free or reduced 

price lunch and mother’s level of education. Socioeconomic status is not an exogenous 

source of variation, so we were not able to estimate the effect of socioeconomic status per se 
on fadeout. However, this model allowed us to test how much the pre-existing differences 

that contribute to fadeout are associated with socioeconomic status.

Next, we tested how much children’s academic skills, including measures of literacy and 

language skills and children’s scores on the mathematics pre-test, attenuated the matched 

group difference:

(3)

where LiteracyiPost–test and LanguageiPost–test are the collection of literacy and language 

skills that child i has acquired as of the post-test in the fall of kindergarten. MathiPre–test 

represents children’s mathematics skills at the time of the pre-test6, before pre-kindergarten 

entry. Again, we do not consider these measures as exogenous; they probably also indicate 

individual differences in more general cognitive abilities, along with motivation, and may be 

influenced by the home environment as well. For these models we hypothesized that the 

coefficient on the matched group would be close to zero and that the coefficients on the pre-

existing differences, b2, b3, and b4 would have significant and positive effects for children in 

the matched treatment group. We estimated an additional model with preschool block fixed 

5While individual differences in age are perfectly stable and likely to influence individual differences in learning, especially early in 
development, children of different ages must be placed in the same classrooms for logistical reasons. Therefore, we statistically 
control for age in subsequent analyses to attempt to isolate the effects of pre-existing differences in more specific skills and 
environments that might contribute to fadeout.
6We also estimate models without controlling for children’s mathematics skills at the time of the pre-test. These results can be found 
in Appendix Table E.
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effects (Model 4; equation not shown). Standard errors have been adjusted to account for 

lack of independence from the block clustering of schools.

The final model we estimated is the following with the inclusion of all variables described 

above:

(5)

where BlockiPre–test represent fixed effects for preschool assignment block. We hypothesized 

that the matched group difference would be close to zero in this model.

Results

Matched Group Comparison

Figure 3 presents the trajectories of children in the treatment and control groups before 

matching. In the original, unmatched sample, children in the treatment group outperformed 

children in the control group at the post-test assessment (p < .001). This effect faded out but 

remained statistically significant at the follow-up assessment (p = 0.014).

Figure 4 presents the trajectories of children in the treatment and control groups after 

matching. In the matched sample, children in both groups performed identically at the post-

test assessment, and the matched control group significantly outperformed the treatment 

group at the follow-up assessment (p = 0.001). This pattern of results is consistent with the 

pre-existing differences model shown in Figure 1. This finding falsifies the constraining 

content hypothesis, which predicts that the fadeout effect is primarily due to school and 

classroom characteristics (i.e., instruction) that similarly affect children in the control and 

treatment groups with the same level of achievement at the post-test.

We calculated the fadeout effect based on the equation in Figure 2. As described above, the 

fadeout effect can be calculated as the Rasch score achievement difference between the 

unmatched original, complete treatment and control groups at the post-test minus the Rasch 

score achievement difference between the unmatched groups at the follow-up assessment 

((−1.86 – −2.27) – (−1.07 – −1.19), or .29; values displayed in Figure 3). This represents the 

treatment effect fadeout at follow-up from the original randomized trial (reported in 

Clements et al., 2013). Then, we calculated the difference between the post-test matched 
control group and the post-test matched treatment group at the follow-up assessment (−.90 – 

−1.11, or .21; Figure 4). This difference (minus the group difference at the post-test, which 

is 0, because the groups are matched for post-test mathematics achievement) is the part of 

the fadeout effect generated by pre-existing differences, as children began kindergarten with 

the same mean level of math skills but “induced” pre-existing differences in family and child 

factors. This analysis estimates how much these induced pre-existing differences at post-test 
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explain the divergence of the matched groups’ scores at follow-up, and thus estimates the 

effect of pre-existing differences on fadeout. Finally, we divided this matched group 

difference by the fadeout effect from the original treatment and control groups (.21/.29, or .

72). Using this calculation, we estimate that approximately 72% of the fadeout effect may be 

attributable to pre-existing differences between children in the treatment and control groups 

with the same level of achievement at the post-test. 7

Robustness Tests

Comparison with Follow-through Sample—We replicated the analysis and matched 

group comparisons described above, comparing the control group to the second treatment 

group who received the follow-through treatment. Group means before and after matching 

are displayed in Appendix Tables F and G. A similar pattern of results was observed, with 

successful random assignment before matching and a significant matched control group 

advantage at the pretest and follow-up assessments. These differences, along with the 

fadeout effect and the matched group difference at the follow-up, are displayed in Table 3. 

The matched group difference was similar to, but slightly smaller than the matched group 

difference in the treatment-control comparison described above (.16 vs. .21; Table 3), 

consistent with the hypothesis that pre-existing differences contributed to fadeout in both 

comparisons. The fadeout effect was also smaller in the treatment with follow-through vs. 

control comparison than in the treatment vs. control comparison (.22 vs. .29, Table 3). 

Therefore, the proportion of fadeout attributable to pre-existing differences was similar in 

the treatment with follow through vs. control comparison to the value observed in the 

treatment vs. control comparison (.73 vs. .72, Table 3).

Comparison within Higher and Lower Achieving Groups—We also replicated the 

analysis and matched group comparisons described above on children in the treatment and 

control groups who performed above and below the median score at the pretest. Group 

means before and after matching are displayed in Appendix Tables H and I. A similar 

pattern of results was observed in both groups (as with the previous two comparisons), with 

successful random assignment before matching and a significant matched control group 

advantage at the pretest and follow-up assessments in both higher and lower achievers. The 

treatment effects, follow-up differences, and fadeout effects after matching were very similar 

across achievement levels, shown in Table 3 and illustrated in Figure 5. Contrary to 

predictions of the constraining content hypothesis, the matched group difference at the 

follow-up assessment was actually larger among higher- than lower-achieving students (.24 

vs. .16, Table 3). Also contrary to predictions of the constraining content hypothesis, we did 

not observe evidence of the lower achieving matched control children catching up to the 

higher achieving matched control children in the period between the posttest and follow-up 

assessments: the matched higher achieving control children gained .98 Rasch score units 

between the posttest and the follow-up assessment, while the matched lower achieving 

control children gained .99 Rasch score units (Figure 5; Appendix Tables H and I).

7Note that this calculation is a rough estimate of proportion of fadeout due to preexisting differences because it is composed of 
fadeout estimates from the entire study sample and a matched subsample.
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Which Pre-Existing Differences Matter?

Table 4 displays the results of the regression models testing for which variables attenuate the 

difference between the matched treatment and control groups at the follow-up assessment. 

All models correspond to the equations written in the analysis plan above. Model 1 shows 

that adjusting for age the matched groups differed, and that age was positively related to 

children’s follow-up mathematics achievement. Older children had higher pre-test 

mathematics achievement scores, so older children in the control group performed more 

similarly to children in the treatment group at the post-test mathematics achievement 

assessment. The magnitude of the matched group difference was reduced by 29% after 

adding measures of socioeconomic status (Model 2). Qualifying for free or reduced price 

lunch was negatively associated with children’s achievement, while having a mother with a 

college education was positively associated with achievement. Compared to the baseline 

model, socioeconomic status explained an additional 6% of the variance in children’s 

follow-up mathematics achievement scores.

When we controlled for language, literacy, and mathematics achievement in Model 3, the 

group difference was reduced by 85% relative to the baseline model, and was no longer 

statistically significant. Compared to the baseline model, the achievement measures by 

themselves explained an additional 27% of the variance in children’s follow-up mathematics 

achievement scores. Thus, the fadeout effect seems to be largely explained by pre-existing 

differences correlated with children’s academic achievement.

Adjusting for preschool block in Model 4 yielded very similar results to Model 3; the 

matched group effect and parameter estimates for the achievement variables were very 

similar in both models, suggesting that public school quality was not driving the relations 

between the matched treatment and control difference and children’s later mathematics 

achievement. This model explained an additional 32% of the variance in children’s follow-

up mathematics achievement scores relative to the baseline model.

When socioeconomic status, language, literacy, mathematics, and preschool block were all 

included in the same model (Model 5), the difference between the matched groups was 

completely eliminated. Literacy, language, and mathematics scores and whether the child’s 

mother had a college education had statistically significant effects on children’s follow-up 

mathematics achievement. Taken together, these results suggest that factors related to 

children’s language, literacy, and mathematics scores accounted for much of the difference 

between the matched groups’ mathematics achievement at the follow-up assessment.

Discussion

In the present study, we sought to test both the constraining content hypothesis and the pre-

existing differences hypothesis to understand the processes underlying the fadeout of the 

treatment effect of an early mathematics intervention. We found that pre-existing differences 

contribute substantially to fadeout (Table 3; Figures 2, 4, and 5). Children in the matched 

control group outperformed children in the matched treatment group a year after the 

intervention’s end, and this difference was approximately 3/4 of the size of the fadeout 

effect. This suggests that pre-existing differences in children and their home environments 
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explain more of the fadeout effect than school environmental factors like generally low 

levels of classroom instruction. To the extent that groups were “under-matched” on their 

post-test mathematics achievement due to measurement error (see Shadish, Cook, & 

Campbell, 2002, p. 120), the treatment group’s true post-test mathematics achievement is 

higher than the control group’s, and the subsequent matched group trajectory difference (m2 

in Figure 2) is under-estimated. Therefore, our estimate may be an under-estimate of the 

proportion of the fadeout effect attributable to pre-existing differences between children. 

These results are not inconsistent with the possibility that the constraining content 

hypothesis explains some or all of the remaining fadeout effect.

There was less total fadeout in the comparison of the treatment group with a follow-through 

intervention, but the proportion of fadeout explained by pre-existing differences was almost 

identical in this comparison as in the comparison of the other treatment group to the control 

group. Thus, we did not find evidence that the follow-through intervention decreased the 

proportion of the fadeout effect attributable to the constraining content. Furthermore, the 

consistency of the effect of pre-existing differences among higher and lower achievers, along 

with the lack of catch-up by the lower achieving control children between the post-test and 

follow-up assessments ran contrary to predictions of the constraining content hypothesis.

The matched group difference at the follow-up assessment was almost fully eliminated after 

controlling for children’s literacy, reading, and mathematics achievement test scores, 

consistent with the hypothesis that individual differences in relatively stable achievement-

related skills are the primary influences on children’s mathematics learning across time. The 

current study does not allow us to identify which specific factors have the largest effects on 

children’s mathematics learning: for example, do individual differences in literacy per se 
influence children’s mathematics learning, or are they both influenced by domain general 

cognitive abilities and stable environmental factors, such as socioeconomic status? We 

speculate based on previous work that all of these factors matter, but our results speak only 

to the net importance of these relatively stable factors unaffected by early mathematics 

interventions for later mathematics learning: Even for groups matched on post-test 

mathematics achievement, subsequent mathematics achievement was strongly predicted by 

previous mathematics achievement (Table 4, Models 3–5). It is difficult to conceptualize 

how earlier mathematics achievement would directly impact later mathematics achievement, 

after matching on intermediate mathematics achievement. We cannot rule out the possibility 

of certain pathways through which this might happen; for example, if there are sensitive 

periods for the development of children’s motivation, then children’s mathematics 

motivation could be substantially impacted by their mathematical skills prior to preschool 

entry, independently of whether their skills are substantially boosted during preschool. 

However, the pre-existing achievement effects likely indicate the importance of pre-existing 

differences in skills and environments unaffected by the intervention for mathematics 

learning across development.

Implications for Research on Fadeout and Mathematical Development

Our study has important implications for future research on the mechanisms underlying 

fadeout and persistence of early childhood educational intervention effects. Primarily, the 
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current study highlights the importance of going beyond reporting changes in treatment 

effect sizes over time, and investigating patterns in well-defined groups of children’s post-

intervention trajectories to test specific hypotheses about why treatment effects decline post-

intervention. We are not the first to have made this point; for example, previous researchers 

have used longitudinal data analysis to demonstrate that fadeout of early mathematics 

intervention treatment effects is not attributable to decreasing achievement in the treatment 

group (Clements et al., 2013; Smith et al., 2012). However, the current study’s findings point 

to the usefulness of subgroup analyses for testing theories about learning and development.

Our results point to the importance of factors other than children’s immediately preceding 

mathematics achievement for explaining children’s mathematics learning. However, the 

exact set of skills and environments contributing to individual differences in children’s 

mathematics achievement across development is not fully understood. Correlational studies 

do not always include the same set of control measures, and include measures of cognitive 

skills, non-cognitive skills, and socioeconomic status that differ substantially in quality 

across datasets. We emphasize a need for further clarification of the mechanisms underlying 

the stability of individual differences in children’s mathematics achievement across time, 

along with an understanding of the malleability of these factors at different points in 

development.

Understanding the cognitive processes underlying pre-existing differences in children’s later 

mathematics achievement might have especially practical implications for educators. For 

example, perhaps children from the treatment and control groups, matched on their post-test 

achievement scores, differ in the depth and fragility of their mathematics knowledge. 

Children in the treatment group had steeper learning trajectories during the treatment period, 

on average. This may imply that their knowledge at the post-test is more recent, less 

consolidated, and therefore perhaps more prone to forgetting and interference (Wixted, 

2004) than the knowledge of post-test matched controls. If so, both additional practice and 

more explicit connections between previously and later learned material may help children 

to compensate for pre-existing differences putting them at risk for persistently low 

mathematics achievement.

The possibility of finding subsequent environments that might lead to the persistence of 

early treatment effects is appealing, and we encourage future work in this area. One 

condition that might lead to impact persistence is when subsequent environments are 

intentionally designed to build on knowledge children gain in a previous intervention: this 

follows from the idea that children’s learning trajectories should guide mathematics 

pedagogy (Clements & Sarama, 2004, 2014). Indeed, previously reported findings that 

children’s mathematics achievement remained somewhat higher in the Building Blocks with 

follow-through intervention condition than the group that only received Building Blocks in 

preschool (Clements et al., 2013) suggest the possibility that treatment effects of early 

interventions will persist longer when interventions are integrated with a curriculum 

designed to be cumulative across years.

However, because there was no group that received a cumulative curriculum without the 

initial treatment, we cannot test whether the professional development designed to facilitate 
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a cumulative curriculum moderated the treatment effect, produced a second treatment effect 

on its own, or both. Future work that re-randomizes children from the control group and 

treatment group into different types of subsequent environments would allow for a direct test 

of whether different types of subsequent environments contribute to treatment effect fadeout 

or persistence.

Implications for Practice

A practical implication of the present study is that subsequent higher-quality learning 

experiences from preschool into elementary may be necessary for children who received an 

early intervention to sustain their relative achievement advantages. In other words, 

interventions, which temporarily compensate for children’s pre-existing differences in skills 

and environments that put them at risk for persistently low achievement, may need to be 

sustained to produce lasting effects. However, there are trade-offs to intensive, sustained 

targeted interventions aimed at a specific population (e.g., children at risk for persistently 

low mathematics achievement) as opposed to universal interventions. Some have argued that 

targeted programs are less efficient than universal programs in that targeted programs may 

not reach all the children they seek to serve (Barnett, Brown, & Shore, 2004). The ideal 

policy decision depends on the costs and benefits associated with boosting only at-risk 

children’s achievement, compared with also typically achieving children’s achievement. We 

will not attempt a cost-benefit analysis here, but hope that an understanding of the 

mechanisms underlying fadeout might help inform practitioners about which programs and 

policies are likely to lead to the most persistent effects on children’s mathematics 

achievement.

We stress that we are not arguing that schools do not matter. Improving school quality, 

across schooling, may improve academic achievement for all children, regardless of their 

previous math achievement. Further, even if early mathematics intervention may be 

insufficient for demonstrating substantial long-term mathematics achievement gains, it may 

still be necessary (Bailey et al., 2014).

Limitations & Future Directions

The current study has several limitations that should be addressed. First, our results apply to 

the observed range of environments – changes in school quality mean or variance could 

change these estimates. For example, perhaps greatly improved schooling would 

substantially decrease the magnitude of fadeout. Indeed, Jenkins’ and colleagues’ (2015) 

failure to find moderation of treatment effect persistence by school quality also relied on 

existing variation in school quality for disadvantaged children, and is subject to the same 

criticism. Certainly, to the extent that it would be economically feasible, we support policies 

that would raise school quality to levels that fall outside of the existing range for 

disadvantaged children in the U.S.

Second, our sample included a somewhat homogenous group of children, as the TRIAD 

intervention was aimed at improving the mathematics achievement and learning of children 

in low-resource communities who were at risk for persistently low levels of achievement. It 

is possible that in a more representative sample, a different proportion of fadeout (possibly 
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more) would be attributable to pre-existing differences. Additionally, we found significant 

differences between children who remained in our sample throughout the study time period 

and those who attrited before the kindergarten follow-up assessment. Because we matched 

all treatment children to control children based on post-intervention mathematics skills, 

differential attrition in the treatment group may bias our results. As shown in Appendix A, 

attrited treatment group children were more disadvantaged than those who remained in our 

analysis sample. Therefore, our results may underestimate the proportion of fadeout due to 

pre-existing differences.

Because of the possible non-representativeness of the schools and children in the current 

study, we encourage others to test the generalizability of our findings by replicating our 

analysis across different interventions, samples, and age groups. The analysis requires a 

dataset with at least three time points (pre-test before the intervention, post-test immediately 

following the intervention, and follow-up assessment sometime after); there must be an 

initial treatment effect, and this effect must have faded out over time; and the outcome 

measure must not show a ceiling effect at the follow-up assessment (a measurement artifact 

that would create the illusion of a constraining content effect). Ideally, the assessment given 

at the post-test and follow-up should be on the same scale, which allows for the estimation 

of a fadeout effect and pre-existing differences effect (Figure 2) on the same scale.

Finally, as noted above, our measures of pre-existing differences are heavily focused on prior 

achievement and skills. We did not have any measures of time-varying differences in 

children’s family experiences (e.g., job loss) that may have contributed to mathematics 

achievement learning trajectories. A better understanding of exactly which pre-existing 

differences contribute to the stability and change in individual differences in children’s 

mathematics achievement over time and the malleability of these factors has important 

implications for theories and practice related to children’s mathematics learning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Predicted Trajectories for Treatment and Higher Achieving Control Children Based on 
the Constraining Content and Pre-existing Differences Hypotheses
The gray line in the left panel represents an artificial ceiling imposed by the low-level 

content of instruction, which constrains the later trajectories of children in the treatment 

group, according to the constraining content hypothesis. The gray line in the right panel 

represents the trajectory the treatment group would have been predicted to follow, had they 

not received treatment, according to the pre-existing differences hypothesis. The key 

difference between the two hypotheses is that the pre-existing differences hypothesis 

predicts that the groups will differ in their trajectories following the post-test, whereas the 

constraining content hypothesis predicts that the groups will have similar trajectories.

Bailey et al. Page 21

Dev Psychol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Graphical Representation of Calculations of the Fadeout Effect and Effect of Pre-
Existing Differences
The first graph in the left panel displays differences between the treatment and control 

children before they were matched. The difference between the treatment children and 

control children at post-test (represented by t1) is larger than the difference at follow-up 

(represented by t2). The fadeout effect is can be found by taking the difference between the 

two time points. The second graph in the right panel displays the trajectories of children’s 

achievement once they have been matched. Children who were matched to be in the control 

group outperformed children who were matched to be in the treatment group. The difference 

between the two groups at follow-up (represented by m2) is the effect of children’s pre-

existing differences. The proportion of the fadeout effect attributable to pre-existing 

differences can be calculated by dividing the effect of pre-existing differences by the fadeout 

effect.
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Figure 3. Observed Mathematics Achievement Trajectories of the Intervention Groups before 
Matching on Post-Test Mathematics Achievement
The graph above displays the mathematics achievement trajectories of the children in the 

treatment and control groups before they were matched. Children in the treatment group 

outperformed the children in the control group at post-test and follow-up. + p<.10; * p<.05; 

** p<.01.
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Figure 4. Observed Mathematics Achievement Trajectories of the Intervention Groups after 
Matching on Post-Test Mathematics Achievement
The graph above displays the mathematics achievement trajectories of the children in the 

treatment and control groups after they were matched. Children in the matched control group 

outperformed children who were matched in the treatment group. Groups had the same level 

of achievement at post-test because they were matched on scores at that time point. + p<.10; 

* p<.05; ** p<.01.
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Figure 5. Observed Mathematics Achievement Trajectories of Pre-Test Split Intervention Groups 
after Matching on Post-Test Mathematics Achievement
The graph above displays the mathematics achievement trajectories of the children above 

and below the pre-test median score in the treatment and control groups after they were 

matched. For both achievement level subsets, children in the matched control group 

outperformed children who were matched in the treatment group at the follow-up. Groups 

within each achievement level had the same level of achievement at post-test because they 

were matched on scores at that time point.
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