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As calls are made for reasoning-and-proving to permeate school mathematics, several textbook 
analyses have been conducted to identify reasoning-and-proving opportunities outside of high-
school geometry. This study looked within geometry, examining six geometry textbooks and 
characterizing not only the justifications given and the reasoning-and-proving activities expected 
of students but also the nature of the mathematical statements around which reasoning-and-
proving takes place. The majority of reasoning-and-proving exercises focused on particular 
mathematical statements, whereas the majority of expository mathematical statements were 
general in nature. Although reasoning-and-proving opportunities were numerous, it remained 
rare for reasoning-and-proving to be made an explicit object of reflection. 

Background 
Mathematicians and mathematics educators are calling for reasoning-and-proving2 to become 

a central component of the mathematical experiences of students (Hanna, 2000; Stylianou, 
Blanton, & Knuth, 2009). One argument behind this call is that reasoning-and-proving is integral 
to the discipline of mathematics and thus an essential piece of an “intellectually honest” (Bruner, 
1960) mathematics education. Such a perspective is reflected in the mathematical practices of the 
Common Core State Standards for Mathematics (2010), which include abstract reasoning, the 
construction of viable arguments, and the critique of others’ reasoning. Another argument for the 
inclusion of reasoning-and-proving throughout the school mathematics curriculum is that, by 
reasoning through and proving mathematical results, students can develop deeper conceptual 
understanding of mathematical ideas as well as greater procedural fluency (de Villiers, 1995; 
Dreyfus, 1999; National Council of Teachers of Mathematics, 2009). 

In the United States, however, reasoning-and-proving has not been ubiquitous in school 
mathematics but has traditionally been confined to a single geometry course in high school 
(Herbst, 2002). To document this current landscape and to prepare the way for a more 
comprehensive treatment of reasoning-and-proving, researchers have recently been studying the 
opportunities that exist for reasoning-and-proving in curriculum materials other than geometry. 
Kristen Bieda (personal communication, January 18, 2011) is in the process of coding a variety 
of elementary-level textbooks and Stylianides (2009) has examined an NSF-funded middle 
school series. At the high-school level, Davis (2010) explored an integrated textbook series and 
Senk, Thompson, and Johnson (2008) analyzed non-geometry courses, such as algebra, advanced 
algebra, and precalculus, from six different textbook series. Davis found that 12% of the 
problems in a particular integrated textbook related to reasoning-and-proving. Senk and her 
colleagues found this number to be only 6% in the textbooks they analyzed, even though their 
analysis focused on the chapters where reasoning-and-proving seemed most likely to occur. 
Senk, Thompson, and Johnson noted that the exposition sections of non-geometry textbooks 
gave more attention to reasoning-and-proving than the exercises; nevertheless, 40–50% of the 
stated mathematical properties were left unjustified. 

In this study we contribute to the efforts described above by characterizing the nature of 
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reasoning-and-proving opportunities in geometry textbooks themselves. Although we agree with 
the premise that it is important to understand the current state of reasoning-and-proving outside 
of geometry as efforts are undertaken to integrate reasoning-and-proving into those domains, we 
would add that it is equally important to understand reasoning-and-proving opportunities in 
geometry, where they are most plentiful. In other words, we should strive to understand and 
reflect upon the way we are handling reasoning-and-proving in geometry so that we may inform 
the process of expanding it to other courses and grade levels. 
 

Analytic Framework 
All of the curriculum analyses cited above have focused on the types of reasoning-and-

proving activities that students are expected to perform, presenting data on how often students 
are asked to notice patterns, make conjectures, test conjectures, or develop arguments. Although 
many of the documented difficulties that students have with reasoning-and-proving (see Harel & 
Sowder, 2007, for a review) may be attributed to insufficient opportunity to engage in such 
practices, it also seems to be the case that students have fundamental misunderstandings of 
reasoning-and-proving, even after significant exposure. For example, Chazan (1993) found that 
some geometry students do not understand what has been proven by a deductive argument. 
Soucy McCrone and Martin (2009) reported on students, also from geometry, who viewed the 
purpose of proof to be the mere application of recently learned theorems, similar to the way in 
which recently learned formulas are applied in subsequent student exercises. 

We employ the necessity principle as an interpretive frame to make sense of these 
phenomena and to guide our analysis. The necessity principle (Harel & Tall, 1989) is a standard 
for pedagogy that involves presenting subject matter in a way that encourages learners to see its 
intellectual necessity, “[f]or if students do not see the rationale for an idea, the idea would seem 
to them as being evoked arbitrarily; it does not become a concept of the students” (p. 41). The 
fact that many students do not understand the role of reasoning-and-proving in mathematics and 
view it as being required of them arbitrarily (Tinto, 1988) is evidence that the necessity principle 
is being violated with respect to reasoning-and-proving. Furthermore, the well-documented 
overreliance on empirical forms of argumentation (Harel & Sowder, 2007) suggests at least two 
possibilities: (a) students do not recognize the limitations of empirical reasoning or the 
intellectual necessity of deductive reasoning, or (b) students recognize the need for deduction but 
lack the resources or capabilities to successfully develop such arguments and so give an 
empirical argument rather than leave an item blank. If the latter is the case, then it is important to 
continue examining the opportunities that exist for students to engage in various reasoning-and-
proving activities. But if it is the former, we must push further and consider whether or not those 
reasoning-and-proving activities are necessitating deductive reasoning. 

With these considerations in mind, we developed our analytic framework by building upon 
past frameworks (particularly Senk et al., 2008) with the addition of a dimension for the 
mathematical statement around which the reasoning-and-proving activities are taking place. In 
particular, we distinguish between general and particular mathematical statements (see Figure 1). 
Our rationale is that general statements intellectually necessitate deductive forms of reasoning 
because empirical means cannot establish truth for an infinite class of objects. Thus, having 
students engage in reasoning-and-proving around general mathematical claims has the potential 
to better satisfy the necessity principle than particular mathematical claims. (This also happens to 
better align with the disciplinary practices of mathematicians.) We do not mean to imply that all 
reasoning-and-proving opportunities should be around general statements or that there is no 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

348



 

benefit to exercises of a particular nature; we are simply arguing for the value of including this 
dimension when examining reasoning-and-proving opportunities in textbooks. 
 

Type of Statement Definition Examples 

General A statement made about an infinite 
class of mathematical objects or an 
infinite number of mathematical 
situations. 

(1) All isosceles triangles have 
congruent base angles. 
(2) Any lines l and m that are 
perpendicular to the same line n are 
parallel to one another. 

(3) Let a, b, and c be natural 
numbers. Then ab+c = ab0ac. 

Particular A statement made about a single 
or finite number of mathematical 
objects or situations. 
 

 
 
Note: A particular statement may be 
easily translated into a general statement, 
as in (2) to the right which may be 
reinterpreted as a statement about any 
such overlapping segments. This 
awareness of generality is non-trivial, 
however, and thus statements such as (2) 
remain categorized as particular. 

(1) In the given diagram, angle 
ABC has a measure of 65 degrees. 

 
(2) If PR = QS, then PQ = RS. 

 
(3) If 2x+y=10 and y=4, then x=3. 

Figure 1. General and particular mathematical statements. 
 

Method 
This study focused solely on stand-alone high-school geometry textbooks and so did not 

include analysis of geometry units within integrated textbooks. The six textbooks included in our 
analysis were CME Geometry (CME Project, 2009), Glencoe McGraw-Hill Geometry (Carter, 
Cuevas, Day, Malloy, & Cummins, 2010), Holt McDougal Geometry (Burger et al., 2011), Key 
Curriculum Discovering Geometry (Serra, 2008), Prentice Hall Geometry (Bass, Charles, Hall, 
Johnson, & Kennedy, 2009), and UCSMP Geometry (Benson et al., 2009). These were chosen to 
overlap series as much as possible with previous analyses (i.e., Senk, Thompson, & Johnson, 
2008) so that comparisons would be possible. The six included series together span nearly 90% 
of the U.S. high school population (Dossey, Halvorsen, & Soucy McCrone, 2008). 

Within each chapter of the six student edition textbooks, we randomly selected for analysis a 
minimum of 30% of the canonical sections (i.e., not special exploration or technology 
investigation sections). Additionally, chapter review exercises were coded for each chapter as a 
representation of the textbook authors’ own identification of key ideas. This process resulted in 
an actual sampling of 44% of sections across the textbooks, totaling 285 sections and 12,468 
exercises. Within the sampled sections, both exposition and student exercises were coded by the 
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authors using the framework in Figure 2. Double-coding was performed on a 20% sample of the 
included sections yielding 95% agreement on statement-type and 91% agreement on 
justification-type within exposition sections, and 92% agreement on statement-type and 93% 
agreement on activity-type within student exercises. 

 
 Exposition Student Exercises 
 Properties, Theorems, 

or Claims 
Related to Mathematical 

Claims 
Related to Mathematical 

Arguments 

Mathematical 
Statement or 

Situation 

• General 
• Particular 

• General 
• Particular 
• General with particular 

instantiation provided 

• General 
• Particular 
• General with particular 

instantiation provided 

Expected Student 
Activity 

 • Make a conjecture or 
refine a statement 

• Fill in the blanks of a 
conjecture or statement 

• Investigate a conjecture 

• Develop a mathematical proof 
• Develop a rationale or non-

proof argument 
• Outline a proof or develop a 

proof given an outline 
• Fill in the blanks of an 

argument or proof 
• Evaluate or correct an 

argument or proof 
• Find a counterexample 

Type of Justification 
(or environment for 

exploration) 

• Deductive 
• Empirical 
• Outline 
• Past or future 
• Left to student 
• None 

• Deductive (explicit) 
• Empirical (explicit) 
• Implicit 

• Deductive (explicit) 
• Empirical (explicit) 
• Implicit 

 • Statements about 
reasoning-and-proving 

• Exercises about reasoning-and-proving 

Figure 2. An analytic framework for reasoning-and-proving in geometry textbooks. 
 

Results 
As shown in Table 1, student exercises involving reasoning-and-proving were much more 

prevalent in geometry textbooks than in even the most reasoning-and-proving focused units of 
non-geometry or integrated high-school textbooks. CME contained the most reasoning-and-
proving exercises with nearly 38% falling into at least one of the reasoning-and-proving activity 
categories from Figure 2. The other geometry textbooks ranged from approximately 20% to 27% 
of exercises related to reasoning-and-proving. 
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Table 1. Percent of student exercises involving reasoning-and-proving. 

Textbook Series 
Geometry Non-Geometry 

No. of Exercises 
Analyzed 

Reasoning-and-
Proving (%) 

No. of Exercises 
Analyzed 

Reasoning-and-
Proving (%) 

CME 1058 37.8 -- -- 
Glencoe 2730 24.3 2117a 3.7a 
Holt 2531 23.6 2042a 3.7a 
Key Curriculum 1489 26.7 916a 8.0a 
Prentice Hall 2479 19.5 2446a 5.6a 
UCSMP 2181 27.6 1739a 6.2a 
Core Plus -- -- 1114b 12.3b 

a Senk, Thompson, & Johnson (2008). 
b Davis (2010) differed from the other studies in this table by including patterns as reasoning-and-proving. 

 
The types of reasoning-and-proving activities expected of students are presented in Table 2. 

In four of the books, 13–15% of the reasoning-and-proving exercises (or 3–5% of the total 
exercises) involved students developing a mathematical proof. In two books, CME and Glencoe, 
such items comprised 25% and 28%, respectively (or approximately 7% of the total). The most 
common reasoning-and-proving activities were to investigate a statement (i.e., determine the 
truth-value of a mathematical claim) and to develop a rationale (i.e., to explain or justify an 
answer or result in a manner that is not necessarily a proof). 
 

Table 2. Nature of reasoning-and-proving activities expected of students. 

Textbook Series 
Type of Activity by No. of Reasoning-and-Proving Items (%) 

Develop a 
Proof 

Develop a 
Rationale 

Find a Counter-
example 

Investigate a 
Statement 

Make a 
Conjecture 

Other 

CME 25 36 7 45 16 3 
Glencoe 28 48 4 30 17 5 
Holt 13 42 4 39 8 16 
Key Curriculum 13 52 26 42 20 6 
Prentice Hall 15 54 1 46 19 11 
UCSMP 14 44 3 36 14 5 

Note: Rows sum to more than 100% because exercises often involved more than one activity. “Other” includes fill-
in-the-blanks of a proof, provide or argue from a proof outline, and evaluate a given proof. 
 

Table 2 does not answer the question, what sorts of mathematical claims do students have 
opportunities to reason about or prove? Figure 3 depicts the percentages of reasoning-and-
proving exercises that involved a general mathematical statement. This graph excludes general 
statements for which a particular instantiation was provided to the student, because in such cases 
the student may reason about the given object as they would any particular object without 
realizing the general implications (as was found by Chazan, 1993). Figure 3 compares the 
percentages of general statements in exercises with the percentages in textbook exposition. 
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Figure 3. Nature of mathematical statements in exposition versus student exercises. 
Most reasoning-and-proving exercises involved particular mathematical statements. In 

Glencoe, Holt, and Prentice Hall, approximately two-thirds of the reasoning-and-proving 
exercises were of a particular nature. In UCSMP, the number is 58%. CME and Key Curriculum 
had lower percentages of particular-type exercises—52% and 48%, respectively—but even in 
these textbooks, general statements were used in less than half of the reasoning-and-proving 
exercises. In textbook exposition, on the other hand, at least 66% of the statements containing a 
mathematical claim or result were of a general nature, with most textbooks falling above 70% 
(see Figure 3). Expository statements of a particular nature were especially infrequent in Key 
Curriculum and UCSMP, but were noticeably present in Glencoe (26%), Holt (24%), and 
Prentice Hall (20%). These particular statements that did appear in the exposition were almost 
always in the form of “worked examples.” From this perspective, particular statements 
essentially appeared in exposition only when the textbook authors were modeling the behavior of 
students, for whom reasoning-and-proving exercises around particular statements are common. 

Finally, we note results with respect to statements and exercises about reasoning-and-proving 
(see Table 3). For example, an exposition section may note that a deductive argument builds 
upon definitions or previously proved theorems, or an exercise may ask a student to write about 
the process of proof by contradiction. Within the 285 coded sections (out of 653 total sections), 
there were only 98 statements that made reasoning-and-proving an explicit object of reflection, 
and nearly half of these were found in a single book, UCSMP. Of the 12,468 coded exercises, 
only 67 asked students about the reasoning-and-proving process (as opposed to asking them to 
engage in that process). Therefore, although we saw in Table 1 that reasoning-and-proving is 
relatively common in geometry textbooks, opportunities are rare even in geometry to step out of 
the process and reflect on the core mathematical practice of reasoning-and-proving. 
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Table 3. Reasoning-and-proving not as an activity but as an object of discussion or reflection. 

Textbook Series 
No. of 

Statements about 
Reasoning-and-Proving 

No. of Exercises 
about Reasoning-

and-Proving 

Percent of 
Total Exercises 

Analyzed 
CME 13 4 0.38 
Glencoe 8 17 0.62 
Holt 15 17 0.67 
Key Curriculum 14 13 0.87 
Prentice Hall 7 2 0.08 
UCSMP 41 14 0.64 

 
Discussion 

In this paper, we have presented top-level results of an investigation of the reasoning-and-
proving opportunities in six different high-school geometry textbooks. Even in geometry, the 
traditional home of reasoning-and-proving, students were asked to develop a mathematical proof 
in less than 7% of the textbook exercises, and statements or questions about reasoning-and-
proving as a mathematical practice were rare. The most common reasoning-and-proving 
activities were to provide a rationale (not necessarily a proof) and to determine the truth-value of 
a mathematical claim. Interestingly, students were expected to make judgments about truth much 
more frequently than they were expected to provide deductive arguments—the disciplinary 
process by which truth is established. With respect to the prominence of rationale exercises, one 
might contend that an “explain” prompt provides students with an opportunity to develop a proof 
because a key function of mathematical proofs is explanation (de Villiers, 1995). However, the 
question remains: Do students realize that a proof would be an effective response to an “explain” 
exercise? Answering this question would take us beyond the realm of textbook analysis. 

The necessity principle (Harel & Tall, 1989) implies that it would be beneficial to help 
students recognize the intellectual need for deductive forms of reasoning by, for example, 
providing them with opportunities to reason around general mathematical claims for which 
empirical arguments falter. Our analysis has revealed that the majority of reasoning-and-proving 
exercises in geometry textbooks are around particular, not general, mathematical statements. In 
exposition sections, on the other hand, the majority of mathematical statements are general in 
nature. This discrepancy may shed light on such phenomena as geometry students believing that 
proof is merely an application of recently learned theorems (Soucy McCrone & Martin, 2009), 
because indeed students are applying the theorems presented in exposition sections to prove 
things about contrived, particular situations, or geometry students believing that mathematical 
knowledge is created by others and not themselves (Schoenfeld, 1988), because indeed the most 
significant mathematical results are general in nature and likely found in textbook exposition. 

Pursuing these potential connections requires further research, and one might be skeptical of 
the merits of this course of study. Perhaps it is necessary for key results to be explicated in 
exposition sections so that they may be officially established in the classroom canon. Moreover, 
one could argue that it is necessary to provide students with numerous particular statements to 
prove because practice is essential and there are not enough relevant general statements to allow 
for this practice. In response to these points, we would again cite the research literature which 
shows that the status quo of reasoning-and-proving in geometry is not producing the student 
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outcomes the mathematics education community hopes to see. Yes, it is important to establish 
important results into a collective space, but it is also important to reflect upon how the process 
of establishing those results may influence students’ notions of who is capable of generating 
mathematical knowledge. Yes, it is important to allow students to practice reasoning-and-
proving, but it is also important to consider whether the nature of the practice we afford them 
aligns with actual mathematical practice. In the end, our goal is for students to have success with 
reasoning-and-proving but also to see its intellectual necessity and value. 
 

Endnotes 
1. This work was supported by a grant from the College of Natural Science at Michigan State 

University. We thank Kristen Bieda and Sharon Senk for their insightful feedback. 
2. We join Stylianides (2009) in hyphenating reasoning-and-proving to emphasize the 

inseparability of the reasoning process that leads to a proof and the resulting proof product. 
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