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This paper describes a model for building cognition-and-instruction-based goal trajectories (GT) in the
context of a study that examines the validity of curriculum-embedded assessments. The model consists of
six design processes and two constraints. The GT is constructed from curriculum-specified learning goals
as well as developmental progressions and learning trajectories derived from empirical research. The GT
is designed to inform both the selection of assessment activities for data collection and the interpretation
of empirical results. Two primary results of the design process are presented: (a) a goal trajectory for
promoting algebraic understanding and (b) the relationships between the trajectory and features of the
Common Core State Standards. Implications of the design model for building GTs that can be used to
assess student reasoning are discussed.
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Introduction

Learning trajectories are constructs designed to approximate variability and change in student
knowledge states over time. They are domain-specific and therefore relate to understanding and reasoning
in a particular domain such as algebra, geometry, place value, and rational number (e.g., Clements &
Battista, 2000; Clements, Wilson, & Sarama, 2004; Confrey & Maloney, 2010; Daro, Mosher, &
Corcoran, 2011; Fuson, 1998; Griffin, 2009; Simon, 1995; Simon & Tzur, 2004). With optimal design,
learning trajectories can be used to support formative assessment processes that include connecting
observed student performances to domain-referenced (e.g., “student x is distance y from expected ‘expert’
performance levels”) and individual-referenced (e.g., “student x is distance y from expected student x
performance levels given what the teacher understands about the knowledge states of student x’) ways of
acting (Cowie & Bell, 1999). Thus, if a trajectory reveals a diagnostic range of student understanding that
a teacher or student is likely to encounter it may provide a basis for instructional responses that promote
learning.

Most learning trajectories are designed to directly inform learning and instruction. Indeed, the goal
trajectory (GT) concept described here is based upon the well-established idea of the learning trajectory,
but the GT serves a different purpose which is to make the otherwise implicit models of learning
progressions in a math curriculum explicit, an express priority for researchers interested in tracing student
knowledge states in the context of a math curriculum. The present paper describes a model for building a
GT and explicates its utility for evaluating the variation and growth of mathematical understanding and
reasoning in the contexts of particular curriculum-embedded assessments in K—6 math curricula. The
research is situated in the context of a larger study designed to address some of the most pressing problems
of classroom assessment practice, and is aimed at strengthening the linkages among assessment design,
instruction, and student learning.

The current notion of the GT incorporates elements of the developmental progressions that partially
compose typical learning trajectory constructs (e.g., Fuson, 1997; Griffin, 2009). Elsewhere, cognition-
and-instruction-based design methods have been designed for “forward engineering” a mathematics
curriculum (e.g., Clements & Battista, 2000). By contrast our GT serves a purpose of principled
retrospective evaluation that is focused on the embedded assessments in an existing mathematic
curriculum.

Thus, the current approach to formulating a goal trajectory will be most useful to researchers and
practitioners that work in situations where an instructional sequence is present (i.e., in a “scope and
sequence”) but where a developmental progression—as defined by empirically and theoretically grounded
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models of learning—is implicit. The approach consists of six primary design processes: (a) Define the
design product, (b) Specify the purpose of the product, (c) Identify the features of the design product,

(d) Evaluate, (e) Update, and (f) Classify the features. To illustrate these design processes, we focus on the
goals that comprise the algebraic reasoning strand of the standards-driven curriculum, Everyday
Mathematics (EM; Bell et al., 2007).

Method: Six Design Processes and Model Constraints

Our curriculum-and-instruction-based model for building a goal trajectory has six design processes
and two design constraints (see Figure 1). The processes are cognitive activities that are either expressed
by an individual or distributed across several people and media.

a. Define Goal Trajectory as the Design Product

The first process, Define the Design Target, refers to activities in which the researcher or evaluator
articulates what will be designed. In the present case we sought to design a GT that modeled variability
and growth in knowledge states in and over time for fifth-graders learning how to reason algebraically in
the context of a specific math curriculum. We wanted the GT to be a cognitive model with cognitive units
at a level of specificity described by the curriculum. Additionally, we wanted the GT to have properties
such that it could be used to estimate variability and growth through its different “levels.”

b. Specify the Purpose of the Goal Trajectory

The second process, Specify the Purpose, refers to activities in which the researcher or evaluator
specifies the aim of the design product. It addresses the question, “Why do we need or desire to design
such a product (i.e., the GT)?” In the present case, the purpose of designing a GT that models variability
and growth in student knowledge states in and across time was to help us (a) select curriculum-embedded
activities, and (b) interpret student performance on the selected assessments. The GT is an important tool
in our investigation of the cognitive, instructional, and inferential validity of curriculum-embedded
assessments. Thus, in the current situation the purpose was pragmatic. However, in other cases the design
product can have empirical, pragmatic, and/or theoretical considerations.

c. Identify the Features of the Goal Trajectory

The third process, Identify the Features of the Goal Trajectory, operationalizes the elements of the
design product. In the present situation the features were cognitive units and properties of the GT. As
mentioned earlier we were concerned with preserving the level of cognitive specificity described by the
curriculum. In the context of Everyday Mathematics (EM), the cognitive units were tied to the learning
goals such as Use patterns to find basic facts and Use rules to complete function tables/machines. The
learning goals comprised the Patterns, Functions, and Algebra (PFA) learning strand in the Grade 5 EM
curriculum. Another feature was the ordinal property of the GT. Our intent was to design a GT with
ordinal levels that could approximate variation in student performance and growth in cognitive complexity
over time.

d. Evaluate Process Outcomes

As shown in Figure 1, the fourth process in the model, Evaluate, serves at least two functions. One is
to evaluate the agreement between the purpose of the design product (i.e., process b) and its features
throughout progress in the design cycle. For example, given the purpose of the design (see section b.
Specify the Purpose), selecting cognitive units at the larger grain sizes of learning strands (e.g.,
measurement, number, or geometry) or content threads (e.g., patterns and functions, algebraic notation and
solving number sentences, or properties of the arithmetic operations) would not have given the GT the
necessary power to model cognitive variability in or among students. At those levels the GT would only
describe two knowledge states: haves and have-nots. Therefore, it was critical to evaluate each feature of
the GT with this constraint in mind.

A second function of the Evaluate process is to assess the extent that the design features and the
method for assigning them into meaningful levels of the GT is viable given the model’s design constraints
which are explained below. The dashed circular path indicates that (a) the outcomes of two related
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processes are cross-evaluated (e.g., outcomes of processes ¢ and f) and (b) the decision to move forward
with the design depends on the balance of that cross-evaluation; if the balance is positive (i.e., consistent
with the scope of the model) then advance, if negative (i.e., inconsistent with the scope of the model) then
the model needs to be updated (process e).

f. Classify Learning Goals

to Levels of Goal “Generalize key features
Trajectory | ------= > of goal trajectory from
Empirical Curriculum learning goals”
“Are objects and Model " . Model
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Figure 1. Model of goal trajectory design processes with examples

e. Update

The fifth process, Update, serves to make process outcomes consistent with the model or make the
model consistent with process outcomes. If an evaluation of two process outcomes reveals an
inconsistency (e.g., a learning goal defined as a feature of the GT does not “fit” into a level of the GT),
then one or both of those outcomes will need to be updated. In this example a decision may be made to
modify a trajectory level, a decision may be made to expand the trajectory by adding a level; or a decision
may be made to modify the learning goal. If the two evaluated outcomes are related to processes ¢ and f,
then it may also be necessary to evaluate the outcome of process b. This particular chain of evaluations
may support a decision to update the purpose of the design (e.g., the GT is useful for selecting embedded
assessments but not for interpreting student performance). The cyclic iterations between Evaluate and
Update processes can be one, few, or many in the actual design cycle. Indeed, the model is referred to as a
design “cycle” because it is not linear in a strict sense. It is important that researchers or evaluators
engaged in the design cycle keep careful records of the model’s development from initial conception to
final design. In our project we write reports that trace the nature of the design cycle as it unfolds.

Once the learning goals were identified in the curriculum and extracted, we met with the curriculum
developers to evaluate (a) the extent that our search for PFA learning goals was exhaustive, (b) our
understanding of the curriculum layout, and (c) the degree that the level of learning goal information we
decided to use at that point in our design would enable us to build the desired GT. Indeed, our in-depth
curriculum analysis revealed several layers of learning goal information. In its early stages, our GT
referenced information from all of these layers. However, based on discussions with the curriculum
developers we updated the model to include only a single source of learning goal information, the Grade-
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Level Goals Chart. Our rationale for this decision was that the Grade-Level Goals Chart highlights the
units in which the Grade 5 PFA learning goals are introduced. Using the Grade-Levels Goal chart as our
point of reference we were able to “see” the concepts and skills that encompassed the Grade 5 curriculum
over time. This satisfied a demand of our model (i.e., build a GT whose levels express ordinal relations)
and we were ready to enact the sixth design process.

f. Classify Features into Levels of the Goal Trajectory

The sixth design process in our model for building a goal trajectory is Classify. To classify means to
abstract a smaller set of cognitive constructs from the learning goals that approximated the major forms of
reasoning in the trajectory. The Grade-Level Goals Chart yielded 38 PFA learning goals across the 12
units of the Grade 5 curriculum. The goals were organized into seven general levels of reasoning that were
scheduled to be introduced in the PFA trajectory. In effect, the Classify process “collapses™ all related
learning goals across task demand (e.g., recall vs. recognition) and external representation format (e.g.,
base-10 blocks vs. arrays) resulting in a general set of learning goals and a manageable GT. Notice how
Figure 1 indicates that the Classify process is constrained by two sources of information: (a) prior research
in developmental psychology, cognitive psychology, and mathematics education on the development of
and variability in algebraic reasoning (i.e., the “Empirical Model”), and (b) the instructional sequence of
key concepts and skills as outlined by the curriculum (i.e., the “Curriculum Model”). As depicted in Figure
1, the resulting learning trajectory was subjected to an Evaluate-Update Cycle before final approval.

Learning Goal Trajectory for Understanding Patterns, Functions and Algebra

The result of the design processes in the current case is the Patterns, Functions, and Algebra (PFA)
goal trajectory shown in Table 1. The design processes revealed that the general PFA goal trajectory for
acquiring algebraic thinking was implicitly characterized by EM as growth from none or very little
understanding of patterns, to identifying and using patterns, to formalizing patterns as a means for solving
problems, to generalizing rules from patterns and sequences, to formalizing rules in notational, graphical,
and tabular formats, to finally being able to reason with and about variables. The organization of the
trajectory was consistent with a growing body of research in cognitive science and mathematics education
which suggested that algebra acquisition could be defined by cognitive growth along a multi-path
continuum of reasoning with patterns and sequences, generalizing rules from patterns and sequences,
representing functions among rules, patterns, and sequences, and formalizing variables to think about
functions (Carraher & Schliemann, 1992; Kaput & Blanton, 1999; Moss & McNabb, 2011; Smith &
Thompson, 2007; Warren & Cooper, 2008).
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Table 1: Goal Trajectory for Understanding Patterns, Functions and Algebra

Level of Understanding

Examples

Abstract Algebraic Functions
(Represent functions using
words, algebraic notation,
tables and graphs; represent
patterns and rules using
algebraic notations; translate
from one representation to
another; use representations to
solve problems involving
functions)

Use a variable to represent unknown quantities to solve
problems

Represent an algorithm as a general pattern with variables
Solve linear equations with one unknown and multiple
operations using trial-and-error or equivalent equation
strategies

Solve problems involving functions using representations;
including translating from one representation to another

Algebraic Functions
(Represent functions using
words, symbols, tables and
graphs; use those
representations to solve
problems)

Represent functions using algebraic notations

Use representations of function(s) in tables and graphs to
solve problems

Use patterns, tables and graphs to define relationships
between volumes of 3D solids or between radius and area;
Represent rates with formulas, tables and graphs

Function Rules

(Describe and/or write rules for
functions involving the four
basic arithmetic operations; use
rules to solve problems)

Identify and use patterns in graph coordinates to match graphs
with situations

Use patterns to identify the relationship between numerators
and denominators; use patterns to identify relationships
between fractions and decimals

Generate rule for comparing, ordering fractions

Describe the patterns in an area model

Use rules to complete function tables/machines

Use words and symbols to extend patterns/ to describe the
operations of Addition, Subtraction, Multiplication and/or
Division and/or create/use rules to solve problems

Numeric Pattern Rules

(Use words or symbols to
create and/or describe rules for
numeric patterns; use rules to
extend patterns and solve
problems)

Use words and/or symbols and/or arithmetic notation and
extend patterns to describe geometric rules

Use and describe patterns to find sums

Describe number patterns related to exponents and/or use
them to solve problems

Numeric Patterns
(Identify, use, expand,
describe, or create numeric
patterns)

Complete number sequences

Use patterns to find basic facts

Describe and extend patterns among facts and their extension
Identify and/or use patterns in skip counting

Count in Equal Intervals

No Understanding of
Patterns

Not able to complete number sequences or count in equal
intervals

Relationships Between the PFA Goal Trajectory and the Common Core State Standards

In addition to being consistent with empirical models of growth in algebraic reasoning, the trajectory

also aligned with the mathematical content domains and practices outlined by the Common Core State
Standards (CCSS) in several interesting ways. First, the Grade 5 EM trajectory for understanding patterns,
functions, and algebra embodies two Grade 5 CCSS content domains: Operations and Algebraic Thinking

Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.

Articles published in the Proceedings are copyrighted by the authors.



Curriculum and Related Factors: Research Reports 46

(OA) which focus on writing and interpreting numerical expressions and analyzing patterns and
relationships and Number and Operations in Base 10. Second, the Grade 5 goal trajectory relates to these
CCSS content domains across Grade 2, Grade 3, and Grade 4 but the mathematical foci (i.e., “clusters™)
vary among the grades. For example, whereas the CCSS Grade 5 OA domain has two relevant clusters that
focus on (a) writing and interpreting numerical expressions, and (b) analyzing patterns and relationships,
the CCSS Grade 3 OA domain has four clusters that emphasize (a) representing and solving multiplication
and division problems, (b) understanding properties of multiplication and the relationship between
multiplication and division, (c) multiplying and dividing using strategies (e.g., 8 X 4 = 32 therefore 32 + 4
= 8) and properties of operations, and (d) solving for unknown quantities that involve the four operations
in addition to identifying and explaining arithmetic patterns. Aspects of the goal trajectory also map onto
features of the Grade 6 CCSS content domain, Expressions and Equations, which includes clusters that
focus on (a) applying and extending what is understood about arithmetic to algebraic expressions, (b)
reasoning about and solving one-variable equations and inequalities, and (c) representing and analyzing the
relationships between dependent and independent variables.

Besides aligning with the CCSS mathematical content domains, we also found the goal trajectory to be
well-aligned with the CCSS mathematical practices; that is, the various habits of mind that mathematics
instructors are expected foster in their students such as constructing viable arguments and reasoning with
others, modeling with mathematics, using appropriate tools strategically, and attending to precision. There
are various mathematical practices that map onto particular levels of the goal trajectory. For instance, take
Use a variable to represent unknown quantities to solve problems, taken from the sixth level of
understanding in the goal trajectory, Abstract Algebraic Functions (Table 1). The level of understanding
relates to the CCSS mathematical practice that indicates variables are used to solve problems because they
can help make sense of quantities and relationships. This mathematical practice implies that variables have
greater utility than as simple tools for identifying or recalling answers. A second example of the alignment
between the trajectory and the mathematical practices described by the CCSS can be found if one looks at
Complete number sentences in the Numeric Patterns level of understanding in the goal trajectory. The
latter is related to the CCSS mathematical practice that promotes the capacity to seek and use structure to
describe and extend facts and patterns. The implication is that engaging students in practices that give
them opportunities to identify the structure of number sequences should lead to efficient pattern
identification strategies that can be applied across different task situations.

Discussion

A six-process model for building curriculum-and-instruction-based goal trajectories for cognitive
research and instructional assessment was proposed. We instantiated the processes of the model in the
context of our work with the Patterns, Functions, and Algebra learning strand in the Grade 5 Everyday
Mathematics curriculum. The design processes yielded a unique representation of the goal information that
was already represented—albeit, “hidden”—in the organization of the curriculum. Interestingly, the
representation that we constructed as the PFA goal trajectory was quite different from the representation of
that information as presented by the curriculum.

Re-Presentations of Curriculum-Embedded Goal Structures

Cognitive psychologists have reliably shown that different representations of equivalent information
can vary in the way that they preserve information, and this in turn can yield differential affordances for
accessing and utilizing the same information (e.g., Larkin & Simon, 1987; Palmer, 1978; Zhang &
Norman, 1994). An evaluation of the model proposed in this paper indicates that the benefits of the
constructed GT are the result of the aforementioned representational effect (Nickerson, 1988; Zhang,
1997). Indeed, the GT affords fresh and important insights into student understanding that expand upon
what is available from the Everyday Mathematics curriculum materials, while also remaining faithful to
the curriculum by basing the GT on the curricular learning goals and instructional materials. For one, the
goal trajectory allows us to predict and account for a wider range of student performance on an activity
than what is usually estimated by the curriculum, because the curriculum-based representation is typically
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limited to dichotomous evaluations of student performance such that student performance either reflects
evidence of goal acquisition or it does not. A second benefit of the PFA goal trajectory is that it makes it
possible to interpret student performance in terms of the cognitive constructs that are relevant to a
particular domain in the contexts of the curriculum and scientific progress. Thus, the goal trajectory
affords greater diagnostic information about student performance relative to the learning and acquisition of
algebraic thinking.

Investigating Curriculum-CCSS Goal Alignment

Although the CCSS are based on notions of a learning trajectory or progression, their explicit
description of one is limited to expectations of mathematical content domains and practices across not
within grades. By comparing our constructed GT to the CCSS it became clear that for a teacher at a
particular grade the CCSS was not intended to represent the expected understandings and reasoning
patterns of students “well below or well above grade-level expectations,” nor was it meant to account for
variation contributed by English language learners or children with special needs. We propose that GTs
help to illuminate—within the context of a particular mathematics curriculum—the potential for multiple
levels of knowledge and reasoning that may be observed as students complete a given activity.

Mapping the CCSS Operations and Algebra content domain onto the GT of an elementary grades math
curriculum revealed interesting relationships between each level of the goal trajectory and the CCSS. In
particular, as the GT levels progressed, the number of shared relations between each level and the
standards increased. Whereas the earlier levels of the trajectory shared a one-to-one relationship with the
CCSS standards, the advanced levels of the trajectory shared a one-to-many relationship with the standards
in which a single level of the GT was linked to multiple goals in the CCSS. Finally, in support of the
CCSS’s position about the breadth of mathematical practices, our analysis indicated that the CCSS
mathematics practices were differentially instantiated at each GT level of understanding. The extent that
these patterns will emerge with other GTs (e.g., Number and Numeration) and the empirical validity of the
GT levels is currently being investigated.
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