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Many types of visual representations are used in math textbooks but not all of them contain mathematically
relevant information. Little research directly addresses the effects of different types of representations on
mathematics performance. Theories offer differing perspectives about how visual representations such as
illustrations influence student learning. Here, we investigated the effects of diagrams and contextual
illustrations on trigonometry problem solving. Diagrams helped all students, but the effect of contextual
illustrations depended on students’ backgrounds. Additionally, not all subgroups of students accurately
assessed the effect of illustrations on their performance. We emphasize the need to consider how different
types of visual representations interact with student characteristics and the problem-solving task.
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Mathematics textbooks use a wide variety of visual representations, including diagrams, tables, graphs,
decorative images, and photographs. Given students’ frequent use of textbooks and the large number of
visual representations in these textbooks, understanding how different types of visual representations affect
problem solving and learning is critical.

Most research on the effects of visual representation has been conducted using scientific texts. It has
focused primarily on diagrams and illustrations accompanying expository texts about causal phenomena.
In such contexts, graphically integrating visual and verbal information is found to be beneficial, as is
removing irrelevant information (e.g., Mayer, 2009). However, mathematical and scientific problem
solving differ in many important ways, including different emphases on causality, spatial relationships,
procedural and conceptual knowledge, and analytic methods. Thus, findings from research on science
learning may not apply straightforwardly to math.

Existing research about the effects of visual representations in mathematics is based primarily on
studies with elementary-age students, and it presents a complex and mixed picture. Some studies suggest
that contextual illustrations hurt performance for particular subgroups of students (e.g., Berends & van
Lieshout, 2009). Other studies suggest that decorative illustrations do not affect performance (e.g., Berends
& van Lieshout), or that certain types of illustrations can benefit performance (e.g., Hegarty &
Kozhevnikov, 1999; McNeil, Uttal, Jarvin, & Sternberg, 2009). Many studies also suggest that the
usefulness of visual representations depends on students’ ability levels (e.g., Booth & Koedinger, 2011;
Berends & van Lieshout).

Theoretical Frameworks

In making sense of research on visual representations, two theoretical frameworks are particularly
relevant: the Cognitive Theory of Multimedia Learning (e.g., Mayer, 2005, 2009) and Cognitive Load
Theory (e.g., Sweller, 2004, 2005). Both theories address the processing and learning of information
presented in different formats.

The Cognitive Theory of Multimedia Learning (e.g., Mayer, 2009) is based on three assumptions:

(a) a limited capacity for processing information, (b) separate visual and verbal pathways through which
information enters the cognitive system, and (c) meaningful learning arising from active processing.
Cognitive Load Theory (e.g., Sweller, 2005) focuses on the cognitive load—the mental effort from the task
itself, the processing required to integrate new and old material, and the processing required to work with a
task’s format. Overall, one idea is that the structure of the cognitive system imposes limits on how learners
select, organize, and integrate information. These approaches have been used to guide instructional design.
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Two principles derived from these theories are particularly relevant to the research reported here. The
multimedia effect holds that words and pictures are better than just words (e.g., Butcher, 2006; Mayer &
Anderson, 1992) based on the assumption of separate visual and verbal channels which can then be
integrated for deeper learning. The coherence effect captures the performance benefits that occur when
extraneous or seductive features of the material are eliminated (e.g., Harp & Mayer, 1997, 1998). Adding
interesting but irrelevant material can overload the visual or verbal pathways or create too much
extraneous load, thereby disrupting learning (Sweller, 2005). The coherence effect applies to both text and
visual material.

Contextualization Perspective

Another theoretical perspective applicable to the current study focuses on how contextualizing or
“grounding” math problems in real-world scenarios can help learners (Goldstone & Son, 2005; Koedinger
& Nathan, 2004). Contextualization is thought to help students build a model of the situation underlying a
problem. In addition, realistic content or greater familiarity with the content may promote generalization or
facilitate reasoning because it fosters integrating the current problem with prior knowledge. Some studies
have suggested that contextualization is more beneficial for simpler problems (Koedinger, Alibali, &
Nathan, 2008), whereas other studies have suggested that it is more beneficial for difficult problems or
lower ability students (Walkington, 2012). This body of research has typically involved contextualizing
problems by adding verbal information to text, but contextualization can also be accomplished through
accompanying visual representations.

Current Study

It remains an open question as to how the multimedia principle, the coherence principle, and the notion
of contextualization apply to visual representations used in mathematics. The current research involves
trigonometry problems accompanied by 4 types of visual representations: combining diagram presence (or
not) with the presence of contextual illustrations (or not). The contextual illustration could add extraneous
details through the graphics, but it also could ground the problem situation. We use the term contextual
illustration since the illustrative features correspond to the spatial layout necessary to solve the problem.
The perspectives discussed above vary in their predictions about which visual representations will be most
helpful (see Table 1). We consider these effects in terms of student performance and evaluations of the
problems.

Table 1: Predictions from Applicable Theoretical Frameworks

Theoretical Prediction

Visual representations will

Multimedia Principle - Text by itself will be hardest

help
- Extraneous information Problems with illustrations will be
Coherence Principle >
hurts performance harder

Multimedia + Coherence | Provide visuals but avoid > Diagram by itself will be easiest.

Principles extraneous information
Contextualization [lustrations further ground N Problems with illustrations will be
Perspective problem solving easier.
Method
Participants

Participants were 93 undergraduates, who received credit in introductory psychology for their
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participation. The majority (63%) had completed middle school math in the United States. Of those who
had not, most (82%) had their earlier math education in an Asian country. Over two-thirds (69%) intended
to major in a math or science field.

Participants were divided into subgroups based on their intended major (math/science field or not) and
where their previous math education occurred (U.S. or non-U.S.). Students who were math/science majors
were fairly evenly split into those who were previously educated in the U.S. (n = 34) and those who were
previously educated outside the U.S. (n = 30). The vast majority of participants who were not math/science
majors were educated in the U.S. (n = 25). Only 4 participants previously educated outside the U.S. were
not math/science majors; this small group was excluded from the analyses reported here.

Design and Materials

Each participant received 4 problems based on a 2 (Diagram Presence) x 2 (Illustration Presence)
within-subjects design, yielding 4 conditions: text alone, diagram alone, illustration alone, and illustration
with diagram overlay (see Table 2). Condition order was counterbalanced across participants.

Table 2: First Background Story, Shown for Each Visual Condition

No Diagram Diagram

The parks department is putting a statue [text] +
on a base. The statue is some distance
away, and you are in a helicopter, eye 35
level with its top. The angle of depression

No to the bottom of the statue (i.e., the top of 2
INlustration | the base) is 35 degrees. The height of the 100
statue is 50 feet. If someone were to
stretch a string from the bottom of the
base directly to you, it would be 100 feet
long. How tall is the base?

[text] + [text] +

Illustration

Each of the 4 problems each participant received involved a different cover story. All required
applying trigonometric relations to overlapping right triangles to solve for an unknown dimension. The
different stories had varied combinations of sides and angles, such that the solution processes were not
identical for any two problems. These types of problems were selected as they lend themselves well to
concrete situations and are at an appropriate difficulty level for undergraduate participants. The order of
the cover stories (and thus of the mathematical solutions) was held constant across participants. Each
problem was on its own page, with the text and visual representation (if present) at the top of the page.
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The illustration corresponded to the problem situation. As shown in Table 2, although it did have
decorative features, it was also mathematically relevant because it indicated the spatial layout of the
components of the story problem.

Procedure

Participants received a reference handout (with text and equations but no diagrams) of information
about triangles and trigonometric formulas. The information was available throughout the study, and
participants were told that not all of it would be needed. Participants worked through each of the four
problems at their own paces. After completing the problems, they rated how difficult each problem was,
how clear it was, and how willing they would be to do more problems like it. They assessed these
characteristics on a 5-point Likert scale. While making these ratings, participants were permitted to look
back over the problems but not to change any of their answers. Finally, participants completed a
questionnaire about their attitudes towards mathematics, their math abilities, and their math background.

Results

A sizeable proportion of participants answered all or none of the problems correctly, and these rates
depended on participant subgroup. For instance, 40% of the students who were not math/science majors
answered no problems correctly and 30% of the math/science majors who received their previous
education outside of the U.S. answered all the problems correctly. The results below include all
participants; however, the patterns also hold for the subset of participants who did not perform at floor or
ceiling (i.e., correctly answered 1-3 of the 4 problems).

Did Visual Condition Affect Accuracy?

We analyzed the dichotomous measure of accuracy on each problem using mixed models logistic
regression (Bates & Maechler, 2009) in R. The best fitting model included the fixed factors of diagram
presence, illustration presence, educational background / major (henceforth participant subgroup), and the
interaction between illustration and participant subgroup. We also included participant and cover story as
random factors; cover story significantly improved the model’s fit (p <.0001). Coefficients and odds for
the model are reported in Table 3.

Table 3: Coefficients from Regression Model for Accuracy Ratings

Estimate .
Fixed effects: (logit) SE Odds | zvalue Sig
Intercept -0.53 0.68 0.59 -0.78 0.44
Diagram — no Reference
Diagram — yes 149 | 028 | 442 [ 523 | <0001
[llustration — no Reference
Ilustration — yes 0996 | 047 | 271 | 21 | 0.04
Subgroup — outside US & math/science major Reference
Subgroup — US & math/science major -0.39 0.64 0.68 -0.61 0.54
Subgroup — US & not math/science major -1.15 0.70 0.32 -1.65 0.10
[lustration — yes x
Subgroup — US & math/science major -0.62 0.64 0.54 -0.96 0.34
[lustration — yes x
Subgroup — US & not math/science major -1.36 0.73 0.21 213 0.03

Model: Accuracy ~ DiagramPresence + IllustrationPresence * Subgroup + (1 | CoverStory) + (1 | ID)

Random effects (Intercepts): Variance of participant = 3.26 Variance of cover story = 0.91
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Participants performed significantly better on problems with diagrams than without, p <.0001 (see
Figure 1; SE are corrected via procedure in Morey, 2008, to reflect within-subjects design). This effect
existed for all three subgroups and did not interact with illustration presence.

However, the effect of illustration varied across participant subgroups. Participants who received their
math education outside the U.S. (and were also math/science majors) performed significantly better with
illustrations (p < .04) than without. This improvement differed significantly (p = .03) from the slightly
negative effect of illustration on the US subgroup not majoring in math/science. The accuracy level of the
subgroup who were not math/science majors was significantly lower than the accuracies the other two
subgroups when there was an illustration (ps <.02), but this pattern did not reach significance when there
was no illustration.

17 no illustration
- 0.8 A M ]lustration
:
S 0.6
S &
ST 04
S
§* 0.2 1
(a9
0
no diagram diagram no diagram diagram no diagram | diagram
prev ed. outside US & math/ prev ed. in US & prev ed. in US &
science major math/science major not math/science major

Figure 1: Average accuracy (+/- SE)

Did Visual Condition Affect Participants’ Ratings of the Problems?

We combined participants' ratings of each problem's clarity and difficulty (reverse-coded) as well as
their ratings of how willing they would be to do more problems similar to those completed. This composite
measure offered an assessment of a participant’s overall favorability towards a problem type. Correlations
among the three measures ranged from .34 to .56, ps <.0001. The best fitting mixed effects model for
participants' ratings included the fixed factors of diagram presence, illustration presence, and participant
subgroup. We also included participant and cover story as random factors; cover story significantly
improved the model’s fit (p <.001).

As shown in Figure 2, participants viewed problems with diagrams significantly more favorably than
those without, and they viewed problems with illustrations significantly more favorably than those
without; respectively, each of these factors improved the fit of the model, *(1) = 7.79, p = .005 and *(1)
=10.5, p = .001. However, the magnitude of these effects was relatively small. Comparisons of the
subgroups indicated that participants who were not math/science majors rated the problems significantly
lower than participants with math/science majors (s > 2.71), whose subgroups did not differ from one
another (¢ = 1.70).
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Figure 2: Average favorability (+/— SE)

Discussion

In this study, participants performed more accurately on trigonometry problems with diagrams. The
effect of illustrations was mixed. Illustrations yielded a slight improvement in performance for students
who intended a math/science major, but illustrations slightly hurt performance among students who were
not intending to major in a math- or science-related field. These findings highlight that ability differences
affect the use of visual representations.

The multimedia principle predicts that problems with visual representations would be solved more
successfully than problems presented as text only. This was clearly the case for diagrams. The more mixed
influence of contextual illustrations can be considered with respect to the coherence principle and the
contextualization perspective, which make opposite predictions. Indeed, each prediction fit a subset of the
participants. As predicted by the contextualization perspective, having an illustration benefited
performance for participants who were math/science majors. In contrast, as was predicted by the coherence
principle, illustrations hurt performance for those who were not math/science majors. Overall, though, the
effects of illustration presence were relatively small.

These findings indicate that the coherence principle, which has been supported in multiple studies
using science material (see Mayer, 2009), may not apply so straightforwardly in math. However, the
coherence principle stresses the removal of extraneous details. Not all details are extraneous, and added
visual details do not necessarily harm everyone's performance. This research used contextual illustrations
that could have assisted students in mapping the problem content to the visual representation and thus does
not necessarily contradict the coherence principle. It is also worth noting that the contextualized
illustrations we used were more relevant to mathematics than the majority of illustrations that are found in
American mathematics textbooks (Cooper et al., 2012; Mayer et al., 1995). Addressing the impact of
purely decorative illustrations will be an important extension of this research.

Focusing on the cognitive load required by these problems offers a possible way to combine the two
perspectives on the effect of illustrations and understand the dependence of the effect on subgroup. The
cost of encoding and integrating the extraneous information (such as the design of the base of the statue)
conveyed in illustrations may outweigh any possible benefits from contextualization if cognitive load
surpasses the available cognitive resources. Illustrations might be more helpful for individuals with more
math experience because such individuals can construct a contextualized mental representation of the
problem scenario without exceeding their available cognitive resources. However, other research on
contextualization has found grounding problems to offer greater benefits for students of lower math ability
(see Walkington, 2012).

Diagram presence increased the favorability with which participants viewed the problems, as did
illustration presence. Comparing this with performance data indicates that all participants’ metacognitive
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beliefs about problems with diagrams matched their actual performance. However, only students intending
a math/science major accurately perceived the effect of illustration presence. Participants who were not
math/science majors performed the same or worse when an illustration was present, despite their more
favorable view of these problems. This pattern of findings is particularly important to consider in light of
the motivation-based argument that textbook visuals will help engage learners, particularly those with low
math interest (see Durik & Harackiewicz, 2007, for related findings). However, it aligns with the research
arising from the Cognitive Theory of Multimedia Learning and from Cognitive Load Theory, which hold
that these extraneous but interesting details can be problematic for learning. As noted above, this may hold
true especially when an individual’s resources are taxed, which is more likely to occur for individuals with
lower background knowledge.

The overall differences we observed in accuracy between students of different backgrounds are not
surprising in light of the well-documented finding that students from many foreign countries outperform
American students in math (Fleischman et al., 2010). What is more interesting is that students of different
backgrounds were differentially affected by visual representations. The underlying constructs tapped by
our measures of students’ backgrounds need to be characterized with greater precision. We collected data
on the intended majors and the country in which they received their middle school education. These
measures may simply reduce to experience and interest in math; however, further research on students’
backgrounds and how they affect performance is needed.

It is also worth noting that overall levels of performance in this study were not high, even in the
highest performing subgroup. The problems we used were quite complex, and many components needed to
be performed correctly in order to reach an accurate final answer. Students needed to know how to map
information from the problem content to the visual representation and from the visual representation to
their mental representation of the problem. Students also needed to identify what quantity to solve for,
figure out the steps needed to reach the solution, and correctly apply the trigonometric formulas to reach a
final answer. Understanding the differential effects of the type of visual representation on these different
components of problem solving is an important arena for future research (see Butcher, 2006; McNeil et al.,
2009).

In sum, this work highlights the need for a continued focus on the ways in which visual representations
support learners’ strategic problem solving and learning. Rather than asking simply which types of
illustrations serve learners better, it is important to identify how learners with different backgrounds and
skill levels utilize visual representations when solving problems.
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