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PME-NA History and Goals

PME came into existence at the Third International Congress on Mathematical Education (ICME-3)
in Karlsrithe, Germany in 1976. It is affiliated with the International Commission for Mathematical
Instruction. PME-NA is the North American Chapter of the International Group of Psychology of
Mathematics Education. The first PME-NA conference was held in Evanston, Illinois in 1979.

The major goals of the International Group and the North American Chapter are:

e To promote international contacts and the exchange of scientific information in the psychology of
mathematics education;

e To promote and stimulate interdisciplinary research in the aforesaid area, with the cooperation of
psychologists, mathematicians, and mathematics teachers;

e To further a deeper and better understanding of the psychological aspects of teaching and learning
mathematics and the implications thereof.

PME-NA Membership

Membership is open to people involved in active research consistent with PME-NA’s aims or
professionally interested in the results of such research. Membership is open on an annual basis and
depends on payment of dues for the current year. Membership fees for PME-NA (but not PME
International) are included in the conference fee each year. If you are unable to attend the conference but
want to join or renew your membership, go to the PME-NA website. For information about membership in

PME, go to igpme.org and click on “Membership” at the left of the screen.
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Preface

These Proceedings are a written record of the research presented at the 34th Annual Meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education
(PME-NA 2012) held in Kalamazoo, Michigan, November 1-4, 2012.

The theme of the conference, Navigating Transitions Along Continuums, focuses on an important set of
opportunities for research to be useful in improving mathematics teaching and learning. Plenary speakers
consider transitions across four continuum groupings: (1) student learning of mathematics (Jere Confrey);
(2) professional learning, ranging from preservice mathematics teachers through teacher leaders (Deborah
Ball and Suzanne Wilson); (3) school mathematics articulation, from topic to topic within grade levels as
well as across grade bands (Amanda Jansen, Janie Schielack, Cathy Seeley, and Jack Smith); and

(4) innovation to support mathematics learning, from the smallest of scale to the largest (Jo Boaler).

The Proceedings include papers from 2 plenary talks, 69 research reports, 124 brief research reports,

111 posters, and 10 working groups. The plenary and working group papers are the first and last chapters,
respectively. Papers from the research reports, brief research reports, and posters are organized into
chapters by topics. Each paper is indexed by authors and keywords. Underlined author indicates presenting
author.

We would like to thank Hope Smith for her dedication to the technical details of putting together a high-
quality document and James Kratky for his skill in making it easy to navigate. We are pleased to present
these Proceedings as an important resource for the mathematics education community.

Laura Van Zoest & Jane-Jane Lo
Conference Co-Chairs
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ARTICULATING A LEARNING SCIENCES FOUNDATION
FOR LEARNING TRAJECTORIESIN THE CCSSM

Jere Confrey'
North Carolina State University
Jere_Confrey@ncsu.edu

The paper describes the history of how learning trajectories (LTs) were associated with the Common Core
Sate Sandards for Mathematics (CCSS-M) and discusses the degree to which the two correspond
faithfully. It reports on a website, www.turnonccmath.com, which organizes the K-8 standardsinto 18 LTs
describing the devel opment of big ideas over time, informed by empirical studies of learners. The paper
illustrates how descriptors for each LT identify: (1) conceptual principles, (2) strategies representations,
and misconceptions, (3) meaningful distinctions and multiple models, (4) coherent structure, and

(5) bridging standards. The design principles for the website are illustrated describing how the CCSS-M
are related to a learning trajectory on division and multiplication.

Keywords: Standards, Cognition, Teacher Knowledge, Learning Trajectories

The Common Core State Standards for Mathematics (CCSSO, 2010) have been represented as “fewer,
clearer, and higher,” reflecting the view that revised standards should be: (1) focused, (2) rigorous and
applicable, and (3) coherent. They offer “a more coherent progression of learning” described as “... clearly
articulat[ing] how knowledge builds from year to year. Each standard extends previous learning while
avoiding repetition and large leaps in instruction” (Hunt Institute, 2012, p. 8). Despite this intent, the
progressions themselves are not immediately accessible to readers, so other documents are needed to
articulate and display these relationships in different formats. Our research group has done this as a set of
posters (www.wirelessgeneration.com/posters) and as a website (wWwww.turnonccmath.com). After
reviewing the history of how learning trajectories became foundational in the writing of the CCSS-M, I
describe the elements of a learning trajectory analysis of the CCSS-M as a means to support
implementation of standards and conduct of related professional development. The advantages of
researchers working together, to create resources on learning trajectories built on empirical study are
discussed, along with a warning of the likely costs of failing to do so.

History of Learning Progressionsin the CCSS-M

In the summer of 2009, a meeting was held at the Friday Institute for Educational Innovation in North
Carolina where researchers on learning trajectories hosted the writers of the Common Core State Standards
(CCSS) and other leaders from the Council of Chief State School Officers (CCSSO).> The proposed
standards were to be based on scientific evidence. While the College- and Career-Ready Standards (U.S.
Department of Education, 2010) could be sufficiently justified with evidence of international
benchmarking and studies of the needs and expectations of colleges and entry-level careers, the grade-level
standards required a basis in the research on student learning. A number of learning sciences and
mathematics education researchers gave presentations (including M. Battista, D. Clements, J. Confrey,

G. Kader, and R. Lehrer) on learning trajectories (also called “learning progressions”™). After the
conference, many of the attendees were invited to participate on the CCSS-M writing teams. The use of
these teams during the Standards development was perceived by many as more sporadic than systematic—
and the teams were only one voice among many (including state departments, mathematics faculty, and
teachers) in influencing the development of the Standards. However, their ideas contributed significantly
to the final document. In sum, the CCSS-M incorporated a foundation in learning trajectories that can
propel the country forward now, and be strengthened over time. In the period since the publication of the
CCSS-M, at least three groups have engaged in efforts to delineate the trajectories in more detail (Confrey
etal., 2011; Hess & Kearns, 2010; McCallum, 2011).

Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.
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www.turnonccmath.com

Once the CCSS-M was validated and widely adopted, and in response to the need expressed in the
field for urgent assistance, the DELTA research group at North Carolina State University (NCSU) decided
to connect the Standards more directly with associated research on learning trajectories. Many state leaders
had reported that teachers perceived little change from their old or current state standards to the new
CCSS-M, and expected that “crosswalks” would provide a sufficient basis to support the transition to the
CCSS-M and the related curriculum and assessment. In this scenario, teachers would only change the way
they teach new topics at the grain size of the individual grade levels and otherwise continue teaching by
making small adjustments to their lesson plans. A close reading of the CCSS-M document, my
understanding of the CCSS-M from experience on the National Validation Committee, and our group’s
close comparison of the CCSS-M to previous state standards, however, told a different story. There are
major changes in when and where mathematical topics are emphasized, namely the intensity of content
treatment at earlier grades and major shifts in several topics that will radically change teacher preparation
and professional development. The “higher” and “fewer” aspects of the CCSS-M mean, also, that there is
much less room for repetition of content at each grade.

We found learning trajectories useful in supporting implementation, because they focus attention on
gradual and systematic student learning over time, a form of “genetic epistemology” (Piaget, 1970). The
idea behind explicitly mapping learning trajectories onto the CCSS-M is to help teachers and students
build consistently stronger understandings of big ideas by revising and modifying prior views in light of
new conditions and challenges. Rather than emphasize a standard-by-standard view of implementation of
new or revised content, learning trajectories support “vertical teaming” by teachers. This allows an
exciting chance for teachers to discuss and plan their instruction based on how student learning progresses.
An added strength of a learning trajectories approach is that it emphasizes why each teacher, at each grade
level along the way, has a critical role to play in each student’s mathematical development.

Our effort to build a website that synthesizes the relevant research and to lay out a manageable number
of learning trajectories for the CCSS-M began as a result of a meeting of the Measurement Mini-Center .’
Many of the group’s participants had conducted pioneering work on learning trajectories, and each has his
or her preferences about how to characterize, emphasize or order underlying proficiencies and concepts.
Concerned that the interpretation of the CCSS-M should be better and more publicly informed by
“learning sciences research,” my research team drafted a synthetic trajectory built around the CCSS-M,
drawing from these scholars’ work, and brought it to the meeting for discussion. The Mini-Center’s
response to the effort was positive and constructively critical—the group reviewed the proposed trajectory,
offered valuable suggestions and distinctions, and labored until an acceptable synthesis was negotiated.
This specific trajectory as finalized is represented on the turnonccmath.com site (Confrey et al., 2011) and
is described in more detail in a 2012 PME-NA paper (Lee, Nguyen, & Confrey, 2012).

Buoyed by this experience and stimulated by requests from the field, our NCSU team decided to
undertake a full learning trajectories analysis of the K-8 Standards. Using a hexagon map of the CCSS-M
(designed by Jere Confrey and ©Wireless Generation) to display the Standards and learning trajectories
visually, I dissected the CCSS-M into 18 learning trajectories. Over a concentrated period of six months,
the research team undertook writing, revising, and interlinking descriptors, which are text-based
descriptions of standards in terms of students’ movement from more naive to more sophisticated ideas for
each of the trajectories. Our working assumptions were that the web-based environment would: (1) provide
the opportunity for continuous incremental improvements in the descriptors that would serve the needs of
the field for rapid access to the associated learning trajectories for the Standards, and (2) permit us to
gradually strengthen the site based on feedback and review. In the next sections, the hexagon map is
introduced along with an explanation of the framework used to analyze the trajectories and unpack them
into descriptors.

Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
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Turnonccmath: by Grade

The website http://www.turnonccmath.com displays a “hexagon map” of the CCSS-M. In designing
this map, decisions to use a predictable and consistent method to assign standards to hexagons were largely
pragmatic. Standards in the CCSS-M are of many different grain-sizes, which added considerable
challenge to the effort in mapping them to hexagons. Standards were assigned to individual hexagons
using the following scheme: (1) If a Standard has no subparts, the hexagon represents the entire standard.
However, multipart Standards were too dense to be summarized in a single hexagon. Therefore, (2) for any
Standard with subparts (e.g., a, b, c, etc.), each subpart was assigned its own hexagon. The map can be
displayed in three views: by grade levels, by LT with the LTs labeled, and by LTs without labels. The
topics within the standards generally proceed from less complex (lower left) to more complex (upper right).

The hexagons for the different grade levels occur in bands that are more or less orthogonal to the
progression of the topics. In the grade level display, the lower left ends of any relevant learning trajectory
contain the earliest grade-level standards, beginning (if applicable) with kindergarten standards, followed
by first through eighth grade Standards built on top and to the right, and coded such that a hexagon’s
background color represents its grade level. The text color in each hexagon represents the content strand;
for example in K-8, blue text corresponds to Number and Operations; red text corresponds to
Measurement and Data, and black text corresponds to Geometry. In terms of the relative positions of
different main content strands and learning trajectories, I chose to put Number and Operation-related
standards on the bottom with Measurement-related standards on top of those, diagonally, and then
Geometry-related standards above measurement. At the very top is a peninsula where the very thin
learning trajectory for Elementary Data (Statistics) and Modeling is placed. This trajectory comprises K—5
standards in the Measurement and Data cluster that address how to build and interpret data representations.
Having opposed the writers’ decision to reduce the treatment of statistical reasoning in the CCSS-M at the
elementary level, I left space to expand these standards in future revisions.

From the grade-level display, one can discern certain patterns. For instance, one can see that third
grade is almost entirely comprised of standards on number and measurement, with only one standard in
geometry. In contrast, one can see that in sixth grade, there are three distinct clusters of topics: (1) statistics,
(2) ratio and proportion, and (3) equations and expressions.

The Relationship Between the Learning Trajectories and the CCSS-M

The purpose of a learning trajectory is to describe and synthesize what is known about how students
reason over time. The term Learning Trajectory (LT) has varied meanings in mathematics education.
Simon (1995) first defined the term hypothetical learning trajectory (HLT) to be “The learning goals, the
learning activities, and the thinking and learning in which students might engage” (p. 133). We define it as,
“a researcher-conjectured, empirically-supported description of the ordered network of constructs a student
encounters through instruction (i.e., activities, tasks, tools, and forms of interaction), in order to move from
informal ideas, through successive refinements of representation, articulation, and reflection, towards
increasingly complex concepts over time” (Confrey, 2008; Confrey, Maloney, Nguyen, Mojica, & Myers,
2009, p. 2-346). We view a learning trajectory as a path through a conceptual corridor in which there are
predictable obstacles and landmarks and thus a student’s particular path is an issue of expected
probabilities and likelihoods: LTs permit one to specify at an appropriate and actionable level of detail
what ideas students need to know during the development and evolution of a given concept over time.

Learning trajectories provide a way to create coherence within the CCSS-M by drawing attention to
how knowledge develops over time. If teachers try to implement the CCSS-M standard-by-standard, they
will be unlikely to leverage the underlying structure of the standards and support gradual transformations
in student reasoning. When we have worked with teachers in unpacking our learning trajectories, they have
commented on the value of creating a “story” which illustrates how the ideas are likely to evolve in the
minds of students when they are provided appropriate curriculum tasks, instruction, and opportunities for
discourse. Therefore, our goal is to provide this type of support to teachers by providing them efficient and
coordinated access to related research. In the end, the success of the CCSS-M rests on its potential to

Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
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support alignment, including curriculum, assessment (formative and summative), and professional
development, at a level not previously possible. But to achieve the deep and lasting change envisioned by
the Common Core State Standards Initiative and the mathematics education community, the knowledge of
learning trajectories must be made clear, accessible, compact, and well-integrated within the CCSS-M.

The relationship between the learning trajectories and the Standards is complex. To a degree, the
CCSS-M were built on the foundation of learning trajectories. But it would not be accurate to say that
there is an isomorphic relationship between the CCSS-M and the learning trajectories. In fact,
acknowledging this, the Standards’ writers call the progressions in the standards, “standards progressions”
(Common Core Writing Team, 2011). The reasons include:

1. Different researchers have differing views of learning trajectories, even within strands;

2. Not all topic areas have been studied as learning trajectories; and

3. The writers took suggestions from mathematicians who conflated learning trajectories with logical
progressions created by “thought experiments,” independent of empirical verification.

This outcome is to be expected in a document resulting from negotiations and differences of opinion
among disciplinary scholars, researchers and practitioners; moreover, it creates the possibility now to
systematically test, compare, and refine those trajectories in light of students” work. Also, in order to
construct “fewer” and “clearer” standards, the learning trajectories in the CCSS-M are of necessity
abridged; that is, they do not and could not contain a full treatment of all the big ideas contained in the
research literature. To address this in our analysis, we added “bridging standards” as needed. These
statements are similar in structure to the CCSS-M standards, but represent topics that would be required in
a more fully articulated (i.e., unabridged) learning trajectory. Because of the dual nature of standards as
both assessment targets and targets of understanding, bridging standards can permit one to describe
standards that need to be addressed in preparation for a later standard but which will not be assessed
directly at that specific time. Finally, even after debate and review, there are a few standards that were
poorly constructed, inconsistent, or unadvisable, based on mathematics education or learning sciences
literature; a bridging standard may be added to improve the coherence of the trajectory overall.

Standards, by themselves, can serve as a skeleton for learning trajectories, but they need to be
interpreted and made unabridged to serve this purpose. Moreover, the interpretation must make explicit the
connections to the research base and provide a more complete articulation of how the ideas in a trajectory
evolve in light of students’ documented behaviors, emergent relations and properties, and generalizations
(Confrey, Maloney, Wilson, & Nguyen, 2010). To this end, and so that there would not be too many LTs
to manage, we decided to create a mapping such that every standard would belong to exactly one LT, each
targeting a key “big idea” or set of related big ideas. The CCSS-M document itself does not suggest an
instructional sequence or rigid ordering of the Standards beyond specifying grade level, as the authors have
stated: “These Standards do not dictate curriculum or teaching methods” (CCSSO, 2010, p. 3). Therefore,
we reorganized standards within a trajectory if this would show the student learning development more
clearly (while keeping the grade level position of standards and topics). Thus, sequencing within grade was
malleable; we adjusted it to fit the learning trajectories structure (hence the numbering of the standards can
be “out of order” within a grade). We also assisted readers in seeing the internal structure of and the
relations among the learning trajectories by (a) creating sections to reveal underlying development,

(b) providing structural overviews, and (c) cross-referencing and referencing forward and backward within
alLT.

Turnonccmath: by Learning Trajectories

The hexagon map of the CCSS-M, with learning trajectories labeled, is shown at
www.turnonccmath.com (Figure 1). The two-dimensional structure of the map lends itself to parallel
structures among some learning trajectories, in some cases, to represent close relationships between
various big ideas. One of these is the fundamental role played by (1) counting, (2) equipartitioning,

(3) addition and subtraction, and (4) place value and decimals in developing an early sense of number and
operations. These four learning trajectories are situated at the lower left portion of the map. Counting is
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directly tied into addition and subtraction and develops in tandem with place value and decimals.
Equipartitioning leads directly to supporting the development of (5) division and multiplication, and
subsequent rational number reasoning, with contributions from addition and subtraction. (6) Fractions are
most closely related to equipartitioning and division and multiplication, with (7) ratio and proportion and
percents being most closely tied to division and multiplication and fractions in topic and grade-level
development within the CCSS-M. (8) Rational and irrational numbers link to ratio and proportion and
percents.

Figure 1. Hexagon M ap of K-8 Common Cor e State Standards for M athematics with individual
learning traj ectories color-coded and labeled
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The learning trajectory for (9) length, area and volume is situated next to equipartitioning in
recognition of their close relationship in early reasoning about shapes and measurement, and because they
cover a considerable amount of conceptual development in spatial, measurement, and geometrical
reasoning. This forms a large anchor LT. (10) Time and money, a small early-grades set of topics, is tucked
into the left side of the map. The measurement cluster has close links to (11) shapes and angles, which
carries into (12) triangles and transformation as students progress into the middle grades. Integers,
number lines and coordinate planes (13), a mostly 6th-grade set of topics, are placed close by to support
further development of other middle-grades trajectories linking geometry and number systems. The cluster
of learning trajectories that comprise data, statistics, and probability—(14) elementary data and modeling,
(15) variation, distribution and modeling, and (16) chance and probability—are located along the top of
the map, as they were most closely related to each other. The limitations of the two-dimensional space on
which the map was constructed prevented us from linking them more closely to measurement and ratio
reasoning.

Further upwards and to the right are the more complex topics of (17) early equations and expressions,
which are built on the four operations and which link to (18) linear and simultaneous functions to create a
foundation for algebra in the 9—12 Standards.

A Framework for Unpacking L earning Trajectories

When one hovers the cursor over a hexagon on the hexagon map of www.turnonccmath.com, the full
Standard is presented verbatim in a box in the bottom left corner. If one clicks on a hexagon or learning
trajectory, a new window with the descriptors for the selected learning trajectory appears. The descriptors
are organized as follows: A “Structural Overview” is presented at the beginning of each LT, identifying
the sections of the LT and showing its development across the relevant grades. Sections are then used to
create a sub-organization of the learning trajectory. In addition, a framework of five elements was created
to systematize the unpacking of the each trajectory:

1. Conceptual principles: These are a list of underlying cognitive principles, identified by
researchers, which support the overall development of the ideas.

2. Srategies, representations, and misconceptions. When students encounter new tasks that are
presented as a cognitive challenge, they invent strategies and representations as they solve them,
demonstrating their ways of thinking and, often, revealing related misconceptions that need to be
addressed instructionally. Because misconceptions typically have a kernel of “right thinking”
(Confrey, 1990), these thoughts must be elicited and then refined into alternative conceptions or
valid intermediate steps on paths to more sophisticated thinking.

3. Meaningful distinctions and multiple models: All educators recognize the value of prior
knowledge and the importance of identifying clear targets for learning. A major challenge,
however, lies in identifying and evaluating intermediate states of proficiency and understanding
their role in moving students forward in their thinking. To describe these intermediate states,
teacher and researchers must recognize or invent meaningful distinctions; vocabulary terms for
these tend to exhibit properties that are both cognitive and mathematical, such as partitive vs.
quotative division, which later simply collapse to “division.” We refer to these as “meaningful
distinctions.” In addition, for “big ideas”—also described as a learning trajectory’s “domain goal
of understanding”—there are often multiple earlier models that correspond to the different
schemes that govern recognition of situations in the real world. These big ideas are typically
captured as a “generalization” that, while “encapsulating” their meanings in the minds of experts,
hides or loses the details of the distinctions and models, so students should be afforded sufficient
opportunity to explore the distinctions and models before they move to the generalization, in order
to understand its many referents and applications.

4. Coherent structure: In a learning trajectory, a pattern often emerges in how a topic is developed;
commonly, that pattern is repeated as the students expand it at later grades and apply it to
increasingly complex cases, representations, tools, choices of numeric values, or spatial
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dimensions. For example, students’ understanding of area is expanded as the lengths of the sides
take on fractional values. Understanding such structure, and considering which parts of it remain
invariant and which change under these expansions, is a characteristic of mathematical reasoning.

5. Bridging standards: Moving from “abridged” learning trajectories represented in the CCSS-M to
more fully-articulated, “unabridged” standards requires the addition of “bridging standards” that
might not have represented major intellectual targets within the CCSS-M but which may
nonetheless be necessary to support a successful progression of learning for students. Based on our
structural analysis, we sometimes found gaps or inconsistencies in the Standards. In these cases we
also added bridging standards. The bridging standards are identified by their use of a capital letter
(A, B, C, ...) at the end of the standard number, and the use of brown font. Each bridging standard
includes an explanation for its addition to the descriptors document.

A question can be raised about the relationship of the eight mathematical practices to our learning
trajectories analysis of the CCSS-M. We do not address the practices directly in the analysis, although the
practices are critical elements of the curricular instantiations of the CCSS-M. First of all, we emphasize
that a learning trajectories analysis is not a curricular analysis, although one can conduct analysis of
curricula using the learning trajectory construct (Nguyen & Confrey, in press) by considering the learning
trajectory as a boundary object (Confrey & Maloney, in press; Star & Griesemer, 1989). Furthermore, as
students progress along a learning trajectory, they will employ the various mathematical practices, such as
applying repeated reasoning, and using precision, articulating arguments, or building or critiquing new
modeling.

An Example: The Division and Multiplication LT

Data on large-scale assessment show weakness in U.S. student knowledge and understanding of
division and multiplication (NAEP, 2009). Furthermore, division and multiplication are topics around
which there is considerable research. Fischbein et al. (1985) introduced the idea of primitive schemes for
division and multiplication, claiming two for division (partitive and quotative) and only one for
multiplication. Partitive division was linked to schemes based on dealing (usually to obtain the size of a
share or group) while quotative division, later commonly referred to as “measurement division” (Simon,
1993), was linked to repeated subtraction or addition, in an iterative manner.

Elaborating further on how children learn multiplication, many researchers (Kamii, 1985; Steffe &
Cobb, 1998) describe a process of accumulating equal-sized groups by describing how children learn to
coordinate the process of differentiating the roles of numbering the groups and naming the group size. In
doing so, they derive multiplicative structures from additive ones. They describe a gradual process of skip
counting, double counting, and eventual description as a product, ab, comprised of a number of groups, a,
of a particular size b. Because multiplication then is comprised of two elements, group size and number of
groups, these researchers tend to follow Fischbein et al. (1985), in recognizing the two types of division,
one focused on finding the size of the group (partitive) and the other the number of groups (quotative).

Other researchers categorize word problem types in multiplication or division (e.g., equal groups, rates,
comparison, Cartesian products, scaling, etc. undertaken by scholars such as Nesher (1980, 1988, 1992),
and Carpenter, Fennema, and Romberg (1993). These scholars have a tendency to associate multiplication
with a certain set of problems and each type of division with other sets of problems. For example, equal
groups problems are associated with multiplication, fair sharing problems are associated with partitive
division, and measurement problems (e.g., How many 3 inch ribbons are there in a ribbon that is 36 inches
long?) with quotative division. It is preferable, in our opinion, to distinguish among the questions asked
(e.g., the size of a group or fair share and the number of groups or the number of shares) and to associate
these questions, and not problem categorizations, with the processes students use to solve a problem. One
advantage is that this leaves open the possibility of students using other approaches (e.g., co-splitting
(Corley, Confrey, & Nguyen, 2012), or the use of arrays or area models models (Battista, Clements,
Arnoff, Battista, & Borrow, 1998; Outhred & Mitchelmore, 2000). Researchers who rely on categorization
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schemes (CGI, others) tend to focus on these as applications of operations rather than to go further to use
them to define the underlying cognitive schemes (Carpenter & Fennema, 1992).

A contrasting trend in research was introduced by Vergnaud in his work on multiplicative conceptual
fields (MCF) (Vergnaud, 1983, 1988), when he articulated the relations among ratio and proportion and
multiplication and division. The MCF, he argued, consisted “of all situations that can be analyzed as
simple or multiple proportion problems and for which one usually needs to multiply or divide” (Vergnaud,
1988, p. 141). He connected the many parts of the MCF to a four part relationship (visually, a two-by-two
arrangement) among quantities in which movement horizontally was described as a functional,
demonstrating a direct variation relationship between two quantities (i.e., f(X) = ax) and vertical movement
was referred to as an “isomorphism of measures.”

In a related vein, in 1988, I articulated my splitting conjecture (Confrey, 1988), arguing that
multiplication and division could be linked to ratio and proportion as derived from an early application of
an operation I labeled splitting, and subsequently also labeled equipartitioning. In a three-year teaching
experiment of children in 3rd—5th grade, I demonstrated the advantages to student learning of co-defining
multiplication, division, and ratio (Confrey & Scarano, 1995) and showed the effects of teaching fractions
as expressing a particular subset of ratio relations.

Data suggest that, contrary to most textbook sequencing, equipartitioning and partitive division are
understood at an early age (Bell, Fischbein, & Greer, 1984; Confrey et al., 2009; Confrey & Scarano,
1995). Moreover, approaching division and multiplication through early experience with ratio has been
supported by research on protoratio (Noelting, 1980a; Noelting, 1980b; Resnick & Singer, 1993), on
splitting (Confrey, 1988; Confrey & Scarano, 1995), and on distribution (Streefland, 1984, 1991).

Schwartz (1988) distinguished between referent-transforming and referent-preserving operations,
suggesting that additive structures are referent-preserving (preserves the referent unit, e g., 4 apples plus 3
apples equals 7 apples) while multiplicative ones are referent-transforming (does not preserve the referent
unit, e.g., 20 coins shared among (divided) 5 people results in 4 coins per person). He also introduced the
distinction between extensive quantities (magnitude) and intensive quantities (indirectly measured as
composed from other quantities). However, [ argue that multiplication can also be referent-preserving
when only the particular unit changes (e.g., in the case of measurement conversion, the use of groups, or
scaling).

This second set of approaches deemphasize the role of addition and subtraction in the construction of
division and multiplication. Instead I view division and multiplication as related operations describing the
same situations in reverse. The two operations are interlocked in a four-part relationship that can be
described by ratio relations. For example, in the “division problem” 20 coins shared among 5 people
results in 4 coins per person, the ratio relationship is 20 coins : 5 people :: 4 coins : 1 person.
Multiplication can be used to describe the movement from 4 coins to 20 coins and 1 person to 5 people and
division can be used to describe the reverse movement. Because they rely on ratios, this treatment of
division and multiplication is necessarily related to the use of two distinct quantities: the case of referent-
preserving division and multiplication is cast as the reduced case where groups, unit-changes, or a scalar
are introduced. These approaches also tend to support the extension of the operations to non-whole
numbers, and more intuitively anticipate the operator construct of rational numbers (Behr, Harel, Post, &
Lesh, 1994), which I locate in this trajectory.

Both generalized approaches recognize the use of division and multiplication in area measurement and
find ways to incorporate it. In the first approach through counting and additive structures, arrays can be
viewed as a transitional tool. If the groups are lined up in columns and placed side by side, then the
resulting array can be viewed as representing both the number of groups (rows) and the size of the groups
(columns). Proceeding from the discrete case to the continuous case can still support a definition of the
multiplication operation in terms of the number of groups and their sizes. The integrated approach also
uses area problems but does so through the application of scaling operations from the single unit on the
lengths of the sides of a rectangle, and subsequently on the area of the resulting rectangular figure.

In deciding how to approach the learning trajectory, I sought ways to:
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1) combine the strengths of both models, while emphasizing importance of multiplicative structures;

2) build from what the children already knew from the related learning trajectories of
equipartitioning, length, area and volume, and addition and subtraction;

3) ensure the approaches were sensitive to the variety of situations connected to division and
multiplication; and

4) anticipate how sufficient the models would be as the numeric values in the problems changed from
whole numbers to non-whole rational numbers.

Division and Multiplication

[ Fractions J
[ Multi-digit Whole Numbers l
( Factors and Multiples }

Problem Types, Properties |
and Strategies

' Models of
Division and Multiplication

GRADES
Figure 2. Structural Overview diagram for Division and Multiplication learning trajectory

Framework for Learning Trajectories, Applied to the Division and Multiplication LT

The Structural Overview of the learning trajectory is shown above (Figure 2) whereby one can see that
the LT stretches from second through sixth grade. Students develop three models and then apply them to a
variety of problem types. As they become fluent in the number facts, they learn about factors and multiples
and then extend their knowledge to more complex cases. In the following sections, a window into the
structure of the division and multiplication learning trajectory (DMLT) is provided using the five-element
framework described previously.

TheTarget of the Learning Trajectory for Division and Multiplication

Learning trajectories always incorporate assumptions about what students have experienced and know,
and what the target of that learning should be at the upper end of the trajectory. The primary target of the
DMLT is for students to understand the relationships captured in the equation: ac/bd + a/b = c/d. As
explained below, these relationships can be understood either as they reside in a ratio box or in relation to
two-dimensional area relations (which can later be extended to higher dimensions).

Ratio boxes relate two quantities such that the relationship is preserved across multiplicative changes
to both quantities. All but elementary uses of the ratio box for fair sharing explicitly show the preservation
of the ratio across multiplicative changes by using two pairs of “arrows,” one which shows the
multiplicative or divisional operation that relates the two sets of numbers vertically and showing the other
relationship horizontally (Confrey, 1995). Noelting refers to these as, respectively, “between” and “within
ratio relations (Noelting, 1980a, 1980b). Characteristic of a ratio box is that the pairs of opposite arrows
are identical.

The DMLT can be summarized as an evolving sequence of types of ratio boxes and area models.
Those ratio boxes start with a “fair sharing box,” and proceed to a division/multiplication box (D/M box)
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to complete the DMLT. In the ratio and proportion and percents LT, the boxes evolve into a fully
developed ratio box. Figure 3, below, illustrates the fully developed ratio box. Given any three values
students find a fourth unknown value of the proportion, and describe the relationships represented by the
operator arrows, either as shown here as multiplication, or its inverse, division (not shown).

x 2/5

3/4 [3/10
X 2/7< >x 2/7
3/14|3/35

x 2/5

Figure 3: A ratio box solution, with multiplication shown

The DMLT begins from a “reduced ratio box” known as a fair-sharing box in the equipartitioning LT
(EQLT). Second-graders can fill in the column headers and the two rows when sharing, for example when
fair-sharing 12 coins among 3 people, they fill in 12 and 3 in the top row, and 4 and 1 in the bottom row
(Figure 4a). Also based on the EQLT, they express the sizes of upper row numbers relative to lower row
numbers as “b times as many.” At this young age and lacking any formal introduction to multiplication or
division, children are not expected to use the arrow notation. For the EQLT, the final target goal can be
expressed in a ratio box (Figure 4b) corresponding to Standard 5.NF.3 (“Interpret a fraction as division of
the numerator by the denominator (a/b = a + b). Solve word problems involving division of whole
numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction
models or equations to represent the problem™).

Number of | Number of Number of | Number of
coins persons coins persons

12| 3 al| b
4 | 1 a/b| 1

Figure4a: Fair share box for equipartitioning Figure 4b: Generalized fair share box
a collection of 12 coins for equipartitioning collections

Building from the fair sharing box, the first target for the DMLT is a slightly more sophisticated
reduced ratio box called a “division/multiplication box” (D/M box). The D/M box (Figure 5a) also has a 1
in the lower right corner because in the four-part relations for MCF, for division and multiplication, one
cell is equal to 1. For example, in the problem “at a tire shop, six cars are getting their 4 tires changed.
How many tires are needed?,” the final D/M box would have two columns—one for the number of tires
and one for the number of cars—and show 24 tires associated with six cars and 4 tires with one car. The
number facts, 6 x 4 =24, 24 +~ 6 =4, and 24 + 4 = 6, do not show the one. At first, the use of the D/M box
can be constrained to whole numbers only. The D/M box differs in two respects from the fair-sharing box.
Firstly, it is not restricted to fair-share situations, and secondly, as students learn to work with division and
multiplication operations symbolically, they add arrows to define the relationships (operators) explicitly.
The associated area model, can also initially use whole numbers (Figure 5b).*
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XC

PN
b< bc| b > , Area = b
cl|1 bxc
e c
Figure 5a: D/M box adapted for Figure 5b: Whole-number
whole-number multiplication multiplication model for

the area of arectangle

In order to understand the D/M box and the rectangle area model, students describe and work with all
three related equations of a x b = ab, ab + b =a and ab + a = b. These intermediate goals are presented
here in symbolic form for brevity, for the benefit of experts; students, however, are expected to understand
where they come from, explain and represent them, relate them to prior and related knowledge with
justifications, and apply them to solve a rich variety of problems. In addition to correctly producing their
answers, students are expected to be able to move about flexibly and fluently in multiplicative space using
factors, including primes and multiples, and recognize, discover, and use the relevant properties and
practices.

The final target for the DMLT is a D/M box showing division, multiplication, and a rectangular area
model (Figures 6a, b, c) where the non-one values in the cells can be any rational numbers. The DMLT can
be understood now as poised between (a) equipartitioning, and (b) ratio and percent. As will also be shown,
it draws on elements of other LTs on the length, area and volume, addition and subtraction, and place
value and decimals.

+c/d xc/d

Quantity 1 [Quantity 2 Quantity 1 |Quantity 2

ac/bd| a/b ac/bd| a/b
+ a/b< >+ a/b  x a/b< >x a/b Area = a/b

c/d| 1 c/d | 1 a/bxc/d  |(height)

c/d (length)

\/
+c/d xc/d
Figure 6a. D/M box (division) Figure 6b. D/M box Figure 6¢. Area model

(multiplication)

Also, later in the length, area, and volume LT, the product can include more than two dimensions
(essential for the associative property), so that one can explain volume as V=1 x w x h, or as v = area x h,
and one can increase dimensionality as required for modeling multiplication in higher dimensions that lack
obvious spatial analogues. This set of related learning trajectories: equipartitioning, division and
multiplication, ratio and proportion and percents, and length, area and volume, together with similarity
(within the triangles and transformations LT), comprise the majority of the content that resides in the
multiplicative structures.

It is important to understand as fully as possible the target or domain goal understanding for a learning
trajectory, because while it often cannot be directly taught, it must be reached as the product of a careful
series of transformations based on empirical study of student learning. By delineating it carefully, one can
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distinguish intermediate states that are productive from ones which will limit students’ chances of
obtaining a full and nuanced perspective.

Distinctions and M odels

A synthesis of the literature yields three fundamental models for the joint operations of
division/multiplication, each of which generate both division and multiplication contexts. These are
(a) referent-transforming, (b) referent-preserving, and (c) referent-composing models. These three models
are necessary to sufficiently link division and multiplication to its related trajectories, from
equipartitioning and addition/subtraction to ratio and proportions and percent, fractions, chance and
probability, and length, area, and volume, and to support mathematical modeling. The three models are
described below:

a) Referent-Transforming. Division/multiplication in these models involves changes in the attributes
or referents connected with the quantities, or action on a quantity of one attribute or referent by a
quantity of another attribute or referent. For instance, in fair sharing, coins are shared among
people to produce coins per person (Figure 7). Rate problems also fit in this category. In relation to
the D/M Box, the student sees 6 x 3 = 18 as shifting from 6 people to 18 coins by means of a
multiplication by 3 coins per person, which transforms the referent using an intensive quantity as
an operator. There are two associated division problems for fair sharing 18 + 6 = 3 and 18 + 3 = 6,
each of which is referent-transforming. Students are likely to solve the first one partitively and the
second quotatively.

x3

N

Number of | Number of
coins persons

18 | 6
x6< >x6
3 1

~_
X3

Figure 7. D/M box used to model refer ent-transforming multiplication

b) Referent-Preserving. Division/multiplication in these models involves a multiplicative comparison
of two amounts of a single quantity. This can be accomplished using a new unit, a composite unit
such as a group or a scale, or by using one amount to measure another while the referent or
attribute is maintained. For example, if one is told that the distance from New York to Kansas City
is six times the distance from New York to Baltimore (approximately 200 miles), the D/M box
would look like Figure 8a:
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e s
x | 6 X
X 6 X 6 X 6
200 | 1 200
Figure 8a: Referent-preserving Figure 8b: The same D/M box with
multiplication problem modeled arrow indicating the scalar

with a D/M box

The scale in the right-hand column is, by most accounts, unit-less, but the right column is used
to establish the vertical arrow, or the “within” or referent-preserving relation, “multiply by 6.”
Thus to solve this problem, one maps miles to miles, multiplying by the dimensionless scalar 6, to
get 1200 miles. Because the left-hand column with the scalar multiplication is sufficient to solve
the problem, a two-by-one display of this relationship is sufficient as shown in Figure 8b.
Likewise we suggest that problems involving groups and measurement conversions can and
probably should be treated as referent-preserving because only the unit and not the referent
changes.

We note that because the D/M box always has a 1 in one cell, collapsing it toa 2 x 1 box or a
1 x 2 box is always possible because the operator arrows will “carry” the information from the
non-one cell as illustrated in figure 8b. These collapsed views permit one to assert a single model
for division/multiplication; a drawback of this curtailment, if done too early, conceals some of the
richness of the relational reasoning.

¢) Referent-Composing. Division/multiplication in these problems involves the creation of a new
referent or attribute not previously associated with the other quantities. For example, the
division/multiplication associated with area produces square inches from side lengths in inches. In
Cartesian products, a number of shirts and a number of pants produce a number of outfits, and so
on. Volume as a product of three length measures or as a product of length and area, and higher
dimensions also fit in this category. Arrays can form a transitional representation linking referent-
preserving and referent-creating, such that the product can be computed by multiplication of the
number of dots in each of the two sides, but the product remains a number of dots so no new
referent is composed. The row and column structure, while geometrically extending in two
dimensions (length and width) still produces a product that is a total number of dots.

These three models of division and multiplication can be summarized as shown in Table 1 along with
examples of problem contexts associated with each model.
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Table 1. Three M odels of Division/M ultiplication, Along with Common Contexts for Each

Model 1: Referent- | Model 2: Referent- Model 3
: . Referent-
Transforming Preserving X
Composing
Fair Sharing Unit Conversion Arrays
Rate Scaling Area
Equal-sized Groups Cartesian Product

Note the placement of the equal-sized groups context, in which one reasons with the number of groups,
the size of the group; the resulting product is placed in both models 1 and 2. A problem such as “a
bookshelf has four shelves with six books on each, how many books are there?” can be viewed as referent-
transforming (number of books per shelf x number of shelves = number of books) or as referent-preserving
(4 groups of 6 books).

As a result of this analysis, the team recognized that the transition to division and multiplication
needed to be broadened and strengthened. We analyzed the experiences of children that would support
these varied models, especially in the earlier trajectories of equipartitioning and addition/subtraction. The
expectation for the DMLT was that students would encounter the models as simple whole-number cases
until they built up their repertoire, became fluent and flexible in their knowledge of the associated facts,
and explored the properties. As the numbers became larger, the algorithms would be developed. Though
not fully developed in this paper, students’ introduction to non-whole quantities in the LT division and
multiplication involves reconceptualizing meanings based on their understanding of relational naming
(describing 12 shared among 4 as 1/4 of the collection) and reassembly from EQLT. Over time, students
generalize across the various number types, models and applications as division/multiplication more
abstractly. However, by avoiding overgeneralizing and simplifying to one single model, students should
remain flexible in selecting appropriate models for division and multiplication in modeling activities.

Bridging Standards

From EQLT, children enter third grade with experience in fair sharing, relational naming, and
composition of splits, all of which can support their movement to division/multiplication. Composition of
splits refers to children splitting a split (such as a rectangle into two parts vertically and three parts
horizontally) and learning to predict six (2 x 3) instead of five (2 + 3) resulting parts. The addition and
subtraction LT also links to DMLT through a standard on the array structure and repeated addition. The
length, area, and volume LT also contributes to students’ conceptions of division and multiplication, and
the relevant commutative and distributive properties with such activities as finding a common unit for area
measurement and composing and decomposing rectangular areas. Nonetheless, a set of bridging standards
were needed—first, to make the necessary connections to these earlier learning trajectories, and secondly,
to interpret the meaning of the standards in light of our targets and distinctions.

There are four Standards in CCSS-M that specifically carry the weight of introducing division and
multiplication:

e 3.0A.1: “Interpret products of whole numbers”;

» 3.0A.2: “Interpret whole-number quotients of whole numbers”;

» 3.0A.3: “Use multiplication and division within 100 to solve word problems in situations
involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations
with a symbol for the unknown number to represent the problem”; and

e 3.0A.6: “Understand division as an unknown-factor problem.”
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(Note: 3.0A.4 is placed in elementary algebra because it involves solving for an unknown in any
position in a x b = ¢; 3.0A.5 (concerned with properties) and 3.0A.7 (concerned with fluency) are
placed in the next section of the DMLT.)

While these four standards are sufficient to support the distinctions offered above, they are awkward to
interpret standard by standard: three of them are required to introduce and link multiplication and division
(3.0A.1, 2,and 6), and the examples mentioned along with the first two in the CCSS-M document seem to
imply that a problem type is linked to an operation (groups to multiplication and fair sharing to division).
Furthermore, 3.0A.3 seems to imply that the problem situations are used to apply the operations rather
than that the operations are developed to model the situations. This bias seems to be pervasive in the K—8
Standards.

However, what appears to be awkwardness in the Standards can be addressed because the examples
therein are not intended to limit the cases but only to illustrate them. Therefore in our interpretations, we
explain the three cases of multiplication (referent-transforming, referent-preserving and referent-
composing), then treat division similarly, using Standard 3.0A.6 to link the operations. While the model
remains referent-transforming, the observed processes for the division problems may appear as partitive or
quotative.

Standard 3.0A.3 provides an opportunity to summarize the entire framework with descriptions of the
overall D/M box for whole numbers and the area model. In preparation for Standard 3.0A.3, three
bridging standards were required for the model for referent-composing D/M. The bridging standard
3.0A.F (“Students reason with arrays using multiplicative relationships”) was added to provide students
opportunities to work multiplicatively with arrays. This was necessary because the standard authors had
restricted the approach to arrays in second grade to repeated addition (2.0A.4: “Use addition to find the
total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an
equation to express the total as a sum of equal addends”). This constraint ruled out other approaches such
as by decomposing and composing arrays into other equivalent arrangements (for instance, rearranging a
6 x 4 array as a 12 x 2 or a 24 x 1), or using skip counting.

Building on a bridging standard from the EQLT (2.G.C: “Equipartition a rectangle using vertical and
horizontal cuts and predict the resulting number of parts.”), another bridging standard, 3.0A.D (“Students
learn to code composition of splits as multiplication and can state the associated division problem”),
supports students in coding compositions of splits as multiplication and division. From the length, area and
volume LT, the standard 3.MD.7.b (“Multiply side lengths to find areas of rectangles with whole-number
side lengths in the context of solving real world and mathematical problems, and represent whole-number
products as rectangular areas in mathematical reasoning”), links to the emerging DMLT. To complete the
idea of referent composition then for both area and for pairing of attributes to create Cartesian products,
bridging standard 3.0A.B was added, stating “Relate multiplication and division problems to rectangular
area (e.g., 3 inches x 4 inches = 12 square inches) and Cartesian products (e.g., 3 pants x 2 shirts = 6
possible outfits).”

With this set of three bridging standards carefully linked to the four CCSS-M Standards, third grade
students who accomplish the related content should be able to apply all three models to situations to
produce both division and multiplication problems and solve for unknowns in all of the three positions of
the problem in standard 3.0A.3. Well-prepared with three models, students can be carefully introduced to
the cases in which non-whole numbers are involved, topics that are discussed more fully on the website.
As argued previously, this approach is also powerful because it builds explicitly from prior learning
trajectories and anticipates later ones.

Strategies, Representations, and Misconceptions

The previous section on distinctions and models supports students in creating a rich variety of
representations for multiplication and division (groups, tree diagrams, measures, scaled drawings, and
Cartesian products shown as two dimensional cross products). A second important area of development
involves how children learn their “multiplication and division facts.” Confrey and Scarano (1995) had
demonstrated that children are not given adequate support to “move in multiplicative space.” Most
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teachers assume that multiplication should be introduced separately from division and that learning
number facts should proceed in the same order as addition facts, from small to large numbers. Instead, the
LT research shows how many forms of interrelationships among and between multiplication facts can be
fostered by teaching children rich strategies that build on early understanding of numbers. For example,
instead of teaching multiplication facts in the order of the counting numbers (i.e., x1, x2, X3, etc.), Confrey
showed that a sequence of double (x2), double-double (x4), double-double-double (x8), then multiplying
by 10 and then by 5 (x10 +2), then tripling (x3), multiplying by 6, (triple-double, or x3 x2), and by 9
(triple-triple), and then, finally, by 7, is more readily understood by students, and makes more sense to
them. (The related division facts are practiced simultaneously with multiplication facts in this sequence.)
Instead of viewing multiplication facts as simply a list of things to be memorized, students begin to get a
foundation of the multiplicative relationships among numbers—what I have previously called “moving
around in multiplicative space” (Confrey, 1995).

Two misconceptions are addressed in the DMLT. An early standard in the LT regards the idea of
“evenness” (as contrasted with “oddness”), and the descriptors carefully articulate two approaches, (1) fair
sharing by two, and (2) pairing up. In addition, the descriptors warn that students use the term “even” to
describe when a collection can be fairly or evenly shared, for example, in the sentence, “It came out even.”
The descriptors discuss how the term “even” therefore can be used simultaneously by students in two
conflicting ways, (1) to describe when a factor divides evenly—then the result is even (so that six shared
among two is three which is “even” or fair), and (2) to describe that when a number is “even,” i.e., is
divisible by two. The two meanings must be distinguished by students, so they avoid or resolve a
“misconception.” This is a prime example in which we wrote into the descriptors an important distinction
that we believe many teachers would not readily recognize and discuss with their students.

The second, more widely recognized, misconception is “multiplication makes bigger and division
makes smaller” (MMBDMS) (Greer, 1992). The CCSS-M address this misconception directly in 5.NF.5.b
(“Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than
the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case);
explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the
given number; and relating the principle of fraction equivalence a/b = (n x a)/(n x b) to the effect of
multiplying a/b by 17).

In the DMLT, the misconception is addressed in relation to each of the three models. In the unit
transforming model, the descriptors illustrate that any two numbers can be related in an equation, such as
rate x time = distance, so that 30 mph can be multiplied by a half hour to produce 15 (i.e., fewer) miles.
Students also learn to interpret division of two quantities, in the form a/b and ¢/d, as a ratio of fractions or
ratios (3/4 + 1/2 = 3/2). This example demonstrates that division can result in a larger quantity than the
quantity one begins with. In referent-preserving situations, division by n is shown to be equivalent to
multiplication by 1/n, with students learning to predict the effects of multiplication by &/b as a composition
of multiplication and division, just as was done originally in Dienes’s work on operators (e.g., stretchers
and shrinkers) (Dienes, 1967). Finally, for contexts using the area model, students learn that area measured
in square units can be of a smaller magnitude than the magnitudes of either of the sides.

Conceptual Principles

The development of conceptual principles in the DMLT can revolve first around the ideas of factors
and multiples. Overreliance on multiplication as exclusively derived from repeated addition leaves
students insensitive to the distinctions between additive and multiplicative reasoning. As noted above most
students are not given enough experience moving in multiplicative space. In the descriptors, we also offer
the view that students should be challenged to find multiple ways using only multiplication and division to
move among numbers, such as between 15 and 24 (dividing by 5 and multiplying by 8). I called these
types of problems “daisy chains” in earlier work (Confrey & Scarano, 1995). This encourages students to
work with common factors. In addition, it helps students to develop knowledge of the principles of
multiplication by 1 (identity), multiplication by zero, the commutative property of multiplication, the
associative property of multiplication, and, later, multiplicative inverses. It can also lead to students
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recognizing rational number multiplication and division. In the DMLT, we also treat distributivity very
carefully and explicitly, as it is the means by which the additive structures are linked to the multiplicative
structures.

Coherent Structure

The coherence of the DMLT’s structure can now be summarized. The LT builds from the prior LTs of
(a) equipartitioning; (b) length, area, and volume; and (c) addition and subtraction to establish the three
models applied to whole numbers. The interrelationships among the ideas of factors and the patterns in the
multiplicative table are used to support the evolution of the properties and draw connections to
multiplicative vs. additive comparison. Then at the upper end of the LT, two types of extensions occur: the
application of the problems to multidigit algorithms using the distributive property, and the inclusion of
fractions and ratios as operators. These extensions are carefully constructed in the context of the three
underlying models. The extensions to fractional operators are also connected to the learning trajectory on
length, area and volume where the MMBDMS misconception can be most readily remediated.

Overall the LT is designed to set up the movement to ratio reasoning through connections to the two
Standards on tables of values, 4.MD.1 on conversions and 5.0A.3 on tables of values. Finally, students are
prepared for the culmination of equipartitioning in the fifth grade standard (5.NF.3: “Interpret a fraction
as division of the numerator by the denominator (a/b = a + b). Solve word problems involving division of
whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction
models or equations to represent the problem™). The target goal of the LT is reached in a set of Standards
that include 6.NS.1 (“Interpret and compute quotients of fractions, and solve word problems involving
division of fractions by fractions, e.g., by using visual fraction models and equations to represent the
problem”), and 7.RP.1 (“Compute unit rates associated with ratios of fractions, including ratios of lengths,
areas and other quantities measured in like or different units”).

With this example of how an LT is related to the standards, one can see that the process of linking an
LT to standards requires careful and synthetic applications of empirical research literature. The overall
framework for multiplication and division is thin in the early grades and tends to overemphasize a
relationship to additive structures, resulting in an underdeveloped framework for multiplicative structures.
We have attempted to articulate a stronger framework for a stronger multiplicative structures approach by
adding a few key bridging standards within the learning trajectory which link to equipartitioning and help
to explain how multiple models of division and multiplication can be supported in classroom instruction.
The authors of the CCSS-M left room for such interpretations by avoiding the mistake of defining
multiplication as repeated addition (which had been included in early drafts of the CCSS-M). The learning
trajectory also makes the case for both strong distinction among the strategies, and strong relationships
among the models, strategies, and associated properties.

Implications for Resear chersand Professional Developers

The www.turnonccmath.com website was visited more than 7000 times between its release in April
2012 and late May 2012. The primary visitors have been state and district personnel and teachers looking
for a means to make sense of and make instructional interpretations from the CCSS-M. Some found the
website on their own while others have found it as a result of presentations and mailings. We are currently
in the process of improving the site in several ways. We are adding in the relevant references to research
that we were unable to do in the first round due to the pressures of time and the focus on creating
coherence and consistency in the descriptors; as one can imagine, this has been hard work. We are also
preparing to undertake an expert review process, similar to the process we conducted for vetting the LT on
length, area and volume with the researchers from the Measurement Mini-Center.

We are also committed to working with districts and states using the LTs and their descriptors as a
basis for professional development. These efforts include both pre-service and in-service teachers. We
have worked with Colorado, West Virginia, North Carolina, and Washington, and have received requests
from other states. In this work, it becomes clear that the foundation of knowledge in the unpacking is not
on its own sufficient to support professional development; the examples in this paper make it clear that the
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written descriptors by themselves can serve as an important part of efforts to help teachers understand the
mathematical knowledge embedded in the trajectories and to translate them into robust learning trajectory-
based classroom practice.

There are numerous opportunities for college and university faculty and state and district mathematics
coordinators to use these materials to support professional development. We have engaged in creating
digital presentations to show, in a more visual and story-based way, how the LTs are linked to the
standards. One could imagine building webinars and course materials to provide hands-on experiences for
teachers with these ideas as well, assuming sufficient available resources. Some of the teams developing
the original LTs have already created related professional development materials that can be used in
creating a nationwide application of this work.

Perhaps even more relevant to the PME-NA audience is the potential professional value of the website
to the research community. To some degree, the influence of learning trajectories/progressions on the
CCSS-M was mitigated by ambiguity, dispute, or lack of synthesis by the research community. While this
is not surprising in a field as young as ours, its maturation depends on our willingness to undertake
synthesis, and suggests it would be wise to engage in more of this kind of activity. While researchers may
wish to “do their own thing” or await some other body to interpret and synthesize the development of the
Standards, it would improve our professional reputation as a field if we were to take up this challenge
ourselves.

It is often reported that in medicine, prior to the famous Flexner report (Flexner, 1910), physicians
received education in general basic science and then apprenticed to a working physician until they were
ready to establish their own practice. If that mentor was a strong and knowledgeable role model, the
apprentice was likely to emerge as a well-qualified and very competent physician as well. If not, another
“quack” might be added to the rolls. After the Flexner report, the medical field stepped up to create a
practitioner-informed practice-oriented knowledge base for “clinical training” of physicians and to
standardize medical education. In some ways, we are in a similar predicament in mathematics education
research. Someone studying in a strong program, or apprenticing with a strong faculty member, tends to
move into teacher education well prepared. Study in a less rigorous program and navigating the literature
without any guidance leaves one tasked with “inventing” a deep understanding of the literature: the job is
highly inefficient, at best, and likely to leave a student poorly prepared to take up highly informed work or
to make insightful contributions. Synthesis work is challenging, sometimes grueling, and yet remarkably
satisfying. The www.turnonccmath.com website is meant to serve as one contribution to increasing the
accessibility, completeness, and consistency of the interpretation of the significant portion of the research
base in mathematics education on student learning.

Our research group has been the beneficiary of one of the REESE synthesis grants to bring together a
literature on rational number reasoning that consists of some 600 articles. This experience has led us to this
synthesis of the LTs work with the CCSS-M. It may be the case that the idea of LTs will fade, just as so
many movements in mathematics education do (e.g., metacognition, problem solving, differentiated
instruction, active mathematics teaching, and individualized instruction; the list is, sadly, quite long).
Many valuable lessons resided in those movements, and for the field to become robust for guiding the
conduct of practice, it must create a means for its empirical work to accrue progressively and be refined
over time. Such a means would help reduce the frequency with which we see the same studies conducted
(e.g., students mistaking the visual path of a function’s representation for the behavior of the function has
been studied too many times to count), and help to define a cutting edge field where scholars can aim to
make progress. All of these suggestions fulfill the vision of the conference organizers for this PME-NA
annual meeting to discuss transitions. The bulk of this paper addressed how to create supports for teachers
as they transition to the CCSS-M, but the discussions herein also address transitions for professional
developers and researchers in the everyday conduct and sharing of our practices.
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Endnotes

" The author was a member of the National Validation Committee for the Common Core State
Standards.

* This meeting was jointly hosted by the DELTA research group (directors Confrey and Maloney) and
the Consortium for Policy Research in Education (co-sponsors F. Mosher, P. Daro, and T. Corcoran).

3 The Mini-Center comprises faculty and senior researchers (J. Smith, organizer, J. Conftrey, J. Barrett,
R. Lehrer, M. Battista, D. Clements, B. Dougherty, D. Heck) and associated postdoctoral researchers and
graduate students.

# One can also use the D/M box (Figure 5a) to apply to area, if one starts with a unit square and views
b as stretching b into a strip of b units, for example, as a strip along the top of Figure 5b. Then if ¢
represents a ¢ x 1 strip vertically along the left edge, then stretching it by b produces bc; and the ratios are
preserved. This model seems too abstract and so we prefer to introduce the area model separately.
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Sudents experience a variety of challenges as they move from one level in school to the next. In this
session, we consider and discuss two central questions related to students’ progressions through their
mathematical experience, particularly at transitions roughly characterized as elementary to middle school,
middle school to high school, and high school to post-secondary: What are the key dimensions/aspects of
such transitions? What kinds of system-level responses address students' issues with transitions,
particularly when they are problematic? We discuss research and practice related to students' challenges
and the nature of system-level responses to various aspects of these school mathematics transitions,
including mathematical content, curriculum, students' dispositions, classroom teaching practices, and
school structures. Characteristics of selected strategies and programs are discussed and questions for
further research are presented.

If students’ motivation to learn mathematics, attitude toward mathematics, and interest in mathematics
tends to decline as students progress through levels of education (Middleton & Spanias, 1999), then it is
worthwhile to look more closely at how students experience school mathematics over time. Additionally,
concerns have been expressed about the shortage of qualified workers for careers in mathematics, science,
engineering, and technology (National Science Board [NSB], 2006) and the mathematical demands of
informed civic engagement. Although we recognize that there are many fulfilling professional paths
outside of STEM fields, it is important to consider how the accumulation of students’ school mathematics
experiences over time could inform their career choices and their relationships with the discipline of
mathematics. If students choose not to engage further in mathematics beyond their required school
experience, ideally they would make this choice because they prefer another option, not because their
school experiences have taught them that mathematics is an intellectual and practical activity to avoid.

This paper addresses school mathematics articulation in terms of students’ experiences as they move
through school — from kindergarten through college. The study of students’ progressions through levels of
education provides insights about what we know and don’t know about being a mathematics learner at
various points in time in students’ lives. We summarize research findings from some select studies to
describe some transition issues as students move from (a) elementary school to middle school, (b) middle
school to high school, and (c) high school to post-secondary experiences. To provide some conceptual
clarity for the study of students’ progressions through levels of education, we ask, “What are some of the
aspects and dimensions of students’ transition experiences as they move through their schooling?” To
address this question, we will discuss various conceptualizations of students’ transition experiences across
school settings, such as: factors in school mathematics settings that can change over time, student-level
factors that could indicate variations in their “transition” experiences, and conceptual lenses for viewing
these factors (person-environment fit, what counts as a “mathematical transition,” boundary-crossing, and
rite of passage). We follow this discussion with the question, “What kinds of system-level responses
address transition issues?” In response, we describe a few promising system-level responses to describe
possible efforts to support students as they progress through mathematics programs over time. Finally, at
the end of the paper, we explore promising possibilities for future research on students’ transitions.
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Focuson Students' Experiences as They Move through School Settings

One of our premises in this paper is that students’ experiences as learners of mathematics as they
progress through school are important to understand and support. In addition to learning mathematics
content, students are becoming mathematics learners as they move through school settings:

As they [students] are compelled to sit in a mathematics classroom for a significant period of their
school life, they come to learn how to participate in that context — they learn when to respond, when to
resist, how to appear busy but avoid work. They learn how to cope with the embarrassment, the joy,
the cajoling. They learn how the actions in the classroom have meaning and how some of the actions
of teachers, texts and students take on substantially different meanings for themselves and others. They
learn how to be a mathematics student. They develop a sense of who they are as learners within this
context, a context which may be very different from other subjects within the school context and
beyond the school context. (Boaler, William, & Zevenbergen, 2000, p. 3)

In this manner, we foreground the study of students’ identities, as some have argued that “...learning
and a sense of identity are inseparable: They are the same phenomenon.” (Lave & Wenger, 1991, p. 115).
Although our perspective does not equate learning and identity development, we highly value identity
development as a significant outcome of students’ school mathematics experiences, in addition to learning
academic content. As students move through school settings, students develop their beliefs and practices as
learners of mathematics and develop affiliations (or not) with the subject matter. Understanding students’
experiences as a process of identity development is a way of conceptualizing learning. According to
Wenger (1998), learning occurs through participating in communities of practice. Participating involves
not only thinking and acting, but also developing increasingly central membership within communities.
From this perspective, learning “changes who we are by changing our ability to participate, to belong, to
negotiate meaning” (Wenger, 1998, p. 226).

What students learn—the ways students come to participate, come to view themselves, and come to
view mathematics—is situated within opportunities to participate, and opportunities to participate are
likely to vary as students move across school settings. School settings can be considered to be “facilitating
contexts” (Grootenboer & Zevenbergen, 2008, p. 245) in which students have opportunities to develop
relationships with mathematics. We recognize that opportunities to participate in school experiences may
change as students move from one classroom to another. However, in this paper we focus on changes that
can occur between grade bands—moving from elementary school to middle school, middle school to high
school, and high school to other post-secondary experiences. An assumption in work on students’ school
transitions is that there are often more differences in mathematics teaching and learning between school
buildings than within them and that these differences have implications for students’ experiences.

We acknowledge that structures of school settings vary within the United States and also can differ
between the U.S. school system and those of other North American nations. For instance, within the U.S.
structure of elementary and middle schools, there are various configurations. Students may attend schools
that include kindergarten through eighth grade on the same campus. Another structure involves schools
constructed by grades K—5 on one campus and grades 6—8 on another campus. Still other configurations
include grades K—6 on one campus and grades 7-9 on another (with high school starting at grade 10 rather
than grade 9). For the purposes of this paper, we consider “elementary school” to encompass kindergarten
through fifth grade, “middle school” to address grades six through eight, and “high school” to include
grades nine through twelve. These demarcations follow the grade bands described in the Principles and
Standards for School Mathematics (NCTM, 2000).

There may be an embedded assumption in work on school articulation and transitions across school
settings that students remain in a particular school setting or school district for an extended period of time.
We recognize that students may be mobile even during a particular school year. According to recent data
(US GAO, 2010), 11.5 percent of K—8 schools have high rates of student mobility, such that more than 10
percent of students left by the end of the school year. These schools also had higher percentages of
students who were low-income, English language learners, and received special education. However, we
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believe that the conceptual lenses and the transition issues affecting students discussed in this paper could
be applied to some degree to students moving into new schools or new classrooms at other points in time.

Experiencing transitions involves navigating change, such as changes in approaches to mathematics
teaching and curriculum between school buildings. In our effort to understand school mathematics
articulation (or lack of it) over time, we do not believe that it is entirely possible or necessarily desirable to
eliminate the changes that students experience. A perfect alignment of experiences over time is not
possible or even ideal. Rather, we hope to consider the kinds of changes students might experience,
whether students are aware of these changes and how they might respond, how to support students in
navigating changes between school settings over time, and whether the changes that students encounter are
purposefully created or occurring haphazardly.

The four authors of this paper collaborated because of our different experiences with scholarship
around students’ school mathematics transitions. Amanda and Jack worked together, with a number of
other scholars, on the Mathematical Transitions Project [MTP]. Funded by the National Science
Foundation (Jack Smith, Principal Investigator), our work in MTP investigated students’ experiences as
they moved from middle school to high school and high school to college when the mathematics
curriculum materials shifted from either reform to traditional or traditional to reform (cf., Smith & Star,
2007; Star & Smith, 2006; Star, Smith, & Jansen, 2008; Jansen, Herbel-Eisenmann, & Smith, in press,
2012). Cathy and Janie were involved with writing a series of articles for Teaching Children Mathematics
(Schielack & Seeley, 2010), Mathematics Teaching in the Middle School (Brown & Seeley, 2010), and
Mathematics Teacher (Hull & Seeley, 2010) about students’ experiences as they move from one level of
education to another. This paper is an opportunity to synthesize and share what we’ve learned and to
encourage mathematics educators to do more to consider how to understand and support developing
students in the context of moving across school settings.

Conceptualizing Students' School M athematics Transitions

Research on students’ school mathematics transitions can be conducted from a range of perspectives.
There can be a focus upon (1) the internal experiences of students, (2) the success (or not) of particular
students in “moving along” as judged by external standards (grades, course-taking, etc.), (3) the success
(or not) of institutions in supporting aggregate student success over time, (4) the effects of curriculum or
teaching practice as they correlate to students’ experience (internal) and/or success (external). To explore
some of these foci, we share a representation that highlights some of the main factors in school
mathematics settings that could either change or remain consistent over time and student-level dimensions
that could indicate variations in their “transition” experiences (Figure 1).

We wanted this figure to display four temporal stages in time or grade bands (elementary years, middle
school years, high school years, and post-secondary years of college and/or career). Also, we wanted to
highlight a few factors in the school settings as well as student-level dimensions (both internal and
external). The central column (large arrow) lists important student-level dimensions, such as learning,
achievement, dispositions, patterns of working, and identity/direction. These dimensions could be relevant
for students at any point in time. The ovals represent factors in school settings that may influence students’
at any point in time and that could influence or shape any of the student-level dimensions. Figure 1
highlights some of the complexities of students’ transitions across school mathematics programs, as
changes along any of these factors in school settings or changes in any of the student-level dimensions
could be significant to students in their experiences with school mathematics.
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Aspects and Dimensions of I ssuesin Students' Transitions

We wrestled with the order through which to present students’ experiences over time. In the spirit of
backwards design (Wiggins & McTighe, 2005), we considered starting our discussion of transition issues
with post-secondary experiences (college and careers) and working back to earlier stages of schooling.
This approach would have affording reflecting upon where students could land and working backward to
support their successful journeys. Alternatively, we could begin with elementary school and move forward,
because this timeline aligns with how students experience the accumulation of school mathematics
experiences. After much discussion, we chose the latter option, as (for one reason) it is such a familiar
frame for the issues that we consider.

Below, we share findings from a few select research studies. These studies provide insight on some
conceptual lenses that have been used to understand the nature of students’ transition experiences as they
move across school settings: stage- or person-environment fit, boundary-crossing, and rite of passage. We
present each of these conceptual lenses as we discuss the grade band of students or level of transition that
the researchers studied. However, we do not mean to suggest that the conceptual lens should be used only
with this grade band. Rather, we believe that these conceptual lenses could provide insight at any transition
period, so lenses used previously to understand the transition from elementary school to middle school
could also be useful for studying other transitions, such as the transition from high school to college (or to
other post-secondary experiences). Other conceptual lenses that are useful for understanding students’
experiences will be presented later in the paper.

The projects we discuss also highlight transition issues that students might experience as they move
through school over time. We selected these studies because they highlighted ways to see interactions
between dimensions of students’ school mathematics transitions and system level responses, as many other
studies report outcomes rather than offering explanations about why students might experience these
outcomes.

Elementary School to Middle School

Schielack and Seeley (2010) previously summarized some of the issues that students often experience
when moving from elementary into the middle grades mathematics. They described a student-level
dimension: decreases in achievement in mathematics over time. Prior research suggests that, in general,
students experience significant declines in academic achievement as they move from elementary school to
middle school (Alspaugh 1998). They also highlighted factors in school settings, such as surface and
substantive differences in curriculum materials, the variance in instructional approaches between settings,
changes expectations for students’ work, and increased difficulty in content. Some of the surface level
features in the curriculum materials include change in color schemes, word density, font size, frequency of
word problems or computational items in exercise sets. More substantively, the curriculum materials
generally differ with respect to the types of representations used. For instance, elementary school
mathematics textbook representations may be large and spacious (e.g., use of area models to represent
fractions), and middle school mathematics textbook representations often using more symbolic and
compact representations (e.g., linear models or number lines to represent fractions). Instructional
approaches often vary in the degree to which teachers enact direct instruction and position students as
receivers of knowledge or whether teachers encourage open exploration in which teachers act as
facilitators. Schielack and Seeley (2010) acknowledge that these differences in curriculum or instruction
could be reversed at the different grade levels. Changes in expectations for students’ work in middle
school include increases in the amount of independent work, including homework.

One conceptual lens that researchers have used to view students’ experiences as they move from
elementary school to middle school is the stage-environment fit perspective, which focuses on the degree
to which students’ developmental needs are met by the structures and practices of schooling. Foundational
research on adolescent development (outside of mathematics education) has conceptualized students’
experiences in the context of educational change in terms of fit between students’ developmental needs
and the school environment. This line of research addresses changes in adolescents’ motivation over time
as they move between school buildings. Declines in student motivation have been explained as a lack of a
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stage-environment fit (or a mismatch) (Eccles et al., 1993, following Erikson [1968]). “[R]esearch has
found that academic declines in interest and self-concept are a function of the mismatch between the
school environment and the adolescent” (Zarrett & Eccles, 2006, p. 17). A stage-environment fit is the
quality of the match between the developmental needs of adolescents and the nature of the learning and
social opportunities afforded to them. From this perspective, declines in students’ motivation are not
conceived as student deficits but as results of misalignment between students’ needs at their stage of
development and the learning and social opportunities afforded to them in their school experiences.
Alternatively, students’ motivation could remain strong or improve if there exists a fit between the
student’s needs and his or her experience in school.

Studies of the transition from elementary school to middle school reveal some examples of stage-
environment mismatches (e.g., Eccles et al., 1993; Roeser, Eccles, & Sameroff, 2000; Wigfield, Eccles, &
Roderiguez, 1998). The move toward ability grouping in the transition to middle school emphasizes social
comparison at a time of heightened self-focus for adolescents. If teacher control increases and students’
choices decrease in middle school, this conflicts with adolescents’ increasing needs for autonomy. If
teachers become more distant in their interactions with students in middle school, this may conflict with an
adolescents’ need to foster stronger relationships with adults outside the home.

Transition studies often provide insight at more of a top level, such as why students would continue to
engage or not in school generally. However, there are some noteworthy exceptions. Roeser, Eccles, and
Sameroff (2000) found that when middle school students perceived their school’s curriculum to be
meaningful, relevant to their lives, and supportive of their autonomy, they also expressed higher academic
competence and higher academic value. Additionally, Midgley, Feldlaufer, and Eccles (1989) found that,
during their transition into middle school, students who perceived lower degrees of support from their new
mathematics teachers also reported lower intrinsic values for mathematics. More troubling, these findings
were stronger for lower achieving students.

Looking back at our representation in Figure 1, these studies highlight particular factors in school
settings and student-level dimensions. A move toward ability grouping indicates an example of change in
the structure of the mathematics program that students experience. A more distant teacher-student
relationship, reduced teacher support, and an increase in teacher control represent changes in instructional
practices. An example of curricular factors was the degree to which the curriculum was perceived to be
meaningful and relevant. These studies varied in terms of whether the factors in the school setting were
perceived by students (self-reported) or observed by researchers. Student-level dimensions described were
their reflections upon their identities (heightened attention to self, need for relationships with adults
outside of the home) and disposition (need for autonomy, sense of competence, high value for academics).

Middle School to High School

As students move from middle school to high school, some of the factors in school settings and
student-level dimensions occur again for students, and additional factors and student-level dimensions are
incorporated for others. Brown and Seeley (2010) describe a range of factors in school settings and
student-level dimensions that often change as students move from middle school into high school.
Regarding school factors, they identified potentially insufficient alignment of mathematics instruction and
curriculum materials across grade bands, specific issues with mathematics content in high school (e.g.,
mandatory Algebra I), and problems that could occur if high school teachers construct students as being
“unmotivated” rather than trying to understand what they can do to motivate students. They also describe
student-level dimensions, particularly decreases in achievement that seem to occur if students experience
lack of alignment in curricular or instructional approaches (differences in the degree to which the
mathematics programs are problem-centered and evoke sense-making or focus on teacher-directed
procedural instruction). As we review some of the prior research on students’ transitions into high school
mathematics programs, we describe three conceptual lenses: person-environment fit, defining the nature of
a mathematical transition, and boundary crossing.

Person-Environment fit. The person-environment fit conceptual lens is a variation on stage-
environment fit. Studies of stage-environment fit have been conducted in the context of the transition from
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middle school to high school (e.g., Barber & Olsen, 2004; Isakson & Jarvis, 1999), not only in the context
of the transition from middle school to elementary school. A transition into high school typically involves
similar changes as those that occur during a transition from elementary to middle school (e.g., decreased
autonomy in the classroom, decreased support from teachers). A transition into high school may be less
disruptive than a transition to middle school, since the first transition tends to have more impact (Barber &
Olsen, 2004). However, for students who attended a school structured in grades K-8 prior to high school,
the transition into high school may be their first move between buildings. Students’ transitions into high
school have been associated with declines in their academic performance (Barber & Olsen, 2004; Isakson
& Jarvis, 1999; Rice, 2001). For high school students, one important developmental challenge of middle
adolescence is to become more self-reliant and self-governing (Kimmel & Weiner, 1995; Powell, Ferrar, &
Cohen, 1985). In contrast to early adolescents, middle adolescents face increased future-related pressures
as they begin to prepare for their lives beyond K—12 education. This perspective draws attention to
student-level dimensions, such as achievement and identity (becoming more self-reliant) as well as
direction (future-related pressures).

A fit or a mismatch with one’s environment may not necessarily be developmental, so we believe that
person-environment fit (Hunt, 1975) can be a more appropriate term for understanding students’
experiences than stage-environment fit. Stage-environment fit addresses the fit between the school setting
and a student’s developmental needs, but there may be other aspects of the person that can fit or not with
the environment. For example, a fit or mismatch may be due to the alignment (or lack thereof) between
students’ individual epistemological beliefs about the nature of knowing and the approach to mathematics
instruction in their classrooms, and these beliefs may not be tied to students’ development.
Epistemological beliefs have been shown to vary by gender (Gilligan, 1982) and by curricular contexts
(Star & Hoffmann, 2005). Boaler (1997) explained high school females’ experiences in different
mathematics programs in terms of the fit or mismatch between their academic contexts and women’s ways
of knowing. She drew on the work of Gilligan (1982), who described differences between “separate” and
“connected” knowing. Separate thinkers prefer to work with subjects that are characterized by logic, rigor,
absolute truth and rationality; and connected thinkers prefer to use intuition, creativity, personal processes
and experience. The young women in Boaler’s study expressed a preference for learning mathematics
through a more open, problem-solving approach that supported their autonomous sense making in
mathematics, or an approach more aligned with connected knowing, and they expressed dislike for a more
closed, teacher-led approach that was more aligned with separate knowing. Epistemological beliefs
represent a student-level dimension (disposition). School-level factors described in this work include
teaching practices, enacted curriculum, and expected student activity.

Looking across conceptual lenses that address “fit” (or mismatch) with environment, a common
approach is to characterize the degree of overlap between students’ perceived needs and preferences and
what the environment affords. Both students and school settings change over time. An implicit assumption
with this research is that two settings should adjusted to become more aligned (and aligned in ways that
also support developing learners). The alternative perspective is that change and challenge is essential to
healthy development so the focus should be on how students adjust to those changes and challenges But
what frames are available to examine adjustment to changing mathematical contexts for learning? Two
perspectives, the concept of a mathematical transition and the lens of boundary crossing, provide
alternative ways to view moving into new school settings other than fit with environment.

What countsas a“ mathematical transition” ? Something to consider in research on educational
change is whether changes are noticed by students and how students respond when noticing particular
changes. The Mathematical Transitions Project [MTP] team (cf., Smith & Star, 2007; Star, Smith, &
Jansen, 2008; Jansen, Herbel-Eisenmann, & Smith, in press, 2012) did assume that changes that adults
observed in curriculum and instruction when students moved from one building to another would
necessarily be important for students. Our starting point in characterizing what counts as a mathematical
transition was to understand the transition experience from students’ perspectives (either when moving
into a mathematics program that was reform-oriented from a more traditional program or when moving
into a mathematics program that was more traditional from a reform-oriented program). The term,

Van Zoest, L. R., Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.



Plenary Papers 30

“reform-oriented,” in this discussion simply signals the possibility of significant changes in curricular
content and instructional practice.

We proposed that students experienced a mathematical transition if data indicated a significant change
along two or more (out of four) dimensions. These dimensions were chosen to capture students’ cognitive,
affective, and behavioral experiences and included: (a) whether a student reported a significant number of
differences between their middle school and high school programs, (b) self-reported changes in a student’s
disposition toward mathematics, (c) significant changes in mathematics achievement, and (d) self-reported
changes in a student’s approach to learning mathematics. We defined a “transition type” as any
combination of significant changes in two or more of these dimensions. (For more on concepts and
methods in MTP, see Smith and Star [2007].) Note that factors in school settings were captured from
students’ perceptions, with respect to the differences that students self-reported. Student-level dimensions
that we investigated included their achievement (in terms of course grades over time and overall GPAs),
dispositions (self-efficacy, attitude toward mathematics, reports of career goals), and patterns of work
(approach to learning). We collected our data over two and a half years at two high school sites and two
universities and followed approximately 25 students at each site.

Two of the MTP sites captured students’ experiences as they moved from middle school to high school,
and results indicated that two-thirds of our focal participants did not experience significant changes in
achievement and less than 20% of our high school students changed their learning approaches (Smith &
Star, 2007). (When high school students’ achievement did change, in approximately three-fourths of these
cases, achievement fell.) However, we do not mean to suggest that such lack of change when moving into
high school is representative or typical, as we only worked with about 25 students at each high school.
Rather, these data suggest that students could have a mathematical transition when moving into high
school that does not primarily focus upon changes in achievement or learning approach as the most
relevant student-level dimensions.

When students experienced “mathematical transitions™ at the two MTP high school sites, they noticed
significant differences between their middle school and high school mathematics programs and changed
their dispositions toward mathematics. Patterns in students’ disposition changes at each site appeared to
vary with respect to curricular shifts (Smith & Star, 2007). When the dispositions towards mathematics of
students who moved into a high school with a reform-oriented mathematics program (in which the teachers
used Core Plus Mathematics Project [CPMP] [Hirsch, Coxford, Fey, & Schoen, 2005]) changed, they
became more positive. In contrast to their prior experiences in a more traditional middle school, these high
school students reported liking CPMP’s focus away from repeated practice on very similar problems,
increase in story problems, more group work, and a focus on understanding and sense making. Students
who moved into a more traditional high school mathematics program from a reform-oriented middle
school mathematics program (in which the teachers used the Connected Mathematics Project [CMP]
[Lappan, Fey, Friel, Fitzgerald, & Phillips, 1995]) experienced a range of disposition changes. Among the
students whose dispositions changed, there was a mix of both more positive and more negative
dispositions toward mathematics in high school, with slightly more students developing slightly more
negative dispositions. Students whose dispositions changed reacted to similar factors in school settings
(e.g., more distant teacher-student relationships in high school, more challenging mathematics content in
high school, more word problems in reform mathematics programs), but some students preferred the
middle school and others preferred the high school mathematics program.

L earning during boundary crossing. Rather than assuming that school settings could potentially
become more aligned or assuming that change in mathematics programs over time is inherently
problematic, the conceptual lens of learning during boundary crossing could be used for understanding
how students experience educational change. “Boundary crossing” refers to a person’s interactions and
transactions across different settings (Akkerman & Bakker, 2011). Jansen, Herbel-Eisenmann, and Smith
(in press, 2012) drew upon the concept of boundary crossing to examine two cases of MTP students’
transitions into the high school site in which students moved from a middle school that used CMP into a
high school with a more traditional mathematics program. Following Akkerman and Bakker (2011), a
“boundary” was seen as “a sociocultural difference leading to a discontinuity in action or interaction”
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(p. 134). A discontinuity could involve changes along any of the factors in school settings, as presented in
Figure 1. Such changes could lead to students’ experiences of adjusting their roles in each setting.
Following Jackson (2011), “setting” was a distinct physical space, and we considered that different
physicals spaces (i.e., school buildings) could typically “enclose” different school practices. Rather than
viewing boundary crossing experiences as barriers to learning, they can be perceived as potential resources
for learning.

Jansen, Herbel-Eisenmann, and Smith (in press, 2012) presented cases of two students that
exemplified two learning processes that could occur during boundary crossing in the process of
transitioning out of a reform mathematics program into high school. Drawing on Akkerman and Bakker’s
(2011) characterizations of learning mechanisms during boundary crossing, our cases illustrated two
processes of making sense of practices in multiple contexts: identification and reflection.

Where identification represents a focus on a renewed sense of practices and a reconstruction of current
identity or identities, reflection results in an expanded set of perspectives and thus a new construction
of identity that informs future practice. (Akkerman & Bakker, 2011, p. 146)

These conceptualizations highlight that learning during boundary crossing can involve reifying one’s
current identity (identification) or constructing a new identity through expanding one’s perspectives about
practices in both settings (reflection). In this work, we present analytic tools for identifying students’
boundary crossing experiences and describe the nature of learning that appeared to occur during those
experiences.

The case of Bethany (identification) illustrated a student who had a strong preference for her CMP
experience in middle school and fought to retain the aspects of that experience that she preferred, even
when her high school experience did not provide clear opportunities to do so. For instance, she valued that
her middle school mathematics teachers explicitly encouraged her to develop and share her own solution
methods, expressed frustration that her high school mathematics teachers were “teaching one way... I’'ve
never done the same way as the teacher,” and experienced conflicts with her mathematics teachers when
they took off points for solutions that were correct yet did not align with their taught procedure or when
they would not listen to her ideas for how to solve the problem. Through making sense of her boundary-
crossing experience, she appeared to solidify her identity as a learner and doer of mathematics.

Ethan’s case (reflection) demonstrated a student who, through his continual use of metaphors,
expanded his perspective about school mathematics through experiencing two different mathematics
programs. One of these metaphors included running water over an ice cube tray. He observed that the
middle school mathematics teachers filled the ice cube trays slowly and carefully while the high school
mathematics teachers ran the water quickly over the trays, which represented the degree to which teachers
monitored student understanding in each setting. He reported liking his high school mathematics program
slightly more than his middle school mathematics program, because he appreciated what he perceived to
be an increase in autonomy and challenge. Learning occurred for Ethan through reflection because he
constructed new understandings of the differences between the two settings and developed a new sense of
identity (that he called “ambidextrous”) such that he believed that he could be successful in either type of
setting.

High School to Post-Secondary School (College and/or Careers)

We recognize that ideally all students should have a diversity of learning and work options beyond
high school; not every student should be expected to attend a four-year university. This diversity of
potential post-secondary experiences adds additional challenges to studying the transition out of high
school. Even college-bound students who have been historically successful in mathematics may not be
successful in college mathematics (Smith & Star, 2007). It is important to understand the range of factors
at play in students’ experience with the transition to post-secondary experiences. Hull and Seeley (2010)
note some factors in students’ experiences that appear to be lacking: adults might have lower expectations
for students’ post-secondary goals than students have for themselves and students are often lacking
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information about post-secondary experiences, including what colleges require for entrance or placement
in particular mathematics courses.

Although we acknowledge the range of post-secondary experiences, the prior research that we describe
below primarily focuses upon students’ transition from high school to college mathematics programs. We
describe two conceptual lenses, including the MTP conception of a mathematical transition and the
concept of “rite of passage.” Additionally, we describe other transition issues that students might
experience when moving into college or a work career.

What counts as a “mathematical transition” ? There were two university sites in the MTP project;
one included students who experienced CPMP or another reform-oriented curriculum in high school and
entered a university with a more traditional calculus program and the other site included students who
experienced a more traditional high school mathematics program and moved into a university with a
reform-oriented calculus program.

At both university sites, the changes that students experienced appeared to be more similar than
different, which suggests that their transitions had more to do with moving into college than shifts in their
curriculum materials (Smith & Star, 2007). More than four-fifths of the students at both university sites
experienced drops in their achievement. When students’ dispositions toward mathematics changed at either
university site, their dispositions became more negative. About half of the students at each university site
changed their approaches to learning mathematics. Students who moved into the university that had a more
traditional mathematics program than they had experienced in high school changed their intellectual
participation by struggling to attend class when the dominant activity was lecture presentation in college.
Students may have struggled to attend class due to being able to choose whether or not to attend class in
college or because they had a preference for their high school mathematics courses that were not lecture-
oriented. However, at both sites, the general pattern in their learning approach changes was to read
mathematics textbooks more carefully and extensively in college, to complete more homework (even when
voluntary), study more for tests, and to seek more help from institutional resources or peers (but not from
teachers) in college. Most participating students at both sites reported significant differences between high
school and college. Some of these differences were more about the move into college generally, such as
the new and more difficult mathematics content that they observed, and other differences were more
closely aligned with the shift in curricular programs, such as the increase or decrease in contextual story
problems, the increase or decrease of fixed procedures available to solve the problems, and the increase or
decrease of the expectations to explain solutions in writing or verbally. Although most students at both
universities experienced change on our dimensions, these changes seemed to be more about moving into
college generally than the shifts in curricular programs.

Rite of passage. Clark and Lovric (2008, 2009) addressed a need for a theoretical model to understand
the high school to university transition in mathematics by adapting the concept of “rite of passage.” This
concept affords an understanding of both the nature of the transition experience and suggests possibilities
for supporting students as they move into college. Below, we will describe how the rite of passage concept
provides insights on the nature of the transition experience, and later in the paper we will revisit the
concept to consider how to support students’ transitions into college.

Rite of passage is a concept from anthropology that describes how people experience a crisis,
according to Clark and Lovric (2008, 2009). In such a crisis, routines are interrupted, changed, and
distorted (discontinuities in experience). In rites of passage, young people re-establish balance and bring
back more regular routines. There are three phases associated with a rite of passage: separation (distancing
one’s self from a high school mathematics experience and beginning to anticipate the tertiary experience),
liminal or transitional phase, and the incorporation phase. The process involves cognitive conflict and
culture shock. This rite of passage is marked by a physical separation from family and former homes;
combined with the large scale of university settings and programs, shock and stress may be inevitable. The
success of moving through a rite of passage depends at least in part upon the assistance offered to the
individual undergoing the experience.
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Clark and Lovric (2008, 2009) relate the experience of moving from secondary mathematics programs
into tertiary programs. They describe the discontinuities in terms of college faculty perceiving a lack of
preparation in students’ technical or procedural facility and analytic skills and deficiencies in students’
fundamental notions about the nature of mathematics (particularly a lack of understanding about the role of
proof in mathematics). Additionally, citing Tall (1991), they note that college students struggle with
building the cognitive apparatus needed to handle advanced mathematics. A student who completes this
rite of passage becomes able to think in more productive ways that are aligned with the new environment.
From the perspective of rite of passage, the transition into college will likely involve significant
discontinuities. Rather than trying to remove the discontinuities, the goal is to think about how to support
students with successfully navigating the discontinuities. (Clark and Lovric’s [2008, 2009] suggestions, as
informed by the rite of passage concept, will be explored later in this paper.)

System-L evel Responsesto Support Students as They Progress Through School Experiences

Given the range of discontinuities students might experience in school-related factors as they move
through grade bands over time (and associated or co-occurring responses at student-level dimensions), it
would be useful to explore some recommendations for supporting students with their transitions through
mathematics programs over time. We do so with a caveat: many of these system-level responses have not
been thoroughly examined empirically. Some of the recommendations address minimizing the
discontinuities between factors in school settings at the transitions between grade bands. Other
recommendations take discontinuities between grade bands as a given and focus on how to help students
navigate them. More research is needed to understand the conditions under which these system level
responses are more and less effective for supporting students in their transitions across grade bands.

Regarding efforts to minimize discontinuities, a consistent recommendation has been for teachers to
communicate across grade bands about mathematics teaching and learning (Brown & Seeley, 2010; Hull &
Seeley, 2010; Schielack & Seeley, 2010). Teachers at the earlier temporal stages of transitions can develop
awareness of what their students will experience in the future and prepare them. Teachers at the later
temporal stages can learn more about what their future students will have experienced and what they might
be capable of doing or understanding about mathematics. The specific recommendations about how to go
about this sort of communication vary slightly. It has been suggested that elementary and middle school
mathematics teachers can visit each other’s classrooms and have comparative discussions about
assignments and students’ work (Schielack & Seeley, 2010). Middle school and high school teachers could
engage in cross-site collaboration to improve alignment in instructional practices and collaboratively study
mathematical goals and expectations (Brown & Seeley, 2010). College faculty and high school teachers
could collaborate to develop a shared understanding about what students need to know, develop tasks that
exemplify these expectations, and establish exemplars of student work that reflect the depth of knowledge
that should be promoted (Hull & Seeley, 2010). To engage in such cross-site collaboration, teachers would
need support (in terms of time, structure, and guidance) and shared motivation for working toward better
alignment across grade bands. Where the latter may exist in some, perhaps many communities, the support
resources typically do not.

Given potential challenges associated with reducing unproductive discontinuities, system-level
supports designed to support students with navigating transitions seem more pragmatic and promising.
Teachers could create a support network with other teachers, counselors, administrators, and parents to
provide students with an early vision about what being “good in mathematics” could mean for students’
futures (Schielack & Seeley, 2010). Middle school teachers could work to create classroom cultures that
actively engage students such that they support students’ cognitive, emotional, and social development
(Brown & Seeley, 2010). These efforts could usefully promote the ideas that mathematical competence is
malleable rather than fixed and that being good at mathematics involves effort rather than solving
problems quickly, and provide every student with a sense of belonging in the mathematics classroom. High
school teachers could promote high expectations for every student, build strong relationships with students
to reinforce high expectations, and know about (and communicate with students about) what students need
to do to prepare for college mathematics courses and mathematics placement exams (Hull & Seeley, 2010).
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To prepare for success in tertiary education, high school students should receive clear messages about the
importance of taking mathematics for all four years in high school and how effort matters for mathematics
learning, support for learning to read mathematics textbooks for understanding, and encouragement to
form study groups among peers.

Seeley and colleagues have made some specific content recommendations to support students with
navigating transitions. For the middle grade bands, they advocate promoting proportional reasoning to
support success in high school mathematics (Brown & Seeley, 2010). In high school, they advocate
increasing mathematical expectations for students, but rather than advocating that every student take
calculus, they recommend that some students take a fourth year mathematics course consisting of statistics,
probability, data analysis, and modeling (Hull & Seeley, 2010). These “new” areas of mathematical
content are promising focal areas given the nature and demand of many fields of work, before and after
college.

Rite of passage and implications for supporting the college transition. Considering the rite of
passage conceptual lens, Clark and Lovric (2008, 2009) made some specific recommendations to assist
students as they navigate their transition into their college mathematics programs. Rather than change
college mathematics courses to be more like high school courses, the rite of passage perspective suggests
that it is more appropriate to focus upon making expectations more transparent to students. This would
mean telling high school students more directly, accurately, and in detail about their future work in
university or college mathematics classrooms.

Regarding mathematics placement tests, Clark and Lovric (2009) suggest that recognizing that a rite of
passage involves the whole student, an effective mathematics placement test would incorporate more than
mathematics content. Beyond testing mathematics background knowledge and skills, placement tests could
capture the whole individual. This would include measuring students’ attitudes toward learning
mathematics, their motivation, and their preferences for learning and social engagement in the classrooms,
and designing appropriate mathematical learning experiences according to the outcomes.

These authors note that a rite of passage takes time and should not (and cannot) be accelerated.

Rather than trying to “ease the transition” or “make it smoother,” it [a successful transition program]|
needs to acknowledge that the transition [to college] will be painful, difficult, and—perhaps most
importantly—that it will take time. Students undergoing transition need to know that all discomfort,
pain, stress, even severe anxiety—in the end—will be proven worthwhile. Confusion and uncertainty
are integral parts of everyone’s learning process (Clark & Lovric, 2009, p. 764).

Realistic expectations for the length of time it will take for students is important, as short orientation
sessions about how to be a more effective note-taker or how to manage time are not enough to help
students (Clark & Lovric, 2008). We should not expect that short, one-shot workshops are enough to
support students with a transition to college.

Additionally, a rite of passage suggests that individuals who engage in the process should take some
responsibility for it (Clark & Lovric, 2008). To ease the process of students taking responsibility, groups of
students can be brought together to support each other as they navigate the transitions together (Clark &
Lovric, 2009). Students who have already successfully transitioned into college can serve as mentors to
first-year students. It is not inappropriate, from this perspective, to expect first-year college students to
accept at least some responsibility for taking initiative to negotiate the transition. Too much help may
serve to disempower students.

Promising Possibilities for Future Research

Given the complexity of students’ experiences in school over time, we are hesitant to prescribe
specific questions for future research. However, we would like to suggest an issue to consider and a
promising theme for researchers to pursue if they are interested in better understanding students’
transitions in school mathematics. An issue to consider is which processes and outcomes to investigate
when conducting research on students’ transitions. Additionally, we believe that a promising path to
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pursue would be to further document the effects of interventions designed to support students with their
school mathematics transitions over time.

We recommend that researchers build upon and extend this line of research through examining factors
other than achievement and course-taking. Outcomes such as achievement and performance measures have
dominated prior research (cf., Barber & Olsen, 2004; Hill & Parker, 2006; Isakson & Jarvis, 1999; Post,
Medhanie, Harwell, Norman, Dupuis, Muchlinski, Andersen, & Monson, 2010; Rice, 2001). However,
dispositional factors may be as potent for mathematics learning as any set of factors, particularly as a
mediating variable between instruction and performance or understanding. Accounting for these mediating
variables could enhance research on transitions by providing explanations or insights about why students’
performance or achievement outcomes or course-taking patterns occur.

Future studies about transitions between school settings should be more closely situated in relation to
shifts in curriculum or instructional practices of specific subject matter. Relating studies of transition in
relation to specific subject matter can provide insights for how the teaching of particular content can
support or constrain the degree to which students will continue to engage or not with that content.

There is a need to continue to report the effects of promising interventions that support productive
outcomes. Certainly this paper did not exhaustively explore all of the research that has been conducted on
productive interventions, but there is a need for more research that uncovers conditions that lead to
students experiencing school mathematics transitions in productive ways. We recognize the challenge in
this sort of work. There is a severe difficulty of relating change in any variable to the effect of one factor
represented in the intervention.

Conclusions

In this paper, we examined questions about aspects and dimensions of students’ transitioning through
educational settings over time along with concerns for system-level responses to support students as they
move through these transitions. We highlighted conceptual lenses to help understand students’ experiences
over time during transition points in school mathematics programs as well as issues that students may
experience due to factors in school settings and student-level dimensions. We advocate for attention,
through both research and practice, to students’ socio-emotional well-being and developing identities as
they navigate changes in their mathematics programs over time. Understanding the nature of changes that
students experience at transition points across their school experiences can be helpful for those who are
invested in supporting students’ mathematics learning and development.
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This paper describes a model for building cognition-and-instruction-based goal trajectories (GT) in the
context of a study that examines the validity of curriculum-embedded assessments. The model consists of
six design processes and two constraints. The GT is constructed from curriculum-specified learning goals
as well as developmental progressions and learning trajectories derived from empirical research. The GT
is designed to inform both the selection of assessment activities for data collection and the interpretation
of empirical results. Two primary results of the design process are presented: (a) a goal trajectory for
promoting algebraic understanding and (b) the relationships between the trajectory and features of the
Common Core Sate Sandards. Implications of the design model for building GTs that can be used to
assess student reasoning are discussed.

Keywords: Assessment and Evaluation; Curriculum Analysis; Learning Trajectories

I ntroduction

Learning trajectories are constructs designed to approximate variability and change in student
knowledge states over time. They are domain-specific and therefore relate to understanding and reasoning
in a particular domain such as algebra, geometry, place value, and rational number (e.g., Clements &
Battista, 2000; Clements, Wilson, & Sarama, 2004; Confrey & Maloney, 2010; Daro, Mosher, &
Corcoran, 2011; Fuson, 1998; Griffin, 2009; Simon, 1995; Simon & Tzur, 2004). With optimal design,
learning trajectories can be used to support formative assessment processes that include connecting
observed student performances to domain-referenced (e.g., “student X is distance Yy from expected ‘expert’
performance levels”) and individual-referenced (e.g., “student X is distance y from expected student X
performance levels given what the teacher understands about the knowledge states of student X”’) ways of
acting (Cowie & Bell, 1999). Thus, if a trajectory reveals a diagnostic range of student understanding that
a teacher or student is likely to encounter it may provide a basis for instructional responses that promote
learning.

Most learning trajectories are designed to directly inform learning and instruction. Indeed, the goal
trajectory (GT) concept described here is based upon the well-established idea of the learning trajectory,
but the GT serves a different purpose which is to make the otherwise implicit models of learning
progressions in a math curriculum explicit, an express priority for researchers interested in tracing student
knowledge states in the context of a math curriculum. The present paper describes a model for building a
GT and explicates its utility for evaluating the variation and growth of mathematical understanding and
reasoning in the contexts of particular curriculum-embedded assessments in K—6 math curricula. The
research is situated in the context of a larger study designed to address some of the most pressing problems
of classroom assessment practice, and is aimed at strengthening the linkages among assessment design,
instruction, and student learning.

The current notion of the GT incorporates elements of the developmental progressions that partially
compose typical learning trajectory constructs (e.g., Fuson, 1997; Griffin, 2009). Elsewhere, cognition-
and-instruction-based design methods have been designed for “forward engineering” a mathematics
curriculum (e.g., Clements & Battista, 2000). By contrast our GT serves a purpose of principled
retrospective evaluation that is focused on the embedded assessments in an existing mathematic
curriculum.

Thus, the current approach to formulating a goal trajectory will be most useful to researchers and
practitioners that work in situations where an instructional sequence is present (i.e., in a “scope and
sequence”) but where a developmental progression—as defined by empirically and theoretically grounded
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models of learning—is implicit. The approach consists of six primary design processes: (a) Define the
design product, (b) Specify the purpose of the product, (c) Identify the features of the design product,

(d) Evaluate, (e) Update, and (f) Classify the features. To illustrate these design processes, we focus on the
goals that comprise the algebraic reasoning strand of the standards-driven curriculum, Everyday
Mathematics (EM; Bell et al., 2007).

Method: Six Design Processes and M odel Constraints

Our curriculum-and-instruction-based model for building a goal trajectory has six design processes
and two design constraints (see Figure 1). The processes are cognitive activities that are either expressed
by an individual or distributed across several people and media.

a. Define Goal Trajectory as the Design Product

The first process, Define the Design Target, refers to activities in which the researcher or evaluator
articulates what will be designed. In the present case we sought to design a GT that modeled variability
and growth in knowledge states in and over time for fifth-graders learning how to reason algebraically in
the context of a specific math curriculum. We wanted the GT to be a cognitive model with cognitive units
at a level of specificity described by the curriculum. Additionally, we wanted the GT to have properties
such that it could be used to estimate variability and growth through its different “levels.”

b. Specify the Purpose of the Goal Trajectory

The second process, Specify the Purpose, refers to activities in which the researcher or evaluator
specifies the aim of the design product. It addresses the question, “Why do we need or desire to design
such a product (i.e., the GT)?” In the present case, the purpose of designing a GT that models variability
and growth in student knowledge states in and across time was to help us (a) select curriculum-embedded
activities, and (b) interpret student performance on the selected assessments. The GT is an important tool
in our investigation of the cognitive, instructional, and inferential validity of curriculum-embedded
assessments. Thus, in the current situation the purpose was pragmatic. However, in other cases the design
product can have empirical, pragmatic, and/or theoretical considerations.

c. Identify the Features of the Goal Trajectory

The third process, |dentify the Features of the Goal Trajectory, operationalizes the elements of the
design product. In the present situation the features were cognitive units and properties of the GT. As
mentioned earlier we were concerned with preserving the level of cognitive specificity described by the
curriculum. In the context of Everyday Mathematics (EM), the cognitive units were tied to the learning
goals such as Use patterns to find basic facts and Use rules to complete function tables/machines. The
learning goals comprised the Patterns, Functions, and Algebra (PFA) learning strand in the Grade 5 EM
curriculum. Another feature was the ordinal property of the GT. Our intent was to design a GT with
ordinal levels that could approximate variation in student performance and growth in cognitive complexity
over time.

d. Evaluate Process Outcomes

As shown in Figure 1, the fourth process in the model, Evaluate, serves at least two functions. One is
to evaluate the agreement between the purpose of the design product (i.e., process b) and its features
throughout progress in the design cycle. For example, given the purpose of the design (see section b.
Specify the Purpose), selecting cognitive units at the larger grain sizes of learning strands (e.g.,
measurement, number, or geometry) or content threads (e.g., patterns and functions, algebraic notation and
solving number sentences, or properties of the arithmetic operations) would not have given the GT the
necessary power to model cognitive variability in or among students. At those levels the GT would only
describe two knowledge states: haves and have-nots. Therefore, it was critical to evaluate each feature of
the GT with this constraint in mind.

A second function of the Evaluate process is to assess the extent that the design features and the
method for assigning them into meaningful levels of the GT is viable given the model’s design constraints
which are explained below. The dashed circular path indicates that (a) the outcomes of two related
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processes are cross-evaluated (e.g., outcomes of processes € and f) and (b) the decision to move forward
with the design depends on the balance of that cross-evaluation; if the balance is positive (i.e., consistent
with the scope of the model) then advance, if negative (i.e., inconsistent with the scope of the model) then
the model needs to be updated (process €).

f. Classify Learning Goals

to Levels of Goal “Generalize key features
Trajectory | ------= > of goal trajectory from
Empirical Curriculum learning goals”
“Are objects and Model " . Model
classification viable /' \
given model  d. Evaluate I A I‘ l e. Update
constraints?” -~ “|dentify learning goals
c. Identify Features of for the EDM Patterns,
Goal Trajectory | Functions, and Algebra
“Are design e - learning strand”
purposeand ¢ Evaluate T ! ! l e. Update
product features 4 /'
consistent?” .7 “ “Build a Goal Trajectory
b. SpecifyPurposeof | , o help assess the
Goal Trajectory validity of curriculum-
I J embedded assessments”
~
a D::';:S?g‘:a:;?j?“' ------- > “Build a Goal Trajectory”
J

Figure 1. Model of goal trajectory design processes with examples

e. Update

The fifth process, Update, serves to make process outcomes consistent with the model or make the
model consistent with process outcomes. If an evaluation of two process outcomes reveals an
inconsistency (e.g., a learning goal defined as a feature of the GT does not “fit” into a level of the GT),
then one or both of those outcomes will need to be updated. In this example a decision may be made to
modify a trajectory level, a decision may be made to expand the trajectory by adding a level; or a decision
may be made to modify the learning goal. If the two evaluated outcomes are related to processes € and f,
then it may also be necessary to evaluate the outcome of process b. This particular chain of evaluations
may support a decision to update the purpose of the design (e.g., the GT is useful for selecting embedded
assessments but not for interpreting student performance). The cyclic iterations between Evaluate and
Update processes can be one, few, or many in the actual design cycle. Indeed, the model is referred to as a
design “cycle” because it is not linear in a strict sense. It is important that researchers or evaluators
engaged in the design cycle keep careful records of the model’s development from initial conception to
final design. In our project we write reports that trace the nature of the design cycle as it unfolds.

Once the learning goals were identified in the curriculum and extracted, we met with the curriculum
developers to evaluate (a) the extent that our search for PFA learning goals was exhaustive, (b) our
understanding of the curriculum layout, and (c) the degree that the level of learning goal information we
decided to use at that point in our design would enable us to build the desired GT. Indeed, our in-depth
curriculum analysis revealed several layers of learning goal information. In its early stages, our GT
referenced information from all of these layers. However, based on discussions with the curriculum
developers we updated the model to include only a single source of learning goal information, the Grade-
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Level Goals Chart. Our rationale for this decision was that the Grade-Level Goals Chart highlights the
units in which the Grade 5 PFA learning goals are introduced. Using the Grade-Levels Goal chart as our
point of reference we were able to “see” the concepts and skills that encompassed the Grade 5 curriculum
over time. This satisfied a demand of our model (i.e., build a GT whose levels express ordinal relations)
and we were ready to enact the sixth design process.

f. Classify Features into Levels of the Goal Trajectory

The sixth design process in our model for building a goal trajectory is Classify. To classify means to
abstract a smaller set of cognitive constructs from the learning goals that approximated the major forms of
reasoning in the trajectory. The Grade-Level Goals Chart yielded 38 PFA learning goals across the 12
units of the Grade 5 curriculum. The goals were organized into seven general levels of reasoning that were
scheduled to be introduced in the PFA trajectory. In effect, the Classify process “collapses” all related
learning goals across task demand (e.g., recall vs. recognition) and external representation format (e.g.,
base-10 blocks vs. arrays) resulting in a general set of learning goals and a manageable GT. Notice how
Figure 1 indicates that the Classify process is constrained by two sources of information: (a) prior research
in developmental psychology, cognitive psychology, and mathematics education on the development of
and variability in algebraic reasoning (i.e., the “Empirical Model”), and (b) the instructional sequence of
key concepts and skills as outlined by the curriculum (i.e., the “Curriculum Model”). As depicted in Figure
1, the resulting learning trajectory was subjected to an Evaluate-Update Cycle before final approval.

Learning Goal Trajectory for Understanding Patter ns, Functions and Algebra

The result of the design processes in the current case is the Patterns, Functions, and Algebra (PFA)
goal trajectory shown in Table 1. The design processes revealed that the general PFA goal trajectory for
acquiring algebraic thinking was implicitly characterized by EM as growth from none or very little
understanding of patterns, to identifying and using patterns, to formalizing patterns as a means for solving
problems, to generalizing rules from patterns and sequences, to formalizing rules in notational, graphical,
and tabular formats, to finally being able to reason with and about variables. The organization of the
trajectory was consistent with a growing body of research in cognitive science and mathematics education
which suggested that algebra acquisition could be defined by cognitive growth along a multi-path
continuum of reasoning with patterns and sequences, generalizing rules from patterns and sequences,
representing functions among rules, patterns, and sequences, and formalizing variables to think about
functions (Carraher & Schliemann, 1992; Kaput & Blanton, 1999; Moss & McNabb, 2011; Smith &
Thompson, 2007; Warren & Cooper, 2008).
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Table 1: Goal Trajectory for Understanding Patter ns, Functionsand Algebra

Level of Understanding

Examples

Abstract Algebraic Functions
(Represent functions using
words, algebraic notation,
tables and graphs; represent
patterns and rules using
algebraic notations; translate
from one representation to
another; use representations to
solve problems involving
functions)

Use a variable to represent unknown quantities to solve
problems

Represent an algorithm as a general pattern with variables
Solve linear equations with one unknown and multiple
operations using trial-and-error or equivalent equation
strategies

Solve problems involving functions using representations;
including translating from one representation to another

Algebraic Functions
(Represent functions using
words, symbols, tables and
graphs; use those
representations to solve
problems)

Represent functions using algebraic notations

Use representations of function(s) in tables and graphs to
solve problems

Use patterns, tables and graphs to define relationships
between volumes of 3D solids or between radius and area;
Represent rates with formulas, tables and graphs

Function Rules

(Describe and/or write rules for
functions involving the four
basic arithmetic operations; use
rules to solve problems)

Identify and use patterns in graph coordinates to match graphs
with situations

Use patterns to identify the relationship between numerators
and denominators; use patterns to identify relationships
between fractions and decimals

Generate rule for comparing, ordering fractions

Describe the patterns in an area model

Use rules to complete function tables/machines

Use words and symbols to extend patterns/ to describe the
operations of Addition, Subtraction, Multiplication and/or
Division and/or create/use rules to solve problems

Numeric Pattern Rules

(Use words or symbols to
create and/or describe rules for
numeric patterns; use rules to
extend patterns and solve
problems)

Use words and/or symbols and/or arithmetic notation and
extend patterns to describe geometric rules

Use and describe patterns to find sums

Describe number patterns related to exponents and/or use
them to solve problems

Numeric Patterns
(Identify, use, expand,
describe, or create numeric
patterns)

Complete number sequences

Use patterns to find basic facts

Describe and extend patterns among facts and their extension
Identify and/or use patterns in skip counting

Count in Equal Intervals

No Understanding of
Patterns

Not able to complete number sequences or count in equal
intervals

Relationships Between the PFA Goal Trajectory and the Common Core State Standards

In addition to being consistent with empirical models of growth in algebraic reasoning, the trajectory

also aligned with the mathematical content domains and practices outlined by the Common Core State
Standards (CCSS) in several interesting ways. First, the Grade 5 EM trajectory for understanding patterns,
functions, and algebra embodies two Grade 5 CCSS content domains: Operations and Algebraic Thinking
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(OA) which focus on writing and interpreting numerical expressions and analyzing patterns and
relationships and Number and Operationsin Base 10. Second, the Grade 5 goal trajectory relates to these
CCSS content domains across Grade 2, Grade 3, and Grade 4 but the mathematical foci (i.e., “clusters™)
vary among the grades. For example, whereas the CCSS Grade 5 OA domain has two relevant clusters that
focus on (a) writing and interpreting numerical expressions, and (b) analyzing patterns and relationships,
the CCSS Grade 3 OA domain has four clusters that emphasize (a) representing and solving multiplication
and division problems, (b) understanding properties of multiplication and the relationship between
multiplication and division, (c) multiplying and dividing using strategies (e.g., 8 X 4 = 32 therefore 32 + 4
= 8) and properties of operations, and (d) solving for unknown quantities that involve the four operations
in addition to identifying and explaining arithmetic patterns. Aspects of the goal trajectory also map onto
features of the Grade 6 CCSS content domain, Expressions and Equations, which includes clusters that
focus on (a) applying and extending what is understood about arithmetic to algebraic expressions, (b)
reasoning about and solving one-variable equations and inequalities, and (c) representing and analyzing the
relationships between dependent and independent variables.

Besides aligning with the CCSS mathematical content domains, we also found the goal trajectory to be
well-aligned with the CCSS mathematical practices; that is, the various habits of mind that mathematics
instructors are expected foster in their students such as constructing viable arguments and reasoning with
others, modeling with mathematics, using appropriate tools strategically, and attending to precision. There
are various mathematical practices that map onto particular levels of the goal trajectory. For instance, take
Use a variable to represent unknown quantities to solve problems, taken from the sixth level of
understanding in the goal trajectory, Abstract Algebraic Functions (Table 1). The level of understanding
relates to the CCSS mathematical practice that indicates variables are used to solve problems because they
can help make sense of quantities and relationships. This mathematical practice implies that variables have
greater utility than as simple tools for identifying or recalling answers. A second example of the alignment
between the trajectory and the mathematical practices described by the CCSS can be found if one looks at
Complete number sentences in the Numeric Patterns level of understanding in the goal trajectory. The
latter is related to the CCSS mathematical practice that promotes the capacity to seek and use structure to
describe and extend facts and patterns. The implication is that engaging students in practices that give
them opportunities to identify the structure of number sequences should lead to efficient pattern
identification strategies that can be applied across different task situations.

Discussion

A six-process model for building curriculum-and-instruction-based goal trajectories for cognitive
research and instructional assessment was proposed. We instantiated the processes of the model in the
context of our work with the Patterns, Functions, and Algebra learning strand in the Grade 5 Everyday
Mathematics curriculum. The design processes yielded a unique representation of the goal information that
was already represented—albeit, “hidden”—in the organization of the curriculum. Interestingly, the
representation that we constructed as the PFA goal trajectory was quite different from the representation of
that information as presented by the curriculum.

Re-Presentations of Curriculum-Embedded Goal Structures

Cognitive psychologists have reliably shown that different representations of equivalent information
can vary in the way that they preserve information, and this in turn can yield differential affordances for
accessing and utilizing the same information (e.g., Larkin & Simon, 1987; Palmer, 1978; Zhang &
Norman, 1994). An evaluation of the model proposed in this paper indicates that the benefits of the
constructed GT are the result of the aforementioned representational effect (Nickerson, 1988; Zhang,
1997). Indeed, the GT affords fresh and important insights into student understanding that expand upon
what is available from the Everyday Mathematics curriculum materials, while also remaining faithful to
the curriculum by basing the GT on the curricular learning goals and instructional materials. For one, the
goal trajectory allows us to predict and account for a wider range of student performance on an activity
than what is usually estimated by the curriculum, because the curriculum-based representation is typically
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limited to dichotomous evaluations of student performance such that student performance either reflects
evidence of goal acquisition or it does not. A second benefit of the PFA goal trajectory is that it makes it
possible to interpret student performance in terms of the cognitive constructs that are relevant to a
particular domain in the contexts of the curriculum and scientific progress. Thus, the goal trajectory
affords greater diagnostic information about student performance relative to the learning and acquisition of
algebraic thinking.

Investigating Curriculum-CCSS Goal Alignment

Although the CCSS are based on notions of a learning trajectory or progression, their explicit
description of one is limited to expectations of mathematical content domains and practices across not
within grades. By comparing our constructed GT to the CCSS it became clear that for a teacher at a
particular grade the CCSS was not intended to represent the expected understandings and reasoning
patterns of students “well below or well above grade-level expectations,” nor was it meant to account for
variation contributed by English language learners or children with special needs. We propose that GTs
help to illuminate—within the context of a particular mathematics curriculum—the potential for multiple
levels of knowledge and reasoning that may be observed as students complete a given activity.

Mapping the CCSS Operations and Algebra content domain onto the GT of an elementary grades math
curriculum revealed interesting relationships between each level of the goal trajectory and the CCSS. In
particular, as the GT levels progressed, the number of shared relations between each level and the
standards increased. Whereas the earlier levels of the trajectory shared a one-to-one relationship with the
CCSS standards, the advanced levels of the trajectory shared a one-to-many relationship with the standards
in which a single level of the GT was linked to multiple goals in the CCSS. Finally, in support of the
CCSS’s position about the breadth of mathematical practices, our analysis indicated that the CCSS
mathematics practices were differentially instantiated at each GT level of understanding. The extent that
these patterns will emerge with other GTs (e.g., Number and Numeration) and the empirical validity of the
GT levels is currently being investigated.
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This paper explores how curriculum and classroom conceptual and procedural emphases affect the
learning of algebra for students of color. Using data from a longitudinal study of the Connected
Mathematics Program (CMP), we apply cross-sectional HLM to lend explanatory power to the
longitudinal analysis afforded by Growth Curve Modeling that we have reported elsewhere. Overall, we
find that the achievement gaps tend to decrease over the course of the middle grades. However, differences
in open-ended problem solving and equation solving performance persist for African American students.
Classroom conceptual and procedural emphases also appear to differentially influence the performance of
Hispanic and African American students, depending on the aspect of algebra learning that is being
measured.

Keywords: Curriculum Analysis; Equity and Diversity; Algebra and Algebraic Thinking

Classrooms in the United States are becoming increasingly ethnically diverse. However, disparities in
the mathematics achievement of different ethnic groups remain a persistent challenge (Lubienski &
Crockett, 2007). Since teaching and learning are cultural activities, students with different ethnic and
cultural backgrounds may respond differently to the same curriculum. Given the development and
implementation of curricula based on the Standards documents developed by the National Council of
Teachers of Mathematics (NCTM, 1989, 2000), a key question about curriculum reform is: How does the
use of a Standards-based curriculum like CMP impact the learning of students of color as compared to
White students?

In our project, Longitudinal Investigation of the Effect of Curriculum on Algebra Learning (LieCal),
we used a longitudinal design to examine the similarities and differences between a Sandards-based
curriculum called the Connected Mathematics Program (CMP), and more traditional curricula (non-CMP).
We investigated not only the ways and circumstances under which the CMP and non-CMP curricula
affected student achievement gains, but also the characteristics of these reform and traditional curricula
that hindered or contributed to the gains. One aspect of the LieCal analysis was an examination of
potentially differential effects of curriculum and procedural and conceptual emphases in the classroom on
the achievement of students of color. In this paper, we present results from a cross-sectional analysis of
student growth within each grade level. This analysis allows us to add depth to our previous analysis using
Growth Curve Modeling by probing effects that are significant at individual grades but which were not
uncovered in our longitudinal analysis.

Background

Algebra readiness has been characterized as the most important “gatekeeper” in school mathematics
(Pelavin & Kane, 1990). In particular, success in algebra and geometry has been shown to help narrow the
disparity between minority and non-minority participation in post-secondary opportunities (Loveless,
2008). Research shows that completion of an Algebra II course correlates significantly with success in
college and with earnings from employment. The National Mathematics Advisory Panel (2008) found that
students who complete Algebra II are more than twice as likely to graduate from college as students with
less mathematical preparation. Furthermore, the African-American and Hispanic students who complete
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Algebra II cut the gap between their college graduation rate and that of the general student population in
half. However, success in high school algebra is dependent upon mathematics experiences in the middle
grades. In fact, middle school is a critical turning point for students’ development of algebraic thinking
(College Board, 2000).

In a Standards-based curriculum like CMP, the focus is on conceptual understanding and problem
solving rather than on procedural knowledge. Students are expected to learn algorithms and master basic
skills as they engage in explorations of worthwhile problems. However, a persistent concern about
Standards-based curricula is that the development of students’ higher-order thinking skills comes at the
expense of fluency in computational procedures and symbolic manipulation. In addition, it is not clear
whether this potential trade-off might play out differently for students from different ethnic backgrounds.
Some reports have suggested that Hispanic and African American students using the CMP curriculum may
in fact show greater achievement gains than students from other backgrounds (Rivette, Grant, Ludema, &
Rickard, 2003). Still, research is needed to assess whether and how the use of a Standards-based
curriculum such as CMP can improve the mathematics achievement of all students while helping to close
achievement gaps (Lubienski & Gutiérrez, 2008; Schoenfeld, 2002).

Since the effectiveness of a curriculum depends critically on how it is implemented by teachers in real
classrooms, studies of the effectiveness of Standards-based curricula must examine how teachers use the
curricula (Kilpatrick, 2003; NRC, 2004; Wilson & Floden, 2001). The data gathered must be analyzed in
appropriate ways to control for variations in classroom instruction and the learning environment. In order
to determine the effects of curriculum on learning, it is essential to examine the classroom experiences of
the teachers and students who are using the different curricula. In this paper, we take features of classroom
instruction into consideration when we examine the impact of curricula on students’ learning of algebra. In
particular, we examine the extent to which teachers emphasize concepts and procedures in the classroom.
As was reported by Moyer, Cai, Nie, and Wang (2011), CMP teachers placed more emphasis on
conceptual understanding whereas non-CMP teachers placed more emphasis on procedural knowledge.

Our previous longitudinal analyses of the LieCal data using Growth Curve Modeling showed that over
the three middle school years, African American students experienced greater gain in symbol manipulation
when they used a traditional curriculum. The use of either the CMP or a non-CMP curriculum improved
the mathematics achievement of all students, including students of color. The use of CMP contributed to
significantly higher problem-solving growth for all ethnic groups (Cai, Wang, Moyer, Wang, & Nie,
2011). In this paper, we take a cross-sectional approach and examine the achievement of students of color
in each grade level while controlling for the conceptual and procedural emphases in classroom instruction.

M ethod
Sample

The LieCal project was conducted in 14 middle schools of an urban school district serving a diverse
student population. When the project began, 27 of the 51 middle schools in the district had adopted the
CMP curriculum, and the remaining 24 had adopted more traditional curricula. Seven schools were
randomly selected from the 27 schools that had adopted the CMP curriculum. After the seven CMP
schools were selected, seven non-CMP schools were chosen based on comparable demographics. In sixth
grade, 695 CMP students in 25 classes and 589 non-CMP students in 22 classes participated in the study.
We followed these 1,284 students as they progressed from grades 6 to 8. Approximately 85% of the
participants were minority students: 64% African American, 16% Hispanic, 4% Asian, and 1% Native
American. Male and female students were almost evenly distributed.

Assessing Students' L earning

Learning algebra involves honing procedural skills with computation and equation-solving, fostering a
deep understanding of fundamental algebraic concepts and the connections between them, and developing
the ability to use algebra to solve problems. Thus, to assess students’ learning of algebra, it is important to
consider their conceptual understanding, their symbol manipulation skills, and their ability to solve
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problems. We used state test scores in mathematics and reading as measures of prior achievement. We
used LieCal-developed multiple-choice and open-ended assessment tests as dependent measures of
procedural knowledge and conceptual understanding in algebra, respectively. The two LieCal-developed
tests were administered four times, once as a baseline in the fall of 2005, and again each spring (2006,
2007, and 2008).

We used multiple-choice items to assess whether students had learned the basic knowledge required to
perform competently in introductory algebra. Each version of the multiple-choice test was comprised of 32
questions that assessed five mathematics components (Mayer, 1987): translation, integration, planning,
computation (or execution), and equation solving. For this paper, we report on the results from the
translation, computation, and equation-solving components of the multiple-choice tasks. In addition, the
open-ended tasks were designed to assess students’ conceptual understanding and problem-solving skills.
These tasks were adopted from various projects including Balanced Assessment, the QUASAR Project
(Lane et al., 1995), and a cross-national study (Cai, 2000). Since only a small number of open-ended tasks
can be administered in a testing period, and since grading students’ responses to such items is labor-
intensive, we distributed the non-baseline tasks over three forms (five items in each form) and used a
matrix sampling design to administer them. Examples of the items and tasks used in the LieCal
assessments can be found in Cai et al. (2011).

The multiple-choice items then were scored electronically, either right or wrong. The open-ended tasks
were scored by middle school mathematics teachers, who were trained using previously developed holistic
scoring rubrics. Two teachers scored each response. On average, perfect agreement between each pair of
raters was nearly 80%, and agreement within one point difference out of 6 points (on average) was over
95% across tasks. Differences in scoring were arbitrated through discussion. The two-parameter Item
Response Theory (IRT) model was used to scale student assessment data on both multiple-choice tasks and
open-ended tasks (Hambleton, Swaminathan, & Rogers, 1991; Lord, 1980).

Conceptual and Procedural Emphases as Classroom-level Variables

Mathematical proficiency includes both conceptual and procedural aspects (NRC, 2001), and teachers
can shape instruction in ways that emphasize either or both aspects. We used conceptual and procedural
emphases as classroom variables when examining the impact of curriculum on students’ learning. To do
so, we estimated the levels of conceptual and procedural emphases in the CMP and non-CMP classrooms
using data from 620 lesson observations of the LieCal teachers, which we conducted while the students
were in grades 6, 7, and 8. Each class was observed four times, during two consecutive lessons in the fall
and two in the spring. Further details about the observations are documented in Moyer et al. (2011). One
component of the observation was a set of 21 items using a 5-point Likert scale to rate the nature of
instruction for each lesson. Of the 21 items, four were designed to assess the extent to which a teacher’s
lesson had a conceptual emphasis. For example, observers rated a lesson’s conceptual emphasis using the
following item: “The teacher’s questioning strategies were likely to enhance the development of student
conceptual understanding/problem solving.” Another four items were designed to determine the extent to
which a teacher’s lesson had a procedural emphasis. For example, observers rated a lesson’s procedural
emphasis using this item: “Students had opportunities to learn procedures (by teacher demonstration, class
discussion, or some other means) before they practiced them.” Factor analysis of the LieCal observation
data confirmed that the four procedural-emphasis items loaded on a single factor, as did the four
conceptual-emphasis items. Since students changed their classrooms and teachers as they moved from
grade 6 to grade 7 and from grade 7 to grade 8, each student could have a different value each year for
three years, but all students in the same classroom at each grade had the same value.

Quantitative Data Analysis

To examine student growth within each school year while controlling for multiple factors such as
gender, ethnicity, and classroom conceptual and procedural emphases, we used hierarchical linear
modeling (HLM). After unconditional models were fitted, two sets of conditional cross-sectional HLM
analyses were conducted. The first set of models was composed of cross-sectional hierarchical linear
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models that included student-level variables and a curriculum variable. These models used four different
student achievement measures: open-ended, translation, computation, and equation solving. Each HLM
model used data from one of the four dependent achievement measures in one of three middle grades,
together with an independent prior achievement measure, namely the results of the state mathematics
testing in the fall of the corresponding year. So, each model examined a single type of learning within a
specific grade level. Since we had four achievement measures at each of three grade levels, there were 12
cross-sectional models in this first group.

The next set of models built on the first group of models by adding two classroom-level variables: the
conceptual emphasis of the classroom and the procedural emphasis of the classroom. These cross-sectional
HLM models were of the following form:

Level-1 Model
Y;; = poj + pij(Prior Achievement;, - Y1) + p,i(Gendery, - Yz)
+ psj(African Americany, - 23) + p4i(Hispanicy, - 24)
+ psi(Other Ethnicityy, - 25) + Lijk
Level-2 Model
Poj = boo T byt CMP + by,Conceptual Emphasis; + by;Procedural Emphasis; + r;

Interactions between conceptual emphasis, procedural emphasis, and curricula were tested, but found to be
not significant.
Results

We present the results of our analysis in two parts. First, we report on the cross-sectional HLM models
that included student-level and curriculum variables. Then, we examine the impact of including the
classroom-level conceptual and procedural emphasis variables in the models.

Student-Level and Curriculum Cross-sectional HLM M odels

Table 1 shows the standardized results from an examination of the performance of African-American
and Hispanic students relative to White students, when controlling for prior achievement, gender, and
curriculum (but not conceptual and procedural classroom emphases).

Table 1: Effect of Ethnicity on M athematics Achievement

Grade 6 Grade 7 Grade 8
African Hispanic African Hispanic African Hispanic
American American American
Open-ended -0.50%** -0.21* -0.26%* -0.22%* -0.28%** -0.13*
Translation -0.24%* - - - - -
Computation -0.37%%* -0.22% -- -- -- --
Equation -0.35%* -0.23* -0.24%* -0.22* - -

solving

*Pp<.05. **p<.0l. ***p<.001.
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In the sixth grade, an achievement gap was seen between African American students and White
students on all four student achievement measures, and between Hispanic students and White students on
the open-ended, computation, and equation solving measures. The gaps on the open-ended and equation
solving measures remained in the seventh grade for both groups. However, performance on the
computation and translation measures had equalized across the groups. In the eighth grade, the only gap
that remained was on the open-ended items. The overall trend was a gradual decline or elimination of the
achievement gap among the ethnic groups.

To better understand if using the CMP curriculum would reduce achievement gaps, we conducted
separate parallel analyses for CMP and non-CMP students. The results are shown in Table 2. In the
analysis of the combined CMP and non-CMP student sample, achievement gaps for the translation and
computation measures occurred only in the 6™ grade: White students outperformed African American
students on both measures, and White students outperformed Hispanic students on computation. However,
in the analyses of the separate student samples, we found that although all three of these gaps appeared for
the non-CMP students, the only achievement gap for the 6™ grade CMP students was in computation. In
grades 7 and 8, the performance parity on computation and translation items observed in the combined
sample of students was mostly preserved in the separate analyses, except for the appearance of a gap
between CMP 8th grade African American students and White students on computation items.

Mirroring the results from the combined sample, White students outperformed African American
students on open-ended items across all three grades regardless of curriculum. For students using CMP,
White students also outperformed Hispanic students on these items in Grades 7 and 8. For non-CMP
Hispanic students, however, there were no parallel achievement gaps. For the equation solving items in the
combined analysis, White students outperformed African-American and Hispanic students in grades 6 and
7, with no achievement gap in grade 8. These gaps were attributable to the CMP students; there were no
achievement gaps found for equation solving items among the non-CMP students. For CMP students,
White students outperformed African American students in all three grades, and White students
outperformed Hispanic students in grades 7 and 8.

Table 2: Effect of Ethnicity on Mathematics Achievement for CMP / Non-CM P Students

Grade 6 Grade 7 Grade 8
African Hispanic African Hispanic African Hispanic
American American American
Open-ended -0.40%* / -/ -0.27%%*/ -0.31%%*/ -0.36%*/ -0.28**/
-0.9]%** - -0.23%* - -0.26%* -
Translation -/ -/ -/ -/ -/ -/
-0.37* - - - - -
Computation -0.43%*/ -/ -/ -/ -0.22%/ -/
-0.27%* -0.35%* - - - -
Equation -0.35*/ --/ -0.44%*/ -0.45%*/ -0.23%*/ -0.22%/

solving -

*p<.05. **p<.0l. ***p<.001.

Student-L evel, Classroom-Level and Curriculum HLM M odels

We built on the results of Table 1 with the addition of the conceptual emphasis and procedural
emphasis classroom-level variables. Our goal in adding these variables to the analysis was to begin to
probe the complexity that underlies conclusions we might otherwise draw from one-dimensional
comparisons of students in different ethnic groups. With respect to the analysis of the combined CMP and
non-CMP students, however, the addition of the classroom-level variables did not greatly perturb the
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results save for the disappearance of the gap in Hispanic students’ performance on open-ended tasks in the
8th grade.

We again conducted parallel analyses for the CMP and non-CMP students, this time including the
conceptual and procedural emphasis classroom-level variables. The results are presented in Table 3. For
the CMP students, two achievement gaps were no longer statistically significant with the addition of the
classroom variables: 8th grade African American students on computation items, and 8th grade Hispanic
students on equation solving items. For non-CMP students, the performance gap of 6th grade African
American students on translation and computation items ceased to be significant.

Table 3: Effect of Ethnicity on M athematics Achievement for CMP/Non-CM P Students
Controlling for Conceptual and Procedural Emphases

Grade 6 Grade 7 Grade 8
African Hispanic African Hispanic African Hispanic
American American American
Open-ended -0.40%* / - --/ -0.28%* / - -0.30%**/ -0.36%* / - -0.29%%/ —-
0.90%** -0.33* 0.27* -- 0.23%*
Translation -/ -- -/ - -/ - -/ - -/ - -/ -
Computation -0.37%* / -/ -/ - -/ - -/ - -/ -
-- -0.33%*
Equation -0.35%/ -/ - -0.45%* / -- -0.44%%/ -~ -0.21%* / -- -/ -

solving -

*Pp<.05. **p<.0l. ***p<.001.

For the combined student groups, the performance of Hispanic students in the 8th grade was not
significantly different from 8th grade White students for all four achievement measures. Similarly, the
performances of 8th grade African American and White students were not significantly different except on
the open-ended items; there was no achievement gap between African American and White students in the
8th grade on translation, computation, and equation solving items. When analyzed as separate groups, the
CMP and non-CMP students of color generally showed achievement gaps on open-ended items compared
to White students using the same curriculum. Within the CMP student group, there were also achievement
gaps for African American students on equation solving items.

Discussion

In examining how Standards-based curricula such as CMP affect the mathematics learning of students
of color, it is important to use nuanced analyses to look beyond one-dimensional comparisons (Lubienski,
2008). The longitudinal growth curve analysis of the LieCal data provided mixed conclusions regarding
the use of the CMP curriculum with students of color (Cai et al., 2011). Though, over the course of the
middle grades, African American and Hispanic students had growth rates similar to students not in their
ethnic groups on the open-ended, translation, and equation solving measures, African American students
had a smaller growth rate on the computation measure. The cross-sectional HLM analysis in this paper
provides detail not captured in the longitudinal analysis.

Overall, the results of the cross-sectional analysis show a trend of decreasing gaps in achievement.
Whereas Hispanic and African American students score significantly lower than White students on most or
all of the measures at the end of 6th grade, by the end of 8th grade, only the open-ended measure still
reflects a gap. Moreover, when classroom conceptual and procedural emphasis is taken into account, the
only difference that remains at the end of 8th grade is in African-American students’ performance on the
open-ended tasks. Despite the slower growth rate in African American students’ performance on
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computation tasks that was identified in the longitudinal analysis, the effect seems to be largely limited to
the 6th grade.

When the cross-sectional analysis is limited to the CMP students, the open-ended measure reflects a
persistent gap between White students and students of color. Similarly, for African American students in
the CMP group, equation solving remains an area of challenge throughout the middle grades. Even when
classroom conceptual and procedural emphasis variables are included, these gaps remain. Indeed, these
performance gaps in the CMP analysis do not decrease with grade level, as many of the other performance
gaps do. Thus, despite the fact that the longitudinal analysis showed comparable growth curves for White
students and students of color on the open-ended measure, the cross-sectional analysis suggests that there
may be opportunities within the CMP curriculum for developing open-ended problem-solving skills that
are being differentially accessed by students of different ethnic backgrounds.

It is interesting to note how the influence of classroom emphasis variables played out differently for
different student groups. For example, the profile of Hispanic CMP students’ equation solving
performance was somewhat different from the African American students’. For Hispanics, the negative
CMP effect was limited to the 7th grade. Classroom conceptual and procedural emphases, not curriculum,
appear to account for Hispanic student performance differences in the 8th grade. Moreover, the reverse
appears to be the case with respect to the translation and computation measures in the 6th grade. When
controlling for classroom emphasis, there was no longer an achievement gap for African American
students. This difference in the effects of classroom emphasis on Hispanic and African American students
merits exploration.

In conclusion, the longitudinal and cross-sectional analyses continue to paint a mixed picture of the
effects of the CMP curriculum for students of color. By grade 8, most performance differences on the
measures in this study were no longer significant. Though African-American students’ computation skills
appeared to grow more slowly across grades 6 through 8, the effect of this difference seems to have been
primarily limited to grade 6. However, the persistent gaps between African American students and White
students on the open-ended and equation solving measures, even when classroom emphases are taken into
account, invite further investigation.
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UNPACKING THE COMMON CORE STATE STANDARDSFOR MATHEMATICS:
THE CASE OF LENGTH, AREA AND VOLUME

KoSzel ee Kenny Nguyen Jere Confrey
North Carolina State University =~ North Carolina State University =~ North Carolina State University
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Adoption of the Common Core State Standards present challenges to school districts, school
administrators, and teachers. To assist in this endeavor, we present our work on unpacking the CCSSM
for the length, area, and volume Learning Trajectory (LT). The overarching theme of “ genetic
epistemology” and a five-characteristic framework guided our work of unpacking the Standards. Asa
result, we added “ Bridging Sandards’ to mediate students' progression through the length, area, and
volume LT to provide a coherent structure through this trajectory. The implications of our work were
discussed.

Keywords: Standards; Learning Trajectories; Curriculum

Objective

The Common Core State Standards for Mathematics (CCSS-M) (CCSSI, 2010) are a major revamping
of existing and past state standards. Adoption of the CCSS-M presents many challenges for school
administrators and teachers. In particular, the learning trajectories that ostensibly undergird the Standards
are not readily accessible to readers because they are abridged within the standards and do not contain a
full treatment of the research base (Confrey, 2012). Hence, there are gaps between standards reducing their
cohesiveness. Finally, the Standards authors state: “These Standards do not dictate curriculum or teaching
methods” (CCSSI, 2010, p. 3) which is commendable, however, this implies that teachers need resources
and support to understand the gradual evolution of the “big ideas” within the Standards.

Our research group has unpacked the grade K-8 standards for the CCSS-M
(http://www.turnonccmath.com) (Confrey et al., 2011) by mapping each of the K-8 standards onto 17 LTs
(Confrey, 2012). For each trajectory, we unpacked the Standards, or parts of a Standard if it had a few
parts (e.g., 3.MD.7 had three parts: 3.MD.7.a, 3.MD.7.b, and 3.MD.7.c), into descriptors to include a
careful discussion of the full learning trajectory. The descriptors include: (1) Conceptual principles;

(2) Misconceptions, strategies, and representations; (3) Introduction of meaningful distinctions about
mathematical concepts and multiple models of situations; (4) A coherent Structure of Development
underlying the LT; and (5) Bridging Standards. Other groups who are unpacking the standards tend to
elaborate on the mathematical content in each Standard (e.g., McCallum, Black, Umland, & Whitesides,
2010) or make comparisons between existing standards and the CCSS-M (e.g., North Carolina Department
of Public Instruction, 2011). Though important, these approaches do not always give perspective on how
students’ mathematical ideas advanced under instruction. In this paper, we present our work on unpacking
the K—5 CCSS-M Standards for the length, area, and volume LT. Drawing upon the literature, we created
an initial draft to reveal a coherent structure for this LT.'

Literature Review

Learning Trajectories

The term learning trajectories (LT), has different meanings among researchers in mathematics
education. Simon (1995) first defined a hypothetical learning trajectory (HLT) to be, “The learning goals,
the learning activities, and the thinking and learning in which students might engage” (p. 133). Our
research group defines a learning trajectory to be,

a researcher-conjectured, empirically-supported description of the ordered network of constructs a
student encounters through instruction (i.e., activities, tasks, tools, and forms of interaction), in order
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to move from informal ideas, through successive refinements of representation, articulation, and
reflection, towards increasingly complex concepts over time. (Confrey, Maloney, Nguyen, Mojica, &
Myers, 2009)

We view LTs as expected probabilities of students’ progresses in their development of mathematical
knowledge in terms of sequence and likelihood. LTs permit one to specify at an appropriate and actionable
level of detail what ideas students need to know during the development and evolution of a given concept
over time. This definition allowed us to unpack and sequence of the CCSS-M Standards guided by the
research literature on spatial measurement.

Learning Trajectoriesfor Length, Area, and Volume

Synthesizing the literature in length and area measurement (Nguyen, 2010), we found three different
viewpoints on measurement: (1) those who have built LTs for length and area using an external iterating
unit (Barrett, Clements, Klanderman, Pennisi, & Polaki, 2006; Battista, 2007; Battista, Clements, Arnoff,
Battista, & Borrow, 1998; Clements & Sarama, 2009; Outhred & Mitchelmore, 2000); (2) those who have
investigated the use of common units as measure (Lehrer et al., 1998; Nguyen, 2010); and (3) those who
have built an entire numeration system based on measurement (Dougherty & Venenciano, 2007). By
approaching measurement as a “systematic process to compare two or more quantities” (Confrey, 2011),
we expanded the meaning of measurement beyond association a number of units with a given quantity to
include building number-unit relationships using units that are internal of and external to the object being
measured. In our work, we treated students’ learning of the concepts and skills of length, area and volume
as progressions through a single LT instead of separate LT for the above reason.

Development of length trajectories. Sarama and Clements (2009) have proposed a LT for length
measurement based on a mixed method analysis and synthesis from other studies (e.g., Hiebert, 1981;
Lehrer, 2003; Piaget, Inhelder, & Szeminska, 1960; Stephan, Cobb, & Gravemeijer, 2003). Their LT
identified five areas of how students build concept and skills through instructional experiences: (1)
alignment of endpoints to compare lengths (Piaget et al., 1960); (2) comparing the lengths of two objects
using a third object and transitive reasoning (Hiebert, 1981); (3) finding the lengths of an object by “tiling”
or “iterating” smaller identical objects as length units and associating higher counts with longer objects
(Hiebert, 1981; Lehrer, 2003; Stephan et al., 2003); (4) understanding that length measure requires equal-
length units (Ellis, Siegler, & Van Voorhis, 2000); and (5) using rulers and length measures to investigate
real-world phenomenon (Lehrer, 2003; Stephan et al., 2003).

The evolution of students’ concepts and skills on length measurement is described in terms of
students’ developmental progressions and their action schemes (see Sarama & Clements, 2009, pp. 289—
291 for details). Seven levels were identified in the LT: (1) Pre-length quantity recognizer; (2) Length
quantity recognizer; (3) Length direct comparer; (4) Indirect length comparer; (5) End-to-end length
measurer; (6) Length unit relater and repeater; and (7) Length measurer. Sarama & Clements’ (2009) work
and its supporting corpus of studies provided the research input needed to unpack the Length Standards
(Sarama, Clements, Barrett, Van Dine, & McDonel, 2011).

Development of area trajectories. Researchers have documented that to have a deep understanding
on area, students must first understand the idea of systematic coverage (no overlaps or gaps) by a square
unit (Outhred & Mitchelmore, 2000). They learn to align the units into an array of rows and columns,
relating rows and columns to the lengths of the sides, and finally to calculate area from the number of units
of length and width (Battista et al., 1998). Other aspects of a more complete learning trajectory for area
would include developing student understanding about measuring with a square unit versus with a ruler,
linking to lattice point arrays, the impact of different sized units on the magnitude of the area, linking area
and perimeter, and extending to triangles or circles. Finally, it would include student understanding of the
calculation of fractional area with an anticipation that the product of two numbers produce an area that is
smaller than an area of either one of the linear dimensions by 1 unit (e.g. % in. x */,in. = */; sq. in. is less
than % in by 1 in. or */;in by 1 in.).
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Nguyen (2010) documented that students could construct common units to compare areas when asked
to compare two or more areas without the provision of an external unit. Through equipartitioning (Confrey
et al., 2009) of the two areas into smaller areas, students created a same-sized area unit embedded in the
original areas to be used as the basis of comparison. He also demonstrated that students eventually
generalized that if two areas are equal, they must be measured by the same-sized unit the same number of
times. As a result, his students were able to correctly predict the effects of changing the unit size on the
measure of an area. Others have investigated a number of these ideas (Simon & Blume, 1994), but work
remains to synthesize these findings into a unified description linked to student behaviors.

Development of volume trajectories. Battista and Clements (1996) showed five levels of student
behaviors when working volume tasks. At Level A, students only begin to conceptualize a set of cubes that
forms a rectangular array. At Level B, students have conceptualized the cubes, but do not utilize the
inherent layer structure of a 3-dimensional cube. At Level C, cube faces are used, however, either all of the
face cubes are counted or outside the cubes. At level D, students use the volume formula and count a row
of face cubes to calculate volume. Lastly, level E is reserved for outliers. Students who were not yet at
Level A were generally unable to find out how many cubes there were in a 3-dimensional box, since
seeing a mental array picture is only the beginning step to Level A understanding. To such students, the
L X W X H formula means very little. Those who applied the formula tended to ignore the three-factor
product that results from volume measurement. Multiplication was also not the only operation relied on to
calculate volume. Addition, skip counting, and repeated addition were also used.

Battista (1999) followed with a teaching experiment to see if fifth graders could enumerate cubes. All
six students in the study were able to structure and enumerate 3D cube arrays. However, their use of
layering did not immediately lead to its use in subsequent predictions. Battista (2007) currently claims
seven levels of sophistication in students’ uses of cubic arrays to construct volume, ranging from
organization or location of units in arrays, to introducing composite units, emergent array structures, and
spatial structuring and enumeration.

Curry and Outhred’s (2005) work distinguishes “packing volume” with cubes and “filling volume”
with liquid or sand. While investigating students’ understanding of the relationship between length, area,
and volume, they discovered that student scores on packing volume tasks were highly correlated with
scores on length. In these tasks, students were asked to pack an area with a unit box. They performed much
better on tasks involving filling volume with water or sand. The authors conjectured that a filling
procedure and length iteration were related processes. This literature informed our consideration of the
contents to be included in the descriptors.

Unpacking the Length, Area, and Volume Trajectory

An overarching theme of our work is to consider the “genetic epistemology” (Piaget, et al., 1960) of
how instruction refines students’ informal mathematical idea successively and develop more complex
ideas, as informed by research from a cognitive and instructional standpoint. The adoption of the genetic
epistemology approach motivated a five-characteristic framework for unpacking the mathematical content
of the Standards into the descriptors. First, the descriptors provide an explicit breakdown of complex
mathematical ideas into its conceptual principles. For example, the descriptor for standard 1.MD.2 spells
out the principles of using a length unit to measure. Second, the descriptors address the misconceptions,
strategies, and representations that students may encounter as their informal ideas evolve into complex
mathematical ideas. For example, the descriptor for standard 2.MD.1 addresses the misconception in using
a ruler, where students may misinterpret the number of tick marks spanned by an object as its length. Third,
the descriptors identify meaningful distinctions about a mathematical concept. These distinctions lead to
multiple models of problems and support students’ generalizations. For example, the descriptor for
standard 3.MD.5.b makes three distinctions about the idea of “an area of n square units” as: (1) iterating an
area unit n— 1 times, (2) “n times as big” as an area unit, and (3) a sweep of a line segment over a distance.
Fourth, the organization of the descriptors of a LT reflected a genetically coherent structure of
development through which students develop “big ideas.” For example, the descriptors of this LT are
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organized to highlight the genetic sequence in which students develop length, area, and volume by:

(1) Defining the attribute, (2) Direct comparison, (3) Indirect comparison, (4) Measuring using a unit with
no gaps or overlaps, and (5) Compensatory and Additive principles. Fifth, we introduce “Bridging
Standards,” additional mathematical knowledge that mediates students’ progression from prior concepts in
earlier Standards to more sophisticated and formal concepts in later standards. These Bridging Standards
and their descriptors provide a complete genetic epistemological account of a LT. For example, qualitative
comparison of area and volume were added as Bridging Standards, since this mathematical knowledge was
instrumental to the coherent structure underlying students’ development of measurement, but was not
included in the CCSS-M.

We approach the task of unpacking the CCSS-M by describing students’ development in terms of the
characteristics mentioned above. Our unpacking proceeded in the following manner. First, we sequenced
the relevant Standards in a way that generally reflects research findings about how students progressively
learn the ideas. A set of sequenced Standards can be regarded as an abridged LT. Second, based on the
abridged LT, we built an unabridged version where we incorporated research findings to bridge the
instructional gaps between and within the standards of a LT. For length, area, and volume, we synthesized
different research findings in the domain of spatial measurement into a unified description of how
students’ mathematical knowledge evolved as they encounter activities, tasks, tools, and forms of
interaction. Third, we added Bridging Standards when we felt the research suggested mediating ideas that
were necessary to be learned before progressing to the next standard in the LT.

We drafted the text of the unpacked LTs in the format of a two-column table, in which the left column
showed the standards and its codes as sequenced in the LT and the right column showed the descriptor of
the standard. We used Confrey’s (2010) hexagons map to represent how the LTs develop over time and to
depict how they are relate to each other visually. The length, area, and volume LT was organized into six
sections: (1) Attributes, Measuring Length and Capacity by Direct Comparison; (2) Length measurement
using units and tools; (3) Area and Perimeter; (4) Volume Measurement; (5) Conversion; and (6) Area and
Volume of Geometrical Shapes and Solids. The move to subdivide the entire LT into sections does not
signify some disconnect between the contents of the descriptors but rather permit us to focus on unpacking
the more intertwined connections among some Standards. In fact, cross-references between the Standards
were often made when drafting the descriptors.

Report of the Unpacking of Length, Area and Volume Standards

We wrote 50 descriptors in the length, area, and volume LT (36 from CCSS-M and 14 Bridging
Standards). Below we present a summary of the mathematical knowledge that we have unpacked,
according to the five-characteristic framework. The most updated edition of the descriptors can be
accessed online (http://www.turnonccmath.com).

Conceptual Principles of Length, Area, and Volume

In the descriptors, we unpacked a list of conceptual principles to be mastered by students across
length, area, and volume. They are: the Conservation Principle, the Compensatory Principle, the Principle
of Unit Placement, the Principle of Unit Conversion, and the Additive Principle. The Conservation
Principle states that the length (or area or volume) of an object remains unchanged under any rigid
transformation. The Compensatory Principle states that there is an inverse relationship between the size of
the unit (length, area, or volume) used for measurement and the measure (count of the units). The Principle
of Unit Placement states that the units used to measure the length (or area or volume) of an objects must be
placed without gaps or overlaps and along a path aligned with the object's length (or arrays in the case of
area and volume). The Principle of Unit Conversion states that smaller units can be composed to form
larger units and that larger units can be regrouped into smaller units. The Additive Principle states that the
joining of two lengths (areas or volumes) are sums of the lengths (areas or volumes). From the LT
perspective, these principles are foundational to students' development across length, area, and volume.
This does not imply that they are taught directly, but rather that the students’ understanding of them
evolves gradually through the course of activities and tasks.
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Misconceptions, Strategies and Representations

We identified a number of misconceptions informed by NAEP results. These concerned students' use
of rulers and their understanding about area and perimeter. For example, when measuring the length of an
object, many students do not check if the object aligns with the zero mark. They also tend to treat tick
marks on the ruler as the length of the object instead of the interval between the tick marks. In area and
perimeter, students tend to measure the perimeter of a rectangle using square tiles around the corner and
believe that increasing the perimeter of a rectangle always increase its area.

We described length as being represented on a number line by equally spaced intervals from 0 as a
useful representation of addition and subtraction. Addition of two numbers (a + b) could be thought of as
combining a length of a units with another length of b units. Subtraction of two numbers, a— b can be
thought of as comparing the difference between two line segments or taking away b units from a line
segment of a units. For strategies, we also highlighted various ways in which students can directly compare
two lengths, two areas and two volumes. Because length, area, and volume have different spatial
properties, the strategies of direct comparison varied. For example, straight lengths can always be directly
compared, while some areas may overlap and need decomposition to compare. Likewise, the capacity of
two containers can be directly compared if poured into cylinders with the same base, whereas volumes of
solids will require a systematic means of decomposition.

Distinctions and M odels

While the Standards did not introduce any distinctions between volume of a solid and the volume of a
container, we use “capacity” to refer to the latter in the descriptors. We also make distinctions among
concepts of area and volume which were not explicit in the Standards. For example, the area of a rectangle
can be viewed as composed of smaller square units versus the sweeping of a length over a distance.
Likewise, we distinguished between volume as the packing of space-filling units versus the sweeping of an
rectangular area over a height.

We also distinguished the area formula of rectangles involving fractions from whole-number lengths
and introduced four models of fractional multiplication of lengths based on equipartitioning of areas in the
descriptors: (1) a whole number and a unit fraction; (2) two unit fractions; (3) two proper fractions but not
unit fractions; and (4) one or two mixed numbers (or improper fractions). This is consistent with the
sequence in the standards for fractions for multiplication, which is developed fully in the division and
multiplication LT. Likewise, in the unpacking of the volume formula of a rectangular prism, we introduced
different models of Volume =L X W X H related to the associative property. Coordinating across
learning trajectories and providing multiple models supports future development in these topics.

Coherent Structure

As Smith and Gonulates (2011) reported, the Standard’s treatment of length measurement is the most
complete in alignment with the research literature as students are expected to distinguish length as a
measureable attribute (K.MD.1), directly compare two objects based on length (K.MD.2), order three
objects based on length (1.MD.1), iterate a length unit to express the length of an object as a whole number
of those length units (1.MD.2), use tools to measure the length of objects (2.MD.1), and measure the
length of an object using different length units (2.MD.2).

However, for area measurement, the Standards writers presented an abridged version of this sequence
where students immediately iterate a unit square to cover a rectilinear area and call this measure n unit
squares (3.MD.5.a and 3.MD.5.b), then learn to measure area by counting unit squares (3.MD.6), and
finally find the area of a rectangle by multiplying the length by the width (3.MD.7.a). They then include a
standard for students to understand that areas are additive (3.MD.7.d), a Standard that was missing in the
Length content. Similarly, for volume measurement, the sequence first started with students’ measurement,
estimation of volume and one-step volume problems of involving any of the four operations (3.MD.2).
Due to the abridged treatment, the structure underlying students' development in Area and Volume was
incomplete.
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To ameliorate these issues, we identified from the length, area, and volume contents a template of key
ideas found in students' development of spatial measurements. We then applied this template across length,
area, and volume Standards in our unpacking. As a result, a coherent structure of the LT descriptors
emerged across length, area, and volume, which showed how students’ concepts and skills of Length and
Area and Volume become more sophisticated under instructions over time: (1) Describe and recognize the
measureable attribute; (2) Direct comparison of two objects; (3) Indirect comparison of two objects; (4)
Comparison of three or more objects; (5) Define what is meant by n units; (6) Express the attribute as a
whole number of the units. (7) Measure the attribute twice using different units (compensatory principle);
(8) Measure to determine how much bigger or smaller; and (9) Recognize the attribute as additive.
Describing students’ development of mathematical knowledge within such a coherent structure leveraged
on the relevant research in providing teacher readers a sense of an overall developmental progression of
students’ knowledge as well as the interconnectedness between different Standards when unpacked.

Addition of “Bridging Standards’

As a result of our undertaking of “generic epistemology” account of students’ learning, we introduced
a total of 14 Bridging Standards unpacked with descriptors based on the coherent structure ands. Five were
associated to the conceptual principles of length, including the missing additive principle; five were
associated to the conceptual principles of area; three were associated to the volume concepts; and the last
one connected the surface area with the volume of the cylinder. The last Bridging Standard was added
based on a suggestion from a district curriculum coordinator who noted its absence. When read as parts of
the trajectory, these descriptors filled in the knowledge gaps between some Standards and provided a
coherent structure for students' development of length, area, and volume.

Discussion

The length, area, and volume Standards in the CCSS-M provide an example of why carefully
unpacking the Standards is important. We detailed a trajectory of weaving the relevant Standards together
in our unpacking in place of a piece-wise Standard-by-Standard elaboration. Next, we discuss the
implication of our work for State Standards and Curricula.

Cross-walk between CCSS-M, State Standards and Curriculum

Comparing the CCSS-M and existing State Standards provides a quick and pragmatic way of
evaluating the amount of re-alignment needed for curricular and assessment purposes. However, this
approach is insufficient in itself to prepare teachers for implementation. For example, how should matched
State Standards be re-ordered to maintain a coherent learning path? Do unmatched State Standards matter
to students’ learning? A minimalist approach might do more harm in this case. Unpacked using a LTs
perspective, the descriptors provide educational practitioners access to a research basis in making educated
decisions. For example, the coherent structure of moving from “Defining attributes” to “Comparison” in
the length, area, and volume LT provide grounds for including addition of areas as a grade-level objective
in the CCSS-M. Similarly, an LT analysis supports a means to conduct content analyses of proposed
curricula and CCSS-M. The five characteristics of our unpacked descriptors provided teachers with
curricular “landmarks” in anticipation of identifying and filling in instructional gaps in curricula.

Endnote

'We thank the participants of the 2011 Measurement Mini-Center Conference (Rich Lehrer, Doug
Clements, Jeff Barrett, Jack Smith, Mike Battista and others) for reviewing an earlier draft of these
descriptors. This process of peer-review enriched our work with the current views of the research
community.
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Thisis a study about the didactical organization of a research based group of activities designed using
APOS theory to help university students make constructions, needed to understand and graph two-variable
functions, but found to be lacking in previous studies. The model of the “ moments of study” of the
Anthropological Theory of Didacticsis applied to analyze the activities in terms of their institutional
viability.

Keywords: Advanced Mathematical Thinking; Geometry and Geometrical and Spatial Thinking

I ntroduction

Functions of two variables are of great importance in applied mathematics and engineering. However,
despite their importance, there are few publications that take advantage of their particularities in order to
study their teaching and learning. The first published article we found that explicitly treats functions of two
variables is by Yerushalmy (1997). In it she insisted on the importance of the interplay between different
representations to generalize key aspects of these functions and to identify changes in what seemed to be
fixed properties of each type of function or representation. Kabael (2009) studied the effect that using the
“function machine” might have on student understanding of functions of two variables, and concluded that
it had a positive impact in their learning. In other work, Montiel, Wilhelmi, Vidakovic, and Elstak (2009)
considered student understanding of the relationship between rectangular, cylindrical, and spherical
coordinates in a multivariable calculus course. They found that the focus on conversion among
representation registers and on individual processes of objectification, conceptualization and meaning
contributes to a coherent view of mathematical knowledge. Martinez-Planell and Trigueros (2009)
investigated formal aspects of students’ understanding of functions of two variables and identified many
specific difficulties students have in the transition from one variable to two-variable functions. Using
APOS theory, they related these difficulties to specific coordinations that students need to construct among
the set, one variable function, and R’ schemata. In a study about geometric aspects of two variable
functions, Trigueros and Martinez-Planell (2010) concluded that students’ understanding can be related to
the structure of their schema for R? and to their flexibility in the use of different representations. These
authors gave evidence that the understanding of graphs of functions of two variables is not easy for
students and in particular, that intersecting surfaces with planes, and predicting the result of this
intersection, plays a fundamental role in understanding graphs of two variable functions and was
particularly difficult for students. More concretely, students showed difficulty intersecting fundamental
planes (that is, planes of the form x =¢, y =c¢, or z=c where c is a constant) with surfaces given in

different representational formats. Hence they had difficulty with transversal sections, contour curves, and
projections. Finally, Trigueros and Martinez-Planell (2011) used the moments of study of the
Anthropological Theory of Didactics to analyze the didactical organization of a widely used calculus
textbook (Stewart, 2006) and showed that its organization was neither effective in fostering the needed
constructions nor viable from the praxeological point of view. This stressed the need to supplement
traditional calculus textbooks with activities which cover those aspects found to be lacking in most
textbooks. Our research questions in the present study are:

» Does a set of activities designed using a genetic decomposition of functions of two variables help
students interiorize actions found to be necessary for a process conception of function of two
variables?

» Isthe didactical organization of the activity sets conducive to their functioning well at the
institutional level?
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Theoretical Framework

Since APOS is a well known theory we will only briefly discuss the notion of a genetic decomposition
which is important to the content of this paper. For more information on APOS the reader may refer to the
brief discussion in Trigueros and Martinez-Planell (2010), or more extensive treatments in Asiala et al
(1996), and Dubinsky (1991, 1994).

In APOS Theory, the study of student understanding of a particular concept starts with a “genetic
decomposition.” This is a hypothesis advanced by the researcher and based on his/ her knowledge,
experience, and any available previous data of the actions, processes, and objects that must be constructed
in order to attain the desired conceptual understanding. A genetic decomposition is not unique, as different
researchers might propose different decompositions. However, it is important that the decomposition be
contrasted with data obtained from student interviews to ascertain the constructions actually being made by
students. Typically, research data results in revisions of the genetic decomposition as researchers discover
unforeseen constructions made by students, or constructions that are assumed to be readily made by
students but which are not. The resulting revised genetic decomposition can be used in research and also in
the design of activities that may be incorporated into the instructional cycle and that may help students
make the desired constructions.

The initial genetic decomposition for function of two variables is given in Trigueros and Martinez-
Planell (2010). In order to accommodate results of that study, the genetic decomposition was refined to
include the following paragraph on the construction of the schema for R, which is important in the present
study: The Cartesian plane, real numbers, and the intuitive notion of space schemata must be coordinated
in order to construct the Cartesian space of dimension three, R’, through the action of assigning real
numbers to points in R? and the actions of representing the results of those actions as 3-tuples, in a table or
as points in space. These actions are interiorized into processes that make it possible to consider different
sets or subsets, in particular fundamental planes, in each representation register. These processes can be
encapsulated into objects on which further treatment actions or processes can be performed. These
treatment actions or processes include intersecting fundamental planes with other surfaces to form
transversal sections, contour curves and projections, and processes of conversion of those sets and subsets
among representations in a schema which evolves and that can be thematized as a schema for three-
dimensional space, R’.

A set of activities was prepared to help students make the constructions suggested by the revised
genetic decomposition. We considered it important to analyze and discuss its organization and
effectiveness. The moments of study of the Anthropological Theory of Didactics (ATD) was used as a tool
for the epistemological analysis of the group of activities. In ATD the mathematical activity and the
activity of studying mathematics are considered parts of human activity in social institutions (Chevallard,
1997; Bosch & Chevallard, 1999). This theory considers that any human activity can be explained in terms
of a system of praxeologies, or sets of practices which in the case of mathematical activity constitute the
structure of what are called mathematical organizations (MO). Mathematical organizations always arise as
response to a question or a set of questions. In a specific institution, one or several techniques are
introduced to solve a task or a set of tasks. Tasks and the associated techniques, together form what is
called the practical block of a praxeology. The existence of a technique inside an institution is justified by
a technology, where the term “technology” is used in the sense of a discourse or explanation (logos) of a
technique (techné). The technology is justified by a theory. A theory can also be a source of production of
new tasks and techniques. Technology and theory constitute the technological-theoretical block of a
praxeology. Thus a praxeology is a four-tuple (T/t/6/@) (tasks, techniques, technologies, theories),
consisting of a practical block, (T/t), the tasks and techniques, and a theoretical block, (0/@), made up of
the technological and theoretical discourse that explains and justifies the techniques used for the proposed
tasks.

Within an educational institution a mathematical praxeology is constructed by a didactic process or a
process of study of a MO. This process is described or organized by a model of six moments of study
(Chevallard, 2007) which are: first encounter with the praxeology, exploratory moment to work with tasks
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so that techniques suitable for the tasks can emerge and be elaborated, the technical work moment to use
and improve techniques, the technological-theoretical moment where the technological and theoretical
discourse takes place, the institutionalization moment where the key elements of a praxeology are
identified, leaving behind those that only serve a pedagogical purpose, and evaluation moment where
student learning is assessed and the value of the praxeology is examined. It is important to clarify that the
order of the moments is not fixed. It depends on the didactical organization in a given institution, but
independently of the order it can be expected that there will be instances where the class will be involved
in activities proper to each of the “moments”.

In a recent article, Trigueros, Bosch, and Gascon (2011) discussed the elements of APOS and ATD
theories that may be used to expand the theoretical basis of each of these theories without violating their
respective basic tenets. They observed that the model of the moments of study may be used in APOS
theory to examine instruction based on activities designed in accordance to APOS.

M ethod

In view of the results obtained in Trigueros and Martinez-Planell (2010, 2011), four activity sets were
designed to help students make those constructions found to be needed to understand functions of two
variables. The activity sets dealt with (a) fundamental planes and surfaces, (b) cylinders, (c) graphs of
functions, (d) contour maps and graphs of functions. All activity sets stress the use of sections in graphical
analysis. For example, in a problem of the first activity set students are given the set

S :{(x, y,z) Z=x2+(2+ y)’x+ yz} and are asked to draw on a Cartesian plane its intersection with the

plane y =—2; represent physically the intersection in space (using the manipulative in McGee, 2009);

draw in three-dimensional space the resulting intersection curve making sure it is placed in its
corresponding plane; and give three points in the intersection. This is to be done right after students are
introduced to three-dimensional space, after they have constructed fundamental planes as processes, and
before functions of two variables are defined. It aims to have students act on their process of fundamental
plane thus helping the encapsulation of fundamental planes into objects. In another problem students are

asked to represent physically in space the set {(X Vs Z) z=xyly= O} and draw it in three-dimensional

space. This is a variation of the algebraic representation of the previous example.

After designing the activity sets, they were analyzed in terms of the genetic decomposition and revised
until the researchers agreed they covered those constructions predicted by the genetic decomposition.
Then, the moments of study of the ATD were used to analyze their didactic organization in two different
institutions. For example, the problems presented above are designed to be part of the moment of the first
encounter, where students meet an important idea needed to construct their R’ schema.

Activities were classroom tested and revised in two consecutive semesters. After class testing the
activities, a set of interviews was undertaken to evaluate them. This produced new observations leading to
further improvements on the activity sets. Fifteen students were chosen and interviewed after they had just
finished an undergraduate multivariable calculus course. Of the 15 students, 9 had used the activity sets
and 6 had not. Each of these two groups of students had equal number of above average, average, and
below average students, as judged by their professors. Each interview lasted approximately 45 minutes.
They were transcribed and analyzed independently by the two researchers. The conclusions were
negotiated.

The interview questions relevant to this study are reproduced below:

1. Draw or represent in three-dimensional space the set of points in space that satisfy the equation
y =2 and that are also in the graph of the function f(x,y) =x*+y?.

2. What can you say of the intersection of the plane x =0 with the graph of the function
f (x,y) = xsin(y) ? Represent the intersection in three-dimensional space.

3. Students were to choose the graph of f (x, y) =sin(xy)among six given surfaces.
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Results
APOS and Activity Sets

Results suggest that most students who used the activities had an interiorized process of intersecting
planes with surfaces. Orlando, who used the activities, obtained a correct graph:

Orlando: | believe this is a cone ... it would be... a circle, may | draw it?

Interviewer: Yes, of course

Orlando: ... then this is a parabola on the zx plane that is 4 units up... [even though he says “zx” plane
he draws and represents it physically correctly in the plane y =2].

Note that even though initially he gave an incorrect answer, Orlando decided the issue by using
sections, as practiced repeatedly in the activity sets, thus obtaining the correct graph. The most common

student mistakes on the first question were: acting on the familiarity of “ x* + y*” conclude that the graph
was a cylinder (without using sections) and then trying to obtain the intersection geometrically from that

graph; and obtaining the correct formula z = x* +4 but being convinced this is a parabola on the xz plane,
not placing it correctly in space. Students not using the activities were more prone to commit these errors
as they had less practice intersecting fundamental planes with surfaces and placing the resulting curve in
space. Valerie, a student who did not use the activities, seems not to have interiorized the use of sections as
a process:

Valerie: ... x*+y? would be, a circle ... this is harder than I thought ... if I draw it ... in the Xy
plane, it would be a circle in the Xy plane, then, if y =2 ... it doesn’t give the radius...

Question 2 revealed students’ difficulties with free variables. Most students did not realize that after
substituting X =0 into Z = xSin(y), the variable y can take any value, so that the desired intersection is

the y axis. For example, Jackeline, who had used the activity sets in her class, was able to respond
correctly; however it seems she avoids dealing with the free variable by using other sections to visualize
the graph of the surface:

Jackeline: ... would have the sine function, then as X increases the amplitude is going to increase ... so
this would be a line [under questioning she specifies it is the y axis]

On the other hand Victor, also troubled by the free variable, but who did not use the activity sets, does
not evidence a process of using sections:

Victor: X =0, this is confusing ... the entire function Xxsin(y)becomes 0 ... therefore this would be a
plane like this and a plane like this... the intersection consists of two planes

In Question 3, the pattern observed in previous questions continued with students who used the
activity sets in class showing more of a tendency to use sections and thus performing better.

Activity Setsand the M oments of Study

According to ATD, a balance of the moments of study is needed for materials to help student learning
in an institution. As mentioned before, activities that show the importance and usefulness of intersecting
fundamental planes with surfaces can be considered as pertaining to the moment of the first encounter. The
analysis of the activities showed that a large part of them are related to the moment of task exploration.
This is no wonder, given that in APOS theory reflection on actions so that they may be interiorized into
processes, and applying actions to processes so that they may be encapsulated into objects is of
fundamental importance, The activity sets start by exploring a wide range of types of tasks aimed at giving
students the opportunity to start building a schema for R’ in which fundamental planes, intersections of
fundamental planes with subsets of R?, free variables, and quadratic surfaces, in different representational
formats will be understood. Task exploration continues in the second activity set with cylinders, that is,
surfaces in three-dimensional space described with only two variables. This gives the opportunity to have
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students reflect on how to plot the graph of z = X? in three dimensions by initially exploring a point by
point representation. In our previous studies we had conjectured that the action of point by point
representation may be interiorized into the process of drawing graphs by sections, and this construction
was included in the refined genetic decomposition. The last set of interviews showed clearly that this
construction is necessary and how a lack of interiorization can act as an obstacle for the coordination of
important processes needed to learn the particularities of functions of two variables. The interiorization of

actions such as graphing {(x, y,0):y :|x|}, {(x, v,y :|x} , and {(X, y,2):y :|X
what is happening as z takes on different values, and can be interiorized when they are asked to draw the

}, help students reflect on

graph of y = |x| in three-dimensional space. Coordination of different processes and reflection on them

leads students to develop a method for drawing cylinders in three dimensions. Later, in the third and
fourth activity sets, tasks explicitly involving the use of those methods for functions of two variables gives
students the opportunity to start by point by point construction actions and quickly move on to generalize
the constructed processes for other functions like f(x,y) = x*+y. They are also asked to verify their graph

by giving values to z and showing the resulting curves as part of the surface drawn previously, an activity
which may be considered as part of the moment of evaluation as are problems in which students compare
their graphs of surfaces to contour diagrams they draw. Other tasks that are explored include darkening the
curves where specific fundamental planes intersect a given graph of a surface; matching a given set of
formulas to a given set of graphs of surfaces with justifications given in terms of transversal sections,
which can be considered as technological- theoretical moment. The fourth and final activity set reviews
transformations in the context of graphing functions of two variables. The variety of activities in the
moment of task exploration stresses the use and geometric significance of transversal sections making the
technical work moment explicit. Many of the problems are broken down into parts to guide students in a
step by step construction and reflection on the graphing process. This is in accordance with the didactical
approach of APOS theory and is intended to complement traditional textbooks, which (Trigueros &
Martinez-Planell, 2011) tend to overlook students’ difficulties using transversal sections and contours to
graph two-variable functions.

The technical work moment is present in the activities as the number and variety of problems enables
an increasing number of students to construct a process of graphing functions of two variables with
understanding. Activity sets allow students to build a schema for R® with the necessary coordinations to
sustain ensuing graphing activities. Although traditional books present techniques for graphing functions
of two variables, the number and variety of problems directly exploring the use of fundamental planes is
limited.

As discussed in Chevallard (2007), the technological-theoretical moment is closely interrelated with
each of the other moments of study. This is also the case in this topic. The technology of using traces or
cross-sections to draw the graph of a two-variable function is introduced in the moment of first encounter
and developed with multiple opportunities to do task explorations using the activity sets. Even though the
activity sets do not include an explicit discussion of the theory, they include opportunities to discuss and
justify the methods used by students; also throughout the activity sets it becomes clear that substituting a
number for a variable in an equation with three variables corresponds to intersecting a fundamental plane
with the graph of the equation. This being the “technology” (in the sense of explanatory discourse) used for
graphing functions of two variables, the consistent use of this idea aids the construction of cross-sections,
projections, and contours, otherwise found to be difficult for students. Many textbooks typically do not
explicitly emphasize the role of fundamental planes in graphing activities and hence students seem to come
out of these courses without a clear notion of this “technology.”

The moment of institutionalization is present when the activity sets are formally included in the course
syllabus, but more importantly when fundamental planes are explicitly used as an important justification
technology throughout the course, for example, when explaining partial derivatives, tangent planes,
differential, directional derivatives, iterated integration, and drawing solids whose volumes or mass is to be
computed with a double or triple integral. The idea of analyzing a function of two variables by using
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knowledge of functions of one variable is pervasive in the course, so that opportunities abound during
class discussion for building upon the knowledge of fundamental planes constructed early on in the course,
and to institutionalize the processes and objects constructed. Ideas in the activity sets that serve only a
pedagogical purpose are not institutionalized; for example, the action of plotting individual points in a
graph of a function is quickly interiorized into a process of graphing by sections. The moment of
evaluation is abundantly available as activity sets present an opportunity for students to auto-evaluate and
discuss their work. It is also present if activities are collected and corrected to evaluate students, used in
group activities, or used as the basis of test items, or when activity sets themselves are evaluated by
studies, such as this one, comparing student performance.

Conclusion

Results suggest that the activity sets help students interiorize actions described in the genetic
decomposition of function of two variables into processes, and encapsulate processes into objects and thus,
when used effectively, have the potential to improve students’ understanding of graphs of functions and
their performance in graphing activities. This can only improve as activity sets are iteratively used and
discussed in class, refined on the basis of classroom observations, and further studied in depth with
successively improved interview instruments, as has been shown in this study. For example, this study
uncovered the need to target activities early on that explore the use of free variables, the convenience of
using surfaces with graphs that are unlikely to be memorized by students, and the need that some students
have of doing a point by point sketch of a graph before they are able to effectively use sections. Some
work remains to be done to complete the sets of activities to explore other aspects of the construction of
the concept of functions of two variables, such as recognizing domain and range, and working with
restricted domains, but so far, interview results show that they improve students’ understanding.

The activity sets shows the presence of all the moments required in the study of the graph of these
functions. In comparison with traditional texts and courses, the moment of first encounter is clearly present
in the activity sets, while the moment of task exploration offers a wide range of activities and opportunities
to interiorize actions into processes or to encapsulate processes into objects. The moment of work on the
techniques presents the challenge of balancing the number of activities in each set that can realistically be
used in class, or be assigned to students. The moment of institutionalization is present when the praxeology
developed in the activities is built upon throughout the rest of the course. Finally, the moment of
evaluation is present when evaluating student individual and group performance in the activities, including
in similar test items, and most importantly, when evaluating the effectiveness of the activity sets per se.

APOS and semiotic representation theories are cognitive theories of learning and as such are limited in
their capacity to describe and predict the effects on learning of social and institutional constraints.
However, we have shown a situation where one of the models of the ATD can be useful in analyzing the
design of activities that result from a cognitive analysis of a learning situation. Constructions and
coordinations found to be missing in studies of students’ construction of graphs of two-variable functions
can be addressed with activities specifically designed to foster those constructions, in a pedagogical
organization that takes the different moments of study into account.
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Although Chinese students outperform U.S. students according to international mathematics studies, it is
suggested U.S. students are equally or even more successful than Chinese students in sense-making and
open-ended problems (Cai, 1995, 2000). We hypothesize different treatments on learning to solve
problemsin Chinese and U.S. curricula may contribute to the difference in performance. We explored
what and how meaning, strategy, and procedure were introduced in curriculum. Two U.S. textbooks and
one textbook from each of China and Taiwan were analyzed. The initial results show that the Chinese
textbooks focus on efficient problem-solving strategies, and the opportunity for studentsto develop
eguation transformation skills. The U.S. textbooks place significant emphasis on understanding
components of equations and the rational e of equation transformation by presenting procedural stepsin a
detailed way.

Keywords: Algebra and Algebraic Thinking; Curriculum Analysis; Problem Solving

I ntroduction

International mathematics studies in the past decade show Chinese students outperform U.S. students
(TIMSS 2003, 2007) for both fourth and eighth grades. However, studies also show U.S. students are
equally (Cai, 1995; Cai & Silver, 1995) or even more successful (Cai, 2000) than Chinese students in
sense-making and open-ended problems such as story problems or problems that can not be solve by
simply applying a formal or standard algorithm. We hypothesize textbooks’ different treatments on
problem solving contribute to the difference in performance because curriculum has been identified as one
of the main factors that affect teachers’ teaching and students’ learning (McCrory, Francis, & Young,
2008). The purpose of the study is to explore different treatments, if there are, between textbooks for what
textbooks say (e.g., concepts, strategies, procedure) and how textbooks say (e.g., statement, work example,
question, group activity) about solving one-variable linear equations.

Theoretical Framework

Problem solving has been regarded as the heart of mathematics (Schoenfeld, 1992). Polya identified
four parts of problem solving which are to understand the problem, make a plan, carry out the plan, and
look back at the completed solution. To elaborate, problem-solving process includes subject matter
knowledge (e.g., definitions, properties) for understanding a problem, heuristics or strategies to make a
plan, the application of definitions or properties for implementing a plan, and the justification of solution
procedure according to the plan and definitions or properties. To explore what textbooks can say about
solving problems (of one-variable linear equations), based on Polya’s idea described above, we identify
three categories of knowledge, which are meaning, heuristic and strategy, and procedure. Meaning
contains definitions, properties, or rules such as the definition of term or equation. Heuristic and strategy
refer to problem-solving plan in general such as isolating the variable or combining like terms. Procedure
refers to the application of definitions, properties, or strategies such as combining 2X and 3X when solving
2Xx+ 3x =10 or dividing both sides of the equation 4X = 16 by 4.

How can textbooks say about problem solving? Textbooks can convey knowledge in the following six
forms: statement, work example, question, problem, demonstration, and group activity (Smith et al., 2008).
To illustrate, problem-solving strategies could be conveyed in a statement, a question, a work example, or
a group activity. Knowledge could also be conveyed in an open or explicit way (Alro & Skovsmore, 1998;
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Christiansen, 1997; Silver, 1997; Voigt, 1994). For example, problem-solving steps could be presented in
detail (explicit way) or with details skipped (open way).

M ethods

This study asks the following question: How do U.S., Taiwan, and China textbooks treat the meaning,
strategy, and procedure for solving one-variable linear equations? Particularly, what do the textbooks say
about the meaning, strategy, and procedure, how are the meaning, strategy, and procedure presented
quantitatively, and how are they introduced qualitatively? We selected one 7th grade mathematics textbook
from each of China and Taiwan based on its large market share, and we selected two “Algebra I”
textbooks from the U.S. that hold different philosophy of design (i.e., traditional and integrated) and have
large market share. We analyzed chapters about solving one-variable linear equations. A coding scheme
was constructed based on the framework including 24 meaning items, 17 strategy items, and 25 procedure
items. The three authors were paired into two teams (the U.S. team and the Chinese team). The U.S. team
achieved 88% inter-rater reliability from 10% coding materials. The Chinese team resolved all of the
discrepancies instead. The following table (Table 1) illustrates our coding. The left part of the table is to-
be-coded text, and the right part contains codes and descriptions.

Table 1: Coding Example

Text to be coded Code Code Description
The goal of solving an equation is to S-S06 The letter before hyphen
isolate the variable p. S: Statement; W: Work example
Example 1: The code after hyphen
(1/6)p + 42 =21 Original equation S06: Strategy, isolate the variable
(1/6)p + 42 —42  Subtract 42 from W-P05 S10: Strategy, Combine like terms
=21-42 each side S15: Strategy, Unitize coefficient
(1/6) = 21 Combine like terms | W-P03 (2) | P02: Procedure, Multi/Divide variable terms
W-S10 P03: Procedure, Add/Subtract constant terms
6(1/6)p =-21*6  Unitize the W-P06 P04: Procedure, Multi/Divide constant terms
coefficient of p W-S15 PO5: Procedure, Application of add/subtract from
p=-126 W-P0?2 both sides
W-P04 PO6: Procedure, Application of multi/divide both
sides

Analysis and Results

The current results are based on 40% to-be-coded pages of the two U.S. textbooks (Teacher Edition)
and 40% to-be-coded pages of the two Chinese textbooks (Student Edition). The distribution of meaning,
strategy and procedure as well as the top meaning, strategy, and procedure items are compared between the
U.S. and Chinese textbooks.

The distribution of meaning, strategy and procedure are similar between U.S. Integrated and Taiwan
textbooks where strategy is about 25% and procedure is about 70% of all coded knowledge items (i.e.,
meaning, strategy, and procedure items). On the other hand, U.S. Traditional and China’s textbooks have
similar distribution of meaning (about 5%), strategy (about 50%), and procedure (about 45%, See Table 2).

Table 2: TheDistribution of M eaning, Strategy, and Procedure

Percentage/ Frequency U.S. Int. U.S. Trad. Taiwan China
Meaning 1.8/6 5.4/9 5.5/10 5/7
Strategy 26.7/87 50.6/85 26.5/48 51.8/72
Procedure 71.5/233 44/74 68/123 43.2/60
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The top three meaning items from each of the four textbooks show that the Chinese textbooks focus on
the meaning of equations and meaning of solution of equations (M08 and M 12 respectively). However, the
U.S. textbooks focus on the meaning of components of equations (e.g., M06: Term, M07: Like Terms) and
the meaning of operations on an equation (e.g., M09: Equivalent Equations, M14: Addition Property of
Equations, M15: Multiplication Property of Equations, See Table 3).

Table 3: The Top Five Meaning Items

Meaning Item / Percentage U.S. Int. U.S. Trad. Taiwan China

1st M06/33.3 M09/22.2 M08/20 M12/28.6
2nd M07/33.3 M14/22.2 M12/20 M08/14.3
3rd M11/16.7 M15/22.2 M15/20 M10/14.3

The top six strategies from each of the four textbooks show that the Chinese textbooks put much more
emphasis on story problems than the U.S. textbooks. The Chinese textbooks have more than 57% but the
U.S. textbooks have less than 48% strategies about solving story problems (S01, S02, and S03, see Table
3). If we take away items about solving story problems (the shaded cells in Table 3) from the top six
strategies, the left three strategies show the U.S. textbooks have S07 (Undo/Inverse Operations) and S08
(Manipulative) that have not been seen in the Chinese textbooks, and the Chinese textbooks have S14
(Move Terms) and S17 (Eliminate Parentheses) that have not been seen in the U.S. textbooks (See Table
4).

Table4: TheTop Six Strategy Items

Strategy Item/ U.S. Int. U.S. Trad. Taiwan China
Percentage

1st S01/17.2 S02/21.2 S01/35.4 S02/25
2nd S07/16.1 S08/17.6 S02/18.8 S01/18.1
3rd S08/16.2 S03/15.3 S03/14.6 S03/13.9
4rd S03/14.9 S09/12.9 S09/10.4 S10/12.5
5th S02/12.6 S01/10.6 S10/8.33 S15/11.1
6th S13/9.2 S07/5.88 S17/4.17 S14/6.94

The top four procedure items from each of the four textbooks show that the Chinese textbooks have
significant skip in procedure (P22), but the U.S. textbooks tend to make procedure explicit (P03-P06: the

application of addition and multiplication property of equations, see Table 5).

Table5: The Top Five Procedureltems

Procedure Item/ Percentage U.S. Int. U.S. Trad. Taiwan China

1st P03/27.9 P04/29.7 P03/24.4 P01/23.3

2nd P04/18.9 P03/20.3 P04/20.3 P22/18.3

3rd P05/12.9 P05/16.2 P22/13 P03/15

4rd P06/8.58 P06/13.5 P21/9.76 P23/11.7
Discussion

According to the results, the Chinese textbooks apparently have different treatments on solving one-
variable linear equations compared to the U.S. textbooks in the following three phases. First, the Chinese
textbooks focus on the meaning of equations and solution of equations. However, the U.S. textbooks place
emphasis on the components of an equation or the rationale of operations on an equation. Second, for the
top six strategies, the Chinese textbooks have significant problem-solving strategies that focus on
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efficiency (e.g., Move, eliminate) and that have not been seen in the U.S. textbooks, and the U.S. textbooks
have significant problem-solving strategies that focus on understanding (e.g., undo, manipulative) and that
have not been seen in the Chinese textbooks. Third, the Chinese textbooks treat procedure in a quite open
way (with procedural steps skipped), but the U.S. textbooks treat procedure in a quite thorough way (with
procedural steps presented in detail). In brief, we find the Chinese textbooks focus on the task of solving
equations by providing efficient problem-solving strategies, and the opportunity for students to figure out
missing procedural steps in a solution procedure. The U.S. textbooks place significant emphasis on the
understanding of components of an equation and rationale of operations on an equation. Problem-solving
procedure is also presented in a detailed way to help student understand the reasoning in a solution
procedure. Knowing whether written curricula place different emphasis on the meaning, strategy, and
procedure of problem solving where students have demonstrated strength and weakness, as in this case for
solving linear equations, can support revision and improvement of those materials, and efforts to improve
the enacted curriculum as well.
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DIMINISHING DEMANDS: SECONDARY TEACHERS MODIFICATIONS
TO TASKSFOR ENGLISH LANGUAGE LEARNERS
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English language learners (ELLS) are the fastest growing segment of U.S. students. Many teachers who
have little or no training with regard to effective teaching strategies for ELL students now face the
challenge of transitioning existing curriculum materials for use with ELL students. In this qualitative
study, | examined three high school teachers’ modifications to mathematical tasks for their ELL students
and the resulting impact these modifications had on the tasks' cognitive demand. The primary data sources
for this study include interviews, observations, classroom artifacts, and surveys. The findings suggest that
teachers made modifications to both the tasks' content and the instructional formats used for the tasks.
These maodifications frequently resulted in lowered cognitive demand. Implications include suggestions for
classroom practice and mathematics educators.
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Finding strategies to improve the educational outcomes of English language learners (ELLs) is
imperative as they are the fastest growing segment of U.S. students (Wolf, Herman, & Dietel, 2010).
Though the majority of teachers now have at least one ELL student in their classroom, only a third of
teachers have received training to effectively teach ELL students (Ballantyne, Sanderman, & Levy, 2008).
The mismatch between training and the realities of teaching has left many teachers to their own devices as
they seek out or create curriculum materials for their ELL students. The purpose of this study is to examine
modifications teachers make to mathematics tasks as they attempt to create a better alignment between
their curriculum materials and their ELL students.

Per spectives

The demographics of U.S. students are rapidly changing. ELLs comprise approximately 11% of the
students in U.S. public schools. This percentage represents a 51% increase in the decade since the 1997—
1998 school year (National Center for English Language Acquisition, 2011). This rapid increase in the
number of ELL students has resulted in many states that previously had small ELL populations
experiencing large increases in ELLs. With these dramatic increases comes a new set of challenges to
many school districts. Many teachers with no experience or training related to teaching ELL students now
have several ELL students in their classroom. Additionally, recent results from standardized tests have
revealed this quickly growing segment of students continues to reside on the lower end of the achievement
gap in mathematics (Fry, 2008). These situations highlight the growing need to train teachers to teach
effectively ELL students in both sheltered and mainstream classrooms. Of particular importance is the
selection and use of appropriate curriculum materials for these students.

The selection of tasks is an important part of a teacher’s practice and student learning. Kloosterman
and Walcott’s (2010) examination of NAEP results concluded there exists a “positive relationship between
what is taught and what is learned” (p. 101). This implies the types of problems enacted impact the type of
learning that occurs. Due to the important role tasks play in the mathematics classroom, I have focused my
study on mathematical tasks. I have adopted Stein and Smith’s (1998) definition of a mathematical task as
a portion of the classroom centered on the development of a mathematical concept. Although several
studies have examined teachers’ use of mathematical tasks (e.g., Stein, Smith, Henningsen, & Silver,
2009), a review of the literature uncovered no studies specifically examining teachers’ selection and use of
tasks with secondary ELL students. In this study I examined three high school teachers’ modifications to
mathematical tasks. The following research questions related to this purpose:
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1. How do teachers modify mathematics tasks for their ELL students?
2. In what ways do modifications teachers make to tasks impact the cognitive demand?

M ethods

I employed a qualitative, multiple case study methodology. The participants—Ms. Thomas, Ms.
Hunter, and Mr. Dubois—were secondary mathematics teachers who taught a ninth grade, mathematics
class comprised entirely of ELLs, a so called sheltered mathematics course. I purposefully selected these
teachers because of their role as sheltered mathematics teachers. Each of the teachers was in their sixth
year of teaching.

This study is part of a larger study in which I examined teachers’ selection and enactment of
mathematics tasks for ELL students. The primary data sources for the present study are surveys,
interviews, observations, and classroom artifacts. I observed each teacher’s sheltered mathematics course
daily for two weeks. Each observation was video recorded and partially transcribed. I conducted daily
interviews with the teachers prior to observing their teaching and then conducted two extended interviews
after the two weeks of observation, each of which I transcribed verbatim. The classroom artifacts included
the tasks presented to the students.

I analyzed the data using the constant comparison method decoupled from grounded theory. This
involved many rounds of inductive coding. I first analyzed each teacher individually and identified
emerging themes using analytic memos. I then collapsed these themes into codes as I analyzed each of the
different data sources for each teacher. I then performed a cross case analysis looking across the three
teachers to identify those codes that were relevant to all the teachers. I consulted with my major professor
in developing and verifying the codes. In the following section I discuss findings related to the teachers’
task modifications.

Findings

Each of the teachers discussed the need to modify the content of tasks for their ELL students. I use the
term content to refer to the features of the task including the written presentation, the mathematical values
included in the task, and the task’s visual presentation. Throughout my discussions with the teachers, each
stated the need to modify the language of tasks for their ELL students. The teachers made statements such
as “[I had to] cut out a lot of words” and “simplify” the tasks for ELLs. When asked if they modified tasks
for all of their classes, the teachers stated that they did on occasion, but in general did not have as great a
need for these modifications in their non-sheltered classes.

In addition to simplifying the language, the teachers discussed the need to simplify the mathematical
content for their ELL students. Ms. Thomas discussed the need to lower the difficulty of tasks on several
occasions during my time in her classroom. Though Ms. Hunter and Mr. Dubois did not explicitly state the
need to simplify the content of tasks for their ELL students, they did describe modifications to tasks that
simplified the mathematics. The simplification of content also extended to the teachers’ presentations of
mathematical content and their avoidance of mathematical proofs. Related to simplifying the mathematical
content, the teachers discussed their desire to modify tasks so that they had only one solution or one
solution path. Each of the teachers noted he or she thought presenting students with a multitude of ways to
solve a particular problem created unnecessary confusion. Therefore, they preferred to set up tasks with a
particular solution method in order to preempt possible student confusion.

Beyond discussion related to simplifying the mathematics and the presentation of the task, Ms.
Thomas also stated that her task modifications for sheltered students often included visual representations.
Ms. Hunter and Mr. Dubois did not directly discuss making modifications of this type with their sheltered
students; however, during the interviews they did express approval of tasks that included visual
representations.

In addition to modifications to the tasks’ content, the teachers modified the instructional format they
used for the tasks they selected for their sheltered course. I use the term instructional format to refer to the
arrangement of students, time allowed for a task, and the resources with which the teachers provided
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students during the teachers’ explanation of the task set up. The teachers often stated that the instructional
formats they chose for their sheltered students served as a modification to their typical routine used with
non-sheltered students.

Each of the teachers discussed the arrangement of students as a modification to the tasks they used,
though the arrangements differed among the teachers. Ms. Thomas discussed her use of small groups
within her sheltered course, a practice she avoided with her non-sheltered students. Similarly, Mr. Dubois
often assigned problems and then encouraged students to work with and help one another. Ms. Hunter
preferred direct instruction, often stating that her sheltered students did not value cooperative learning and
got off task too easily.

The teachers often provided students with time limitations as they set up the tasks. For example, before
a task that required students to rotate between stations, Ms. Thomas told students they would have five
minutes at each station. The time constraints set up by the teachers seemed to try to focus student activity
on mathematics and eliminate off task behavior.

In terms of resources provided during task set up, the teachers encouraged their students to draw on
graphics, vocabulary aides, and manipulatives as they worked on tasks. Because the scope of this study did
not include an in-depth examination of the teachers’ non-sheltered courses, I cannot claim the teachers
used these resources exclusively when setting up tasks for their ELLs. Although, in some instances, the
teachers did explicitly state this was the case.

None of the task modifications resulted in an increase in cognitive demand. Of the modifications I
have described, several did not result in a change in the cognitive demand. These modifications instead
contributed to the maintenance of cognitive demand. These modifications included the use of visual
representations, the time constraints, and the inclusion of resources.

The teachers included visual representations to supplement the written tasks in an attempt to connect
the representations with other mathematical ideas in the task. The teachers did not explicitly connect the
visual representations to the intended task outcomes; more typically, the representations were included to
help students visualize concepts. The lack of intent to connect representations to the task or include
reasoning about the representations as part of the outcome prevented the representations from increasing
the demand. The time constraints the teachers placed on the tasks helped to prevent the tasks from
devolving into non-mathematical activity. Though time in itself cannot raise the cognitive demand, Stein et
al. (2009) cited time as a task feature that can aid in the maintenance of cognitive demand. The provision
of resources during the task set up did not impact the cognitive demand prior to implementation. For the
most part, the teachers suggested to students that they could use calculators, visual aids, textbooks, etc., but
did not explicitly discuss how they should use them in conjunction with the task. Therefore, the inclusion
of these resources did not work to raise or lower the cognitive demand.

The majority of tasks selected by the teachers were already low in cognitive demand. Therefore,
modifications that lowered cognitive demand often resulted in memorization level or non-mathematical
tasks. In general, the teachers thought text heavy problems obfuscated the mathematics for their ELL
students. The teachers’ decisions to simplify the language of tasks often resulted in lowered cognitive
demand. On a number of occasions, the context described in a task would require students to interpret the
situation and tie their numerical responses to the situation. The elimination of this connection lowered the
cognitive demand, a phenomena of which the teachers were not aware.

The teachers’ modifications to the mathematical content were the only modifications that had the
intentional outcome of a lowered cognitive demand. The teachers’ avoidance of proof in their sheltered
courses led to lowered expectations in terms of students’ justification of answers. In addition to avoiding
proof, the teachers’ reluctance to embrace multiple solution paths or tasks with multiple solutions lowered
the cognitive demand. Stein et al. (2009) discussed the inclusion of multiple solutions and solution paths as
a feature of high cognitive demand tasks. The teachers’ decisions to avoid difficult mathematics so as not
to confuse students resulted in the students experiencing mathematics through low cognitive demand tasks.
The persistent use of low cognitive demand tasks is in opposition to the task literature that suggests a
variety of tasks is important for student learning (Stein et al., 2009).
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Discussion

Each of the teachers in this study cared about their students and modified tasks in ways they thought
would improve their ELL students’ learning outcomes. Providing teachers with more training on how to
modify tasks for ELL students while maintaining cognitive demand is an important step towards
improving the learning outcomes for ELLs. Teachers must approach the simplification of language in tasks
with extreme care so as not to lessen the cognitive demand. Teachers should also avoid conflating
language and mathematical abilities as they modify tasks. This may help to avoid modifications that
unnecessarily simplify the mathematical content of tasks. Similarly, teachers should carefully consider the
instructional format of lessons to support students without lowering the cognitive demand.

Knowing how to modify curriculum materials in ways that maintain the mathematical rigor is
important for students to build mathematical understanding. This research may allow curriculum
developers to understand the challenges teachers encounter when selecting curriculum materials for ELLs.
This understanding can lead to improvement in curriculum materials that support teachers of ELLs.
Finally, teacher educators can build on the findings of this research to develop strategies to better prepare
teachers for this rapidly increasing population of students.
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ANALYZING THE DIAGRAMMATIC REGISTER IN GEOMETRY TEXTBOOKS:
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Geometry diagrams are multisemiotic texts that encode meaning across a range of communication
systems. We propose a scheme for analyzing how geometric diagrams function as resources for
mathematical communication in terms of four semiotic systems: type, position, prominence, and attributes.
The semiotic architecture we propose draws on research in systemic functional linguistics (Halliday,
2004; O'Halloran, 2005); the architecture suggests a way of analyzing how geometry diagrams function
as mathematical texts.

Keywords: Geometry; Classroom Discourse; Curriculum Analysis

I ntroduction

Mathematical communication employs various semiotic systems to make meaning, in particular
language, symbols, and visuals (Lemke, 2003; O’Halloran, 2005). Duval (2006) uses register to refer to
these semiotic systems. Building on that use of register, in their study of the types of translation tasks that
students might be assigned in the geometry class, Weiss and Herbst (2008) argue that the diagrams of high
school geometry comprise a distinct mathematical register—the diagrammatic register. The symbols of
this register are “...pictures of (idealized) ‘real’ things...”—e.g., circles, points, parallel lines—together
with the system of “markup signs”—e.g., congruence, perpendicularity, and parallelism markings—that
encode the properties of those objects or permit references to those objects (Weiss & Herbst, 2008, p. 19).

The system of markup signs for geometric properties in diagrams and the norms that govern how
diagrams represent specific geometric relations are products of the 20th century. The diagrams of Euclid
and Descartes, as well as those in early 20th century plane geometry textbooks—particularly those from
what Herbst (2002) called the Era of the Text and the Era of the Originals—were collections of strokes (for
lines, line segments, and circles) and letters (for points). The diagrammatic register in these early textbooks
of plane geometry lacked many of the features that one would expect from the diagrams in mainstream
textbooks from the later 20th and 21st centuries. Figure 1 illustrates some of these differences.

R

Diagram from Wentworth's Plane Replication of diagram from Merrill
Geometry (1913, p. 107) Geometry (1990, p. 366)

Figure 1. Comparison of two geometry diagrams

Figure 1 shows two different diagrams from two different textbooks (Wentworth, 1913, and Foster
et al., 1990, respectively) that accompany the statement of the same theorem: that the external tangents
drawn from a point to a circle entail segments (PB , PA and PQ, PR , respectively) that are congruent. The
diagrams in Figure 1 have commonalities. For example, each figure shows the segments one might use to
prove the tangent segments theorem, and each figure labels the points one would expect to use in the proof
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(P, B, O, A and P, Q, C, R). Yet the diagrams in Figure 1 are also clearly different: the later diagram marks
<PQC and <PRC as right angles and uses different colors (the lighter lines are blue, the darker lines are
red) for different strokes, while the earlier diagram uses different styles of lines (BO , BA are dashed) and
uniform choices for the thickness of strokes. The observable differences between these diagrams suggest
that readers of diagrams need to be able to interpret and integrate different semiotic systems as they
interact with diagrams. The semiotic architecture presented below aims to characterize these and other
systems used in the visual display of geometric diagrams.

Semiotic Systemsin Geometric Diagrams. Type, Position, Prominence, Attributes

We propose four semiotic systems to describe the range of variation in geometry diagrams. These
systems are referred to as the type, position, prominence, and attributes systems. Our use of “system”
concords with its use in functional grammar: systems contain the paradigmatic ordering of a language (a
“what-could-go-instead-of-what relation,” Halliday, 2004, p. 23). The systems we identify inventory the
choices that are available when creating a geometry diagram. We identified these systems by analyzing the
diagrams in 30 geometry textbooks published by mainstream publishers (including Merrill, Ginn and
Company, McGraw-Hill, Glencoe, and World Book) that span the 20th century—from 1899 to 2004. The
systems we elaborate below capture the possible variations in how geometry diagrams function as
representations (note: visual representations of these systems are in a longer version of this paper, available
at: http://hdl.handle.net/2027.42/91288)

The Type System

The Type system categorizes the different parts of a geometric diagram according to their visual
qualities. In any diagram, there could be parts that represent geometric objects (e.g., dots, strokes, regions)
and parts that represent geometric (and potentially other mathematical) properties of objects (e.g., hash
marks, arrows, small arcs). The parts of a diagram can be differentiated analogously to the way that free
and bound morphemes are differentiated in linguistics (Engelhardt, 2002, p. 24). The free parts are those
that can appear on their own (e.g., dots, strokes), while the bound parts are those that can only appear with
others (e.g., hash marks on strokes, arrows on strokes).

The divisions in the Type system are visual, not geometric. Keeping visual properties distinct from the
geometric properties allows one to study how different geometric properties are represented as visual parts
in diagrams. Thus, for example, lines, segments, and rays are all examples of {strokes: straight} and are
visually of the same kind. The geometric differences between lines, segments, and rays are encoded
through the use of different Attributes (see below).

The Position System

While the Type system provides a scheme for identifying the possible participants in any statements a
diagram can make (e.g., points A, B, and C lie on line |), the Position system captures how those different
participants relate to each other spatiographically—where parts are located relative to one another and how
those parts are oriented relative to the frame of reference of the page (Laborde, 2004). Categories in the
Position system include distance (visual space between parts), orientation (heading of the part relative to a
set of reference axes), and connection (the links between parts, such as strokes that share a dot), with
subcategories that depend on a chosen frame of reference (e.g., radial, rectangular).

The Prominence System

Prominence refers to the visual prominence of a part in the display (O’Halloran, 2005, p. 136). There
are emphasis and difference subsystems. Emphasis communicates the visual emphasis of a part, through
choices for weight (strokes), gauge (dots), transparency (regions), and style (letters and symbols).
Difference communicates the visual difference of a part with respect to other like parts, through choices
for color (all parts), pattern (regions), fill (dots), and style (stroke). The interaction of these different

systems is evident in Figure 1, where circle C (right frame) is given less emphasis relative to strokes PQ ,
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PR and PC , by virtue of its lighter weight, yet linked to PQ and PR —while being set apart from PC —
through choices in color.

The Attributes System

The principal system that communicates the geometric properties of a diagram is the Attributes
system. Attributes can be relational or existential; like the word “attribute,” “relational,” and “existential”
are chosen to draw an analogy to functional linguistics. In this case, it is the distinction between relational
and existential processes (Halliday, 2004). Relational processes serve to “characterize and identify”
(Halliday, 2004 p. 210), while existential processes are those “...by which phenomena of all kinds are
simply recognized ‘to be’” (Halliday, 2004 p. 171). Similarly, the relational attributes of parts are those
diacritical markings, measures, and labels that serve to identify and classify relations that hold among
specific parts. These markings are resources in the diagram that encode geometric properties. Thus, for the
modal viewer, a marked right angle is right, regardless of what it might actually look like (and conversely:
an unmarked angle that looks right might not be).

Complementing the relational attributes are the existential attributes. Like their linguistic cousins,
existential attributes are so named because they actually stipulate the existence of a part in a diagram.
Consider, for example, points D, E, C, B, and A in Figure 5, a diagram in Wells and Hart’s Plane
Geometry (1915). In this diagram, the presence of the letters ‘D’, ‘E’, ‘C’, ‘B’, and ‘A’ positioned at the
ends of the straight strokes mark the existence of points on their ends.

Figure 2: Diagram from Wellsand Hart’s Plane Geometry (1915, p. 19)

Arrows serve as existential attributes when they are applied to the ends of straight strokes, as the
means of stipulating that a given straight stroke is a line (two arrows) or a ray (one arrow). The right frame
of Figure 1 (see above) has examples of these attributes as they are applied to the stroke from P-R and the

stroke from P-Q, thereby bringing into existence ray WQ and ray PR (as opposed to bringing into

existence a segment or a line). Apart from the relational and existential attributes that apply to single parts,
there are also attributes such as captions or arrows (transformational) that apply to the entire diagram or to
several parts.

Summary

Geometry teachers have been concerned with how to teach students to communicate with geometric
diagrams for more than 100 years (Baker, 1902). The evolution of the diagrammatic register in 20th
century geometry textbooks speaks to this concern, and the semiotic architecture we have proposed in this
report is one means through which this evolution can be analyzed. Studying the development of the
diagrammatic register in 20th century textbooks will shine a light on how the multiple, ambiguous, and
sometimes conflicting roles that diagrams play in student mathematical reasoning are semiotically
managed. The work reported here is a step in this direction.
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In this study, we investigated various aspects of the transition from state-specific mathematics standards to
CCS3M, including a comparison of particular content strands of state standards compared to CCSSM and
states’ plans for implementation of CCSSM. With regard to content, findings indicated shiftsin (1) grade
levels at which fluency with mathematical topicsis expected, (2) the amount of time spent learning topics,
(3) focus on particular content, and (4) the way in which certain aspects of mathematics are addressed.
Findings related to the implementation of CCSSM across states indicate variation in modifications made
to CCSSM and the rate at which CCSSM is being implemented.

Keywords: Curriculum Analysis; Standards

Purpose

The 2010 publication of the Common Core State Standards for Mathematics (CCSSI, 2010) and its
subsequent adoption will undoubtedly shift the focus and nature of mathematics education in the U.S.
Because of the recent adoption and assessments in 2014-2015, state departments of education across the
U.S. are transitioning in different ways and with varying levels of urgency. In this paper, we report
findings for the following research questions: (1) To what extent have specific mathematics content in past
state standards changed in their placement (grade level) and/or focus in the CCSSM? (2) What are the
initial actions taken by states as they transition from existing state standards to CCSSM?

Per spective

Curriculum standards have dictated the content taught at particular grade levels, and due to the high
stakes associated with the mandated assessments, the learning standards have strongly influenced what
students have an opportunity to learn (Weiss, Pasley, Smith, Banilower, & Heck, 2003). Researchers have
documented considerable variation across state mathematics standards, including the relative emphasis on
particular topics, the grade level(s) at which specific content is addressed, and the types of expectations
present in the standards (Reys, 2006; Smith, 2011).

CCSSM aims to move K—12 mathematics “toward greater focus and coherence” (CCSSI, 2010, p. 3)
and outlines the mathematical expectations for K—12 students across the United States. It reflects the
knowledge and skills needed to prepare students for success in both post-secondary education and their
future careers (CCSSI, 2010). A survey in 35 common core adoption states, conducted by the Center for
Educational Policy (CEP), found that the majority of state representatives believe CCSSM is more rigorous
than previous mathematics state standards (Koeber & Stark-Renter, 2012). State representatives have
begun taking steps to prepare districts for the implementation of CCSSM by developing timelines for
implementations and crosswalks that compare state standards to CCSSM. The results from the CEP survey
also indicate that most states do not expect to fully implement CCSSM until the 2014—15 school year
(Koeber & Stark-Renter, 2012); however; states have begun to take initial steps toward the transition to
implement this milestone in curriculum governance in the U.S. These include states (1) augmenting
CCSSM to address district needs, and (2) developing a timeline and implementation plan for transitioning
state standards to CCSSM (Reys et al., under review).
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Modes of Inquiry
Data Sour ces and Analysis

The content standards analysis, conducted to answer the first research question, used two data sets:

(1) learning expectations from state standards used in earlier state standards analyses (hereafter called
“State Standards™) (Reys, 2006; Smith, 2011) and (2) learning expectations from the CCSSM for the same
content/strands as previous analyses. For the second research question, to capture the preliminary actions
taken by state departments of education, all CCSSM-related documents available on each state department
of education website were collected and summarized based on the actions state representatives were taking
or planning to take relative to the implementation of CCSSM.

In State Standards (Reys, 2006; Smith, 2011), researchers used varying methods to capture themes
across state standards as well as variation across states. For example, some teams analyzed the grade
placement of particular topics to determine the number of grade levels that students spent learning a
specific topic and at what grade level students were expected to demonstrate fluency. Other teams used an
existing framework, such as the van Hiele levels of geometric thinking to analyze the descriptive geometry
GLEs. Additionally, teams used different foci in examining the standards, ranging from examining specific
mathematical topics within a content strand (e.g., fraction computation) to studying entire content strands
(e.g., measurement). For all analyses, standards were tagged with state and grade level identifiers for
analysis purposes. The same data collection and analyses process were employed in the comparative
analysis of state standards and CCSSM.

Data analysis for states’ initial actions with implementation of CCSSM consisted of two processes.
First, the most recent state standards were searched to determine if additional standards or changes were
made in comparison to CCSSM. All standards that were either modified or added to a state’s curriculum
document were collected for analysis. Second, state timeline documents were analyzed to study trends
among state’s CCSSM implementation schedules.

Findings
Comparison between State Standards and CCSSM

Analyses of K-8 state mathematics standards, conducted prior to the release of CCSSM under the
auspices of the Center for the Study of Mathematics Curriculum (Reys, 2006; Smith, 2011), provided the
lens through which changes in K-8 mathematics expectations as outlined in CCSSM are identified.
Although our analyses revealed similarities between the mathematics described in State Standards and the
CCS8M, the differences between the two were considerable and will likely be the focus of discussion as
states transition to the CCSSM. These differences fall into four categories of shifts: (1) a shift in grade
levels at which fluency is expected, (2) an expansion or contraction in the amount of time students will
spend learning particular topics, (3) a change in overall focus on particular mathematical content at
specific grade levels, and (4) a shift from including certain aspects of mathematics in individual standards
to addressing them in more general terms in Standards for Mathematical Practices.

One key finding from State Standards (Reys, 2006; Smith, 2011) was that states vary considerably in
the grade levels at which they expect fluency with particular topics. Therefore, it is inevitable that CCSSM
will cause adjustments to learning expectations in order for many states to transition from the individual
states’ standards. Discrepancies in grade placement of standards are prominent when examining fraction
computation and mastery of basic facts. For example, 40 of the 42 states examined in State Standards
placed fluency with multiplying fractions at a later grade level than CCSSM. In contrast, mastery of basic
facts is expected at an earlier grade level in CCSSM than was found in State Standards.

Differences also exist in the amount of time students will spend learning particular topics in State
Standards and in CCSSM. For example, whole number computation for addition and subtraction is
generally taught over a period of three years in State Standards; however, the development of this topic in
CCSSM spans five years from the initial exposure of adding and subtracting whole numbers until fluency
is expected. Conversely, while topics pertaining to probability were found across all grades K-8 in State
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Standards, CCSSM confines coverage of probability to grade 7. Many probability topics found only in
grade 7 of CCSSM are developed across multiple grade levels in State Standards, beginning in some states
as early as grade 3. The overall focus on some mathematical topics in State Standards has also shifted in
CCSAM. For example the emphasis on relationships between operations (e.g., multiplication as repeated
addition) and mathematical properties (e.g., distributive property) increased three-fold in CCSSM
compared to State Standards.

Finally, there was a shift from including certain aspects of mathematics in individual standards to
addressing them in more general terms in the Standards for Mathematical Practices (SMP), overarching
statements that are included at the beginning of each grade level. For example, calculator and/or
technology use was found in at least one standard at all grades K-8 in State Standards, with the overall
number of standards increasing across grade levels. However, CCSSM does not mention technology and/or
calculators within the individual standards until grades 7 and 8. Instead, CCSSM addresses the use of
technology within the SMP, including the expectation that students are able to “use technological tools to
explore and deepen their understanding of concepts” (CCSSI, 2010, p. 7). Likewise, reasoning for
verification expectations (e.g., predicting, conjecturing, hypothesizing, justifying, drawing conclusions),
common in State Standards are absent in CCSSM. However, reasoning abstractly and quantitatively,
construct viable arguments and critique the reasoning of others and making sense of problems and
persevering in solving them are addressed globally in SMP (CCSSI, 2010).

State M odifications of CCSSM

While the intention of CCSSM is common standards across the United States, states are granted
permission to make some adjustments to CCSSM in order to better meet the needs of their local districts:
“While states will not be considered to have adopted the common core if any individual standard is left
out, states are allowed to augment the standards with an additional 15% of content that a state feels is
imperative” (Achieve, 2010). As of February 2012, 35 of the 45 adoption states have not added any
additional standards or changed the language of the standards (Reys et al., under review). Seven states
(AL, AZ, CA, CO, IA, MA, NY) have added additional standards. California was the only state to move
standards from one grade level to another grade level. Three states (AL, CA, and CO) have added or
changed the wording of standards. Two states (MD and ND) have made changes to the format and/or
annotated CCSSM. North Dakota added an “annotations” column with examples, definitions and
comments in the state’s CCSSM document to help district administrators and teachers understand the
standards and provide guidance in interpreting them (Reys et al., under review).

States' Development of Transition Timeline

A number of states have developed implementation timelines, describing their plans and deadlines for
transitioning from the current state standards and assessments to CCSSM. In order to transition to CCSSM
most states developed “crosswalk documents.” These documents compare the current state standards to the
CCSAM. The purpose of the crosswalk document is to assist teachers in understanding the shifts in learning
expectations and more important, the necessary changes in instructional emphasis. In addition to the
crosswalk documents, some states created “bridging documents” that address timelines for transitioning
from current standards to CCSSM. The transition timelines address the timeframe for when teachers are
expected to implement CCSSM. Some states also include plans for professional development.

Discussion

CCSSM is the latest educational reform measure in the U.S. designed to elevate student achievement in
an understanding of mathematics. The transition from a system of state standards to the adoption and
implementation of CCSSM will inevitably lead to several changes in K—8 mathematics. These changes
have implications for multiple mathematics education stakeholders (e.g., curriculum developers,
mathematics teachers). Although change is hard, the hope is that CCSSM will challenge the field to refocus
our efforts on helping students be prepared for careers and college readiness. The shift of particular topics
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as well as the introduction of new content and the deletion of other topics will necessitate a transition
period as teachers alter their instruction to accommodate CCSSM.

Although the transition to CCSSM may be seen as difficult, most states have already begun the
implementation process. This fast action by states to create crosswalks and prepare professional
development for their teachers provides some evidence that CCSSM is important and states are ready to
make a difference in children’s lives. However, with the quick implementation also brings obstacles (e.g.,
new curriculum, high school course sequencing). Providing teachers with curriculum that is aligned to the
goals and standards in CCSSM may be the single obstacle that could cause this initiative to fail. Therefore,
it is important to continue to monitor the situation especially as schools begin to transition to and
implement CCSSM in more grade levels.
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This study examines student activities presented in written lessons on angle in four elementary
mathematics curriculum programs, based on the assumption that student activities reveal the content
students learn and the way students learn the content. In doing so, we analyzed the content span of the
activities, relationships among activities, and the relationship between activities and other components of
the lesson. The four programs share some commonalities and yet exhibited stark differencesin the nature
of student activities. This study suggests the significance of examining student activitiesin relation to
individual and overall lessons in the written curriculum.

Keywords: Curriculum; Curriculum Analysis; Instructional Activities and Practice; Geometry and
Geometrical and Spatial Thinking

This paper examines mathematical activities in four different elementary mathematics curriculum
programs, especially those from lessons to teach angle. Activities not only provide the context in which
students learn mathematics, but also embed the mathematics that students explore. Types of activities and
their nature provoke certain kinds of thinking and learning, and shape students’ learning experiences. In
this study, we particularly focus on student activities used to develop the concept of angle in each program,
in terms of their content span, the relationship among the activities, and their relationship to other
components of the lesson, in order to infer what students are expected to do and learn. We examine student
activities, not teacher activities, to account for the kinds of activities in which students are expected to
engage in various curriculum programs. In this study, a curriculum program refers to written curriculum
materials for day-to-day teaching, not one-day resources or supplemental materials. This may include, but
is not limited to, a textbook, a student book, and teacher’s guide.

Theoretical Per spectives

Student activities that are assigned in curriculum programs are crucial to understanding what students
are expected to do and learn in the mathematics classroom (Li, 2000; Sternberg, 1996). Student activities
can be understood as promoting authentic learning (D’ Ambrosio, 1987; Smith & Stein, 1998; Stein,
Grover, & Henningsen, 1996), as opposed to teacher demonstration and practice problems. Student
activities genuinely drive and generate students’ actions and performance that shape student learning
(Bloom, 1956; Gronlund, 1978; Reed & Bergemann, 2001), by generating students’ struggle or
perturbation (Piaget, 1975) or motivating to fulfill goals of the activities (Leont’ev, 1981). Moreover,
student activities can prompt students to think in diverse and sophisticated ways (Bloom, 1956; Gronlund,
1978; Reed & Bergemann, 2001). As such, examining student activities is crucial to infer what students
are learning and thinking in the classroom. In particular, we examine student activities in a set of lessons
on angle, in terms of the content span and the relationships among activities and the relationship between
activities and other components of the lesson, in order to account for the nature of the activities, i.e., what
students are expected to do and learn in each of the programs.

According to Leont’ev (1981), activities are processes. An activity requires a set of actions to
accomplish the goal of the activity. Leont’ev emphasizes interrelatedness and situatedness of activities.
Student activities can be considered in the same sense. A student activity is a process of learning while
students perform a series of actions to reach the goal of the activity. A student activity is necessarily
context-based. Whether it is concrete, real world, abstract, or imaginary, a student activity is bounded by
the lesson and the previous activities and experiences. In this study, we analyze student activities as they
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are presented in the written curriculum materials. This constitutes the context of the study as well as the
constraints of the study.

The span of the content in student activities tells the overall mathematical goals that each curriculum
program envisions. Therefore, examining the content span helps one to imagine what students may be
experiencing and learning in the classroom. It also helps one to see how mathematical content builds up as
lessons move forward and how learning progresses. In fact, knowledge developed through prior activities
serves as a resource to develop a new understanding in later activities (Kajander & Lovric, 2009). In this
perspective, the correlation between prior and later activities or content is crucial. Moreover, the
relationships between activities and other components of the lesson illuminate the role and significance of
activities within the lesson, which helps explain the nature of student activities. These relationships
influence students’ trajectory of learning and thinking (Steffe, 2011). For example, an activity followed by
teacher demonstration inevitably constrains students’ thinking and action.

M ethods

Four curriculum programs chosen for the study are Investigations in Number, Space, and Data (INV
hereafter), Scott Foresman—Addison Wesley Mathematics (SFAW hereafter), Math Trailblazers (MTB
hereafter), and the Korean elementary mathematics program, Mathematics (KMath hereafter). KMath is
chosen because Korean students outperformed those in other countries in a number of international
comparison studies (Mullis, Martin, Gonzalez, & Chrostowski, 2004; Schmidt, Blomeke, & Tatto, 2011),
and yet we know little about what Korean students learn and what kind of curriculum programs they use.
KMath is based on the National Curriculum of Korea revised in 2007 and is the only program available at
the elementary level in the country. The three American programs represent a range of elementary
mathematics programs, from reform-oriented and research-based to commercially developed. Reflecting
reform needs in mathematics teaching and learning, INV and MTB were developed with funding from the
National Science Foundation, and yet their approaches are slightly different: INV emphasizes student
strategies and genuine investigation of mathematical ideas, whereas MTB integrates science and language
arts with mathematics and covers advanced rigorous mathematics. SFAW is one of the programs
commercially developed, and yet there is an attempt to incorporate research findings and reform
recommendations in the program.

For the analysis, we collected curriculum materials/resources for both teachers and students that were
needed for day-to-day teaching and learning, such as teacher guides and student books. These materials
provided the details of the mathematical content and context for each lesson and student activities. First,
we identified lessons exploring the concept of angle in each of the four programs. Next, we extracted
student activities from each lesson, along with the mathematical content embedded in them. In determining
what to consider as student activities, we relied on each program as they designated a certain portion of the
lesson as activity. All four programs included at least one section for “activity” in each lesson.

The overall analysis focus was given to the features of the activities used to develop the concept of
angle in each program. We created detailed descriptions of activities along with specific actions and
content embedded. We also examined a general structure of the lessons in each program, in relation to the
location and role of the activities in each lesson. In our subsequent analysis, we paid particular attention to
what kind of actions students were expected to do in those activities, how each of these activities was
connected to other components of the lesson, how they were related to each other, especially how later
activities were built on previous activities, and how those activities were organized as a whole to develop
the concept of angle. These helped characterize the nature of activities to teach the concept of angle as well
as their scope and sequence. Finally, common features and differences in various aspects were compared
among the four curriculum programs.

Results and Discussion

The four programs share some commonalities in terms of content covered, and yet they exhibited stark
differences in the nature of student activities. In all four programs, right angles are introduced in grade 3 in
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the context of exploring polygons (e.g., triangles). While INV, MTB, and KMath have lessons on angle in
grade 4, SFAW explores angle across grades 3, 4, and 5, one lesson in each grade. KMath devotes one
entire chapter to the concept of angle (8 lessons) in grade 4, and all American programs address angle in
the unit/chapter of geometry. Angles are further explored in polygons in grade 5 in INV, MTB, and
KMath.

Student activities in the four programs address the concept of angle in quite distinct ways and promote
different kinds of student actions and thinking. SFAW activities include minimal content; INV activities
promotes students’ thinking about the relationship among angles; MTB and KMath activities are the most
diverse in terms of content embedded in them. The four curriculum programs, ranked from least to greatest
in the extent to which student activities play a role in the lessons, are SFAW, KMath, MTB, and INV. It is
even possible to teach a lesson without a student activitie in SFAW. KMath and MTB activities involve
frequent teacher interventions toward lesson goals. In contrast, INV lessons are organized by student
activities and discussions around them. Students explore mathematical ideas during activities and share
what they found or did in the whole group discussion. INV lessons cannot be completed without activities,
and the role of activities in a lesson is crucial.

MTB activities share some common aspects with KMath and INV. On the one hand, like KMath
activities, some MTB activities are short and small-scale, involving teacher intervention along the way of
exploration. On the other hand, as with INV activities, some MTB activities require extensive inquiry
about the concept and mathematical relationships. In general, MTB activities progress along with
discussions and teacher intervention when appropriate, whereas INV lessons designate certain time for
discussion before or after activities, usually the beginning or the end of the lesson, in which students
publicize and formalize what they found during activities.

KMath activities move from enactive to iconic, and to symbolic representations (Bruner, 1960) and
from concrete to abstract fairly quickly. Concrete and enactive approaches are used at the beginning to
introduce the ideas, and once reaching the abstract and symbolic level, concrete and enactive activities are
rarely used. This is quite different from American programs analyzed. Moreover, KMath activities are
highly structured and constrain students’ learning experiences toward specific lesson goals. Following the
steps, one by one, leads students to reach the desired outcomes in the activities. KMath activities also
promote precision and accuracy very early on in the lessons, whereas activities in the American programs
in general do not emphasize precision to that extent.

Commercially developed programs have a significant market share, which indicates their substantial
influence on classroom practice. In the current reform era, these programs try to incorporate many reform
efforts. For example, SFAW includes lessons on relationships among multiplication facts (e.g., 5 X 9 =
5 x5+ 5x4)and uses games in some lessons. However, it is evident that activities in SFAW lessons on
angle have a limited potential. This may be due to the topic chosen. Activities used in lessons on other
topics may be different. This also suggests the importance of examining other topics as well, preferably
involving a number of lessons and activities. Despite this possible explanation, the fact that there are only
three angle lessons, one in each grade, and the fact that their activities have little connection among them
indicate the need for improvement.

This study illustrates the significance of examining student activities in the curriculum. As activity
theory posits, it is important to analyze a set of actions involved in each of these activities in order to
investigate the characteristics of activities even further. An in-depth analysis of activities in relation to
their specific actions is a follow-up study needed. In addition, examining actual student activities in the
classroom in relation to those in the curriculum is an important study to conduct, since activities presented
in the written curriculum are only “envisioned” activities, not actual student activities.

References

Bloom, B. S. (1956). Taxonomy of educational objectives—Book 1: Cognitive domain. New York: Longman.
Bruner, J. S. (1960). The process of education. New York: Vintage.

Van Zoest, L. R,, Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.



Curriculum and Related Factors: Brief Research Reports 91

D’Ambrosio, U. (1987). New fundamentals of mathematics for schools. In T. A. Romberg & D. M. Stewart (Eds.),
The monitoring of school mathematics: Background papers. Vol. 1. The monitoring project and mathematics
curriculum (pp. 135-148). Madison: Wisconsin Center for Education Research.

Gronlund, N. E. (1978). Stating behavioral objectives for classroom instruction. New York: Macmillan.

Leont’ev, A. N. (1981). The problem of activity in psychology. In J. V. Wertsch (Ed.), The concept of activity in
Soviet psychology (pp. 37-71). Armonk, NY: Sharpe.

Li, Y. (2000). A comparison of problems that follow selected content presentations in American and Chinese
mathematics textbooks. Journal for Research in Mathematics Education, 31(2), 234-241.

Mullis, . V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 Inter national Mathematics
Report: Findings from IEA’s trends in international mathematics and science study at the fourth and eighth
grades. Boston: TIMSS & PIRLS International Study Center, Boston College.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA:
Author.

Piaget, J. (1975). The equilibration of cognitive structures (T. Brown & K. J. Thampy, Trans.). Chicago: The
University of Chicago Press.

Reed, A. J. S., & Bergemann, V. E. (2001). A guide to observation, participation, and reflection in the classroom.
New York: McGraw-Hill.

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Teaching
Mathematics in the Middle School, 3(5), 344-350.

Steffe, L. P. (2011). A theory bite on learning through mathematical activity. Cognition and Instruction, 29(2), 256—
263.

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and
reasoning: An analysis of mathematical tasks used in reform classroom. American Educational Research Journal,
33(2), 455-488.

Sternberg, R. J. (1996). What is mathematical thinking? In R. J. Sternberg, T. Ben-Zeev (Eds.), The nature of
mathematical thinking (pp. 303-318). Mahwah, NJ: Lawrence Erlbaum.

Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., & Serrano, A. (1999). The TIMSS videotape classroom study:
methods and findings form and exploratory research project on eight-grade mathematics instruction in Germany,
Japan, and the United Sates. NCES.

Van Zoest, L. R,, Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.



Curriculum and Related Factors: Brief Research Reports 92

EFFECT OF PROFESSIONAL DEVELOPMENT ON TEACHERS
IMPLEMENTATION OF A REFORM ORIENTED CURRICULUM

Erin E. Krupa
Montclair State University
krupae@mail.montclair.edu

Transitioning to reform mathematics curricula presents a difficult challenge for many teachers. Often
professional development istargeted to help teachers implement curricular materials and can include
many different components. This paper presents results from a quantitative study of teachers
implementation of an integrated mathematics curriculum based on their varying levels of participationin a
targeted professional devel opment. Results show that participation in workshops increased teachers
textbook implementation. Also, absent workshop participation, instructional coaches did not increase
teachers’ implementation. These results have important implications for the design of professional
development and for researchers conducting curricular evaluations and studies of teaching effectiveness.

Keywords: Curriculum; Professional Development; Curricular Implementation

Implementing reform mathematics curricula represents a challenging transition for many teachers
(Ziebarth, 2003), especially for those whose perceptions of mathematics education are grounded in
traditional views of teaching mathematics. Although many view the textbook as the most important
catalyst for changing what occurs in mathematics classrooms, the adoption of the curriculum alone will not
likely transform teachers’ instructional practices (Arbaugh, Lannin, Jones, & Park-Rogers, 2006; M. S.
Wilson & Lloyd, 2000). Teachers typically use the same instructional practices used by their teachers
(Ball, 1988; Tyack & Cuban, 1995), and in order for them to change their instructional practices to reform
instruction they need ongoing and sustainable support (Ball & Cohen, 1999; Loucks-Horsley, Love, Stiles,
Mundry, & Hewson, 2003; Putnam & Borko, 1997; S. M. Wilson & Berne, 1999). The NRC (2004)
contends teachers need adequate professional development (PD) before implementing new curricular
materials, continued support while implementing, and time for reflection during and after implementation
(p. 46). PD designed to assist teachers before, during, and after implementing reform curriculum has been
shown to be effective (Krupa & Confrey, 2010); however, teachers still face difficulties when
implementing curriculum for the first time (Krupa, 2011).

Objectives

While it is apparent that ongoing support can help teachers change their instructional practices, it is yet
to be determined how this type of support impacts implementation of curricular materials. The purpose of
this paper is to report quantitative findings on the impact different components of a PD model have on
teachers’ implementation of the reform mathematics textbook, Core-Plus Mathematics (Coxford et al.,
2001). This research is an important first step towards determining: the extent to which textbooks are used
for instruction and the significance different components of PD have on textbook implementation.
Specifically, the research question to be addressed is: Are there quantitative differencesin teachers
implementation of Core-Plus based on varying levels of participation in a specialized professional
devel opment?

Theoretical Per spectives

In its report about curricular effectiveness, the NRC (2004) noted the importance of documenting the
faithfulness of implementation and recommended researchers document the “implementation fidelity” of
the curricular materials. Implementation fidelity measures the extent to which textbook materials are used
for instruction, which is important for documenting the opportunity to learn students are given, but are not
indicative of the quality of teaching (McNaught, Tarr, & Grouws, 2008; National Research Council, 2004).

Van Zoest, L. R,, Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.



Curriculum and Related Factors: Brief Research Reports 93

The Comparing Options in Secondary Mathematics: Investigating Curriculum (COSMIC) research team
was designed to evaluate high school students’ mathematics learning from different curricular programs
(COSMIC, 2005). They have provided methodological approaches and instruments to document and
measure implementation fidelity. They have created indices for opportunity to learn (OTL), extent of
textbook implementation (ETT), and textbook content taught (TCT).

The COSMIC team measured the OTL, ETI, and TCT through Table of Contents Records (TOC-logs),
which were self reported by the teachers and customized for the textbook they were using (McNaught et
al., 2008). For each lesson of the textbook, teachers indicated if they taught the content (a) primarily from
the textbook, (b) primarily from the textbook with some supplementation, (c) primarily from an alternative
source, or (d) not at all. The OTL index measured the percentage of textbook content that was taught,
either solely from the textbook or through supplemental materials. The ETI index weighted the options in
the TOC-logs, giving the content taught primarily from the textbook the a weight of one, content with
some supplementation a weight of two-thirds, content mostly from alternative sources a weight one-third,
and content not taught a weight of zero. The weights were then summed and divided by the total number of
lessons contained in the textbook. This measured the degree to which the textbook was used directly to
teach the content. Similarly, the TCT index used the same weighted sum but divided by the total number of
lessons taught through any means. This is a measure of how the textbook was used to teach content in the
textbook and ignores the topics students were not taught. Each of these three indices was measured at the
course level.

M ethods
Context and Sample

The North Carolina Integrated Mathematics Project (NCIM) was developed to create and support a
community of teachers using the reform oriented Core-Plus integrated curriculum materials, particularly in
high needs schools. Spread throughout rural parts of the state, the seven partner schools in the NCIM
project were identified as low-performing based on North Carolina accountability measures. To prepare
teachers to implement Core-Plus, in order to strengthen STEM education at these schools, the project
directors and evaluation team designed four components for the NCIM PD: (1) a summer workshop
providing in-depth education on use of curricular materials (one or two weeks), (2) a web-based
environment supporting information exchange, (3) two face-to-face follow-up conferences, and
(4) instructional coaches who visited each site monthly. The context of the NCIM project, non-field test
sites and ones with a high percentage of minority students, supports research in areas that have not been
well researched. For more information about the PD components (see Krupa & Confrey, 2010, 2012).

The sample included groups of teachers with various NCIM PD experiences. Group A teachers
participated in all facets of the PD (n = 7), Group B teachers participated in the workshop only (n = 6),
Group D teachers were not involved in any aspect of the NCIM PD (n = 6), and Group F were classified as
NCIM project teachers but only had an instructional coach and were not part of the summer workshops
(n=2).

Data Sour ces and Analysis

Each teacher completed a TOC-log for each unique course they taught during the 2009—2010 year. The
OTL, TCT, and ETI indices were computed using the COSMIC approach (McNaught et al., 2008) for the
41 logs completed by this sample of teachers (ny= 17, ng=11, np= 8§, ng=15). Due to the sample sizes, to
determine quantitative differences in teachers’ implementation across PD exposure, an ANOVA for
unbalanced data was used, followed by Scheffe’s Test to determine differences among specific groups
(Hollander & Wolfe, 1999). The TCT measures were not normally distributed and the non-parametric
distribution free tests, Kruskal-Wallis and Dunn’s Test (Dunn, 1964) were used to determine differences in
TCT among groups.
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Results
Teacher Implementation | ndices Disaggr egated by NCIM Participation

Opportunity tolearn. The OTL index across all Core-Plusteachers indicates that on average just
over half of the content in the textbook was covered (52.30), though there was considerable variation
among teacher’s OTL indices (13.93), ranging from 27.69 to 81.71 (Table 1). Teachers who participated in
the project workshops have higher OTL indices than non-workshop participants. Scheffe’s post hoc test
found significant differences in the mean OTL between Groups B and F and Groups A and F (a0 = 0.05).
These data suggest the importance of workshop attendance on textbook implementation. The two teachers
who were provided with an instructional coach, absent workshop attendance, had significantly lower
textbook OTL.

Table 1: Mean (and Standard Deviations) of the Implementation Indices

OTL ETI TCT
Group A (All NCIM components) 56.19 (14.31) 51.21 (15.13) 90.65 (8.32)
Group B (Workshops only) 58.79 (9.90) 57.69 (8.44) 98.48 (3.83)
Group D (No NCIM exposure) 46.67 (9.74) 33.85 (14.90) 70.58 (17.99)
Group F (Coaches only) 33.80 (6.30) 26.18 (6.54) 77.98 (17.14)
Entire Sample 52.30 (13.93) 46.51 (16.73) 87.29 (14.94)

Extent of textbook implementation. Recall the ETI index is a weighted measure describing the
degree that the textbook, rather than other materials, was used to teach the content. There was a significant
difference in the mean ETI across teachers in all four groups (F = 10.31, p < 0.0001). Scheffe’s post hoc
analysis determined differences in Groups B and D, B and F, A and D, and A and F (a = 0.05). These data
indicated that participation in the workshop significantly increased teachers’ ETI indices. Teachers
involved in the NCIM PD supplemented the textbook less frequently and rarely used alternative sources.
Group D teachers used alternative sources more frequently than others groups.

Textbook content taught. Recall that the TCT index restricted the ETI to consider only the Core-Plus
content that was taught. The nonparametric Kruskal-Wallis test showed differences in location for the
groups (x*=17.02, p=0.0007). To determine which groups had significantly different TCT indices,
Dunn’s nonparametric post hoc test for multiple comparisons was utilized and showed differences in the
TCT indices for Groups B and D and Groups B and F (o = 0.05). When Group B teachers taught content in
the textbook, they were directly using the textbook for their instruction instead of supplements. Group D
teachers used alternative sources for instruction more frequently than teachers who took part facets of the
NCIM PD. Groups with teachers attending the summer workshops rarely used alternative sources for
instruction and utilized the textbook as the primary resource in their instruction.

Significance

The TOC-logs provided evidence of the variance in teachers’ implementation of textbook content
among teachers with varying levels of NCIM PD experience. It was clear that teachers who participated in
the NCIM summer workshops utilized the textbook for teaching content in the Core-Plus curriculum more
frequently than teachers who did not attend the workshops. Next steps in this research will be to report
qualitative findings from classroom observations and teacher interviews to understand how different
components of the PD model shaped teachers’ textbook implementation. As teachers navigate the
transition between different curricula and standards, it is imperative researchers understand how PD
offerings effect instruction so that high-quality, targeted PD can be designed and implemented to meet
teachers needs.
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EDUCATIVE SUPPORTSFOR TEACHERSIN MIDDLE SCHOOL
MATHEMATICSCURRICULUM MATERIALS

LorraineM. Males
University of Nebraska
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In this paper | describe opportunities for teacher learning present in four middle school curricular series
in the areas of introduction to variable and geometric transformations. | focus on one part of my analysis,
the description of the opportunities present for devel oping Subject Matter Knowledge, Pedagogical
Content Knowledge (for Topics and Practices), and Curricular Knowledge. My results indicated that
opportunities for teachers' development of Pedagogical Content Knowledge for Practices or Curricular
Knowledge were most prevalent, whereas Subject Matter Knowledge was the least prevalent. In particular,
opportunities lacked rationale guidance, or guidance that enables teachersto develop an understanding of
why particular mathematical or pedagogical approaches might be appropriate.

Keywords: Curriculum Analysis; Mathematical Knowledge for Teaching; Teacher Knowledge; Middle
School Education

There have been many efforts to reform mathematics teaching, but for pedagogical change to be
realized there is the need for substantial teacher learning (Remillard, 2000). Educative curriculum
materials, or materials for Grades K—12 that are “intended to promote teacher learning in addition to
students’ learning” (Davis & Krajcik, 2005, p. 3), are a potential source for opportunities for teacher
learning. Ball and Cohen (1996) advocated for such materials because curriculum materials are used on a
daily basis, affording them a “uniquely intimate connection to teaching” (p. 6).

Focus of Study

The focus of my study was to describe opportunities for teacher learning embedded in written middle
school mathematics curriculum materials. In particular, I examined the opportunities for teacher learning
by investigating the content of the teachers’ guides and how this content was expressed. In this paper, I
describe the results related to my analysis of the content.

Theoretical and Analytical Framework

The teacher plays an active role in designing and enacting the curriculum in their classroom.
Furthermore, the curriculum is a guide not only for students, but for teachers. Dewey (1902) argued that
“its primary indication, is for the teacher, not for the child. It says to the teacher: Such and such are the
capacities, the fulfillments, in truth and beauty and behavior, open to these children” (p. 39). Curriculum
materials continue to be guides for teachers and research indicates that teachers do learn from using
materials (see Males, 2011, for a detailed review). Although empirical work has rarely investigated the
features of written materials and how these features promote learning, research on teachers’ use of
materials and what and how they learn from using materials indicates that they may play a role in this
learning.

Towardsa Framework for Investigating the Content Supportsin Curriculum Materials

To analyze content supports I adapted a framework from Beyer, Delgado, Davis, and Krajcik (2009)
that allowed me to describe the types of knowledge and guidance available in the teachers’ guides. Due to
space limitations I do not include the entire coding scheme in this paper, but instead include the four
knowledge domains with some explanatory text in Figure 1.
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Figure 1. Four domains of knowledge

Knowledge. To develop expertise in teaching mathematics one must have many types of knowledge
and be able to integrate these in ways that help one productively promote students’ learning of
mathematics. In essence, teachers require a specialized type of knowledge of their discipline, knowledge
that allows them to teach, not just know their subject matter (Shulman, 1986). First, Subject Matter
Content Knowledge involves having an understanding of subject matter that goes beyond the “mere subject
matter major” (Shulman, 1986, p. 9). Teachers must be able to understand that something is so and also
why something is so. Second, Pedagogical Content Knowledge can be described as subject matter
knowledge for teaching. This includes knowing the most useful forms of representing content in ways that
allow for its comprehensibility by others, knowing when and how students may excel or struggle, and
knowing strategies for working with students’ ideas. Finally, Curricular Knowledge is knowledge about
the range of programs for the teaching of subject matter, the instructional materials available, and the
knowledge related to making decisions about the fruitfulness of using particular materials in particular
situations.

Guidance. Unlike materials that merely described what to teach, educative curricula go beyond this
and provide opportunities for teacher learning through two types of support: Enactment Guidance and
Rationale Guidance (Beyer et al., 2009). Enactment Guidance includes more than just knowing what to
teach, but also knowing how to teach it. For example, this might include a sample of a class discussion in
which the teacher asks specific questions to elicit students’ justification for their reasoning or to evaluate
the reasoning of their classmates. Such examples provide support for how teachers might pose questions in
related contexts to elicit similar student responses. Rationale Guidance enables teachers to know why
particular mathematical or pedagogical approaches might be appropriate. Supports such as this allow
teachers to make sense of their curriculum materials and develop what Drake and Sherin (2009) call
“curriculum vision,” or a sense of where the curriculum materials are going and an understanding of the
“particular kinds of learning and teaching practices described in the curriculum materials” (p. 324). An
example might include a discussion of why having students create multiple representations for a particular
situation is important by describing how the facility between representations will help students develop a
stronger concept of linearity.

M ethod

Sample and Procedures

I mindfully choose four series with large market share in the United States and varied design
principles. I included curriculum materials that are categorized as “Standards-based” (Senk & Thompson,
2003), and those that were not. I purposefully chose multiple curricular series within the Standards-based
category because we know little about the differences between curricula in the same category. I chose the
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Connected Mathematics Project 2 (CMP), Math Connects (Glencoe), Mathematics in Context (MiC), and
Transition Mathematics (UCSMP).

Since the structure and features were repeated throughout the texts I chose to analyze units related to
the introduction to variable and geometric transformations because these topics were addressed heavily in
standards documents and research indicates that these topics are typically problematic for students or
teachers (Clements, 2003; Kieran, 2007).

On each page of each unit I examined each sentence and assigned one or more content codes, if
applicable, and also coded the location of the content support (i.e., Unit, Section, Lesson). Sentences were
coded for multiple supports if it was warranted. I entered all codes into a spreadsheet for ease of
calculating frequencies and percentages across all units and curricula and used relative frequencies on
summaries sheets to explore themes. In addition, I had a second coder code a random sample of 10% of the
corpus, stratified by unit. Percent agreement was calculated at the sentence level and an agreement of at
least 85% was reached for each unit.

Results and Discussion
I present my clearest and most significant findings here. For more details, see Males (2011).
Types of Guidance

For all curricula and units, content supports more often provided Enactment Guidance. Rationale
Guidance, or guidance that helps supports teachers in developing a sense of why particular mathematical
or pedagogical approaches might be appropriate, accounted for no more than 6% of support in any unit.
CMP and Glencoe were consistent in their distribution across the two units. MiC and UCSMP included a
higher percentage of Rationale Guidance in their variable unit than in their transformations units, however
this difference was modest.

Knowledge Addressed

Figure 2 shows the percentages of support for the four types of knowledge for both the variable and
transformations units in each curriculum.
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Figure 2: Percentages of content supports by unit and curriculum

The most prevalent content supports in three out of four curricula addressed Pedagogical Content
Knowledge for Practices, accounting for over 37% of the support in CMP, Glencoe, and UCSMP. These
supports included those designed to help teachers engage students in mathematical practices such as
questioning, reasoning and proving, and using terminology. MiC, on the other hand, split its attention more
evenly between Curricular Knowledge and PCK for Practices or Topics. Supports included those related
to developing an understanding of the curricular features and storyline. Of the 31 individual content
supports in my framework, 15 were infrequent or unobserved across at least three of the curricular series.
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L ocation of Content Supports

Although most supports were located at the Lesson level, a substantial amount of support, particularly
for CMP and MiC, was located at the Unit or Section level, accounting for 28—53% of their support. These
results are important because the location of educative supports may impact whether teachers use them.
Schneider and Krajcik (2002) found that teachers learned from support located at the lesson level, rather
than support located in other sections of the textbook.

Opportunitiesand Implications

Although each curriculum provided access to some content supports, this access might not be
sufficient. Of the 31 content supports, 15 were infrequent or unobserved across at least three of the
curricular series and the supports that were present did not often provide Rationale Guidance. The lack of
this type of guidance may diminish the ways in which teachers engage with and learn from the support.
When curriculum authors discuss their rationale they open up a space in which teachers can engage with
them around the underlying principles on which the curriculum is designed and. Generally, this space was
not provided. In order for teachers to be able to learn from materials, authors need to speak to rather than
through teachers (Remillard, 2000). For this to be realized more attention is needed on content supports,
guidance, and where this is located.
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MEETING A NEW STANDARD: USING SAXON MATHEMATICSFOR GRADE 8
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As Common Core Sate Sandards are adopted, assessment in the United States will soon change as a
result, and school districts will turn to use textbooks that best align with these standards. This study
examines range of knowledge and depth of knowledge, outlined in Webb’s criteria for alignment (1997), to
compare Saxon’'s Course 3 textbook with the Common Core State Standards for seventh and eighth grades.
By analyzing the alignment between these sour ces, judgment can be made about whether the curriculum
set forth in Course 3 aligns with the mathematics students are now expected to know how to do in the
eighth grade. Results of alignment will inform teachersin seventh and eighth grades as they make
instructional decisions. Results show 31% alignment of Course 3 material with the eighth-grade
standards.

Keywords: Curriculum Analysis; Middle School Education; Policy Matters

I ntroduction

As states adopt the Common Core State Standards (CCSS), much attention has been focused on
comparing previous state documents to the new CCSS with regard to curriculum and assessment (Cobb &
Jackson, 2011; Porter, McMaken, Hwang, & Yang, 2011). Textbooks will become outdated with changes
to the CCSS, and studies that compare existing textbook curricula to the CCSS will help teachers and
school administrators in their transition to CCSS compliance. Kilpatrick (2011) acknowledges the critical
role of teachers in implementing curriculum changes by understanding the intended curriculum and better
implementing it in the classroom.

Through comparing Range of Knowledge (ROK)—the span of mathematical topics, and DOK—the
complexity of knowledge required to meet the objectives, included in Saxon’s Course 3 with outlined
objectives in the 7th and 8th grades CCSS (Common Core State Standards Initiative, 2010), we will
provide information regarding the presence of a coherent and challenging written curriculum for 8th grade.
In particular, the examination of older textbooks such as Course 3 gives a way of evaluating programs
from school districts that are unable to purchase new textbooks after CCSS implementation. Results will
provide information to teachers regarding usable curriculum for students in middle school mathematics.
With the eventual goal of studying student achievement data from CCSS assessments, these results can
form a basis for future work examining teacher instruction, the second important component in judging a
program’s effectiveness (NCTM, 1995; Tarr, Chavez, Reys, & Reys, 2006). The Saxon text was chosen
because of its unique lesson design and incremental sequencing (Hake, 2007).

This study will address the following research question:

How closely do the mathematical topics and depth of knowledge of the content in Saxon Math: Course
3 and in the Common Core State Standards for grades 7 and 8 align?

Theoretical Framework

The Webb model was designed to analyze the alignment of state assessments and content standards
and uses a combination of “qualitative expert judgments” and “quantified coding and analysis” of
standards and assessments (CCSSO, 2010). The model is extended in this study to analyze the alignment
between objectives in the CCSS and instructional content (as shown in the Saxon Course 3 textbook). By
utilizing Webb’s framework, this study will judge the alignment of ROK and DOK of the CCSS to
Saxon’s Course 3.
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Range of Knowledge

One way to judge alignment between standards and assessments (or in this case standards and
curriculum) is to examine whether both address a similar span of knowledge within content strands.
Webb’s ROK criterion is met if the full range of each major concept appears in both documents (Webb,
1997, 2007). This study matches textbook topics with CCSS objectives.

Depth of Knowledge

One factor to examine when judging alignment of standards, curriculum, and assessment is the
alignment according to complexity of knowledge. Webb’s framework gives a four-point hierarchy system.
The first, recall and reproduction, requires the learner to recall information (e.g., a fact, definition, term or
simple procedure). The second level, skills and concepts/basic reasoning, requires the learner to provide a
non-habitual response that requires some thinking. The third level, strategic thinking/complex reasoning,
involves higher-order thinking skills, reasoning, explaining, and using evidence. The fourth level, extended
thinking/reasoning, requires critical thinking, planning, reasoning, and explanation over a long period of
time, which must signify some higher-order thinking over the long period of time.

M ethod
Data Sour ces

The CCSS Initiative was coordinated by the National Governors Association Center for Best Practices
(NGA Center) and the Council of Chief State School Officers (CCSSO). These standards will provide
consistent and appropriate benchmarks for students nationwide and enhance global competitiveness (CCSS
Initiative, 2010a). Work is underway to develop assessments for field testing in 2013-2014 that are aligned
to these standards.

Saxon Math: Course 3 includes distributed instruction, practice, and assessments and contains 132
lessons that are not organized by chapters like traditional textbooks. This text is a part of the middle school
series of Saxon’s Courses 1-3, for students in sixth through eighth grades. The organizing principle in this
text is mathematical thinking, with skills, concepts, and problem solving all connected by consistent
mathematical language (Hake, 2007).

Procedures and I nstruments

Webb’s criteria were used to judge the alignment of ROK and DOK of those topics in Saxon’s Course
3 to that of the CCSS for grades 7 and 8.

To analyze ROK, two raters with middle school educational experience and extensive mathematics
knowledge matched mathematical topics as stated in lesson titles and subtitles with CCSS objectives. We
matched key words from CCSS objectives with the same key words in lesson titles and subtitles. Examples
of key words used include represent proportional relationships, compute unit rates, and area and
circumference of a circle. If no lessons aligned with an objective by key words alone, raters looked
through the instructional material and example problems in each lesson to find instances of alignment with
the objective.

For those lessons that matched a CCSS objective, DOK was analyzed. We first coded the CCSS
objectives in terms of the DOK levels as described in the previous section. Next, the level of instructional
content and examples in the textbook were coded according to DOK. Content in the textbook and in the
CCSS was analyzed using key words, verbs, and objects.

Thirty-eight CCSS objectives for grade 7 and 32 CCSS objectives for grade 8 were transferred to a
spreadsheet for analysis. There are 132 lessons in the Course 3 textbook including investigations
(application or exploration activities). All lessons that matched with an objective for either grade 7 or 8
were recorded, as well as the DOK level of each objective and each lesson corresponding to the objective.
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Results

Raters had perfect agreement for number of lessons matching CCSS in grade 8 and differed slightly
for three strands in grade 7 (Ratio/Proportion and Number Systems differed by 2 lessons, and
Expressions/Equations differed by 4 lessons). The discrepancies resulted from disagreement about
standards for rational numbers. Raters disagreed about lessons using whole numbers or integers as a match
to standards referring to rational numbers. All results were based from the matches agreed upon by both
raters. Results of alignment showed 41 of 132 lessons matching the CCSS standards for grade 8 and 51
matching the standards for grade 7 (see Figures 1 and 2). Looking closer at the CCSS objectives for each
grade, it was found that 5 of 32 eighth-grade CCSS objectives (in Geometry, Functions, and
Expressions/Equations) failed to match with any Course 3 lesson. For seventh grade, 2 of 38 CCSS
objectives (both in Geometry) failed to match. Combined, 7 of 70 total CCSS objectives failed to match
with the textbook, which still shows acceptable alignment with regard to ROK according to Webb’s
criterion (Webb, 1997).

B 7th Grade

# 8th Grade

R&P N E&E F G S&P

Figure 1: Number of aligned lessonsfor grades7 and 8

7th Grade 8th Grade
0,
7% M The Number
M The System
Numbe .
B Expressions
System & Equations
I Functions

Figure 2. Proportion of aligned lessonsin each domain for grades 7 and 8

An examination of DOK shows that over half of lessons were matched at the appropriate DOK level
given by the CCSS objectives as Webb’s criterion requires at least 50% of matches to be at or above the
DOK level given by each standard (Webb, 1997). For example, if a CCSS standard is coded as level 2, the
corresponding lesson objective must be coded as level 2 or above. Thirty-one of 38 seventh-grade CCSS
objectives, and 22 of 32 eighth-grade objectives were found to be in alignment for both ROK and DOK.
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To provide a completely CCSS-aligned, challenging written curriculum, teachers need to supplement
from other sources to address these objectives. Other Saxon textbooks, such as Algebra 1 and Geometry,
contain lessons that provide a match to these CCSS objectives.

Discussion

As the CCSS become an important source for a consistent national framework for grades K—12
curriculum, assessment will be aligned to the standards. Future studies regarding instructional curriculum
will be needed to ensure alignment between expectations, curriculum, and assessment, and these studies
will provide assurance of equity among students nationwide.

This study provides a comparison of Saxon Math: Course 3 to the CCSS for grades 7 and 8 in terms of
ROK and DOK. Results of this study are important for school officials who make program decisions
regarding curriculum and for teachers who must implement the school-provided textbook. Furthermore,
results of this study provide important background for alignment studies of enacted curricula and of
assessment relating to the CCSS, which will ultimately give ways to examine middle school achievement.

This study revealed a 69% match of DOK levels to the eighth-grade CCSS objectives, but future study
is needed to examine teacher instruction and use of the textbook in the classroom. The matches between
lessons and CCSS objectives may be much different than study of enacted curriculum. An alignment study
between enacted curricula and CCSS objectives could provide more information about how learning is
aligned to these objectives.
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INTENTIONALLY INTEGRATING STEM: A PROPOSED FRAMEWORK
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The goals of this study were to articulate a framework for the development of integrated STEM projects for
middle school students in which mathematics is meaningfully represented. Analysis of teachers’ mappings
of processes central to each of the STEM fields was used to devel op the proposed Integrated STEM
Process Framework. Here we present the framework and provide an example of a project that was
designed through its use.

Keywords: Informal Education; Modeling; Problem Solving

Introduction

STEM has become a very loaded buzzword in education, especially as it relates to policy and as a
result of that, funding. STEM stands for science, technology, engineering, mathematics and is interpreted
by some as an “and” statement and others as an “or” statement (i.e., the former pointing to the integration
of the disciplines and the later to the disciplines as independent, but important). NCTM president Michael
Shaughnessy’s recent editorial (February 2, 2012) noted both the strength of STEM and the problem with
STEM. Its strength being an advocacy for investing resources in these disciplines to remain “globally
competitive and scientifically and technologically innovative” which is critically important for the field of
mathematics education. Yet at the same time he notes that because of this advocacy position STEM has
taken on a “generalist” meaning (e.g., STEM programs, STEM schools, and STEM curricula) in which
mathematics often takes a back seat and there is real concern of important mathematics content being lost.
This is very troublesome when you consider the role that mathematics plays in all scientific, technological
and engineering fields.

STEM-based understandings and experiences that prepare learners beyond the classroom are of
imminent need, as today’s STEM students are tomorrow’s leaders in science, technology, engineering,
mathematics and education (Prabhu, 2009). National standards for mathematics, science and technology
education all highlight the importance of preparing students for college and careers through the integration
of science, technology, engineering and mathematics concepts. The Principals and Standards for School
Mathematics (NCTM, 2000) noted, “The need to understand and be able to use mathematics in everyday
life and in the work place has never been greater” (p. 4), emphasizing the importance of students being
able to recognize and apply mathematics to science and engineering. This has been emphasized more
recently in the Common Core State Standards for Mathematics (CCSSI, 2010) through the articulation of
mathematical practice standards that state, “students can apply the mathematics they know to solve
problems arising in everyday life, society, and the workplace” (p. 7). Such calls point to the importance of
integrative STEM experiences for all students; however, as noted by Shaughnessy, this cannot be done at
the expense of important mathematics content.

Integrative STEM education signifies the intentional integration of science and mathematics with the
processes, content and procedure of technology and engineering education (Sanders & Wells 2010).
Though there is an obvious need for opportunities for students to participate in integrative STEM
experiences, designing such experiences for classroom use is not easy. Last year a STEM project team
brought together prospective science, mathematics, and technology teachers to design a purposefully
integrated STEM project for middle school students. The term “purposefully” is used because of the
central intent aimed at assuring that each discipline was incorporated to into the project in a meaningful
way. For example, the aim was not for the effort to turn into a science project in which students used
minimal mathematics. Nor was the intention for the project to become a “real world” math problem simply
using a superficial science setting. What was needed was a framework that would provide both structure
and a common language to guide the work. In this article, a framework for the development of
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purposefully integrated STEM projects is proposed. The framework includes guidelines for identifying a
context and the actual design of the project. Finally, we conclude with an example of a purposefully
integrated STEM project that was designed using this framework and suggestions for future work.

Proposed Integrated STEM Framework
Science, Technology, Engineering and M athematics Processes

At the outset of our project there was an understanding that in order to design a project for students
that was truly integrated the teacher team would have to work collaboratively to understand the content
and common pedagogical practices of each discipline. The science teachers were pushing for the students
to be expected to use the scientific method. The technology/engineering teachers were thinking in terms of
engineering design principals (NASA, 2010). Finally, the mathematics teachers wanted to make sure that
mathematical concepts were not relegated to just being a “tool” within STEM work, but that students were
engaged in meaningful mathematical processes such as modeling. The search began for this common
language by comparing and contrasting existing processes. Immediately, the cyclical nature of each
process became evident and the team began to map them to one another.

The mapping was promising, so the next step was to meet with a group of approximately 30 middle
school science, technology/engineering, and mathematics teachers at a statewide conference (many of
whom taught at STEM schools). The idea of finding a common language that would capture the processes
of each of the STEM disciplines was presented. The participants were provided a copy of NASA’s
engineering design process (the process with which we knew they were least familiar). Then they were
asked to identify how the processes of scientific inquiry and a models and modeling prospective of
mathematical problem solving (Lesh & Doerr, 2003) related to the engineering design process. Finally,
they noted phrases that captured the intent of each phase.

Social Relevance as a Context

One of the first choices that must be made when designing an integrated STEM project is the context
in which it will be set. STEM oriented connections that engage

learners based on interest and direct relevance form effective Socialy Relevant Context e
educational efforts (Tate et al., 2007). As such, while the context reoiant )

needs to be related to content standards it should also have social /W\
relevance. This can be achieved through the investigation of real P N

/ Reflecton

e | hypothesis or \

problems facing practitioners and researchers in STEM fields. It is
recommended that teams of STEM teachers partner with local
experts (e.g., informal educators, businesses, researchers) to
identify contexts that are both personally and socially relevant to
students to design a STEM project within. These emphases on 4 JAR
context along with the mappings above were used to inform the M
development of what we refer to as the Integrated STEM Process

Framework (Figure 1).

STEM
Processes

Figure 1: Integrated STEM process model
Proposed I ntegrated STEM Process Framewor k

We propose that the Integrated STEM Processes provide a framework for thinking about the
development of purposefully integrated STEM projects. Notice that the processes are situated within a
socially relevant context. The processes are represented as cyclical, consistent with mathematical
modeling/problem solving processes, the scientific method, and engineering design processes. Language
that was common among all three existing processes was used, while attempting to reduce the processes to
a concise quantity of steps that still captured the essence of each. The intent is that teachers use this
framework to inform project designs. In doing so, the goal is that projects should be designed such that
students have opportunities to move through this cycle at least once within the context of each of the
STEM disciplines. This will ensure that each of science, technology/engineering, and mathematics is being
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incorporated in a thoughtful and meaningful manner. An example of an integrated STEM project designed
for middle school students utilizing this framework follows.

An Example: Inquiry on the Neuse River

A team of five prospective science, technology/engineering, and mathematics teachers chose the
context of estuarine ecology for this project since it is a component of the state standard course of study for
middle school science and recent research that shows that there is a need to be concerned about the effect
of estuarine ecology on our nation’s drinking water and fish supply. In addition, this was a particularly
relevant context for local middle school students given the project team’s proximity to an estuary. As such,
a partnership was formed with the NCSU Center for Applied Aquatics Ecology (CAAE) in order to offer
the project team and prospective teachers CAAE researcher expertise as support in this endeavor.

The prospective teachers began by meeting with the CAAE researchers to discuss their work in a local
estuary. During this conversation the researchers noted the problems they had with their very expensive
instrumentation, notably keeping the instruments free from the attachment of harmful barnacles. The
barnacle issue ended up being the impetus for the design of their integrated STEM project—to design a
way for the scientists at the CAAE to protect their instrumentation, used for water sampling, from
destructive barnacles. The project was piloted with a small group of students in an out of school setting.

The project was designed to be integrative but with particular goals set within each discipline. Within
the context of science, students would learn about estuaries and barnacles. For example, since barnacles
live in salt water it is important that students understand that the salinity in an estuary can vary
dramatically, depending on depth and the direction of wind currents as well as water temperature. Most
importantly, they would then take what they have learned and design an experiment to determine whether
or not a protective covering is effective. Within the context of technology/engineering, students would
design and construct a protective covering for the water-sampling instrument. Finally, with respect to
mathematics students would naturally be drawing on their knowledge of measurement and data analysis
when designing and constructing their protective coverings and when designing and carrying out their
scientific investigation. At this point in the design process all of the STEM disciplines were represented in
the project. When the teachers compared the project to the proposed framework they felt as if mathematics
was used as a tool within the design of the protective covering and the scientific experiment. However,
they did not feel as if students would have gone through the STEM framework cycle with mathematics. To
rectify this the students were also asked to compare the effectiveness of each of the protective coverings,
which required them to also draw on their understanding of area (including composition of area), surface
area and percents. The prospective mathematics teachers piloted this project with a small group of students
in two half-day meetings outside of school.

Reflections and Future Work

Our goal at the outset of this project was to delineate a framework to help teams of teachers from
STEM fields find a common language and goal for designing integrated STEM projects. Again, for us that
meant a project in which all four STEM disciplines are at the forefront. While this was a preliminary
investigation, we feel confident that the framework we have proposed will be helpful for teams of teachers
attempting to do this kind of work. Teachers were instrumental in the development of this framework. The
project team received overwhelmingly positive feedback from the STEM teachers that participated in the
framework workshop that suggested that they were themselves in search of a framework to guide their
project development. Furthermore, teachers from each of the disciplines saw their project goals illustrated
in the framework. Even so, the mathematics incorporated into the project was somewhat “forced.” By that
we mean, analysis of the data collected during the experiment was the most obvious mathematics to
include, but in order to be sure that mathematics was represented as a process and not solely a tool the
teachers added additional prompts to compare the effectiveness of the designs. Further work needs to be
done to see if this framework does in fact help to guide teachers toward more meaningful incorporation of
mathematical concepts through the models and modeling perspective of problem solving incorporated with
the other STEM processes.
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The example provided was designed and piloted by a group of preservice teachers in an out of school
setting. It is unclear how such a project would—or even could—fit within a school setting. Future research
should focus on how integrated STEM projects, that seem to more naturally fit in informal settings (where
the disciplines are not split into classes), might be incorporated into schools without losing important
mathematics instructional time. While some have expressed understandable concern about the
generalization of STEM, we propose that through the use of the Integrated STEM Process framework,
integrated STEM projects can be designed in such a way that important mathematical concepts are
addressed meaningfully.
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We present preliminary results from our analysis of multiplication and division tasks included in the
teachers' manuals of the Nelson curriculum series. Our analysis of tasks from 14 manuals for grades 1
through 6 focused on (a) the relative proportion of tasks that require problem solving, (b) the waysin
which the tasks were presented, (c) the relative frequency of Partitive and Measurement division problems,
and (d) the relative frequency of different multiplication and division problem types (Carpenter et al.,
1999). The results demonstrated an emphasis on the devel opment of students' conceptual understanding of
the operations in the context of word problems. In addition, we observed a greater emphasis on

under standing multiplication as repeated addition, suggesting that opportunities to develop multiplicative
under standing may be limited. We conclude with additional analyses we are currently conducting.

Keywords: Curriculum Analysis; Elementary School Education; Problem Solving

According to Doyle (1983), “Tasks influence learners by directing their attention to particular aspects
of content and by specifying ways of processing information” (p. 161). The potential, however, for
mathematical tasks to positively impact students’ level of mathematical understanding largely depends on
the quality of the task itself (Osana et al., 2006). Given the important role of mathematical tasks in student
learning, the types of tasks presented in elementary curricula warrants attention. Accordingly, the primary
goal of the present study was to analyze an elementary curriculum series used extensively in Canada
(Nelson Mathematics; Kestell & Small, 2004) with a specific focus on multiplication and division. More
precisely, we focused our analysis on the context and content (i.e., the problem type) of multiplication and
division activities as outlined in the teachers’ manuals of the curriculum series.

Theoretical Framework and Objectives

Our decision to focus on these two features of mathematical tasks is supported by the literature on
making mathematics “problematic” (Hiebert et al., 1996) and the developmental research on multiplication
and division (e.g., Carpenter et al., 1993). Research has shown that tasks situated in a problem solving
context' promote a more meaningful understanding of mathematics content because it involves applying
knowledge versus simply acquiring it (Hiebert et al., 1996). Thus, it is important to consider the contexts
that are used with students to introduce and explore concepts of multiplication and division.

In addition to the task context, the task content, or problem type, should align with students’
mathematical development. Multiplication, for instance, is often introduced to children using an additive
model in which it is conceptualized as repeated addition. Park and Nunes (2001), however, demonstrated
that children’s concept of multiplication originates in a schema of correspondences, not addition; therefore,
Park and Nunes conclude that instruction should emphasize multiplicative reasoning rather than repeated
addition. To develop an understanding of division, it is important to address two models of division:
partitive and measurement. Indeed, although children’s initial understanding of division is rooted in the
action of sharing (Correa et al., 1998) an understanding of the concept of division also involves
understanding the relationships between the dividend, divisor, and quotient (Correa et al., 1998).
Developing this relational view requires a multifaceted view of division, which includes conceptualizing it
as the inverse of multiplication (Greer, 1992).

This paper presents preliminary results from our analysis of multiplication and division as it is treated
in the Nelson curriculum. Our first objective was to examine the contexts in which these two operations
are used. More specifically, we examined the relative proportion of tasks in the Nelson series that require
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problem solving, as well as the ways in which the tasks were presented (i.e., word problems, equations).
The next two objectives addressed task content: (a) to examine the relative frequency of both models of
division (Partitive and Measurement), and (b) to examine the relative frequency of different multiplication
and division problem types (Carpenter et al., 1999). We are currently analyzing the data to describe the
ways in which frequency patterns change over the grade levels, the results of which will not be reported
here.

The teachers’ manuals that accompany the curriculum contain highly scripted descriptions of
classroom lessons and activities. Thus, while the manuals clearly describe the intended mathematics
curriculum, they also give some indication of what teachers are actually doing in their classrooms.
Accordingly, our results paint a picture of the types of activities experienced by a large number of
Canadian children in the area of multiplication and division, which can serve to provide an important
context for examining their mathematical performance locally and internationally.

M ethod
The Nelson M athematics Series

The Nelson Mathematics (NM) series is K—8 mathematics curriculum that is in use in the provinces of
Ontario and in several English language school boards in Québec. The NM series was designed for use in
the context of major curricular reforms in both provinces (e.g., Quebec Education Program; 2005). With
respect to mathematics, the core of these reform initiatives corresponds to key principles in the NCTM
(2000), such as problem solving and communication. The teacher’s manual, called the Teacher’'s
Resource, includes 14 color chapter booklets with accompanying resource materials for teachers’ use in
the classroom.

Coding and Analysis

Data sources. To examine the presentation of multiplication and division in the NM series, we
analyzed all the printed material in the Teacher’s Resource manuals at each grade level 1 through 6. We
coded 14 manuals at each grade level (one manual for each chapter in the student text), for a total of 84
manuals. Each manual is further divided into lessons. For each lesson, the teacher is provided with
information about the lesson’s goals and required materials for implementing it, and is also provided with
scripts and activities on how to introduce the concepts related to the lesson, problems for students to work
on in class, and assignments to foster reflection on what was learned.

Task selection. Each lesson consisted of a series of tasks. We defined “task™ as any activity assigned
by the teacher to the students. Our first round of coding involved classifying the tasks as Multiplication,
Division, or Other. Only Multiplication and Division tasks were included in the analysis. Multiplication
tasks included those in which (a) the multiplication symbol was used, (b) the student was specifically told
to use multiplication, or (c¢) the structure implied multiplication in a word problem context. A similar
classification was used for division tasks.

Coding rubric. All Multiplication and Division tasks were then further classified as Problem Solving
(PS) and Non-Problem Solving (NPS). A PS task involved solving for an unknown quantity. This included
word problems such as, “Each basket has 5 apples. There are 6 baskets, how many apples are there
altogether?” An NPS task is one where there is no unknown to find. In general, the goal of these tasks is to
model a mathematical relationship (e.g., use these blocks to show the different ways you can represent
3x2=06).

PS tasks were further subdivided into those that situate models of multiplication and divisions in word
problem contexts. In these tasks, the operation is not specified, so the student needs to rely on his or her
conceptual understanding of the problem structure to solve it. We called these tasks PS-Not Specified (or
PS-NS). There were also PS tasks that were coded as Specified (PS-S), and these were tasks in which the
operation was either specified symbolically (i.e., calculate: 7 X 3, 48 +6) or in the context of a word
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problem (e.g., “0.3 of the 400 students in the school are going to Montreal. Multiply to find how many
students are going on the trip.”)

The PS-NS tasks were further classified according to problem type (i.e., Grouping/Partitioning, Rate,
Price, and Multiplicative Comparison; see Carpenter et al., 1999). Grouping/Partitioning problems
describe scenarios that involve collections of discrete objects that are grouped or partitioned into equal
parts. An example of a Partitive Division Grouping/Partitioning problem is, “Robert has 15 stamps that he
would like to give to 3 of his friends. He would like to give each friend the same number of stamps. How
many stamps does each friend get?” In contrast, the other problem types (Rate and Price problems) often
involve continuous quantities, such as those related to distance and weight. Rate problems, for instance,
describe one quantity in relationship to another (e.g., 3 miles per hour), and often the quantities used are
continuous. Multiplicative Comparison problems are unique in that a relationship of two quantities is
described. That is, the size of one of the quantities (i.e., the referee) is based on how many times bigger or
smaller it is compared to another quantity (i.e., the referent).

Results
Context of Multiplication and Division Tasks

Multiplication and division tasks only began to appear in the second grade. In addition, the use of
Problem Solving (PS) tasks increased steadily between grades 2 and 6. The ratio of PS tasks to Non-
Problem Solving (NPS) tasks started at 1.24 in grade 2 and ended at 2.9 in grade 6. A further analysis
indicated that all the PS tasks at the second-grade level were of the PS-NS variety, meaning that all the
activities on multiplication and division in grade 2 were couched in word problem contexts. We also found
that although the frequency of PS-S problems increased with grade level, the frequency of PS-NS
problems was always greater, suggesting that there is an emphasis on the development of students’
conceptual understanding of the operations in the context of word problems across all grade levels.

Content of Tasks: Problem Types

To analyze task content, we further coded (1) the PS tasks involving division according to the model
represented (Partitive or Measurement), and (2) all the PS tasks according to problem type. We found that
the frequency of Measurement Division problems compared to Partitive Division problems differed across
grade levels. In particular, 66.7% of the division problems in Grades 2 and 5 were Partitive; in the other
grades, this percentage was lower (48.15% in third grade; 41.67% in fourth grade; and 43.48% in sixth
grade).

In general, the frequencies of problem types other than Grouping/Partitioning were relatively low.
More specifically, for each grade level, the Grouping/Partitioning problems were the most frequent and
Multiplicative Comparison problems were the least frequent. The frequency of Grouping/Partitioning
problems was proportionally highest in Grade 2 and Grade 3, representing 86% and 81%, respectively, of
the total number of tasks at each level. The high frequency of Grouping/Partitioning problems continues in
Grade 4, 5, and 6, accounting for 64%, 72%, and 61%, respectively, of the total. The frequency of Rate
and Price problems did increase as the grade level increased. The frequency of the Multiplicative
Comparison problems, on the other hand, declined after Grade 4 and did not appear at all in Grades 2 and
3.

Conclusion

The results addressing the relative proportion of problem-solving tasks and their presentation suggest
that the NM series introduces multiplication and division with a focus on conceptual understanding. As
students experience with multiplication and division progresses, the frequency of modeling tasks decrease
to promote more experience with problem solving. While the high frequency of problem-solving tasks
suggests that the NM series engages students in reform-orientated mathematical reasoning and facilitates
conceptual understanding, the results from the task content analysis demonstrate that the task context
results are somewhat misleading. Indeed, the paucity of multiplicative comparison, rate, and price
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problems, compared to grouping/partitioning problems, demonstrates an emphasis on understanding
multiplication as repeated addition. From a developmental perspective, these results suggest the orientation
in the NM series toward repeated addition may hinder the development of children’s multiplicative
reasoning (Park & Nunes, 2001). Currently, we are conducting further analyses to determine whether there
is a significant difference in the frequency of Partitive Division and Measurement Division problems and
examining changes in these frequencies over the grade levels.

Endnote

" Our conceptualization of “problem solving” involves engaging students in the process of determining
an unknown quantity. While a more traditional definition associates problem solving with tasks that do not
provide an obvious solution method (Hiebert et al., 1996), our definition was broader and even included
tasks where the solution method was made explicit.
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CONVINCE ME: AN INVESTIGATION OF ARGUMENTATION IN
A MATHEMATICS COURSE FOR IN-SERVICE TEACHERS

Lisa Rice
University of Wyoming
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This study investigates the forms of argumentation a mathematics professor intends for in-service teachers
to learn and the forms addressed in the course. The teachers are enrolled in a graduate level mathematics
course intended for practicing teachers. Additionally, teacher’s perceptions of mathematical
argumentation and the forms they employ in course activities will be explored. Both case study and
grounded theory approaches will be used to guide the data collection and analysis. Interviews with the
professor and teachers will be conducted, along with observations of the mathematics course and of
teachers’ classrooms.

Keywords: Mathematics; Argumentation; Proof; Teacher Education—Inservice/Professional Development

Introduction and Literature Review

Mathematical argumentation is part of curriculums, for example in the teaching of two-column proofs
in geometry. Proof, as Hanna (2000) claims is “prominent” in curriculum, but it is not the only form of
argumentation in mathematics. Researchers Pedemonte and Reid (2011) claim that further research is
needed in the area of abduction, which can be thought of the process of developing a certain form of
argument. Models developed in other disciplines, such as Toulmin’s model of argumentation, have been
used by researchers to study argumentation (e.g., Giannakoulias, Mastorides, Potari, & Zachariades, 2010;
Krummbheuer, 2007; Pedemont & Reid, 2011). Both proof and argumentation are explicitly addressed in
the NCTM Reasoning and Proof Process Standard (2000). Not only that, but they acknowledge in their
recommendations that there are multiple forms of argumentation. The NCTM states that students should
have the ability to:

» recognize reasoning and proof as fundamental aspects of mathematics;
* make and investigate mathematical conjectures;

» develop and evaluate mathematical arguments and proofs;

» select and use various types of reasoning and methods of proof.

For teachers, the ability to develop well-formed mathematical arguments is important for a few
reasons. First, it supports curriculum and mathematics standards; teachers are expected to teach and ask
students to engage in mathematical argumentation. They must respond to students’ mathematical claims or
explanations. Walshaw and Anthony (2008) claim, “effective pedagogy is inclusive and demands careful
attention to students’ articulation of ideas” (p. 527). Thus, teachers’ experiences in mathematical
argumentation are an important part of pedagogy. Further, Krummbheuer (2007) who assumes that student
mathematical learning is predicated on engagement in argumentation practices considers mathematical
argumentation as an everyday activity in the mathematics classroom. Kennedy (2009) discusses the
importance of mathematical argumentations stating “The ideal mathematical inquiry proceeds through a
form of argumentation...” (p. 73). If teachers are not familiar with developing and evaluating
mathematical arguments for themselves, it is unlikely they would feel comfortable asking their students to
do so and assessing students based on their arguments. Additionally, considering Kennedy’s remarks,
deficiency in knowledge of mathematical argumentation could hinder efforts to incorporate inquiry
practices in the classroom. Mathematical argumentation of teachers is an indicator of their mathematical
content knowledge. Developing a valid mathematical argument, such as a proof, can show one can connect
mathematical ideas together to verify, discover, explain, and achieve other purposes as listed by Hanna
(2000).
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Lastly, mathematical arguing is a way for teachers to “do” mathematics. Teacher education programs
around the country vary in their structure, but in general programs have modest requirements regarding
proof-based mathematics courses or courses which might have a variety of argumentation types, yet
mathematical argumentation is a teaching expectation. Giannakoulisa, Mastorides, Potari, and Zachariades
(2010) advise that refutation is a form of argumentation that needs greater emphasis in teacher education.

The focus of the research is to study the mathematical argumentation of a professor and in-service
teachers enrolled in a master’s program. The research pursued here is motivated by the following research
questions: What forms and in what ways does the professor intend for teachers to learn mathematical
argumentation? What are teachers’ perceptions of mathematical argumentation in the course and what
forms do they use? How do in-service teachers employ mathematical argumentation in their instruction?

M ethodology

The research study’s subjects will include one professor from the mathematics department at a
university in the Rocky Mountain region and in-service middle and high school mathematics teachers
enrolled in a master’s program designed for practicing teachers. The professor is the instructor of an
algebra course offered in the program, which the in-service teachers (henceforth called students) are
enrolled for Spring 2012. This is the second time this professor has taught the course in the program. The
format of the course is online and all course meetings are offered through the synchronous software
package called Elluminate. This course was chosen for several reasons. First, it is an advanced level
mathematics course and so forms of argumentation such as proof and counterexamples are likely to be
encountered. Second, the researcher’s previous experience working with the program has helped to gain a
sense there exists a wide range of mathematical backgrounds and varying degrees of experiences with
forms of mathematical argumentation. Thus, this might provide more opportunities to see the variety of
ways students argue in a course they take. Third, the instructor of the course expressed enthusiasm at the
prospect of conducting this research study in his course.

Data will consist of field notes from observing course meetings, which are audio and video recorded
with Elluminate software, the recordings, interviews with the professor and selected students, written work
collected from students, and observations of classroom visits to see the students teach in their own
classrooms. Interviews throughout the semester with the course instructor will be based on observations of
the course and written work produced by in-service teachers. Questions posed during interviews with the
professor will seek to draw out information regarding ways the instructor plans to address argumentation,
how he intends to engage students in argumentation, and forms of argumentation he perceives students
employing. Potential students for interviews will be chosen based on the forms of argumentation they may
have employed, questioned, or in the way in which they responded to a given mathematical argument.
Interviews with students will be focused on their perceptions of mathematical arguments, forms they have
used in the course, and exploring why they chose to argue a certain way.

Both techniques from grounded theory and case study approaches will be employed. Because a small
number of students are expected to be selected (possibly two or three) to participate in interviews and
observations of their teaching practice, this satisfies one of Merriam’s criteria that case study is an
appropriate approach when the phenomenon is “intrinsically bounded” (2009, p. 41). The professor and
each student will be considered as separate cases. The interactions between the professor and students will
provide valuable data concerning the teaching, use, and development of mathematical arguments. As
asserted by Grbich (2007), in such cases when “interactions between persons or among individuals and
specific environments” is under investigation, grounded theory is a suitable approach (p. 70). Also,
because little is known how teachers develop arguments in mathematics, it is another reason why grounded
theory is an appropriate approach (Grbich, 2007). While Toulmin’s model of argumentation has been used
by numerous researchers (e.g., Giannakoulias, Mastorides, Potari, & Zachariades, 2010; Krummbheuer,
2007; Pedemont & Reid, 2011), it seems better suited to analyzing single episodes or instances of
argumentation than to analyze the process of constructing and argument and documenting someone’s
forms of argumentation over a period of time to see if any changes occur.
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Data collection began in the spring semester of 2012 and will continue through May 2012 and so I will
continue to collect data after submission of the proposal. Observations of the course meetings and opinions
from the professor will be taken into account for inviting particular students to participate in interviews
and classroom observations. Open and in-vivo coding will be conducted for initial coding stages of the
interview data of the professor and students, which will be partially or fully transcribed, depending on
what is determined to be pertinent to the study. As Merriam (2009) states, “triangulation remains a
principle strategy to ensure for validity and reliability” and so this is one strategy I will employ in
analyzing data (p. 216). Also, member checks, and efforts to establish researcher reflexivity (e.g., Cho &
Trent, 2006; Merriam, 2009) will be used.

Preliminary Findings and Discussion

My data set will consist of what I have gathered at this time and data I will continue to collect
throughout the semester. Data I currently have consists of field notes of course observations and links to
recorded class sessions. Preliminary analysis of observations indicates there is a variety of ways the
professor engages students in argumentation practices. Also, students appear to be diverse with respect to
arguing mathematically, providing arguments of various forms, from giving an example to respond to the
professor’s prompt for an argument to citing a theorem.

One of the goals of this research is to develop a scheme for examining argumentation in mathematics.
Ideas or elements from Toulmin may be used in the formation of this scheme, as it is a well-established
tool for analyzing mathematical arguments. Based on what I observe happening in the course I may use the
data to modify Toulmin’s model of argumentation so that it helps follow a person’s use of argumentation
over time. By developing a scheme for analyzing mathematical argumentation it is hoped that a better
understanding of how teachers develop mathematical arguments and of forms they is achieved.
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REASONING-AND-PROVING TASKSIN A GEOMETRY AND MEASUREMENT
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Although elementary teachers are expected to engage their students in the process of reasoning-and-
proving in everyday mathematics learning, many prospective teachers have had limited experiences with
this process. College mathematics courses for prospective teachers and the mathematics textbooks chosen
for these courses can play an important role in prospective teachers' opportunities to learn about
reasoning-and-proving as undergraduate students. In this article, we examine the opportunitiesin a
geometry and measurement textbook for prospective teachers to engage in reasoning-and-proving. The
findings have implications for how instructors might choose to implement a textbook in ways that support
the development of rich conceptions of reasoning-and-proving with prospective teachers.

Keywords: Reasoning and Proof; Curriculum Analysis; Teacher Education—Preservice

I ntroduction

Reasoning-and-proving (RP) is fundamental to the work of doing authentic mathematics, both in
mathematics and classroom. Descriptions of mathematicians’ practice and K-12 standards documents alike
note that the proving process involves exploration of patterns, which can lead to the generation of
conjectures, and can then be tested and revised or proven informally or formally (Lakatos, 1976; NCTM,
2009). The hyphenated term reasoning-and-proving (Stylianides, 2008) denotes the range of activities
including investigating patterns, formulating conjectures, generating arguments, evaluating others’
arguments, and communicating mathematical knowledge, which are “frequently involved in the process of
making sense of and establishing mathematical knowledge” (Stylianides, 2009, p. 259).

Proof in K—12 classrooms is often restricted to verifying given statements using a two-column format
(Herbst, 2002). This emphasis represents only one aspect of the RP processes, and contributes to the
pervasive difficulties and limited views of proof held by K—12 students and their teachers (Balacheff,
1988; Martin & Harel, 1989). The full range of RP processes can be accessible at the elementary level, and
as such, elementary teachers should be equipped to teach RP in meaningful ways. It is crucial, therefore, to
help transition prospective teachers of elementary grades (PTEs) from conceptions of proof as empirical
arguments, towards understandings of the RP as a process in which one engages to make meaning in
mathematics.

Mathematics for elementary teachers courses are the primary site for supporting this development of
PTEs’ knowledge for teaching. Geometry and Measurement is a common content slice for these courses,
with explicit attention to the work of proof (Cannata & McCrory, 2007; McCrory, Siedel, & Stylianides,
2008). Analyses of popular math for elementary teachers texts suggest that RP opportunities are sparse
(McCrory et al., 2008), but those analyses used broad approaches involving key word searches of the table
of contents and indices of texts. In this study, we use Stylianides’s (2009) analytic framework to examine
the treatment of RP in a textbook used in teaching PTEs Geometry and Measurement to characterize the
opportunities for PTEs to learn about RP. Specifically, we analyzed the Geometry and Measurement
chapters of a popular text used in teaching mathematics content courses in the United States, a text
designed to help PTEs to “explain why mathematics works the way it does” (Beckmann, 2008, italics
added, p. xix), make sense of mathematics, and carry those abilities into their future classroom.

Analytical Framework

The unit of analysis used in considering the text was the mathematical instructional task (Henningsen
& Stein, 1997), as tasks are a key determinant of students’ opportunities to learn (NCTM, 2000). A
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mathematical task is a set of questions or text segment oriented that develops a particular idea. Analyzing
the textbook at the task level, we identified opportunities to create or evaluate conjectures and/or provide
mathematical justification within each task.

Table 1. Reasoning-and-Proving Framework (adapted from Stylianides, 2009)

Reasoning-and-Proving

Mathematical Generalizations Mathematical Arguments
Investigate
Mathematical Evaluate Provide a Non-

Relations Conjecture  Evaluate Claim Argument proof Argument Provide a Proof
Components & ¢ Provided ¢ Make a ¢ Evaluate a ¢ Evaluate a ¢ Empirical ¢ Proof
Subcomponents of ~ Examples Conjecture Mathematical Mathematical ~ Argument
RP o Generate Claim Argument « Rationale

Examples

To characterize the RP opportunities afforded by tasks in the text (Beckmann, 2008), we applied a
modified version of Stylianides’s (2009) analytic framework. This framework identifies a task as related to
RP if it provides opportunities for students to create or evaluate mathematical generalizations or
mathematical arguments (Table 1).

M ethod

In the Geometry and Measurement chapters of Beckmann’s (2008) textbook, we first grouped
questions together into tasks and identified all tasks with RP opportunities. The textbook contained 115
tasks related to these four chapters. We coded the questions within tasks using the analytical framework
(Table 1). The definitions for each subcategory (detailed further in Stylianides, 2009) guided the coding of
each question, and a single question could be coded with multiple categories, when applicable. If a
question did not fit the criteria for any categories of the framework, then it was coded as not RP-related.
Two trained raters conferred to refine the descriptions and procedure for applying this framework; double-
coding 31% of questions, reaching agreement on 81% of the codes, and resolving any disagreements
through discussion.

Results

One goal of this analysis was to examine the extent to which the textbook provided opportunities for
PTEs to engage in RP; understanding the ways in which RPTs were distributed informed this purpose. Of
the 115 tasks, about 57% contained at least one question related to RP, and these RPTs were distributed
across the four chapters. Figure 1 shows the ways in which RPT and nonRPT distribute across sections of
these four chapters. There were a number of sections in these chapters for which RPTs were prevalent,
accounting for at least 50% of the tasks in sixteen of the 26 sections in the textbook. Moreover, the later
subsections in some chapters (8-10) tended to have more RP tasks than earlier sections or there was an
even spread among subsections (11). It could be problematic if the chapter frontloaded RPTs in the
beginning subsections. The sections of the textbook with fewer RPTs were also spaced out so that PTEs
could arguably have opportunities to encounter RPTs at various points throughout a course using this
textbook.

We also aimed to identify the nature of RP opportunities afforded in the text by investigating the types
of RP processes elicited in RPTs. Figure 2 shows the ways in which the tasks were distributed with respect
to the six types of RP processes. The most common category was providing nonproof arguments in which
47 of the 66 RPTs (71%) contained at least one question prompting students to provide mathematical
explanations, not explicitly proofs. Two categories especially relevant to teaching, evaluating claims and
arguments, accounted for the fewest tasks.
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Section of the Textbook

Number of RP Tasks
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10.3
10.2
10.1
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9.3
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8.3
8.2
8.1
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Figure 1: Breakdown of RPTs and nonRPTsin the textbook
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Figure2: Number of Tasks Addressing RP Processes

Discussion

This analysis indicated that Beckmann’s (2008) textbook provided a range of opportunities for PTEs to
engage in RP. Throughout the geometry and measurement chapters, students investigate patterns, generate
conjectures, and justify mathematical claims with rationales or with proofs. There were also opportunities
to engage in many RP processes within one task, meaning they could potentially experience the process of
generating and refining arguments. This analysis provided a more detailed view of RP opportunities in this
textbook than previous research (McCrory et al., 2008) by identifying PTEs’ opportunities to engage in
specific RP processes.
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As was particularly apparent in Figure 2, however, a majority of these RP opportunities were about
generating nonproof arguments. This prevalence of nonproof arguments suggests that the textbook would
likely be implemented to provide opportunities for PTEs to generate informal arguments for why
mathematical statements were valid. Such a focus could provide helpful opportunities for PTEs to practice
communicating their mathematical reasoning more clearly, which is important to demonstrate their
understanding of mathematical idea and to prepare them to explain mathematical ideas to students in the
future. Since many prospective and practicing teachers maintain the misconception that empirical
arguments are proofs (Knuth, 2002; Steele, 2006), however, it is also important to help PTEs transition
from this way of thinking to a more robust view of the role of proof in mathematics. Although the
inclusion of rationales, explanations, and empirical arguments could potentially help PTEs articulate how
they are thinking about the mathematical ideas, without some contextualization and thoughtful
implementation on the part of the college instructor, PTEs may walk away from a course using this
textbook with that conception maintained or reinforced. An instructor, on the one hand, could modify a
task by pressing PTEs to provide a proof even though the task did not explicitly call for one. An instructor,
on the other hand, could contextualize the fact that the argument PTEs generated was not a proof,
facilitating class discussions about features of proofs and nonproofs. Modifying and contextualizing tasks
from the textbook is an important aspect of instructors’ teaching practice that needs to happen to broaden
PTEs’ experiences with and conceptions of RP. Supporting college instructors in their teaching of RP and
studying the way in which RP tasks from this textbook were enacted are important avenues of further
study.

Endnote

'In the fall of 2012, the first author will be a faculty member at Bowling Green State University in the
Department of Mathematics and Statistics.
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The newly released national curriculum standards, Common Core State Standards (CCSS), have
aroused wide interests in the field of education. As claimed by the founders, the standards emphasize the
correlation with the real world, attempt to reflect the knowledge and skills that students need for success in
college and careers, and eventually help them to compete successfully in the global economy (Common
Core State Standards Initiative, 2011). Undoubtedly, the new standards have pushed all K—12 teachers,
students, researchers, policy makers, and even parents into a crucial transition phase. People are eager to
learn the features of the new standards and much concerned about how they can make a smooth transition
while adapting the CCSSinto their daily work.

As a group of international researchers studying mathematics education in the United States (authors
are from Caribbean, China, Turkey, and U.S.), we decide to investigate the Common Core State Standards
for Mathematics (CCSSM) through an international lens. We designed a cross-national comparative study
to investigate the similarities and differences among curriculum standards of the four countries with
different education systems, specifically, how one of the most conceptually challenging topics, quadratic
equations and functions (e.g., Vaiyavutjamai, Ellerton, & Clements, 2005), is introduced in different
countries. Comparing to the previous studies (e.g., Reys, Dingman, Nevels, & Teuscher, 2007; Reys,
2006), a more comprehensive theoretical framework was created, which is the three dimension comparison
of characteristics of standards: content, mathematical reasoning, and cognitive level. The results show that
all the standards introduce students to the foundational concepts of quadratic functions, however, with
various procedural and conceptual expectations. Our ultimate goal of doing the cross-national comparison
is not to simply rank nations, but to provide a basis for considering current practice and possible
alternatives and to help teachers improve their students’ learning of mathematics.
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Teachers’ use of curriculum materials is in great variation (Remillard, 2005). So is the way in which
teachers read curriculum materials (Sherin & Drake, 2009). The relationship between teachers’ reading
and use of curriculum materials has not been articulated, and little research examined how teachers
recognize and use curriculum features (CFs). The purpose of this case study is to understand how a fifth-
grade teacher, Caroline, recognizes and uses curriculum features as she teaches mathematics using the
Investigations in Number, Data, and Space curriculum.

I observed two lessons that Caroline taught using Investigations. Each lesson lasted one hour twenty-
five minutes. Data collected include her written plans for the two lessons, associated notes, classroom
videotapes, pre- and post-interviews, and the curriculum materials used. Caroline’s lesson plans, associated
notes, and interviews helped identify CFs she had recognized and planned to use during instruction. The
videos enabled me to identify which CFs recognized during planning were actually used in her teaching
and how they were used.

Caroline recognized and used CFs such as key representations and models, instructional approaches
and mathematical tasks, as well as support and guidance provided for teachers. While reading/skimming
the Investigations lessons, Caroline recognized the significance of certain CFs, by using her knowledge of
CFs and benefits they offer, which she gained from the professional development (PD) she participated in.
Such recognition led her to evaluate those CFs’ suitability and appropriateness for her classroom and plan
how to use them during instruction. For example, when reading “teacher notes,” Caroline recognized the
different methods students might use and the importance of discussing these methods during the lesson.
Also, Caroline recognized the importance of “dialogue boxes” because of the guidance they provided, such
as the type of questions to ask and the kinds of responses students might give.

Caroline’s use of CFs was evident during instruction. For example, Caroline made connections among
the multiple strategies students generated based on guidance from the dialogue boxes, leading to
productive classroom discussions. These connections fostered students’ understanding of the different
strategies as well as their efficiency. When using the CFs that she recognized, she made some adjustments
based on students' needs. Therefore Caroline’s recognition and use of CFs was influenced by what her
students knew and were able to do. Using Forbes and Davis’s (2010) framework, I classified her
adaptations as distributed improvisation. However, some CFs, such as “ongoing assessment,” which
elaborated kinds of students’ thinking to look for, were neither recognized nor used explicitly. These
findings suggest that PD programs should consider in-depth explorations of CFs to build teachers’ capacity
in recognizing and using them in productive ways.
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The inclusion of information that is interesting, but irrelevant to the lesson, has been found to distract
learners and diminish comprehension in a phenomenon referred to as the seductive details effect (Lehman,
Schraw, McCrudden, & Hartley, 2007). Math textbooks often contain images, either decorative (i.e., for
aesthetic purposes only) or contextual (i.e., related to the background of the lesson) that are irrelevant to
the mathematical concepts being taught.

There is empirical evidence that decorative images have a negative influence on learning (Levin,
Anglin, & Carney, 1987), likely because of the seductive details effect. In contrast, contextual images have
been shown to help with aspects of reading comprehension for some populations (cf. Pike, Barnes, &
Barron, 2010), although the effects of contextual images on learning from math lessons have not been
explored. It is unknown whether contextual images would distract from mathematics learning or if they
would benefit mathematics learning through assistance with reading comprehension. The purpose of this
study is to examine the influence of contextual and decorative images on learning from a mathematics
lesson. Eye-tracking methodology was used to determine if the inclusion of these images, which are
mathematically irrelevant, caused diminished visual attention to the lesson text and graphs, which are
mathematically relevant.

Forty-one undergraduate students participated by reading four mathematics lessons on functions. The
data indicated that there was little visual attention to either decorative or contextual images. Including
decorative or contextual images did not influence visual attention towards math relevant information in the
lesson (i.e., the graph and lesson text). Therefore, it can be inferred that the students tended to ignore the
images in the lessons. There were no differences in written recalls of lessons or answers to questions
across image conditions. Compared to the lesson text, little visual attention was directed towards the
graphs, which were mathematically relevant visual representations. This is unfortunate because graphs can
assist in mathematics learning (Shah, Mayer, & Hegarty, 1999). An important direction for future research
may be to develop methods to direct learner attention towards graphs.
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ACTIVITY THEORY: THE THEORETICAL FRAMEWORK THAT GUIDESTHE
ACTIVITY OF GENERALIZATION FROM KINDERGARTEN TO COLLEGE
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Eastern Michigan University
gdumitra@emich.edu

In this poster | present the results of a research project in which activity theory informed the analysis of
the design of some curricula materials. Through examples, | will present to what extent the curriculum
tasks and accompanying teacher material included in specific lessons in the teacher’ s edition for the third
grade textbooks create the potential for teachers to mediate students engagement in describing, extending,
and making generalizations. The same theoretical analysis may inform curricula designers and educators
about their integral rolein creating the learning environment, the goals, and the devel opment of a
generalization activity.

Keywords: Activity Theory; Generalization; Curriculum Analysis; Advanced Mathematical Thinking

The practice of generalization is a powerful process that should be present in mathematical learning
from kindergarten to college. In order to be able to investigate how curricula from elementary, middle,
high school and undergraduate courses create contexts in which students may perform different forms of
generalization, we need a theoretical framework. Activity theory provides basic principles that allow us to
understand generalization as an activity that is socially and historically developed through tools and
artifacts mediations, internalization of social knowledge, and that is transformed through learning and
development. I propose that the generalization process in mathematics to be considered an activity system.
I will present the means of the generalization activity using Leontiev’s activity theory interweaved with
Rubinshtein’s description of the generalization process. The theoretical definition of the activity of
generalization will be used to critique examples of task from textbooks designed to target generalization
activities. Moreover, this theoretical approach of the process of generalization definition may bring a new
perspective on how to organize mathematics instruction in its transition from elementary school level to
high school and college levels.
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Secondary school mathematics topics examining circles are found in standards, assessments, and
college entrance examinations. Typically, circle-related topics are found at the end of high school
textbooks (Donoghue, 2003). The implementation of curriculum using these textbooks often leads to
limited-to-no coverage of circle topics and missed opportunities for student learning. Senk (1989) suggests
that geometry courses alone cannot transition students from low to high levels of geometric thinking in one
high school course. The Common Core State Standards for Mathematics (CCSSI, 2010) articulates that
circle topics are important for college and career readiness by advocating for the understanding and
application of theorems about circles. In CCSSM, all students are also expected to find arc lengths and
areas of sectors of circles. Based on these findings, it is clear that curricula across high school grade levels
must develop student thinking in a clear and deliberate manner, the ultimate goal being to transition
students to higher levels of geometric thinking, including attention to mathematics topics related to circles.

This poster focuses on understanding the nature of geometric thinking related to circles found in three
different high school curriculum programs. The researchers identified two research goals:

1. What levels of geometric thinking are required for the treatment of circles found in secondary
school mathematics?

2. How do high school curriculum materials develop students’ geometric thinking concerning
circles?

In our analysis, a framework using van Hiele levels of geometric thinking (Fuys, Geddes, & Tischler,
1988) provided a lens for describing the development of curriculum tasks focused on addressing the
CCSSM domain of circles. Using this framework, the researchers classified related tasks found in the
Core-Plus Mathematics Project, Kendall Hunt Discovering Series (formerly Key Curriculum Press), and
University of Chicago School Mathematics Project.

For the indicated curriculum projects, the analysis focuses on the nature of curricular efforts to develop
the levels of student thinking related to circles. The results inform classroom practice across different
courses when supporting students as they transition from lower to higher levels of geometric thinking. In
addition, the results of this study inform curriculum developers as they strive to create a focused and
coherent school mathematics curriculum.
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Recently, Common Core State Standards (CCSS) have been adopted by more than forty states in the
United States. One of the goals of CCSS is to have consistent and coherence standards because of criticism
that U.S. curricula are “a mile wide and an inch deep” (Schmidt, Wang, & Mcknight, 2005) and that there
is little consensus regarding when and how certain mathematical topics should be introduced and
developed across the K—12 mathematics curriculum (National Council of Teachers of Mathematics
Research Committee [NCTM], 2011). Curriculum coherence was found in countries that performed well
on the Trends in International Mathematics and Science Study (TIMSS) while American curriculum does
not have such coherence (Schmidt et al., 2005). Does CCSS show a similar pattern as top performing
countries? How did CCSS and other state standards introduce mathematical topics prior to or without
adoption of CCSS? This study attempts to answer these questions.

In previous studies, researchers analyzed TIMSS curriculum frameworks, textbooks, and standards
from different states (Schmidt et al., 2005; Valverde & Schmidt, 2000). We will use a similar approach.
First, we will use a method called “General Topic Trace Mapping” (GTTM) where experts from different
countries are asked to identify all grade levels that certain topics are covered. The result shows a map
reflecting the grade-level coverage of each topic for each country (Schmidt, et al., 2005). The results of this
mapping will be compared in regards to similarities and dissimilarities to Schmidt et al.’s (2005)
comparison of top performing countries. This will partially answer coherence of CCSS compared to other
countries. Second, we will choose four states—two who have adopted CCSS (New York and California)
and two who have not (Virginia and Texas)—and compare the state mathematics standards before New
York and California adopted CCSS (their 2005 and 2007 standards, respectively) and the state standards
from Texas and Virginia. By comparing these documents to CCSS and curricula of other countries, we will
determine how coherent these standards are prior to or without adoption of CCSS. This would give us
better ideas on whether adopting CCSS will bring us more coherent mathematics curriculum or not.
Analysis will be conducted and data will be ready for PME-NA 2012.
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Analyzing textbooks can provide insight into the way society views certain groups and individuals.
The images portrayed in textbooks have the ability to influence students’ beliefs about self, ethnicity,
social class, or sex, and hence produce what is known as “stereotype threat.” Good, Woodzicka, and
Wingfield (2010) define stereotype threat as “a phenomenon by which individuals, fearful of confirming a
negative stereotype about their group, display decreased performance on a task relevant to the negative
stereotype” (p. 135). Research examining the effects of stereotype threat suggests that images producing
stereotype threat can have a negative impact on student achievement (Good et al., 2010). Zeldin and
Pajares (2000) assert that “individuals’ beliefs about their competencies in a given domain affect the
choices they make, the effort they put forth, their inclinations to persist at certain tasks, and their resiliency
in the face of failure” (p. 216). In order to avoid stereotype threat, it is critical that textbooks represent a
variety of individuals doing mathematics. Several studies in the 1980’s and 1990°s (e.g., Heintz, 1987;
Allen & Ingulsrud, 1998) documented the lack of equity in mathematics textbooks with respect to gender,
though few studies have been conducted recently. Research with a focus on minority representation in
mathematics textbooks is even more sparse.

This study examines equity in mathematics textbooks with a focus on race and ethnicity. We analyzed
three middle school mathematics textbooks series commonly used in the United States. Middle school
textbooks were chosen because children in the early adolescent years are highly susceptible to outside
influence and are beginning to find their personal identities (Baker & Leary, 1995). The series selected
were the most recent editions of Pearson’s Connected Mathematics 2, Saxon Publishers’ Saxon Math, and
Holt McDougal’s Mathematics. These books were chosen to provide a range of both traditional and
reform-based textbooks. Every image in each of the textbook series was examined with respect to race and
ethnicity. Our categories were Asian, black, Hispanic, Middle Eastern, Native American, and white.
Persons for whom we could not determine ethnicity were classified as unknown. Our goal was to compare
the representation of ethnic groups in the textbooks to that of the U.S. population. We also examined how
these groups are being portrayed with a focus on activities and careers by analyzing trends found in the
photos. Activities were classified using modified versions of classification schemes used by Heintz (1987)
and Allen and Ingulsrud (1998). Analysis is ongoing and results will provide a detailed update on the
progress made by mathematics textbooks with regards to equity.
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Beginning in the early 1970s, a flood of research in textbook analyses produced data demonstrating
gender bias in mathematics textbooks (e.g., Winifred, 1973). Most word problems and pictures depicted
men in prominent roles, while women were placed in passive roles or stereotypical roles, such as sewing
and cooking (Garcia, 1990; Winifred, 1973). As a result of these findings, research from the 1990s showed
significant improvement in balancing gender representation throughout the pictures and word problems in
mathematics textbooks; however overall equality had not been reached in terms of numbers or in the types
of roles portrayed by men and women in the texts (Clarkson, 1993). Some scholars noticed that one
response to earlier studies has been to remove people and therefore gender from the texts leading to a
depersonalization of mathematics (Garcia, 1990; Parker, 1999). Little research has been done in this area
since the early 1990s. This led us to the following research questions: Are there an equal number of males
and females in recent mathematics textbooks? Are males and females still portrayed stereotypically? Are
textbooks removing people altogether, depersonalizing mathematics, to avoid the situation?

We chose to analyze textbooks used in middle school mathematics classes specifically because
between the ages of nine and thirteen, children are beginning to define themselves and are more receptive
to social influences (Baker, 1995). We selected popular textbooks based on varying approaches to teaching
mathematics. Thus, we chose three series ranging from more traditional to more reform: Saxon Math, Holt
McDougal Mathematics, and Connected Mathematics 2. We examined every image in each of the 6th, 7th
and 8th grade textbooks, comparing the number of images that had people, animals, and objects. The
pictures that included people were further examined to determine the gender of each person, which careers
and roles were being portrayed by each gender, and which famous people were depicted. We categorized
roles using an adaptation of classifications by Heintz (1987) and Allen and Ingulsrud (1998). In this poster,
we provide our results regarding the stated research questions.

References

Allen, K., & Ingulsrud, J. E. (1998). What do you want to be when you grow up? An analysis of primary-school
textbooks in the People’s Republic of China. Journal of Multilingual and Multicultural Development, 19(3),
171-181.

Baker, D., & Leary, R. (1995). Letting girls speak out about science. Journal of Research in Science Teaching, 33(1),
3-27.

Clarkson, P. (1993). Gender, ethnicity, and textbooks. The Australian Mathematics Teacher, 49(2).

Garcia, J., Harrison, N. R., & Torres, J. L. (1990). The portrayal of females and minorities in selected elementary
mathematics series. School Science and Mathematics, 90(1), 2—12.

Good, J. J., Woodzicka, J. A., & Wingfield, L. C. (2010). The effects of gender stereotypic and counter-stereotypic
textbook images on science performance. The Journal of Social Psychology, 150(2), 132-147.

Heintz, K. E. (1987). An examination of sex and occupational-role presentations of female characters in children’s
picture books. Women's Sudies in Communication, 11, 67-78.

Parker, K. (1999). The impact of the textbook on girls’ perception of mathematics. Mathematicsin School, 28(4),
2-4.

Winifred, T. J. (1973). Sex-stereotyping in selected mathematics textbooks for grades 2, 4, 6 (Unpublished doctoral
dissertation). University of Oregon.

Van Zoest, L. R,, Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.



Curriculum and Related Factors: Poster Presentations 128

INSTANCES OF MISCOMMUNICATION BETWEEN CURRICULUM AND TEACHER
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An important goal for developers of mathematics curricula is to clearly communicate with the teacher
the key mathematical ideas and the ways that those key ideas can be the basis for effective lessons. In the
language of Gehrke, Knapp, and Sirotnik (1992), developers create a “formal curricula” filled with their
intentions about the key ideas and how to teach them; there also exists an "intended curricula" of the
teacher who plans what to use and how. This poster will highlight instances of miscommunication of key
ideas between curricula and teachers.

This poster uses data gathered as a part of a project investigating teacher curriculum use. Within this
project, 6 teachers were observed using two different curricula. The example chosen for this proposal is
from Juliet (pseudonym), a third grade teacher using the 2nd edition of Investigations in Number, Data,
and Space to teach multiplication and division stories. After observations of Juliet’s classroom were
conducted, an interview was given that centered on how she read the curriculum and that influences the
decisions she made while planning. The example below details an activity whose purpose is to help
students realize how you can determine whether a particular story requires multiplication or division.
Students are expected to work through stories by acting them out, using drawings, or cubes. Student
thinking should be focused on looking for numbers of groups and numbers in each group. The following is
an excerpt from the teacher guide description of the activity, “Highlight for students that this problem
identifies the number of groups and the number of items that are in each group. Because they need to find
how many there are altogether, this is a multiplication problem” (Unit 5, Lesson 4.2). Juliet said how she
interpreted this passage, and its impact on her planning and teaching.

This is kind of the basis for everything that you observed. The keywords for recognizing what
multiplication and division are, and how to pull those out of the story problem and use them to the
advantage for the kids. So, yeah. This right here (pointing to the passage above) was the meat and
bones of what this pack of lessons was about.

Juliet took from the curriculum passage above that the “meat and bones” of the activity was the
identification of keywords. These keywords are the basis for deciding between multiplication or division.
The curricula, however, focuses on identifying groups and items within groups. There is only this one
sentence that hints towards a keyword approach. The observers and Juliet both found these lessons difficult
for students. The researchers attribute this to the keyword approach, which represented a
miscommunication between the text and teacher.

The disparity that exists between the formal curricula and the intended/enacted curricula illustrates the
need for teacher learning. Certainly, careful and precise writing on behalf of the developers is necessary,
but the examples provided in this poster session facilitate discussion on teacher knowledge and capacity
needed to design and enact lessons. This can also inform teacher education and professional development
programs.
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The need to reform undergraduate Science, Technology, Engineering, and Mathematics (STEM)
programs has been prominent in recent years (Ferrini-Mundy & Guigler, 2009). The Programme for
International Student Achievement (PISA, 2003) defines mathematical literacy as “an individual’s capacity
to identify and understand the role that mathematics play in the world, to make well-founded judgments
and to use and engage with mathematics in ways that meet the needs of that individual’s life as a
constructive, concerned and reflective citizen” (p. 24). Mathematics is seen as a language with which
STEM students must gain fluency. Two subtleties are overlooked when using this metaphor:

(1) Translation implies that one moves between two different languages when, throughout history,
mathematical formalism has been used to articulate natural phenomena in both science and in every day
life. (2) Literacy in mathematics entails both the dexterity and the resourcefulness to recognize and employ
mathematical principles and structures. As history has shown, reforms in STEM education do not succeed
through instructional modifications alone. Instructional models must be grounded in a deep
reconceptualization of the skills and knowledge bases necessary for productive functioning within various
disciplines, and this perspective change must precede the development of curricula (Niss & Hojgaard,
2011). Our research was directed towards development of such conceptualization by examining the
relationship between mathematical competencies and mathematical literacy. In doing so, we collected and
analyzed data sources from two investigations (1) the STEM professors’ perceptions about the essential
mathematical concepts necessary for first year engineering students, and (2) review of reports on an
interdisciplinary task force whose aim is to define indicators of mathematical literacy for engineering
students to be used in the creation of a first year mathematics course for engineering students.

Data sources consisted of audio-recorded interviews designed specifically to document participants’
responses to key issues identified by the literature including: mathematics as it applies to their discipline
and what they consider as mathematical competence pertaining to their own specific needs. We utilized
the competencies put forth by the Danish KOM project to tag and describe mathematical content
mentioned in interviews (Niss & Hgjgaard, 2011). Common and distinguishing patterns of skills and goals
identified by different participants were identified using discourse analysis.
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Here we present a model based on theoretical implications from studies of EI’konin-Davydov
mathematics implementation (i.e., Davydov, 2008; Slovin & Venenciano, 2008; Dougherty & Slovin,
2004; Morris & Sloutsky, 1995) and developed through structural equation modeling. The Measure Up
(MU) project developed elementary curricula grounded in concepts of measurement and quantitative
reasoning. MU experience, prior mathematics achievement, age, and logical reasoning capability were
used as predictors of algebra preparedness. Logical reasoning was simultaneously used as a mediating
variable.

The sample consisted of 129 fifth or sixth graders, 40 MU and 89 non-MU students, from a research
laboratory school. Test items measuring logical reasoning were identified using exploratory and
confirmatory factor analyses. Fit indices * (5) = 7.20, p=0.21, CFI = .97, RMSEA = 0.06, WRMR =
0.57, and a composite reliability (Raykov, 2007) of .76 confirmed the conceptual relatedness of the items.
Similarly, items measuring algebra preparedness were identified using factor analyses and resulted in a
model, x* (5) = 5.25, p= .39, CFI = 1.0, RMSEA = 0.01, WRMR = .45, with composite reliability of .89.

The development of the final SEM model [x*(30) = 39.4, p=.12, CFI = .94, TLI = .93, RMSEA = .05,
WRMR = .96] implied that algebra preparedness was strongly mediated by logical reasoning capabilities,
to the extent that effects from prior achievement could only be observed through logical reasoning. MU
experience was the only variable that made a significant, direct contribution to algebra preparedness. Age
and prior mathematics achievement were found to be positive, significant, indirect contributors to algebra
preparedness. The path coefficient from the MU experience to algebra preparedness was positive,
supporting earlier findings that MU experience leads to greater algebra preparedness. The path from prior
achievement to algebra preparedness was negative and not significant, suggesting that only a particular
aspect of prior achievement contributed to a preparedness for work with variables.
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To understand the connections between student achievement and teacher demographic information as
measured by the National Assessment of Educational Progress (NAEP), we analyzed the cognitive demand
of fourth- and eighth-grade NAEP mathematics assessment items. Using the item classification
frameworks developed by Stein and Smith (1998) and Webb (1997), we analyzed and aligned released
NAEP items based on the cognitive processes necessary to engage in the task. This work served as
precursor to a larger study in which we are building clusters of items that will form achievement score sub-
scales.

To investigate these connections, we initially sought to determine which items placed higher demands
on students. NAEP items are classified by complexity level as defined by the NAEP assessment
framework. The NAEP complexity level classification was designed as an indication of the level of
demand that a particular item places on a student. We considered using the existing NAEP complexity
level as a basis to build clusters of items, but were concerned about the wide range of types of student
thinking necessary to engage in tasks classified at the same complexity level. Consider the following two
task descriptions as an example of a situation that highlights this discrepancy in the complexity level
classification. Both of these items were administered as part of the 2009 fourth-grade Main NAEP
mathematics assessment. In the first item students were asked what number should be placed into the blank
to make the following number sentence true: __ — 8 = 21. In the second item, students were asked to use
several provided shapes (four parallelograms and two triangles) to cover a composite figure. Both items
were classified by NAEP as low complexity items. When considering using the NAEP classification for
our research purpose, we became troubled because of the difference in the types of thinking in which
students would need to engage in order to attempt these tasks. For some students the solution of the first
task may be immediately obvious (recall or mental manipulation); for others, perhaps employing a simple
procedure would determine the solution. In our opinion, the problem-solving path is clearly defined with
no pre-planning necessary. However, the second item requires students to make a plan for solving the
problem, even if the plan employed is trial and error. The answer is not immediately obvious, and the
problem-solving pathway is defined by the child, not by the item prompt. This example supports the
statement in the most recent mathematics framework that “Mathematical complexity deals with what the
students are asked to do in a task. It does not take into account how they might undertake it” (NAGB,
2010).
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Although students’ difficulties in developing and understanding proofs in mathematicsis well documented,
lessis known about how students’ example use may support their proof practices, particularly at the
middle school level. Research on example use suggests that strategic thinking with examples could play an
important role in exploring conjectures and devel oping appropriate justifications. This paper introduces a
framework of middle-school students' example exploration, distinguishing between the types of examples
students use and the uses examples play in making sense of and proving conjectures. Drawing from
clinical interviews with 20 students, we present thirteen categories of example types and seven categories
of uses, followed by a discussion of each set of categories and their connections to one another.

Keywords: Middle School Education; Problem Solving; Reasoning and Proof

Objectives: The Importance of Supporting Proof in School M athematics

Proof in school mathematics has received increased attention over the past decade, with researchers
arguing that it must be a central part of the education of all students at all grade levels (Ball, Hoyles,
Jahnke, & Movshovitz-Hadar, 2002). Both the Common Core Sate Sandards for Mathematics (Common
Core State Standards Initiative, 2010) and the Principles and Standards for School Mathematics (Naitonal
Council of Teachers of Mathematics, 2000) argue that a central hallmark of mathematical understanding is
the ability to prove, and that the mathematics education of students from pre-kindergarten through grade
12 should enable all students to develop and evaluate mathematical conjectures, arguments, and proofs.
Middle school in particular is a critical time for students to develop the ability to reason deductively,
resulting in recommendations for curricular and pedagogical changes emphasizing proof in beginning
algebra classes (Epp, 1998; Marrades & Gutierrez, 2000).

These recommendations pose serious challenges, however, given that many students struggle to
recognize, understand, and produce deductive arguments (e.g., Chazan, 1993; Harel & Sowder, 1998).
Researchers have posited that a critical source underlying students’ struggles to understand proof is their
treatment of examples. On the one hand, students tend to engage in example-based proofs, pointing to a
few successful examples as justification that a mathematical statement is true (e.g., Healy & Hoyles, 2000;
Porteous, 1990). On the other hand, deliberate exploration of examples is not explicitly supported as a
strategy to foster deductive reasoning; students have few opportunities to strategically analyze examples in
order to make sense of a mathematical statement or to gain insight into the development of its proof.

We suggest that providing students with opportunities to carefully analyze examples may contribute to
their abilities to develop and make sense of conjectures and their proofs. Studies of mathematicians
suggest that the process of experimenting with examples is a critical aspect of proof development (Epstein
& Levy, 1995). Although scholars have noted a number of potential roles of example use, little research
has focused on characterizing these roles with regard to facilitating students’ learning to prove. In fact,
very little is known about how middle school students think with examples, whether their example use can
facilitate deeper mathematical understanding, or whether and how examples can support students’ attempts
to develop proofs.

This paper presents the results of a study aimed at identifying the roles of middle school students’
example use. We introduce a framework that distinguishes between the types of examples students use and
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the uses examples play in making sense of and proving conjectures. Our findings indicate that students
made use of a variety of example types and used examples in different ways in order to check a
conjecture’s correctness, convince themselves and others that it held true, better understand a conjecture,
and develop justifications to support their statements.

Theoretical Background

One common model of students’ mathematical reasoning is that their understanding of mathematical
justification is “likely to proceed from inductive toward deductive and toward greater generality” (Simon
& Blume, 1996, p. 9). [For this discussion, inductive refers to generalizing from examples, and is not to be
confused with mathematical induction, a valid method of proof.] This expected progression is reflected in
various mathematical reasoning hierarchies (Balacheff, 1988; van Dormolen, 1977; Waring, 2000) as well
as in many curricular programs (e.g., Lappan et al., 2002). However, not only do students find this
transition difficult to navigate, studies also suggest that their development may not be as straightforward as
the induction-to-deduction model; in fact, students may follow a “zig-zag path” (Polya, 1954) between
example exploration, conjecture, proof, and back again (e.g., Ellis, 2007).

One approach to helping students navigate the transition to deductive reasoning involves emphasizing
the limitations of examples as proof, thus helping students recognize the need for deductive arguments. It
has, however, proven difficult to help teachers leverage this technique in order to successfully foster their
students’ proof abilities (Bieda, 2011). In addition, this approach positions example-based reasoning
strategies as stumbling blocks to overcome. We suggest an alternative stance by positioning strategic
thinking with examples as an important object of study in its own right. From this perspective, reasoning
with examples is viewed as a potential foundation for the development and understanding of conjectures
and proofs.

The Roles of Examples

Examples play a critical role in mathematical practice, and the time spent analyzing particular
examples can provide not only a deeper understanding of a conjecture, but also insight into the
development of its proof (Epstein & Levy, 1995). The role examples play in the work of middle and high
school students, however, is less well understood. Although research has demonstrated students’
overwhelming reliance on examples as a means of verification and justification, less is known about how
students think strategically with examples.

Research on students’ thinking does suggest that examples can have different potential roles and uses.
For instance, Buchbinder and Zaslavsky (2009, 2011) introduced four different types of examples
(confirming, non-confirming, contradicting, and irrelevant) and examined their status in determining the
validity of mathematical statements. Other studies have identified different example types as well,
including start-up examples, boundary examples, crucial experiments, reference examples, model
examples, counterexamples, and generic examples (Alcock & Inglis, 2008; Balacheft, 1988; Michener,
1978; Watson & Mason, 2001). Studies examining the role of examples in understanding conjectures have
found that analyzing structural similarities across examples can support proof development (Pedemonte &
Buchbinder, 2011).

This body of research suggests that example use plays an important role in understanding conjectures
and potentially supporting the development of valid proofs. However, there remains much to be learned
about what types of examples students exploit, particularly at the middle school levels, and how they use
them when developing and exploring conjectures. In this study we accordingly characterize the roles and
strategic uses of examples in terms of a more comprehensive framework for developing, exploring, and
proving conjectures.
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M ethods
Participantsand | nstrument

Participants were 20 middle-school students (12 sixth-graders, 6 seventh-graders, and 2 eighth-
graders), each who participated in a semi-structured 1-hour interview. Eleven students were female and 9
students were male. Seventeen students were in general 6th, 7th, or 8th-grade mathematics courses using
the Connected Mathematics curriculum, while 2 students were in algebra and 1 student was in geometry.

The interview instrument presented students with seven conjectures (see Table 1 for sample
conjectures). The interviewer asked the participants to examine the conjectures, develop examples to test
them, and then, when they could, provide a justification. The conjectures addressed ideas in number theory
and geometry that were accessible to a middle-school population, and every conjecture except Conjecture
6 was true. Fifteen out of the 20 participants viewed only the first four conjectures; the remaining 5
participants had extra time to view all seven conjectures, resulting in 95 total responses to code. After the
students worked with examples for each of the conjectures, they were asked why they chose the examples
they did.

Table 1: Sample Interview Conjectures

Conjecture 1 | Eric thinks this property is true for every whole number. First, pick any whole number. Second,
add this number to the number before it and the number after it. Your answer will always equal 3
times the number you started with.

Conjecture 4 | Bob thinks this property is true for every parallelogram. The angles inside any parallelogram add
up to 360 degrees.

Conjecture 6 | Kathryn thinks this property is true for every whole number. First, pick any whole number.
Second, multiply this number by 2. Your answer will always be divisible by 4.

Data Analysis

Coding began by identifying each of the examples students produced for each conjecture. We then
developed emergent codes to identify example types and uses. Types refer to the different characteristics of
examples students used, and uses refer to the roles that the examples played in students’ investigations.

The research group discussed the codes and clarified uncertainties as emergent codes solidified. Codes to
determine example types depended on the participant’s discussion of the example, rather than on a
determination based only on the example itself. For instance, the same number, 1, could be considered
“common” from one student’s point of view or a “boundary case” from another student’s point of view.
Furthermore, the same example could be coded in multiple ways based on the participant’s explanation.
Three different researchers on the project team coded portions of the conjecture responses so that each
conjecture response was ultimately coded independently by at least two different team members.

Results and Discussion

We found 13 categories of example types (Table 2) and seven categories of example uses (Table 3).
Each table introduces the category name with the number of instances in which the example type or use
occurred in the data set, its definition, and a representative example to illustrate each example type and
use. We discuss the example types first, and then present example uses.
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Table 2: Types of Examples

Example Definition Data Example
Type
Dissimilar | An inclusion of examples that are “| tried to pick both prime numbers...composite numbers
Set (41) all different from one another. and then odd numbers and even numbers. So just have a
variety of different kinds of numbers.”
Generic An example with unimportant [Uses 50 to explain why Conjecture 1 works]: “So this one
(28) specific characteristics. These [51] is 1 more, and this one [49] is 1 less. So if you take this
examples demonstrate a general one [the 1 from 51] over to that one [49] it turns into 50.
idea about the conjecture. And then that one goes into 50, and 50.”
Common An example described as typical or | [After choosing 10 and 15 as example cases]: “I picked a
(24) one that many would think of. more uncommon number [15] and a more common number
[10], and they both worked out.”
First Example is the first that came to “| just...kinda what popped into my head.”
Thought Of | mind; no evidence of thoughtful
(22) decision about example selection.
Unusual An example that does not occur [To explain using 1,028 as an example]: “Well, the 1028’s
(21) often and may have odd or strange kind of like a little stand-out number because it’s — it’s
characteristics. large.”
Random Example is arbitrarily chosen, with | This code refers to what students consider random, rather
(12) the “randomness™ intentional to than true mathematical randomness: “For a problem like
highlight the likelihood of the this you want to pick random numbers. Not selected
conjecture being true. numbers.”
Conjecture | Example chosen to disprove the “l wanted to do numbers that were hard for it...it was less
Breaking conjecture; counterexample. likely for them to be divisible by 3, I think.”
(11)
Easy (11) Examples that are easy to operate on | [Prompt: So why did you try it out with 15?] “Because it’s
or compute with. an easy number to use.”
Known Student picks an example in which “A rectangle is a parallelogram, so that is four 90 degree
Case (9) properties or features pertaining to angles, which is 360.”
the conjecture are already known.
Boundary An extreme example or a special [Explaining the use of 0]: “You kind of have to try it with
Case (5) case example, such as the identity. every not possibility like, not like 3, you know, to, you
know, 100, but kind of like get down to the origin of the
number. Like 1 and then, you know, 0.”
Similar Set | Deliberate inclusion of examples [Prompt: Are these two (triangles) different or similar from
(3) similar to one another. each other?] “Similar, because they have same numbers in

two of the sides and different numbers in this side.”

Progression

()

First one type of example is chosen,
then student deliberately switches to
a different type, and may continue
switching to new types.

“You would first test a typical number to just see, like, okay
in general was this going to be true. And then if that — if he
was true on that, then you say, okay, then | would test a
more unusual number to just, like, to test his property.”

Favorite (2)

Example represents a favorite
number or shape.

“The only reason | picked 6 is because that’s my lucky
number.”

Unsurprisingly, we found evidence that students chose example types that were not always deliberate
or thoughtful: For instance, the categories first thought of, favorite number, and easy represented example
types that were not necessarily connected to the content of the conjecture at hand. These example types
also did not typically support the development of deductive arguments. However, these categories only
represented 18% of all of the example types. When examining the participants’ discussion of their
examples, we also found many cases of deliberate and thoughtful example choices, which we discuss

below.
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By far the most prevalent type of examples was the dissimilar set type; many participants indicated a
belief that choosing a variety of examples was a more reliable method of testing a conjecture. For instance,
one student explained the importance of choosing a dissimilar set:

You should find numbers that maybe aren’t as alike to test just so you have all kinds of differences
covered. Like when you’re maybe testing students for a survey, you want to have as many different
students and maybe different race, different families, and everything. Just a bigger background so
maybe you’ll get more accurate information.

The two students who used a progression of example types demonstrated similar reasoning by first
picking common numbers, then deliberately shifting to less common numbers.

The inclusion of a dissimilar set often resulted in a discussion about the importance of picking both
common and unusual examples. Some students indicated that unusual examples are more convincing than
other types of examples. For instance, one student, Eva, tested a conjecture that every even number added
to half of itself would be divisible by 3. She explained that she deliberately tested numbers that could only
be divided by 2, such as 10. Eva tested those unusual numbers because “it was less likely for them to be
divisible by 3, I think.” It is worth noting that in this case, a number such as 10 was unusual in Eva’s eyes
in relationship to the conjecture, even though 10 might not be an unusual number for her in general.
Unusual examples and boundary case examples both played an important role: they could lead to
conjecture breaking example types, and they were particularly convincing because if a conjecture held for
an unusual or extreme example, it may be more likely to be true overall.

There were some example types that were more strongly connected to proof development, such as
known cases and generic examples. Although deductive arguments were not solely developed through
these example types, known case examples and generic examples helped students reason through the
structure of the conjectures. For instance, Rodrigo examined Conjecture 4 (Table 1), and in order to better
understand the conjecture, he began with a known case example, the rectangle. Rodrigo knew that the
conjecture held true for a rectangle: “A rectangle is a parallelogram, so that is four 90-degree angles,
which is 360.” He then took the rectangle and adjusted it to think about how a new example would work
with the conjecture (Figure 2):

L -3cor @3

Figure 2: Rodrigo’s adjustment of the “known case” rectangleinto a new parallelogram

After examining the new example, he said, “Oh yes it would work for every one — this doesn’t really
matter any more.” Developing a generic example, Rodrigo explained further: “That’s just a random
drawing (Figure 3). It is a rectangle in disguise because you cut this off and you put this, over here, ta da!
And it becomes a rectangle. And rectangles, well, see, equals 360.”

Figure 3: Rodrigo’s generic example

By “random,” Rodrigo indicated that the particular nature of his example was not important because it
illustrated a more general point; hence, this example type was coded as generic rather than random. Across
the participant group, it is notable that 15% of the example types were generic in nature; it was the most
prevalent code, second only to dissimilar set. In general, the types of examples students chose in order to
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foster their understanding of the conjectures suggest that middle school students can and do engage in
deliberate and strategic example choices.

Example Uses

Students also demonstrated a variety of example uses. Each of the seven categories in Table 3 includes

a frequency, a definition, and a representative data example.

Table 3: Example Uses

Example Definition Data Example
Use
Check (69) [ Student selects examples to test whether “Just, you know, test, just to see if it actually does
the conjecture holds. work or not.”
Support a Student uses a generic example to “When you’re taking half of it, then that number is,
General describe a more general phenomenon in because it ends up being thirds. So it’s always going
Argument | support of a deductive proof. to be true because if you do...514. That’s always
(28) going to be 1208, which means that it’s broken up
into thirds, so no matter what it’s going to be
divisible by 3.”
Convince After checking the conjecture, student “You can’t be sure if you only test one number
(25) tries additional examples in order to because one number, because in almost every case
convince oneself or others that the there is exceptions to the stuff if it’s not true.”
conjecture must be true.
Understand | Student uses an example to make sense of | “Let’s try 5...okay. Those are the two that | needed.
(21) the conjecture; may lead to insights that Now | kind of know the logic behind it.”
support deductive proof.
Asked (19) | Student was asked to choose and S: “I’m totally convinced it’s true.” I: “You don’t
example; the only evidence that a student | even need to — do you need to test out any
produces an example is because s/he was | examples?” (Student shakes head.) I: “Okay. Let’s
explicitly asked to do so. say that you didn’t know it was true. Are there any
kinds of rectangles you would want to test it out on?”
Support Student offers examples as a justification | I: “Say that you wanted to show that this was always
Empirical of the truth of a conjecture. true.” S: “I would use these examples, and probably
Proof (9) a few more.”
Disprove Student tests an example in an attemptto | S: “Any whole number? Oh, | thought you just
(6) disprove the conjecture. meant even numbers. | wouldn’t think that’s true
then.” (Tries 9 to disprove). “Nine times 2 equals 18.
18 divided by 4 equals question mark.”

The most prevalent use of examples was in checking the correctness of a conjecture; 39% of the
example use instances occurred when students used examples to test conjectures. Part of this prevalence
may be due to the fact that students were encouraged to test examples during the interview. Checking
correctness occurred with many different example types, ranging from the first number thought of to

unusual examples to dissimilar sets. Among the other example uses, there were some connections between

how students used examples and the types of examples they employed. The strongest connection was
between generic examples and the support a general argument use. This link is unsurprising because the
purpose of a generic example is to illustrate a broader point. Similarly, using examples to disprove a
conjecture typically relied on conjecture breaking example types, but also occasionally made use of

boundary cases or unusual examples.

Another set of links emerged when students used examples to convince and understand. The example
types that students viewed as more convincing, such as dissimilar sets, unusual examples, and boundary
cases, were often the ones they employed when continuing to further check examples after an initial test.
For instance, Alyssa tested Conjecture 1 with the number 4, and found that it worked. She then explained
that she was not convinced: “I think I need to try it a few more times to make sure.” She indicated that she
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should try different numbers, such as both even and odd numbers, in order to really be sure the conjecture
would work. While testing a dissimilar set of examples in order to further convince herself that the
conjecture held true, Alyssa began to use the examples to understand the structure of the conjecture.
Through this process, she was then able to produce a general argument, using the initial example, 4, as a
generic example: “When you add the number before and the number after, those two numbers will equal
twice the first number I guess. Because, like, for 4 + 3 + 5, if you drop one off the 5...then 3 would kind of
be 4. So it’d be 4 + 4 + 4. Which would be, like, 12, or 4 times 3.” Alyssa’s general argument was not
unusual amongst the 20 participants; we coded students’ justifications as part of a larger study and found
that after exploring examples, students who attempted justifications were able to produce deductive
arguments or valid counterexamples a little over half the time.

It is worth noting that in 19 responses, students did not see a need to produce an example at all; this
typically occurred because the student already believed the conjecture to be true, and therefore not in need
of testing. For example, Andre was asked to consider the conjecture that for any triangle, the sum of the
length of any two sides are greater than the length of the third side. Andre did not see a need to test this
property because “That’s a property already proven by the, you know, the community.” This finding is in
contrast to previous results suggesting that students want to test conjectures even when presented with
their proofs (e.g., Chazan, 1993).

Conclusion

This study presented a framework of the example types and example uses middle school students
employed when making sense of, exploring, and attempting to prove conjectures. Our findings support
earlier studies suggesting that students’ uses of examples can play an important role in exploring and
understanding conjectures, as well as in potentially supporting the development of valid proofs (Alcock &
Inglis, 2008; Buchbinder & Zaslavsky, 2011; Pedemonte & Buchbinder, 2011). Moreover, our study
suggests that distinguishing between example types and example uses may be an important component in
better understanding students’ thinking with examples; this distinction can also provide a potential
structure for more in-depth analysis of how example type may be linked to example use in future studies.

One compelling finding was that many of the students who explored conjectures with multiple
examples were able to produce deductive arguments, valid counterexamples, or general arguments that
relied on generic examples. These results run counter to the many studies demonstrating K—16 students’
difficulties in producing valid mathematical proofs (e.g., Chazan, 1993; Healy & Hoyles, 2000). The fact
that the students were able to produce valid arguments after in-depth example exploration provides initial
evidence that strategic and thoughtful use of examples can indeed support the development of
mathematically appropriate proofs, even at the middle school level. This suggests the importance of
continuing to study the roles examples can play in supporting middle-school students’ learning to prove.

Acknowledgments

The authors wish to thank the other members of the IDIOM project team for their contributions to the
work. The research was supported in part by the National Science Foundation (NSF) under Award DRL-
0814710. The opinions expressed herein are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

References

Alcock, L. J., & Inglis, M. (2008). Doctoral students’ use of examples in evaluating and proving conjectures.
Educational Studiesin Mathematics, 69, 111-129.

Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics,
teachers, and children. London: Hodder & Stoughton.

Ball, D., Hoyles, C., Jahnke, H. N., & Movshovitz-Hadar, N. (2002). The teaching of proof. In L. I. Tatsien (Ed.),
Proceedings of the International Congress of Mathematicians (Vol. 111, pp. 907-922). Beijing: Higher Education
Press.

Van Zoest, L. R,, Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.



Mathematical Processes: Research Reports 142

Bieda, K. (2011). Enacting proof-related tasks in middle school mathematics: Challenges and opportunities. Journal
for Research in Mathematics Education, 41(4), 351-382.

Buchbinder O., & Zaslavsky O. (2009). A framework for understanding the status of examples in establishing the
validity of mathematical statements. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the
33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 225-232).

Buchbinder, O., & Zaslavsky, O. (2011). Is this a coincidence? The role of examples in creating a need for proof.
ZDM — Zentralblatt fuer Didaktik der Mathematik, 43(2), 269-281.

Chazan, D. (1993). High school students’ justification for their view of empirical evidence and mathematical proof.
Educational Studiesin Mathematics, 24(4), 359-387.

Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Retrieved from
http://www.corestandards.org

Ellis, A. B. (2007). Connections between generalizing and justifying: Students’ reasoning with linear relationships.
Journal for Research in Mathematics Education, 38(3), 194-229.

Epp, S. (1998). A unified framework for proof and disproof. Mathematics Teacher, 91(8), 708—713.

Epstein, D., & Levy, S. (1995). Experimentation and proof in mathematics. Notices of the AMS, 42(6), 670-674.

Harel, G., & Sowder, L. (1998). Students’ proof schemes. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.),
Research on Collegiate Mathematics Education (Vol. II1, pp. 234-283). Providence, RI: American Mathematical
Society.

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics
Education, 31, 396-428.

Lappan, G., Fey, J. T., Fitzgerald, W. M., Friel, S. N., & Phillips, E. (2002). Getting to know Connected
Mathematics: An implementation guide. Glenview, IL: Prentice-Hall.

Marrades, R., & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic
computer environment. Educational Studies in Mathematics 44(1/2), 87-125.

Michener, E. (1978). Understanding understanding mathematics. Cognitive Science, 2(4), 361-383.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA:
Author.

Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving processes through a cognitive
lens: The case of triangular numbers. ZDM, 43(2), 257-267.

Polya, G. (1954). Induction and analogy in mathematics. Princeton, NJ: Princeton University Press.

Porteous, K. (1990). What do children really believe? Educational Sudies in Mathematics, 21, 589-598.

Simon, M. A., & Blume, G. (1996). Justification in the mathematics classroom: A study of prospective elementary
teachers. Journal of Mathematical Behavior, 15, 3-31.

Van Dormolen, J. (1977). Learning to understand what a proof really means. Educational Sudiesin Mathematics, 8,
27-34.

Waring, S. (2000). Can you prove it? Devel oping concepts of proof in primary and secondary schools. Leicester, UK:
The Mathematical Association.

Watson, A., & Mason, J. H. (2001). Getting students to create boundary examples. MSOR Connections, 1(1), 9-11.

Van Zoest, L. R,, Lo, J.-J., & Kratky, J. L. (Eds.). (2012). Proceedings of the 34th annual meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education. Kalamazoo, MI: Western Michigan University.



Mathematical Processes: Research Reports 143

TWO FORMS OF REASONING ABOUT AMOUNTS OF CHANGE
IN COVARYING QUANTITIES
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This paper addresses how secondary students might reason about amounts of change in covarying
guantities. Two empirically based forms of covariational reasoning are distinguished. The first form—
reasoning about quantities as varying simultaneously and independentl y—supports tandem comparison of
amounts of change. The second form—coordination of change in one quantity with change in a related
guantity—supports coordinated comparison of amounts of change. By expanding the mental actions of
Carlson et al.’s (2002) covariation framework, these forms of reasoning provide finer grained distinctions
in the “ Quantitative Coordination” level of covariational reasoning. Distinctions made between these
forms of reasoning might help to explain how students could begin from informal reasoning to transition to
more formal reasoning about average and instantaneous rate of change.

Keywords: Algebra and Algebraic Thinking; Reasoning and Proof; High School Education

A student reasoning covariationally would be mentally “coordinating two varying quantities while
attending to the ways in which they change in relation to each other” (Carlson, Jacobs, Coe, Larsen, &
Hsu, 2002, p. 354). By conducting fine-grained investigations with secondary students, researchers have
articulated the nature of relationships that students might make between covarying quantities (Johnson,
2012; Saldahna & Thompson, 1998). These articulations provide landmarks within a continuum of
reasoning about covarying quantities.

This paper draws on two empirically based forms of secondary students’ reasoning about amounts of
change in covarying quantities to expand the mental actions of Carlson et al.’s (2002) covariation
framework. These forms of reasoning make finer grained distinctions in the “Quantitative Coordination”
level of covariational reasoning. Distinctions made between these forms of reasoning might provide insight
into how students could begin from informal reasoning to transition to more formal reasoning about
average and instantaneous rate of change.

A Brief Overview of the Covariation Framework (Carlson et al., 2002)

Consideration of undergraduate and beginning graduate students’ responses to tasks involving
recognizing and characterizing how changes in one variable affected change in another variable (Carlson,
1998) led to the development of a covariation framework. The covariation framework (Carlson et al.,
2002) provides a continuum of mental actions supporting five levels of covariational reasoning, with each
level increasing in sophistication: Coordination, Direction, Quantitative Coordination, Average Rate and
Instantaneous Rate. Researchers infer underlying mental actions from certain behaviors associated with
each level of covariational reasoning. Classifying a student as reasoning covariationally at a particular
level means that the student is able to perform mental actions supporting not only that level, but also all
preceding levels of covariational reasoning (Carlson et al., 2002).

For the purposes of this paper, I focus on the Quantitative Coordination (QC) and Average Rate (AR)
levels. The QC level supports the mental action of coordinating an amount of change in one quantity with
the change in another quantity (Carlson et al., 2002). For example, a student who related amounts of
change in volume to changes in height would provide evidence of reasoning at the QR level. The AR level
supports the mental action of coordinating an average rate of change in one quantity with uniform change
in another quantity (Carlson et al., 2002). For example, a student who related the rate of change in volume
with respect to height to uniform changes in height would provide evidence of reasoning at the AR level.
In a study of college calculus students, Carlson et al. (2002) found that even after students took a course
focusing on rate and varying rate, students consistently applied covariational reasoning at the QC level, but
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not at the AR level. Further explication of the QC level of covariational reasoning might help to account
for variation in the students’ reasoning and suggest whether or not students’ reasoning might advance to
levels of Average (AR) and Instantaneous Rate (IR).

A key distinction between the QC and AR levels is the consideration of an amount of change (QC)
versus the consideration of a rate of change (AR). In this paper, I provide two distinct forms of QC level
reasoning that seem to support the addition of finer-grained mental actions to the covariation framework.
These additional mental actions further explicate what it could mean to coordinate an amount of change in
one quantity with change in another quantity.

Two Forms of Reasoning about Amounts of Changein Covarying Quantities

In this section I articulate both forms of reasoning, providing empirical support for each. I draw on
three secondary students’ (Austin, Jacob, and Hannah—names are pseudonyms) work on a task relating
the typical high temperature of a city to the day of the year (see Fig. 1). Austin and Jacob were 11th
graders enrolled in a Precalculus course and Hannah was a 10th grader enrolled in a Geometry course. The
task required students to investigate how the typical high temperature varied as the day of the year varied.
Each student worked on the task during an individual clinical interview (Clement, 2000), for which I
served as the interviewer.
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Figure 1: Dynamic Cartesian graph

The task incorporated a dynamic Cartesian graph (see Fig. 1) created using Geometer’s Sketchpad
Software (Jackiw, 2001). A student interacting with the graph could click and drag on the active point or
press one of the animation buttons. As the day of the year changed, the corresponding typical high
temperatures changed accordingly. As part of this task, I asked each student to use the graph to make a
prediction about how the typical high temperature would continue to increase or decrease as the day of the
year changed. Because the interviews were semi-structured, the actual prompt varied from student to
student based on his or her individual work.

I employ an actor-oriented perspective (Lobato, 2003) when investigating students’ reasoning about
covarying quantities. By quantity, I mean an individual’s conception of a “quality of an object in such a
way that this conception entails the quality’s measurability” (Thompson, 1994, p. 184). For example, a
student could conceive of area as a quantity measuring an amount of flat surface being covered. By
covarying quantities, I mean quantities that are changing together. For example, as a square is being
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enlarged, its side length and area are varying together. Drawing on students’ explanation, written work,
and gestures, | make claims about the mental actions involved in students’ reasoning.

Changing Simultaneously and Independently

In the excerpt that follows, Austin used amounts of change in temperature and days to make claims
about how the decreasing temperature is changing as the day of the year varied. When Austin used the
word slope, he was referring to an association of an amount of days with an amount of degrees.

Interviewer: And when it decreases, if you had to describe for me, as it’s going along, how is it
decreasing as it’s going along?

Austin: It just starts, like it’s kind of rounded, or it’s going more days for the temperature. It’s kind of
staying hot for a while and then once it starts to get close to say two hundred forty, two hundred
thirty days, then it starts to decrease pretty much at that same constant rate as the other side as it
increased.

Interviewer: And so, when you talk to me about decreasing, can you tell me what’s decreasing?

Austin: The temperature is decreasing with the amount of days you go on from that top two hundred
days.

Interviewer: So in the top here, how is that temperature decreasing?

Austin: From day two hundred to my line there [longest horizontal segment shown in Fig. 2], it’s

close to about two hundred fifty, so in fifty days it’s decreasing about seven degrees, which isn’t
that much. Il write that down. It’s fifty degrees in seven days there. [Writes % ¢o="]

Interviewer: So suppose | were to ask you to consider the interval between day two hundred and day
two twenty. How do you think that change would compare to this fifty days and seven degrees?

Austin: 1’d say it’d be, it would change a little less because there’s more or, there’s less of a slope in
those twenty days compared to that section there.

Interviewer: Can you show me? You can use the card [Austin had been using a note card as a
straightedge], or just show me what you mean by less.

Austin: You could just say like if I drew a line here, [Draws in the upper left set of horizontal and
vertical segments shown in Fig. 2] it’s changing a little, a lot less than compared to that. [Draws in
the lower left set of horizontal and vertical segments shown in Fig. 2.]

Interviewer: And how does that affect the, how does that relate to the changing temperature?

Austin: It’s just going to have a steeper slope, which means the more days, or the least, the lesser
amount of days, compared; it takes for the temperature to drop a certain amount.

Figure 2: Line segments Austin drew to represent the changing amounts of temperature and days

To determine how the temperature might continue to decrease, Austin specified an interval of days and

then compared the amount of change in temperature to the amount of change in days. He determined
particular numeric amounts of change because he could compare the lengths of horizontal and vertical
segments. With either specifying or not specifying numerical amounts, he used an interval, determined
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amounts of change in each quantity, and compared those amounts of change in the interval. Although not
included in this excerpt, he did use division to compare the amounts of change in temperature and days.
However, even when he used division, he interpreted the result as an amount of days per one degree of
change in temperature, thereby preserving both individual quantities. Using Carlson et al.’s (2002)
covariation framework, Austin was reasoning at the QC level, because he related amounts of change in
covarying quantities.

Austin’s reasoning shared similarities with Jacob’s reasoning. In the excerpt that follows, Jacob
determined an average rate of change in temperature per day for a five-day interval. He chose other five-
day intervals that he predicted might have the same average rate of change, and then calculated the average
rate of change on those intervals to make comparisons.

Interviewer: So if you were to determine an average change per day between days one ninety and one
ninety-five, how would you figure that out, between one ninety and one ninety-five?

Jacob: Okay, well I’d take um, minus one ninety and I’ll just do one ninety-five. Day one ninety-five
has the high of eighty-seven point eight-nine, nine eight, (87.98) and one-ninety is a change of
eighty-seven. Er, it doesn’t have a change it has a temperature of eighty-seven point eight four
(87.84). So to find change, ninety-eight minus eighty-four is point one four (0.14) that is for five
days worth. So | would take point one four (0.14) divided by five to find the change in days, like
per day so it changes point zero eight, two eight per day (0.028).

Interviewer: Are there any other time periods on the graph when you might expect an increase of point
zero two eight (.028) degrees per day?

Jacob: Uh huh. Whenever, I’ll go back to the beginning. Um, I’d say maybe somewhere around here.
We’ll say, we’ll make it nice and make it forty. We’ll try this.

Interviewer: Can you tell me why you picked this day?

Jacob: I just thought it looked like it wasn’t moving up much.

Interviewer: And can you tell me how you determine if something looks like it’s not moving up much?

Jacob: Um, yeah, it moves over a lot more than it moves up, so it means that it is not getting that much
hotter as the days go on. But since it’s curved inwards instead of outwards, | don’t know if that is
going to affect it, but I’m just going guess and write it down. Day, | would write day for the rest
and the high was fifty-one point seven four (51.74). Day thirty-five, fifty-one point one (51.1),
point six four (.64) difference for five days that is a lot bigger than this, point six four (.64) divided
by five is somewhere around, yeah, point one two eight (.128) so that is a lot bigger I was wrong
then, I’ll go five more days, | hope so, | will be right this time.

Interviewer: Why are you moving left?

Jacob: Because if | went right it’s getting greater, the intervals between each five days is getting
bigger, because earlier | forget where | said it, yeah, here, it is moving up by about six point two
degrees (6.2) every twenty days. ... Six point two (6.2) divided by twenty, about point three one
(.31), and up here it is just point zero one five (.015), so | don’t, | don’t see what’s the point of
even trying to go up because | know it is just going to get greater. So | will try, what day is this,
thirty, fifty point, fifty point six one (50.61)... Fifty-one point one four (51.14) minus fifty point
six one (50.61), point five three (.53). | don’t know what that was—and so that’s for five days so
divide that by five so per day it changes point one zero six (0.106), that’s still not even close. Let’s
go all the way back to the beginning day, it starts at day one and day six, I’ll make another chart.
How many do | have now, five? Yeah. Day one, day six, we have fifty point five three (50.53).
Day six, fifty point two two (50.22), difference of, | am just going to use the calculator because |
know what | want to say, point three one (.31) divided by five, point zero six two (.062). So | was
wrong, we are probably not going to have a change like this. But that is kind of close, | guess, but
that is as close as it is going to get. It just gets bigger and bigger as it is going, until it gets up to
the top.
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To determine how the average rate of change in temperature given a five-day interval might compare
to 0.028 degrees per day, Jacob calculated the average rate of change in different five-day intervals. As
indicated by his comment about being “curved inwards instead of outwards,” he identified curvature as a
physical attribute of the graph. He could use the shape of the graph to make some informed choices about
where to begin his calculations. However, he was not able to use curvature to make sense of the varying
average rate of change in temperature per day because his focus was on the results of his calculations.
When his calculations did not support his hypotheses, he assumed that it was not possible to have another
interval with the same average rate of change in degrees per day. Using Carlson et al.’s (2002) covariation
framework, Jacob was reasoning at the AR level, because he considered the rate of change of temperature
with respect to time for equal amounts of time (five-day intervals).

Together, Jacob and Austin’s responses provide empirical support for reasoning about covarying
quantities as changing simultaneously and independently (see also Johnson, in press). This way of
reasoning involves the simultaneous varying of quantities such that both are changing in tandem. Using
this form of reasoning, a student could compare amounts of change in one quantity with amounts of
change in another quantity in uniform or nonuniform intervals. A student could also use this way of
reasoning to compare average rates of change in one quantity with respect to another quantity in uniform
or nonuniform intervals. When using this form of reasoning, a student begins by forming intervals. In
doing so, a student can compare amounts of change (or average rates of change) across intervals.
Comparing variation in amounts of change in an interval would not be the student’s goal. Instead, the
student’s goal is to find an amount of change (or average rate of change) in an interval, making varying
change in the interval irrelevant.

Changing with Respect to Another Quantity

In the excerpt that follows, Hannah attended to variation in the intensities of increases and decreases in
typical high temperature with respect to changes in amounts of days. Her reasoning stands in contrast to
Austin’s and Jacob’s because she did not work from calculations to make claims about changes in the
typical high temperature. Instead, she used descriptors such as “increases are increasing,” “steady
increase,” and “increase its decrease” to indicate the variation in the intensity of an increase or decrease.

Interviewer: And so if you were to take a look over the whole year and talk to me about when the
temperature, the typical high is changing the most or the least?

Hannah: The typical high changing the least would be like at the peak [Makes a circling motion
around the maximum of the graph shown in Fig. 1] like near the one hundred ninety-seventh day,
but like the least, or the most change would be around right here [Motions to the part of the graph
near day 60], like where the steady increase is going [Slides her finger along the graph until about
day 120], and like same on the other side, like around in there. [Motions to the part of the graph
near day 300.] The peak is more like the least change.

Interviewer: And if you also had to talk about a range of days, and you talked about increasing
increases,

Hannah: Mhmm.

Interviewer: When do you think, does it seem like those increases are increasing?

Hannah: Um, it looks like the increases are increasing right here [Motions to the part of the graph
between days 60 and 120.] and then like the increases decreasing would be up closer to the point
[Referring to the active point which is on day 197].

Interviewer: When does it seem like the change happens from increasing increases to decreasing
increases?

Hannah: It seems like it really changes before the steady increase. It’s where the increase increases
and after the steady thing is where it starts to change to decreasing the increase.

Interviewer: And what about the decreases?

Hannah: The decreases is pretty much the same, like as the increases, except this is where [Points to
the part of the graph to the right of the maximum] it starts to decrease its increase, or decrease its
decrease, or no, increase its decrease, so that the other side towards the end [Points to the right
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most portion of the graph] would be where it’s, the smaller decreases come.

Interviewer: Could you explain to me increase its decrease, just to make sure I’m understanding how
you are thinking about these things?

Hannah: Like for, on the decrease side, around, like right after the point [the maximum], like where
the highest high is. Right after that the decrease is larger than what’s after it. So the decrease starts
off bigger and then as it goes on the decrease gets smaller. And then it goes into that steady one
and then eventually the steady one goes smaller.

To determine how the intensity in the increases and decreases might vary, Hannah drew on the
curvature of the graph to make claims regarding the intensity of the change. Hannah’s work extends
beyond noticing a physical attribute of the graph, because she could use an attribute (curvature) to make
claims about variation in the increases and decreases in amounts of temperature. Using Carlson et al.’s
(2002) covariation framework, Hannah was reasoning at the QC level, because she related amounts of
change in covarying quantities. Although she attended to variation in the intensity of increases and
decreases, she provided no evidence of considering average rate of change in temperature with respect to
change in days.

Hannah’s response provides empirical support for reasoning about covarying quantities such that one
quantity changes with respect to changes in another quantity (see also Johnson, 2012). Using this way of
reasoning, a student could vary one quantity (using uniform or nonuniform increments) and investigate
how another quantity is changing with respect to that variation. Unlike a student reasoning about covarying
quantities as changing simultaneously and independently (e.g., Austin & Jacob), a student reasoning about
covarying quantities such that one quantity changes with respect to changes in another quantity (e.g.,
Hannah) does not necessarily form intervals to determine and compare amounts of change.

Expanding Carlson et al.’s (2002) Covariation Framework

Reasoning about covarying quantities such that one quantity changes with respect to changes in
another quantity supports students’ consideration of variation in intensity of quantity indicating a
relationship between varying quantities. At the heart of this way of reasoning is the coordination of the
covarying quantities such that one quantity is changing with respect to another quantity. In contrast,
reasoning about covarying quantities as changing simultaneously and independently supports students’
linearization of nonlinear situations, but does not support students’ consideration of variation in intensity
of a rate of change in a single interval. As evidenced by Jacob’s work, reasoning about covarying
quantities as changing simultaneously and independently could support covariational reasoning at the AR
level. However, it seems unlikely that a student’s mental actions would support reasoning about
instantaneous rate of change.

I propose that the Carlson et al.’s (2002) covariation framework be expanded to account for students’
reasoning about covarying quantities as changing simultaneously and independently (e.g., Austin & Jacob)
or about covarying quantities such that one quantity changes with respect to changes in another quantity
(e.g., Hannah). Using the current framework, Hannah and Austin were both reasoning at the same level
(QC). However, these students were coordinating amounts of change in covarying quantities in very
different ways. Making distinctions between the ways in which students coordinate amounts of change in
covarying quantities can create two paths to the subsequent levels of Average (AR) and Instantaneous Rate
(IR). Table 1 indicates two distinctions (Type 1 and Type 2) in the QC level of the covariation framework.
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Table 1. Expanding the Covariation Framework

Level of Mental Action Behaviors
Covariational
Reasoning
Quantitative “Coordinating each amount of “Plotting points/constructing secant lines”
Coordination: change of one variable with changes “Verbalizing awareness of the variable
Existing in the other variable” amounts of change of the output while
(Carlson et al., 2002, p. 357) considering changes in the input”
(Carlson et al., 2002, p. 357)
Quantitative Coordinating amounts of change in Specifying intervals (uniform or
Coordination quantities such that the quantities are nonuniform), determining amounts of
Expansion: varying simultaneously and change in those intervals, and comparing
Type 1l independently those amounts of change
Using amounts of change to make claims
about covarying quantities
Quantitative Coordinating amounts of change in Allowing one quantity to change with
Coordination quantities such that change in one respect to another quantity
Expansion: quantity depends on change in Describing variation in the intensity of
Type?2 another quantity change in covarying quantities

By making these distinctions in the QC levels, students’ transitioning to more advanced levels of
covariational reasoning might be more closely examined. Students engaging in QC Type 1 covariational
reasoning seem likely to advance differently to the levels of AR and IR than would students engaging in
QC Type 2 covariational reasoning. For example, Jacob reasoned in a way consistent with QC Type 1 and
provided evidence of reasoning at the AR level. To extend to the IR level of covariational reasoning, a
student could begin by shrinking the interval on which average rate of change is being determined. In
Jacob’s work on the task, he was able to shrink the interval when prompted. However, his goal was not to
shrink the interval because his focus was comparing average rates of change in different intervals. In
contrast, it made sense for Hannah to consider smaller intervals because for her the change in temperature
was dependent on the change in the day of the year. Future research might investigate how students using
these different types of QC covariational reasoning advance to AR and IR levels of covariational

reasoning.
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Examples play a critical role in mathematical practice, particularly in the exploration of conjectures and
in the subsequent development of proofs. Although proof has been an object of extensive study, therole
that examples play in the process of exploring and proving conjectures has not received the same
attention. In this paper, we present a framework that characterizes ways in which mathematicians utilize
examples when investigating conjectures and developing proofs. The data consist of 133 mathematicians'
responses to two open-ended survey questions. The framework offers categories for the types of examples,
uses of examples, and example strategies that mathematicians discussed in reference to their work with
conjectures. In addition to presenting the framework, we also discuss potential educational implications of
the results.

Keywords: Advanced Mathematical Thinking, Reasoning and Proof

I ntroduction

A perennial concern in mathematics education is that students fail to understand the nature of evidence
and justification in mathematics (Kloosterman & Lester, 2004). Mathematics education scholars have
suggested that students’ struggles with understanding the nature of evidence and justification may be due,
in large part, to their views concerning the role of examples; in particular, students tend to be overly reliant
on examples and often infer that a (universal) mathematical statement is true on the basis of checking a
number of examples that satisfy the statement (e.g., Healy & Hoyles, 2000; Knuth, Choppin, & Bieda,
2009; Porteous, 1990). One approach designed to help students overcome their overreliance on examples is
to help them understand the limitations of examples as a means of justification and thus appreciate the
need for a proof (e.g., Harel & Sowder, 1998; Stylianides & Stylianides, 2009; Zaslavsky, Nickerson,
Stylianides, Kidron, & Winicki, in press). Although such an approach may indeed help students understand
the limitations of example-based reasoning as well as appreciate the need for proof, it characterizes
example-based reasoning strategies as obstacles to overcome. Given the essential role examples play in the
exploration of conjectures and in subsequent proof attempts, we suggest that example-based reasoning
strategies should not be positioned only as barriers. The field may benefit from a greater understanding of
the ways in which those who are adept at proof, such as mathematicians, leverage examples in order to
support their thinking and activity.

Although the role of examples in learning mathematics has received attention in the literature (cf.,
Bills & Watson, 2008), considerably less attention has been directed toward the specific roles examples
play in e