BCollegeBoard

Validity of the SAT ${ }^{\circledR}$ for Predicting First-Year Grades: 2013 SAT Validity Sample

Jonathan Beard, associate psychometrician
Jessica Marini, associate research scientist

Executive Summary

The continued accumulation of validity evidence for the intended uses of educational assessment scores is critical to ensuring that inferences made using the scores are sound. To that end, the College Board has continued to collect college outcome data to evaluate the relationship between SAT ${ }^{\circledR}$ scores and college success. This report provides updated validity evidence for using the SAT to predict first-year college grade point average (FYGPA) for the 2013 cohort. It is important to note that a redesigned SAT was launched in March 2016. All data and references in this document to the SAT refer to the version previous to the 2016 redesigned SAT.

Colleges and universities (henceforth, "institutions") provided data on the cohort of first-time, first-year students enrolling in the fall of 2013. The College Board combined those college outcomes data with official SAT scores and SAT Questionnaire response data, which included students' self-reported high school grade point average, among other things. In particular, 162 institutions provided data on 306,713 students, 221,485 of whom had complete data on high school grade point average (HSGPA); SAT critical reading (SAT-CR), mathematics (SAT-M), and writing (SAT-W) scores; and FYGPA.

As has been shown in previous research (Beard \& Marini, 2015; Kobrin, Patterson, Shaw, Mattern, \& Barbuti, 2008; Patterson, Mattern, \& Kobrin, 2009; Patterson \& Mattern, 2011; 2012; 2013a; 2013b), the multiple correlation of SAT section scores and HSGPA with FYGPA continues to be strong for the 2013 cohort ($r=.61$). When compared with the correlation of HSGPA alone with FYGPA ($r=.53$), the addition of the SAT section scores to HSGPA represented an increase ($\Delta r=.08$) in the correlation with FYGPA. The patterns of differential validity by institutional and student characteristics and differential prediction by student characteristics for the 2013 cohort also follow the same general patterns, as has been shown in previous research (Beard \& Marini, 2015; Mattern, Patterson, Shaw, Kobrin, \& Barbuti, 2008; Patterson et al., 2009; Patterson \& Mattern, 2011; 2012; 2013a; 2013b).

Note that this statistical report is the latest in a series that provides SAT validity evidence. The results continue to add to the previously published reports (Beard \& Marini, 2015; Patterson, Mattern, \& Kobrin, 2009; Patterson \& Mattern, 2011; 2012; 2013a; 2013b). For further detail regarding the methods used, the original research reports are available (Kobrin, Patterson, Shaw, Mattern, \& Barbuti, 2008;

Mattern, Patterson, Shaw, Kobrin, \& Barbuti, 2008). For further details regarding the interpretation of validity research and a summary of recent SAT validity evidence, a validity primer (Shaw, 2015) and synthesis of validity research are available (Mattern \& Patterson, 2014).

Contents

Tables
Table 1: Distribution of Institutional Characteristics 5
Table 2: Descriptive Statistics for Total Sample 5
Table 3: Fixed (Raw) Correlation Matrix of SAT, HSGPA, and FYGPA 6
Table 4: Corrected (Raw) Multiple Correlations of Predictors with FYGPA 7
Table 5: Descriptive Statistics of Study Variables by Institutional Characteristics 11
Table 6: Corrected Correlations of SAT and HSGPA with FYGPA by Institutional Characteristics 12
Table 7: Descriptive Statistics of Study Variables by Student Characteristics 13
Table 8: Corrected Correlations of SAT Scores and HSGPA with FYGPA by Student Subgroups 15
Table 9: Average Overprediction (-) and Underprediction (+) of FYGPA for SAT Scores and HSGPA 17
Figures
Figure 1: Mean FYGPA by SAT score band 8
Figure 2: Percentage of students earning FYGPA of a B or higher by SAT score band 9
Figure 3: Incremental validity of the SAT: Mean FYGPA by SAT score band controlling for HSGPA 10
References 19
Appendix A: Institutions Providing First-Year Outcomes Data for the 2013 Cohort 20
Appendix B: Raw Correlations of SAT and HSGPA with FYGPA by Institutional Characteristics 22
Appendix C: Raw Correlations of SAT Scores and HSGPA with FYGPA by Subgroups 23
About the College Board 24

Table 1: Distribution of Institutional Characteristics

Institutional Characteristic		$\%$
U.S. Region	Midwest	17
	Mid-Atlantic	23
	New England	12
	South	19
	Southwest	12
	West	16
Control	Public	46
	Private	54
Admittance Rate	Under 50\%	22
	50% to 75%	51
	Over 75\%	27
Undergraduate Enrollment	Small	19
	Medium	40
	Large	19
	Very Large	22

Note: Number of institutions $(K)=162$. Percentages may not sum to 100 due to rounding. Undergraduate enrollment was categorized as follows: small: 750 to 1,999; medium: 2,000 to 7,499; large: 7,500 to 14,999; and very large: 15,000 or more.

- Table 1 shows that the sample of 162 four-year institutions was diverse with respect to region of the U.S., control, size, and undergraduate admittance rate.

Table 2: Descriptive Statistics for Total Sample

Variable	\boldsymbol{M}	$\boldsymbol{S D}$
HSGPA	3.65	0.486
SAT-CR	554	98.3
SAT-M	574	101.0
SAT-W	548	99.8
FYGPA	3.04	0.714

Note: Number of students $(N)=221,485$.

- When compared to the 2012 cohort, Table 2 shows similar mean performance for high school grade point average (HSGPA) and first-year grade point average (FYGPA) for the 2012 cohort, with means differing by at most 0.03. The mean SAT section scores are also quite similar, differing by no more than one point for any one section (Patterson \& Mattern, 2013b; Beard \& Marini, 2015).
- When compared with the population of all college-bound SAT takers expecting to graduate in 2013 ($n=1,660,047$)-whose mean and standard deviation (SD) SAT critical reading (SAT-CR), mathematics (SAT-M), and writing scores (SAT-W) were 496 (115 SD), 514 (118 SD), and 488 (114 SD), respectively (College Board, 2013)-the sample in this study performed better in terms of SAT section scores. Given that students in this subsample not only chose to take the SAT-as did the population of over 1.6 million college-bound seniors-but also applied to, enrolled at, and earned grades at a four-year institution, their higher mean SAT section scores followed the expected pattern.

Table 3: Fixed (Raw) Correlation Matrix of SAT, HSGPA, and FYGPA

Variable	HSGPA	SAT-CR	SAT-M	SAT-W	FYGPA
HSGPA		.45	.49	.48	.53
SAT-CR	$(.20)$.73	.85	.47
SAT-M	$(.22)$	$(.51)$.75	.48
SAT-W	$(.22)$	$(.70)$	$(.53)$.51
FYGPA	$(.34)$	$(.27)$	$(.27)$	$(.32)$	

Note: Number of students $(N)=221,485$. Pooled within-institution, restriction of range corrected correlations are presented. The raw correlations are shown in parentheses.

- Table 3 shows the restriction of range corrected and raw correlations among the four predictors examined in this study: HSGPA, SAT-CR, SAT-M, and SAT-W, as well as FYGPA. In general, SAT sections were more highly correlated with other sections than with HSGPA, and this is most prominent in the correlation of SAT-CR and SAT-W.
- The bivariate correlations shown in Table 3 are similar to what was estimated in previous research (Beard \& Marini, 2015; Kobrin et al., 2008; Patterson et al., 2009; Patterson \& Mattern, 2011; Patterson \& Mattern, 2012; Patterson \& Mattern, 2013a, 2013b).
- Consistent with prior research, the SAT writing section had the highest correlation with FYGPA among the three SAT section scores (Beard \& Marini, 2015; Kobrin et
al., 2008; Patterson et al., 2009; Patterson \& Mattern, 2011; Patterson \& Mattern, 2012; Patterson \& Mattern, 2013a, 2013b).

Table 4: Corrected (Raw) Multiple Correlations of Predictors with FYGPA

Predictor(s)	Correlation
1. SAT-M, SAT-CR	$.52(.31)$
2. HSGPA, SAT-M, SAT-CR	$.60(.42)$
3. SAT-CR, SAT-M, SAT-W	$.54(.35)$
4. HSGPA, SAT-CR, SAT-M, SAT-W	$.61(.43)$

Note: Number of students $(N)=221,485$. Multiple correlations are based on the raw and corrected correlations presented in Table 3. The raw correlations are shown in parentheses.

- SAT-CR, SAT-M, and SAT-W jointly have a similar multiple correlation with FYGPA (.54) as does HSGPA with FYGPA (.53). It is, however, the inclusion of all four predictors that leads to the strongest linear relationship with FYGPA; namely a multiple correlation of .61 .

Figure 1: Mean FYGPA by SAT score band

Note: SAT score bands are based on the sum of SAT-CR, SAT-M, and SAT-W. Sample sizes by SAT score band were as follows:

SAT	\boldsymbol{n}
$600-1190$	8,296
$1200-1490$	49,387
$1500-1790$	87,931
$1800-2090$	62,788
$2100-2400$	13,083

- Figure 1 shows graphically the positive relationship between the composite SAT score band (i.e., sum of SAT-CR, SAT-M, and SAT-W, grouped into meaningful categories) with mean FYGPA. In particular, the difference in mean FYGPA between the highest score band (2100-2400) and the lowest (600-1190) was 1.14. In other words, students in the highest SAT score band earned, on average, an FYGPA of Acompared to students in the lowest SAT score band, who had an average FYGPA of C+.

Figure 2: Percentage of students earning FYGPA of a B or higher by SAT score band

Note: SAT score bands are based on the sum of SAT-CR, SAT-M, and SAT-W. Students whose FYGPA was ≥ 3.00 were considered to have earned a B or better. Sample sizes by SAT score band were as follows:

SAT	\boldsymbol{n}
$600-1190$	8,296
$1200-1490$	49,387
$1500-1790$	87,931
$1800-2090$	62,788
$2100-2400$	13,083

- Figure 2 shows graphically the positive relationship between the percentage of students earning at least a B (i.e., 3.0 FYGPA or higher) in their first year of college with the composite SAT score band. In particular, over three and a half times the number of students in the highest SAT score band (2100-2400) earned at least a B, relative to those in the lowest (600-1190).

Figure 3: Incremental validity of the SAT: Mean FYGPA by SAT score band controlling for HSGPA

Note: SAT score bands are based on the sum of SAT-CR, SAT-M, and SAT-W. HSGPA ranges were defined as follows:

"A" range:	$4.33(A+), 4.00(A)$, and $3.67(A-)$
"B" range:	$3.33(B+), 3.00(B)$, and $2.67(B-)$
"C or Lower" range:	$2.33(C+)$ or lower

Sample sizes by HSGPA and SAT score band were as follows:

	HSGPA		
SAT	C or Lower	B	A
$600-1190$	942	5,188	2,166
$1200-1490$	2,372	25,825	21,190
$1500-1790$	1,149	26,880	59,902
$1800-2090$	255	9,702	52,831
$2100-2400$	21	920	12,142

- Figure 3 shows the relationship of composite SAT score band with mean FYGPA at different levels of HSGPA. For each level of HSGPA, higher composite SAT score bands are associated with higher mean FYGPAs, thus demonstrating the value of SAT above and beyond HSGPA in the prediction of FYGPA.
- Consider, for example, two students with HSGPAs in the A range. The one whose SAT composite was 600-1190 was expected to earn an FYGPA of 2.6, which translates to roughly a B-, while the other student, whose SAT composite was 21002400, was expected to earn an FYGPA of 3.6 , which translates to roughly an A-.

Table 5: Descriptive Statistics of Study Variables by Institutional Characteristics

				SAT-CR		SAT-M		SAT-W		HSGPA		FYGPA	
Institutional Characteristic		k	n	M	SD								
Control	Private	87	60,595	575	98.7	593	99.3	573	100.8	3.67	0.471	3.18	0.594
	Public	75	160,890	546	97.0	567	100.7	538	97.7	3.64	0.491	2.99	0.748
Admittance Rate	Under 50\%	36	55,747	609	88.9	635	87.0	610	91.4	3.85	0.374	3.26	0.537
	50\% to 75\%	82	130,737	543	93.6	562	96.0	533	93.5	3.63	0.483	3.00	0.741
	Over 75\%	44	35,001	511	93.3	520	93.0	501	89.7	3.41	0.529	2.86	0.775
Undergraduate Enrollment	Small	31	8,364	536	100.0	540	98.3	526	98.2	3.54	0.530	3.03	0.688
	Medium	64	40,876	541	103.8	554	104.6	536	104.4	3.55	0.521	3.03	0.733
	Large	31	53,155	550	100.8	566	105.1	544	104.2	3.59	0.502	3.01	0.729
	Very Large	36	119,090	562	94.3	586	95.9	555	95.5	3.72	0.450	3.07	0.701
Total		162	221,485	554	98.3	574	101.0	548	99.8	3.65	0.486	3.04	0.714

Note: k : number of institutions, n : subgroup sample size. Undergraduate enrollment was categorized as follows: small: 750 to 1,999; medium: 2,000 to 7,499; large: 7,500 to 14,999; and very large: 15,000 or more.

- Table 5 provides summary statistics on the key study variables by institutional characteristics.
- It shows that, in general, mean SAT section scores, HSGPA, and FYGPA were higher:
o at private institutions, compared to public institutions; and
o at increasingly selective institutions (i.e., those that admit fewer applicants).
- In terms of undergraduate enrollment (i.e., institution size):
o small institutions had the lowest mean SAT section scores, while very large institutions had the highest mean SAT section scores and HSGPAs; and there is no discernable relationship between institution size and mean FYGPA.

Table 6: Corrected Correlations of SAT and HSGPA with FYGPA by Institutional Characteristics

Institutional Characteristic		k	n	SAT-CR	SAT-M	SAT-W	SAT*	HSGPA	$\begin{aligned} & \text { SAT*, } \\ & \text { HSGPA } \end{aligned}$
Control	Private	87	60,595	0.52	0.52	0.56	0.58	0.56	0.65
	Public	75	160,890	0.46	0.47	0.50	0.52	0.52	0.60
Admittance Rate	Under 50\%	36	55,747	0.51	0.52	0.55	0.58	0.53	0.64
	$\begin{aligned} & 50 \% \text { to } \\ & 75 \% \end{aligned}$	82	130,737	0.46	0.47	0.50	0.53	0.53	0.61
	Over 75\%	44	35,001	0.46	0.46	0.50	0.52	0.53	0.60
Undergraduate Enrollment	Small	31	8,364	0.54	0.54	0.57	0.60	0.59	0.68
	Medium	64	40,876	0.49	0.50	0.54	0.56	0.55	0.64
	Large	31	53,155	0.47	0.48	0.51	0.54	0.53	0.61
	Very Large	36	119,090	0.46	0.47	0.50	0.53	0.52	0.60
Overall		162	221,485	0.47	0.48	0.51	0.54	0.53	0.61

Note: k : number of institutions, n : subgroup sample size. SAT* refers to the inclusion of all three sections in the relevant multiple correlation. The correlations were corrected for restriction of range within institutions and pooled. Undergraduate enrollment was categorized as follows: small: 750 to 1,999; medium: 2,000 to 7,499 ; large: 7,500 to 14,999 ; and very large: 15,000 or more. For raw correlations by institutional characteristics, see Appendix B.

- Table 6 shows the correlations of various combinations of the predictors with FYGPA by key institutional characteristics.
- The correlations of the six combinations of predictors with FYGPA are generally:
o Higher at private than public institutions
o Highest at the most selective institutions (i.e., those that admit fewer than 50% of applicants), relative to less selective ones
o Highest at small institutions, relative to larger ones
- Across many institutional categories, the multiple correlation of SAT with FYGPA was at least as high as the correlation of HSGPA with FYGPA.
- For nearly all institutional subgroups, the combination of SAT section scores and HSGPA represented an increase in at least .07 for the correlation with FYGPA over either predictor alone.

Table 7: Descriptive Statistics of Study Variables by Student Characteristics

Student Characteristic		k	n	SAT-CR		SAT-M		SAT-W		HSGPA		FYGPA		
		M		SD	M	SD	M	SD	M	SD	M	SD		
Gender	Male		160	100,258	562	98.7	598	99.6	547	100.6	3.61	0.502	2.95	0.751
	Female	162	121,227	548	97.5	554	97.8	548	99.2	3.68	0.470	3.12	0.672	
Racial/Ethnic Identity	African American	162	18,016	492	90.8	494	90.1	478	90.2	3.42	0.542	2.67	0.784	
	American Indian	145	1,032	540	93.6	547	93.4	522	91.4	3.60	0.499	2.86	0.776	
	Asian American	162	26,720	569	106.7	641	99.4	578	108.0	3.72	0.432	3.16	0.643	
	Hispanic	162	26,644	512	97.9	527	97.0	505	95.6	3.57	0.508	2.86	0.745	
	Other	159	6,213	563	101.9	577	103.6	558	102.3	3.63	0.478	3.03	0.715	
	White	162	140,105	567	91.9	580	92.1	559	93.3	3.68	0.471	3.11	0.688	
	Not Stated	157	2,755	548	104.4	573	109.3	545	104.0	3.58	0.557	2.98	0.725	
Best Language	English Only	162	184,614	561	95.7	574	97.7	551	97.9	3.65	0.485	3.06	0.712	
	English and Another	162	30,970	528	102.9	560	111.4	530	105.7	3.62	0.488	2.95	0.726	
	Another Language	152	4,743	482	106.9	645	117.1	520	114.4	3.68	0.458	3.15	0.658	
	Not Stated	147	1,158	525	104.4	560	115.1	523	105.5	3.54	0.606	2.94	0.764	
Household Income	< \$40,000	162	19,634	506	98.7	529	105.3	497	96.8	3.58	0.524	2.83	0.799	
	\$40,000-\$80,000	162	24,163	540	94.5	556	98.3	528	94.3	3.63	0.507	2.95	0.757	
	\$80,000-\$120,000	162	23,804	558	93.8	576	95.6	548	94.4	3.67	0.491	3.06	0.708	
	\$120,000-\$160,000	162	12,030	566	92.0	585	92.9	558	93.3	3.66	0.484	3.09	0.673	
	\$160,000-\$200,000	161	6,983	573	91.3	593	92.8	568	93.7	3.64	0.482	3.11	0.663	
	> \$200,000	162	12,643	590	89.8	613	90.0	590	92.1	3.66	0.458	3.16	0.616	
	Not Stated	162	122,228	558	98.6	578	101.1	553	100.4	3.66	0.476	3.07	0.700	
Highest Parental Education Level	No High School Diploma	156	7,200	472	93.1	510	106.2	469	90.3	3.53	0.510	2.79	0.754	
	High School Diploma	162	41,256	515	91.9	535	97.2	506	91.4	3.57	0.514	2.86	0.783	
	Associate Degree	162	14,071	524	89.0	539	92.5	512	88.9	3.61	0.505	2.91	0.767	
	Bachelor's Degree	162	76,456	563	90.4	583	93.5	556	92.3	3.68	0.469	3.10	0.675	
	Graduate Degree	162	67,564	593	93.1	610	95.1	588	95.6	3.72	0.453	3.19	0.638	
	Not Stated	162	14,938	506	96.5	535	103.5	503	97.8	3.48	0.515	2.87	0.759	
Total		162	221,485	554	98.3	574	101.0	548	99.8	3.65	0.486	3.04	0.714	

Note: n : subgroup sample size.

- Table 7 shows that female students tended to outperform males on SAT-W, HSGPA, and FYGPA, while the opposite was true for SAT-CR and SAT-M.
- Some differences exist across racial/ethnic identities, with white and Asian American students having higher mean SAT section scores, HSGPA, and FYGPA relative to African American and Hispanic students.
- When considering best spoken language, students whose best language was English had the highest SAT-CR and SAT-W scores, whereas students whose best language was something other than English had the highest SAT-M scores and slightly higher HSGPA and FYGPA means.
- Students who reported higher household incomes had higher mean SAT section scores and FYGPA, but there was no apparent relationship with HSGPA.
- As with household-income level, mean SAT section scores and FYGPA increased as highest parental education level increased; with respect to mean HSGPA, there was a positive relationship with highest parental education level.

Table 8: Corrected Correlations of SAT Scores and HSGPA with FYGPA by Student Subgroups

Student Characteristic		$\begin{array}{r} k \\ 160 \end{array}$	$\begin{array}{r} n \\ 100,258 \end{array}$	$\begin{gathered} \text { SAT- } \\ \text { CR } \\ 0.45 \end{gathered}$	$\begin{gathered} \text { SAT-M } \\ \hline 0.48 \end{gathered}$	$\begin{gathered} \text { SAT-W } \\ 0.49 \end{gathered}$	$\begin{gathered} \text { SAT* }^{*} \\ 0.52 \end{gathered}$	$\begin{gathered} \text { HSGPA } \\ 0.51 \end{gathered}$	SAT*, HSGPA0.59
Gender	Male								
	Female	162	121,227	0.52	0.55	0.55	0.59	0.53	0.65
Racial/Ethnic Identity	African American	137	17,813	0.41	0.40	0.44	0.45	0.43	0.51
	American Indian	20	495	0.38	0.35	0.41	0.42	0.41	0.48
	Asian American	124	26,409	0.46	0.50	0.49	0.53	0.51	0.60
	Hispanic	141	26,472	0.43	0.42	0.46	0.48	0.46	0.54
	Other	101	5,770	0.46	0.48	0.51	0.53	0.49	0.59
	White	162	140,105	0.47	0.47	0.51	0.53	0.55	0.62
	Not Stated	67	2,161	0.38	0.40	0.43	0.44	0.43	0.50
Best Language	English Only	162	184,614	0.48	0.49	0.52	0.54	0.54	0.62
	English and Another	154	30,888	0.43	0.45	0.46	0.49	0.47	0.55
	Another Language	64	4,260	0.40	0.46	0.43	0.48	0.41	0.52
	Not Stated	25	569	0.35	0.30	0.39	0.40	0.40	0.47
Household Income	< \$40,000	155	19,564	0.40	0.43	0.44	0.46	0.45	0.53
	\$40,000-\$80,000	160	24,142	0.45	0.46	0.50	0.52	0.52	0.60
	$\begin{aligned} & \$ 80,000- \\ & \$ 120,000 \end{aligned}$	157	23,750	0.46	0.47	0.50	0.52	0.54	0.61
	$\begin{aligned} & \$ 120,000- \\ & \$ 160,000 \end{aligned}$	135	11,764	0.45	0.44	0.49	0.50	0.55	0.60
	$\begin{aligned} & \$ 160,000- \\ & \$ 200,000 \end{aligned}$	104	6,557	0.46	0.45	0.49	0.51	0.54	0.60
	> \$200,000	108	12,289	0.45	0.47	0.49	0.52	0.55	0.61
	Not Stated	162	122,228	0.48	0.49	0.52	0.55	0.54	0.62
Highest Parental Education Level	No High School Diploma	71	6,616	0.42	0.44	0.44	0.47	0.44	0.52
	High School Diploma	159	41,228	0.44	0.45	0.48	0.50	0.49	0.57
	Associate Degree	142	13,919	0.44	0.46	0.48	0.50	0.52	0.59
	Bachelor's Degree	162	76,456	0.47	0.48	0.51	0.53	0.55	0.62

	Graduate Degree	162	67,564	0.48	0.48	0.52	0.54	0.55	0.63
	Not Stated	145	14,794	0.41	0.43	0.45	0.47	0.47	0.54
Overall		162	221,485	0.47	0.48	0.51	0.54	0.53	0.61

Note: k : number of institutions, n : subgroup sample size. SAT* refers to the inclusion of all three sections in the relevant multiple correlation. The correlations were corrected for restriction of range within institutions and pooled. Institutions with fewer than 15 students in any subgroup were excluded. For raw correlations by institutional characteristics, see Appendix C.

- Table 8 shows that predictive validity for all predictors and combinations of FYGPA was higher for:
o Female students than for male students;
o White and Asian American students relative to the other racial/ethnic identities;
o Students whose best spoken language was English only as compared to the other language groups;
o Students with a household income level of at least $\$ 80,000$ than those with lower incomes; and
o Students whose parents have higher education levels as compared to lower education levels.
- Across all student subgroups, predictive validity of FYGPA was maximized using the combination of SAT section scores and HSGPA.

Table 9: Average Overprediction (-) and Underprediction (+) of FYGPA for SAT Scores and HSGPA

Student Characteristic		k	n	SAT-CR	SAT-M	SAT-W		HSGPA	SAT*, HSGPA
Gender	Male	160	100,258				-0.113	-0.070	-0.084
	Female	162	121,227	0.090	0.116	0.074	0.093	0.058	0.070
Racial/Ethnic Identity	African American	162	18,016	-0.195	-0.160	-0.164	-0.129	-0.197	-0.102
	American Indian	145	1,032	-0.137	-0.116	-0.110	-0.100	-0.146	-0.103
	Asian American	162	26,720	0.048	-0.040	0.024	-0.006	0.035	0.005
	Hispanic	162	26,644	-0.077	-0.067	-0.067	-0.049	-0.107	-0.046
	Other	159	6,213	-0.045	-0.033	-0.045	-0.040	-0.028	-0.031
	White	162	140,105	0.035	0.045	0.033	0.031	0.042	0.024
	Not Stated	157	2,755	-0.061	-0.065	-0.060	-0.060	-0.043	-0.043
Best Language	English Only	162	184,614	0.002	0.012	0.004	0.005	0.012	0.005
	English and Another	162	30,970	-0.041	-0.060	-0.049	-0.043	-0.075	-0.042
	Another Language	152	4,743	0.205	-0.045	0.158	0.105	0.044	0.101
	Not Stated	147	1,158	-0.039	-0.064	-0.036	-0.034	-0.044	-0.018
Household Income	< \$40,000	162	19,634	-0.086	-0.091	-0.070	-0.059	-0.139	-0.073
	\$40,000-\$80,000	162	24,163	-0.041	-0.036	-0.030	-0.029	-0.060	-0.042
	\$80,000-\$120,000	162	23,804	0.009	0.012	0.013	0.009	0.009	0.002
	\$120,000-\$160,000	162	12,030	0.026	0.024	0.023	0.017	0.042	0.022
	\$160,000-\$200,000	161	6,983	0.013	0.013	0.006	0.003	0.055	0.028
	> \$200,000	162	12,643	-0.002	-0.008	-0.015	-0.017	0.050	0.017
	Not Stated	162	122,228	0.017	0.017	0.013	0.013	0.020	0.014
Highest Parental Education Level	No High School Diploma	156	7,200	-0.048	-0.082	-0.036	-0.022	-0.145	-0.030
	High School Diploma	162	41,256	-0.069	-0.071	-0.058	-0.050	-0.104	-0.059
	Associate Degree	162	14,071	-0.042	-0.035	-0.030	-0.023	-0.082	-0.047
	Bachelor's Degree	162	76,456	0.031	0.031	0.028	0.025	0.036	0.024
	Graduate Degree	162	67,564	0.031	0.039	0.023	0.017	0.069	0.027
	Not Stated	162	14,938	-0.047	-0.067	-0.044	-0.036	-0.064	-0.019
Overall		162	221,485	0.000	0.000	0.000	0.000	0.000	0.000

Note: k : number of institutions, n : subgroup sample size. SAT* refers to the inclusion of all three sections in the relevant regression model. Negative and positive values indicate over- and
underprediction, respectively. FYGPA regressions were estimated for each institution separately. Residuals were the difference of predicted and observed FYGPA.

- Table 9 shows that across all predictor sets, FYGPA was:
o Overpredicted (i.e., observed FYGPA < predicted FYGPA) for males and underpredicted for females;
o Generally overpredicted for African American, American Indian, and Hispanic students;
o Generally underpredicted (except for SAT-M alone) for students whose best spoken language was not English; and
o Overpredicted for students from lower socioeconomic status families (household income levels $\leq \$ 80,000$, highest parental education level of an associate degree or less).
- In terms of the relative differential prediction of HSGPA, SAT sections, and their combination:
o Using HSGPA alone generally yielded the least differential prediction across genders;
o Using HSGPA and SAT generally yielded the least differential prediction across racial/ethnic identities; and
o Using SAT sections alone generally yielded the least differential prediction across household income and parental education levels.

References

Beard, J. \& Marini, J. P. (2015). Validity of the SAT for predicting first-year grades: 2012 SAT validity sample. (College Board Statistical Report 2015-2). New York: The College Board. Retrieved from: http://files.eric.ed.gov/fulltext/ED564417.pdf

College Board. (2012). 2012 College-bound seniors: Total group profile report. New York: The College Board. Retrieved from: http://media.collegeboard.com/digitalServices/pdf/research/TotalGroup-2012.pdf

Kobrin, J. L., Patterson, B. F., Shaw, E. J., Mattern, K. D., \& Barbuti, S. M. (2008). Validity of the SAT for predicting first-year college grade point average (College Board Research Report No. 2008-5). New York: The College Board. Retrieved from: http://research.collegeboard.org/rr2008-5.pdf

Mattern, K. D., Patterson, B. F., Shaw, E. J., Kobrin, J. L., \& Barbuti, S. M. (2008). Differential validity and prediction of the SAT (College Board Research Report No. 20084). New York: The College Board. Retrieved from: http://research.collegeboard.org/rr2008-4.pdf

Mattern, K. D., Patterson, B. F. (2014). Synthesis of recent SAT validity findings: Trend data over time and cohorts (College Board Research Report No. 2014-1). New York: The College Board. Retrieved from:
http://research.collegeboard.org/sites/default/files/publications/2014/6/Synthesis-of-Recent-SAT-Validity-Findings.pdf

Patterson, B. F., Mattern, K. D., \& Kobrin, J. L. (2009). Validity of the SAT for predicting FYGPA: 2007 SAT validity sample (College Board Statistical Report No. 2009-1). New York: The College Board. Retrieved from: http://research.collegeboard.org/sr2009-1.pdf

Patterson, B. F., \& Mattern, K. D. (2011). Validity of the SAT for predicting first-year grades: 2008 SAT validity sample (College Board Statistical Report No. 2011-5). New York: The College Board. Retrieved from: http://research.collegeboard.org/sr2011-5.pdf

Patterson, B. F., \& Mattern, K. D. (2012). Validity of the SAT for predicting first-year grades: 2009 SAT validity sample (College Board Statistical Report No. 2012-2). New York: The College Board. Retrieved from: http://research.collegeboard.org/sr2012-2.pdf

Patterson, B. F., \& Mattern, K. D. (2013a). Validity of the SAT for predicting first-year grades: 2010 SAT validity sample (College Board Statistical Report No. 2013-2). New York: The College Board. Retrieved from: http://research.collegeboard.org/sr2013-2.pdf

Patterson, B. F., \& Mattern, K. D. (2013b). Validity of the SAT for predicting first-year grades: 2011 SAT validity sample (College Board Statistical Report No. 2013-3). New York: The College Board. Retrieved from: http://research.collegeboard.org/sites/default/files/publications/2013/12/statistical-report-2013-3-validity-SAT-predicting-first-year-grades.pdf

Shaw, E. J. (2015). An SAT validity primer. (College Board Research Report No. 2015-6). New York: The College Board. Retrieved from: http://research.collegeboard.org/sites/default/files/publications/2015/6/research-report-sat-validity-primer.pdf

Appendix A: Institutions Providing First-Year Outcomes Data for the 2013 Cohort

Abilene Christian University	Indiana University	Quinnipiac University
Appalachian State	Bloomington	Randolph-Macon College
University	Indiana University East	Rhode Island College
Austin College	Indiana University Kokomo	Saint Anselm College
Boston College	Indiana University	Seton Hill University
Boston University	Northwest	Shenandoah University
Caldwell University	Indiana University South	Siena College
Capital University	Bend	Skidmore College
Case Western Reserve University	Indiana University Southeast	Smith College
Chapman University	John Brown University	Southeastern University
Claremont McKenna	Lafayette College	Southern Connecticut State University
College	Lasell College	Southern Methodist
Clemson University	Lawrence University	University
Coastal Carolina University	Lehigh University	Southwestern University
Columbus State University	Lewis \& Clark College	St. Edward's University
Cornell College	Long Island University	St. John's University
DePauw University	Brooklyn	Stephen F. Austin State
Earlham College	Long Island University Post	University
Eastern Connecticut State	Longwood University	Stetson University
University	Lycoming College	Stony Brook University
Eastern Washington	Marywood University	SUNY Polytechnic Institute
University	Messiah College	Taylor University
Elms College	Miami University	Texas A\&M International
Emory University	Missouri State University	University
Florida State University	Springfield	Texas A\&M University
Fordham University	Moravian College	Texas State University
Framingham State University	North Carolina State University	Texas Woman's University
Franklin \& Marshall College	Northwestern University	The State University of
Furman University	Penn State	York at New Paltz
Georgia Institute of Technology	Pennsylvania College of Technology	Transylvania University
Georgia Southern University	Philadelphia University	Tulane University
Gonzaga University	Portland State University	Santa Barbara
Grinnell College	Presbyterian College	University of California,
Indiana University - Purdue	Purdue University	Santa Cruz
University Indianapolis	Queens University of Charlotte	University of Cincinnati

University of Colorado	University of Washington	Institution O
Colorado Springs	Tacoma	Institution P
University of Dayton	Vanderbilt University	Institution Q
University of Delaware	Virginia Wesleyan College	Institution R
University of Denver	Washington State University	Institution S
University of Evansville	Vancouver	Institution T
University of Georgia	Washington State	Institution U
University of Houston	University, Pullman	Institution V
University of Massachusetts Dartmouth	Western Washington University	Institution W
University of Mich	Wheaton College	Institution X
University of Michig	Wilkes University	Institution Y
at Greensboro	Willamette University	Institution Z
University of North Texas	Wingate University	Institution AA
University of Oregon	Institution A	Institution AB
University of Pittsburgh	Institution B	Institution AC
University of Rhode Island	Institution C	Institution AD
University of Richmond	Institution D	Institution AE
University of Southern	Institution E	Institution AF
California	Institution F	Institution AG
University of Southern	Institution G	Institution AH
Indiana	Institution H	Institution AI
University of Southern	Institution I	Institution AJ
Maine	Institution J	Institution AK
University of Texas at	Institution K	Institution AL
Austin	Institution L	Institution AM
University of Utah	Institution M	Institution AN
University of Vermont	Institution N	

Appendix B: Raw Correlations of SAT and HSGPA with FYGPA by Institutional Characteristics

Institutional Characteristic		k	n	SAT-CR	SAT-M	SAT-W	SAT*	HSGPA	SAT*, HSGPA
Control	Private	87	60,595	0.31	0.30	0.36	0.39	0.37	0.47
	Public	75	160,890	0.26	0.26	0.31	0.33	0.33	0.42
Admittance Rate	Under 50\%	36	55,747	0.28	0.27	0.32	0.35	0.28	0.40
	50% to 75\%	82	130,737	0.27	0.27	0.32	0.34	0.35	0.44
	Over 75\%	44	35,001	0.29	0.27	0.34	0.35	0.40	0.47
Undergraduate Enrollment	Small	31	8,364	0.36	0.34	0.40	0.43	0.44	0.54
	Medium	64	40,876	0.30	0.29	0.35	0.38	0.39	0.47
	Large	31	53,155	0.26	0.27	0.31	0.34	0.35	0.43
	Very Large	36	119,090	0.26	0.26	0.31	0.33	0.32	0.41
Overall		162	221,485	0.27	0.27	0.32	0.35	0.34	0.43

Note: k : number of institutions, n : subgroup sample size. SAT* refers to the inclusion of all three sections in the relevant multiple correlation. Undergraduate enrollment was categorized as follows: small: 750 to 1,999; medium: 2,000 to 7,499; large: 7,500 to 14,999 ; and very large: 15,000 or more. For restriction of range corrected correlations by institutional characteristics, see Table 6.

Appendix C: Raw Correlations of SAT Scores and HSGPA with FYGPA by Subgroups

Student Characteristic		k	n	SAT-CR	SAT-M	SAT-W	SAT*	HSGPA	$\begin{aligned} & \text { SAT*, } \\ & \text { HSGPA } \end{aligned}$
Gender	Male	160	100,258	0.25	0.28	0.29	0.33	0.33	0.42
	Female	162	121,227	0.31	0.34	0.35	0.39	0.33	0.46
Racial / Ethnic Identity	African American	137	17,813	0.20	0.19	0.25	0.26	0.27	0.35
	American Indian	20	495	0.23	0.19	0.26	0.27	0.28	0.37
	Asian American	124	26,409	0.21	0.27	0.27	0.31	0.27	0.39
	Hispanic	141	26,472	0.23	0.21	0.26	0.28	0.27	0.36
	Other	101	5,770	0.26	0.28	0.34	0.36	0.30	0.42
	White	162	140,105	0.26	0.25	0.31	0.33	0.36	0.43
	Not Stated	67	2,161	0.22	0.23	0.30	0.32	0.29	0.39
Best Language	English Only	162	184,614	0.28	0.27	0.33	0.35	0.36	0.44
	English and Another	154	30,888	0.23	0.25	0.27	0.30	0.27	0.38
	Another Language	64	4,260	0.16	0.26	0.23	0.29	0.21	0.34
	Not Stated	25	569	0.25	0.20	0.31	0.32	0.30	0.40
Household Income	< \$40,000	155	19,564	0.20	0.24	0.26	0.29	0.29	0.37
	\$40,000-\$80,000	160	24,142	0.26	0.26	0.32	0.34	0.36	0.43
	\$80,000-\$120,000	157	23,750	0.26	0.25	0.32	0.34	0.36	0.44
	\$120,000-\$160,000	135	11,764	0.25	0.22	0.30	0.31	0.37	0.43
	\$160,000-\$200,000	104	6,557	0.26	0.24	0.30	0.32	0.36	0.43
	> \$200,000	108	12,289	0.21	0.23	0.27	0.29	0.34	0.41
	Not Stated	162	122,228	0.28	0.28	0.33	0.36	0.34	0.44
Highest Parental Education Level	No High School Diploma	71	6,616	0.20	0.24	0.22	0.27	0.24	0.34
	High School Diploma	159	41,228	0.24	0.25	0.30	0.32	0.32	0.40
	Associate Degree	142	13,919	0.24	0.26	0.30	0.32	0.36	0.43
	Bachelor's Degree	162	76,456	0.25	0.26	0.31	0.33	0.36	0.43
	Graduate Degree	162	67,564	0.26	0.25	0.31	0.33	0.35	0.43
	Not Stated	145	14,794	0.21	0.24	0.27	0.29	0.32	0.39
Overall		162	221,485	0.27	0.27	0.32	0.35	0.34	0.43

Note: k : number of institutions, n : subgroup sample size. SAT* refers to the inclusion of all three sections in the relevant multiple correlation. Institutions with fewer than 15 students in any subgroup were excluded. For restriction of range corrected correlations by student characteristics, see Table 8.

About the College Board

The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of over 6,000 of the world's leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success-including the SAT ${ }^{\circledR}$ and the Advanced Placement Program ${ }^{\circledR}$. The organization also serves the education community through research and advocacy on behalf of students, educators, and schools. For further information, visit collegeboard.org.
© 2018 The College Board. College Board, Advanced Placement Program, SAT, and the acorn logo are registered trademarks of the College Board. All other marks are the property of their respective owners. Visit the College Board on the web: collegeboard.org.

