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Application of Bayesian Methods for Detecting Fraudulent Behavior on Tests

Abstract

Producers and consumers of test scores are increasingly concerned about fraudulent

behavior before and during the test. There exist several statistical or psychometric methods

for detecting fraudulent behavior on tests. This paper provides a review of the Bayesian

approaches among them. Four hitherto-unpublished real data examples are provided to

demonstrate the application of Bayesian approaches to detect various types of fraudulent

behavior on tests. The examples show that Bayesian methods can be useful in detecting

several types of test fraud.

Key words: posterior predictive model checking, posterior probability of cheating, test

fraud.
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An increasing concern of producers and consumers of test scores is fraudulent behavior

before and during the test. Such behavior is more likely to be observed when the stakes are

high, such as in admission, licensing, and certification testing (van der Linden, 2009). A

search on the web with words “test fraud” and “cheating” fetches a large number of news

materials in the local and national media outlets including that of educator cheating in

Atlanta public schools (e.g., Kingston, 2013) and “cram schools” selling items on SATs (e.g.,

Strauss, 2014). Standard 6.6 of the Standards for Educational and Psychological Testing

(American Educational Research Association, American Psychological Association, &

National Council for Measurement in Education, 2014) includes the recommendation among

others that testing programs with high-stakes consequences should have defined procedures

for detecting potential testing irregularities. Several guidelines on methods for detecting

fraudulent behavior on tests can be found in a report on the results on a nationwide

survey of state testing directors conducted by the United States Government Accounting

Office (Government Accountability Office, 2013), in the transcript of proceedings of a test

integrity symposium (National Center for Education Statistics, 2012), and in a special

report on testing and data integrity published by the National Council on Measurement in

Education (National Council on Measurement in Education, 2012).

Naturally, there is a growing interest in statistical/psychometric methods for detecting

fraudulent behavior on tests, which is evident from the publication of three recent edited

volumes (Cizek & Wollack, 2017; Kingston & Clark, 2014; Wollack & Fremer, 2013),

numerous journal articles and conference presentations (e.g., Allen & Ghattas, 2016;

McLeod, Lewis, & Thissen, 2003; Sinharay, 2017b, 2017a; Sinharay, Duong, & Wood, 2017;

van der Linden, 2009; van der Linden & Guo, 2008; van der Linden & Lewis, 2015; van der

Linden & Sotaridona, 2006; Wollack, 1997; Wollack, Cohen, & Eckerly, 2015; Wang, Liu, &

Hambleton, 2017) on the topic, and a conference (Conference on Test Security) dedicated

to the topic. The methods for detecting fraudulent behavior on tests are often referred to

as “data forensics” or “data forensics methods” and the analysis using these methods is

often referred to as “data forensics analysis”. Data forensics analysis usually focuses on one

of five areas: analysis of gain scores (or score gains), similarity analysis including detection
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of answer-copying, erasure analysis, person-fit analysis, and other analyses including

response-time analysis (e.g. Olson & Fremer, 2013).

Among the statistical methods that have been suggested for detecting fraudulent

behavior on tests (see, for example Ferrara, 2017, for a list of some of those methods), most

are frequentist. However, Bayesian methods have been suggested in each of the five key

areas identified by Olson and Fremer (2013). The first goal of this paper is to review some

of those methods. The second goal of this paper is to bring attention of those interested

in statistical methods for detecting test fraud to the advantages of some of the existing

Bayesian methods including posterior probability of answer-copying (Allen & Ghattas,

2016; van der Linden & Lewis, 2015) and posterior probability of cheating (Skorupski &

Wainer, 2017).

The next section includes, for each of the five areas in data forensics analysis, a brief

description of the area, the most popular approaches under the area, and the Bayesian

approaches that have been suggested under the area. The Real Examples section includes

hitherto-unpublished applications of Bayesian methods for detecting fraudulent behavior to

four types of analyses using two real data sets. The final section includes the conclusions

and some recommendations.

Bayesian Methods in the Five Areas of Data Forensics Analysis

Analysis of Gain Scores

Olson and Fremer (2013) stated that the type of data forensics analysis that is the

easiest to employ and has a very long history of use in state assessments is making

comparisons of scores from one testing occasion to another. A large score gain, that

is, a large score difference between an examinee’s score on a test and his/her score on

a previous administration on the same test, may indicate fraudulent behavior. Holland

(1996) and Lewis and Thayer (1998) stated that a large score gain may lead to a test

taker being identified for further attention. In 2013, 28 states reported using score gains

to detect possible fraudulent test-taking behavior in their K-12 assessments (Government
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Accountability Office, 2013). States and testing organizations typically do not use statistical

hypothesis tests in analysis of score gains but identify those with a score gain above a

predetermined cutoff (equal to, for example, several multiples of the standard deviation of

the score) for further attention (e.g., Buss & Novick, 1980).

However, there exist methods to determine whether a score gain is statistically

significant. Researchers such as Fischer (2003) and Finkelman, Weiss, and Kim-Kang

(2010) suggested frequentist hypothesis tests for determining if a score gain is statistically

significant. Skorupski and Egan (2011, 2014) and Skorupski, Fitzpatrick, and Egan (2017)

suggested a Bayesian hierarchical linear model to detect group-level cheating based on score

gains. In this approach, the change in the individual scores is modeled and the individuals

are nested within groups (where “schools” is an example of “groups”). Unusually large

group-by-time interaction (that indicates a large score gain for a group on average) is

considered as evidence of potential cheating. Let Yigt denote the score of examinee i in

group g at time t. Then, the approach of Skorupski and Egan (2011) involves expressing

Yigt as

Yigt = β0 + β1gI(g) + β2tI(t) + β3gtI(g)I(t) + εigt, (1)

where β0, β1g, β2t, and β3gt are the model (regression) parameters, εigt is the error term that

is assumed to follow a normal distribution, and I(g) and I(t) are indicator variables (where,

for example, I(g) is equal to 1 for the examinees belonging to group g and 0 for other

examinees). Prior distributions are assumed on the model parameters and the model is

fitted using a Markov chain Monte Carlo algorithm (e.g., Gelman, Carlin, Stern, & Rubin,

2003). A large positive value of the estimate of β3gt indicates possible aberrant behavior by

examinees in group g. Skorupski and Egan (2011) successfully applied the model to a real

data set while Skorupski and Egan (2014) and Skorupski et al. (2017) applied the model

to simulated data. Liu, Liu, and Simon (2014) examined score gains using a Bayesian

polynomial mixed-effect growth model.

Note that the use of only gain score could falsely accuse many examinees (e.g., Roberts,

1987) and hence gain scores should be used along with other, often nonstatistical, evidence
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in an investigation of test fraud.

Similarity Analysis

The goal of similarity analysis is to detect potential collusion among a pair or group

of examinees by investigating the similarity of their answers. The indices used to perform

similarity analysis, which are often used to determine whether an examinee (copier)

potentially copied answers from another examinee (source), are often referred to as

answer-copying indices.

The answer-copying indices that are most popular include the K-index (e.g., Holland,

1996), which, for a pair of examinees, is the chance of observing at least the observed

number of matching incorrect responses if the pair were working independently, or the

closely related probability of matching incorrect responses (PMIR; e.g., Lewis & Thayer,

1998), the ω index (Wollack, 1997) that is the standardized value of the number of matching

responses, and the index based on the generalized binomial model (van der Linden &

Sotaridona, 2006) that is the probability of observing at least the observed number of

matching responses under the generalized binomial model if the examinee pair were working

independently.

van der Linden and Lewis (2015) suggested an approach to compute the posterior

probability of answer-copying and the posterior odds of answer-copying between a pair of

examinees. The approach does not employ any existing answer-copying index and instead

employs combinatorial expressions and a reformulation of the simple recursive algorithm of

Lord and Wingersky (1984) for the calculation of the distribution of the number-correct

score. The approach is computation-intensive, but they suggested an efficient recursive

algorithm for the calculation of the posterior odds of answer-copying. Allen and Ghattas

(2016) also suggested an approach to compute the posterior probability of answer-copying

when the value of an answer-copying index is available—they used the ω index (Wollack,

1997) to compute the posterior probability in their simulation and real-data examples.

Because it is difficult to compute the posterior probability of answer-copying for real data,

Allen and Ghattas (2016) provided the following expression of the lower bound of the
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posterior probability for someone for whom the observed value of the ω index is W :

1 − Proportion of values of ω near W among between-center pairs

Proportion of values of ω near W among within-center pairs
·

Both van der Linden and Lewis (2015) and Allen and Ghattas (2016) were inspired by

the fact that a frequentist p-value is an answer to the question “What is the probability

of a significant value of the test statistic given that the examinee did not commit fraud?”

that is not the question of interest and the posterior probability of answer-copying is

an answer to the question “What is the probability that test fraud occurred, given a

significant value of the test statistic?” that is very important in the context of detecting

test fraud. The concept of the posterior probability of answer-copying (Allen & Ghattas,

2016; van der Linden & Lewis, 2015) is very similar to that of the posterior probability of

cheating (PPoC) that was suggested by Skorupski and Wainer (2017). The PPoC can be

computed for any type of cheating and Skorupski and Wainer (2017) provided the following

simple approximation for the PPoC for an individual or pair of individuals:

PPoC ≈ 1 − p-value × P (non-cheater)

P (More extreme value in the sample)
,

where p-value is the frequentist p-value for an examinee or examinee pair for detecting the

relevant type of test fraud computed using a frequentist approach, P (non-cheater) is the

prior probability of non-cheaters in the sample and P (More extreme value in the sample) is

the proportion of individuals in the sample with a more extreme value of the test statistic

than the individual in question. For example, if an investigator has computed the value of

the ω index (Wollack, 1997) for an examinee pair, he/she can compute the p-value for ω

and then use the above approximation to compute a PPoC for the examinee pair.1

Erasure Analysis

Erasure analysis gained prominence after the alleged educator cheating in 2009 in

Atlanta public schools (e.g., Kingston, 2013). Erasures, or, in general, answer changes,

are found roughly for one out of every 50 answers (e.g., Primoli, Liassou, Bishop, &

1PPoCs are computed from ω’s in the first real data example later in this paper.
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Nhouyvanisvong, 2011). While most of these erasures are benign, fraudulent erasures arise

when teachers or school administrators help students by improving wrong answers on their

answer sheets after the test, often to hide underachievement by their class or school (van

der Linden & Lewis, 2015). In erasure analysis, an investigator attempts to find out if the

erasures are fraudulent. In 2013, 33 states reported using erasure analysis to detect possible

fraudulent test-taking behavior in their K-12 assessments (Government Accountability

Office, 2013). However, erasure analysis in several states involves only the use of the average

wrong-to-right erasure count for a school or school-district (e.g., Bishop & Egan, 2017, pp.

204-205), a statistic whose power has been shown to be rather low, that is, the statistic

would fail to flag many cheaters (e.g., Sinharay, 2017a). Additional indices that have been

suggested for performing erasure analysis include the erasure detection index (EDI; Wollack

et al., 2015), EDI for groups of examinees (Wollack & Eckerly, 2017), the L-index (Sinharay

et al., 2017) and two extensions of the EDI for groups of examinees (Sinharay, 2017a). The

EDI is the standardized value, computed under an IRT model, of the wrong-to-right erasure

count of an examinee and the L-index is a variation of the likelihood ratio test statistic for

the null hypothesis that the erasures found in the answer sheet are not fraudulent.

While the above-mentioned approaches for performing erasure analysis are frequentist,

van der Linden and Lewis (2015) suggested an approach to compute the posterior odds

of fraudulent erasures—this approach is very similar to their approach to compute the

posterior odds of answer-copying. Further, Sinharay and Johnson (2017) suggested a

Bayesian approach for performing erasure analysis; the approach involves the computation

of the posterior predictive p-value (e.g., Gelman, Meng, & Stern, 1996) for the EDI after

implementing a Markov chain Monte Carlo algorithm (e.g., Gelman et al., 2003) that draws

values of the examinee ability from the posterior distribution based on the scores on the

items on which no erasures were found.

Person-fit Analysis

In person-fit analysis, an investigator tries to determine whether the item scores of an

examinee follows an IRT model. In the presence of cheating, the item scores usually do
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not follow an IRT model because, for example, an examinee who cheats may answer more

difficult items correctly than what an IRT model predicts. There exist several indices for

performing person-fit analysis—Meijer and Sijtsma (2001) provided a review of several of

these indices.

Drasgow and Guertler (1987) suggested a Bayesian decision-theoretic approach to use

person-fit indices; the approach essentially is equivalent to concluding that the item-scores

of an examinee are aberrant if the likelihood ratio, that is, the ratio of the likelihood

of the item-scores under aberrant behavior and the likelihood of the item-scores under

non-aberrant behavior, is too large. Glas and Meijer (2003) suggested performing person-fit

analysis using the Bayesian p-values or posterior predictive p-values (e.g., Gelman et al.,

1996) of several person-fit indices; they found the power of the posterior predictive p-values

for the ζ2 index of Tatsuoka (1984) to be the largest among the person-fit indices that

they considered. Sinharay (2015a), Sinharay (2015b) and Sinharay (2016) also performed

person-fit analysis using the posterior predictive p-values corresponding to several person-fit

indices including lz (Drasgow, Levine, & Williams, 1985), l∗z (Snijders, 2001), and ζ1 and

ζ2 (Tatsuoka, 1984) and found that (a) l∗z performs at least as well as ζ2 under a Bayesian

approach for dichotomous items, (b) a Bayesian approach leads to more satisfactory false

alarm rates compared to a frequentist approach using l∗z for dichotomous items, and (c)

a Bayesian approach leads to a larger power compared to a frequentist approach with lz

for tests that include both dichotomous and polytomous items. The Bayesian approach

of using the posterior predictive p-values of person-fit indices is computation-intensive.

However, the approach does not depend on asymptotic results, and, as demonstrated by

Glas and Meijer (2003), Sinharay (2015a), Sinharay (2015b) and Sinharay (2016), may lead

to more satisfactory rate of false positive rate and/or power compared to a frequentist

approach in person-fit assessment.

Other Analyses Including Response-time Analysis

There are several other types of analyses that have been suggested for detecting

fraudulent behavior on tests. Among them, while there has been sporadic research on
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topics such as matching of response patterns (e.g. Haberman & Lee, 2017) and Trojan

Horse approach (e.g., Foster, 2013, p. 56), the most popular topics have probably been

response-time analysis and detection of item preknowledge.

Response-time Analysis

van der Linden and Guo (2008) suggested a Bayesian approach that first involves the

fitting of a combination of a traditional IRT model and a response-time model to a data set

that includes both the item-scores and the item-response times of the examinees; then, the

examinee-item combinations whose observed response time was too extreme compared to

the corresponding posterior predictive density are flagged. An examinee with too many

flagged examinee-item combinations is flagged for possible fraudulent behavior. Marianti,

Fox, Avetisyan, Veldkamp, and Tijmstra (2014) suggested a Bayesian approach in which

the lognormal response-time model of van der Linden (2006) is employed and an aberrant

behavior is concluded when the sum of squared standardized residuals is large. Wang, Xu,

and Shang (2016) suggested a two-stage approach to detect fraudulent behavior; in the first

stage, a mixture hierarchical model is fitted to both the item scores and response times

to distinguish solution behavior from aberrant behavior; in the second stage, a Bayesian

residual index is constructed to differentiate rapid guessing from fraudulent behavior. Fox

and Marianti (2017) suggested a Bayesian approach to person-fit analysis that involves

fitting of a joint model to the item-scores and response time; large posterior probabilities

of aberrant item-scores, aberrant response times, or both indicate possible fraudulent

behavior.

Detection of Item Preknowledge

Examinees benefit from item preknowledge when a “source” shares test questions and/or

their answers (where the source could be a teacher, a test preparation company, a website,

or individual examinees) and then several beneficiaries memorize the assessment questions

and/or answers. The items that are shared are usually referred to as “compromised” items
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in the context of detection of item preknowledge. There exist several frequentist approaches

for detecting item preknowledge including a variation of the optimal index (Drasgow,

Levine, & Zickar, 1996) and the Ls statistic that is a variation of the likelihood ratio test

statistic for the null hypothesis that an examinee did not benefit from item preknowledge

(Sinharay, 2017b).

McLeod et al. (2003) suggested a Bayesian approach that involves the use of a posterior

log-odds ratio as an index for detecting item preknowledge in the computerized adaptive

test (CAT) environment. They extended the concept of odds ratios to describe the increased

likelihood (based on the item responses) that a response pattern arises from the normal

or aberrant models. Segall (2002) and Shu, Henson, and Luecht (2013) suggested new

IRT models for detecting item preknowledge. Wang et al. (2017) suggested a (Bayesian)

predictive checking method to detect a person’s preknowledge on compromised items by

using information from the non-compromised items; responses on the non-compromised

items are used to estimate a person’s proficiency distribution, and then the corresponding

predictive distribution for the person’s responses on the possibly compromised items is

constructed; the use of preknowledge is identified by comparing the observed responses

to the predictive distribution. McLeod et al. (2003) did not assume that the set of

compromised items is known while Segall (2002), Shu et al. (2013), and Wang et al. (2017)

did make such an assumption.

Real Data Examples

In the following discussion, four data examples demonstrate that Bayesian approaches

can be used to detect various types of test fraud. Each example also involves at least one

frequentist approach that has been found to perform satisfactorily compared to competing

frequentist approaches in comparison studies. 2

2For example, Example 2 involves the frequentist L-index that was found to perform satisfactorily com-

pared to other frequentist statistics for erasure analysis by Sinharay et al. (2017).
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Example 1: Similarity Analysis

A data set including the item scores of 1,644 examinees on one form of a licensure

examination was available. The data set was analyzed in several chapters of Cizek

and Wollack (2017) including in Zopluoglu (2017) who computed the values of several

answer-copying indices for all examinee pairs within each test center. The examinees took

the test in a total of 326 test centers. The test form includes 170 operational items that

are dichotomously scored. The licensure organization (that administers the examination)

identified as compromised 61 items on the form. The organization also flagged 48 individuals

on the form as possible cheaters from a variety of statistical analysis and an investigative

process that brought in other information. These 48 individuals can be treated as truly

aberrant for all practical purposes because of the rigor of the investigative process. Six of

these flagged individuals belonged to test center #2305.

The nominal response model (NRM; Bock, 1972) was fitted to the data using the

R package mirt (Chalmers, 2012). The ω index (Wollack, 1997) was computed for all

within-center examinee pairs (5,640 of them). The percentage of statistically significant

values of ω was much larger than the nominal level in test center #2305.3 The PPoC was

computed using the p-value corresponding to ω for each examinee pair for all test centers

under the assumption that the probability of cheating in the population is 0.01. The PPoC

was found to be larger than 0.95 for 203 pairs of examinees among the total of 5,640

within-center pairs across all the test centers. Among the 48 examinees flagged by the

licensure organization, 10 examinees feature in at least one of these 592 pairs; interestingly,

this set of 10 examinees includes all six individuals belonging to test center #2305 who

were flagged by the licensure organization.

Figure 1 shows a plot of the PPoC vs the ω index for all within-center examinee pairs

in the data set. The PPoC increases as ω increases. The PPoC corresponding to ω of 1.64

and 2.33 (the 95th and 99th percentile of the standard normal distribution; vertical dotted

lines are provided in the figure for these values of ω) are about 0.43 and 0.72, respectively.

3Zopluoglu (2017) also reported a large percentage of significant values for the test center.
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Figure 1: A plot of the PPoC versus the ω index.

The PPoC becomes larger than 0.95 (a horizontal dashed line is provided at the value

0.95 of PPoC) for values of ω larger than about 3.13 (that is the 99.9th percentile of the

standard normal distribution). Thus, it seems that the investigator can be confident about

fraudulent behavior only for really large (>3.13) values of ω and flagging an examinee

based on a p-value of, for example, 0.01, is quite likely to yield a false accusation. Thus,

Figure 1 provides a strong justification in favor of the use of the PPoC rather than a p-value

associated with ω.
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Example 2: Erasure Analysis

The data set consisted of the scores of a random sample of about 3,000 high-school

students on 46 dichotomous items on a subject area of a computerized end-of-course state

assessment. The test is high-stakes for both the students and teachers. The students in

the sample belonged to about 30 schools. The item parameters were estimated under the

three-parameter logistic model (3PLM) using marginal maximum likelihood estimation—the

3PLM showed adequate item fit for the data. The first quartile, median, third quartile,

and maximum of the number of answer changes among the students in the sample were 0,

1, 2, and 24, respectively; thus, the average number of erasures is in agreement with the

prevalence of erasures reported by Primoli et al. (2011).

There were multiple strong sources of external evidence of test fraud for the students

from one particular high school, henceforth denoted as school S1. The data set included 205

students from School S1 among whom 159 made at least one answer change. The median

number of answer changes among the 205 students of School S1 was 4, which is four times

that in the full sample. The (frequentist) L-index (Sinharay et al., 2017), which quantifies

the difference between the estimated ability on the erased items and non-erased items and

approximately follows a standard normal distribution under no test fraud, was computed

for each examinee. The EDI for each examinee was computed using a continuity correction

of 0.5 as in Wollack et al. (2015) and the posterior predictive p-value for the EDI with a

continuity correction was computed for each examinee as in Sinharay and Johnson (2017);

a standard normal prior distribution on the examinee ability was used.4

Table 1: The Results of Erasure Analysis.

Examinees L-index EDI: Frequentist EDI: Bayesian
Not in S1 1.4 0.7 0.9

In S1 12.6 7.5 10.1

Table 1 shows the percentages of examinees for which the p-values were statistically

significant at the 1% level for the three approaches. For the L-index and the EDI under a

4Changing the prior did not affect the results in some additional limited analyses.
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frequentist approach, a value larger than 2.33 (that is the 99th percentile of the standard

normal distribution) of the statistic was considered statistically significant. The first row of

numbers in the table provide the percentages among the examinees who were not in School

S1 (that is, in any school other than S1) and made at least one answer change. The second

row of numbers provide the percentages among the 159 examinees in School S1 who made

at least one answer change; thus, for example, the percentage of 12.6 for the L-index in the

second row indicates that among the 159 examinees in School S1 who made at least one

answer change, the index was statistically significant at 1% level, that is, larger than 2.33,

for 20 examinees (note that 100×20
159

≈ 12.6).

The percentage of significant values for either examinee group is largest for the L-index

followed by the Bayesian approach with the EDI. One important finding in Table 1 is that

the percent significant for each approach is considerably larger among students from school

S1 than among other students. For example, while the EDI with the Bayesian approach was

significant for only 0.9% examinees among other schools, the index was significant for about

10% of the students in School S1. This result is favorable to the approaches including the

Bayesian approach in the sense that they seem to work as intended in practice by flagging

many students from a school (S1) that appears suspicious from multiple sources of evidence.

Example 3: Person-fit Analysis

The licensure data set considered in Example 1 was used to perform person-fit analysis.

Two parametric person-fit statistics—ζ2 (Tatsuoka, 1984) and l∗z (Snijders, 2001)—were

used with both the frequentist and Bayesian approaches.

The Rasch model is operationally used in the licensure test; however, the two-parameter

logistic model (2PLM) was found to fit the data better than the Rasch model—therefore the

2PLM was used in the analysis. The item parameters under the 2PLM were estimated from

the data set and were used to compute the person-fit statistics. The weighted maximum

likelihood estimate (WLE; Warm, 1989) was used as the estimate of the examinee ability.

For ζ2 and l∗z , under a frequentist approach, the critical values at 1% significance level were

2.33 and -2.33, respectively, which are the 99th and 1st percentiles of the standard normal

13



distribution. To use a Bayesian approach as described in Sinharay (2015b) and Sinharay

(2016), the Markov chain Monte Carlo algorithm was used to simulate draws from the

posterior distribution of the examinee ability given the scores on the test items, posterior

predictive data sets were generated using the draws from the algorithm, and then posterior

predictive p-values were computed for each examinee using ζ2 and l∗z . A standard normal

prior distribution was used on the examinee ability.

Table 2: The Results of Person-fit Analysis for the Licensure Data.

Examinees l∗z : Frequentist l∗z : Bayesian ζ2: Frequentist ζ2: Bayesian
Not Flagged 2.2 1.9 1.6 1.6

Flagged 8.3 6.3 10.4 10.4

Table 2 shows the percentages of examinees for which the p-values were statistically

significant at the 1% level for the two person-fit statistics under the frequentist and Bayesian

approaches. The first row of numbers provides the percentages among the examinees

that were not flagged by the licensure organization. The second row of numbers provides

the percentages among the 48 examinees who were flagged by the licensure organization.

Thus, for example, the percentage of 8.3 for l∗z in the second row under the frequentist

approach indicates that among the 48 examinees flagged by the licensure organization, l∗z

was statistically significant at 1% level, that is, smaller than -2.33, for four examinees (note

that 4/48=0.083).

Table 2 shows little difference in the percentage of significant values produced by the

frequentist and Bayesian approaches for any statistic. For l∗z , the Bayesian approach led to

fewer significant values for both flagged and non-flagged examinees; this could be related

to the inflated Type I error rate of the l∗z statistic at 1% level that has been found by

researchers such as van Krimpen-Stoop and Meijer (1999) and Snijders (2001). The ζ2

statistic led to more significant values among flagged examinees compared to l∗z under

either a frequentist or Bayesian approach. In addition, for each statistic, the frequentist

and Bayesian approaches mostly flagged the same examinees; for example, among the 48

examinees flagged by the licensure organization, the p-values for l∗z under frequentist and
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Bayesian approaches were either both-significant or both-nonsignificant for 47 examinees.

Table 2 also shows that the percent significant for each person-fit statistic is much

larger among the examinees flagged by the licensure organization compared to among

non-flagged examinees—this result provides some evidence that the person-fit statistics

provide useful information by being significant at a larger rate among the examinees who

are truly aberrant for all practical purposes.

Example 4: Detection of Item Preknowledge

The licensure data set described above can be used to detect item preknowledge because

61 items were identified as compromised by the licensure organization. A frequentist and a

Bayesian approach were used to detect item preknowledge. The 2PLM was used in all the

analyses.

The frequentist approach comprised the use of the signed likelihood ratio statistic

Ls (Sinharay, 2017b) that quantifies the difference between the estimated ability on the

compromised items and non-compromised items—substantial item preknowledge would

cause the statistic to be a large positive number. The large-sample distribution of Ls is the

standard normal distribution under the null hypothesis of no item preknowledge (Sinharay,

2017b).

The Bayesian approach comprised the use of the predictive p-value (Wang et al.,

2017) of the raw score on the compromised items. A Markov chain Monte Carlo algorithm

was used to simulate draws from the posterior distribution of the examinee ability given

the scores on the non-compromised items, posterior predictive data sets were generated

using the draws from the algorithm, and then predictive p-values were computed for each

examinee using the raw score on the compromised items as the test statistic. A standard

normal prior distribution was used on the examinee ability.

Table 3 shows the percentages of examinees for which the p-values were statistically

significant at 1% level for the frequentist and Bayesian approaches. The two row of numbers

provide the percentages among the examinees that were not flagged and flagged by the

licensure organization. The Bayesian approach leads to slightly more number of significant
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Table 3: The Results of Analysis for Detection of Item Preknowledge for the Licensure Data.

Examinees Frequentist Bayesian
Not Flagged 3.1 3.8

Flagged 18.8 21.2

p-values for both group of examinees.
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Figure 2: A scatter-plot of the frequentist and Bayesian p-values.

Figure 2 shows a plot of the frequentist p-values (X-axis) versus the (Bayesian)

predictive p-values. The frequentist p-value is the probability of a larger value than

the observed value of Ls under the standard normal distribution. There seems to be a

substantial agreement between the two sets of p-values.
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Conclusions and Recommendations

A brief review of the five main areas (identified by Olson & Fremer, 2013) under data

forensics analysis is provided. Brief descriptions are included of most of the Bayesian

approaches that have been suggested under each of the five areas.

Most of the existing Bayesian approaches for detecting test fraud are used either to

compute a Bayesian p-value (e.g. Sinharay, 2015b; Wang et al., 2017) or to compute a

posterior probability of cheating/answer-copying (e.g., Allen & Ghattas, 2016; Skorupski

& Wainer, 2017; van der Linden & Lewis, 2015). While researchers such as Sinharay

(2015b) showed that a Bayesian p-value may be superior than a frequentist p-value in some

problems, the posterior probability of cheating/answer-copying has the advantage over

frequentist or Bayesian p-values that the former directly answers the question “What is

the chance of test fraud given a significant value of the test statistic?” (e.g., Skorupski &

Wainer, 2017). Also, the use of a p-value can lead to a large proportion of false positives;

Skorupski and Wainer (2017) provided an example where a statistic with a Type I error

rate of 0.01 and power of 0.99 is expected to flag 1,386 examinees in a population of 70,000

examinees that includes 1% cheaters, but half of the flags are false positives. The PPoC

does not have such a limitation.

There exist several approaches, both frequentist and Bayesian, for detecting test fraud.

However, there remain several unanswered questions on how these approaches should be

used in practice. For example, how many approaches should be used and which ones

for a specific data set? Wollack and Cizek (2017b, p. 397) warned against the use of

multiple conceptually similar methods and commented that evidence of cheating from

distinctly different indices can be quite compelling. Wollack and Cizek (2017b, p. 397)

also recommended controlling for false positives in the context of test fraud where several

statistical tests are typically performed on many examinees; one way to limit the number

of false positives is to choose a critical value that adjusts for multiple comparisons by

controlling the family-wise error rate (using, for example, a Bonferroni correction) or

controlling the false discovery rate (using the procedure of Benjamini & Hochberg, 1995).

Buss and Novick (1980) asserted that statistical methods of detection should generally not
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be the sole basis for a judgment that an examinee cheated (or that an examinees scores

are sufficiently questionable to justify non-reporting) in the absence of corroboration from

other types of evidence.” Other researchers such as Holland (1996), Hanson, Harris, and

Brennan (1987), and Tendeiro and Meijer (2014) made similar recommendations. However,

test-security experts such as Wollack and Cizek (2017a, p. 200) have recently presented

the viewpoint that statistical evidence based on even a single statistic may constitute

conclusive proof of cheating provided the statistic has been properly vetted and accepted

by the research community and the degree of aberrance is clearly extreme.

Though a substantial amount of research has been performed on Bayesian methods for

detection of fraud on tests, there seems to be some gaps in addition to those discussed

above. First, there has been no application of Bayes factors (e.g., Kass & Raftery, 1995) in

the area although Skorupski and Wainer (2017, p. 351) mentioned the possibility of such

applications. It is hoped that Bayesian methods will find more applications in detection of

cheating on tests as computers become faster and Bayesian analysis becomes more popular

among researchers and practitioners. Second, the number of Bayesian approaches is small

in all of the five areas of data forensics analysis and there is a need for further research on

Bayesian approaches in each of these areas. Third, there is a severe lack of Bayesian

approaches for detecting fraudulent behavior at an aggregate level (that is, at the level of

classes or schools that the examinees belong to), that by Skorupski and Egan (2011) being

an exception—so more research on this area will be useful. Fourth, Bayesian approaches

have the advantage (over frequentist approaches) of being able to use prior information in

the form of an informative prior distribution; however, there does not exist any example of

the use of an informative prior distribution in the context of Bayesian methods in detection

of fraud in tests. Finally, there is a need for more simulation studies comparing Bayesian

and frequentist methods for detecting test fraud; such studies could potentially reveal the

type of applications where one of these approaches would be preferable over the other.
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