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Detecting Fraudulent Erasures At An Aggregate Level

Abstract

Wollack, Cohen, and Eckerly (2015) suggested the “erasure detection index” (EDI) to

detect fradulent erasures for individual examinees. Wollack and Eckerly (2017) extended

the EDI to detect fradulent erasures at the group level. The EDI at the group level was

found to be slightly conservative. This paper suggests two modifications of the EDI for the

group level. The asymptotic null distribution of the two modified indices is proved to be

the standard normal distribution. In a simulation study, the modified indices are shown

to have Type I error rates close to the nominal level and larger power than the index of

Wollack and Eckerly (2017). A real data example is also included.
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There is a growing interest in erasure analysis, which comprises analyses of erasure

patterns in an attempt to detect test tampering that leads to fraudulent or aberrant erasures.

Standard 8.11 of the Standards for Educational and Psychological Testing (American

Educational Research Association, American Psychological Association, & National Council

for Measurement in Education, 2014) include the recommendation that testing programs

may use technologies such as computer analyses of erasure patterns in the answer-sheets to

detect possible irregularities.

Erasures on paper-and-pencil tests have received most attention. However, erasures

essentially mean answer changes (ACs) and computer-based tests (CBTs) may also suffer

from fraudulent ACs. Tiemann and Kingston (2014) and Sinharay, Duong, and Wood

(2017) provided examples of CBTs in which ACs are allowed—fraudulent ACs can definitely

occur for such tests.

Wollack et al. (2015) suggested the erasure detection index (EDI) to detect fraudulent

erasures for individual examinees. The EDI is based on item response theory (IRT).

Wollack and Eckerly (2017) extended the EDI to detect fraudulent erasures at the group

level, where a group could be a class, school, or district that the examinees belong to. The

EDI at the group level would be denoted as EDIg henceforth. Note that the groups in

applications of the group-level EDI are known in advance, that is, the groups do not have

to be identified using a statistical/psychometric method.

A continuity correction is used with EDIg. Wollack and Eckerly (2017) found EDIg to

be slightly conservative and attributed the conservativeness to the continuity correction.

The purpose of this paper is to demonstrate, first using theory of large-sample statistical

inference and then using a simulation, that this continuity correction is not required and

it unnecessarily reduces the power of EDIg. It is demonstrated that two modified versions

of EDIg that involve no continuity correction have Type I error rates closer to the nominal

level and larger power compared to EDIg.

The next section includes some background material including a review of the EDI

at the individual level (Wollack et al., 2015) and at the group level (EDIg; Wollack &

Eckerly, 2017). The modified versions of EDIg are discussed in the Methods section. In
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the Simulation Study section, the Type I error rates and power of the modified versions of

EDIg are compared with those of EDIg. Conclusions and recommendations are provided in

the last section.

As in Wollack et al. (2015) and Wollack and Eckerly (2017), this paper focuses only on

dichotomous items and involves the assumption that the item parameters are known. Note

that to apply any of the analysis discussed in this paper, the investigator has to know, for

each examinee, the items on which he/she produced an erasure. As discussed in Cizek and

Wollack (2017, p. 15), several states use scanners to collect such information on erasures.

Background

Erasure Analysis in Practice and Research

Erasure analysis was brought into prominence during the widespread allegation of

educator cheating in Atlanta public schools on the Georgia Criterion-referenced competency

tests in 2009 (e.g., Kingston, 2013; Maynes, 2013; Wollack et al., 2015). A special

investigation by the state of Georgia identified 178 educators within Atlanta public schools

as being involved in cheating (e.g., Maynes, 2013, p. 173). Since then, erasure analysis has

been performed in several state tests. A survey conducted by USA Today in September

2011 of State Education Agencies found that 20 states and Washington, DC, conducted

some type of erasure analysis (e.g., McClintock, 2015). In a report for the Council of

Chief State School Officers, Fremer and Olson (2015) mentioned that erasure analysis and

analysis of gain scores are used more often to investigate testing irregularities than other

types of analyses because they are “so readily performed and because they have proven

their value in practice”.

The average wrong-to-right (WTR) erasure count is operationally used in several states

to detect fraudulent erasure at the school level or class level (e.g., Bishop & Egan, 2017;

McClintock, 2015; Wollack & Eckerly, 2017). Typically, the average (x̄) and SD (sx) of

WTR count is computed over all the examinees (for example, of a state) who took the

test; then, as described in, for example, Bishop and Egan (2017, pp. 204-205), one flags a

group (e.g., a class or a school) with ng examinees if the average WTR count for the group
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is outside a confidence bound (x̄ − Qsx/
√
ng, x̄ + Qsx/

√
ng), where Q is an appropriate

quantile of the standard normal distribution. The basis of this flagging is the assumption

that

WTRstd =
x̄g − x̄
sx/
√
ng
, (1)

which is a standardized version of the average WTR count for the group, follows a standard

normal distribution under the null hypothesis of no fraudulent erasures, where x̄g is the

average WTR count for the group. The performance of WTRstd will be examined later in

this paper.

To address the increasing interest in practice on erasure analysis, there has been an

upswing in research on the topic. Recently, researchers such as Belov (2015), Sinharay

et al. (2017), Sinharay and Johnson (2017), van der Linden and Jeon (2012), van der

Linden and Lewis (2015), Wollack et al. (2015), and Wollack and Eckerly (2017) presented

new statistics for individual-level or group-level erasure analysis. Sinharay et al. (2017)

performed a comprehensive comparison of several of these statistics at the individual

level—they found the EDI (Wollack et al., 2015) and their suggested statistic L-index,

which is based on the likelihood ratio statistic, to have performed the best.

Erasure Detection Index at the Individual Level

Let us consider a test that consists of only dichotomous items whose parameters are

assumed known and are equal to the estimates computed from a previous calibration using

an item response theory (IRT) model. Let us consider examinee j; let Ej denote the set of

items on which erasures were found for the examinee. Note that the erasures could have

been produced by the examinee and/or an educator and some erasures could be benign,

that is, not fraudulent. Let Nj denote the number of items in Ej. Let Ej denote the set of

items on which no erasures were found for examinee j. 1 Let Xj denote the raw score of

the examinee on the items in Ej. Note that Xj is also the number of WTR erasures 2 and

1Ej and Ej are non-overlapping and their union is the set of all items administered to the examinee.
2This is because a right-to-right erasure is impossible for regular dichotomously-scored multiple-choice

items that involve only one correct answer option.
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is often referred to as the WTR score. Let µj and σj respectively denote the expected value

and standard deviation (SD) of Xj given the true ability parameter (θj) of the examinee.

For example, µj can be computed as the sum of the probabilities of correct answers on the

items in Ej.

Wollack et al. (2015) and Wollack and Eckerly (2017) used in their erasure analysis the

nominal response model (NRM; Bock, 1972) under which pik(θj), the probability that an

examinee of ability θj chooses the response option k on item i, is given by

pik(θj) =
exp[ζik + λikθj]∑
m exp[ζim + λimθj]

,

where ζim and λim respectively are the intercept and slope parameters for response option

m of item i.

Let Pi(θj) denote the probability of a correct answer on item i by examinee j whose

ability is equal to θj. For the NRM, Pi(θj) = piki(θj), where the alternative ki represents

the correct answer option for item i. One then obtains

µj =
∑
i∈Ej

Pi(θj) and σj =

√∑
i∈Ej

Pi(θj)[1− Pi(θj)]· (2)

The ability θj is unknown for real data. Wollack et al. (2015) recommended estimating

θj from the responses on the items in Ej. Let us denote this estimate as θ̂j. The estimate

θ̂j is robust to potentially aberrant erasures, and, because Ej is usually a large part of the

whole test, typically has a small standard error and hence can be considered close to θj.

The estimated mean and SD, denoted respectively by µ̂j and σ̂j, are obtained by

replacing θj by θ̂j in Equation 2.

The EDI at the examinee level is then defined as

EDI =
Xj − µ̂j + c

σ̂j
· (3)

The quantity c, which represents a continuity correction, was assumed to be equal to -0.5

by Wollack et al. (2015) who assumed that the EDI approximately follows the standard

normal distribution under the null hypothesis of no fraudulent erasures. The null hypothesis

is rejected and an examinee is flagged for potentially fraudulent erasures if the examinee’s
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EDI is a large positive number. For example, one would flag the examinees whose EDIs are

larger than 2.33 if the significance level (or α level) of 0.01 is used.

The Extension of the Erasure Detection Index to the Group Level

Consider a group of examinees, where a group could refer to a class, school, or district.

Suppose that at least one erasure was found for J examinees in the group. Wollack and

Eckerly (2017) defined the group-level EDI, or, EDIg, as

EDIg =

∑J
j=1(Xj − µ̂j)− 0.5√∑J

j=1 σ̂
2
j

· (4)

Because each statistic is defined for one examinee group at a time in this paper, no

subscript for the group is used in the notations. The subtraction of 0.5 in the numerator

of the right-hand side of the above equation denotes a continuity correction of -0.5 for

EDIg. Wollack and Eckerly (2017) commented that the continuity correction is small at the

group level because it represents a small fraction of the expected number of erasures and its

impact on power should be minimal (p. 219). Wollack and Eckerly (2017) also noted that

EDIg essentially treats the entire group of examinees as if it were a single student taking a

very long test and computes the index over all erasures in the group.

Wollack and Eckerly (2017) assumed that EDIg appoximately follows the standard

normal distribution under the null hypothesis of no fraudulent erasures. The null hypothesis

is rejected and the examinee group is flagged for potentially fraudulent erasures if the

group’s EDIg is a large positive number.

Wollack and Eckerly (2017) found, in a detailed simulation study, that EDIg, either at

the class or school level, was slightly conservative, that is, its Type I error rate was slightly

smaller than the nominal level. For example, in their Table 11.2, the Type I error rate of

EDIg for classes, aggregated over all of their simulation conditions was 0.005 at level 0.01

and 0.029 at level 0.05. Wollack and Eckerly (2017) noted that a possible reason of this

conservativeness is the continuity correction. However, they did not provide any results on

the Type I error rate or the power of EDIg without a continuity correction.
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Methods: Two Modified Versions of EDIg

The Continuity Correction Involved in EDIg

The continuity correction involved in the EDI (at the examinee level) given by

Equation 3 was introduced to reduce the Type I error rate of the index; without the

correction, the EDI often led to inflated Type I error rates, especially when Ej includes

only a few items. Sinharay and Johnson (2017) showed in a simulation study that the null

distribution of the EDI without a continuity correction is quite different from the standard

normal distribution when Nj is 5 or smaller, but is close to the standard normal distribution

when Nj is larger than 5. Primoli, Liassou, Bishop, and Nhouyvanisvong (2011) found that

erasures are found on 2% items per examinee on average; therefore, on average, the number

of erasures per examinee is 2 on a 50-item test. So, the EDI without a continuity correction

at the examinee level will often not follow a standard normal distribution and be larger on

average than a standard normal random variable and the continuity correction suggested

by Wollack et al. (2015) is one way to control the Type I error rate of the EDI.

Further, a continuity correction is often used when the distribution of a test statistic

consisting of discrete observations is approximated by a continuous random variable. Yates’

continuity correction (Yates, 1934) of the Pearson’s χ2 statistic, in which 0.5 is subtracted

from the absolute difference of the observed and expected frequency in the numerator, is a

prime example of a continuity correction.

However, the normality assumption is more likely to be satisfied for EDIg without any

continuity correction than for the EDI without a continuity correction at the individual

level. Given the erasure rate of 2% items per examinee (e.g., Primoli et al., 2011), the

number of erasures on a test by an examinee roughly follows a binomial distribution with

N=the number of items and success probability=0.02 (e.g., Wollack et al., 2015). Then,

the probability of finding at least one erasure for any given examinee on a 50-item test

is 0.64, which means that the expected number of examinees with at least one erasure

on such a test is about 13 in a class with 20 examinees. Further, for such a class and a

test, 20 erasures would be found on average and the chance of finding more than a total
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of 5 erasures is 1.00 up to 2 decimal places. Then, in practice, EDIg without a continuity

correction would most often follow a standard normal distribution given that EDIg treats

the entire group of examinees as if it were a single student taking a very long test and

computes the index over all erasures in the group (Wollack & Eckerly, 2017) and the null

distribution of the EDI without a continuity correction is very close to the standard normal

distribution when the number of erasures is more than 5 (Sinharay & Johnson, 2017). Also

note that several researchers (e.g., Furr, 2010) noted that the Yates’ correction leads to

conservative tests and is not needed except for very small sample sizes.

The First Modified Version and its Asymptotic Null Distribution

A modified group-level EDI, or, EDINg , is defined as

EDINg =

∑J
j=1(Xj − µ̂j)√∑J

j=1 σ̂
2
j

· (5)

The EDINg is similar to EDIg with the only difference that the former does not involve a

continuity correction. The superscript N in the symbol EDINg denotes “No” continuity

correction.

Under the null hypothesis of no fraudulent erasures,

•
∑J

j=1(Xj−µj)√∑J
j=1 σ

2
j

d−→ N (0, 1), where the symbol
d−→ denotes “converges in distribution” and

N (0, 1) denotes the standard normal distribution, by the central limit theorem (CLT;

e.g., Rao, 1973, pp. 127-128).

• As θ̂j → θj (e.g., Chang & Stout, 1993),
∑J

j=1 µ̂j →
∑J

j=1 µj and
∑J

j=1 σ̂
2
j →

∑J
j=1 σ

2
j .

•
∑J

j=1(Xj−µj)√∑J
j=1 σ̂

2
j

=
∑J

j=1(Xj−µj)√∑J
j=1 σ

2
j

×
√∑J

j=1 σ
2
j√∑J

j=1 σ̂
2
j

d−→ N (0, 1) by the Slutsky’s theorem (e.g., Casella

& Berger, 2002, pp. 239-240) and the standard normality of
∑J

j=1(Xj−µj)√∑J
j=1 σ

2
j

.

• ∑J
j=1(Xj − µ̂j)√∑J

j=1 σ̂
2
j

=

∑J
j=1(Xj − µj)√∑J

j=1 σ̂
2
j

+

∑J
j=1 µj −

∑J
j=1 µ̂j√∑J

j=1 σ̂
2
j

d−→ N (0, 1) (6)

9



by the Slutsky’s theorem and the standard normality of
∑J

j=1(Xj−µj)√∑J
j=1 σ̂

2
j

.

Thus, EDINg has an asymptotic standard normal distribution under the null hypothesis.

Further, EDINg , because of no continuity correction, will always be larger than EDIg.

The Second Modified Version and its Asymptotic Null Distribution

From Equations 2 and 5, EDINg can be expressed as

EDINg =

∑J
j=1(Xj −

∑
i∈Ej

Pi(θ̂j))√∑J
j=1

∑
i∈Ej

Pi(θ̂j)[1− Pi(θ̂j)]
, (7)

where the denominator is supposed to be the estimated standard deviation of the numerator.

However, the above formula was obtained by assuming that the examinee abilities are

known and then by replacing the abilities by their estimates. However, researchers have

found that when the examinee abilities are replaced by their estimates in a statistic, the

resulting statistic often does not follow the theorized null distribution. For example, the

popular person-fit statistic lz (Drasgow, Levine, & Williams, 1985), which is obtained

by replacing the examinee ability by its estimate in an expression somewhat similar to

the right-hand side of Equation 7 (similar in the sense of being the standardized version

of another statistic), has been shown to not follow its theorized standard normal null

distribution even for long tests. Snijders (2001) and Sinharay (2016) suggested an adjusted

statistic l∗z that has a standard normal null distribution asymptotically. The adjustment of

Snijders (2001) and Sinharay (2016) is based on the Taylor-series expansion (e.g., Casella

& Berger, 2002, p. 240). A similar Taylor-series expansion is applied here on EDINg in the

following derivation.

The variance of the numerator in Equation 7 is equal to the sum of the variances of

[Xj −
∑

i∈Ej
Pi(θ̂j)] over j because of the independence of the examinees in a group under

the null hypothesis of no fraudulent erasures. Further,

Var

Xj −
∑
i∈Ej

Pi(θ̂j)

 = Var(Xj) + Var

∑
i∈Ej

Pi(θ̂j)

 , (8)
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because, conditional on the examinee abilities, 3 Xj and
∑

i∈Ej
Pi(θ̂j) are independent by

the local independence assumption of IRT given that Xj is based on the item-scores on Ej

whereas θ̂j is based on Ej. Then,

Var(Xj) =
∑
i∈Ej

Pi(θj)[1− Pi(θj)]. (9)

Further, by the Taylor-series expansion of the first order (e.g., Casella & Berger, 2002, p.

240), ∑
i∈Ej

Pi(θ̂j) ≈
∑
i∈Ej

Pi(θj) + (θ̂j − θj)
∑
i∈Ej

P ′i (θj), (10)

where P ′i (θj) is the first derivative of Pi(θj) with respect to θj. For the NRM (Bock, 1972),

P ′i (θj) is equal to Pi(θj)[λiki −
∑

m λimpim(θj)] as shown in, e.g., Baker and Kim (2004, p.

252). Taking variances of both sides of Equation 10 and noting that the first term of the

right-hand side of Equation 10 is a constant,

Var

∑
i∈Ej

Pi(θ̂j)

 = Var(θ̂j)

∑
i∈Ej

P ′i (θj)

2

· (11)

The above expression of variance can also be obtained by the delta method (e.g., Casella &

Berger, 2002, p. 240-245). Thus, by Equations 8, 9, and 11,

Var

 J∑
j=1

Xj −
∑
i∈Ej

Pi(θ̂j)

 =
J∑
j=1

∑
i∈Ej

Pi(θj)[1− Pi(θj)] +
J∑
j=1

Var(θ̂j)

∑
i∈Ej

P ′i (θj)

2

·(12)

An estimate of the quantities in the right-hand side of the above equation can be obtained

by replacing the θj by θ̂j for all j. Then, using Equation 12, another modified version of

EDIg can be defined as the ratio of
∑J

j=1(Xj −
∑

i∈Ej
Pi(θ̂j)) and its estimated standard

deviation 4, that is, as

EDIAg =

∑J
j=1(Xj −

∑
i∈Ej

Pi(θ̂j))√∑J
j=1

∑
i∈Ej

Pi(θ̂j)[1− Pi(θ̂j)] +
∑J

j=1 V̂ar(θ̂j)
[∑

i∈Ej
P ′i (θ̂j)

]2 , (13)

3the variances in Equation 8 and elsewhere are conditional on the true ability and item parameters. For

convenience, the notations do not reflect the conditioning.
4Note here that the asymptotic mean of

∑J
j=1(Xj −

∑
i∈Ej

Pi(θ̂j)) is 0.
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where V̂ar(θ̂j) can be computed as the reciprocal of the estimated information on the

ability for student j based on Ej. If θ̂j is computed using the Newton-Raphson algorithm,

then V̂ar(θ̂j) can be obtained from the same computer program. 5 The superscript A in

the symbol EDIAg denotes “adjusted”. Thus, EDIAg may be considered to be an adjusted

version of EDIg whose denominator has been adjusted to reflect the correct variance of the

numerator. The asymptotic null distribution of EDIAg is standard normal by the CLT for

independent random variables 6 (e.g., Rao, 1973, pp. 127-128) and the Slutsky’s theorem

(e.g., Casella & Berger, 2002, pp. 239-240). A comparison of Equations 7 and 13 shows

that the numerator of EDINg and EDIAg are the same, but the denominator of the latter is

larger than that of the former by the (non-negative) term
∑J

j=1 V̂ar(θ̂j)
[∑

i∈Ej
P ′i (θ̂j)

]2
.

Thus, EDIAg will always be smaller than or equal to EDINg in absolute value . It is

difficult to prove such a relationship between EDIAg and EDIg in general. The numerator

of EDIAg is larger than that of EDIg by 0.5, but the denominator of EDIAg is larger than

that of EDIg by
∑J

j=1 V̂ar(θ̂j)
[∑

i∈Ej
P ′i (θ̂j)

]2
. It was found in the simulations and the

real data example (described later) that EDIAg is most often larger than EDIg. For the

schools/districts that have large values of these statistics, however, EDIg was larger than

EDIAg ; this is somewhat expected; for a school with a large value of EDIg, the numerator of

the right-hand side of Equation 4 is much larger than its denominator and an addition of∑J
j=1 V̂ar(θ̂j)

[∑
i∈Ej

P ′i (θ̂j)
]2

to the denominator, especially for a large school (for which

J would be large), will have a comparatively larger effect than the addition of 0.5 to the

numerator—that would lead to EDIg being larger than EDIAg .

The Role of Independence

Because the examinee group is known in the computation of EDIg, EDINg , or EDIAg ,

statistical inference on these indices can be performed conditional on the true abilities of

the group of examinees—this conditional inference allows the use of the local independence

5Each step of the Newton-Raphson algorithm involves the estimated information at the current ability

estimate (e.g., Casella & Berger, 2002, p. 66-67). So, the reciprocal of the estimated information after the

algorithm has converged can be used as V̂ar(θ̂j).
6where the variables are Xj −

∑
i∈Ej

Pi(θ̂j), j = 1, 2, · · · , J .
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assumption of IRT (that implies that conditional on the examinee ability, the scores on two

different parts of the test, Ej and Ēj, are independent) in determining the distribution of

these indices under the null hypothesis of no fraudulent erasures. For example, as described

earlier, local independence leads to the independence of Xj and
∑

i∈Ej
Pi(θ̂j) given the

true ability. Further, under the null hypothesis of no fraudulent erasures, the scores (or

ability estimates) of the different examinees in a group are independent of each other—this

independence allows the denominators of Equations 4, 5, 13 etc. to be a simple sum over

the examinees and makes the null distribution of these indices relatively simple.

A Simulation Study

A detailed simulation study, similar to that in Wollack and Eckerly (2017), was

performed to compare the Type I error rate and power of EDIg to those of EDINg and EDIAg .

Design of the Simulation

The design of the simulation study was exactly as in Wollack and Eckerly (2017) except

that while 1,000 schools were used in Wollack and Eckerly (2017) used, 10,000 schools were

used here for each simulation condition to estimate the Type I error rate and power more

precisely. 7 A 50-item test and the NRM (Bock, 1972) was used. The following factors were

varied:

• the number of classes within a school (1, 3, or 6)

• the number of students within a class (15, 25, or 35)

• the proportion of tampered classes within a school (0, 0.33, 0.67, or 1)

• the number of erasure victims in a class (1, 3, 5, or 10)

• the number of erasures per erasure victim (3, 5, or 10)

The data for a simulation condition were simulated using the following steps:

7For example, at level=0.001, the standard error of the Type I error rate for schools is 0.001 if 1000

schools are used in the simulations, but 0.0003 if 10000 schools are used.
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• Complete and untampered data for the number of classes and students stipulated by

the simulation condition on a 50-item, 5-alternative test were simulated under the NRM

(Bock, 1972) using item parameters from the college-level test of English language used

in Wollack et al. (2015) and Wollack and Eckerly (2017). Schools were generated to be

of different quality by sampling the mean school ability (θS) from a normal distribution

with mean 0 and standard deviation (SD) of 0.5. Within each school, item-scores were

simulated for all examinees. All classes with a school were assumed to be of the same

average ability, 8 that is, the ability of students in all classes of a school were simulated

from a normal distribution with mean θS and SD of 1.

• Benign erasures, which include both misalignment erasures and random erasures, were

simulated. Misalignment erasures (or shift errors) occur when an examinee accidentally

bubbles in the answer to item i in the space on the answer sheet reserved for item

i+1 (or i-1) and continues to mark answers for a string of consecutive items in the

wrong fields. The erasure comes about when the examinee finally realizes the mistake,

changes the answers to the misaligned items, and marks those same answers again,

this time in the correct fields on the answer sheet. Random erasures occur when

an examinee either accidentally bubbles in the wrong answer on the answer sheet,

identified it immediately, and changes it to the intended answer, or initially answers

an item one way, but on reconsideration, changes that answer. Within each school,

reflecting what is observed in reality, 2% students were randomly selected as candidates

to produce misalignment erasures and the remaining 98% students were candidates to

produce random erasures. For each candidate of misalignment erasure, the number of

misaligned items was sampled from a binomial distribution with 50 trials and success

probability of 0.25. Then, the starting point of the misalignment was determined by

randomly selecting an item between Item 1 and 50-k+1 where k is the number of

misaligned items. The initial answer was determined by shifting the final answers one

8Limited simulations show that making the classes within a school to have different average abilities does

not alter the conclusions from the simulation.
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spot. If the initial and final answers were different, it was recorded as an erasure.

For candidates of random erasures, the number of randomly erased items was sampled

from a binomial distribution with 50 trials and success probability of 0.02. The specific

items that were erased were selected at random from all items.

• Fraudulent erasures were simulated. Within each school, the specific classes for which

tampering occurred and specific items on which tampering occurred was determined

randomly. All tampered items were assumed to result in WTR erasures. To generate,

for example, 5 fraudulent erasures for an examinee, 5 incorrect answers were randomly

chosen among all incorrect answers of the examinee and were changed to correct an-

swers. In the event that a student’s raw score was too high to produce the number of

WTR erasures stipulated by the simulation condition, the student was given a perfect

score.

Computation

The maximum likelihood estimate (MLE) of the examinee ability was used as the

ability estimate and the MLE was restricted between -4.5 and 4.5. Note that for each

examinee, the MLE was computed from the items without erasures. Because the number

of erasures were 3, 5, or 10 and the expected number of benign erasure was 1 for 98% of

the examinees, the MLE was computed from between 39 and 46 untampered items for a

majority of examinees—so the MLEs can be considered stable, that is, they had small

standard errors. The MLEs were computed using the Newton-Raphson algorithm.

Distribution of the Indices Under the Null Hypothesis

The left panel of Figure 1 shows the kernel-density estimates 9 of the distributions

of the values of EDIg, EDINg and EDIAg for a random subset of 2,000 classes under the

condition of 1 class per school, 15 students per class, and proportion of tampered classes

within a school=0; thus, this condition is associated with no fraudulent erasures and hence

the distribution of EDINg and EDIAg should be close to the standard normal distribution

9created using the function “density” in the R software (R Core Team, 2017).
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Figure 1. The null distribution of the EDI and the modified versions for classes and schools.

according to the theoretical results included earlier. The standard normal distribution

is shown in the figure using a solid line for comparison. Table 1 provides the first four

moments (mean, SD, skewness, and kurtosis 10) and five percentiles (25th, median, 75th,

95th, and 99th) for the distributions shown in the left panel of Figure 1. The right panel

of Figure 1 shows a plot for the distributions of the values of EDIg, EDINg , and EDIAg of

10Note that 3 has been subtracted from the formula of kurtosis so that the kurtosis of the standard normal

distribution is 0 according to the formula used in this paper.

Table 1. Summaries of the Distributions of EDIg, EDINg and EDIAg for the Class Level.

Index Moments Percentiles
Mean SD Skewness Kurtosis 25 50 75 95 99

N (0, 1) 0.00 1.00 0.00 0.00 -0.67 0.00 0.67 1.64 2.33
EDIg -0.31 1.05 -0.04 -0.03 -1.03 -0.31 0.41 1.42 2.04
EDIAg -0.01 1.00 -0.04 -0.02 -0.69 -0.02 0.67 1.64 2.21

EDINg -0.01 1.05 -0.04 -0.03 -0.73 -0.02 0.71 1.72 2.35
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2,000 schools for the simulation condition of 3 classes per school, 15 students per class, and

proportion of tampered classes within a school=0; thus, this condition is also associated

with no fraudulent erasures and hence the distribution of EDINg and EDIAg should be close

to the standard normal distribution. The distributions of EDINg and EDIAg are much closer

than that of EDIg to the standard normal distribution in both panels. The distributions of

EDINg and EDIAg appear indistinguishable in the right panel (presumably because the values

of EDINg and EDIAg are based on information from 45 students each); however, in the left

panel (where the values of EDINg and EDIAg are based on information from only 15 students

each), the distribution of EDIAg is slightly closer to the standard normal distribution

compared to that of EDINg , especially at the right tail of the normal distribution where the

rejection decisions are made; further, Table 1 shows that the values for EDIAg are closer

than those for EDINg to the standard normal distribution for classes.

So, it seems that EDIAg follows the standard normal distribution slightly more closely

than does EDINg under the null hypothesis, especially for classes. A χ2 test 11 (e.g.,

Cochran, 1952) rejected the null hypothesis that EDINg for the classes follows the standard

normal distribution, but did not reject the same hypothesis for EDIAg .

Results on Type I Error Rates

Table 2 of the current paper, like Table 11.2 of Wollack and Eckerly (2017), shows the

Type I error rates of EDIg, EDINg , and EDIAg for classes and schools collapsed over the levels

of the different factors from the simulation conditions that did not involve any fraudulent

erasures. Four significance (α) levels were considered: 0.0001, 0.001, 0.01, and 0.05. The

rates for EDIg are very close to those in Table 11.2 of Wollack and Eckerly (2017) and

support the conclusion of Wollack and Eckerly (2017) that EDIg is slightly conservative in

all conditions. The rates for EDINg are the closest, in comparison to the other two indices, to

the nominal level; they are slightly larger than the nominal level in some cases (for example,

11where the values of each of the indices were grouped into one of 10 roughly equal-size groups and then

the observed and expected numbers in the groups were used to compute a χ2 statistic whole null distribution

is the χ2 distribution with 9 degrees of freedom.
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Table 2. The Overall Type I Error Rates for EDIg, EDINg and EDIAg .

Level of Index α=0.0001 α=0.001 α=0.01 α=0.05
Aggregation

Class EDIg 0.00005 0.0005 0.005 0.031
Class EDIAg 0.00007 0.0008 0.008 0.046

Class EDINg 0.00012 0.0011 0.011 0.052

School EDIg 0.00006 0.0006 0.007 0.035
School EDIAg 0.00010 0.0009 0.009 0.048

School EDINg 0.00013 0.0011 0.010 0.052

the average Type I error rate for level=0.05 is 0.052), but are satisfactory according to

Cochran’s criterion for robustness (e.g., Cochran, 1952; Wollack, Cohen, & Serlin, 2001) 12.

The Type I error rates for EDIAg , while further from the nominal level compared to

EDINg , are closer to the nominal level compared to EDIg and are always slightly smaller

than or equal to the nominal level. Keeping in mind the important consequences of a

false alarm in the context of erasure analyses, some practitioners would probably prefer

EDIAg , whose Type I error rate is smaller than the nominal level (and yet quite close to the

nominal level), over EDINg whose Type I error rate is closest to the nominal level but can

occasionally be slightly larger than the nominal level.

The only factor (among those manipulated here) that influenced the Type I error rates

of the indices for the classes is the class size. This is expected given that the assumption

of a standard normal null distribution of EDIg, EDIAg , and EDINg would be satisfied to a

greater extent as class size increases. Figure 2 shows the Type I error rates of the indices for

different class sizes for significance levels 0.05, 0.01, 0.001, and 0.0001. Each panel, which

corresponds to a significance level, shows three dashed lines connecting one among three

types of points that denote the Type I error rates for different class sizes. Each point type

corresponds to an index. For example, the point type for EDIg is a hollow circle. In each

12According to Cochran’s criterion for robustness, estimated Type I error rates smaller than 0.06, 0.015,

0.0015, and 0.00015 are satisfactory at levels 0.05, 0.01, 0.001, and 0.0001, respectively
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Figure 2. Type I Error Rates of the indices for different class sizes.

panel, the significance level is denoted by a solid horizontal line. The figure shows that as

the class size increases, the Type I error rate of each index increases. For EDIg and EDIAg ,

the increase is desirable because their Type I error rates are smaller than the nominal level.

For EDINg , the increase is not desirable because its Type I error rate is slightly inflated.

However, even with the increase, the Type I error rate of EDINg is satisfactory according to

Cochran’s robustness criterion (Cochran, 1952) for the largest class size.

Also note that the increase of the Type I error rate with an increase in the class size

in Figure 2 does not mean that the Type I error rate of one or more of these indices will

keep increasing or will be severely inflated for much larger groups of examinees (of, say, size

100). The Type I error rates at the school-level, which are shown in Table 2, are computed
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using somewhere between 15 and 210 examinees (that is because a school includes 1, 3, or

6 classes with 15, 25, or 35 students each) and they are quite close to the nominal level. To

further investigate this issue, some limited simulations were performed with an additional

class size of 100. Figure 3 shows the Type I error rates for class sizes between 15 and 100

at levels of 0.05 and 0.01. For class size of 100, the Type I error rates of both EDINg and

EDIAg are very close to the nominal level while that of EDIg is closer to the nominal level

compared to a class size of 35, but is still considerably smaller than the nominal level.
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Figure 3. Type I Error Rates of the indices for class sizes of 15 to 100.

Results on Power

Table 3 shows the power (at α levels 0.0001, 0.001, 0.01, and 0.05) of EDIg, EDINg ,

and EDIAg for classes and schools collapsed over the levels of the different factors from the

conditions of the simulation that involved some fraudulent erasures. The values of power

for EDIg are always slightly smaller than those of either of EDIAg and EDINg , with the

difference being smaller for schools than classes. The values of power of EDIAg and EDINg

are the same up to two decimal places for schools at three out of the four significance levels.

The power of EDIAg for classes is either equal to or smaller by 0.01 than that of EDINg up to
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Table 3. The Overall Power of the indices.

Level of Index α=0.0001 α=0.001 α=0.01 α=0.05
Aggregation

Class EDIg 0.39 0.47 0.58 0.69
Class EDIAg 0.40 0.49 0.60 0.72

Class EDINg 0.41 0.50 0.61 0.72

School EDIg 0.38 0.44 0.52 0.60
School EDIAg 0.39 0.45 0.53 0.62

School EDINg 0.39 0.45 0.54 0.62

two decimal places.

Figure 4, whose left and right panels are like Figures 11.1 and 11.2, respectively, of

Wollack and Eckerly (2017), shows the power of EDIg, EDINg , and EDIAg for significance

level 0.001 to detect classes for different number of erasures (left panel) or different class

sizes (right panel) and different number of erasure victims in a class. For each line type, the

power of EDINg , EDIAg , and EDIg for different number of erasure victims in a class is shown

using a line of that type joining hollow triangles, plus signs, and hollow circles, respectively.

Each line type corresponds to a value of the number of erasures per erasure victim (left

panel) or class size (right panel). For example, in the left panel, a solid line joining hollow

circles denotes the power for EDIg for 1, 3, 5, or 10 erasure victims per class where each

victim made 5 erasures.

Figures 5 and 6, which are like Figures 11.3 and 11.4, respectively, of Wollack and

Eckerly (2017), show the power of EDIg, EDIAg and EDINg at significance level of 0.001 to

detect schools. In these figures, “#T. Class” in the legends denotes the number of tampered

classes. Figure 5 shows power for different number of erasures and Figure 6 shows power

for different class sizes.

In Figures 4-6, the power of each index follows patterns that are very similar to those in

Wollack and Eckerly (2017); for example, in both Figures 5 and 6, the power of each index

increases as the number of tampered classes increases and as the number of erasure victims

per class increases. Figures 4-6 also show that EDIAg and EDINg are slightly more powerful
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panel).

than EDIg under all simulation conditions for classes and, to a lesser extent, for schools.

The gain in power for EDINg over EDIg in these figures is sometimes up to 0.05 (especially

in Figure 4). Thus, even though Wollack and Eckerly (2017) stated that the impact of the

continuity correction involved in EDIg on power should be minimal, these figures show that

the impact may not be minimal under some circumstances. Between EDIAg and EDINg , the

latter has slightly larger or equal power than the former in all simulation cases.

A casual look at Table 3 and Figures 4-6 may provide the impression that the power of

the statistics decreases with an increase in sample size; for example,
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Figure 5. Power of the indices at level=0.001 to detect schools for different numbers of

tampered classes, erasure victims and erased items.

• In Table 3, at any significance level, the overall power for schools is smaller than that

for classes even though the schools include more students than classes

• In the right panel of Figure 4, the power for class size 15 is larger than that for class

size 35.

However, one should be careful about comparing the numbers in Table 3 and Figures 4-6

and a careful comparison shows that Table 3 and Figures 4-6 do not defy the principle of

power increasing with sample size (e.g., Rao, 1973, p. 464). For example,

• The smaller overall power for schools than classes in Table 3 is partially explained by
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Figure 6. Power of the indices at level=0.001 to detect schools for different numbers of

tampered classes, erasure victims and class size.

the fact that the computation of the overall power of schools involved many classes

with no fraudulent erasures whereas the overall power of schools was computed only

using classes with some fraudulent erasures

• In Figure 4, given a number of erasure victims, the proportion of erasure victims

increases as the class size decreases, which causes the increase in power as one goes

from, say, class size of 35 to class size of 15, both for 5 erasure victims. If one keeps the

proportion of erasure victims constant, however, the power increases with an increase

in class size as one would expect; for example, in Figure 4, the power of EDIAg is
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about 0.40 for class size=15 and number of erasure victims=3, but is about 0.65 for

class size=25 and number of erasure victims=5 (the proportion of erasure victims in a

class=0.20 in both of these cases).

Figure 7 shows the average power of the three statistics for schools when the proportion of

erasure victims in a class=0.20 for two class sizes and three levels of number of erasures.

The figure shows that other factors remaining the same, the power of any index increases
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Figure 7. Power of the indices at level=0.001 to detect schools for class sizes 15 and 25 for

20% eraser victims.

with an increase in the class size, which is expected. For example, for 3 erasures per

examinee, the power of EDIAg is 0.89 for class size of 15, but 0.98 for class size of 25.

Discussion on the Comparative Performance of the Indices

The values of Type I error rates and power from the simulations demonstrate that EDIAg

has a better balance of Type I error rates and power compared to EDIg; the Type I error
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rates of EDIAg are smaller than or equal to the nominal level on average and the power of

EDIAg is larger than that of EDIg. Thus, the practitioners should seriously consider applying

EDIAg to detect fraudulent erasures at group level. The results from the simulations also

show that EDINg may be preferred by some practitioners; EDINg is computationally simpler

than EDIAg (and computationally as easy as EDIg) and is more powerful than EDIAg and

EDIg and the Type I error rates of EDINg are closest to the nominal level on average

among these three indices; however, one limitation of EDINg , keeping in mind the severe

consequences of a false alarm in the context of erasure analysis, is that its Type I error rate

may sometimes be slightly larger than the nominal level.

The Type I error rate and power of the WTR count, which is operationally used in

several states, were also examined in the simulation study. Specifically, the WTRstd statistic

provided by Equation 1 was computed for each class and school. Overall, WTRstd did not

have satisfactory Type I error rate or power; a part of it can be attributed to the simulation

design; for example, in the case when the proportion of tampered classes is 1, the level of

tampering is the same in each school 13 and hence the power of WTRstd would be close

to the Type I error rate. However, even in the simulation conditions most favorable to

WTRstd, the statistic was less powerful than each of EDIg, EDIAg and EDINg . For example,

while the average power of EDIg, EDIAg and EDINg to detect classes were 0.53, 0.56, and

0.55 at level=0.01 for the simulation cases where the proportion of tampered classes is 0.33,

the average power of WTRstd over the same simulation cases was only 0.29. Wollack and

Eckerly (2017) found the correlation between EDIg and the WTR count and several other

similar and popular statistics to be rather small (0.51 or smaller).

Application to Real Data

Data Set and Analyses

Wollack and Eckerly (2017) analyzed a data set that includes the responses of 72,686

fifth-grade students to 53 dichotomous items on a state mathematics test. The students

13whereas the WTR count would be powerful only when the level of fraud is very low in most schools and

very high in a few schools.
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belonged to 3,213 classes in 1,187 schools in 630 districts. The data providers did not

reveal if there were any fraudulent erasures on the test. Erasures were captured through a

scanning process by looking for “light marks” (Cizek & Wollack, 2017, p. 15). On average,

the number of erasures per examinee is two (that is 3.7% of all the items on the test),

which is about twice of what is typically found in similar assessments (see, e.g., Primoli et

al., 2011; Wollack et al., 2015). About 50.9% of the total number of erasures were WTR

erasures. As in Wollack and Eckerly (2017), the NRM was used to analyze these data in

this paper and the erased responses were treated as missing data in estimating the item

parameters. The missing responses were also treated as missing data in estimating the

item and ability parameters. The items had four response categories each; an additional

response category (“missing”) was assumed in the analysis with the NRM so that five

intercept parameters and five slope parameters 14 were estimated for each item using the R

package mirt (Chalmers, 2012). The statistics EDIg, EDIAg and EDINg were computed for

each district, school, and class in the data set.

A significance level of 0.001 was used to determine the statistical significance of

the statistics, as in Wollack and Eckerly (2017). A standard normal null distribution

assumption for the statistics implies that a value larger than 3.09 of any of this statistics is

statistically significant.

Results

The top left and middle panels of Figure 8 show plots of EDIg vs EDIAg and of EDIg vs

EDINg for the districts. The bottom left and middle panels of the figure show similar plots

for the schools. In each panel, a diagonal solid line and a horizontal and vertical dotted line

at 3.09 (the critical value at level 0.001) are shown. The figure shows that EDINg is always

larger than EDIg, as expected from their definitions, which means that EDINg would flag

a larger number of schools/districts compared to EDIg. The figure also shows that EDIAg

is mostly larger than EDIg except for very large values (larger than about 3.3) of these

14For each item, the sum of the five intercept parameters is zero and the sum of the five slope parameters

is zero.
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Figure 8. Plots of EDIg vs EDIAg , EDIg vs EDINg , and EDINg vs WTRstd for Districts (Top

Row) and Schools (Bottom Row) for the Real Data Set

statistics for which EDIAg is mostly smaller than EDIg.

Among the 630 districts in the data set, EDIg, EDIAg and EDINg were statistically

significant for 5, 5, and 6 districts, respectively. Among the 1,187 schools in the data set,

EDIg, EDIAg and EDINg were statistically significant for 8, 8, and 13 schools, respectively.

Among the 3,213 classes in the data set, EDIg, EDIAg and EDINg were statistically significant

28



Table 4. Districts, Schools, and Classes for which EDIg, EDINg , or EDIAg was Statistically
Significant.

District School Class

ID EDIg EDINg EDIAg ID EDIg EDINg EDIAg ID EDIg EDINg EDIAg
401600 6.61 6.68 6.17 344969 6.61 6.68 6.17 9 7.72 7.82 6.96
274475 5.14 5.20 4.92 273425 6.50 6.60 5.95
71771 4.01 4.03 3.87 244544 3.32 3.45 3.31 5010 3.30 3.47 3.32

274152 3.06 3.12 2.96
55558 3.86 3.88 3.70 354770 4.78 4.87 4.55 331 4.89 4.99 4.59
13758 3.61 3.68 3.29 65825 5.63 5.73 5.25

424557 2.96 3.21 2.89 165894 2.96 3.21 2.89
102235 NS NS NS 391665 4.67 4.78 4.56
88033 NS NS NS 187462 3.55 3.66 3.50

123845 NS NS NS 335982 3.27 3.35 3.25
24093 NS NS NS 125561 3.05 3.20 2.97

182640 NS NS NS 241507 3.02 3.12 2.70 3667 4.09 4.24 3.47
3666 3.24 3.49 2.75

350388 NS NS NS 15517 3.01 3.10 2.99 5108 3.23 3.40 3.26
374941 NS NS NS 388551 NS NS NS 102 3.29 3.44 3.28
38891 NS NS NS 216471 NS NS NS 1000 3.64 3.75 3.62

243971 NS NS NS 12900 NS NS NS 8 3.26 3.40 3.03
190527 NS NS NS 351598 NS NS NS 441 3.15 3.31 3.19
362963 NS NS NS 367962 NS NS NS 512 3.04 3.23 3.17
305498 NS NS NS 204528 NS NS NS 444 2.80 3.21 3.17

Note: The values of EDIg written in bold and italicized font were not significant in Wollack
and Eckerly (2017), but are significant here. The values of EDINg or EDIAg written in bold

and regular font correspond to cases for which EDIg is not significant, but EDINg or EDIAg is
significant. “NS” means not statistically significant.

for 10, 11, and 12 classes, respectively. Table 4 shows the districts, schools, or classes for

which at least one of EDIg, EDIAg and EDINg was statistically significant. For any school,

the district that the school belongs to is shown in the same row of the table. For any class,

the district and the school that the class belongs to is shown in the same row of the table.

For example, the first row includes Class 9, which is within School 344969, which is within

District 401600. All districts with significant values of the statistics included at least a

school with significant values of the statistics.
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The number of significant values for EDIg is one more here for both schools and

districts and two more here for classes compared to that in Wollack and Eckerly (2017) who

found four districts, seven schools, and eight classes to have statistically significant values

of EDIg.
15 This difference is most likely an outcome of the way missing data were handled

in these two studies and because of the use of different software packages (MULTILOG by

Wollack & Eckerly, 2017, vs R in this study) in these two studies. However, the values of

EDIg from our calculations were very close to those of Wollack and Eckerly (2017) for the

classes, schools and districts that are listed in Table 11.7 of Wollack and Eckerly (2017). For

example, while Wollack and Eckerly (2017) reported the value of EDIg of District 401600

to be 6.54 in their Table 11.7, the corresponding value here is 6.61. Further, all the EDIg

values (for either classes, schools or districts) that were statistically significant in Wollack

and Eckerly (2017) were significant here as well. 16 Some of the values of EDIg that are

significant here and not in Wollack and Eckerly (2017) are justified; for example, Wollack

and Eckerly (2017) found EDIg to be significant (and very large) for School 354770, but did

not find EDIg to be significant for District 55558 that the school belonged to; in contrast,

EDIg was significant for the district in this paper.

There are one district, five schools, and two classes for which EDIg was not statistically

significant, but EDINg was significant; there were two classes for which EDIg was not

statistically significant, but EDIAg was significant. 17 Especially, note that School 165894

belongs to District 424557, and EDINg was found significant and EDIg was found not

significant for both of them. Some of the instances with significant EDINg and non-significant

EDIg provide strong evidence in favor of the use of EDINg . For example, EDIg is significant

for both Classes 3667 and 3666; however, EDIg is not significant for School 241507 that

these two classes belong two; in contrast, EDINg is significant for School 241507. Thus, the

larger power of EDINg and EDIAg (observed in the simulation studies earlier) may manifest

15EDIg was significant here but not in Wollack and Eckerly (2017) for District 55558, School 335982, and

Classes 8 and 441.
16It was confirmed with James Wollack that in the third row and fourth column of Table 11.7 of Wollack

and Eckerly (2017), 13758 should be replaced by 65825.
17EDIg was statistically significant, but EDIAg was not significant for Class 8 in School 12900.
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itself as a practically different result for certain groups of examinees for real data.

The statistic WTRstd provided by Equation 1 was also computed for each district

and school. The correlation between EDIg and WTRstd was found to be 0.30 for districts

and 0.39 for schools. The two rightmost panels of Figure 8 show plots of EDINg versus

WTRstd for districts and schools, respectively. The value of WTRstd was significant at the

level of 0.001 for 18 districts and 29 schools, that is, for a much larger number of districts

and schools compared to the other statistics. Among the six districts for which EDINg

was significant, WTRstd was significant for four, but was 2.79 and -5.08 (and hence not

significant) for the remaining two. For one district (with more than 300 students), EDINg

was -1.3 (that is, far from being statistically significant), but WTRstd was 4.8, which is

significant and indicates that statistics such as EDINg can be small even for groups that

produce a large number of WTR changes on average. For another district, EDINg was

3.88 (that is, statistically significant), but WTRstd was -5.08, which is not significant and

indicates that statistics such as EDINg can be significant even for groups that produce fewer

number of WTR changes on average.

Erasure analysis was also performed at the individual level using the L-index (Sinharay

et al., 2017). The values of the L-index agree with the values of EDIg, EDINg and EDIAg for

the data set. For example, the L-index was significant at the level of 0.01 for 13, 12, 15, 14,

and 10 percent of examinees, respectively, in the schools 344969, 273425, 65825, 354770,

and 391665 that had the largest values of EDINg in Table 4.

Conclusions

This paper follows up on the research of Wollack and Eckerly (2017) by suggesting two

modifications of their index for detection of fraudulent erasures at the group level. The

suggested modifications have slightly larger power compared to the index of Wollack and

Eckerly (2017). The Type I error rate of one of the modified indices is smaller than or

equal to the nominal level while that of the other modified index is close to the nominal

level, but can occasionally be slightly larger than the nominal level. The choice of an index

in a particular application would depend on the preference of the testing program. If
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one is willing to allow a couple more false alarms in exchange for a slightly larger power,

EDINg would be a better choice. If controlling of the false alarms is the top priority, then

EDIAg would be a better choice. Note that the computational complexity of the indices is

about the same; EDIAg involves the derivatives of the response probabilities and estimated

variances of the ability estimates, but, remembering that all these indices require the fitting

of an IRT model, it is natural to assume that an investigator who has the capability of

fitting IRT models should be able to compute derivatives of the response probabilities and

estimated variances of the ability estimates.18 Each of EDIg, EDINg , or EDIAg was modestly

correlated with and much more powerful than standardized average WTR count, which is

operationally used in erasure analysis by several states.

The choice of the significance level to be used with EDIg, EDINg , or EDIAg is an

important issue. Wollack and Eckerly (2017, p. 227) used the significance level of 0.001

in their real data example to limit the number of false positives and commented that

states or test sponsors would apply a more conservative criterion in practice. Another

option to limit the number of false positives is to choose a critical value that adjusts

for multiple comparisons by controlling the family-wise error rate (using, for example,

a Bonferroni correction) or controlling the false discovery rate (using the procedure of

Benjamini & Hochberg, 1995). If one applies the Bonferroni correction to the real data

example discussed above, then critical values of 4.16, 4.30, and 4.52, respectively, would

allow one to control the familywise Type I error rate at 0.01 for districts, schools, and

classes, respectively (EDINg is significant for two districts, five schools, and two classes if

one applies this Bonferroni correction).

Though EDIg and the suggested modifications were applied in the context of erasure

analysis, it is possible to apply them to problems in which (i) examinees belong to groups

(like districts, schools, or classes), (ii) the investigator is interested in the difference, at

the group level, between the performance of the examinees on two sets of items that are

supposed to measure a common construct, and (iii) the estimates of the parameters of

18The Newton-Raphson algorithm for computing ability estimates involves both derivatives of response

probabilities and estimated variances.
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the two sets of items are available. 19 At an individual level, the difference between the

performance of the examinees on two sets of items was of interest in Finkelman, Weiss,

and Kim-Kang (2010) because the difference would quantify the change that occurred in

the examinee abilities, in Guo and Drasgow (2010) because a difference would indicate

possible cheating, and in Sinharay (2017) because a difference would indicate possible

item preknowledge; in all these applications, the null hypothesis is that the ability of the

examinees is the same on average over the two sets of items and the alternative hypothesis

is that the ability is not the same (due to change/growth or cheating or item preknowledge).

One may be interested in quantifying such differences at an aggregate level and EDIg,

EDIAg , and EDINg may be applied to quantify the differences. For example, if it is known

that a certain subset of items may have been compromised (a problem considered by, for

example, Sinharay, 2017), one can apply EDIg, EDIAg , and EDINg to detect possible item

preknowledge at an aggregate level; the set of compromised items and the remaining items

on the test would constitute the two sets of items in such an application.

Statistical indices for determination of fraudulent erasures are useful for providing

confirming evidence of inappropriate behavior when evidence from other sources also exist,

but the evidence provided by statistical indices is insufficient by itself. For example, Hanson,

Harris, and Brennan (1987) commented that no statistical method on its own can provide

conclusive proof that copying occurred (p. 25); the comment is true about erasures as

well. Researchers such as Tendeiro and Meijer (2014, p. 257) recommended complementing

statistical indices of detecting irregularities with other sources of information such as

seating charts, video surveillance, or follow-up interviews. However, test-security experts

such as Wollack and Cizek (2017, p. 200) have recently presented the viewpoint that

statistical evidence based on even a single statistic may constitute conclusive proof of

cheating provided the statistic has been properly vetted and accepted by the research

community and the degress of aberrance is clearly extreme.

There are several limitations of this paper and, consequently, several related topics can

be further investigated. First, it is possible to extend other indices for detection of

19Note that in erasure analysis in this paper, the two sets of items are Ej and Ej .
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fraudulent erasures for individual examinees including those suggested by Sinharay and

Johnson (2017), Sinharay et al. (2017), and van der Linden and Lewis (2015) to the group

level and a future study may compare the extensions suggested in this paper to extensions

of other individual-level statistics for detecting fraudulent erasures. Second, while our

simulation study was detailed, it is possible to perform more simulations, possibly with

other IRT models. Similarly, it is possible to consider applications of the indices to more

real data examples. Finally, since classes and schools involve a hierarchical structure where

students are nested within classes, which are nested within schools, it is possible to apply a

hierarchical model to perform erasure analysis; Skorupski and Egan (2014) suggested a

hierarchical linear model for detection of group-level cheating; their approach uses the score

on a vertical scale as the response variable and treats an unusually large increase in score

for a group from a previous grade as possible evidence of cheating. It may be possible to

use a similar approach for an aggregate-level erasure analysis.
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