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Abstract 

Methods for meta-analyzing single-case designs (SCDs) are needed to inform evidence-

based practice in clinical and school settings and to draw broader and more defensible 

generalizations in areas where SCDs comprise a large part of the research base. The most widely 

used outcomes in single-case research are measures of behavior collected using systematic direct 

observation, which typically take the form of rates or proportions. For studies that use such 

measures, one simple and intuitive way to quantify effect sizes is in terms of proportionate 

change from baseline, using an effect size known as the log response ratio. This paper describes 

methods for estimating log response ratios and combining the estimates using meta-analysis. The 

methods are based on a simple model for comparing two phases, where the level of the outcome 

is stable within each phase and the repeated outcome measurements are independent. Although 

auto-correlation will lead to biased estimates of the sampling variance of the effect size, meta-

analysis of response ratios can be conducted with robust variance estimation procedures that 

remain valid even when sampling variance estimates are biased. The methods are demonstrated 

using data from a recent meta-analysis on group contingency interventions for student problem 

behavior.  
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Using Log Response Ratios for Meta-Analyzing Single-Case Designs with Behavioral 

Outcomes 

Studies that use single-case designs (SCDs) comprise a large and important part of the 

research base in certain areas of psychological and educational research. For instance, SCDs 

feature prominently in research on interventions for students with emotional or behavioral 

disorders (e.g., Lane, Kalberg, & Shepcaro, 2009), for children with autism (e.g., Wong et al., 

2015), and for individuals with other low-incidence disabilities. SCDs are relatively feasible in 

these settings because they require fewer participants than between-groups research designs. 

Furthermore, SCDs involve within-case comparisons—using each case as its own control—and 

so can be applied even when cases exhibit highly heterogeneous or idiosyncratic problems.  

A well-designed SCD makes it possible to draw inferences about the effects of an 

intervention for the participating individual(s). However, the growing focus on evidence-based 

practices in psychology and education has led to the need to address further, broader questions—

not only about what works for individual research participants, but under what conditions and for 

what types of individuals an intervention is generally effective (Hitchcock, Kratochwill, & 

Chezan, 2015; Maggin, 2015). Such questions are difficult to answer based on data from 

individual SCDs because single studies rarely include broad variation in participant, setting, and 

intervention procedures, and of course most include only a few participants.   

In light of the limitations of individual SCDs, there has long been interest in using meta-

analysis methods to draw broader generalizations by synthesizing results across multiple SCDs 

(Gingerich, 1984; White, Rusch, Kazdin, & Hartmann, 1989). There have recently been many 

new developments in the methodology for analyzing and synthesizing data from SCDs (Manolov 

& Moeyaert, 2017; Shadish, 2014a), as well as increased production of systematic reviews and 
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meta-analyses of SCDs (Maggin, O’Keeffe, & Johnson, 2011). Researchers have also designed 

frameworks for evaluating study quality, including influential design and evidence standards 

proposed by the What Works Clearinghouse (Kratochwill et al., 2013), Council for Exceptional 

Children (Council for Exceptional Children Working Group, 2014), and the Single-Case 

Reporting Guidelines in Behavioral Interventions (Tate et al., 2016).  

A critical methodological decision in any meta-analysis is what effect size measure to use 

to quantify study results. In the context of SCDs, an effect size is a numerical index that 

quantifies the direction and magnitude of the functional relationship between an intervention and 

an outcome. A wide array of effect size indices have been proposed for summarizing SCD 

results, ranging from simple summary statistics such as the within-case standardized mean 

difference (Busk & Serlin, 1992; Gingerich, 1984), the percentage of non-overlapping data 

(PND; Scruggs, Mastropieri, & Casto, 1987), and the non-overlap of all pairs (NAP; Parker & 

Vannest, 2009), to more complex estimators based on linear regressions or hierarchical linear 

models (Maggin, Swaminathan et al., 2011; Van den Noortgate & Onghena, 2008), as well as 

between-case standardized mean difference (BC-SMD) estimators that are designed to be 

comparable to effect sizes from between-groups designs (Shadish, Hedges, & Pustejovsky, 

2014). However, there remains a lack of consensus about which effect size indices are most 

useful for meta-analyzing SCDs (Kratochwill et al., 2013).  

To be useful in meta-analysis, an effect size should be in a metric that can be validly 

compared across studies (Borenstein, Hedges, Higgins, & Rothstein, 2009; Hedges, 2008). In 

meta-analysis of between-case experimental designs, a key consideration in selecting an effect 

size metric is how the study outcomes are measured. For example, standardized mean differences 

are often used to summarize results for outcome constructs assessed using continuous, interval-
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scale measures such as psychological scales or academic achievement test scores, whereas odds 

ratios or relative risk ratios are typically used to summarize dichotomous outcomes, such as 

school dropout or mortality (Borenstein et al., 2009, Chapters 4–5). Some research synthesis 

projects even use multiple, distinct metrics to quantify effects for different outcome constructs 

(e.g., Tanner-Smith & Wilson, 2013). In contrast, existing effect size measures for SCDs are 

typically conceived as generic indices and are often applied with little consideration for how 

study outcomes are measured.  

By analogy to effect sizes for between-case research, it is possible that useful effect size 

indices for SCDs can be identified by focusing not on single-case research in its entirety, but 

rather on studies that use a common class of outcome measures. There are at least two reasons 

for doing so. First, universally applicable effect size metrics are seldom needed because effect 

sizes are typically combined or compared within a given class of outcomes. Indeed, combining 

outcome constructs can risk the interpretability of the synthesis results (e.g., how should one 

interpret an average effect size that combines academic performance and disruptive behavior 

measures?). Second, all effect sizes are based on modeling assumptions, and outcome 

measurement properties are an important consideration in developing and validating such 

assumptions. Just as different modeling assumptions may be required for different classes of 

outcome measurements, different types of effect size measures may be needed as well.  

The most widely used outcomes in single-case research are behavioral measures collected 

through systematic direct observation (Ayres & Gast, 2010). A variety of scoring procedures are 

used in conjunction with systematic direct observation, including continuous recording, 

frequency counting, and interval recording methods. The measurements resulting from these 

procedures are typically summarized in the form of counts, rates, or percentages. Researchers 
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may also choose to record behavior for longer or shorter observation sessions, which will 

influence the variability of the resulting scores (i.e., longer observation sessions will produce less 

variable outcome measurements). Recent evidence indicates that behavioral observation data 

have features that are not well-described by regression models with normally distributed errors 

(Solomon, 2014; Solomon, Howard, & Stein, 2015), even though such models have been the 

predominant approach to statistical analysis of SCD data. As a result, methodologists have begun 

to emphasize the need for development of statistical analyses and effect size indices that are 

tailored to and more appropriate for the metrics commonly used with behavioral outcomes 

(Rindskopf & Ferron, 2014; Shadish, 2014b; Shadish, Hedges, Horner, & Odom, 2015).  

One effect size index that may be particularly useful for describing the magnitude of 

functional relationships on behavioral measures is the log response ratio (LRR). The LRR is a 

general metric for comparing two mean levels; it is used in many areas of meta-analysis, 

including economics, medicine, and ecology (e.g., Hedges, Gurevitch, & Curtis, 1999). 

Pustejovsky (2015) introduced the LRR for meta-analysis of SCDs with behavioral outcome 

measures. In the context of SCDs, the LRR quantifies functional relationships in terms of the 

natural logarithm of the proportionate change between phases in the level of the outcome (a 

formal definition is given in the next section). The LRR is appropriate for outcomes measured on 

a ratio scale, such as frequency counts or percentage durations of a behavior.  

The LRR has several advantageous features as an effect size measure for SCDs, including 

a direct relationship to percentage change, insensitivity to operational variation in behavioral 

measurement procedures, and—under certain conditions—comparability across different 

dimensional constructs. First, the LRR is directly connected to the metric of percentage change, a 

familiar and readily interpretable conceptualization of effect size that is consistent with how 



USING RESPONSE RATIOS  7 
 

behavioral researchers and clinicians often quantify and discuss treatment impacts (Campbell & 

Herzinger, 2010; Marquis et al., 2000). Several past meta-analyses of single-case research have 

used percentage change indices as effect sizes, including syntheses of positive behavioral support 

interventions (Marquis et al., 2000), behavioral treatments for self-injurious behavior (Kahng, 

Iwata, & Lewin, 2002), and interventions for reducing problem behavior in individuals with 

autism (Heyvaert, Saenen, Campbell, Maes, & Onghena, 2014). However, these past applications 

lacked formal, statistical development for the effect size index—a limitation addressed by the 

LRR.  

A second advantage is that the magnitude of the LRR is relatively insensitive to how the 

outcome variable was measured, such as use of different recording systems or different 

observation session lengths (Pustejovsky, 2015, 2018). For instance, a collection of SCDs might 

include some studies that used continuous recording for twenty-minute sessions and other studies 

that used 15-sec momentary time sampling for 10-min sessions. The magnitude of the LRR is 

unaffected by such procedural variation, making it possible to compare or combine effect sizes 

from studies that use different measurement procedures. This property is due to the fact that its 

magnitude depends only on the mean levels of the outcome in each phase. In contrast, other 

effect size indices such as the within-case standardized mean difference, PND, and NAP are 

defined in terms of the variability of the outcome measurements, making them sensitive to how 

the outcomes are measured (Pustejovsky, 2018).  

Finally, LRR effect sizes based on different dimensional characteristics of a behavior can 

sometimes be directly compared (Pustejovsky, 2015). For example, a collection of SCDs might 

include some studies that use event counting to measure the frequency of a behavior and other 

studies that use momentary time sampling to measure the percentage duration of a behavior. 



USING RESPONSE RATIOS  8 
 

Researchers might be interested in comparing an intervention’s effects on behavioral frequency 

to its effects on percentage duration—or even in combining results across both behavioral 

dimensions. Pustejovsky (2015) described a theoretical model, called the alternating renewal 

process, that can be used to identify conditions under which LRR effect sizes for frequency 

outcomes are equivalent to LRR effect sizes for percentage duration, as well as other equivalence 

relationships. Although these conditions might not always hold precisely in practice, the 

framework remains useful as an approximate guide, as illustrated in the meta-analysis example 

described in a later section.   

Along with these advantages, the LRR is also limited in several key respects. First, 

available methods for estimating the LRR are based on a model that assumes that the outcomes 

for a given case are stable within each phase of the design (i.e., lacking time trends). Second, 

methods for estimating the sampling variance of the LRR are based on an assumption that the 

outcome measurements are mutually independent, which runs counter to the growing consensus 

that statistical methods for SCDs should provide some means of accounting for serial 

dependence or auto-correlation (Horner, Swaminathan, Sugai, & Smolkowski, 2012; Wolery, 

Busick, Reichow, & Barton, 2010). A recent innovation in meta-analytic methodology called 

robust variance estimation (Hedges, Tipton, & Johnson, 2010) can be used to address this 

limitation when meta-analyzing LRR estimates, as explained in a later section. A third limitation 

is that applying the LRR to outcomes measured as proportions or percentages requires attention 

to how the outcomes are operationally defined, in order to ensure that the resulting effect sizes 

are on a common scale. Although application of the LRR does involve complexities beyond what 

is involved in calculating many other available effect size indices for SCDs, this degree of 
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nuance is required precisely because the LRR is suited for quantifying effects on behavioral 

outcomes, which can be measured in a variety of ways.  

Even though it has only recently been proposed for use in the context of single-case 

research, researchers have begun to apply the LRR in large-scale meta-analyses of SCDs 

(Common, Lane, Pustejovsky, Johnson, & Johl, 2017; Morano et al., 2017). However, available 

literature on the LRR is limited to a single, technically-focused article (Pustejovsky, 2015) on 

how the metric works in the context of a statistical model for systematic direct observation of 

behavior. There is therefore a need for further guidance about how to apply the LRR effect size 

in practice. The goal of the present paper is to fill this gap by providing a “user’s guide” for the 

LRR and demonstrating how this effect size index can be used to meta-analyze SCDs with 

behavioral outcome measures.  

The remainder of the paper is organized as follows. The next section provides a formal 

definition of the LRR effect size, describes the basic calculations involved in estimating the LRR 

from data, and demonstrates the calculations with an example. The following section discusses 

further issues involved in using the LRR to conduct a synthesis of SCDs. The next section turns 

to methods for meta-analyzing a set of LRR effect size estimates, focusing in particular on 

methods for robust variance estimation. The meta-analysis methods are demonstrated using data 

from a recent systematic review of school-based group contingency interventions (Maggin, 

Pustejovsky, & Johnson, 2017). The final section discusses outstanding limitations and future 

research directions.  

Log response ratios 

The LRR effect size is defined based on a simple model for the data from a baseline 

phase and an intervention phase within a single-case design. Suppose that the baseline phase 
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includes m sessions, with outcome data 𝑌1
𝐴, … 𝑌𝑚

𝐴, and that the intervention phase includes n 

sessions, with outcome data 𝑌1
𝐵, … , 𝑌𝑛

𝐵. Let us assume that the average level of the outcome is 

constant within each phase (i.e., lacking any systematic time trend). Let 𝜇𝐴 denote the mean level 

of the outcome during the baseline phase and 𝜇𝐵 denote the mean level of the outcome during the 

treatment phase, where both 𝜇𝐴 and 𝜇𝐵 are greater than zero. Let us further assume that outcome 

measurements are sampled independently. This is a strong and potentially unrealistic 

assumption. However, I will describe a method for meta-analyzing LRR effect sizes that remains 

valid even when the independence assumption is violated.  

Under this simple model, the LRR effect size parameter is defined as  

𝜓 = 𝑙𝑛 (
𝜇𝐵
𝜇𝐴
) , (1) 

where ln( ) denotes the natural logarithm function. From the algebraic properties of the natural 

logarithm, the LRR parameter can be written equivalently as 𝜓 = ln(𝜇𝐵) − ln⁡(𝜇𝐴). If there is no 

change in the underlying level of the outcome—that is, if intervention has no effect 

whatsoever—then the LRR will be 𝜓 = 0. If treatment leads to an increase in the level of the 

outcome, then the LRR will be positive; conversely, if treatment leads to a decrease in the level 

of the outcome, then the LRR will be negative.  

 One basic and advantageous property of the LRR is that it is scale-invariant, meaning that 

changing the units of the outcome measurements will not change the magnitude of the LRR. For 

instance, suppose that 𝜇𝐴 and 𝜇𝐵 represent average frequency counts of a behavior observed for 

15-min sessions. Re-scaling the outcomes in terms of the rate of behavior per minute does not 

change the ratio of 𝜇𝐵 to 𝜇𝐴. The LRR will therefore remain the same whether it is calculated 

from frequency counts or from standardized rates.  
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Another useful property of the LRR is that it can be transformed into the metric of 

percentage change, an intuitive way to interpret the magnitude of effect. The percentage change 

in the level of the outcome from baseline to the treatment phase is  

%⁡𝑐ℎ𝑎𝑛𝑔𝑒 = 100% × (
𝜇𝐵 −⁡𝜇𝐴

𝜇𝐴
)⁡. (2) 

Equivalently, percentage change can be expressed in terms of the LRR parameter as 

%⁡𝑐ℎ𝑎𝑛𝑔𝑒 = 100% × [𝑒𝑥𝑝(𝜓) − 1], (3) 

where exp( ) is the exponential function. This relationship can be used to aid interpretation of 

meta-analysis results for LRR effect sizes.  

Estimation 

 In practice, the true levels of the outcome in each phase are unknown and must be 

estimated from sample data. The simplest approach to doing so is to replace the unknown mean 

levels 𝜇𝐴 and 𝜇𝐵 with the corresponding sample mean outcomes from each phase. A 

complication arises from the possibility that the sample means might be equal to zero even when 

the true mean levels are positive. To account for this possibility, Pustejovsky (2015) proposed to 

use the following truncated sample means: 

𝑦̃𝐴 = 𝑚𝑎𝑥 {
1

2𝐷𝑚
,
1

𝑚
∑𝑌𝑖

𝐴

𝑚

𝑖=1

} , 𝑦̃𝐵 = 𝑚𝑎𝑥 {
1

2𝐷𝑛
,
1

𝑛
∑𝑌𝑖

𝐵

𝑛

𝑖=1

} , (4) 

where m and n are the number of observations in the baseline and treatment phases, respectively, 

and D is a constant that depends on the scale of the outcome variable. D is equal to 1 for 

outcomes in the metric of counts; equal to the observation session length (in minutes) for 

outcomes in the metric of rates per minute; equal to the number of intervals for outcomes 

measured as a proportion of intervals; and equal to the number of intervals divided by 100 for 

outcomes measured as a percentage of intervals (continuously duration recording is treated as 
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equivalent to 1-sec interval recording). These values are chosen so that the truncated mean is 

invariant to changes of scale. 

Using the truncated sample means, a basic estimator of the LRR can be calculated as 

𝑅1 = 𝑙𝑛(𝑦̃𝐵) − 𝑙𝑛(𝑦̃𝐴) . (5) 

However, this basic estimator has a small-sample bias. Pustejovsky (2015) proposed a bias-

corrected estimator for use when either phase includes only a small number of observations. The 

bias-corrected estimator is calculated as  

𝑅2 = 𝑙𝑛(𝑦̃𝐵) +
𝑠𝐵
2

2𝑛𝑦̃𝐵
2 − 𝑙𝑛(𝑦̃𝐴) −

𝑠𝐴
2

2𝑚𝑦̃𝐴
2

(6) 

where 𝑠𝐴 and 𝑠𝐵 are the sample standard deviations of the outcome data from the baseline and 

treatment phases, respectively. 

 In addition to an estimate of effect size, conventional approaches to meta-analysis also 

require an estimate of the sampling variance of the effect size. Assuming that the outcomes in 

each phase are mutually independent, an estimate of the sampling variance of R2 is given by 

𝑉𝑅 =
𝑠𝐴
2

𝑚𝑦̃𝐴
2 +

𝑠𝐵
2

𝑛𝑦̃𝐵
2 . (7) 

Taking the square root of 𝑉𝑅 gives an approximate standard error for R2: 𝑆𝐸𝑅 = √𝑉𝑅. It is 

important to note that the variance estimator and standard error will not be valid if the outcome 

measures are auto-correlated. In the presence of positive auto-correlation, they will tend to 

under-estimate the true sampling variability of the effect size index, and this limitation should be 

noted when reporting standard errors of LRR estimates for individual data series. However, for 

purposes of meta-analysis of LRR estimates, robust variance estimation techniques (Hedges et 

al., 2010) can be used to account for the possibility of inaccurate sampling variances, as detailed 

in a later section. 
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Example: McKissick et al. (2010) 

 I now demonstrate the calculation of LRR effect size estimates and corresponding 

standard errors using data from a single-case study evaluating the effects of a group contingency 

intervention on disruptive behavior and engagement in a classroom setting. McKissick and 

colleagues (2010) used a multiple baseline design across class periods to assess the effects of an 

interdependent group contingency in a second-grade, general education classroom. Notably, 

teachers participating in the study expressed a goal of 50% reduction in disruptive behavior. The 

researchers measured disruptive behaviors using frequency counting and measured student 

engagement using a partial interval recording procedure; for both outcomes, observations across 

the entire class of 26 students were taken during 20-min sessions. For purposes of illustration, I 

focus on the rates of disruptive behavior and calculate LRR effect size estimates for each tier 

(class period) of the multiple baseline design.  

Raw data for analysis were extracted from Figure 2 of McKissick et al. (2010) using the 

XYit digitization software (Geomatrix, 2007); a graph of the raw data is included in the 

supplementary materials (https://osf.io/c3fe9/). Table 1 reports sample means, sample standard 

deviations, and the number of sessions for the baseline and treatment phase during each class 

period. These summary statistics can be used to calculate the plug-in estimator of the LRR (R1), 

the bias-corrected LRR estimator (R2), and the standard error (𝑆𝐸𝑅), which are reported in the 

final three columns of Table 1. As noted previously, the standard errors assume independent 

outcomes and will tend to be too small if the outcomes are positively auto-correlated. In this 

example, bias correction reduces the magnitude of the estimates by as much as 0.059 for period 

3. The bias-corrected LRR estimates are quite similar across class periods, ranging from -0.610 

to -0.807 (equivalent to percentage reductions of between 46% and 55%). The similarity of 

https://osf.io/c3fe9/
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effects across the three class periods is consistent with the authors’ visual analysis of the data. A 

benefit of using the LRR here is that it quantifies effect magnitude in the same terms as 

participants’ stated goals of 50% reduction in target behavior.  

Preparing LRR Estimates for Use in Meta-Analysis 

 When considering use of LRR effect sizes for synthesizing multiple SCD studies, 

researchers must address several further issues before carrying out effect size calculations and 

meta-analysis. This section describes three issues and methods for addressing each, including (1) 

how to determine whether the LRR is an appropriate effect size metric, (2) how to transform the 

effect sizes so that their signs (positive or negative) are consistent with the direction of 

therapeutic improvement for the behavior, and (3) how to calculate effect sizes for studies with 

more than two phases per case. The final part of this section provides an illustrative example. 

Determining whether LRR is Appropriate 

 Researchers interested in using the LRR for meta-analyzing a collection of SCDs must 

first determine whether it is an appropriate metric. At least three considerations are relevant here. 

First, the definition of the LRR parameter requires that outcomes be measured on a ratio scale, 

such that a score of zero corresponds to absence of the outcome. Thus, researchers must consider 

whether the outcomes in the collection of SCDs have this property. It may be that some but not 

all outcome constructs were measured using ratio scales, in which case the researchers could use 

the LRR for the ratio-scale outcomes and other effect size metrics for other outcome constructs. 

For constructs measured predominantly on ratio scales, researchers might also need to exclude 

from effect size calculations a subset of studies that report non-ratio scale outcomes.   

 Second, the LRR conceptualizes effect size in terms of proportionate change. Researchers 

should thus consider whether describing intervention effects in terms of proportionate change is 
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meaningful on a practical level. In many instances, proportionate change will likely be a 

meaningful and intuitive way to describe intervention effects (Campbell & Herzinger, 2010). 

However, proportionate change will not be meaningful for certain classes of interventions and 

outcomes. For instance, some meta-analyses of SCDs examine interventions for increasing 

behavior that is absent or nearly absent during baseline (e.g., antecedent social skills 

interventions for improving social initiations of students with autism; Ledford, King, Harbin, & 

Zimmerman, 2016). The LRR may be inappropriate in this context because nearly any increase 

in behavior would be extremely large in proportionate terms, and small differences in baseline 

level would lead to drastically different effect size magnitudes. Similarly, the LRR may not be 

useful for summarizing effects of interventions that consistently produce total extinction of a 

behavior because such changes are at the extreme of its scale (i.e., reductions of 100% 

correspond to LRRs of negative infinity). Researchers may need to consider other effect size 

metrics for such outcomes. 

 Third, currently available estimation methods for the LRR are based on the assumption 

that outcomes are stable within each phase (i.e., lacking time trends). Researchers will therefore 

need to determine whether this assumption is reasonable for the collection of included studies. 

Existing theory about target behaviors and interventions might indicate whether it is reasonable 

to expect time trends during baseline and treatment phases. For example, it might be 

unreasonable to assume stable baselines for academic outcomes such as curriculum-based 

reading fluency measures, where students improve over time due to instruction, repeated 

practice, and natural maturation. Similarly, it would not be appropriate to assume stable 

treatment phases for interventions that aim primarily to affect the rate of change in an outcome, 

rather than the overall level of the outcome. In addition to theoretical considerations, researchers 
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should also use visual inspection of study outcomes to assess whether systematic time trends are 

prevalent in the collection of SCDs to be synthesized. Still, considering that many other effect 

size measures for SCDs are premised on the assumption of stable phases yet are still applied in 

research syntheses, there are likely to be many instances where the stable phase assumption is 

reasonable.  

Valence Transformation 

A collection of studies to be included in a meta-analysis might include some that examine 

behavior where increase is therapeutically desirable (a positive-valence outcome; e.g., initiations 

of peer interaction) and others that examine behavior where decrease is therapeutically desirable 

(a negative-valence outcome; e.g., episodes of physical aggression). If both types of studies are 

to be included in a meta-analysis, then the effect sizes must first be transformed so that the sign 

of the estimate is consistent with the direction of therapeutic improvement across all of the 

outcomes. For some other effect size indices (e.g., standardized mean differences and NAP), this 

transformation is simply a matter of reversing the sign of the effect size index. However, the 

appropriate transformation process for LRR effect sizes depends on whether the metric of the 

outcome variable is a natural rate or a proportion.  

For studies that measure behavior on a natural rate or frequency metric, the 

transformation process is simply a matter of reversing the sign of effect size indices (i.e., 

multiplying by -1) to be consistent with the direction of therapeutic improvement. For example, 

suppose that we want positive values of the effect size index to correspond to therapeutic 

improvement. We would then need to identify all cases that assessed negative-valence behavior 

and multiply the effect size estimates for these cases by -1. Alternately, if most studies in the 

meta-analysis examined negative-valence behavior, we might prefer to use negative values of the 
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LRR to represent therapeutic improvements. In this case, we would identify all cases that 

assessed positive-valence behavior and multiply the effect size estimates for these cases by -1. 

The sampling variance and standard error of the effect size are not affected by sign changes and 

so can be used without further modification. 

 For studies that measure behavior on a proportion or percentage metric (e.g., percentage 

of time on task), the transformation process is more involved. Instead of simply changing the 

sign of the effect size estimate, the outcome variable must be redefined so that the direction of 

therapeutic improvement is consistent. For example, suppose that most studies examine behavior 

where decrease is desirable, so that we want negative values of the LRR to represent therapeutic 

improvement. Now suppose that one of the studies measures percentage of time on-task—a 

behavior where increase is desirable. Before calculating the LRR, we must first transform the 

data from this latter study by subtracting the original scores from 100%, yielding percentage of 

time off-task. The LRR and its variance can then be calculated based on the transformed data. 

Equivalently, we could calculate the sample mean and variance based on the original data, 

subtract the mean from 100%, and then calculate the LRR and its variance using the transformed 

mean. The example at the end of this section demonstrates how to carry out these calculations.  

Alternately, suppose that the majority of studies in a synthesis focus on behavior where 

increase is desirable, so that positive values of the LRR should correspond to therapeutic 

improvement. If one study measures the proportion of intervals with problem behavior, we must 

first transform this outcome by subtracting the original scores from 1.00 (or equivalently, 

subtracting the sample means for each phase from 1.00), yielding proportion of intervals without 

problem behavior. We can then calculate the LRR effect size estimates and variances based on 

the transformed outcome data. 



USING RESPONSE RATIOS  18 
 

For count or rate outcomes, transformation changes the sign—but not the magnitude—of 

the effect size. In contrast, the transformation for proportion or percentage outcomes changes 

both the sign and the magnitude of the effect size. As a result, there are two distinct ways that the 

LRR can be applied to proportion outcomes, depending on whether therapeutic improvement 

corresponds to negative or positive values of the LRR, and researchers will have to choose which 

approach to take. To distinguish between them, I shall refer to the effect size as LRR-d (for 

decreasing) when negative values correspond to therapeutic improvement and LRR-i (for 

increasing) when positive values correspond to therapeutic improvement. If the majority of 

studies in a set of SCDs focus on negative-valence outcomes, then LRR-d would likely be the 

preferred approach; similarly, if most studies focus on positive-valence outcomes, then LRR-i 

would be the natural choice. I revisit the question of choosing between these two approaches in 

later sections. 

Handling Multiple Pairs of Phases 

Thus far, I have described methods for estimating the LRR comparing a single baseline 

phase to a single treatment phase. In practice, some types of SCDs involve several replications of 

the baseline-treatment contrast for each case (e.g., ABAB designs), and researchers will need to 

determine how to apply the LRR to represent effect sizes in such cases. I briefly note two 

approaches that have been used in previous meta-analyses of SCDs and then outline a third, 

preferred approach.  

One approach that has been used in previous reviews is to select a single pair of phases to 

represent the functional relationship of interest. This might be between the initial baseline phase 

and the initial treatment phase  (Heath, Ganz, Parker, Burke, & Ninci, 2015), or between the 

initial baseline phase and the final treatment phase (Heyvaert et al., 2014). Although 
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procedurally simple, this approach fails to make full use of the data and ignores contrasts 

between some phases that are taken into consideration as part of visual analysis.  

Another approach is to pool data across multiple phases and calculate a single LRR 

estimate comparing all baseline phases to all treatment phases (cf. White et al., 1989). For 

example, in an ABAB design, we would combine the data from the initial baseline (A1) and the 

return to baseline (A2) phases, and similarly combine the data from the initial treatment (B1) and 

reintroduction of treatment (B2) phases. This approach assumes that the level of the outcome is 

constant across all phases under the same treatment condition. It would therefore only be 

appropriate for studies where the outcome is expected to immediately return to baseline levels 

upon removal of the intervention. 

Although both of the above approaches have been used in practice, neither is consistent 

with the logic of visual analysis, the predominant method of drawing conclusions from SCDs 

(Kratochwill, Levin, Horner, & Swoboda, 2014). A third, preferred approach is to calculate LRR 

estimates for each pair of adjacent phases, then combine those estimates into a single summary 

effect size for the case. For instance, in an ABAB design we would calculate LRR estimates for 

the A1-B1 comparison and for the A2-B2 comparison, then average the estimates together. Let 

𝑅2
1 and 𝑅2

2 denote the estimates for the first and second pair of phases, with corresponding 

sampling variances 𝑉𝑅1 and 𝑉𝑅2. The composite effect size estimate is calculated as 𝑅2 =

(𝑅2
1 + 𝑅2

2)/2, with sampling variance estimate 𝑉𝑅 = (𝑉𝑅1 + 𝑉𝑅2)/4. I prefer this approach 

because it uses all available data and thus produces more precise estimates of effect size than 

approaches involving only a single pair of phases. Further, it is more consistent with the logic of 

visual analysis because it relies exclusively on comparisons between adjacent phases and avoids 
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the assumption that the outcome returns to the initial baseline level after treatment is removed. I 

demonstrate this method in the following example.  

Example: Schmidt (2007) 

Schmidt (2007) used an ABAB design to evaluate the effects of Class-wide Function-

Based Intervention Teams, a group-contingency intervention, on the on-task and disruptive 

behavior of three focal students in a first-grade class. The behaviors of each focal student were 

observed daily for 10 min sessions, using duration recording for on-task behavior and frequency 

counting for disruptive behavior. Note that on-task behavior is a positive-valence outcome on a 

percentage metric and disruptive behavior is a negative-valence outcome on a natural rate metric. 

The valence transformation methods described above therefore need to be applied.  

Graphs of the raw data for each outcome are included in the supplementary materials 

(https://osf.io/c3fe9/). Table 2 reports summary statistics for each outcome, student, and phase of 

the ABAB design. These summary statistics can be used to calculate LRR effect size estimates 

and accompanying variance estimates for each pair of phases in the design.  

In Table 3, Columns (1) through (6) report the LRR-d form of the effect size estimates, 

which are encoded so that negative values correspond to therapeutic improvements in behavior. 

Columns 1 and 2 report the effect size estimates comparing the initial baseline (A1) and initial 

treatment (B1) phases; Columns 3 and 4 report estimates for the return to baseline (A2) and re-

introduction of treatment (B2) phases. For disruptive behavior, the LRR-d estimates were 

calculated directly from the summary statistics. For on-task behavior, the LRR-d estimates were 

calculated after transforming the outcome to percentage duration of off-task behavior (i.e., by 

subtracting the means of each phase from 100) so that the outcome has negative valence. Column 

5 reports the combined LRR-d estimate for each case, calculated by taking the average of the 

https://osf.io/c3fe9/
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LRR-d estimates from each pair of phases; Column 6 reports the variance of the combined LRR-

d estimate, calculated by taking the sum of the variances from each pair of phases, divided by 4.  

The final two columns of Table 3 report the LRR-i form of the effect size estimates, 

which are encoded so that positive values correspond to therapeutic improvements in behavior. (I 

report only the combined effect size estimates, which are averages of the estimates for the A1B1 

comparison and the A2B2 comparison.) Note that the LRR-i estimates for disruptive behavior 

were transformed by multiplying the LRR-d estimates by -1, while the LRR-i estimates for on-

task behavior were calculated directly from the summary statistics in Table 2.  

It is noteworthy that the magnitude of the LRR-d estimates for disruptive behavior are 

fairly similar to the magnitude of the LRR-d estimates for on-task behavior, whereas the 

magnitude of the LRR-i estimates is more discrepant across the two outcomes. This pattern 

suggests that the LRR-d form might be more appropriate for synthesizing results because it is 

more consistent across outcomes. Of course, this is only a single study, and in practice one will 

need to examine the consistency of results across the full set of studies to be synthesized.   

Meta-Analysis with Robust Variance Estimation 

 Meta-analysis is a set of statistical techniques for synthesizing results across studies in 

order to draw generalizations about overall patterns of findings (Borenstein et al., 2009). Meta-

analysis can be used to address questions about the overall average magnitude of effects, the 

degree of consistency or inconsistency (heterogeneity) of results across studies, and 

characteristics of participants or studies that moderate the magnitude of effect sizes.  

In synthesis of between-groups research designs, basic meta-analysis methods involve 

one effect size estimate per study and effect sizes from different studies are typically assumed to 

be independent. In contrast, LRR effect sizes from SCDs describe results at the level of the 
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individual case rather than at the level of the study. Studies that include multiple cases thus 

contribute multiple effect size estimates. This leads to a hierarchical structure, in which effect 

size estimates for individual cases are nested within studies. Working with other effect size 

metrics, Van den Noortgate and Onghena (2008) proposed a three-level, hierarchical meta-

analysis model for synthesizing effect size estimates from SCDs. I follow this approach by 

applying a hierarchical model for synthesizing LRR effect size estimates, while introducing 

robust variance estimation techniques that account for the possibility of inaccurate sampling 

variances.  

Suppose that we have identified a collection of K studies for inclusion in the meta-

analysis, where study k includes a total of nk cases. Let Rjk denote the LRR effect size estimate 

and 𝑉𝑗𝑘
𝑅  denote the corresponding sampling variance, both for case j from study k (for simplicity, 

I drop the subscript distinguishing R1 from R2). The multi-level meta-analysis model describes 

the LRR estimate for a given case in terms of an overall average effect size 𝛾, a study-level error 

term 𝑣𝑘, a case-level error term 𝑢𝑗𝑘, and a sampling error 𝑒𝑗𝑘:  

𝑅𝑗𝑘 = 𝛾 + 𝑣𝑘 + 𝑢𝑗𝑘 + 𝑒𝑗𝑘 . (8) 

The sampling error 𝑒𝑗𝑘 corresponds to the difference between the effect size estimate 𝑅𝑗𝑘 

and the true effect size parameter for that case; it is assumed to have mean zero and known 

variance 𝑉𝑗𝑘
𝑅 . Note that this assumption will be violated if 𝑉𝑗𝑘

𝑅  is not an accurate estimate of the 

true sampling variance, as would be the case if the outcome data were auto-correlated. This 

potential problem is the main reason to focus on robust variance estimation techniques, which 

are valid even if the sampling variances of the effect size estimates are inaccurate.  

 The case-level error term 𝑢𝑗𝑘 corresponds to the difference between the true effect for 

case j and the average true effect for all cases in study k. It assumed to be normally distributed 
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with mean zero and unknown variance 𝜔2. The variance parameter 𝜔2 describes the degree of 

heterogeneity in the effects across the population of cases within a given study. Larger values of 

𝜔2 indicate that the effects of intervention are less consistent (more variable) across cases within 

a study. Finally, the study-level error term vk corresponds to the difference between the average 

true effect for study k and the overall average effect; it is the assumed to be normally distributed 

with mean zero and variance⁡𝜏2. The variance parameter 𝜏2 describes the degree of heterogeneity 

in the effects across studies; larger values of 𝜏2 indicate that intervention effects are less 

consistent across studies. Such heterogeneity might arise from variation in intervention 

procedures, implementation fidelity, or study populations.  

Estimation  

 The main parameters of interest in the multi-level meta-analysis model are the overall 

average effect size (𝛾) and the variance components 𝜔2 and 𝜏2, which quantify the degree to 

which effect sizes are heterogeneous across cases and across studies, respectively. Estimates of 

the variance components can be obtained through maximum likelihood or restricted maximum 

likelihood methods, which are iterative numerical estimation procedures. These methods are 

implemented in many widely used statistical analysis software packages, including SAS PROC 

MIXED (Littell, Milliken, Stroup, Wolfinger, & Schabenberber, 2006), the metafor package in R 

(Viechtbauer, 2010), and the gllamm command for Stata (Rabe-Hesketh, Skrondal, & Pickles, 

2004). It is important to note that the estimates of the variance components are obtained based on 

the assumption that the sampling variances are accurate. Violation of this assumption might 

affect the accuracy of the variance component estimates. Still, even if the sampling variances are 

not fully accurate, I would nonetheless recommend estimating and reporting the case-level and 
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study-level variance components because they remain informative as rough indicators of 

heterogeneity.  

Assume that estimates of both variance components, denoted  𝜔̂2 and 𝜏̂2, have been 

obtained using software. An estimate of the overall average effect size 𝛾 can then be constructed 

as a weighted average of the LRR estimates, with weights chosen so that the overall average 

effect estimate is as precise as possible. It is helpful to break this calculation into two steps. In 

the first step, study-specific average effect sizes are estimated using a weighted average of the 

case-level LRR estimates:    

𝑅̅𝑘 =
1

𝐺𝑘
∑

𝑅𝑗𝑘

𝜔̂2 + 𝑉𝑗𝑘
𝑅

𝑛𝑘

𝑗=1

, where 𝐺𝑘 =∑
1

𝜔̂2 + 𝑉𝑗𝑘
𝑅

𝑛𝑘

𝑗=1

(9) 

for k = 1,…,K. The overall average effect size estimate, denoted 𝛾 is then calculated as a 

weighted average of the study-level averages:  

𝛾 =
1

𝐻
∑ℎ𝑘𝑅̅𝑘

𝐾

𝑘=1

where ℎ𝑘 =
1

𝜏̂2 +
1
𝐺𝑘

and 𝐻 = ∑ℎ𝑘

𝐾

𝑘=1

. (10) 

When the sampling variances and estimated variance components are accurate, this weighted 

average is optimal because it is as precise as possible. Even if the sampling variances and 

estimated variance components are inaccurate, though, the weighted average remains a valid 

estimate of the overall average effect size.   

Robust Variance Estimation 

In conventional meta-analysis, the standard error of the overall average effect size 

estimate would be estimated as 1/√𝐻. Unlike the point estimate of the average effect size, the 

validity of its standard error is contingent on the accuracy of the LRR sampling variances and the 

estimated variance components, which might not be valid if the outcome data are auto-
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correlated. Robust variance estimation techniques (Hedges et al., 2010) can be used to calculate a 

standard error for 𝛾 that does not rely on the accuracy of 𝜔̂2, 𝜏̂2, or the 𝑉𝑗𝑘
𝑅s. Basic robust 

variance techniques require a large number of studies to achieve unbiased variance estimates and 

confidence intervals with correct coverage levels (Hedges et al., 2010). However, finite-sample 

corrections for robust variance estimation are available (Tipton, 2014) and provide more accurate 

variance estimates and coverage levels when the number of studies is small or moderate. 

A robust variance estimator is given by the weighted sample variance of the study-level 

average effect size estimates: 

𝑉𝛾 =
1

𝐻2
∑

ℎ𝑘
2(𝑅̅𝑘 − 𝛾)2

1 −
ℎ𝑘
𝐻

⁡

𝐾

𝑘=1

. (11) 

The robust standard error for  𝛾 is calculated as the square root of the variance estimator: 𝑆𝐸𝛾 =

√𝑉𝛾. This standard error is robust in the sense that it does not rely on the accuracy of the 

sampling variances or variance component estimates. Roughly speaking, it works by treating the 

study-level average effect estimates 𝑅̅1, … , 𝑅̅𝐾 as a random sample from a distribution with 

unknown variance and estimating their variance empirically (using the sample variance of the 

study-level average effect estimates) rather than by relying on modeling assumptions.  

 A (1 − ⁡𝛼) × 100% confidence interval for the overall average effect size can be 

calculated as follows. Let 𝑡(𝛼/2⁡, 𝑓) denote the 𝛼/2 critical value from a t distribution with 𝑓 

degrees of freedom. The end-points of the confidence interval are then calculated as 

𝛾𝐿 = 𝛾 − 𝑆𝐸𝛾 × 𝑡 (
𝛼

2
, 𝑓) , 𝛾𝑈 = 𝛾 + 𝑆𝐸𝛾 × 𝑡 (

𝛼

2
, 𝑓), (12) 

where 𝑓 is a small sample degrees-of-freedom approximation that is computed automatically in 

robust variance estimation software (Pustejovsky, 2017). If the included studies all have a similar 

number of cases (e.g., all studies have 3 or 4 cases), then the degrees of freedom will be 
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approximately 𝑓 ≈ 𝐾 − 1. This confidence interval is robust to use of inaccurate sampling 

variances and variance components because it uses the robust standard error and small-sample 

degrees of freedom.  

Converting to Percentage Change 

 As an aid to substantive interpretation, it is helpful to translate the estimated overall 

average LRR effect size and its confidence interval into the metric of percentage change. The 

percentage change equivalent to the overall average LRR effect size can be calculated as 

100% × [exp(𝛾) − 1]. A level-𝛼 confidence interval is given by  

100% × [𝑒𝑥𝑝(𝛾𝐿) − 1], 100% × [𝑒𝑥𝑝(𝛾𝑈) − 1]. (13) 

I demonstrate these calculations in the subsequent example. 

Meta-Regression 

 The basic multi-level meta-analysis model consists of an overall average effect size and 

variance components, which characterize the extent to which the effects vary across cases and 

across studies. In order to examine whether participant or study characteristics moderate the 

magnitude of effects, the basic meta-analysis model can be extended by including predictor 

variables that encode these characteristics. The resulting model is known as a meta-regression or 

mixed-effects model.  

Suppose we wish to examine whether the magnitude of effects varies depending on the 

age of the participant. Let (Age)jk denote the age in years of case j within study k, centered at the 

average age of the full sample of cases. The combined form of the meta-regression would be 

𝑅𝑗𝑘 = 𝛾0 + 𝛾1(𝐴𝑔𝑒)𝑗𝑘 + 𝑣𝑘 + 𝑢𝑗𝑘 + 𝑒𝑗𝑘 . (14) 

Here, 𝛾0 corresponds to the overall average effect size when (Age)jk is equal to zero and 𝛾1 

corresponds to the difference in average effect sizes between cases that differ in age by one year. 

Positive values of 𝛾1 would indicate that larger intervention effects are associated with older 
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participants. In this model, the study-level errors (𝑣𝑘) and case-level errors (𝑢𝑗𝑘) now represent 

residual variation in true effect sizes, after accounting for variation due to age.  

 Meta-regression models are quite flexible in that they can include one or multiple 

predictor variables, which vary across cases or vary only across studies; indicator variables for 

categorical moderators can also readily be included. The software packages mentioned 

previously provide functionality for estimating meta-regression models, including with robust 

variance estimation. For a more detailed discussion of meta-regression models, readers may refer 

to Borenstein and colleagues (2009, Chapters 20–21).   

Example: Meta-Analysis of Group Contingency Interventions  

 Maggin and colleagues (2017) conducted a systematic review and synthesis of single-

case studies on group-contingency interventions. Using systematic search and review criteria, 

they identified 40 studies that met What Works Clearinghouse design standards for SCDs with or 

without reservations. The authors’ original meta-analysis of these studies was based on the BC-

SMD effect size index (Shadish et al., 2014), a metric designed to facilitate direct comparison 

with effect sizes from between-groups experimental studies.  

I re-analyzed the studies identified by Maggin and colleagues (2017) using the LRR 

effect size. This analysis complements the original analysis in several ways. First, the LRR can 

be applied to data from all studies that met inclusion criteria, whereas the BC-SMD could be 

estimated for only 27 (68%) of included studies due to technical limitations of the index. Second, 

the LRR is a case-level effect size index and can therefore be used to investigate research 

questions that pertain to individual-level variation, such as: To what extent does the magnitude 

of intervention effects vary across cases from the same study? To what extent do intervention 

effects vary based on individual participant characteristics such as age or behavioral function? 
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Such questions cannot be addressed with the BC-SMD because it is a study-level effect size that 

pertains to average effects across cases, potentially concealing heterogeneity across cases in a 

given study. 

For purposes of illustration, I focused on the 33 studies and 111 cases that assessed 

effects of group contingency interventions on problem behavior. All calculations were conducted 

in R, using the metafor package for meta-analysis and meta-regression (Viechtbauer, 2010) and 

the clubSandwich package for robust variance estimation (Pustejovsky, 2017). Complete raw 

data and computer code for replicating all calculations are available in the supplementary 

materials (https://osf.io/c3fe9/).  

Included studies assessed problem behavior using a variety of different recording 

procedures, including event counting, momentary time sampling, and partial interval recording, 

all of which yielded ratio-scale outcome measures. Because some outcomes were quantified as 

proportions or percentages, the effect size estimates based on the LRR-d form of the index differ 

in magnitude from those based on LRR-i. Given that problem behavior is a negative-valence 

outcome, I focused on the LRR-d form of the index, although I also computed LRR-i for 

comparison purposes.  

Figure 1 displays density plots of both LRR-d and LRR-i, with separate distributions 

plotted for outcomes measured on a count/rate metric or a proportion/percentage metric. In the 

left-hand panel, it can be seen that there are only minor differences in the distributions of LRR-d. 

In contrast, the LRR-i estimates for proportion/percentage metrics are much smaller and less 

symmetrically distributed than the LRR-i estimates for count/rate metrics. The substantial 

difference between the two distributions suggests that the LRR-i form of the index may be less 

appropriate for synthesizing effects across both types of outcome metrics. Following on the 

https://osf.io/c3fe9/
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theoretical framework described in Pustejovsky (2015), the LRR-d index would be expected to 

be comparable across outcome metrics if interventions primarily affect the frequency or spacing 

of behaviors, but not the duration of individual behavioral episodes. This is a plausible theory of 

how group contingency interventions affect behavior and so lends further support for the choice 

to focus on LRR-d.  

Model 1 in Table 4 reports the overall average LRR-d effect size estimate, robust 

standard error, degrees of freedom, confidence interval, and variance component estimates. 

Across all 111 cases from 33 studies, the overall effect of group contingencies was estimated as -

1.18, 95% CI: [-1.35, -1.01], which corresponds to a decrease in problem behavior of 69%, 95% 

CI: [64%, 74%]. The between-study variance in average effects was estimated as 𝜏̂2 = 0.180.⁡To 

characterize the magnitude of this variance component estimate, consider that if average effects 

are normally distributed, then approximately two thirds of effects should fall within one SD of 

the average effect, or between 𝛾⁡̂ − 𝜏̂ = −1.61 (% change = -80%) and 𝛾⁡̂ + 𝜏̂ = −0.76 (% 

change = -53%). Thus, there is a substantial degree of heterogeneity in effects across studies. In 

comparison, the within-study variance in individual-specific treatment effects was estimated as 

𝜔̂2 = 0.045, substantially smaller than the between-study variance. 

In addition to estimates of the overall average effect size and variance components, it is 

of interest to identify characteristics of the participants, interventions, or studies that explain 

variation in the magnitude of intervention effects. The original analysis by Maggin and 

colleagues (2017) examined a large number of potential moderators. For purposes of illustration, 

I consider just two: study setting (general versus special education class) and unit of analysis 

(group-level or individual). Of the 33 included studies, 24 were conducted in general education 

settings and 9 were conducted in special education classes. Further, 24 studies examined effects 
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at the group level (i.e., assessing behavior at the aggregate classroom level) and 9 examined 

effects for individual focal students.  

To examine the extent to which these factors account for variation in magnitude of 

effects, I fit a meta-regression model that included separate intercepts for each combination of 

setting and unit of analysis. Results are reported in Model 2 of Table 4. Average effect sizes 

within each of the four sub-groups are statistically distinguishable from zero at the 5% 

significance level. The results indicate an interaction between moderators. For studies in general 

education settings, effects for studies with individuals as the unit of analysis were larger than for 

studies with groups as the unit of analysis (estimated difference = -0.70, SE = 0.26, p = .036), 

whereas for studies in special education settings, effects for studies with individual as the unit of 

analysis were smaller than for studies with groups as the unit of analysis, although the difference 

is not statistically distinguishable from zero (estimated difference = 0.33, SE = 0.29, p = .29). 

The residual between-study variance in Model 2 was estimated as 𝜏̂2 = 0.106, indicating that the 

combination of study setting and unit of analysis explain 42% of the between-study variation in 

average effects. An important caveat to these findings is that the moderators were not identified a 

priori (i.e., as part of pre-registered analysis plan) and so must be considered purely exploratory.  

Discussion  

In this paper, I have demonstrated the use of a recently proposed effect size index, the log 

response ratio, for meta-analysis of SCDs with behavioral outcome measures. Compared to 

meta-analysis based on other effect size indices, the proposed methods are distinctive in several 

respects.  

First, development of the LRR was motivated by a realistic model for systematic direct 

observation procedures (Pustejovsky, 2015), and the index is thus designed to work well with 
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behavioral outcomes. Other effect size indices, such as non-overlap measures or within-case 

standardized mean differences, do not specifically account for the features of how behavioral 

outcomes are measured. In a synthesis of SCDs examining effects of choice-making on directly 

observed behavioral outcomes, Pustejovsky (2015) reported an example in which meta-analysis 

produced uninterpretable results when based on the within-case standardized mean difference 

(WC-SMD) index. More broadly, Pustejovsky (2018) demonstrated using simulations that 

several non-overlap measures, as well as the WC-SMD, are influenced by incidental details of 

how behavioral outcomes are assessed, such as use of longer or shorter observation sessions. 

Such procedural sensitivity is problematic for interpreting these indices as measures of effect 

magnitude.  

Compared to other effect indices, the calculations involved in estimating the LRR entail 

some additional complexities, including the use of truncated sample means and the need to 

attend to the valence of outcomes measured as percentages or proportions. These complexities 

are a direct consequence of how the LRR accounts for the features of behavioral outcome data. 

Furthermore, the estimates can still readily be computed by hand (or with a spreadsheet) from 

basic summary statistics, as evidenced by the examples provided in previous sections. On 

balance, this additional cost seems worth the return of more interpretable meta-analysis results.  

Another distinctive feature of the LRR is its close connection to using percentage change 

between phases as an effect measure. Others have argued that percentage change is a 

conceptually appealing and intuitive index for quantifying the magnitude of functional 

relationships (Campbell & Herzinger, 2010; Marquis et al., 2000). Indeed, many researchers use 

percentage change as an “informal” effect measure in primary studies (e.g., Call, Simmons, 

Mevers, & Alvarez, 2015) and even in some systematic reviews (Heyvaert et al., 2014; Kahng et 
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al., 2002; Marquis et al., 2000). As I have demonstrated, it is possible to translate LRR estimates 

and meta-analytic averages directly into percentage change terms. Similar translation approaches 

are used in other areas of meta-analysis, such as when bivariate correlations are meta-analyzed 

on the Fisher-z scale but translated into Pearson-r coefficients for purposes of interpretation or 

when randomized trials with binary outcomes are meta-analyzed using log-odds ratios but 

interpreted in terms of percentage changes relative to specified levels of baseline risk.  

A final distinctive aspect of the methods I have described is the use of robust variance 

estimation (Hedges et al., 2010) to account for potential auto-correlation in the data. Although 

the presence and consequences of auto-correlation in SCD time series has long been debated 

(Huitema & McKean, 1998; Matyas & Greenwood, 1996), scholars have recently emphasized 

that statistical methods for SCDs should not merely assume it away (Horner et al., 2012; Wolery 

et al., 2010). Robust variance estimation methods effectively side-step the auto-correlation issue. 

Instead of trying to estimate and account for the degree of auto-correlation in individual data 

series, they provide a means to synthesize effect size estimates and conduct moderator analysis 

that remains valid regardless of the presence or absence of auto-correlation. This approach is 

particularly appealing given the challenges of detecting and estimating even simple forms of 

serial dependence in short time series (Huitema & McKean, 2007).  

Although I have presented robust variance estimation methods in the context of meta-

analyzing LRR effect sizes, these techniques are not limited to this single effect size. Use of 

robust variance estimation has also been recommended for meta-analyzing BC-SMD indices 

(Zelinsky & Shadish, 2016). They could also be applied for meta-analyzing other case-level 

effect size indices, such as non-overlap of all pairs, for which sampling variance formulas are 
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valid only in the absence of auto-correlation. Use of robust variance estimation in these contexts 

warrants further investigation.  

Limitations 

The methods described in this paper have several limitations, which point towards areas 

in need of further methodological research. First, appropriately assessing and accounting for time 

trends is a critical part of visual assessment of single-case data (Kratochwill et al., 2014) and is 

likewise important for valid statistical analysis (Horner & Kratochwill, 2012). However, 

available methods for estimating the LRR assume that the level of the outcome is constant within 

each phase—an assumption that would be violated if the outcomes follows a systematic time 

trend during the baseline phase or if the full effect of intervention is not immediate. In further 

work, I am investigating how to address this limitation of the LRR by developing a generalized 

non-linear regression model, in which certain parameters correspond to LRR effect sizes (Swan 

& Pustejovsky, 2017). This non-linear model accounts for time trends during treatment phases 

(as well as return-to-baseline phases in reversal designs) that arise when an intervention has 

gradual effects on an outcome. Using similar modeling techniques, it may be possible to extend 

the LRR to handle baseline time trends as well. Until such extensions become available, 

researchers conducting syntheses of SCDs will need to use theory and visual analysis to 

determine whether it is reasonable to apply LRR estimation methods that assume no time trends.   

Second, the variance estimator for the LRR is premised on the assumption that the 

outcome data are independent. I have proposed robust variance estimation methods for use in 

meta-analysis of LRR estimates, which work even when the sampling variance of the effect size 

is not valid. However, this limitation of the variance estimator remains a problem if researchers 

wish to use an LRR estimate to draw inferences about an individual case. I have emphasized that 
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the independence assumption should be acknowledged whenever analysts report standard errors 

for individual LRR estimates. Furthermore, this paper has purposely not described methods for 

conducting inferential statistical tests or constructing confidence intervals for individual LRR 

values because such methods carry the same limitations as the standard error, and so may have 

limited utility.  

Future research should investigate methods that work with auto-correlated outcome data. 

This might be possible either by inverting randomization tests (cf. Michiels, Heyvaert, Meulders, 

& Onghena, 2017) or by developing estimators to directly quantify auto-correlation in the 

outcome data. Such methods could provide evidence about the degree to which auto-correlation 

is a concern for behavioral outcome data, as well as inferential tests or confidence intervals for 

LRR effect sizes when considered individually, rather than as part of a synthesis.  

A third limitation is that the LRR is a within-case effect size and—like many other effect 

size indices for SCDs—is not directly comparable to any effect size for between-group 

experimental designs. Currently, the BC-SMD (Pustejovsky, Hedges, & Shadish, 2014; Shadish 

et al., 2014) is the only available effect size metric that is on a common scale across both types 

of research designs. The BC-SMD has been applied and interpreted as a general-purpose effect 

size measure for SCDs (i.e., used regardless of the class of outcome measure), yet there remain 

outstanding questions regarding the extent to which its underlying assumptions are robust when 

applied to behavioral outcome data. Recognizing this, the developers of the BC-SMD index have 

noted the need for other effect size metrics that are appropriate for the types of outcome 

measurements generated by behavioral observation systems (Shadish et al., 2015, p. 82). This 

need could be met by developing a “between-case” extension of the LRR or, more broadly, by 
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developing methods for joint synthesis of SCDs and between-case designs with behavioral 

outcome measures. Still, the within-case LRR remains useful for syntheses of SCD results.  

Fourth, when applied to outcomes measured as proportions (or percentages), the 

magnitude of LRR effect sizes depends on whether the LRR-d or LRR-i form is used, and 

researchers must decide which is a more appropriate measure of effect magnitude. I have 

suggested several factors that can inform this decision, including theoretical considerations, 

drawing on the framework from Pustejovsky (2015); the predominant valence of outcomes in the 

studies to be summarized; and the degree of alignment in the distribution of effect sizes between 

frequency count outcomes and proportion outcomes. Visual analysis could also be informative, 

by examining which form of the index better corresponds to visual determinations of effect 

magnitude. On a broader level, there is a need to understand the degree of correspondence 

between the LRR and visual analysis. Some degree of discrepancy might be expected because 

visual inspection is typically conceived as an inferential technique (Kratochwill et al., 2014), 

which involves assessing the degree of evidence for a functional relationship, similar to a 

hypothesis test. In contrast, the LRR estimates the magnitude of a functional relationship 

separately from its degree of certainty.  

Finally, the utility of LRR effect sizes is limited by definition to contexts where 

percentage change is a meaningful and interpretable way to quantify effect magnitude, and so it 

will not work well for all research areas where SCDs are used. At a basic level, percentage 

change is only meaningful for outcomes measured on ratio scales, where a score of zero 

corresponds to the total absence of the outcome. Thus, it will not be appropriate for outcomes 

such as rating scale measures of student engagement. At a more substantive level, percentage 

change is unlikely to be a meaningful way to quantify effects of interventions on behaviors that 
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are totally or nearly absent during baseline, such as the number of words read correctly for a 

student who cannot read, because practically any improvement in behavior will appear very large 

in percentage terms. Similarly, percentage change might not be meaningful for describing effects 

of interventions that consistently produce total extinction of a behavior (i.e., 100% reductions) 

because all of the effect sizes will be at or near ceiling levels. In such instances, quantities that 

capture other features of the intervention’s effects, such as duration of treatment needed to 

extinguish the behavior, might be more relevant and meaningful measures of effect size.  

This final limitation of the LRR highlights the need to consider the context of 

application—including especially the types of outcome measures reported in a set of studies to 

be synthesized—when selecting an effect size index for meta-analysis of SCDs. Rather than 

searching for generic metrics to be applied across any set of SCDs, the field should instead 

consider developing metrics that work well in circumscribed areas of application. Following this 

logic, I have proposed the log response ratio as an effect size metric for meta-analyzing SCDs 

with behavioral outcomes. Although limited to a single outcome domain, the prevalence and 

prominence of direct observation measures within single-case research suggests that the log 

response ratio might nonetheless find broad application.  
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Table 1. Summary statistics and LRR effect size estimates for frequency of disruptive behavior 

data from McKissick et al. (2010). 

 Baseline phase  Treatment phase     

Case 𝑦̃𝐴 sA M  𝑦̃𝐵 sB n  R1 R2 SER 

Period 1 13.983 1.626 3  6.146 3.025 7  -0.822 -0.807 0.198 

Period 2 17.652 5.577 5  9.211 7.766 7  -0.650 -0.610 0.349 

Period 3 13.441 2.330 9  5.997 4.183 4  -0.807 -0.748 0.354 
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Table 2. Summary statistics by phase for disruptive behavior and on-task behavior data from 

Schmidt (2007). 

 Phase A1  Phase B1  Phase A2  Phase B2 

Case 𝑦̃𝐴1 sA1 𝑚1  𝑦̃𝐵1 sB1 𝑛1  𝑦̃𝐴2 sA2 𝑚2  𝑦̃𝐵2 sB2 𝑛2 

Disruptive behaviors (frequency count) 

Albert 18.63 7.16 9  3.61 3.03 8  20.29 9.48 3  3.90 2.28 5 

Faith 23.38 13.09 8  7.37 3.05 14  21.52 8.93 3  5.21 2.29 5 

Lilly 29.31 11.43 9  5.07 3.01 13  16.67 9.46 3  6.23 6.51 6 

                

On-task behavior (% duration) 

Albert 67.69 26.01 9  94.22 4.70 8  71.63 23.70 3  92.67 12.79 5 

Faith 75.44 13.38 8  76.36 27.31 14  41.74 48.55 3  95.71 2.22 5 

Lilly 59.80 28.25 9  92.17 12.83 13  88.18 17.32 3  93.49 6.54 6 
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Table 3. LRR-d and LRR-i effect size estimates and variances for disruptive behavior and on-

task behavior data from Schmidt (2007). 

 LRR-d  LRR-i 

 A1B1  A2B2  Combined  Combined 

Case 𝑅2
1 

(1) 

𝑉𝑅1 

(2) 

 𝑅2
2 

(3) 

𝑉𝑅2 

(4) 

 𝑅2 
(5) 

𝑉𝑅 

(6) 

 𝑅2 
(7) 

𝑉𝑅 

(8) 

Disruptive behaviors (frequency count) 

Albert -1.605 0.104  -1.651 0.141  -1.628 0.061  1.628 0.061 

Faith -1.168 0.051  -1.428 0.096  -1.298 0.037  1.298 0.037 

Lilly -1.749 0.044  -0.947 0.289  -1.348 0.083  1.348 0.083 

            

On-task behavior (% duration) 

Albert -1.716 0.155  -1.165 0.842  -1.440 0.249  0.282 0.014 

Faith -0.009 0.132  -2.698 0.285  -1.353 0.104  0.310 0.116 

Lilly -1.560 0.261  -0.870 0.884  -1.215 0.286  0.237 0.010 
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Table 4. Meta-analysis results based on LRR-d effect sizes for problem behavior outcomes from 

Maggin et al. (2017). 

 Studies Cases Est. SE d.f. 95% CI 𝜏̂2 𝜔̂2 

Model 1       0.180 0.045 

Overall average 33 110 -1.18 0.08 31.1 [-1.35, -1.01]   

         

Model 2       0.105 0.046 

General Ed., group 19 46 -0.95 0.07 17.1 [-1.11, -0.80]   

General Ed., individual 5 22 -1.65 0.25 3.9 [-2.36, -0.95]   

         

Special Ed., group 5 15 -1.53 0.15 3.6 [-1.98, -1.09]   

Special Ed., individual 4 28 -1.21 0.24 2.8 [-2.01, -0.41]   

 

Notes: Est. = estimate. SE = standard error. d.f. = small-sample degrees of freedom. CI = 

confidence interval. 𝜏̂2 = estimated between-study variance. 𝜔̂2 = estimated within-study 

variance. 
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Figure 1. Distribution of LRR-d and LRR-i effect size estimates by outcome metric. 

 

 


