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In a previous study, Mix et al. (2016) reported that spatial skill and mathematics were 

composed of 2 highly correlated, domain-specific factors, with a few cross-domain loadings. The 

overall structure was consistent across grade (kindergarten, 3rd grade, 6th grade), but the cross-

domain loadings varied with age. The present study sought to replicate these patterns. Using the 

data from Wave 1 (n = 854) and data collected from a 2nd sample of kindergarten (n= 251), 3rd-

grade (n = 247), and 6th-grade students (n = 241) with the same measures as in Wave 1, we 

carried out a multigroup confirmatory factor analysis to compare the 2 waves. We also 

completed several analyses of the Wave 2 data alone. The overall pattern obtained in Wave 1 — 

2 highly correlated domain-specific factors — was clearly replicated in Wave 2. However, more 

subtle effects involving cross-domain loading were only partially replicated and generally appear 

fragile and context-specific. In Wave 2, we also included 2 new measures (i.e., proportion 

matching and fraction identification) that were analyzed in a separate model. Including these new 

measures did not change the overall pattern of factors and domain-specific factor loadings but 

did alter some of the cross-domain loadings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Latent Structure of Spatial Skills and Mathematics: 
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A Replication of the Two-Factor Model 

Previous research has demonstrated a strong relation between spatial skill and 

mathematics.  Those with better spatial skills perform better in mathematics and also go on to 

longer, more successful careers in science, technology, engineering, and mathematics fields 

(Casey, Nuttall, Pezaris, & Benbow, 1995; Geary, Saults, Liu, & Hoard, 2000; Laski et al., 2013; 

Lubinski & Benbow, 1992; Thompson, Nuerk, Moeller, & Cohen Kadosh, 2013).  Neural and 

behavioral studies have indicated these correlations are based on shared processing (Hubbard, 

Piazza, Pine, & Dehaene, 2005; McKenzie, Bull, & Gray, 2003; Walsh, 2003); however, the 

nature of this shared processing and its developmental course are largely unknown.  Indeed, 

recent work has indicated these relations shift depending on how spatial skill and mathematics 

are measured (Caviola, Mammarella, Cornoldi, & Lucangeli, 2012; Robert & LeFevre, 2013; 

Trbovich & LeFevre, 2003), suggesting that the shared processing may be more specific than is 

currently understood. 

To investigate this shared processing and whether it changes over development, we 

conducted a cross-sectional study in which performance on a range of spatial and mathematics 

tasks was analyzed together using exploratory structural equation modeling (ESEM) and 

multiple regression (Mix et al., 2016).  The three age groups targeted were kindergarten, third-

grade, and sixth-grade students.  The study revealed that various measures of spatial and 

mathematics skill formed two separate, but highly correlated domain-specific factors (see Table 

1).  The factor structure and correlations were consistent across age.  Although all the tasks 

within each domain loaded significantly onto their respective factors, there also were significant 

cross-domain factor loadings—tasks that significantly loaded onto both the spatial and 

mathematics factors—and these cross-domain loadings differed across age.  In kindergarten, 
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mental rotation and block design significantly cross-loaded onto the mathematics factor.  In sixth 

grade, visual-spatial working memory (VSWM) and figure copying (Test of Visual-Motor 

Integration [VMI]) significantly cross-loaded onto the mathematics factor, and place value and 

algebra significantly cross-loaded onto the spatial factor.  In third grade, there were no 

significant cross-domain loadings in the factor analysis; however, the multiple regressions 

revealed small but significant effects involving most of the same tasks that cross-loaded in 

kindergarten and sixth grade (i.e., mental rotation, VSWM, and VMI), suggesting that third 

grade is a transition period with numerous weak relations. 

INSERT TABLE 1 HERE 

 We interpreted these results in terms of three broad mechanisms by which spatial 

processing might relate to mathematics: a) spatial visualization, b) form perception, and c) 

spatial scaling (Mix et al., 2016).  As the following brief review will show, the previous study 

showed evidence for the first two mechanisms but not the third.  The aim of the present study is 

to replicate and extend these findings with a second wave of data collection.  For the replication, 

we carried out a parallel study using the same measures and including children drawn from many 

of the same schools used previously.  There is a general need for replication in psychological 

research, as highlighted by recent reports (e.g., Pashler & Wagenmakers, 2012).  This is 

particularly true in the case of spatial skill and mathematics, as the latent structure of each 

domain has been long debated with many conflicting claims (see Mix & Cheng, 2012, for a 

review). It was also important to replicate our specific design because large-scale studies such as 

this study are expensive and difficult to duplicate, and the structures we probe have substantial 

theoretical and practical implications (Newcombe, 2010; Verdine, Golinkoff, Hirsh-Pasek, & 

Newcombe, 2017).  For the extension, we added two new measures (proportion matching and 
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fraction identification) that allowed us to follow up on questions raised in the original study.  We 

report the replication and the extension as two separate studies.  To distinguish the data collected 

in both the original study and present study, we will refer to them henceforth as Wave 1 and 

Wave 2, respectively. 

Spatial visualization 

Spatial visualization is the ability to imagine and mentally manipulate figures or objects 

in space.  It could play a role in mathematics by helping children spatially ground concepts or 

represent a problem. Consistent with the notion that people ground symbolic and abstract thought 

in bodily movement through space (e.g., Barsalou, 2008; Lakoff & Núñez, 2000), we predicted 

particularly strong connections between spatial tasks that simulate movement and require 

dynamic visualizations of relative position, such as perspective taking, block design, and mental 

rotation, and mathematics tasks with relatively complex conceptualization requirements, such as 

interpreting word problems, comprehending place value, or fraction concepts.  This prediction 

was borne out in Wave 1.  First, the mathematics tasks with the strongest relations to spatial skill 

(i.e., place value, word problems, fractions, algebra) are known to have the highest 

representational demands.  Second, the spatial tasks with the strongest relations to mathematics 

(i.e., block design, mental rotation, perspective taking) also have strong spatial visualization 

components.  Thus, there were several indications that spatial visualization is a major source of 

shared variance between the two domains. 

Form perception 

Form perception is the ability to recognize shapes and tell them apart, distinguish shapes 

from their backgrounds, and flexibly shift focus between an object and its parts.  This skill could 

relate to the symbol-reading demands of mathematics.  When children read mathematical 
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symbols, they must make fine spatial discriminations, such as detecting the difference between a 

plus sign (+) and a minus sign (-), or noticing that 126 is different from 162 because the positions 

of "6" and "2" have shifted.  Adults are sensitive to these relations, and their performance can be 

disrupted by subtle spatial shifts (Landy & Goldstone, 2007).  In principle, shared processing 

based on form perception could be evident in mathematics tasks that require careful attention to 

symbolic notation, such as multistep calculation, missing-term problems, algebra, and 

interpreting charts and graphs, and spatial tasks that involve reproducing spatial locations and 

forms, such as VSWM, map reading, and figure copying. 

Indeed, our results in Wave 1 showed form perception and mathematics were strongly 

related, but only in the oldest age group we studied (i.e., sixth grade).  Specifically, only VSWM 

and figure copying (VMI) cross-loaded significantly onto the mathematics factor.  Similar, albeit 

weaker, relations were evident in the third-grade regression analyses, but they were not exclusive 

as in sixth grade (i.e., several spatial visualization tasks also were significantly correlated with 

mathematics in third grade, as was the case for kindergarteners).  We hypothesized that relations 

involving symbol reading and form perception might emerge after a procedure has become 

conceptually grounded and automatic.  Prior to this, spatial visualization may play a larger role 

in the grounding process.  Consistently, the relations between spatial visualization and 

mathematics were more evident in younger children, and relations involving form perception 

were more evident in older children.  Moreover, figure copying (VMI) was significantly related 

to familiar mathematics content in kindergarten, and spatial visualization was significantly 

related to novel content in sixth grade, suggesting a developmental pattern that is recapitulated as 

children consolidate concepts and procedures and go on to learn new concepts and procedures. 

Spatial scaling 
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A third possible type of shared processing could involve spatial scaling—the ability to 

distinguish absolute and relative distances and recognize equivalence across different spatial 

scales.  This skill has a theoretical link to numeracy and symbol grounding in mathematics 

(Newcombe, Levine, & Mix, 2015), so it is a strong candidate for cross-domain overlap with 

mathematics. We thus expected to find strong connections between spatial tasks that require 

attention to relative distance or scaling, such as finding corresponding locations across 

representations of space at different scales (e.g., Möhring, Newcombe, & Frick, 2014), and 

mathematics tasks that focus on number meaning, such as number line estimation, as some have 

already shown (e.g., Slusser, Santiago, & Barth, 2013; Ye et al., 2016).  However, these relations 

were not obtained in Wave 1.  Number line estimation loaded significantly onto the mathematics 

factor, and map reading loaded significantly onto the spatial factor, but neither exhibited 

significant cross-domain relations.  One concern could be that the task we used to assess spatial 

scaling was not a pure test.  We used a map-reading task that involved matching maps to three-

dimensional models across differences in scale but also involved remembering locations and 

mentally rotating the map relative to the model.  In the present study, we followed up on this 

surprising null finding with a more direct measure of spatial scaling. 

New versus familiar content 

In addition to the evidence related to these three potential shared processes, we also 

observed an interesting developmental pattern in Wave 1. We found that fraction understanding 

was particularly related to spatial skill in third graders but not sixth graders, whereas missing 

terms/algebra were related to spatial skill in sixth graders but not third graders.  This pattern 

suggested that spatial skill may be recruited for new or challenging content.  To examine this 

pattern more directly, we coded all the items used in our mathematics measures based on the 
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Common Core State Standards for Mathematics (CCSS-M; National Governors Association 

Center for Best Practices & Council of Chief State School Officers, 2010).  We considered items 

that appeared in the CCSS-M at or below the students’ grade level to be “familiar” and items that 

appeared above the students’ grade level to be “novel.”  In regressions between these content 

categories and the individual spatial measures, it appeared that spatial visualization was more 

related to novel content and form perception was more related to familiar content, as noted 

earlier.  These results suggest we should find that performance on very simple fraction tasks are 

not strongly related to spatial skill in kindergarten, just as performance on very simple 

components of algebra (i.e., missing-term problems) was not related to spatial skill in third 

grade.  However, we could not confirm this pattern in Wave 1 because kindergarteners did not 

complete fraction items.  In Wave 2, these measures were included. 

We also added these more simplified fraction-matching items to the third-grade battery to 

see whether it strengthened the relation to spatial skill.  In Wave 1, there was no evidence of 

cross-domain loading from fractions to the spatial factor, but the relation between fraction 

performance and the spatial factor was significant in a multiple regression analysis.  It seemed 

possible that by adding the fraction-matching items to the third-grade battery, this relation would 

be more evident, as it has been in previous studies focusing more directly on the relations 

between spatial skill and fraction understanding (Möhring, Newcombe, Levine, & Frick, 2016; 

Ye et al., 2016).  

In summary, Wave 1 yielded several key findings.  One was that spatial and mathematics 

measures formed separate, but highly correlated factors.  Another was that some measures 

loaded onto both factors and the specifics of these cross-domain loadings differed across age.  

Finally, there was evidence that spatial visualization was particularly related to novel content and 
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form perception was particularly related to familiar content.  The aim of the present study was to 

replicate and extend these findings.  In Study 1, we used the same measures and age groups as 

before, but with a new sample of children to verify that the latent factor model we obtained 

previously is accurate and replicable.  In Study 2, we analyzed these data along with additional 

data from the two new measures (proportion matching and fraction matching) to provide stronger 

tests of the process-driven explanatory mechanisms we posited previously. 

Study 1 

Replication of Mix et al. (2016) 

Method 

Participants.  A total of 1,592 children participated in two waves.  The data from Wave 

1 (n = 854, collected in 2013-2014) were used in an exploratory factor analysis (EFA) reported 

previously (Mix et al., 2016).  We refer readers to that article for complete details related to 

grade, sex, exclusions, and so forth.  The main aim of the present study was to confirm the 

patterns we obtained in Wave 1, so we collected a second wave of data using the same tasks and 

age groups. In Wave 2 (2014-2015), a total of 738 children participated.  The sample was drawn 

from 29 schools serving a range of rural, suburban, and urban communities in the Midwestern 

United States (11 communities).  The average free/reduced-price lunch rate across the 11 

communities in Wave 2 was 46.20% (range = 0% - 99%).  Of these schools, 17 were the same as 

in Wave 1, and of the 11 communities, 7 were the same as in Wave 1. In terms of individual 

students, 58% of the Wave 2 students came from the same schools as in Wave 1.  Thus, the 

populations were overlapping and diverse but not identical. 

The study and its consent forms were approved by the institutional review boards (IRBs) 

at both universities.  Midway through data collection, the study was deemed exempt in accord 
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with federal regulations of projects exempt from institutional review board (IRB) review.  

Children's parents were contacted through their schools, and only children whose parents signed 

an IRB-approved consent form were tested.  Children from all 29 schools gave consent and were 

tested.  The average response rate across schools was 20.4%.  Of 4,276 children contacted, a 

total of 873 gave consent, and of these children, 134 were excluded because either a) tests were 

missing due to student absences, children who declined to participate, or schools that declined to 

participate after consents were turned in (n = 123); or b) tests were administered incorrectly or 

not recorded due to experimenter error (n =11). The final sample of 739 children was divided 

into three age groups: kindergarteners (n = 251, 132 boys; Mage = 6;0, SD = 4.32 months), third 

graders (n = 247, 96 boys; Mage = 9;1, SD = 4.56 months) and sixth graders (n = 241, 121 boys; 

Mage =11;10, SD = 5.28 months).  

Procedure.  Just as in Wave 1, children completed a battery of tests that measured spatial 

ability, mathematics, and verbal skill.  All the specific measures used in Wave 1 were included in 

Wave 2.  However, we included two additional measures not used before: Miura et al.'s (1999) 

fraction identification items were added in kindergarten and third grade, and Boyer and Levine's 

(2012) proportion-matching task was added in all three grades. (See Experiment 2 for a full 

description of these new measures). 

Children were tested in three 1-hr sessions during the course of 2 weeks.  Some tests 

were group administered (i.e., n = 4-6 for kindergarteners and third graders, and n = 20-30, or 

whole classes, for sixth graders). The other tests were administered individually.  These details 

are provided in the "Measures" section. The tests were blocked based on whether they were 

individually administered or group-administered, but the order of tests within each block varied 

randomly.  Also, the order of presentation for group versus individual tests was random and 
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counterbalanced across children.  Children received a decorative folder as a reward for their 

participation. 

 Measures.  We next describe each measure.  Reliabilities were estimated using 

Cronbach’s 𝛼 (1951) and were calculated from the combined data set (Wave 1 and Wave 2) 

unless otherwise noted.  Most of the reliabilities approached or reached 𝛼 = .70, which is the 

generally accepted cutoff, though not a hard and fast rule (Lance et al., 2006; Nunnally, 1978). In 

some cases (e.g., map reading) the reliabilities were less than .70, which may reflect 

multidimensionality within the measure.  Low internal consistency is known to attenuate 

relations among measures and as such could affect some of the relations tested here; however, 

some have argued this risk has been overstated and measures with low reliability may still be 

useful if they provide meaningful content coverage (Schmitt, 1996). 

 Mental rotation (adapted from Neuburger, Jansen, Heil, & Quaiser-Pohl, 2011; Peters 

et al., 1995). In the kindergarten/third-grade version, small groups of children were shown 4 

unfamiliar figures (i.e., forms based on manipulating components of capital letters) and were 

asked to indicate which 2 were the same as the target.  The 2 matching items could be rotated in 

the picture plane to overlap the target, whereas the 2 foils could not be rotated because they were 

mirror images of the target.  The task was introduced with 4 practice items on a laptop for which 

children received feedback that included animations with the correct answers rotating to match 

the target.  The 16 test items were presented in a paper booklet (kindergarten, α = .74; third 

grade, α = .87). The sixth-grade version was the same, except that stimuli were perspective line 

drawings of three-dimensional block constructions presented on paper.  Children completed 12 

items consisting of a target and 4 choice drawings, 2 of which could be rotated in the picture 

plane to match the target (α = .81). 
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          Visual-spatial working memory (adapted from Kaufman & Kaufman, 1983). 

On each test trial, groups of children were shown a 14-cm x 21.5-cm grid that was divided into 

squares (e.g., 3 x 3, 4 x 3, or 5 x 5).  Drawings of objects were displayed at random positions 

within the grid and were left in full view for 5 s. Then a blank grid was displayed, and children 

marked an X in the previously filled positions.  Stimuli were presented on a laptop computer, and 

children responded in paper test booklets.  The test was introduced with two or three practice 

items, depending on grade, for which children received feedback and were allowed to compare 

their responses to the stimulus display. The test trials (n = 15-29, based on grade) began 

immediately after the final practice trial (kindergarten, α = .77; third grade, α = .66, and sixth 

grade, α = .81). 

Test of Visual-Motor Integration (sixth edition; Beery & Beery, 2010). On each trial, 

children copied a line drawing of a geometric shape on a blank sheet of paper.  There were 18 to 

24 trials, depending on the age of the child, during which the figures became increasingly 

complex. We administered the test in small groups.  The reliability of the VMI based on a split-

half correlation (reported in the test manual) was .93.  

Block Design (Wechsler Intelligence Scale for Children-fourth edition; Wechsler et al., 

2004). On each trial, children were shown a printed figure composed of white and red sections, 

and they produced a matching figure using small cubes with red and white sides.  The test was 

individually administered following the instructions in the Wechsler Intelligence Scale for 

Children-Fourth Edition (WISC-IV) manual.  Children completed different numbers of items 

depending on their basal and ceiling performance. The reliability coefficient reported in the 

WISC-IV manual is .83 to .87 depending on age.  

        Map reading (adapted from Liben & Downs, 1989). Children were shown a location on a 
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model and then indicated where it would appear on a corresponding map.  Kindergarten and 

third-grade students completed 14 test trials in which the model was a full-color three-

dimensional model town with buildings, roads, a river, and trees. Sixth-grade students completed 

8 trials in which the model was a full-color screenshot of a virtual model town.  Children marked 

the corresponding location on a black-and-white, two-dimensional, scale map.  In the sixth-grade 

task, we also manipulated the presence of landmarks. Feedback was given on the first three test 

questions to ensure that children understood the task.  Sixth graders completed the test in groups, 

whereas younger children were tested individually (kindergarten, α =.62; third grade, α =.69; 

sixth grade, α =.56).   

Perspective taking. Kindergarten and third-grade children saw a set of Play Mobil figures 

and were asked to indicate which of four pictures was taken from each figure’s perspective 

(Frick, Mohring, & Newcombe, 2014).  The 27 test questions were preceded by 4 practice items 

with feedback (kindergarten, α = .64; third grade, α =.87). Sixth-grade children saw six to eight 

objects arranged in a circle and indicated their angle of view from a particular position by 

drawing an arrow toward the center object (Kozhevnikov & Hegarty, 2001).  There were 2 

practice items with feedback and 12 test items. Responses were scored based on the number of 

degrees they deviated from the correct angle on each item (α = .83). 

Place value.  Younger children completed a set of 20 items that required them to 

compare, order, and interpret multidigit numerals (e.g., “Which number is in the ones place?"), 

as well as match multidigit numerals to their expanded notation equivalents (342 = 300 + 40 + 2; 

kindergarten, α = .77; third grade, α = .81). Sixth-grade students completed the Rational 

Numbers subtest from the Comprehensive Mathematics Ability Test (CMAT; Hresko, Schlieve, 

Herron, Swain, & Sherbenou, 2003).  These items similarly required them to compare, order, and 
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interpret written numbers, but the numbers were a mixture of multidigit whole numbers, 

fractions, and decimals (α =.83). 

 Word problems.  Kindergarten and third-grade students were assessed using the 12 word 

problems from the Test of Early Mathematics Ability-Third Edition (Ginsburg & Baroody, 2003; 

kindergarten, α =.73; third grade, α =.65).  The test was individually administered following the 

instructions in the test manual. Sixth-grade students completed the Problem Solving subtest from 

the CMAT (α =.76). 

Calculation.  We used a group-administered test consisting of age-appropriate arithmetic 

problems (kindergarten, α = .76; third grade, α = .70; sixth grade, α = .76).  In kindergarten, the 

problems were one- to four-digit whole-number addition and subtraction problems.  In third 

grade, whole-number multiplication and division problems (one-three digits) were added.  The 

sixth-grade calculation test was similar but included both whole numbers and decimals. 

 Missing-term problems/algebra. In missing-term problems, children find the solution to 

a calculation problem where the missing value is not the sum or difference (e.g., X + 9 = 12).   

Kindergarten and third-grade students completed eight such problems (kindergarten, α = .62; 

third grade, α  = .71).  Sixth-grade students completed the CMAT Algebra subtest (α = .68). 

Number line estimation (Siegler & Opfer, 2003).  All children were tested in small 

groups (n = 4-6). Given a stimulus card with a written numeral, they were asked to mark where it 

would go on a number line with a numeral at each end. The anchor points and the stimulus 

values varied by grade.  Specifically, kindergarteners placed the numerals 4, 17, 33, 48, 57, 72, 

and 96 on a 0-to-100 number line (split half reliability, r = .39); third graders placed 3, 103, 158, 

240, 297, 346, 391, and 907 on a 0-to-1,000 number line (split half reliability, r = .48); and sixth 

graders placed 25,000, 61,000, 49,000, 5,000, 11,000, 2,000, 15,000, 73,000, 8,000, and 94,000 
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on a 0-to-100,000 number line (split half reliability, r = .61).  Children's performance was 

evaluated based on the linearity of their placements.  That is, we regressed each child's responses 

against the measurements for the correct placements and used the R2 values for these regressions 

as their number line estimation scores in subsequent analyses. 

Fraction concepts.  Fraction items were not included in the kindergarten test battery for 

Wave 1 (but see Experiment 2 for information about this measure in Wave 2).  In third grade, we 

included 4 items that tested fraction equivalence and simple calculation with common 

denominators (α =.57). Sixth-grade students completed a 22-item test with fraction comparisons 

- calculation with and without common denominators, and calculation with mixed numbers (α 

=.73) - and a version of the number line estimation task wherein the anchors are 0 and 1 and the 

stimulus quantities are all fractions (i.e., 1/4, 1/19, 2/3, 7/9, 1/7, 3/8, 5/6, 4/7, 12/13, 1/2; split 

half reliability, r = .46; Siegler, Thompson, & Schneider, 2011). 

Supplemental sixth-grade tests.  The breadth of mathematics skills increases in middle 

school, so we assessed sixth graders' performance on two additional measures: CMAT Charts 

and Graphs (α =.79) and CMAT Geometry (α =.66).  For Charts and Graphs, students were 

shown data in graphic form and were asked questions that require them to interpret the 

information.  For Geometry, they identified shapes, defined geometric terms, solved equations, 

and so forth. 

General cognitive ability.  To estimate and control for children's general cognitive 

ability, we used the Picture Vocabulary subtest from the Woodcock-Johnson Test of 

Achievement-3 (WJ-3).  Although not a comprehensive cognitive assessment, previous studies 

have demonstrated a strong relation between vocabulary and intelligence scores, suggesting that 

vocabulary is a reasonable proxy for general cognitive ability (e.g., Sattler, 2001; Woodcock, 
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McGrew, & Mather, 2001).  On each item, children were asked to name a picture (e.g., “What 

kind of insect is this?”).  The test was individually administered according to the instructions in 

the test manual (kindergarten, α = .73; third grade, α = .77; sixth grade, α= .74-79). 

Results and discussion 

        Our main aim was to determine whether the latent factor model we reported in our previous 

study (Mix et al., 2016) is a plausible characterization of the Wave 2 data, as well as the data set 

as a whole.  Toward that end, we report three analyses.  First, we compared the test scores and 

demographic information for the two waves to confirm that the samples were comparable.  

Second, we carried out a multigroup confirmatory factor analysis (MGCFA; French & Finch, 

2006; Sass, 2011) to determine whether the covariance matrices were statistically equivalent 

across waves and to check the validity of our hypothesized factor structure by applying it to both 

waves simultaneously (Byrne, Shavelson, & Muthén, 1989; van de Schoot, Lugtig, & Hox, 

2012).  Third, we carried out an EFA using only the Wave 2 data. 

Descriptive statistics comparing Wave 1 and Wave 2.  Table 2 presents the means and 

standard deviations of children's scores on each measure, by grade (kindergarten, third grade, and 

sixth grade) and testing wave (Wave 1 and Wave 2), as well as their mean ages.  We used two-

tailed t tests to determine whether these values differed.  The critical alpha level was set at p = 

.004 (kindergarten and third grade) and p = .003 (sixth grade) to control for multiple 

comparisons.  The performance of the two samples was mostly comparable, with only a few 

significant differences in test scores (see Table 3).  There also was a significant age difference 

between the sixth-grade samples, such that the children in Wave 2 were 1 month older on 

average (MWAVE 1 = 140.4 months, MWAVE 2 = 141.6 months), t (527) = 2.55, p = .01. 

INSERT TABLE 2 HERE 
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Multigroup confirmatory factor analysis. To determine whether the same latent 

structures were present in both Wave 1 and Wave 2 data, we used a MGCFA (also known as a 

measurement invariance modeling).  In this approach, a series of models is applied to data from 

different samples simultaneously to see whether the same patterns are obtained in both groups.  

The models are applied progressively from unconstrained to increasingly constrained models.  

By comparing unconstrained and constrained models in a stepwise fashion, we can determine 

how the models for multiple data sets correspond and how they diverge (Muthén & Asparouhov, 

2013). 

  As a first step, we performed an omnibus between-groups test to see whether the 

covariance matrices themselves differed from Wave 1 to Wave 2 (e.g., Vandenberg & Lance, 

2000).  It would be unusual, though not impossible, for different samples to have statistically 

equivalent covariance matrices.  Not surprisingly, the 𝜒! tests comparing the two waves revealed 

significant differences at each grade level: kindergarten, Δ𝜒! (77) = 161.01, p < .0001; third 

grade, Δ𝜒! (90) = 135.44, p =.001; sixth grade,  Δ𝜒! (135) = 228.92, p <.0001.  This outcome 

indicates that the covariance matrices were not equivalent, but it does not indicate to what degree 

or in what specific ways they differed.  Possible differences include the structure of the factors 

and their loadings (i.e., configural variance), the magnitude of the factor loadings, or slope (i.e., 

metric variance), and the test scores themselves, or intercepts (i.e., scalar variance).  For the 

purpose of replicating the results for Wave 1, the most important of these differences is 

configural variance, as it refers to the pattern of factors and factor loadings. 

Thus, to determine how the samples differed, we evaluated the fit of three models 

designed to isolate and test each of these parameters separately.  We used three goodness-of-fit 

indices to determine whether each successive model had an acceptable fit: a) the root mean 
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square error of approximation (RMSEA), b) the Comparative Fit Index (CFI), and c) the 

standardized root mean residual (SRMR).  We considered models with RMSEA values < .08, 

CFI values > .95, and SRMR values < .08 to have acceptable fit (Hu & Bentler, 1999; Kline, 

2005; Raykov & Marcoulides, 2006).  We also used Satorra-Bentler Scaled X2 tests (Satorra & 

Bentler, 2001) to compare the fit between the more constrained models and their less constrained 

predecessors.  Significant X2 tests would indicate the two groups are not invariant (i.e., they 

differ) along the dimension that was constrained. 

All analyses controlled for differences in general cognitive ability by specifying models 

that used the residualized covariance matrix after partialing out children's WJ-3 Vocabulary 

scores.  As noted earlier, vocabulary is highly correlated with overall intelligence.  Also, the 

reported analyses all used maximum likelihood estimation with robust standard errors (i.e., 

MLR) to guard against non-normal distributions in the explanatory variables.  MLR uses 

Huber sandwich estimation to provide standard errors that are robust against specification errors 

due to non-normal distribution (Freedman, 2006; Muthén & Muthén, 2012)—an approach that 

has proven successful in simulation studies with distributions ranging in skewedness from -2 to 2 

(Chou & Bentler, 1995).  An examination of the distributions of scores used in the present study 

confirmed that all fell within this range, except for the 0-to-100,000 number line estimation task 

in sixth grade, which was slightly skewed (-2.16).  We repeated the analyses after correcting for 

this skew using a Box-Cox transformation (Osborne, 2010), but we obtained the same pattern of 

results. 

In Model 1, we tested configural invariance by holding the factor structure constant but 

freeing the other parameter estimates.  That is, we specified both the number of factors (two) and 

which variables loaded onto each factor, based on the results of Wave 1.  This step is essentially 
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the same as fitting our hypothesized factor structure to both waves simultaneously.  The results 

are presented in Table 3.  The fit of the model was good (kindergarten, RMSEA = .05, 90% CI 

[.03, .06], CFI = .97, SRMR = .03; third grade, RMSEA = .06, 90% CI [.05, .07], CFI = .96, 

SRMR = .04; sixth grade, RMSEA = .04, 90% CI [.03, .05], CFI = .98, SRMR = .03). These 

numbers indicate that configural invariance was achieved.  That is, there were two separate but 

correlated factors (one for space and one for mathematics) in both waves.  Because the model 

was simultaneously fit to both waves, the goodness-of-fit statistics also apply to both waves, so 

as an added check, we applied the model to the Wave 2 data separately.  We again found 

acceptable fit (kindergarten, RMSEA = .05, 90% CI [.02, .07], CFI = .97, SRMR = .04; third 

grade, RMSEA = .07, 90% CI [.6, .09], CFI = .94, SRMR = .04; sixth grade, RMSEA = .05, 90% 

CI [.03, .06], CFI = .97, SRMR = .04).  As in Wave 1, the spatial and mathematics factors were 

highly correlated (kindergarten, r = .67; third grade, r  = .73; sixth grade, r  = .55).  These 

findings demonstrate that the two-factor model obtained in the exploratory analysis of Wave 1 is 

plausible for the Wave 2 data and thus is replicated. 

INSERT TABLE 3 HERE 

Further, the within-domain factor loadings also replicated as all the spatial tasks loaded 

significantly onto the spatial factor and all the mathematics tasks loaded significantly onto the 

mathematics factor.  However, not all the cross-domain loadings observed in Wave 1 were 

evident in Wave 2.  Specifically, although VSWM significantly cross-loaded onto the 

mathematics factor in sixth grade, neither mental rotation nor block design cross-loaded in 

kindergarten and neither algebra, place value, or VMI cross-loaded in sixth grade.  In a few cases 

(algebra and VMI in sixth grade), the magnitudes of the loadings were comparable across waves, 

but the loadings did not reach significance in Wave 2 because the standard errors were greater.  
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Thus, even though the overall model fit both waves of data well, some subtle effects were not the 

same. 

The finding of configural invariance in Model 1 also indicated that the difference in 

covariance matrices we reported earlier was due to one of the other parameters (i.e., metric or 

scalar invariance).  These differences are of less theoretical interest, but we tested two additional 

models to specify the sources of disparity.  Model 2 probed for metric invariance (i.e., 

differences in the magnitude of the factor loadings) by specifying equal factor loadings while 

allowing the intercepts and residuals to vary freely.  The fit for the constrained model was good 

for all three grades (kindergarten, RMSEA = .05, 90% CI [.04, .07], CFI = .96, SRMR = .08; 

third grade, RMSEA = .06, 90% CI [.05, .07], CFI = .95, SRMR = .06; sixth grade, RMSEA = 

.04, 90% CI [.03, .05], CFI = .98, SRMR = .05).  However, the X2 tests comparing the fit of 

Model 1 to Model 2 were significant in both kindergarten, Δ𝜒! (11) =30.92, p = .001, and third 

grade, Δ𝜒!(10)= 26.07, p =. 01, suggesting that the magnitude of the factor loadings was not 

exactly the same in both waves.  In sixth grade, the difference approached but did not reach 

significance, Δ𝜒! (17) = 26.65, p = .063. 

To determine the source of the differences in kindergarten and third grade, we identified 

the parameters with the highest modification index values (MIV) and freed them, one by one, 

from largest to smallest until we obtained partial invariance for the two groups.  MIVs estimate 

the influence of specific parameters, and in a well-fitting model, they should generally be low.  

However, freeing those with higher values (i.e., those at or above the critical values of 4) can 

significantly improve model fit and may indicate where, specifically, the two samples differ 

(Brown, 2006).  For kindergarten students, partial metric invariance was achieved when the 

variable VMI was freed (MIV = 21.00WAVE1 and 20.98 WAVE2), Δ𝜒! (10) = 10.24, p = .42.  For 
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third-grade students, invariance was achieved by freeing the factor loadings on VMI (MIV = 

6.82 WAVE1 and 6.82 WAVE2) and missing-term problems (MIV = 6.20 WAVE1 and 6.20 WAVE2), Δ𝜒! 

(8) =13.19, p = .11.   

These results indicate that differences in the factor loadings for these measures (VMI in 

kindergarten and VMI and missing terms in third grade) can explain the failure to achieve full 

metric invariance in Model 2.  Note, however, that these differences reflect quantitative, but not 

qualitative, differences. For example, VMI loaded significantly onto the third grade spatial factor 

in both waves.  The difference highlighted by this analysis is merely a larger loading in Wave 2.  

An interesting side effect, however, was that specifying these loadings as equal altered some of 

the cross-domain loadings.  Specifically, in kindergarten, mental rotation cross-loaded onto 

mathematics in both waves, but block design still did not cross-loaded in either wave (see Table 

4).  This finding provides further evidence that the cross-domain loadings in these models may 

be context-dependent and unstable. 

The third and final model was used to evaluate scalar invariance, or the equality of 

absolute level of performance.  To test for this invariance, we constrained both the intercepts and 

factor loadings and then compared the fit of this new model to Model 2.  As before, if the fit is 

not worsened by this constraint, it suggests the performance levels are equal across groups.  This 

was the case in kindergarten, Δ𝜒! (8) = 14.10, p = .08, suggesting that the latent structures were 

very similar.  In third grade, the difference was significant, Δ𝜒!(8) = 21.62, p = .006, but partial 

scalar invariance was obtained after relaxing the scores for map reading (MIV = 10.64 WAVE1 and 

10.64 WAVE2), Δ𝜒!(6) = 5.15, p = .52.  In sixth grade, the difference between models also was 

significant, Δ𝜒! (13) = 24.12, p = .03, but partial scalar invariance was obtained after relaxing 

the scores for word problems (MIV = 6.51 WAVE1 and 6.51 WAVE2), Δ𝜒! (12) = 17.59, p = .13.  
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These differences do not change the overall pattern in terms of replicating the latent structure.  

They simply highlight tests for which children in one wave performed worse than children in the 

other. The factor loadings for this final model are presented in Table 4. 

INSERT TABLE 4 HERE 

Overall, the MGCFA provided strong evidence that the two-factor model reported 

previously for Wave 1 (Mix et al., 2016) was replicated in Wave 2.  The same configural model 

fit both data sets well, and aptly characterized the factor structure and loadings, at least within 

domains.  The previous claim that spatial skill and mathematics form separate, but highly 

correlated, factors was clearly supported.  The few differences obtained between the two waves 

were related to the size, but not significance, of the within-domain factor loadings for specific 

tasks and differences in overall performance on few tasks.  Notably, however, the significant 

cross-domain loadings obtained for Wave 1 were only partially replicated in Wave 2.  In the final 

model, achieved after relaxing the few measures that were discrepant across waves, most of the 

previously reported cross-domain loadings were obtained, which was an encouraging result.  

Yet, even after achieving invariant models, the cross-domain loading of block design in 

kindergarten was not replicated in Wave 2.  Also, the cross-domain loading for place value in 

sixth grade was only marginally significant in the final model.  These findings suggest caution in 

interpreting these specific effects.  Also, the fact that cross-domain loadings sometimes shifted 

when other variables were relaxed reminds us that the outcomes of factor analysis are sensitive 

to all the measures included.  In sum, the cross-domain loadings, even those that were replicated, 

appear much more fragile and context-specific than the within-domain loadings, and thus, they 

may be difficult to interpret. 

Exploratory factor analysis for Wave 2.  The MGCFA demonstrated that the same 



23	
  

 

model could plausibly apply to both Wave 1 and Wave 2, and that with a few exceptions, it 

resulted in the same factor loadings in both data sets.  Does this mean that if we simply carried 

out an unconstrained ESEM on the Wave 2 data, we would obtain the same results reported for 

Wave 1 (Mix et al., 2016)?  One might argue this approach would be the most straightforward 

way to replicate our previous finding.  Yet, EFAs are notoriously difficult to replicate (Costello 

& Osborne, 2005; Osborne & Fitzpatrick, 2012).  For example, using samples of 260 participants 

drawn randomly from a very large data set (n = 24,599), Costello and Osborne (2005) found that 

the factor structure of repeated EFAs replicated only 70% of the time (given a 20:1 ratio of 

participants to measures).  This failure to replicate can occur if a sample, though random, is 

skewed or otherwise unrepresentative of the overall population. We know already from the 

MGCFA that the correlation matrices for the two waves in the present study differed, suggesting 

different sampling distributions, but we do not know what patterns might have emerged if we 

had simply explored the structure of the Wave 2 data in a separate analysis, without testing a 

confirmatory model. 

To find out, we tested an EFA model using ESEM for the Wave 2 data, following 

precisely the data analysis procedures outlined by Mix et al. (2016).  Specifically, we submitted 

the children's raw scores on each measure to an oblique Geomin rotation in the Mplus 7.0 

program (Muthén & Muthén, 1998-2012) after first partialing out children's WJ-3 Vocabulary 

scores.  For each analysis, we determined the optimal number of factors using 95% confidence 

intervals around each factor's eigenvalue (see Larsen & Warne, 2010) and rejected models with 

factors for which the lower bound of the confidence interval was 1.00 or less.  After identifying 

the number of informative factors, we determined the optimal rotation for each model and 

evaluated model fit using the indices described earlier.  Once the model with the best fit was 



24	
  

 

identified, we determined which tasks loaded onto each factor significantly using z values 

derived by dividing the factor loading for each measure by its standard error (Cudeck & O'Dell, 

1994; Schmitt & Sass, 2011). 

 
INSERT TABLE 5 HERE 

 The factor loadings are presented in Table 5.  At all three grade levels, the first two 

factors had adequate eigenvalues (kindergarten, Factor 1 = 3.82, 95% CI [3.15, 4.48], Factor 2 = 

1.39, 95% CI [1.14, 1.63]; third grade, Factor 1 = 4.65, 95% CI [3.83, 5.48], Factor 2 = 1.30, 

95% CI [1.07, 1.53]; sixth grade, Factor 1 = 5.67, 95% CI [4.66, 6.69], Factor 2 = 1.84, 95% CI 

[1.51, 2.17], whereas the third factor did not (kindergarten, 0.94 [0.77, 1.10]; third grade, 1.08 

[0.89, 1.27]; sixth grade, 0.99 [0.82, 1.17]).  The fit of the two-factor models was good in 

kindergarten (RMSEA = .05, 90% CI [.03, .08], CFI = .97, SRMR = .03) and sixth grade 

(RMSEA = .05, 90% CI [.03, .06], CFI = .97, SRMR = .03), but it was marginal in third grade  

(RMSEA = .09, 90% CI [.08, .11], CFI = .93, SRMR = .04).  As we reported previously for 

Wave 1 (Mix et al., 2016), one of these factors was primarily spatial and the other was primarily 

mathematical.  Also as before, the factors were highly correlated at each grade level 

(kindergarten = .53; third grade = .54; sixth grade = .51), and these correlations did not increase 

or decrease with age (z = 0.16 -0.45, p = 0.9 - 0.7).  Thus, the factor structure we reported for 

Wave 1 was replicated. 

We also found significant cross-domain loadings in the Wave 2 ESEM, but they were not 

exactly the same as in Wave 1 (see Table 3).  The key similarities were that a) in kindergarten, 

performance on mental rotation loaded significantly onto the mathematics factor in both waves, 

and b) in sixth grade, both VSWM and VMI loaded significantly onto the mathematics factor in 

both waves.  Recall that though these cross-domain loadings were not significant for Wave 2 in 
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the MGCFA configural model, they were significant in the final model.  Another similarity was 

that fraction understanding was significantly correlated with the spatial factor in third grade in 

the Wave 1 regression analyses and also appeared as a significant cross-domain loading with the 

spatial factor in the Wave 2 ESEM.  Note that this finding emerged even without including the 

more simplified fraction-matching items that were added in Wave 2 (and will be analyzed in the 

“Study 2” section).  These are all crucial similarities suggesting at least some consistency in the 

pattern of cross-domain loadings. 

However, there also were differences.  First, in contrast to Wave 1, there was a 

significant cross-domain loading for VSWM in kindergarten that was not obtained previously. 

Second, we did not find that algebra and place value (as measured on the Rational Numbers 

subtest of the CMAT) cross-loaded significantly onto the spatial factor in sixth grade.  In Wave 

1, these variables had cross-loaded significantly, but only in analyses that included the 

supplemental sixth-grade tasks (e.g., CMAT Charts and Graphs, CMAT Geometry, and fraction 

number line estimation).  When the supplemental tasks were excluded, the cross-domain 

loadings were no longer significant.  Here, even with these tasks included, the cross-domain 

loadings were not obtained.  These shifting patterns of significance again suggest caution in 

interpreting these particular cross-domain loadings.  Third, there were two unexpected, negative 

cross-domain loadings in Wave 2 (whereas there were none in Wave 1).  In third grade, map 

reading loaded negatively onto the mathematics factor, and in sixth grade, fractions loaded 

negatively onto the spatial factor.  Negative loadings imply that children who performed better 

on these tasks conversely performed worse on the skills that formed the factor.  So, for example, 

third graders with strong map-reading performance actually performed worse on mathematics 

than did children who were not as skilled at map reading.  Note that these two measures 
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nonetheless had positive loadings onto their respective domain-specific factors, and these domain 

specific factors were positively correlated, so the overall picture includes strong positive cross-

domain relations for these tasks.  Therefore, only some of the processes measured by these tasks 

load onto the other factor negatively.  Further research will be needed to specify what these 

aberrant processes might be. 

In sum, the ESEM for Wave 2 replicated the ESEM for Wave 1 in terms of the factor 

structure, all the within-domain factor loadings, and some of the cross-domain factor loadings.  

As noted earlier, the likelihood of replicating an ESEM in two samples is far from certain 

(Costello & Osborne, 2005), so it is a remarkable finding and one that inspires confidence in the 

previously reported results.  However, not all cross-domain loadings from Wave 1 were 

replicated in Wave 2, providing further evidence that these effects are highly sensitive to 

sampling differences and perhaps, in some cases, spurious.   

Study 2 

Wave 2 exploratory analysis with new measures 

 Recall that two new measures were added to the test battery in Wave 2: proportion 

matching and fraction identification.  In the analyses reported so far, we have not included these 

measures because our aim was to determine whether the latent structure was the same in two 

samples using the same battery.  In the present analysis, we examined only the Wave 2 data but 

included these new tasks to see if they caused the latent structures to shift.  As noted earlier, such 

shifts due to inclusion or exclusion of measures have been documented in related work (e.g., 

Caviola et al., 2012; Trbovich & LeFevre, 2003). 

There were theoretical reasons for examining these two skills in particular.  As noted in 

the introduction, spatial scaling is one possible process hypothesized to have particularly strong 
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ties to mathematical skill (e.g., Möhring et al., 2014; Newcombe et al., 2015).  In Wave 1, we 

failed to obtain evidence for this connection, but it may have been because we included only an 

indirect measure of spatial scaling (i.e., map reading).  In Wave 2, we added a proportion-

matching task that provides a more direct assessment of spatial scaling and has been used in 

previous research demonstrating a connection between spatial-scaling and mathematical skills, 

such as fraction understanding (e.g., Möhring et al., 2016; Ye et al., 2016). 

With respect to fraction concepts, we sought to follow up on an interesting developmental 

pattern from Wave 1, in which fraction understanding was particularly related to spatial skill in 

third but not sixth graders and missing-terms problems/algebra were strongly related to spatial 

skill in sixth graders but not third graders. In kindergarten children, there was also a strong 

relation between spatial skill and calculation.  This pattern suggested that spatial skill may be 

recruited for new or challenging content (i.e., calculation in kindergarten, fractions in third grade, 

and algebra in sixth grade).  The finding that some components of algebraic reasoning, as 

measured in missing-term problems, were not strongly related to spatial skill raised the question 

of whether fraction concepts in kindergarteners would show the same pattern (i.e., no particular 

relation to spatial skill, despite its novelty).  This pattern might arise if content is so novel that 

children are either performing at floor or have not encountered sufficiently challenging material 

to recruit spatial skills.  If so, it would suggest a sweet spot in learning for which spatial skills 

become particularly relevant, while children are in the process of mastery and struggling with 

novel skills, but only when the content is neither too novel nor too familiar.  We could not test 

this prediction in kindergarteners previously because in Wave 1, we had not given fraction tasks 

to the kindergarten sample.  In Wave 2, these measures were included.  We also added these 

relatively simplistic fraction identification items to the third-grade battery on the hypothesis 
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these items may reveal a stronger relation between spatial skill and fraction understanding in 

particular, consistent with recent work (Möhring et al., 2016; Ye et al., 2016). 

Measures.  Children in Wave 2 received the same measures presented to children in 

Wave 1 (see Study 1 for a full description), plus two additional measures (described in this 

section).  All measures, including these two, were presented in a random order that varied across 

children. 

Proportion matching. (adapted from Boyer & Levine, 2012).  Stimulus displays 

consisted of three columns with different proportions of red space versus blue—a standard and 

two choices—presented on a laptop computer.  Next to the standard, there was a picture of a pig, 

and children were told, “Harry the Hog enjoys drinking all kinds of juice, and likes to mix the 

juice himself. Harry must be careful to have the correct mix of water and juice for each type of 

mix. Which of these two (pointing to the two alternatives) is the right mix for the juice Harry the 

Hog is trying to make? Which of these two would taste just like Harry’s juice? Circle one!”  

Children sat in groups for stimulus presentation, but they circled their responses in individual 

paper-test copies.  There were 20 to 24 test trials depending on the child's grade.  On each trial, 

the target appeared on the left side, and the two response choices appeared on the right side in a 

horizontal row. The side of the correct choice relative to the foil (either near or far) was 

counterbalanced across items (kindergarten, α = .70; third grade, α = .90; and sixth grade, α = 

.82). 

Fraction identification (adapted from Miura et al., 1999).  Children were shown a 

written fraction (e.g., !
!
) and were asked to mark one of four schematic drawings that showed the 

correct portion shaded.  On each trial, the four drawings varied in shape (circle, square, 

rectangle) and in how the portions were divided (bars, quadrants, etc.).  The foils were 
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constructed so that one matched the prompt in terms of the numerator, one matched in terms of 

the denominator, and one matched neither the numerator nor the denominator.  For 3 of the 

items, the nonmatch was replaced with a Numerator + Denominator foil (Paik & Mix, 2003).  In 

this foil, the numerator was represented correctly, but the denominator was represented by 

unshaded pieces, so that the total number of pieces was the numerator added to the denominator 

(e.g., the fraction !
!
 would be represented as one part shaded and two parts unshaded, or three 

parts total).  In previous research, the Numerator + Denominator foil was particularly difficult for 

first-grade students (Paik & Mix, 2003), so it was included to provide a sufficient range of 

difficulty for the third-grade students.  On each trial, the experimenter read the fraction name 

aloud and said, "Circle the picture that is [fraction name] shaded." Kindergarten students 

received only the 11 fraction-matching items.  For third-grade students, we combined these items 

with the 4 fraction items used in Wave 1 (i.e., 2 equivalence and 2 calculation) and analyzed the 

summed score out of 15 possible points (kindergarten, α = .50; third grade, α = .69 for the 11 

new items and α = .70 for the 15 items total). 

Results and discussion 

We tested three ESEMs—one at each grade level—in which both spatial and mathematics 

measures were considered together.  As in our previous work and in Study 1, the analyses were 

carried out with an oblique Geomin rotation in the Mplus 7.0 program (Muthén & Muthén, 1998-

2012) using the raw scores for all measures and MLR to guard against specification errors due to 

non-normal distribution (Freedman, 2006; Muthén & Muthén, 2012; Wang & Wang, 2012).  An 

examination of the proportion-matching and fraction scores (i.e., fraction identification only in 

kindergarten and the composite scores used in third grade) used in the present study confirmed 
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that all fell within an acceptable range of skewedness from -2°to 2° (Chou & Bentler, 1995; 

Chou, Bentler, & Satorra, 1991). 

As before, we first extracted factors until they no longer added significant explanatory 

power as indicated by their eigenvalue confidence intervals (Larsen & Warne, 2010) and then 

determined the optimal rotation for each model and evaluated model fit using RMSEA (Steiger, 

1990), CFI (Hu & Bentler, 1999; Raykov & Marcoulides, 2006) and SRMR (Kline, 2005). Once 

the model with the best fit was identified, we determined which tasks loaded onto each factor 

significantly following our previously established procedures of deriving z scores (Cudeck & 

O'Dell, 1994; Schmitt & Sass, 2011). 

 In all three grades, the first two factors had adequate eigenvalues (kindergarten, Factor 1 

= 3.99, 95% CI [3.29, 4.69], Factor 2 = 1.39, 95% CI [1.15, 1.63]; third grade, Factor 1 = 4.75, 

95% CI [3.91, 5.59], Factor 2 = 1.33, 95% CI [1.10, 1.57]; sixth grade, Factor 1 = 5.85, 95% CI 

[4.81, 6.90], Factor 2 = 1.84, 95% CI [1.51, 2.17]), but the third factor did not (kindergarten, 

1.13, 95% CI [0.93, 1.33]; third grade, 1.13, 95% CI [0.93, 1.33]; sixth grade, 1.07, 95% CI 

[0.88, 1.26].1  The fit of the two-factor models was good in kindergarten (RMSEA = .05 [range = 

.03-.07], CFI = .96, SRMR = .04) and sixth grade (RMSEA = .04 [range = .03-.06], CFI = .97, 

SRMR = .03) but was, again, marginal in third grade (RMSEA = .09 [range = .07-.10], CFI = 

.92, SRMR = .04). 

INSERT TABLE 6 HERE 

 As can be seen in Table 6, the first two factors at each grade level were the same as 

before—a spatial factor with all the spatial tasks loaded onto it and a mathematics factor with all 

the mathematics tasks loaded onto it.  Interestingly, proportion matching loaded onto the 

mathematics factor and not the spatial factor in kindergarten and sixth grade.  Proportion 
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matching loaded onto neither factor in third grade.  For kindergarten and sixth-grade students, 

the cross-domain loadings were the same as in the ESEM without proportional reasoning or the 

new fraction items.  Note that it included the finding of no significant cross-domain loading for 

fraction understanding onto the spatial factor in kindergarten. 

In third grade, however, there was a shift. First, whereas fractions had cross-loaded 

significantly onto the spatial factor in the Wave 2 ESEM, it was not the case when both the new 

fraction identification items and the proportion-matching items were included.  Instead, fraction 

skill loaded onto the mathematics factor only.  To determine which of the additions caused this 

shift, we repeated the analysis with only the fraction identification items added (i.e., without 

adding proportion-matching scores) and found that again, third graders’ fraction scores did not 

cross-load onto the spatial factor (p = .72); however, when proportion-matching items were 

added and only the previous fraction items (i.e., the fraction calculation items used in Wave 1) 

were included, fraction skill continued to cross-load onto spatial skill significantly (p = .01).  

Thus, it appears that only the more advanced fraction skills were related to spatial skill strongly 

enough to cross-load. 

Second, the correlation between the two factors (space and mathematics) was 

significantly greater in third grade when proportion matching and fraction identification were 

included (r =.54 vs. .69, z = 2.56, p = .01). We again repeated the analysis adding only one task 

or the other, and found that when only fraction identification items were added to the model but 

proportion-matching items were not, the correlation between factors similarly increased (r =.68); 

however, when only proportion matching items were included, the correlation between factors 

was the same as in the original model without either proportion matching or fraction 

identification added (r =.54). Note that the interfactor correlations in the other grades were not 
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significantly increased or decreased due to the inclusion of either proportion matching or fraction 

identification items. 

Taken together and including the results from Wave 1, there was a reliable relation 

between fraction skill and spatial skill in third grade.  The pattern of cross-domain loadings 

suggests this relation may be particularly strong for fraction calculation and comparison items—

a pattern that may reflect the novel-familiar cycle we noted previously (Mix et al., 2016), 

wherein spatial skill is recruited for less familiar, more complex mathematics material but may 

not play a role once skills are mastered and, perhaps, automatized.  However, the fact that 

including simple fraction identification items strengthened the interfactor correlations at this 

grade level suggests these simpler fraction items also contribute significantly to the shared 

variance, perhaps at a more general level.  In contrast to the findings related to fraction 

understanding, there was no evidence that including proportion matching in the model affected 

the factor structure or factor loadings. 

General discussion 

 The present study is a replication and extension of an EFA that examined the latent 

structure of spatial and mathematical skills combined (Mix et al., 2016).  In the previous study, 

we found that spatial skill and mathematics formed two separate but highly correlated factors, 

onto which all the variables in the respective domains loaded significantly (i.e., all the spatial 

tasks loaded onto the spatial factor and all the mathematics tasks loaded onto the mathematics 

factor).  We also found that certain variables significantly loaded onto both factors and, further, 

that the specific pattern of cross-domain loadings changed from kindergarten to sixth grade.  In 

the present study, we collected a second wave of data using the same measures as before in the 

same age groups from a mostly overlapping and diverse population.  Through a series of 
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analyses, we sought to determine whether the same patterns were obtained in Wave 2.  We also 

added two measures: a) a simplified fraction measure (i.e., fraction identification) in 

kindergarten and third grade, and b) a spatial-scaling measure (i.e., proportion matching) in all 

three age groups.  In a second set of analyses, we examined whether these measures changed the 

pattern of results or revealed evidence of additional shared processing. 

A consistent factor structure 

With respect to the first question, the latent structure we described in our previous work 

was clearly replicated.  In an MGCFA, we found that a two-factor model provided a strong fit to 

the data from both waves and, further, that the variable loadings were domain-specific.  That is, 

all the spatial measures loaded significantly onto one factor and all the mathematics measures 

loaded significantly onto the other.  As in our previous work, these two factors, though distinct, 

were highly correlated.  The same pattern was obtained when we fit the confirmatory model to 

the Wave 2 data alone and when we used an unconstrained exploratory model instead.  

Regardless of how we constructed the model or to which data we applied it, there were two 

highly correlated, domain-specific factors. 

We previously interpreted this pattern to mean one of two things.  One is that the 

common variance is attributable to general cognitive ability.  Although we partialed out 

children’s vocabulary scores to control for general cognitive ability, it is possible that other 

aspects of intelligence, such as fluid processing, are implicated in both spatial and mathematical 

processing, which explains the correlation.  Alternatively, one could argue that spatial processing 

itself provides a format for abstract thought that is common to both domains (Lohman, 1996).  

Because the two domains have unique demands in addition to their shared processing, this 

commonality may not be enough to yield a single factor but could explain the high correlation. 
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Distinguishing between these interpretations is not possible based on our data and in some ways 

hinges on basic, unsettled questions regarding the nature of intelligence, such as whether spatial 

processing is separable from general intelligence.  Still, additional research that includes spatial 

and mathematics tasks but attempts to control for fluid processing may be helpful. 

Partial replication of cross-domain loadings 

Across the various analyses, there were significant cross-domain loadings—variables that 

loaded onto both their domain-specific factor and the other domain-specific factor.  Also, as 

before, these variables varied from one grade level to the next.  However, the specific variables 

that cross-loaded were not entirely consistent across analyses in the present study, nor were they 

entirely consistent with those we reported previously for Wave 1 (Mix et al., 2016). 

The most consistent cross-domain loadings, reaching at least marginal significance in 

most of our analyses, were mental rotation in kindergarten and VSWM and VMI in sixth grade.  

In light of the low probability of replication in multiple EFAs (Costello & Osborne, 2005) and 

the relative fragility of these cross-domain loadings, it is remarkable that these consistent 

findings were obtained.  This outcome may signal important, age-specific points of contact 

between the two domains. 

However, the other cross-domain loadings were less consistent.  The spatial measure, 

VSWM, did not cross-load onto the mathematics factor in Wave 1 for the other grades (see Table 

1), but it did cross-load in Wave 2 for kindergarten.  This new finding accords with previous 

work showing that VSWM is related to mathematics in young children (Bull, Espy, & Wiebe, 

2008; Holmes, Adams, & Hamilton, 2008), and it tempers our previous claims of a strong age-

related trend in shared processing from spatial visualization in younger children to form 

perception in older children.  In terms of mathematics measures, the previously reported cross-
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domain loadings for place value and algebra in sixth grade were evident in the MGCFA after 

relaxing the parameter of word problems, but not in the Wave 2 EFA. In the other grades, there 

were no significant mathematics-to-spatial cross-domain loadings in Wave 1, but one emerged in 

the Wave 2 data for third grade (namely, fractions).  Interestingly, fractions also cross-loaded 

onto the spatial factor in the Wave 2 sixth-grade data, but the loading was negative. 

The general instability of these cross-domain loadings suggests cautious interpretation.  

Still, the overall pattern may have meaning.   We suggested previously (Mix et al., 2016) that the 

role of spatial processing in mathematics might vary depending on the familiarity of the content.  

Indeed, when we divided the mathematics items into novel and familiar categories, we found 

shifts in the cross-domain loadings such that novel content seemed more strongly related to 

spatial visualization and familiar content seemed more strongly related to form perception.  

These patterns were not clear-cut, but they were consistent enough to raise the possibility that 

shifts in underlying processing might occur at the level of tasks and student knowledge, rather 

than appearing as broad developmental changes seen in comparisons by age.  On this account, 

VSWM may have cross-loaded in kindergarten for Wave 2 but not Wave 1 because the Wave 2 

kindergarteners were more familiar with the mathematics content and thus had transitioned to a 

stronger role for form perception.  Similarly, fractions may have cross-loaded in third grade for 

Wave 2 but not Wave 1 because Wave 2 third graders were less familiar with the content.  

Consistent with this idea, the significant cross-domain loading for fractions in third grade 

disappeared when more simplistic items were added to the battery, perhaps because spatial skill 

was engaged less for familiar mathematics content.  Obviously, even these interpretations are 

speculative, but they provide an account of these shifts that is at least plausible and may bear 

further investigation. 
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Shared processing 

We have identified three processes that might support performance of both spatial and 

mathematical tasks and explain their shared variance: a) spatial visualization, b) form perception, 

and c) spatial scaling.  As noted earlier, the cross-domain loadings obtained here and in Wave 1 

are indicative of a role for the first two processes.  Specifically, the consistent cross-domain 

loading of mental rotation onto the mathematics factor in kindergarten is suggestive of a role for 

spatial visualization, and the consistent cross-loading of VSWM and VMI in sixth grade (as well 

as the emergence of this cross-loading in kindergarten in Wave 2) suggests a role for form 

perception and location memory.  However, we did not find evidence for a connection between 

spatial-scaling and mathematics in Wave 1.  Our spatial-scaling measure (i.e., map reading) 

loaded onto the spatial factor only, and number line estimation loaded onto the mathematics 

factor only.  This pattern was replicated in Wave 2 (see Table 5). 

It was a bit surprising that number line estimation did not cross-load onto the spatial 

factor given that spatial skill is a significant predictor of number line estimation (Gunderson, 

Ramirez, Beilock, & Levine, 2012).  Also, models that explain number line estimation in terms 

of proportional reasoning seem to implicate a spatial process (e.g., Slusser et al., 2013). A 

possible explanation we evaluated in Wave 2 was whether the map reading task was a poor 

measure because it involved spatial and nonspatial task demands beyond reasoning about 

scaling.  If spatial scaling is the component shared with number line estimation, it seemed 

possible that a more direct test of spatial scaling would either lead to a significant cross-domain 

loading or reveal a third spatial-scaling factor.  To find out, we added a proportion-matching task 

(Boyer & Levine, 2012) to the Wave 2 test battery and included it in an EFA carried out for 

Wave 2 only (see Table 6).   The proportion-matching task requires children to evaluate 
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quantitative relations (i.e., differences in amount), but it does so through spatial comparisons and 

not through mathematical symbols or operations. It is worth noting that this same proportion-

matching task was significantly correlated with spatial scaling in one study (Möhring, 

Newcombe, & Frick, 2015) and loaded onto the same factor as number line estimation in another 

(Ye et al., 2016), so it was difficult to say in advance whether proportion matching would be 

related to spatial skill, mathematics skill, or both.  However, we found that like number line 

estimation, it loaded onto the mathematics factor.  There was no evidence of a cross-domain 

loading onto the spatial factor for this task in any of the three grades.  Note further that the 

inclusion of proportion matching in Wave 2 did not affect the overall factor structure or the other 

cross-domain loadings. 

Fraction understanding 

We added fraction identification items to the kindergarten and third-grade batteries for 

two reasons.  First, we sought to determine whether fraction skill was particularly related to 

spatial skill in kindergarten—a question we could not pose in Wave 1 because no fraction items 

were given to kindergarten students.  Our prediction, based on the notion that spatial reasoning is 

recruited when mathematics skills are novel but not completely unfamiliar, was borne out: There 

was not a significant cross-domain loading for fraction skill on the spatial factor in kindergarten 

when these new items were added. Though caution is warranted when interpreting a null finding, 

this result fits into a larger age-related pattern wherein algebra and spatial skills were related in 

sixth grade but not third grade (where algebra/missing-term problems were likely novel). 

Second, we hypothesized that adding these simpler items would increase the relation 

between fractions and spatial skills for third-grade students, but this prediction was not borne 

out. We had found previously, in the regression analyses for Wave 1 and the ESEM for Wave 2, 
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that fractions cross-loaded onto the spatial factor when only the original items (comparing and 

calculating with fractions) were included.  However, when the more simplified fraction 

identification items were added, there was no cross-loading.  Thus, there is sufficient evidence to 

suggest a strong relation between fraction understanding and spatial skill at this age point, 

consistent with previous related work (Möhring et al., 2016; Ye et al., 2016), but this relation 

may be moderated by differences in students’ familiarity with fractions and the demands of 

particular fraction tasks (comparison vs. matching).  

Conclusions 

In sum, the present study sought to replicate the factor structure obtained previously in a 

parallel study on the relations between spatial skills and mathematics in kindergarten, third-

grade, and sixth-grade students (Mix et al., 2016).  The overall pattern obtained in Wave 1—two 

highly correlated domain-specific factors— was clearly replicated in Wave 2.  However, the 

more subtle effects involving cross-domain loading were only partially replicated and sometimes 

appeared unstable and context-specific.  The inclusion of additional tasks (proportion matching 

and fraction identification) did not alter the overall factor structure, providing further, converging 

evidence that spatial skills and mathematics are closely related but unitary constructs.  However, 

evidence of multidimensionality may be forthcoming if additional research can identify and 

control moderating variables, such as familiarity with mathematics content. 
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Footnotes 

1. Though the eigenvalue confidence intervals fell below our accepted cut-off, the eigenvalues 

themselves were acceptable by conventional standards (e.g., the Guttman rule) and the fit 

was good (Kindergarten: RMSEA = 0.03, range = 0.00; 0.05, CFI = 0.99, SRMR = 0.03; 

Third Grade: RMSEA = 0.03, range = 0.00; 0.06, CFI = 0.99, SRMR = 0.02; Sixth Grade: 

RMSEA = 0.03, range = 0.00; 0.05, CFI = 0.99, SRMR = 0.02).  Therefore, we examined the 

structure of the three-factor models and provide them to readers (see supplemental data, 

Tables S1-S3).  We ultimately rejected them, however, because we deemed them 

uninterpretable.  In kindergarten, the third factor was comprised of only one variable—place 

value.  In third grade, it was comprised of several mathematics tasks, and two spatial 

measures—one of which loaded positively (VMI) and one which loaded negatively (map 

reading).  In sixth grade, the three factor model also consisted of several mathematics tasks 

and one spatial task that was negatively loaded (VSWM). 


