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Introduction 

Item Response Theory (IRT) is a successful enterprise that provides a class of useful statistical 

models for the analysis of item response data (Hambleton & Swaminathan, 1985; van der Linden, 2016). 

Any IRT model posits a probabilistic relationship between each person's response to each test item, 

based on person ability and item parameters. To explain, let Yni be the item response random variable for 

person n and test item i, for persons and items indexed by n = 1,…,N and by i = 1,…,I (resp.). Nearly all IRT 

models make at least the following three assumptions (Junker & Sijtsma, 2001): 

1) Unidimensionality: Person ability, θ, is real-valued (possibly multidimensional); 

2) Local Independence: The conditional distribution of the responses to the test items satisfies:  
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3) Monotonicity: The Item Step Response Function (ISRF), 

       Pr(Yi > k | θ) is monotone non-decreasing in θ, for i = 1,…,I and k = 0,1,…,Ki,               (2)  

with Pr(Yi = 1|θ) = Pr(Yi > k|θ) the Item Characteristic Curve (ICC) for a dichotomous (Ki = 1) items. 

Then, θ has positive correlation with the total test score ( i
I
i Y∑ =1 ) (Van der Ark & Bergsma, 2010). 

These three assumptions exactly describe the nonparametric, monotone homogeneity (MH) IRT 

model (Mokken, 1971). It is the most general monotone IRT model which nests the 4-parameter logistic 

model (Hambleton & Swaminathan, 1985); the graded response logistic model (Samejima, 1969); and all 

other monotone IRT models (van der Ark, 2001) as special cases. 
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In this article, we focus on unidimensional IRT for dichotomous items. While parametric IRT 

models provide a certain elegance and computational simplicity, nonparametric IRT models are more 

informative, and more closely describe the true item response functions that underlie real data. This 

contrasts with parametric IRT models which assume that ICCs follow a parametric distribution function, 

such as the logistic function (e.g., van der Linden, 2016). Also, a nonparametric IRT model can provide 

better fit to data compared to parametric IRT models, be used to evaluate the fit of the latter, and promote 

coherent statistical inference from a Bayesian perspective (Karabatsos & Walker, 2009a). 

Several researchers have proposed various MH models defined by generalized linear models that 

specify the ICC as an inverse-link function parameter that is monotone in θ, and give support to the entire 

space of monotone cumulative distribution functions (c.d.f.s). Qin (1998) and Duncan and MacEachern 

(2008) proposed a Bayesian nonparametric (BNP) model that constructed monotone ICCs by a Dirichlet 

process centered on a 2-parameter logistic IRT model. Karabatsos (2017) modeled ICCs by a BNP 

infinite-mixture of normal c.d.f.s for the latent item response variables, with person- and item-dependent 

mixture weights. Karabatsos and Sheu (2004) and Tijmstra et al. (2013) proposed isotonic regression, using 

a Bayesian and frequentist approach (resp.), assuming discrete-valued θ. Luzardo and Rodriguez (2015) 

used classic nonparametric kernel regression methods to estimate monotone ICCs. Finally, Karabatsos and 

Walker (2009b, 2010) presented a BNP beta-mixture model for test score equating. 

 We propose a simple and flexible BNP IRT model for dichotomous items and continuous-valued 

ability (θ), extending a generalized linear model with unknown link function parameter (Mallick & 

Gelfand, 1994). Our BNP IRT model maps the unidimensional ability parameter θ from the real-line onto 

(0, 1), and constructs a (random) monotone ICC (inverse-link) by a flexible finite-mixture of beta c.d.f.s. In 

fact, any smooth c.d.f. on (0, 1) can be approximated arbitrarily-well by a suitable finite mixture of beta 

c.d.f.s (Diaconis & Ylvasiker, 1985). 

 The Bayesian beta-mixture IRT model (BBM-IRT) is more flexible than traditional parametric IRT 

models, which make logistic or normal distributional assumptions about the ICCs. The BBM-IRT model 



3 
 

allows one to estimate more accurately estimate ICCs which may have shapes that would be considered 

misfitting under the traditional models. Also, the BBM-IRT model is more parsimonious and 

computationally feasible than previous BNP IRT models which can employ thousands of parameters. 

 The BBM-IRT model is completed by the specification of a joint prior distribution for the person 

ability parameters and the item-level mixture weight parameters, and the number of mixture components. 

Our IRT model is a flexible but "approximate" BNP model because it makes use finite instead of 

infinite-mixtures for more computational tractability. A mixture of 3 to 4 beta distributions was believed to 

provide adequate modeling flexibility (Mallick & Gelfand, 1994). This article shows that a mixture of 10 

beta distributions, per test item, can provide gains in data fit for IRT modeling. 

  Section 2 presents our BBM-IRT model, and statistics for assessing the model’s goodness-of- 

predictive fit. A simple iterative Markov chain Monte Carlo (MCMC) algorithm (Appendix) can be used 

for estimating the posterior distribution of the model parameters and their functionals of interest. Section 3 

illustrates our IRT model through the analysis of a 20-item math exam data set, from a 2015 Trends in 

International Mathematics and Science Study (TIMSS) assessment of 8th grade students. Section 4 

discusses conclusions and possible directions for future research. 

 

Methodology: BBM-IRT model 

Let Yni ∈ {0,1} be dichotomous item-response variable, for person n and test item i. For a matrix of 

realized item response data, Y = (yni)N×I, our BBM-IRT model is defined by:  
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Each monotone ICC Pr(Yi = 1|θ) is modeled by the incomplete beta function (Binc), with beta 

mixture weights (ωji) assigned a Dirichlet (Di) prior distribution (with a non-informative, uniform prior 
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defined by αji ≡ 1, for j = 1,…,J), and scaling beta-shape parameters (ξ1, ξ2) assigned a uniform U(.01, J) 

prior distribution. Each test item i has J − 1 mixture-weight parameters, with ji
J
jJi ωω ∑−= −
=

1
11 . The N 

person ability parameters θn are assigned a standard normal N(0,1) prior distribution. The probability 

density functions (p.d.f.s) of these distributions (denoted n(⋅ | 0,1), )|(di 1 Jα,,α ⋅ , u(⋅ | 0,J)) are defined in 

standard texts (Kotz et al. 2004; Johnson et al. 1994, 1995). 

The specification of the BBM-IRT model (3) mainly requires the choice of the number of beta 

mixture components (J), which can be sufficiently large so that the beta mixture well-approximates the 

entire space of monotone ICCs. The term )2/exp(1
)2/exp(

⋅+
⋅  in (3) maps from the real line (the space of θ) onto (0,1), 

using a constant (e.g., 2) to bound the Binc function within (0,1) (Mallick & Gelfand, 1994). 

 

Figure 1. Random samples of 25 ICCs from the BBM-IRT model,  
where J = 3 (left panel), J = 5 (middle), and J = 10 (right). 
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Figure 1 displays three groups of samples of monotone ICCs. Each group was generated from 25 

samples of the mixture weights ( J
jjii ω 1)( ==ω ) from the uniform Dirichlet prior, and samples of ξ1 and ξ2 

from the uniform U(.01, J) distribution (resp.), for J = 3 (left panel), J = 5 (middle), and J = 10 (right).  

The ICCs in the left panel (J = 3) resemble the ICCs of a 2-parameter logistic (2PL) IRT model. If 

J = 1 and ξ = ξ1 = ξ2, then the BBM-IRT model reduces to a Rasch-type IRT model with common item 

discrimination parameter, ξ. The middle and right panels show that as J is increased, the ICCs become 

wigglier and more flexible. The right panel shows that J = 10 mixture components defines a BBM-IRT 

model that broadly and flexibly supports the entire space of monotone ICCs. The BBM-IRT model is thus a 

monotone IRT model, and a highly-parametric BNP model (Müller & Quintana, 2004). 

  For the BBM-IRT model (3), the joint posterior p.d.f. (distribution) of the model parameters,

),,)(,)(( 2111 ξξθ I
ii

N
nn === ωζ  is given by (up to a normalizing constant):  
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with ICCs Pr(Yni = 1 | θn; ωi, ξ) defined by (3), and corresponding posterior c.d.f. Π(ζ | Y). The model’s 

posterior predictive expectation (𝔼𝔼) and variance (𝕍𝕍) of the item response variable Yni is given by (for all 

persons n = 1,…,N and all items i = 1,…,I):  
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We estimate the BBM-IRT model’s posterior distribution (4) and the posterior predictive quantities (5) with 

an adaptive random-walk Metropolis-Hastings MCMC algorithm. See the Appendix for details. 

One may compare the predictive fit between BBM-IRT models to the data, which may differ by 

choice of J or prior distribution. For each model indexed by m = 1,…,M, the D(m) criterion measures 

posterior predictive model fitness to the data Y (Laud & Ibrahim, 1995), and is defined by:  
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The first term in (6) measures goodness-of-fit to the sample data (Y). The second term is a model 

complexity penalty. Among the M Bayesian models compared, the model with the best predictive utility for 

the given data set (Y) is identified as the model with the smallest value of D(m). The D(m) criterion is often 

used in Bayesian data analysis practice, and is easier to compute compared to other criteria. 

 The fit of a single BBM-IRT model (m) can be assessed by standardized item-response residuals:  

                           ,
)}|({

)|(
2/1mY

mYyz
niNI

niNIni
ni V

E−
=  for n = 1,…,N and i = 1,…,I                      (7)                           

An absolute residual |zni| exceeding 2 or 3 suggests that the response niy is an outlier under the model. 

 

Results: TIMSS data analysis 

We illustrate our BBM-IRT model through the analysis of 2015 TIMSS data on a basic math and 

algebra assessment of 716 American 8th grade students. The data set contains the students' individual 

responses to 20 math items, each response scored as correct (Yni = 1) or incorrect (Yni = 0). The data contains 

639 unique item response patterns on the 20-item test. The Supplementary material of this article provides 

the TIMSS data set and the descriptions of the 20 items. It also provides the MATLAB code (Natick, VA) 

files that were used to run the MCMC sampling algorithm to analyze the TIMSS data using BBM-IRT and 

the 2PL IRT models, and to produce the results reported here. 

We fit the BBM-IRT model to the TIMSS data using J = 10 components, a uniform Dirichlet prior 

for the mixture weights of the test items, and a N(0,1) prior for the 716 student math ability parameters 

(resp.). We estimated the posterior distribution of the model by running the MCMC algorithm (Appendix) 

for 100K sampling iterations. 

The left panel of Figure 2 presents the marginal posterior means and ±2 standard deviations of the 

person ability parameter, for each of the 639 unique item response patterns (resp.). The right panel presents 

the marginal posterior mean estimates for the 20 ICCs of the test items (resp.). It shows multiple crossings 
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among the 20 ICCs, with some ICCs fluctuating more than others. These ICC results exhibit the flexibility 

and monotonicity of the BBM-IRT model, which may be misdiagnosed as outlying according to traditional 

IRT models that assume more restrictive logistic or normal ICCs. 

Some of the estimated ICCs in Figure 2 have non-zero lower asymptotes, indicating the presence of 

guessing among low-ability examinees for these items. Thus, the BBM-IRT model (and its MCMC 

algorithm) can account for lucky-correct item responses among low-ability examinees. It does so while 

avoiding the issues of estimating the chance parameter in the three-parameter logistic IRT model, using 

either marginal maximum likelihood or Bayesian methods. 

 

Figure 2. Left: Marginal posterior mean and +/−2 standard deviation for of the 639 unique item response 
patterns of the TIMSS exam. Right: Marginal posterior mean of the 20 TIMSS ICCs. 
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parameter, over the 100K iterations. Second, a non-overlapping batch means analysis of the chain was used 

to calculate the Monte Carlo 95% confidence interval half-width (95%MCCIhw) for each marginal 

posterior mean and posterior variance estimate. MCMC convergence can always be improved by running 

the MCMC chain beyond 100K sampling iterations. 

 

Figure 3. Trace and density plot of the math ability (θ) of 500th unique examinee item-response pattern. 
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left-skewed normal mixture prior .25×N(−1,1) + .75×N(1,1), or a right-skewed normal mixture prior 

.75×N(−1,1) + .25×N(1,1) on the ability parameters; and a uniform Dirichlet prior. The Bayesian 2PL 

model was also fit to the data, defined by: 

             Pr(Yni = 1 | θn, αi, βi ) = 1/[1+exp(−αiθn + βi)],  for n = 1,…,N, and i = 1,…,I,              (8) 

with a N(0,1) prior for the person ability parameters (θn), a N(0,4) prior for the item difficulty parameters 

(βi), and a N(0,1/4) prior for the log slope log(αi) parameters (resp.), suggested for analyzing data from 

large scale testing (Patz & Junker, 1999, p.163). The 2PL model was fit using an adaptive version of a 

published random-walk Metropolis MCMC algorithm (Patz & Junker, 1999). To estimate the posterior 

distribution of each of these compared IRT models, the MCMC algorithm was run for 100K iterations. 

In each case, MCMC convergence analyses can be shown to yield similar results as before. 

  
Proportion residuals 

Bayesian IRT Model D(m) | zni | > 2 | zni | > 3 
BBM-IRT, J = 3 4752 0.03 0.005 
BBM-IRT, J = 5 4643 0.03 0.006 

BBM-IRT, J = 10 4625 0.03 0.004 
BBM-IRT, J = 3, left-skewed θ prior 4729 0.03 0.004 

 BBM-IRT, J = 5, left-skewed θ prior  4666 0.03 0.005 
BBM-IRT, J = 10, left-skewed θ prior 4637 0.02 0.004 
BBM-IRT, J = 3, right-skewed θ prior 4702 0.03 0.004 

 BBM-IRT, J = 5, right-skewed θ prior  4653 0.03 0.005 
BBM-IRT, J = 10, right-skewed θ prior 4640 0.02 0.004 

2PL Model 4717 0.03 0.01 
 

Table 1. A comparison of the predictive fit between different IRT models. 
 

 For each IRT model, Table 1 summarizes the posterior predictive model fit statistic, D(m), and the 

proportion of posterior predictive standardized residuals (zni) greater than 2 (and 3) in absolute magnitude. 

By considering both criteria, we find that the BBM-IRT model with J = 10 mixture components obtained 

the best predictive fit among all the IRT models compared, including the 2PL model which had about twice 

the number of outliers with residuals | zni | > 3. In terms of D(m), the BBM-IRT model fit best under 
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symmetric priors for the ability parameters.  

Figure 4 compares the marginal posterior mean estimates for the 20 ICCs, between the BBM-IRT 

models with J = 3, 5, and 10 components and the Bayesian 2PL model (resp.), and a N(0,1) prior for the 

ability parameters. Compared to the ICCs of the 2PL model, the ICCs of the 3-component BBM-IRT model 

were most similar, and the ICCs of the 10-component BBM-IRT model were most dissimilar. 

 

Figure 4. Estimated TIMSS ICCs for different IRT models. 
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inference of this model is possible through the application of a simple adaptive Metropolis MCMC 

algorithm. The usefulness of the BBM-IRT model was illustrated through the analysis of item response data 

from a TIMSS math assessment. 

The BBM-IRT model shows promise for future research opportunities. For instance, one can 

extend this model to handle the analysis of polytomous item response data, by coding each observed 

polytomous response to a set of binary codes (Begg & Gray, 1984), or by replacing the Bernoulli kernel 

(incomplete Beta function) with a binomial or multinomial kernel in (3). In addition one can extend this 

model to handle multidimensional ability by assigning each person separate ability parameters for different 

subgroups of test items that measures different traits. 
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Appendix: MCMC Algorithm for BBM-IRT Model 

For the BBM-IRT model (3), a 3-step MCMC iterative sampling algorithm is used to estimate the 

posterior distribution (4) (density) of the N ability parameters and the I ICC parameters. A large number of 

sampling iterations (S) is run until the algorithm yields a sample that converges (approximately) to a sample 

from the posterior distribution (MCMC convergence). 

 The algorithm is initiated at stage s = 0, with model parameter values N
nnθ 1

)0( )0( =≡ , J
jji Jω 1)/1( =≡ , 

121 ≡≡ ξξ , and their proposal variances, N
nθcτ 1

)0( )01.( =≡ , I
iωiτ 1

)0( )01.( =≡ , and I
iξτ 1

)0( )01.( =≡ . Also, to speed 

up computations, the original item response data set INniy ×= )(Y  is collapsed into a smaller data set,

ICciC y ×= )(Y , consisting of C < N unique values of the item response vectors C
ccIcc yy 11 )),,(( == y , with 

frequency counts n1,…,nc,…,nC (resp.). 

  Each iteration },,1{ Ss ∈  of the MCMC sampling algorithm runs the following three adaptive 

Metropolis sampling steps, applying the established methodology of Atchadé and Rosenthal (2005). 

In Step 1, for each Cc ,,1=  independently (concurrently), a candidate ability parameter ][s
cθ
∗  

is drawn from the normal )N( ][][ s
θc

s
c τ,θ  proposal distribution. The update ][][ s

c
s

c θθ ∗≡  is accepted with 

probability },1min{ ][][ s
θc

s
θc ρP = , and otherwise ]1[][ −≡ s

c
s

c θθ  is set with probability ][1 s
θcP− , where: 
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In (8), a few terms cancel out, including the counts C
ccn 1)( = , the constants of the normal proposal p.d.f.s, 

and, the normal proposal p.d.f.s due to their symmetry. Then the proposal variances are updated by

)],44.)(/1(,10min[ ][]1[3][ −+= −− s
θc

s
θc

s
θc ρsττ  towards achieving the optimal acceptance rate of .44 (see 

Roberts & Rosenthal, 2001) over the S MCMC iterations, for Cc ,,1= . 

  In Step 2, for Ii ,,1=  independently (concurrently), a candidate (log) mixture weight 
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parameter ),,log(log ][][
1

][ s
Ji

s
i

s
i ωω ∗∗∗ = ω  is drawn from the J-variate normal proposal distribution,
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In (9), the Dirichlet proposal p.d.f. constants and the normal proposal p.d.f. cancel out. Then, the proposal 

variances are updated by )]234.)(/1(,10min[ ][]1[3][ −+= −− s
ωi

s
ωi

s
ωi ρsττ , towards achieving the optimal 

acceptance rate of .234 for multidimensional parameters (Roberts & Rosenthal, 2001), for i = 1,…,I. 

  In Step 3, a candidate ][
21 ),log( sξξ ∗ is drawn from the bivariate normal proposal distribution, 
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The uniform prior p.d.f. constants and the normal proposal p.d.f. cancel out of the ratio (10). Then, the 

proposal variance is updated by )]44.)(/1(,10min[ ][]1[3][ −+= −− s
ξ

s
ξ

s
ξ ρsττ , towards achieving the optimal 

acceptance rate of roughly .234 for two-dimensional parameters (Roberts & Rosenthal, 2001). 

 As a simple by-product of the three-step MCMC algorithm, it is possible to estimate the marginal 

posterior average and variance of each ability parameter, θc (for c = 1,...,C), and the marginal posterior 

mean and variance of each ICC, ),;|1Pr( ξωii θY = , over a chosen fine grid of θ values. Specifically, at 

each MCMC iteration },,1{ Ss ∈ , the marginal posterior expectation (𝔼𝔼) and variance (𝕍𝕍) of each θc is 

updated through Rao-Blackwellization, via the calculations: 
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The marginal posterior mean and variance of the ICC, ),;|1Pr( ξωθ iciY = , at each chosen grid point θc 

and test item Ii ,,1= , are updated by: 
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Similar methods compute the updates )|(ˆ ][ mYni
s

NIE  and )|(ˆ ][ mYni
s

NIV , for each person n = 1,…,N and 

item i = 1,…,I. The updated estimate of the standardized item-response fit residual, per unique item 

response pattern, is given by ,)}|(ˆ/{)}|(ˆ{ˆ 2/1][][][ mYmYyz ci
s
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ci VE−=  for c = 1,…,C and i = 1,…,I. 

The updated estimate of the D(m) model fit criterion is given by: 
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