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A word from the Editorial Board

Mathematics education as a research field experienced significant growth in
the last decades. Nonetheless, we still experience the same problems over and
over. The continuous problem with transition from primary to secondary education
and from secondary to tertiary education is ever present. (Corriveau & Bednarz,
2017; Clark & Lovric, 2008; Thomas, 2008). It seems that mathematics teachers
of each educational cycle have rather different expectations of the knowledge a stu-
dent should bring from one cycle to another. The mathematics learning process is
connected with doing mathematics and processes such as investigating, reflecting,
reasoning, giving arguments, finding connections, etc. The research in mathematics
education has been emphasizing this aspect of learning mathematics for more than
twenty years. However, many teachers and learners focus on imitating procedures.
What causes this discrepancy between the research and practice? The findings in
mathematics education showed that the teacher had a significant role on students’
achievements. Moreover, the way they conceived mathematics reflected on the
learners. If the teachers saw it as a set of procedures and algorithms, they would
transfer this conception of mathematics onto their students. On the other hand, if
they saw it as collections of ideas, their students would have the same conception
of mathematics. The student’s attitudes towards mathematics also influenced their
learning process. This shows that attitudes and beliefs in teaching and learning
mathematics have significant impact on the outcomes in the classroom. That is
why they are considered to be hidden variables in mathematics education (Leder,
Pehkonen, Torner, 2002), which cannot be omitted from the didactical triangle
mathematics — teacher — students.

In the primary and secondary education, mathematics is a compulsory subject
in schools, but moving to the tertiary education, we find mathematics as the key
component of many natural and technical sciences. Mathematics is the heart of
STEM. It is important for those who will continue their profession in that direction.
Moreover, a strong interaction between mathematics and technology is present:
developments in technology stimulate mathematics and developments in mathe-
matics often enhance innovations in technology (Hoft, 2016). But mathematics in
the form of statistics appears in humanities and social sciences. Therefore it seems
that mathematics is the core science and the key feature of a successful individual.
This is also supported by the definition of mathematical literacy in PISA, where
the role of mathematics is described as a part of an individual’s current and future
private life, professional life and social life with peers and relatives (OECD; 2013).

Considering the rapid progress of technology in the world of today, we face
new challenges. Living in the age of digital technologies, we feel obligated to in-
corporate them into our lives but also in the other areas such as the school subjects.
This issue raises many still unanswered questions. Could technology improve our
teaching and learning of mathematics? Should we use it constantly or occasion-
ally? How can this technology be used efficiently? Do we design tasks in a similar
manner with this technology as it was the case with pencil and paper technique?



Modern technology and its use in mathematics education has been examined in
various studies for several decades. The findings of those studies showed benefits
of the proper use of technology. Spreadsheets and dynamic software environments
enable faster collecting of the specific cases of mathematical phenomena — values,
variables, functions, shapes, locations along a graph, or the properties of geometric
constructions (Aldon, Hitt, Bazzini & Gellert, 2017). This provides the opportuni-
ties for learners to consider collection of cases rather than individual instances. But
Applebaum (2017) warns against jumping to conclusion that technology forces
automatic generalization in mathematics; this depends on the learner, similarly
as it is the case with the classic environments. Digital technology can speed up
the learning process, but sometimes educators want to slow this process down.
They notice that the amount of information is overwhelming for the learner. At
other times, technology narrows our focus too much, or not enough (Appelbaum,
2007). Therefore, this brings us to the conclusion that the use of technology has
its advantages and disadvantages which teachers should be aware of.

We addressed these issues and some other in this monograph. Some papers
opened new questions for research, some showed examples of good practice and
others provided more information for the earlier findings. All papers portray the
complex role of mathematics education: mathematics education is a science but
also a profession. Research in mathematics education is needed to investigate vari-
ous phenomena, but the research has also the responsibility to inform practitioners
of its findings. Mathematics teachers are a critical component in this process.
Their collaboration with the researchers is necessary to achieve the shift from the
traditional to contemporary teaching mathematics. This process is neither easy nor
rapid. But we must be persistent in our efforts, because mathematics is inseparable
from our everyday life.
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Preface

The papers in the Monograph addressed different topics related to teaching
and learning processes of mathematics which are of great interest to both students
and prospective teachers. The Monograph consists of six chapters.

In the first chapter of the Monograph the author studied the relation between
the surface approach and the strategic approach on the learning outcome. This
relation was obtained as the result of the conducted research with the group of uni-
versity students in Denmark who were required to study mathematics, for instance
calculus. In the second paper of this chapter, the author presented the results of the
research with the students who were required to recognize and interpret mathemat-
ical concepts that could be interpreted from the graphs in different contexts. The
third article of this chapter provides an insight into a detailed analysis of the tasks
of the Croatian State Matura exam related to the mathematical domain of functions.

In the second chapter the authors examined the topic of geometric character.
They discussed the topic of the importance of the spatial reasoning, as well as the
effect of computer technology on geometry education. An emphasis was put on the
fact that the strong links between geometry and technology are important because
geometry’s need for proficiency in many technical fields exceeds the traditional
Euclidean space geometry. In the second paper of this chapter the authors studied
regular and semiregular polyhedrons in Euclidean space. The possibility of filling
the Euclidean space with the congruent copies of some polyhedrons was consid-
ered. In addition, they considered the case of hyperbolic space. The polyhedron
Cyp is specially analyzed. The authors of the third paper of this chapter gave an ex-
ploration and comparison of geometric properties of the Euclidean and hyperbolic
planes.

In the third chapter the authors argued that teachers’ beliefs about teaching and
learning mathematics were significant in the utilization of a particular resource.
They examined teachers’ classroom practice and beliefs about mathematics, math-
ematics education, teaching mathematics and using textbooks as curriculum re-
sources. In the second paper of this chapter the authors presented the results of
a textbook analysis on asymptote and asymptotic behaviour in the two most com-
mon series of gymnasium mathematics textbooks in Croatia. The research was
conducted within the theoretical framework of the Anthropological theory of the
didactics. The analysis of the language of mathematics textbooks was done in the
third article of this chapter.

The importance of the application of ICT in teaching mathematics was dis-
cussed in the fourth chapter. The impact of using proposed computer guided
discovery learning model on students’ conceptual and procedural knowledge in
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mathematics was investigated. The illustration of the application of the program
Graph and authors’ experiences with the use of this program were given. The
advantages of introducing three softwares to the teaching process were considered.
The use of these softwares has positive effects on the motivation of the students and
on improvement of their understanding and adoption of mathematical concepts.

In the first paper of the fifth chapter the author examined whether there was
a connection between the attitudes towards mathematics and the performance on
mathematics exams. A method for selection of a group of students which was sup-
posed to receive additional teacher attention in order to improve their performance
in the course was described in the second paper. The research on the relations be-
tween the use of mathematics tutoring services at the university level and building
student profiles was presented in this chapter. The problem of mathematical anxiety
was also researched in this chapter. The paper also included a discussion on the
advantages and disadvantages of standardization using didactical and pedagogical
approach to mathematics education. The author suggested guidelines toward up-
grading learning outcomes by integrating students’ abilities, needs, working habits,
attitudes and beliefs with clear objectives. Inclusive approach in maths curriculum
can be revealed through the presence of curriculum accommodations for pupils
with disabilities. The author of the last paper in this chapter provided the content
analysis of national curriculums of five European countries: Great Britain, Finland,
Germany, France and Croatia.

In the last chapter of the Monograph the authors suggested some useful ap-
proaches to teaching mathematics. Learning through games increases the moti-
vations of the students and positive attitudes towards mathematics. A practical
example of using Escape Room games was presented. The frequency of using
mathematical games in primary school was explored as well as the types of such
games that are present in teaching mathematics. The characteristics of problem
solving in mathematics education were listed in the last paper of this Monograph.

The Editorial Board
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The study approaches of university
students in a calculus class

Bettina Dahl

Aalborg Centre for Problem Based Learning in Engineering
Science and Sustainability under the auspices of UNESCO
Aalborg University, Denmark

Abstract. 191 US first-year university students got the ASSIST
(Approaches and Study Skills Inventory for Students) questionnaire
as part of a mid-term course evaluation. The students were not in
any science, engineering, or mathematics study programme but took
a calculus course to satisfy the university breadth requirement for
mathematics. The strategic approach was the most commonly used.
There was a positive correlation between the deep and the strategic
approaches and a negative correlation between the surface and the
strategic approaches. There was no correlation between the deep
and the surface approaches except a negative correlation between the
sub-scales Lack of purpose and Interest in ideas. The surface approach
had a negative effect, while the strategic approach had a positive effect
on learning outcome.

Keywords: learning approaches, study approaches, deep ap-
proach, strategic approach, surface approach, calculus, university
students, learning outcome

1. Introduction

The focus of this paper is the group of university students who are required to
study mathematics, for instance calculus, even though they do not aim at studying
mathematics, engineering, or science. Many students enrol in university pro-
grammes not wishing to have mathematics courses as a compulsory part of their
study programme (Guzman et al. 1998). These students often have difficulties
understanding the mathematical concepts (Morgan, 1990). Juki¢ and Dahl (2012,
2014) investigated the long-term retention of core calculus concepts by science and
engineering students and found that mostly the students had a fragile knowledge
base even though they had later in their study programme encountered calculus in
other courses. Abramovich and Grinshpan (2008) furthermore argue for special
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teaching of mathematics to non-mathematics students in engineering, business, and
life sciences. Hence, more research is needed on how different kinds of students
approach and learn university mathematics such as calculus.

2. Theoretical background

2.1. Deep, surface, and strategic study approaches

Generally a student’s approach to studying and learning is a collection of the stu-
dent’s intentions and strategies which to some extent is a reflection of the context
and the demands the student meets (Gadelrab, 2011). Biggs and Tang (2007),
Biggs et al. (2001), Entwistle (1991), Ramsden (1979) and others argue that the
study and learning approach has a crucial role in relation to the quality of learning.
They describe several types of approaches. In the ‘surface approach’ the students
use low cognitive level activities and processes such as rote learning even when
higher level activities might be intended by the teacher. The students are here
focused on reproducing the material, describing, performing algorithms, etc. The
focus is not on creating personal meaning of the material but to avoid failure with
minimal effort. Students with a ‘deep approach’ try to use the most appropriate
cognitive activities and processes to handle the material such as focusing on the
underlying meaning and learning is a pleasure for them. The students intend to
understand, analyse, generalise, hypothesise, evaluate, etc. A third approach, the
‘strategic’, was described by researchers later than the two other approaches. This
is a well-organised surface approach focused on what is required in the examina-
tion. Students may here use both deep and surface approaches as they focus on
both the content of the material and the mark. Their major intention is to achieve
the highest mark possible using an organised study method.

The learning approach is a function of both the individual student’s character-
istics and the teaching style. It is to some extent a context-dependent response to
how the student perceives the learning environment. Clouder (1998) argues that the
pressure for knowledge acquisition within a finite time span make university stu-
dents adopt strategic approaches. Previous studies have shown a relation between
approaches to learning and the quality of learning. A deep approach is associ-
ated with high quality of student learning, but surface learning was related to poor
learning outcomes (Gibbs, 1020; Biggs et al., 2001). However, Darlington (2011)
discusses that a surface approach of for instance rote help fully understanding a the-
orem or a procedure. Cano and Berbén (2009) studied first-year university students
in different science subjects but all enrolled in algebra and calculus courses. They
found that performance goals (which correlates with surface learning approaches)
correlates negatively with achievement. There is no correlation between mastery
goals (which generally correlates with deep learning approaches) and achievement.

As stated above, the learning approaches of mathematics and non-mathematics
students are different and in order to get deeper into researching the non-mathematics
students’ approaches, we need to discuss how to measure the learning approaches.
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2.2. Measuring the approaches

One way to measure students’ study and learning approaches is to use ASSIST
(Approaches and Study Skills Inventory for Students) which is one of several ques-
tionnaires that have been validated in several contexts. ASSIST tests general study
and learning approaches. It is based on the above mentioned three approaches
whereas other questionnaires (e.g. that of Biggs et al., 2001) do not include the
strategic approach. ASSIST has been developed over a period of time and some
editions have been made to earlier versions. For instance the strategic approach has
been broadened to include aspects of metacognition (‘monitoring effectiveness’)
and the surface approach also emphasise ineffective studying (‘lack of purpose’)
and was therefore renamed to Surface Apathetic Approach. The deep approach
requires both holistic ways of thinking (‘relating ideas’) and serialist (‘use of evi-
dence’). The three approaches form three scales with subsequent sub-scales each
related to central aspects for the approach. ASSIST has 52 items; four items for
each sub-scale. Each item is a statement on a five-point Likert scale (5=Agree,
4=Agree somewhat, 3=Unsure, 2=Disagree somewhat, |=Disagree) (Tait et al.,
1998):

Deep Approach (D) with four sub-scales: ‘Seeking meaning (SM)’, ‘Relating
ideas (RI)’, ‘Use of evidence (UE)’, ‘Interest in ideas (II)’

Strategic Approach (S) with five sub-scales: ‘Organised studying (OS)’,
‘Time management (TM)’, ‘Alertness to assessment demands (AA)’, ‘Achieving
(AC)’, ‘Monitoring effectiveness (ME)’

Surface Apathetic Approach (A) with four sub-scales: ‘Lack of purpose
(LP)’, “‘Unrelated memorizing (UM)’, ‘Syllabus-boundness (SB)’, ‘Fear of failure
(FF)’

‘Alertness to assessment demands’ (AA) was the last added sub-scale. ‘Mon-
itoring effectiveness’ (ME) encompasses metacognition and self-regulation. It is
argued that AA and ME are mainly applicable to graduate students (Gadelrab,
2011). ASSIST was used to answer the following questions:

3. Research questions

In relation to non-mathematics first-year university students who are required to
take a mathematics class: What are their learning and studying approaches and how
are these approaches related? How do they respond to the two sub-scales (AA,
ME) more intended for graduate students? How do their approaches relate to their
learning outcome?
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4. Methodology

4.1. Selection of student cohort

The study took place in the autumn of 2011 at a private US university in top
10 of Times Higher Education Ranking of North American Universities 2011-12.
The author was a visiting scholar. The university was chosen through purposive
sampling (Robson, 2002) as the author needed a university where students not
in science, technology, engineering, or mathematics (STEM) study programmes
are nevertheless required to study mathematics. In many countries (including the
author’s), university students are only required to study calculus, if they enter into
a STEM study programme. But it is debated if other student groups need calculus
and if and how they are able to learn it. It is also frequently discussed how much
mathematics, including calculus students should learn in high school. The study
does not focus on high school pupils but since the study is about first year students,
one can assume that it might give some indications of at least students in their last
years of high school. A part of the study has been published in Dahl (2017) which
focus on the results of solving calculus tasks.

The university offers two courses on introductory single variable calculus.
They cover the same material but at different pace. Students are encouraged to
take the slower one if they only need calculus to satisfy the university’s disciplinary
breadth requirement. The faster one is required for engineering, science, and eco-
nomics study. This paper investigates the 191 students in the slower course. The
students were divided into three cohorts for the lectures. The majority of the stu-
dents had not taken the US Advanced Placement Calculus exam (high school level)
or did not get a good score in it. There were two lecturers from the mathematics
department and four tutors.

4.2. Use of ASSIST

ASSIST became part of the midterm course evaluation which was an online survey
using google docs which the lectures were supposed to do anyway. The questions in
the course evaluation where for instance: “How did you find the midterm?”, “How
well are you able to hear your lecturer?”, “How many hours per week outside of
lectures do you spend on the class?”, “Do you have any specific comments for your
lecturer?” etc. Adding the ASSIST items to the course evaluation was not only to
accommodate the author, but the lectures also found the ASSIST items useful to
get to know the students and discuss with them how to study.

Smaller changes were made to nine ASSIST items. Some changes were from
British English to American English: i.e. “mark” to “grade” (S02, S28). Other
changes specified that the statements were about studying calculus and not study-
ing in general (D17, D26, D33, A51) for instance in D17 where “When I read
an article or book. ..” was changed to “When I read a calculus book...”. Some
reformulations were also made (D23, S36, A38) for instance in D23 where “Often

LR INT3

I find myself questioning things I hear in lectures of read in books”, “questioning”
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was changed to “pondering”. A42 was not included: “I’m not really interested
in this course, but I have to take it for other reasons”. It did not fit well with the
students’ circumstances. The university’s breadth requirement requires all students
to take one mathematics class, whether or not they are interested in it. L.e. a student
in this course could ‘disagree’ with the first part but would have to ‘agree’ with the
last part. A42 belonged to the LP sub-scale, but this sub-scale included other items
that investigated the students’ interest in calculus, for instance A16: “There’s not
much of the work here that I find interesting or relevant”.

5. Results and discussion

The data was analysed using SPSS. 87 of 191 students answered the questionnaire
after the lecturers emailed several reminders. The response rate is thus 46 %. Curtin
et al. (2000) argues that the exclusion of cases that require several reminders does
often not have an effect. Nulty (2008) states that online surveys achieve lower
response rates than paper surveys and typically the response rates do not get above
47 %. Furthermore, the class was going to have the online mid term course eval-
uation survey anyway and during an in-class survey not all students are present.
Krosnick (1991) also found that neutral responses are more frequent in surveys
done in-class than online due to ‘satisficing’” where respondents tend to chose the
middle ground for fear of judgement, the pace, or distractions. SCCE (2011) ar-
gues that a 33 % response rate is adequate for large classes (200 students). Nulty
(2008) however argues that even when the response rates suggested are achieved,
extrapolation of results is still to be done with care as this does not in itself secure
that the survey results are representative of the whole group.

5.1. Analysis of internal consistency (reliability)

Cronbach’s alpha assesses the internal consistency and how the items are corre-
lated with each other. The alphas were as follows: Deep Approach 0.888, Strategic
Approach 0.904, and the Surface Apathetic Approach 0.809. Generally, o« > 0.7
is acceptable (Bland & Altman, 1997).

The r states the correlation between the item and the sum of the other items
in the scale. If r < 0.3, one should consider to remove the item since it does
not measure the same as the other items (de Vaus, 2002). The numbers for “o if
deleted” (Table 1) estimates the scale alpha if the particular item is removed. If
this number is higher than the scale alpha, one should consider removing the item
to increase the internal consistency (Field, 2005). Even though ASSIST has been
validated elsewhere, It was necessary to perform this analysis since changes have
been made to some of the items and ASSIST is mixed with a course evaluation.
Furthermore Gadelrab (2011) argues that ASSIST might not be consistent across
different cultures and contexts. Different academic disciplines and contexts might
also foster different student approaches. This might also be the case for this group
of students required to take a mathematics class. Table 1 displays the six items
where this number was higher than the scale alpha. No other item had r < 0.3.
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Table 1. Analysis internal consistency of items that would give higher alpha if deleted.

Item ‘ r ‘ocif deleted

S27: I'm good at following up some of the readings suggested

by lectures or tutors 0.328 0.905

S28: I keep in mind who is going to grade an assignment and
what they’re likely to be looking for 0.269 0.908

D26: I find that studying calculus can be quite exciting at times | 0.266 0.893

A12: I tend to read very little beyond what is actually required

to pass 0.133 0.819

A38: I gear my studying closely to just what seems to be 0.132 0.815
required for assignments and exams ) )

A51: Tlike to be told precisely what to do in assignments 0.143 0.812

Item S27 should however not be removed since alpha would only marginally
increase and r > 0.3. The remaining five items are removed from the analysis.
Although four of these five items were changed from the original ASSIST, one
cannot conclude that these changes caused the low r. The five other items that were
changed all had » > 0.3.

After removing these five items, the alphas became: 0.893 (Deep Approach),
0.908 (Strategic Approach), and 0.834 (Surface Apathetic Approach). An analysis
then showed that A25 (I concentrate on learning just those bits of information
I have to know to pass) had r = 0.204. Removing A25 changed the alpha to
0.841 with all » > 0.3. In all four A-items that were removed constitute the SB
(syllabus-boundness) sub-scale.

S28 was the only item that was removed from the sub-scales of ME and AA.
‘Alertness to assessment demands’ (AA) and ‘Monitoring effectiveness’ (ME) are
mainly applicable to graduate students (see above) and both ME and AA have a
significant and strong positive correlation with the strategic scale. This indicates
that the two sub-scales can be used for these first-year students, perhaps due to that
it is difficult to get into the university where the study took place. Scale A finally
consisted of 11 items, D had 15 items, and S had 19 items. Since some items are
removed from the analysis, comparison with other uses of ASSIST is to be made
cautiously.

5.2. Analysis of approaches

The mean score of each scale calculated; Surface Approach (M = 66.11, SD =
12.15), Deep Approach (M = 47.65, SD = 10.25), and Strategic Apathetic Ap-
proach (M = 32.30, SD = 7.87). In a survey of undergraduate mathematics
students from University of Oxford (UK), the equivalent means were M = 69.03,
M = 58.69, and M = 45.94 (Darlington, 2011). Although one cannot just compare
the means due to slightly different versions of ASSIST, we see that both student
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groups (from top universities) preferred the strategic approach, then the deep, and
then the surface approach. Biggs et al. (2001) argues that the prevailing approach
tells something about the quality of the teaching and that the presence of a surface
approach is a signal that either the teaching or the assessment is not aligned since
students have been allowed to adopt this approach. Following this line of argu-
ments, the students in this study appear to meet requirements that usually do not
allow them to adopt surface approaches even though they may not be interested in
calculus. Table 1 gives an overview of how the three scales relate to each other.

Table 2. Correlation between the scales.

‘ r ‘ p-value ‘

Deep — Strategic 0.518 | 0.000
Apathetic/surface — Strategic | —0.261 | 0.034
Deep — Apathetic/surface —0.009 | 0.944

There is a strong positive correlation between the deep and the strategic ap-
proaches and a rather strong negative correlation between the surface and the
strategic approaches. The surface-deep relationship has r close to zero, but the
p-value is close to one. To get deeper into the relationship between D and A,
calculation of sub-scale correlations was done. The only significant relationship
(r = —0.249, p = 0.033) was between LP (Lack of purpose) and II (Interest
in ideas). Correlation does not imply causation. However the latter result might
indicate that the more the students feel a lack of purpose (which the students in this
study might indeed feel as mathematics is required), the less they are interested in
the ideas in the course; or vice versa, the less they are interested in the ideas in the
course, the more lack of purpose is experienced.

5.3. Analysis of relation to perceived achievement

The author were not allowed access to the students’ marks, but one of the items at
the course evaluation asked the following: “Please rate yourself objectively, based
on the grades you have been obtaining. How well have you been doing so far?”
The scale was 1-10.

Table 3. Correlation between the scales and the students’ rating of own performance.

‘ r ‘ p-value ‘

Deep 0.077 | 0.521
Apathetic/surface | —0.584 | 0.000
Strategic 0.292 | 0.013

The surface approach strongly correlates negatively with the (perceived) learn-
ing outcome. This fits the result mentioned above where the mean of the surface
approach was quite low. The students probably did not often adopt this strategy
as it was not useful. The strategic approach quite strongly correlates with the
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(perceived) learning outcome. The result for the deep approach is not signifi-
cant. Gadelrab (2011) found a positive correlation between both the deep and the
strategic approaches and academic success. He argues that many students combine
focusing on understanding the material with achieving the highest possible marks.
The students in this study do not appear to use such a combination.

6. Conclusions

There are eight main findings concerning the non-mathematics first-year university
students who are required to study mathematics: (1) The students mainly adopt a
strategic approach. (2) There is a positive correlation between the deep and the
strategic approaches, (3) a negative correlation between the surface and the strate-
gic approaches, (4) and no significant correlation between the surface and the deep
approaches except between the sub-scales Lack of purpose and Interest in ideas that
are negatively correlated. (5) The surface approach correlates negatively with the
perceived learning outcome, (6) the strategic approach correlates positively with
the perceived learning outcome, (7) there is no significant correlation between the
deep approach and learning outcome. (8) The students have an alertness of assess-
ment demands (AA) and are able to monitor effectiveness (ME) even though the
students are not yet in graduate study. A limitation is that although an adequate
response rate was achieved, one cannot be sure that the 46 % who answered the
survey are representative of all the students in the class.

The findings 1-3, 5-6 are similar to findings by others (see above) which in-
dicate that the students in this study to some extent behave like other students even
though they are taking a course they would otherwise not have chosen. However,
the analysis also showed that the deep approach was not much adopted and the
deep approach did not positively correlate with the perceived learning outcome or
negatively correlate with a surface approach — as seen elsewhere. The students thus
mainly adopt a strategic approach and they find that they are successful using this
approach even though their interest is low which is also related to that they feel
lack of purpose. They have experienced that the surface approach is not useful in
learning the material which to some extent might also be a reflection of how the
course is being taught, i.e. the students cannot achieve success in this course by
only using a surface approach.
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Universitetsstuderendes studiestrategier
pa et calculushold
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Abstrakt. 191 fgrstedrsstuderende fra USA fik ASSIST (Ap-
proaches and Study Skills Inventory for Students) spgrgeskemaet som
del af en midtvejsevaluering pa et kursus. Ingen af de studerende laste
til ingenigr eller var indskrevet pa naturvidenskab eller matematik, men
alle tog calculus for at opfylde universitetets krav om bredde i uddan-
nelse, herunder matematik. Det var den strategiske fremgangsmade
som blev brugt oftest. Der var en positiv korrelation mellem den
dybdegédende og den strategiske fremgangsmade og en negativ kor-
relation mellem den overfladiske og den strategiske fremgangsmade.
Der var ingen korrelation mellem den dybdegéende og den strategiske
fremgangsmade pa nzr pa under-skalaerne: ‘Lack of purpose’ og
‘Interest in ideas’. Den overfladiske fremgangsmade havde en negative
effekt pa leringsudbyttet, mens den strategiske fremgangsmade have
en positive effekt.

Sggeord: leringsstil, studiefremgangsmade, dyb fremgangsmade,
strategisk fremgangsmade, overfladisk fremgangsmade, calculus, uni-
versitetsstuderende, l&ringsudbytte
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Searching for a common ground in
mathematics and physics education:
the case of integral

Zeljka Milin Sipus*', Maja Planini¢!, Ana Susac? and Lana Ivanjek’
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Abstract. In this paper we present the overview of the results of
our study of university students’ graph interpretation strategies and
difficulties in three different domains: mathematics free of context,
mathematics with (a real-life) context and physics (kinematics). We
focus mostly on the interpretation of the total change of a quantity, i.e.
its integral. Additionally, we also present results of a questionnaire in-
volving students of mathematics and physics teacher programme when
asked to explain the meaning of the area under a graph in different
contexts.

Keywords: interdisciplinary field, mathematics and physics edu-
cation, slope, area under a graph, linear graphs

1. Introduction

In mathematics, as well as in physics, students are often invited to extract informa-
tion from visual representations of quantities, in particular from graphs showing
their functional dependence. Thereby, they are required to recognize and inter-
pret mathematical concepts that can be read off or interpreted from graphs in
different contexts. In this paper we address the question of pre-calculus students’
understanding of the concepts of derivate and integral of quantities presented by
functional graphs in the context of mathematics and physics. These concepts have
been studied in mathematics and physics education separately and there is already
some evidence of students’ difficulties (Leinhart 1990, McDermont 1987). How-
ever not many researches attempted to compare and relate these difficulties in both
domains.

*Corresponding author.
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In our study, beside the (abstract) mathematics context parallel to the physics
(kinematics) context, we also introduced the mathematical context with graphs
from real-life situations. It is a context where the same mathematical concepts
were studied, but with no special conceptual knowledge required. Our study ad-
dressed the high school knowledge of mathematics, that is, pre-calculus knowledge
of high school students and first-year university students at the very beginning
of their study. In this way, the studied concepts of derivate and definite integral
appeared in graphical representation as slopes and areas under linear graphs.

2. Results of studies on graphs in mathematics and physics

Recently, understanding of mathematical concepts in graphs both in mathemat-
ics and physics contexts were addressed in several studies with the population of
university students during or after their calculus course. Thus, the study of Wem-
nyss & van Kampen, 2013 investigated approaches taken by first-year university
students when determining a speed value from linear distance-time graphs, water
level versus time graphs and context free graphs. All graphs did not go through
the origin. The results suggested that many students realized context as an integral
part of the question thus making the taken approaches as context dependent. The
success rate of determining the value of speed was found to be low. The first
study was followed by an intervention whose aim was to verify the validity of the
next study. This post-test analysis showed a great improvement in mathematics
context in determining the value of the slope. Still, improved mathematics was
insufficient for students to successfully determine a value of the speed in physics
context. Questions on water level versus time graphs were answered better than
physics questions, before and after instruction.

In the study of Bajracharya & Thompson, 2014 students’ understanding of the
Fundamental theorem of calculus in graphical representations in mathematics and
physics context was investigated. The participating students were mathematics and
physics students. The study was motivated by common expectations from physics
students to relate the rate of change (derivative) and the accumulation (definite
integral) of a physical quantity. Quantitively, on written questions about half of
students gave correct answers. Still, the study identified various students’ diffi-
culties, such as attempts to evaluate antiderivatives at individual points, confusing
antiderivative by a considered function and using slope rather than area to determine
the integral.

The study of Jones, 2015a investigated various conceptualizations of the
definite integral concept by university students in USA. The study showed that
Riemann-based conception, i.e. multiplicatively based summation, proved to be
more productive in contextualized questions than area and antiderivative concep-
tions. At the same time the two latter conceptions showed a high prevalence when
compared to Riemann-based conceptions. However, findings did not imply that the
area and anti-derivative aspects are less important, but that it was at least equally im-
portant for a student to have accessible summation (i.e. accumulation) conception
of the definite integral.
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A study conducted in a field of business was carried out by Veldhuis & Korzil-
ius, 2016 and it involved students of a university business school. The researchers
linked interpretation of graphs in physical context of kinematics to dynamic systems
of the behavioural patterns of stocks — their increase when the inflow exceeds the
outflow or decrease otherwise. However, the study also investigated how individ-
ual’s inference of accumulation interpreted from graphs was related to their spatial
abilities. Understanding of accumulation was investigated by the Department Store
Task (basic understanding of graphical presentation), Bathtub and Cash flow task,
whereas spatial ability by Paper folding test (spatial visualization) and Mental ro-
tation test (spatial relations). Results showed a positive relation of dynamic system
analysis to spatial visualization.

In our previous studies (Planinic et al. 2012, Planinic et al. 2013, Ivanjek et al.
2016) we compared choices of students’ strategies when solving parallel problems
in different domains, as well as their main difficulties in each domain and how they
are related. Our first study was motivated by the physics teachers’ beliefs that high
school students lack the mathematical knowledge required for successfully solv-
ing physical problems. However, the results of the study suggested that, contrary
to teachers’ beliefs, mathematics was not the main obstacle for solving physics
problems. Our next study addressed university students. It was conducted by a
questionnaire with eight parallel question in each context, mathematics without a
context, mathematics with a real-life context (i.e. mathematics in contexts other
than physics) and physics — kinematics. Questions were parallel in a sense that
they required use of the same mathematical procedure to be solved. Mathematics
questions directly investigated the concepts — calculation of slope, its properties
and comparison for two different line graphs, and calculation of the area under a
linear graph. Real-life and physics context question required also understanding of
concepts of rate of change or total amount together with their interpretation from
graphs.

In our study a natural question of transfer of knowledge was posed. Transfer
of knowledge could be defined as the ability to extend concepts from one context
to a new context. However, as suggested by Hammer et al., 2005, it would be
more appropriate to speak about so-called activation of resources. Concepts are
complex entities, made of many elements, and could not be transferred as intact
units. Certain aspects of a concept can be activated in a particular context, while
other aspects can remain aside. Besides, transfer of knowledge can be consid-
ered through a dynamical perspective called preparation for future learning (PFL)
which considers student’s possible learning and reconstructing of knowledge while
transferring.

Our most dominant finding was that the strategies used by students were con-
text depended and domain specific. Students generally did not use the same strategy
on two or all three parallel questions. This suggested that students did not recognize
that they are using the same concept but in different domains. Therefore, there was
no direct evidence of transfer of knowledge between domains on the large scale.
It was confirmed that each domain carries its own characteristics and discipline
conventions thus provoking use of different, often learnt, procedures. For physics
questions, the results showed that the preferred strategy was the use of formulas
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which relate kinematics concepts. On real-life context problems students often
used creative and self-developed strategies.

In our study students’ difficulties with graphs were identified with similar ex-
pressions in all domains. Very common difficulties for the concept of slope were
confusion of a height of a graph with its slope and the interval-point confusion.
However, these difficulties were more frequent in physics than in mathematics (even
twice more frequent). In mathematics, the most difficult problem for students was
the mere calculation of the slope of a line given by its graphical representation.

For the concept of area under a graph, the performed overall Rasch analysis
showed that it has lower difficulty than the concept of slope in mathematics. How-
ever, the Rasch analysis also showed that this difficulty was significantly lower
in mathematics domain than in other two domains, thus suggesting that additional
context increased the difficulties of domains. On mathematics questions students
were directly asked to calculate area under a linear graph. Although this simple
procedure also revealed students’ difficulties, even though the questions did not in-
clude usually problematic notion of “area under the x-axis”, mathematics questions
lacked interpretation of the meaning of the area under a graph. We may state that
it is not surprising that area under a graph questions showed lower difficulty than
slope questions since the concept of area is an intuitive, familiar concept developed
from early years of mathematics education compared to, results suggest, rather
vague concept of slope.

As already stated, in physics context and mathematics with real-life context,
questions on area under a graph required additional interpretation, which increased
the difficulties of the domains. The requirement turned out to be very difficult for
students, surprisingly it seemed even more difficult in physics than in a real-life
context. In physics context, when calculating a distance travelled from v vs. ¢ graph
or speed from a vs. ¢ graphs, students often used learnt or ready-made strategy
to find these values from the area under a graph. In a real-life context in order
to decide which feature of a graph represents the required information, students
used creative strategies, showing some understanding of the concept of the total
amount of a quantity. For example, there was evidence that students used the
idea of an accumulated quantity, of “adding-up pieces”, while also some of them
used dimensional analysis of quantities. The last idea was used three times more
often in real-life context than in physics, which could be an evidence of transfer of
knowledge from physics to a real-life context.

3. Results of the present study

Whereas mathematical concept of area under a graph is a familiar, intuitively well
understood concept, its interpretation, that is, why it gives the required information,
is very difficult for students. The process of finding a distance travelled from a v vs.
t graph includes “reversion” in relation to the process of finding a speed from s vs. t
graph, together with its graphical interpretation as an area under a graph. Speaking
in the terms of calculus, the process revokes identification of antiderivative as well
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as calculation of the definite integral. It is a students’ difficulty described as “how
are the concepts “tangent” and “area” related?” or “finding the slope of the tangent
line and calculating the area are inverse operations” (Kirsch 2014) in the context
of the Fundamental theorem of calculus.

In high school physics curriculum, geometrical interpretation of the definite
integral or total amount of a quantity as the area under a graph is introduced already
with linear graphs for velocity in a simple uniform motion or uniformly acceler-
ated motion. Very often it is justified by means of corresponding formulas from
physics context and formulas for area and becomes a learnt strategy which is readily
applied.

However, in our opinion a more comprehensible and coherent understanding of
the idea behind area under a graph is built by introducing also the idea of accumu-
lation (summation) or “adding-up pieces”. Results of our previous study underpin
this idea by evidence obtained from students’ answers on mathematics questions
in a real-life context. The studies of Jones 2015a, Jones 2015b also support this
idea for university students with integrals in contextualized domains, in particular
in physics and applied sciences.

Our study was motivated by the lack of the mathematics high school curricu-
lum support for the various aspects of the concept of the definite integral for linear
graphs. Even though the concept of derivative, introduced geometrically as a slope,
appears much later in mathematics education than the concept of area in general,
it is discussed much more often throughout education than the concept of integral,
geometrically seen as the area under a graph. Even when a concept of the definite
integral in mathematics is introduced by means of Riemann sums, it is mostly used
for calculation of irregular figures areas which again readily connects summation
process to the area.

Context-free mathematics usually does not provide an intuitive explanation
why to use area under the graph, whereas adding a context does, as stated in
Kouropatov, Dreyfus, 2013:

“The idea of calculus in general and the idea of the integral in particular were
born from attempts to understand the world, from applications by Newton and his
followers. In some way, the integral is the application. Therefore, in our eyes, there
is no way to understand integrals without understanding the strong connection be-
tween the mathematical concept and its applications. The heart of this connection
is the idea of accumulation. That is why implementations of accumulation in
different contexts are completing our journey.”

Our research question was formulated as follows: To what extend preservice
teachers of mathematics and physics recognize, use and transfer different aspects
of the definite integral in mathematics with real-life context and in physics context,
particularly the intuitive idea of accumulation, when applied to linear graphs?

The study addressed the whole cohort (n = 7) of graduate students of math-
ematics and physics in teacher programme at the Faculty of Science, University
of Zagreb. Students completed a five-questions questionnaire. Three questions
determined the understanding of the concept of the total amount of the quantity by
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asking about the total amount of water and cash, including “the negative area” idea,
comparison of different quantities and the moment in which the maximal amount
was realized. The fourth question investigated the transfer of the observed concepts
into a physical context by student’s creation of a possible physics counterpart of
previous questions. The last question asked for students’ explanations of the chosen
strategies as high school teachers.

On questions from mathematics with real-life context results of the study can
be summarized as follows:

e Correct answers: Most of the students’ answers were correct. Not all stu-
dents recognized the intersection of the graph with the x-axis as the maximal
water quantity. Some pointed out the possible learner’s difficulties with such
graphs because “the rate of change is positive but decreasing whereas the total
amount of water is increasing” and “the negative inflow should be considered
as outflow”.

e Strategies: Almost all students explained their answers by ready-made use of
the area under a graph strategy, showing that they recognized the concept and
did not consider it necessary to provide any further elaboration. Two students
also performed dimensional analysis (Figure 1). Most of the students gave a
correct graph of the total water amount in a bathtub (Sweeney, 2000). Two
students very efficiently answered the question by graphically considering dif-
ferences of areas (Figure 2). Other students performed calculation showing

some elements of accumulation i.e. “adding-up pieces” strategy.
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Figure 1. Dimensional analysis as a solution in a real-life context.
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Figure 2. Differences of areas as the change of water amount.

Students’ explanation of area under a graph strategy in the last question was
mostly done either by using a detailed dimensional analysis (Figure 3) or by elab-
orating in words that are meaningful in the context: “If we bring into the bathtub
more water per unit of time than we take out, then the total amount of the water
is increasing” or “one should add all cash amounts per months”. One student
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suggested how to calculate various areas under a graph, starting from a rectangular,
followed by a triangle and a trapezium, thus connecting formula for areas to the
formulas needed in the physics context.
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Figure 3. Dimensional analysis as an explanation of the area under a graph strategy.

Not all students were successful on creating similar questions in physics con-
text. Those who were, created questions that involved various physical quantities,
like force and distance, acceleration and spring elongation, energy and distance.
However, most of the ideas were from kinematics with a speed of a motion and
distance travelled. The following example is a creative physics counterpart of the
bathtub problem:

“Consider a car with four-wheel drive. Two front wheels pull the car forward,
while the other two pull in the opposite direction. If their speeds are shown by the
graph, determine the direction and total distance travelled by the car if it is initially
100 m far from the start line.”

4. Conclusion and implications for high school mathematics
curriculum

The study conducted with the graduate students of mathematics and physics in
teacher programme, on the aspects of the definite integral in mathematics and
physics context with linear graphs, showed the high prevalence of the area under
a graph strategy as a ready-made strategy. The use of this strategy was mostly
elaborated by dimensional analysis of involved quantities. Whereas these ideas are
relevant and meaningful for the problems, students’ choices reflect typical ideas
and methods used in their education. However, the idea of accumulation, as un-
derlying idea of the area under a graph strategy, would possibly provide a more
coherent concept construction and activation.

We promote a student’s perspective on education and hope that it is on larger
scale organized as a meaningful and connected whole. The findings of our and other
studies in mathematics and physics education indicate certain compartmentaliza-
tion and ask for strengthening of connections within various themes and fields. The
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following recommendation could be useful for deeper conceptual understanding of
derivative (rate of change) and the definite integral (total amount of a quantity) in
high school curriculum:

e Use of good intuitive examples from real world as well as kinematics examples
with their graphical representation might provoke use of multiple strategies and
comprehensible understanding;

e Calculation and understanding of the concept of slope could be strengthened by
use of a “rise over run triangle” in line graphs throughout mathematics educa-
tion, as e.g. Steigungsdreieck in mathematics in German. The prevalence of the
use of the formula v = s/¢, where speed is interpreted simply as “distance over
time” as a description of a very simple kinematics model, can be an obstruction
for understanding of concepts of velocity and the rate of change of a quantity.
“Average speed equals change in distance over change in time”.

o The total amount of a quantity deserves a more coherent attention throughout the
mathematics school curriculum with emphases on its aspects as the area under
a graph and accumulation or “adding-up pieces”, and later as the antiderivative.
Interpretation of the concept only by the area under a graph as a ready-made
strategy provokes difficulties which remain present even after introducing the
concept of the definite integral.

The concept of the total amount is an important concept in mathematics. At
the end, once again we recall its everyday presence by a description from Veldhuis
& Korzilius 2016:

“The flow of materials ... is present in all facets of life; it determines what
your bank statement looks like at the end of the month or whether you overfill your
coffee cup in the morning.”
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SaZetak. U ovom radu prikazan je pregled provedenih istraZivanja
autorica o strategijama i poteSkofama studenata pri interpretaciji
matematickih i fizikalnih veli¢ina iz grafickih prikaza. Graficki prika-
zane situacije pripadale su trima razli¢itim domenama: matematici bez
konteksta, matematici s kontekstom iz stvarnih Zivotnih situacija, te
fizici (kinematici). U ovom radu, naglasak je stavljen na interpretaciju
ukupne promjene veli¢ine, dakle, na njezin odredeni integral koji
se geometrijski interpretira kao povrSina ispod grafa. Uz navedeno,
prikazani su i rezultati istraZivanja provedenog medu studentima nas-
tavnickog smjera matematike i fizike o strategijama kojima se koriste
pri odredivanju ukupne promjene veli¢ine zadane u kontekstu stvarnih
situacija, te njihovom obrazloZenju.

Kljucne rijeci: interdisciplinarnost, nastava matematike i fizike,
nagib, povrSina ispod grafa, graf linearne funkcije
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Functions in the 2015 and 2016 Croatian
State Matura in higher level Mathematics

Matea Gusic
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Abstract. This paper presents an analysis of Croatian State Matura
exam tasks relating to the mathematical domain of functions. The
analysis is conducted on the 2015 and the 2016 State Matura, both
higher-level mathematics exams. Requirements of the tasks are ex-
plored and classified based on the instrument designed for this purpose.
The instrument is conceptually based on the theory of “basic ideas”
(originally: Grundvorstellungen) and Mathematical Proficiency theory.
The objectives of the research were to explore the possibility of using
such an instrument for task analysis, to determine the characteristics of
the tasks in the Croatian State Matura, and to use student achievement
to value their efficiency in the mathematical domain of functions in
terms of specific classification provided by the instrument.

Keywords: state matura, Grundvorstellungen, mathematical pro-
ficiency, function, task analysis

1. Introduction

For the last seven years, gymnasium students and all those who wish to continue
their education at university in the Republic of Croatia have taken the Croatian State
Matura exam, the secondary school exit examination the results of which are the
basis for entry into higher education institutions. Since the State Matura is a form
of external assessment and is conducted on a great number of students, it seems
worthwhile to explore it; both in terms of the different aspects of requirements and
how well students deal with them. Mathematics is one of the three exams that are
mandatory for all participating students. Students can choose between two levels:
higher (A) and standard (B). According to the examinational catalogue (NCEEE,
2014), the document that stipulates fields of examination, educational outcomes
and the technical structure of the exam, the level required in the higher-level exam
corresponds to the gymnasium syllabus. For this reason, only the higher-level State
Matura exam will be analyzed in this paper.
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The higher-level exam score is 60, of which 20 points are from multiple choice
questions (a choice of 4 answers), 26 points from short answer questions (only
correct answers are scored), and 14 points from long answer questions (answers
and the task solving process are scored). Five mathematical domains are tested
in the Croatian State Matura: Numbers and Algebra, Functions, Equations and
Inequalities, Geometry and Mathematical Modeling. This paper will focus on the
mathematical domain of functions in the State Matura. The proportion of func-
tions in the exam is 25 % of the score share. Taking into consideration a possible
deviation of +5 %, functions are in the range of 12 to 18 points. The content of
educational outcomes for the mathematical domain of functions refer to the concept
of functions in general (different functional representations, and operations with
functions), special examples (linear function, quadratic function, absolute value
function, square root function, polynomials and rational functions, exponential
function, logarithmic function, and trigonometric functions), series and deriva-
tives. A detailed list of educational outcomes can be found in the Examination
Catalogue (NCEEE, 2014).

Two key ideas from the didactic of mathematics will be presented in this paper
under the heading “Conceptual base”. This is in order to lay down a theoretical base
underscoring the task analyses instrument. The instrument for the task analyses will
be introduced in the “Instrument” section. Through a small number of examples
it will be shown how the instrument is to be used as a theoretical criterion for task
analysis. Classification of the higher-level 2015 and 2016 State Matura function
tasks, according to the instrument, will be given in “Results and discussion”. Also,
student achievement, in general and in relation to the given classification, will be
considered' .

2. Conceptual base

There are many important ideas, in the form of “mental representations”, behind
mathematical content, that are important not only for understanding mathematical
content but also for improving general education (Malle, 2004). To be able to an-
swer the question: “What mental representations students have while thinking about
mathematical concepts” vom Hofe (1995) developed the idea of “Grundvorstel-
Iungen®”. This is the concept that describes the relationship between mathematical
structures, individual processes and subject-related contexts (in brief: the relation-
ship between mathematics, the individual and reality). In a way, GVs serve as
translators between reality and mathematics. There are three aspects of GVs: the
normative aspect is the one intended from the teacher, it expresses how students
should be taught to achieve conceptual understanding; the descriptive aspect ex-
plains how students actually represent given concepts; and the constructive aspect

! This data is courtesy of NCEEE Center in Zagreb. The data given in this paper fully respects
the NCEEE values and confidentiality.

2 Grundvorestellungen in English language literature is sometimes referred as “basic ideas”, but
authors generally refrain from using it to avoid possible misunderstandings due to the implications
that may arise from that term. This paper will use the more common term in the form of the
abbreviation GV.
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deals with the generation of GVs. In the past two decades, a lot of work has
been done in order to identify relevant GVs. Most of the work relates to primary
school education, but GVs for percentage, angle concept, function concept, and the
concepts of derivative and integral are also listed (vom Hofe, Blum, 2016).

In this paper, special attention will be given to Grundvorestllungen in relation
to the concept of function. According to Vollrath (1989) there are three different
GVs that can be activated:

[GV1] Mapping — one quantity is uniquely assigned to another. Functions
describe connections between quantities: one quantity is seen as dependent on
the other. It is closely connected to a sense of a function as a table of mutually
depended values.

[GV2] Covariation — characteristic change of one quantity when another one
changes. Functions determine what effect the change of a variable has on the
dependent variable. It is closely connected to a sense of a function as the equation
for evaluation. This GV is especially valuable when it is necessary to identify an
important example of function from a situation based on the text. For example,
in the sentence “The number of bacteria enlarges about 45 % per hour”, the infor-
mation about the same percentage of (bacteria) growth in the same time interval
indicates characteristic change of exponential growth (Malle, 2004).

[GV3] Object — function as an “object” that can be described as whole, and not
just as a pair of dependent values. It is closely connected to a sense of a function as
a graph. Typical assignments associated with this GV are tasks relating to a graph
of the function (when observed in general, not just a particular point), operations
with functions (e.g. composition of functions), or tasks considering important
functional properties (e.g. parity, periodicity). Also, when one of the important
examples of functions is given in the task, with its name or equation, GV3 needs to
be activated.

In their PISA 2000 task analyses investigation, with the aim of explaining the
difficulties of the tasks, Blum at al. (2004) used the theory of Grundvorestellungen
as a normative and empirical criterion. By determining which GVs are necessary
for task solving, the authors grouped tasks into four levels, thereby defining the
“GV intensity” variable. Levels go from Level 0 “no GVs required” to Level 3
“complex GV or non-trivial combination of Extended GV’s required®”. Using
this scheme, both “Solve the equation 2x — 7 = 9.”, and “The quadratic function
f(x) = 262 + 5x — 3 is given. Write f (x) in a vertex form.”” (Blum et al., 2004)
are Level O tasks, since no GVs are required to solve them. GVs are not the only
factor in solving mathematical tasks successfully; requirements are extended to
other competencies, knowledge and skills (vom Hofe, Blum, 2016). It is obvious

3 Three kinds of GVs are distinguished: Elementary GVs are those whose perception is based on
real object and actions (for instance GVs for elementary operations), Extended GV are non-trivial
combinations of Elementary GVs (such as idea of increase of price which is the result of combining
two other ideas: adding and percentage) or GVs whose perception is not related to the real, but
more to imagined action in relation to other mathematical objects (functions), and Complex GVs are
non-trivial combination of Extended GVs (concept of derivative as a combination of concepts of
limit and gradient).
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that to solve these two tasks students have to have different levels of mathematical
understanding. While for the first task the student only needs to have technical
skills for (simple) algebraic manipulations, for the second one the student has to
understand the terminology behind the statement “vertex form of quadratic func-
tion” and has to have procedural skills for calculating parameters that are required
(if we assume that the formula for coordinates of vertex of parabola is available to
the student). The fact that this type of classification enables tasks that require a
broad range of mathematical understanding to end up in the same category led me
to think that it would be valuable to expand investigation criterions to include other
important, from a mathematical point of view, competencies.

The framework for this could be provided by Kilpatricks’ definition of math-
ematical proficiency, a comprehensive view of successful mathematics learning
(Kilpatrick, 2001). According to this theory five equally important and mutually
interdependent components, or strands, are defined: conceptual understanding is
a comprehension of mathematical concepts, operations and relations; procedural
fluency is skill in carrying out procedures flexibly, accurately, efficiently and ap-
propriately; strategic competence is the ability to formulate, represent, and solve
mathematical problems; adaptive reasoning is the capacity for logical thought,
reflection, explanation, and justification, and productive disposition is defined as
habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled
with a belief in diligence and one’s own efficacy.

Since the authors of this theory stress that these five strands are responsible
for student success in mathematics, it seems to be a good framework for normative
criterion for task analysis. In other words, it seems valuable to detect which of
these strands and to what extent are being activated in Croatian State Matura exam
tasks concerning functions. Since task analysis is at the center of this research,
and there is no direct contact with students, productive disposition will be excluded
from the criteria.

3. Instrument

In this section an instrument for task analysis will be introduced. In the section
“Examples from the exam” task analysis on three tasks from the 2015 and 2016
higher level Matura exams will be performed.

Normative criterion for task analysis is a two-dimensional instrument with the
objective to identify and describe task characteristics. The first component is the
conceptual characteristics of the task and the second component is the skills and
activities that need to be available to solve the Matura tasks, relating to functions,
successfully.

Conceptual characteristics are correlated with Kilpatricks conceptual under-
standing and interpreted to feature two aspects: existence of GVs related to the
concept of function and the use of mathematical language. The second component,
skills and activities, unites three important aspects and describes their involvement
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in the process of task solving. These three aspects encompass: procedural flu-
ency, strategic competence and adaptive reasoning. The two components will be
introduced in more detail in the following part.

The first aspect refers to identification which of the three (if any) function
related GVs are activated in the task. This is related to [GV1], [GV2], [GV3]
described in the section “Conceptual base”. There is a demand stating that, when
building concept or solving mathematical modeling task, one should not separate
these three GVs, but build one upon another (Leuders, Prediger, 2005). This
should definitely be the methodical imperative while teaching functions, but this
is not necessarily the situation when testing students’ knowledge, especially if we
consider the characteristics of the exam. The tasks are mainly closed tasks: for
77 % of the exam only the correct answer to the task is evaluated and students’ task
solving strategies or partial solutions are taken into consideration for just 23 % of
the exam. Also, only 10 % of the exam is tasks of mathematical modeling, meaning
that there are even less concerning functions. Therefore, separating GVs activated
in the Matura tasks could give interesting results.

The National Council of Teachers of Mathematics has placed mathematical
language as an important factor in mathematical proficiency in the “adaptive rea-
soning” strand because of the importance of communication and reasoning through
mathematical language in the process of explanation and justification (Riccomini
etal. 2015). Again, because of the characteristics of the Croatian State Matura, this
aspect of the importance of mathematical language is not of interest. The exam does
not include an oral component, and some form of explanation and justification is
only needed in the long answer questions. For this reason another aspect of math-
ematical language will be considered. To obtain the meaning and requirements
of the task, as a precondition for task solving, students need to identify mathe-
matical terminology (mathematically distinctive words and symbols representing
mathematical concepts or relations) but also recognize individual concepts, and
relationships between those concepts (Lott Adams, 2003). An example of such
process can be seen in the section “Examples from the exam” (Example 1). Al-
though every mathematical task inevitably contains mathematical language, tasks
can call for a different level of understanding behind a mathematical word or math-
ematical statement. That is why tasks will be classified as “using simple”, “using
advanced” or “using complex” mathematical language (notation ML1, ML2, ML3,
respectively).

In mathematics, often one has the “idea’ how to solve the task, but is not suc-
cessful in carrying out all the procedures and calculations. The process of solving
sometimes requires procedural fluency that is not on a basic level. This aspect
will be classified as “not required for solving” or “required for solving” (notation
PFO, PF1, respectively). Examples of such classification can be seen in the section
“Examples from the exam” (Examples 1 and 2).

The aspect of strategic competence refers to the detection of the need for
problem solving competencies. This aspect will be classified as “not required for
solving” or “required for solving” (notation SCO, SC1, respectively). Although it
is directly implied that this aspect is referring to mathematical modeling tasks, it is
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not the only facet. It also includes situations when to answer the problem set in the
task multiple steps need to be executed. This situation requires the student to plan
a “task solving strategy” in advance.

In the third aspect the need for mathematically distinctive reasoning will be
detected. Cognitive demands always exist while dealing with mathematical tasks,
but some tasks are of a more technical nature (Example 2) and some tasks need
constant justification, or explanation (Example 1). In this aspect tasks will be
classified as “require simple” or “require complex” adaptive reasoning (notation
ARO, ARI, respectively).

4. Examples from the exam

In this section, three tasks will be interpreted according to the instrument described
above, i.e. shown in Table 1.

Table 1. Two-dimensional instrument.

‘ Conceptual characteristics ‘ Skills and activities ‘
GV Mathematical Procedural Strategic Adaptive
§ language fluency competence reasoning

GVl | Gv2 | Gv3 | ML1 | ML2 | ML3 | PFo | PF1 | sCo | SC1 | ARO | ARI

Example 1. (NCEEE, 2015)

“Continuous function, defined for all real numbers, has exactly two points
of local minimum A(—1,2), B(4,—3) and only one local maximum point C(1,3).
Find interval/intervals of increase of given function.”

To solve this task mathematical terminology, including the meaning of cor-
responding concepts, needs to be available: “continuous function defined for all
real numbers”, “local minimum and maximum” and “interval of increase”. Since
behind the underlined words lies a complex mathematical concept, this task is
classified as “using complex” mathematical language.

Once the terminology is understood, strategic planning is needed. An example
of a thought process might be: “I need to determine interval/s of increase. To do
that I need to have a sketch of a graph of this function. Once I have the graph I
can “see” where the function is increasing and write it down in an interval form”.
This would imply that strategic competencies are “required” in order to solve this
task.

Adaptive reasoning is crucial during a task solving process, because each step
taken needs to be justified by confirmation of relationships of concepts lying behind
the given terminology. The first step would be to plot given points into a Cartesian
coordinate system (Figure 1).
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A(-1,2)

C(1,3)

B(:l,-3)

Figure 1. First step in solving the task from Example 1.

From the terms: “local minimum” and “local maximum” one makes the con-

clusion presented in Figure 2.

A(-1,2)

C(1,3)

o/
B(4,-3)

Figure 2. Example of adoptive reasoning in Example 1.

From the term “continuous and defined for all real numbers” it can be known
that a continuous curve must be drawn from the left to the right side of the coordinate
system in order to respect conclusion acquired from Figure 2.

A(-1,2)

c(1,3)

B(4,-3)

Figure 3. Final step in the reasoning in solving the task in Example 1.
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It is clear from all the steps stated above that function was considered on its
entire domain, not just individual pairs of values (Figure 3). Therefore, it can be
concluded that GV3 was activated.

There was no need for procedural fluency. Even in drawing a graph, a well
known procedure is not followed, but rationalizes every step.

To conclude, this task is classified as: GV3, ML3, PFO, SP1, ARI.
Example 2. (NCEEE, 2016)

“Function f (x) = 3x* + 10 is given. Evaluate expression f (2) —f'(3), where
f' is derivative of function f.”

To solve this task the student needs to understand the meaning of the term
“derivate of function f”, and be familiar with the symbolic notation f (2). Behind
these words lies an advanced mathematical concept. Therefore, the task is classified
as “using advanced” mathematical language.

By activation of GV1 one needs to translate from notation f (2) to the question
“Which value is assigned to argument x = 22"

No strategic competency or adaptive reasoning is necessary, because all the
required steps are familiar, procedural and should be automatized. This is also
the reason why this task requires procedural fluency. Firstly, for the accurate de-
termination of function derivative. Then for calculating the value of function f
for argument 2, and value of function f’ for argument 3. And lastly, to make the
translation from the task “evaluate f (2) — f/(3)” to the task “calculate 22 — 18”.

To conclude, this task is classified as: GV1, ML2, PF1, SPO, ARO.
Example 3. (NCEEE, 2016)

“Moss covers 1.3 m? of the bark of the tree. At the end of each week the area
of the moss covering the tree enlarges by 5 % in relation to the area of the moss at
the end of the previous week. What area of the tree will moss cover after 8 weeks?”

This task could be solved using geometric sequences or exponential function.
Classification of the task could differ depending on the chosen approach. For this
purpose, mathematical modeling using exponential function will be considered.

Modeling tasks call for strategic competence and adaptive reasoning in order
to be able to interpret from contextual problem to mathematical problem. Real-life
problems are usually not written using mathematical terms or math symbols. In
this case, the mathematical words and terms appearing are “1.3 m*”, “5 %" and
“area” (understanding of this term is not required to solve the task successfully)
due to which this task is classified as “using simple mathematical language”.

For interpretation of a real-life problem GV2 needs to be activated as this is a
typical example of modeling with exponential function. The phrase: “... enlarges
by 5 %...” is considered to be a trigger word for characteristic change of expo-
nential function. In other words, it should be recognized that when one quantity
(number of weeks) changes, the other quantity (area of the moss covering the tree)
changes in a way that is characteristic of exponential function.
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Since in the tasks concerning modeling with functions the corresponding pa-
rameters always need to be interpreted and determined, GV1 also needs to be
activated.

From the conclusion that the situation is modeled with exponential function,
and by activation of GV1, the situation needs to be described algebraically which
is activation of GV3. To be able to efficiently create an equation of the function the
student needs to have developed procedural fluency in this type of task. Otherwise
it could happen that too much time is spent calculating the area of the moss behavior
week by week, or an incorrect rule could be formulated e.g. f () = 1.3 - 0.05".

5. Results and discussion

From the task analyses conducted on the higher level 2015 and 2016 Croatian State
Matura, some tasks that are originally classified as functional tasks were excluded.
These are tasks concerning series and tasks in which, when it comes to functional
aspects, only algebraic properties of functions, such as logarithm rules or basic
trigonometric identities, are being used. There are 22 out of 92 items that respect
the given criterion. This corresponds to 29 out of 120 points, i.e. a 24.17 % score
share. Of these 29 points, 12 are from multiple choice questions, 13 from short
answer questions and 4 are from long answer questions.

The mean for these tasks is 51 % for all participants, i.e. 56.4 % for gymna-
sium students and 37.5 % for vocational school students. The tasks were classified,
considering their p-values, into five categories: very hard task 0 < p < 20, hard
task 20 < p < 40, medium hard task 40 < p < 60, easy task 60 < p < 80 and
very easy task 80 < p < 100 (Kleijne, Schuring, 1993). The structure of the tasks
in terms of this classification is given in Table 2.

Table 2. Categorization of researched tasks according to their p-values.

Task difficulty category ‘ Very hard ‘ Hard ‘ Medium ‘ Easy ‘ Very easy

Number of items (overall) 3 3 8 6 2
Number of items (gymnasium) 2 2 8 6 4
Number of items (vocational) 5 7 5 5 0

Figure 4 shows the construction of the higher level 2015 and 2016 Matura
exams in terms of classification from the research instrument. It shows that when
it comes to GV criterion, most of the tasks require GV3 activation. In 17 out of
22 tasks activation of GV3, alone or in combination with other GVs, is required.
Also, there are no tasks requiring only GV2 activation. There are only 2 out of
22 tasks using basic mathematical language. Most of the tasks, 13 of them, use
advanced mathematical language. There is no significant difference in the number
of tasks regarding procedural fluency. Strategic competence is required in 13 out
of 22 tasks, and there are only 6 tasks which do not require adaptive reasoning.
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Figure 4. Number of tasks considering characteristics from research instrument.

Analysis has shown that these five characteristics appear in 17 different com-
binations. There are 5 combinations that appear twice. When the p-values of tasks
with the same combination of characteristics are compared, in 4 out of 5 tasks
p-value significantly differs. The average difference in 3 out of 4 tasks is 32.51 %.
This indicates that there are more than these five characteristics that need to be
considered in order to determine task difficulty. For example, it could be important
to consider the type of task. This could be the case in the tasks showing p-value
difference of 72.29 %. The task with an extremely low p-value is a long answer
question, and the task with a high p-value is a multiple-choice task.

Figure 5 shows that students have high achievements in tasks that require acti-
vation of GV1. With the p-value of 81.17 %, these tasks have on average 33.59 %
higher p-value than tasks in which some other GV, or a combination of GVs, is
activated.

GV Mathematical language

100,00 100,00

81,17
80,00 80,00
56,43 58,82
60,00 . 60,00
47,67 44,51 41,71 41,71 39,26

40,00 40,00
o I . . .

0,00 0,00
EGV0 mGV1 mGV3 mGV13 mGV123 m Basic ™ Advanced ® Complex

Figure 5. Task p-values in relation to GVs and mathematical language.
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It is not surprising that tasks using complex mathematical language have the
lowest p-value. Also, there is a significant difference, 19.56 %, in the solvability of
tasks using advanced relative to complex mathematical language. But it could be
supposed that tasks using basic mathematical language would have the best solv-
ability rate, since there is no “difficult” mathematical language to get in the way of
students understanding of the task. Figure 5 shows different results, there is not a
significant difference in the p-value of tasks using basic or complex mathematical
language. It should be taken into consideration that these two tasks using basic
mathematical language are both mathematical modeling tasks. It would be safe to
conclude that mathematical language was not a crucial factor influencing the low
solvability rate of these two tasks.

Procedural fluency Strategic competence
100,00 100,00
g 53,19 2050 53,94
60,00 49,52 z Go’w 49,03 LA
40,00 40,00
20,00 20,00
0,00 0,00
M Required ™ Not required B Required M Not required

Adoptive reasoning

100,00
80,00 61,93

60,00 46,96
40,00
T

0,00

m Required m Not required

Figure 6. Tasks p-values in respect to procedural fluency, strategic competence and
adaptive reasoning.

Figure 6 shows that when considering the skills and activities involved in the
task solving process, significant difference can be noticed in the aspect of adaptive
reasoning. There is 14.97 % of difference in the p-values of tasks that do not require
adaptive reasoning relative to those that do.

6. Conclusions

According to my research instrument the higher-level 2015 and 2016 Croatian State
Matura, relating to functions, shows some interesting characteristics. It is shown
that 77 % of tasks are classified as activating GV3, alone or in combination with
other GVs. There is a noticeable lack of tasks activating GV1 (14 %) or GV2
(none). Almost 91 % of these tasks use either advanced or complex mathematical



Functions in the 2015 and 2016 Croatian State Matura in higher level Mathematics 39

language. This indicates that students are required to proficiently use mathemati-
cal language regarding functions. It is shown that 73 % of tasks require adaptive
reasoning, and 59 % of tasks require strategic competence. This indicates that
the Croatian Matura, in the domain of function, encourages students to plan their
solution and rationalize, rather than follow a predetermined procedure.

Considering the complex construction of the Matura tasks and the small num-
ber of tasks examined, it is not possible to draw a conclusion about the correlation
between the characteristics of a task and its p-value. To be able to establish correla-
tion between tasks p-value and examined tasks characteristics (GVs, Mathematical
language, Procedural fluency, Strategic competence and Adaptive reasoning) it
would be necessary to analyze more tasks featuring previously stated characteris-
tics. In addition, the need to take into consideration other task characteristics arose.
For example, it would be worthwhile to analyze tasks in terms of task type: whether
they are multiple-choice, closed answer, open answer or mathematical modeling
tasks.
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Funkcije na viSoj razini Hrvatske drzavne
mature provedene 2015. i 2016. godine

Matea Gusic

Uciteljski fakultet, SveuciliSte u Zagrebu, Hrvatska

SaZetak. Rad prikazuje analizu zadataka iz podrucja funkcija, na
viSoj razini hrvatske Drzavne mature, provedene na ljetnom ispitnom
roku 2015. 1 2016. godine. Analizi zadataka prethodi uvodenje teo-
retskog okvira na temelju kojeg su se klasificirali zahtjevi zadataka iz
podrucja funkcija. Razvijeni teoretski okvir baziran je na teoriji “os-
novnih ideja” (Grundvorstellungen) i “matematickih vjestina” (Mathe-
matical Proficiency). Ciljevi rada bili su istraZivanje moguénosti
koriStenja ovako definiranog teorijskog okvira kao kriterija za analizu
i odredivanje karakteristika zadataka iz podrucja funkcija na hrvatskoj
Drzavnoj maturi te moguénosti evaluacije specifi¢nih sposobnosti iz
podrucja funkcija na temelju uspjesnosti rjeSavanja zadataka i njihove
klasifikacije prema definiranom teoretskom okviru.

Kljucne rijeci: drzavna matura, Grundvorstellungen, matematicke
vjestine, funkcije, analiza zadataka
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Spatial reasoning in mathematics

Nikolina Kovacevié¢

Faculty of Mining, Geology and Petroleum Engineering
Department of Mathematics, Informatics and Descriptive Geometry
University of Zagreb, Croatia

Abstract. With the growing interest in spatial reasoning, stimu-
lated by the development of powerful computer-based geometry and
visualization packages, it is important to be clear about what is meant
by spatial reasoning in mathematics. Starting from the point of various
math educators, learning spatial thinking in mathematics has different
aims than learning spatial thinking in other sciences.

Hence, although spatial skills may be intellectually interesting in
themselves, the focus in this paper is placed on its relationship with
teaching and learning geometry at the technical faculties. Furthermore,
the course Descriptive geometry with computer graphics, which has
evolved at the Faculty of Mining, Geology and Petroleum Engineering
in Zagreb in conjunction with the recent developments in the modern
geometry education, is described in detail. On the basis of the classical
geometrical representation methods, the course focuses not only on
the uprising of graphic-visual communication and developing learners’
spatial visualization skills, which play a crucial role in engineering
educations, but likewise on the development of learners’ capacity with
deductive reasoning and making use of aids and tools in mathematics
education. Also, the effect of computer technology on geometry edu-
cation is discussed according to the results of the SEFI — Mathematics
Working Group (SEFI - stands for “European Society for Engineering
Education”). The examples of student exercises will be given to show
a large range of options offered within the course to make teaching of
space mathematics innovating, more interactive and at the same time
applicable to specific students’ interests.

Keywords: spatial reasoning, teaching tools, computer graphics,
higher education, e-learning

1. Introduction

As many educators emphasize, spatial reasoning, or spatial thinking, together with
verbal reasoning, is one of particularly common modalities of human thoughts
(Newcombe, 2010; K-12, 2014; JMC, 2001). While the verbal reasoning is the
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process of forming ideas by assembling symbols into meaningful sequences, spa-
tial reasoning may be described as the process of forming ideas through the spatial
relationship between objects (JMC, 2001, p. 55; Kovacevic, 2016;).

Although many point out that spatial reasoning has always been a vital capacity
for human action and thought (Sorby, 2009; Newcombe, 2010), some argue how it
has not always been adequately supported in formal education (Jones and Tzekaki
2016; Davis, B. et al., 2015; Clements and Sarama, 2011). Fortunately, in recent
years the situation is changing. But we may note that the starting research interest
is growing outside the milieu of the mathematical community (Leopold, 2015;
Sorby, 2009; Uttal and Cohen, 2012). Namely, the results of the transdisciplinary
studies have found many evidences that spatial reasoning plays a vital role not only
in schooling, across all grades and within most academic STEM subjects, and also
beyond it: in later careers, as a support to key learning (Cheng and Mix, 2004,
Davis B. et al., 2015; Newcombe, 2010; Uttal and Cohen, 2012). For example,
Uttal and Cohen (2012) carried out a systematic meta-analysis of the most recent 25
years of research on spatial training and showed the malleability of spatial abilities
and their effects.

Therefore, with the growth interest in spatial reasoning, it is important to be
clear about what is meant by it in mathematics. Particularly now when many math
educators see spatial reasoning as a vital component of learners’ successful mathe-
matical thinking and problem solving, and when the development of spatial ability
is declared as one of the key goals of mathematics education all around the world,
from pre-school to university level (Cheng and Mix, 2014; Davis et al., 2015, p. 3;
Jones and Tzekaki, 2016; JMC, 2001; ICME-13, 2016; Newcombe, 2010; K-12,
2014; Milin Sipus and Cizmesija, 2012).

However, in recent times, there is a considerable on-going debate among re-
searches, teachers and educators on what spatial reasoning in mathematics is (also
what it is not), aiming mostly at casual use of the various notions. Therefore, in
the following section we shortly clear the path for specifying what is meant by it in
this paper, mainly focusing on the geometry education level of technical engineers,
and its role in connection to the use of ICT technology in math education.

2. What is spatial reasoning in mathematics?

Connecting spatial reasoning to math is not of recent date and it is not an intention
of the author in this paper to describe in details any of its threads, but only to
point out the myriad of approaches focusing onto the same topic of interest, spatial
reasoning in mathematics (Davis et al. 2015; ICME-13, 2016) or, more precisely
in this case, geometrical reasoning (Bishop, 1980; Clements and Battista, 1992;
Kovacevi¢, 2016; Stachel, 2015; IMC, 2001; K-12, 2014).

Let us start with one, perhaps the most important fact for this paper. Namely,
according to the well-known Clements and Battista’s Handbook of research on
mathematics teaching and learning: Geometry and spatial reasoning, back in the
20" century most mathematicians and mathematics educators seemed to include
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spatial reasoning directly as a part of a geometry curriculum, emphasizing in that
way a strong relations spatial reasoning and school geometry had/have (Clements
and Battista, 1992, p. 420; Bishop, 1980). Importantly though, the results of
various studies highlight significant variation across the European countries in the
historical design of mathematics curricula, and spatial geometry curricula in par-
ticular (Bishop, 1980; Davis et al. 2015, p. 48; JMC, 2001 p. 33; Lawrence, 2003).
The main differences in treating and teaching spatial problem tasks in European
countries are shown in Figure 1 within the comparison of the systems of graphical
communication educations back in the 19" century in France, Germany and Great
Britain, taken from Lawrence (2002, p. 1278).

Plane. Solid. Solid.
Graphical, Graphical. Constructive.
whleh s 20 Projections. Models, Etc.

Constructive.

v
considered as represented by

Descriptive Geometry, which is the Theor ;
d v of the ! Shapmg

Art of drawing. ~ Mmatter

SCIENTIFIC AESTHETIC INDUSTRIAL
predominates in predominates in predominates in

FRANCE. GERMANY.  GREAT BRITAIN.
Figure 1. The history of spatial curricula in the 19" century in some European countries.

Hence, following these historical variations in educational trends, back in 20th
century many European countries put a strong emphasis in geometry curricula on
the traditional Euclidean geometry (JMC, p. 31). Conversely, Croatia, as a his-
torical part of Austro-Hungarian Empire, mostly followed the central European
approach in spatial geometry within the subject descriptive geometry. Thus, as
Stachel (2015) points out for the central European countries, descriptive geometry
as a subject in the hierarchy of sciences, is placed somewhere within or next to
the field of Mathematics, but also near to Architecture, Mechanical Engineering
and Engineering Graphics (Stachel, 2015). Even today its specificity at many
technical faculties in Croatia is focused on making mathematics more applicable
to engineering education through the promotion of the spatial reasoning and its
graphic representation within the area of projective and synthetic geometry (Hor-
vati¢-Baldasar and Hozjan, 2010; Weiss, 2015; Stachel, 2015; Weiss, 2015).

Furthermore, in connection to the historical development of the spatial rea-
soning in mathematics, an examination of the history of higher education in 20"
century revealed, as Horton (1955) interestingly puts it, that often the Euclidean
geometry has been treated as a prerequisite to collegiate matriculation aiming at
three basic needs that Euclidean geometry filled at the time: the necessity for higher
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education, the screening device of the unfit for higher education, and the devel-
opment of a way of reasoning. Thereat often only the Euclidean plane geometry
was studied. Naturally, some of the above-mentioned educational outcomes were
questioned over the past decades, either by the mathematicians and math educators,
either by the psychologists or some other educators, and there have been substantial
changes in geometry education in the second half of the twentieth century over the
countries (Davis et al., 2015 p. 48; JMC, 2001, p. 31; Lawrence, 2003; Weiss, 2015;
Stachel, 2015). Unfortunately, the overall geometry content changes in primary
and secondary education are being less visible in the 21*" century mostly because
of the new “outcomes to competence oriented curriculum” (Horvati¢-Baldazar and
Hozjan, 2010; Kovacevi¢, 2016). But, the Working group on the teaching and
learning geometry 11-19 in UK states for example that basic changes are mostly
regarding the increasing emphasis on the “applicable” geometrical content em-
bodied in coordinate geometry, vectors and transformations, at the expense of the
“purer” mathematics of classical Euclid (JMC, 2001 p. 31).

Furthermore, it is important to note that nowadays, in connection to math-
ematics education, the importance of spatial reasoning is recognized beyond the
limits of geometry, and the existing literature provides a firm basis for a conclusion
that spatial ability and mathematics share cognitive processes beginning early in
development (Cheng and Mix, 2014 p. 3; Davis et al. 2015; Jones and Tzekaki
2016; K-12, 2014, p. 3). So, spatial reasoning seems to become crucial at the very
beginning of the math education.

On the other hand, it seems that the influence of the non-mathematical re-
searches becomes larger in some areas of the mathematics, given the continuing
expansion of the important role of mathematical education in science and contem-
porary society. Some argues that that may again become a misfortune for teaching
and learning geometry at the higher education levels (Jones and Tzekaki 2016;
Kovacevi¢, 2016; Stachel, 2015; Weiss, 2015). Also, there are still some who
follow the viewport of studies going after a seemingly paradoxical hypothesis:
even though spatial abilities are highly correlated with entry into a STEM field,
they actually tend to become less important as a student progresses to mastery
and ultimately expertise (Uttal and Cohen, p. 157). In other words, some believe
that spatial reasoning is of less importance as progress in a STEM field increases.
But, even if the mentioned assumption turns out to be true for some science dis-
ciplines (or some areas of mathematics), there are still areas strongly relying onto
spatial and visual abilities in their reasoning processes even in their expertise level
(Weiss, 2015; Stachel, 2015; Gorjanc and Jurkin, 2015). Furthermore, it remains
questionable, whether (and when) one should be focusing in mathematics on the
development of the spatial ability per se, and when on the spatial reasoning, or on
spatial thinking.

There are many didactical and cognitive problems in connection to the role
of spatial reasoning in math that are still waiting to be solved (Jones and Tzekaki
2016; Davis et al. 2015).

For example, how learners’ mathematical /spatial reasoning is influenced by
the ways in which geometric objects are represented? Or, how can one analyze the
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spatial /reasoning processes involved in mathematical activity? Does mathemati-
cal activity require only one common cognitive process, or, indeed, certain very
specific cognitive structures whose development must be taken care of in teaching?
Namely, as Tartre (1990) pointed out in her study of the role of spatial orientation
skill in the solution of mathematics problems, it is questionable whether any attempt
to verbalize the processes involved in spatial thinking ceases to be spatial think-
ing. Also, a French psychologist R. Duval discovered many didactical problems
when analyzing the cognitive model of mathematical, and particularly geometrical
reasoning, as well as the use of, today inevitable, graphical representation in math-
ematics (Duval, 2002). He studied how visualization works towards understanding
in mathematics, aiming thereby at the important fact pointed out by Sorby (2009)
that the graphical expression in engineering field is both a form of communication
and a means for analysis and synthesis. Duval further claims that representation
in mathematics becomes usable only when it involves physical things or concrete
situations (Duval, 2002, p. 333).

To conclude, although many new results regarding malleability of spatial rea-
soning are encouraging (Davis et al., 2015, p. 85), and the fact that spatial abilities
can be improved through education and experience may suggest that spatial ability
training can improve math performance (K-12, 2014, p. 6), our focus in this paper
is not onto spatial ability per se but on the applicable geometry, or as some refer
to it as “vision guided spatial reasoning”, i.e. descriptive geometry (Stachel, 2015;
Gorjanc and Jurkin, 2015; Kovacevié, 2016).

Furthermore, in this paper the reader may spot the author’s often mixing the
use of terms “spatial reasoning”, “spatial thinking” and “spatial ability”, purely
because of the recent review of the research literature. Therefore, only for the
purpose of this paper, in the rest of the section we will briefly clarify these no-
tions, primarily emphasizing their inevitable interrelation. Namely, while some
papers explicitly distinguished the terms in question, others did not. Also, some re-
searchers suggest how this tendency of “mixing notions” is particularly prominent
in areas of the mathematics sciences associated with geometry whereas geometry
is being marginalized in many mathematics curricula unlike 3D geometry and as-
sociated spatial reasoning that is, according to various researches, widespread over
a number of applied areas (Clements and Sarama 2011; Davis et al. 2015, p. 12;
Jones and Tzekekaki, 2016; Kovacevic, 2016).

2.1. Spatial reasoning, spatial ability or spatial thinking

For example, Clements and Battista (1992) used the first notion, “spatial reasoning”
purely in connection to the specific set of cognitive processes by which mental rep-
resentation for spatial objects, relationships and transformations are constructed
and manipulated (p. 420). Interestingly, they further described the “school geom-
etry” as the study of those spatial objects, relationships and transformations that
have been formalized (mathematized) and the axiomatic mathematical systems that
have been constructed to represent them (p. 420), mainly pointing at the traditional
Euclidean geometry that was, for a long time, synonym for the school geometry in
many countries (JMC, 2001, p. 31).
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However, in connection to the spatial reasoning mentioned in the title of this
paper, Clements and Battista further distinguished the use of the term “spatial
thinking” in connection to the scientific mode of thought used to represent and
manipulate information in learning and problem solving (p. 442). They probably
aimed at the suggestions of some researches that spatial ability and visual imagery
play vital roles in mathematical thinking (p. 443). Namely, spatial thinking was
often perceived as one of different modes of thinking in mathematics. Its impor-
tance is recognized and emphasized also in the lifelong education in the definition
of the mathematical competence as one of its eights key competences (EFQ, 2006;
Kovacevi¢, 2016). Some even argued, following Einstein’s comments on thinking
in images, that much of the thinking required in higher mathematics is spatial in
nature (Duval, 2002; JMC 2001, p. 55; Newcombe 1980). But, as we have already
pointed out, researchers had, and still have, their own different descriptions or
subtle distinctions.

For example, Duval (2002) sees reasoning only as a part of visualization
process, claiming further that representation and visualization are at the core of
understanding in mathematics thinking (p. 312). But, he argues that representation
becomes usable in mathematics only when it involves physical things or concrete
situations (p. 333).

On the other hand, Jones and Tzekaki (2016) also emphasize the inevitable
overlapping of geometrical visualization and spatial reasoning, whereby they take
visualization to be the capacity to represent, transform, generate, communicate,
document and reflect on visual information (p. 114), and they associate the process
of geometrical reasoning to the deductive reasoning and proof (p. 124). Further-
more, regarding visualization, they have pointed out in their comprehensive review
of recent research in geometry education that visualization is indispensable in prov-
ing and problem solving, but visual representations or processes they develop are
not always effective in solving or proving relevant tasks (p. 117).

Newcombe (2010) is more focused on purely psychological aspect of the spa-
tial thinking and in her studies spatial thinking is defined by the four tests (3D
spatial visualization, 2D spatial visualization, mechanical reasoning and abstract
reasoning) used to assess it (p. 31).

Thus, nowadays in some papers/studies various terms are used interchange-
ably, or with subtle distinction demands, aiming sometimes at “spatial reasoning”,
as a thinking process particularly important in the development of mathematical
competence (EFQ, 2006; JMC, 2001; K-12, 2014; Kovacevi¢, 2016; Stachel,
2015), and sometimes aiming at “spatial reasoning” as spatial skills (Clements and
Battista, 1992; Sorby, 2009; Milin éipué and éiimeéija, 2012). Or sometimes even
using the terms “thinking” and “reasoning” interchangeably (for example Davis et
al., 2014, p. 5 or K-12, 2014, p. 3).

It is also important to note, from the mathematical point of view and in connec-
tion to the teaching and learning processes, that mathematical educators sometimes
distinguish between the competences “thinking mathematically” and “reasoning
mathematically”, whereby the first competence includes the recognition of math-
ematical concepts and an understanding of their scope and limitations (Alpers
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et al., 2013, p. 13), and the second one includes the constructions of chains of
logical arguments and of transforming heuristic reasoning into proofs (for details
on general mathematical competencies for engineers see Alpers et al., 2013).

In this paper, the focus is on the development of the mathematical competence
as a whole, and the term “spatial reasoning” is used merely to emphasize the spatial
aspect of higher cognitive mode of thinking particularly significant in the teaching
and learning of geometry at the technical faculties, more precisely in our case, of
descriptive geometry, the mathematical subject in question discussed in the third
section of this paper. Also, in this paper we shall continue to take “spatial rea-
soning in mathematics” to be the “geometrical reasoning” (Bishop, 1986; Jones
and Tzekaki, 2016; Kovacevié, 2016) aiming thereby not just on Euclidean spatial
geometry but also on projective geometry (Lawrence, 2003; Stachel, 2015; Weiss,
2015) that deals with three-dimensional objects and their plane representations.

3. Descriptive geometry with computer graphics at the Faculty
of Mining, Geology and Petroleum Engineering

Descriptive geometry has been a part of applicable geometry dealing with meth-
ods which aim to study 3D geometry and providing an important theoretical basis
on which all the modern graphical communication was built. It enables insight
into geometrical structure and metrical properties of spatial objects, processes and
principles. Typical for it is the interplay between the 3D situation and its 2D
representation, and between intuitive grasping and rigorous logical reasoning.

DG DGCG

® 1st semester, 2 + 2 * 2nd semester, 2 + 2
* lectures for 15 weeks e lectures for 15 weeks
o exercises for 15 weeks * exercises for 10 weeks
e computer lab for 5 weeks

Figure 2. Descri&tive geometry curriculum at the Faculty of Mining,
eology and Petroleum Engineering.

Descriptive geometry at the Faculty of Mining, Geology and Petroleum Engi-
neering is focused on the developing a set of learning outcomes of basic knowledge
of natural sciences and technical fields important for the scientific fields of mining,
petroleum and geological engineering. It is currently taught within two obliga-
tory courses: Descriptive geometry (DG) and Descriptive geometry with computer
graphics (DGCG), each within one semester (for about 180 students per each
course) as it is shown in Figure 2.

3.1. Subject contents and methods of teaching

The last content changes within the courses DG and DGCG were made in
2013/2014. From the content point of view, there has been no substantial changes



52 Nikolina Kovacevi¢

from the traditional subject content of descriptive geometry besides reducing the
scope of course geometrical content primarily regarding the more complex geomet-
rical structures (Horvati¢-Baldazar and Hozjan, 2010). However, today emphasis
is not being placed on the education of practical techniques, but on teaching the the-
ory behind the specific techniques and the development of associated mathematical
concepts. The subject is also responsible for establishing the foundation of mathe-
matical representational systems and the use of various drawing tools important in
graphical communication of engineers.

Although both courses are taught with hand drawing (sketching as well), com-
mercial graphic processing software is being used by students only in DGCG.
Namely, after basics of geometry of projection (extended Euclidean space objects
— affine and projective transformations) and of two- and three-dimensional objects
(basic plane and space curves, surfaces, solids) are introduced in the DG, together
with some basic descriptive geometry relations and constructive principles (per-
pendicular relationship, piercing points, plane intersections, intersection of two
solids), the experience of Computer Aided Design (CAD) software is introduced
as one of the educational objectives in DGCG.

However since the focus is on geometry, CAD software is used through geo-
metric problem solving and modelling. In doing so, problem solving in descriptive
geometry involves the planning and implementation of the 2D representations of
3D objects and the corresponding relations, both in the plane and in the space,
using appropriate tools, methods and principles. Furthermore, modelling in de-
scriptive geometry means transferring previously analyzed data in a simplified and
idealized geometric shape. An example of such activities is decomposition of com-
plex structures from the actual context into geometrical objects and recognition of
relationship between objects used within the computer lab exercises.

There are some content overlapping in both courses (DG and DGCG) that
allow simultaneous approach to the same problem situation using various descrip-
tive geometry methods. During the teaching process, this overlap enable constant
comparison of advantages and disadvantages of different methods and principles
used within the subject.

It should also be noted that the future professionals of mining, geological and
oil profile, in contrast to, for example mechanical engineer, require knowledge not
only of classical orthogonal projections and axonometric, unavoidable for computer
graphic, but of other methods of descriptive geometry, particularly the projections
with elevation which is used for solving various mining and topographic problems
in relation to engineering profession.

3.1.1. Exercises in Computer Lab

Most of the educational e-materials used within the computer lab exercises were
made during the year 2012 on the joint project of four technical faculties of the Uni-
versity of Zagreb with twelve participating teachers. Within the project the repos-
itory consisting of about 50 five-min videos helping to learn basics of Rhinoceros
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3D modelling was produced (for details on the project see Gorjanc and Jurkin,
2015). Further developments were made during the years 2015 and 2016. Namely,
because of the implementations of higher standards of qualifications and occupa-
tions in mining and geology in accordance to the Croatian Qualification Framework
(CROQF), additional course implementations were made within the project TAR-

GET by raising the level of e-learning technology in both DG and DGCG.
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For the purpose of the courses DG and DGCG, and with a view to facilitating
the initial work with commercial CAD programs, following mostly modern me-
thodical principles regarding the teaching of descriptive geometry, 2D-CAD and
3D-CAD parts are divided into areas shown in Figure 3 and Figure 4. Only some
of the mentioned topics were covered within the courses, and the overall subject
contents regarding computer graphic in DGCG part are shown in Table 1.

Table 1. Subject contents of CAD modelling within DGCG at the Faculty of Mining,
Geology and Petroleum Engineering

1* time-block 2" time-block
3D — CAD modelling:
Guidance, 1 week Operations, Transformations, Ex-
Interface of Rhinoceros 3D trusion Working planes and working
axes
2D — CAD modelling: Application of descriptive geometry
15" week | Tools, Editing operation Coordi- | ynd yoor procedures to solve spatial problems
nate systems: WCS, UCS, Objects, (Regular polyhedral, Shortest dis-
Transformations tance problems, Terrain and layer)
3D — CAD modelling: . T
2 \week | Guidance, Viewports, View control, 3" week (Tg\slgrg%l;;gid]r\l’ggﬁst)%ks
Objects, Editing operations g

Hence, exercises in computer lab (90 min time per slot per 5 week) were
divided into two time-blocks (2 + 3 weeks). The basic guidance information about
the interface of Rhinoceros 3D, views, viewports and work with layers are pro-
vided through e-materials by using e-learning platform Merlin, the system based
on the learning management system Moodle. The students were encouraged to
learn interface basics on their own by watching videos at home. After that, in each
time-block, for each unit, first brief lectures are given concerning related topic and
then the operational methods of Rhinoceros 3D, as a representative of Computer
Aided Design (CAD) software, are taught using simple examples. During the
course, and particularly in between the time-blocks, students were given time to
improve their abilities with ICT on their own by further watching videos at home
or in the computer lab, under teacher assistance if needed.

Thus, in the 2" 3-week teaching block, students had to use their knowledge
to solve problems typical for descriptive geometry on their own, after solving one
or two similar tasks on the spot with teacher. Details of the assignments are shown
in the following section.

Importantly, from 2005 —-2012 AutoCAD was used as the main graphic pro-
cessing software, but since 2013 Rhinoceros is being introduced as a CAD repre-
sentative. These software changes within the course were made mostly for two
reasons. Firstly, to facilitate the teaching and learning process in the course in ac-
cordance with recent changes in the undergraduate study programs. These changes
allowed, in the same working time, more accent to be placed onto basic knowledge
of mathematics and mathematical principles in problem solving, and not on the
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computer work with more and more complex commercial software at the very be-
ginning of the study. Namely, rapid changes in commercial software industry cause
constant changes in software interfaces and increase of the complexity of applica-
tion programming tools. Hence, there is an inevitable move of educational focus
from purely developing the students’ mathematical competence also to the teach-
ing and learning specific software-version techniques and procedures. In order to
facilitate the synergy between various educational goals, a more geometry friendly
commercial software Rhinoceros 3D was chosen as a CAD representative. And
secondly, as a result of harmonization of educational standards on various technical
faculties at the University of Zagreb within the previously mentioned project, a
basic repository providing adequate e-materials was made using Rhinoceros 3D.
This repository facilitates the educational process for both, teachers and students.
For a number of teachers, the joined database of preparatory materials is available
for use, and for students, a large amount of e-materials, including video-lessons,
allowed them to individually choose the time and place for qualitative learning.

Before reporting on the activities used within the course DGCG, let us discuss
some didactical principles of importance for the chosen activities.

3.1.2. Some didactical principles

Firstly, it is important to note that there is a growing number of mathematicians
and mathematics educators that find well-known thinking frameworks like the Van
Hiele’s or Piaget’s ones helpful only in the first access to geometry by young
children (Davis et al., 2014), but unfit when it comes to teaching geometry at
higher educational level, such as high school or university levels, (ICME-13, 2016;
Kuzniak et al., 2007).

Furthermore, although both courses, DG and DGCG at the Faculty of Mininig,
Geology and Petroleum Engineering combine different didactical principles in the
teaching process, for the purpose of this paper and in connection to the teaching
descriptive geometry, particularly interesting is the Duval’s theory on figural appre-
hension in mathematical reasoning, especially in geometrical reasoning and work
with geometric drawings and computers (Duval, 2002; ICME-13, 2016; Jones,
1998; Kuzniak and Richard, 2014).

Duval also proposes the synergy of three cognitive process necessary for pro-
ficiency in geometry which fulfil specific epistemological functions. Those are:
visualization, construction and reasoning (see Figure 5, from Jones, 1998). His
work on cognitive process level, important for geometry and mathematics as well,
was further adapted by Kuzniak and Richard (2014).

All three processes are included in geometrical reasoning and can be performed
separately. However, Duval emphasizes, visualization doesn’t necessarily depend
on construction and it doesn’t always help reasoning. The reasoning process, on
the other hand, can be developed in an independent way of two other processes
included. In the Figure 5 below, each arrow represents a direction in which one kind
of cognitive process can support another kind in any geometrical activity. As it can
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be seen, the construction process, that is in the focus when it comes to application
and practice, depends only on connections between relevant mathematical proper-
ties and the constraints of the tools being used and cannot be directly supported by
visualization.

Visualization

Identification of gestalts and configurations in 2D or 3D.
Depends on particular laws which are independent of
the way of construction or of the discourse.

a4 2
R
@) 5(8)
Construction Regsoning
3 7 Natural speech (inner of external)

Using tools: ruler and compass, available
€

L . . B. Propositions with the theoretical
primitives in a geometrical software

status of definition, theorem... for
deductive organization of discourse

Figure 5. The underlying cognitive interactions involved in geometrical activity.

Hence, in order to achieve an ultimate goal of mathematical education of
engineers, which is according to SEFI group to make engineers mathematically
competent (Alpers et al., 2013, p. 65), activities focusing on a particular cognitive
process are often included in the course, whether students are to work individually
(at home or in the class) or in pairs, in parts of lessons with individual or mixed
interaction.

3.1.3. Example of activities

Practicing visualization tasks

Over the years we have noticed a growing number of students at the Faculty
of Mining, Geology and Petroleum Engineering having trouble with simple visual-
ization of basic geometric objects based on the given data. Since these visuospatial
abilities are prerequisite for their further study in technical fields, we have consid-
ered a set of different visualization tasks that are offered to students in the class at
the very beginning of the course, lasting 15 to 20 minutes. These tasks mostly serve
students to detect, if there are, their basic visuospatial problems and to encourage
them to work on it. Further visualization tasks, aimed at further improvement
of student visuospatial skills, are offered to students individually for home-based
practice. Examples of visualization tasks are given in Table 2.
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Table 2. Examples of visualization tasks.

& Orthogonal projection
sl a) Given the object, draw its principal
L views (top, front, left side) in the
0 prepared grid (left image).
- {_, | b) Given three principal views of an
e object, determine its image in the

prepared coordinate system (right
image).

Congruent transformations
a) Given the mirror plane X, draw a
mirror image of the given object in
the prepared grid.

b) Rotate the object around the z-axis
and draw its image in the prepared
grid.

Positioning and metrical tasks

Since geometry originated from practical needs, the geometric courses nec-
essarily combines not only mathematical content but, in our case, mining and
topographic content specific to geology, mining and petroleum engineering. Many
of the problems included are based on construction tasks and tasks on sets (loci) of
points with certain properties. Within each course, DG and DGCG, three individual
geometrical problems are given to each student. Four of them are focused purely
onto mathematical content, and only two combine specific geological contents with
mathematical concepts.

Examples of two individual mathematical tasks were given in Table 3 were
hand drawings are made by students. Both examples require students first to trans-
form some spatial problems into a graphical one. They should think of representing
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spatial objects by a two dimensional drawings by means of some pictorial overview
(representing mathematical entities). The requirement of the use of point coordi-
nates emphases the mathematical understanding of spatial relations as well as the
understanding of projection method, which in this case is the Monge projection.
During the course the same construction problems are solved by applying different
projection methods and by CAD.

Table 3. Examples of student individual mathematical tasks by using Monge projection.

Example 1.

Draw principal views (top, front ad left
side) of the square ABCD [a = 4] and
its inscribed circle if it is perpendicular
to plane 7, makes an angle of 45° with

I
' =" 7y, and its two sides are perpendicular
/ \ Y / to m having its bottom foreground vertex

A(3,6,2). Choose any profile plane 7y so
that the square ABCD will be projected on
that plane in its true size.

~<<

Example 2.

There are given plane P(2,—1,2.5) and
line a = A1A[A1(—1,4,0),A5(4,0,4.5)].
Using the Monge projection determine the
intersection of line a with plane P.

A,

Reading the first example, students have to reason about the properties of
the square and corresponding properties of the projection method (mathematical
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thinking) in order to solve the problem, thinking of various possibilities of square
position in space (modelling mathematically). In the second example, after graph-
ically representing the given objects, to solve the problem student must understand
the spatial relations among objects and then choose one of the constructive princi-
ples taught within the course to determine the piercing point. The task is solved by
adding additional profile view in which the given plane appears as a line.

Student Self-Assessment Test

Within the e-learning platform Merlin students were given three tests as a
student self-assessments tasks, available for them to be taken anywhere, at any
time. The tests were created by a randomized selection of questions out of a larger
question bank so that students could do each test many times.

. Na slici je d: i u Kak loZ i kcije? D: i
Dane su tlocrtna i nacrta projekcija dvaju rotacijskin valjaka. Spoji odgovarajuce slike s vrstom prodorne a sl je dana ravoiie VORI 2ESYDS; ko e ona polodena prema slavrim rvninama projekhe: Dars cavima je

krivulje:

Odaveri.. v My Odaveri |y | Odaveri. s

[

kosa prema ‘
e jednodijelna krivulja s paraleina s n
_____ [Povuci odgovor ovdje dvostrukom tockom okomita na 6/ N
dvodijelna krivulja - potpuni ‘ i
rodor ‘
krivulja s dvje dvostruke totke
‘:::f" na dvije krivulje nizeg Kruznica koja le2i u danoj ravnini u tlocrtu ée se projiciratiu | Odaberi v ,unactuu  Odaberi v ,au
bokocrtuu| Odabert.. ¥
jednodijelna krivulja - zador poer
Presjek sfere s ravninom moZe biti
Odaberite jedan li vide odgovora:
e ke
© b. kruznica
O c. parabola
O d. elipsa
Na slicije dan nacrt uspravnog kruznog valjka s osnovkom u M presjecenog prometalicama druge
skupine
1
| ___________ ‘i | Povuci odgovor ovdje |

Ravnina 1 sijece plast danog valjka po| Odaberi + | aravnina2po

Odaberi
ma

(hiperbolitnom luku)
elipsi (eliptiénom luku)
paraboll (parabolinom luku)

d)

a)

Figure 6. Some task examples of different self-assessment tests.

The tests were optional and their results were not used for students’ grading,
but to give students an opportunity to identify where their knowledge was weak and
to revise their work. Due to the specific course interdisciplinary learning outcomes,
computer-supported on-line assessments were very simple and short, mostly con-
sisting of a number of multiple-choice questions some of which are shown in Figure
6, combining graphic representation and applying mathematical knowledge within
concrete graphical situation.
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<

Also, some of the given tasks required students’ “pure” factual mathematical
knowledge demonstration. The last year results pointed out that students were less
successful when the formulation of questions was similar, but not exact, to those in
the textbook. However, the number of students taking the tests was not representa-
tive, since the test was at this phase optional. Once a suitable set of questions are
imported in the system, the system will provide students continuous on-line sport.

We may also note that teachers can also benefit from using such tests. For
example, the overall students’ weak spots could be detected, due to the specific
concept-oriented tests, further providing teachers with valuable sources where to
put additional focus when teaching.

Computer Lab Assessments

The subject descriptive geometry at the Faculty of Mining, Geology and
Petroleum Engineering is organized so as to follow ideas of two sets of learn-
ing outcomes (CROQF proposal — level 6) of what student is supposed to acquire:

e basic knowledge of the natural sciences in the area of mining, geology and
petroleum engineering

e technical knowledge in the area of mining, geology and petroleum engineering.

The 1 time-block tasks in the computer lab were more or less similar to those
taught at various engineering drawing course aiming at the development of the ICT
skills, i.e. in this case CAD modelling skills, important for the technical engineers
in their future jobs. Those tasks were mostly focused onto the development of the
construction (using tools) and visualization processes, already highlighted in the
Duval’s cognitive model of geometrical reasoning.

However, the 2"¢ time-block tasks are more problem-oriented, focusing onto
reasoning process. In other words, the simple tasks were chosen with a specific
goal: to emphasize the importance of mathematical knowledge in the problem
solving activities. To solve this problems, student first had to understand that
mathematics can do the job. Only after that some computer modelling, using tools,
should take place.

Some of the tasks examples are given in the following table 2. Sometimes the
same problem tasks were solved by various descriptive geometry method; either
using Monge’s projection, or projection with height, or axonometric projection, or
by using CAD program. The tasks given in Table 4 contribute to the achievement of
two course learning outcomes of what student is supposed to be able to demonstrate
after he/she has completed the course DGCG:

e to apply basic mathematical knowledge in solving spatial problems
e to use appropriate software to address the technical and mathematical problems.
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Table 4. Examples of learning activities in the 2" time-block in the computer laboratory.

Zadatak 4:

. * Konstruirajte presjek rotacijskog stosca [os SV, S(6,0,6), V(6,10,6), r=5, osnovica u I1] ravninom
P(4,-2,3).

+  Konstruirajte tangentu u tocki T presjecne krivulje, ako ta tocka lezi na donjem dijelu stosca, a
drugo probediste njezine izvodnice je totka Np(7,0,-). Tangentu konstruirajte kao presjecnicu
tangendijalne ravnine stodca i ravnine presjeka.

* Razvijte plast stosca s presjecnom krivuljom.

XN ©
R

Zadatak 7:
Konstruirajte presjek kugle [S(-4,4,4), r=3] ravninom P(-6.5,-5.5,5.5).
» Odredite tangencijalnu ravninu kugle i tangentu presjecne krivulje u tocki T(-,-,5.5) na lijevoj strani plohe.

To successfully solve them, student should be able to:
e understand the use of the basic orthographic views of elementary solids
e understand the basic concepts of geometric congruence transformations in space
recognize examples of an affine transformations (oblique parallel projection)
recognize and use the plane-intersections of elementary solids
understand and distinguish the concepts of tangent line and tangential plane
understand the basics of 3D co-ordinate geometry.

4. Conclusion

With the expansion of higher education, the number of pupils entering technical
faculties in Croatia that have had limited experience in their formal education in
spatial activities (be that the spatial abilities or the spatial reasoning/spatial think-
ing process) has been growing. Also, the number of pupils that have finished
gymnasiums programs and have entered various technical faculties is at the mo-
ment increasing in Croatia. At the Faculty of Mining, Geology and Petroleum
Engineering there is already up to 40 % of gymnasium graduates. Consequently,
many undergraduates are not properly equipped to deal with a large amount of
spatial content used within their scientific courses. The author’s many years of
experience in teaching geometry at tertiary level have shown that many students
often lack “spatial experience” not only in the case when dealing with basic 3D
objects and relations, but even with 2D objects when they are placed in space. And
naturally, when students lack experience it is hard to sort their knowledge into any
system of a knowledge in a logical order.
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Hence, although there is a never ending discussion what comes first, theory
or practice, author firmly follows conviction that the basis for learning practical
geometry at the tertiary level should be clarifying and fixing in mind basic geo-
metrical concepts and principles, and only then applying these “knowledge-tool”
for solving specific engineering construction problems. Geometry education still
can provide both: a means of developing learners’ spatial visualization skills and
a vehicle for developing their capacity with deductive reasoning and proving.

Namely, much of basic science in technical fields requires good mathemati-
cal knowledge and skills, not only in numeracy, but also in dealing with spatial
reasoning, intimately related to geometry. A broader geometrical education, in-
cluding knowledge of various curves and solid/surface shapes (and their visual 2D
representatives), projection methods (orthogonal projection, parallel projection,
central projection. .. ) and different congruence and non-congruence 3D transfor-
mations, is needed to provide some of the foundations upon which mathematical
understanding could be built.

Furthermore, visual aspect of geometry also underpins much of information
technology and lately relies a lot on computer graphics demanding higher ICT skills
of both, teachers and students. These strong links between geometry and technol-
ogy are also important because geometry needed for proficiency in many technical
fields exceeds far beyond traditional Euclidean space geometry and deeply enters
the area of affine and projective geometry, which in general is not taught at many
technical faculties in Croatia.

Thus, regarding the spatial reasoning in mathematics we may conclude, ac-
companying numerous educators, the following:

e one unified and wide accepted definition of spatial reasoning does not exist

e there is a converging agreement on the importance and malleability of (vi-
suo)spatial reasoning among researchers in various scientific fields (psychol-
ogy, mathematics, technology, engineering, didactics...) for it can support
learning and communication

e and most importantly, regarding its connection to mathematics, we may follow
Kuzniak who said that ... it appeared that rather than focusing on thinking
first, it would be more efficient to define and study what kind of geometrical
work was at stake in geometry teaching and learning. In this trend, study-
ing geometrical thinking remains a basic and fundamental problem but drawn
by geometry understanding in a school context rather than in a laboratory
environment.” (Kuzniak et al., 2007, p. 956)
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Prostorno rasudivanje u matematici
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SaZetak. Uz sve vedi interes za prostornim rasudivanjem, potaknut
razvojem snaznih vizualizacijskih programa i racunalne geometrije,
vazno je razjasniti Sto se podrazumijeva pod prostornim rasudivanjem
u matematici. Polazeéi od gledista razli¢itih matematickih edukatora,
ostvarenje istog obrazovnog cilja razvijanje prostornog rasudivanja
ne ostvaruje se uvijek na isti nacin u matematici kao i u drugim
znanostima.

Dakle, premda prostorne sposobnosti mogu biti same po sebi
intelektualno zanimljive, u ovom se radu fokus stavlja na njihovu
povezanost s poucavanjem i uenjem geometrije na tehnickim fakul-
tetima. Nadalje, detaljno e se opisati kolegij Nacrtna geometrija
s racunalnom grafikom koji je nastao na Rudarsko-geolosko-naftnom
fakultetu u Zagrebu slijedeci suvremene trendove razvoja geometrijskog
obrazovanja. Koristedi izmedu ostalog i tradicionalne geometrijske
metode reprezentacije, kolegij se ne usmjerava samo na podizanje
razine graficke i vizualne komunikacije i razvijanje prostornih sposob-
nosti pojedinca, koje imaju klju¢nu ulogu u obrazovanju inZenjera,
ved i na razvoj sposobnosti deduktivnog rasudivanja te koriStenje raz-
licitih alata i pomagala u matematickom obrazovanju inZenjera. U
radu se raspravlja i o utjecaju racunalne tehnologije na geometrijsko
obrazovanje slijedeéi smjernice SEFI — matematicke radne skupine.
Dani su i razliCiti primjeri studentskih vjezbi kako bi se prikazale
brojne mogucnosti koje se nude studentima kroz razvoj inovativnih
1 interaktivnih obrazovnih metoda istovremeno primjenjivih u ucenju
matematike prostora i uskladenih sa specifi¢nim studentskim intere-
sima.

Kljucne rijeci: prostorno rasudivanje, nastavna pomagala, racu-
nalna grafika, visoko obrazovanje, e-ucenje
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The football {S, 6, 6} and its geometries:
from a sport tool to fullerens and further

Emil Molnar*, Istvan Prok and Jend Szirmai

Budapest University of Technology and Economics, Institute of Mathematics, Hungary

Abstract. This presentation starts with the regular polygons, of
course, then with the Platonic and Archimedean solids. The latter ones
are whose symmetry groups are transitive on the vertices, and in addi-
tion, whose faces are regular polygons (see only I. Prok’s home page
[11] for them). Then there come these symmetry groups themselves
(starting with the cube and octahedron, of course, then icosahedron and
dodecahedron). Then come the space filling properties: Namely the
cube is a space filler for the Euclidean space E3. Then we jump for the
other regular solids that cannot fil E3, but can hyperbolic space H?, a
new space. These can be understood better if we start regular polygons,
of course, that cannot fil E? in general, but can fil the new plane H?, as
hyperbolic or Bolyai-Lobachevsky plane. Now it raises the problem,
whether a football polyhedron — with its congruent copies — fil a space.
It turns out that E* is excluded (it remains an open problem — for
you, of course, in other aspects), but H can be filled as a schematic
construction show this (Fig. 5), far from elementary. Then we mention
some stories on Buckminster Fuller, an architect, who imagined first
time fullerens as such crystal structures. Many problems remain open,
of course, we are just in the middle of living science.

Keywords: Mathematics teacher as popularizer of science, Pla-
tonic and Archimedean solid, tiling, Euclidean and non-Euclidean
manifold, crystal structure, fulleren

Mathematics Subject Classification 2010: 57M07, 57M60,
52C17.

1. Introduction

After the above abstract we start with the regular n-sided polygons and its symmetry
groups, generated by two line reflections a and b with relations 1 = a’> = b? =

*Corresponding author.
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(ab)”, i.e. the edge bisector line a and angle bisector b intersect each other in the
centre O of the n-gon in angle /n. Then come the 5 regular Platonic solids with
symbols (p,q) : (3,3) = tetrahedron (self dual), (3,4) = octahedron, (4,3) =
cube, (3,5) = icosahedron, (5,3) = dodecahedron.

These can also be derived by an elementary observation, which asserts that the
angle of a regular Euclidean p-gon is (p — 2)7/p (the angle sum of a (say convex)
p-gon is (p — 2), since it can be divided by p — 3 diagonals, from any vertex, into
p — 2 triangles, each having an angle sum 7 = 180°). So ¢ pieces of them meet at
a vertex (with non-plane vertex figure), if

-2) 1 1 1
alp —2)n <21 < (equivalent to) ;< t

p P q

a necessary condition. This will be sufficient if we think of a spherical triangle
(so-called characteristic triangle) with angles 7/2, /p and /g (with angle sum
larger than 7, generating the above vertex figure.

Figure I. A projective coordinate triangle to our fundamental triangle Ag A; A,.
The plane by form class b! (e.g.) describes the line Ay A;. The point by
polar vector b! =b! = b'%a + b''a; + b'?a, =: bVa; is its pole.

In more general extension, (p,q) and (g, p) are dual pairs: as the octahedron
and cube, icosahedron and dodecahedron, above. To the symmetry group G we have
3 generating plane reflections, denoted by b°, b, b> (with the corresponding planes
b',i € {0,1,2}), and defining relations: 1=b°b° =b'b! =b’b> =(b°b')? =(b"b?)?
=(b'b?)9, as the Coxeter-Schliifli diagram
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0 1 2
O O (L.1)

indicates this with nodes o for the reflection planes, and the branches p and g for
the relations above. If two nodes are not connected then their reflections commute
(with their orthogonal planes, the product order is 2 then). Thus the tetrahedron
group is of order 24, as the symmetry group G of the platonic solid are in general of
order |G| = 4n/(n/p+ n/q— m/2). Namely, the surface area 47/R? of the sphere
S? of radius R is divided by the area (with angle excess R*[(n/p+1t/q+ 7 /2) — 7))
of the fundamental triangle of G (see the above elementary observations as well).
For octahedron and cube we have 48 symmetry elements, for icosahedron and
dodecahedron we have 120 elements for the symmetry group G.

At the same time we can introduce the so-called Coxeter-Schlifli matrix

(67)

(bl b)) = —cos(%) 1 —cos<g> — (cos(n—BY)).

(1.2)

Figure 2. A well-known Archimedean tiling in the Euclidean plane
with its fundamental triangle.

This is derived from the formal scalar products of the linear forms (normal
unit vectors) b', ordered to the side lines b’ of the characteristic triangle ApA1A;
with angles B°! = ©/p, B = /2, B'> = m/q. By convention, any side line b’
above closes angle 7 with itself, it lies opposite to vertex A;.
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Fig. 1 shows symbolically a (2 + 1)-(dimensional picture to the projective tri-
angle (simplex) coordinate system, also for the later higher dimensional analogue
ina (d + 1)-(dimensional vector space V¢*! and its dual V1. Here O denotes the
origin from where vectors a; = OA;(i € {0, 1,2} point to the vertices of triangle
ApA1A,, forms as normal vectors b/ are placed to the side plane b/. See also the
later Fig. 2 for an Archimedean tiling in E?. Thus

al-b’ = 811
(the Kronecker symbol, i,j € {0,1 2} indicates the incidence relations. By the
way, the inverse matrix (a;) = (b¥)~! of the above Coxeter-Schlifli matrix just
serves the distance metrics of the triangle ApA1A,. The side length A;A; can be
expressed from spherical angle by

cos Adi) _ 4 : (1.3)
R a;idji
V 1]
4 3 4
0o 81 2 A%
A 1 -2 o o
_¥2 D
b Sl — 2 . 2 V3 (%)
¥ 2 o o -2 1
Ay B A
4 3 3 4
. * ® . °
o B™ 1 2 3 B* 4

Figure 3. Cube tiling in E* and symbols for it.
Coxeter-Schlifli diagram for the E* cube tiling.

This is related now to the spherical geometry of the Platonic solid above, where

det(b”) = 1 — cos®*(n/p) — cos*(m/q) > 0. (1.4)
. 1 1 1 ..
E.g. for the cube (p,q) = (4,3) we getdet(bV) = 1— it This is more
y 1
critical for the dodecahedron (or icosahedron): det(b¥) = 1 — cos?(m/5) — 1=

~ 0.09549 > 0.

3-4/5
8
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2. Euclidean and non-Euclidean mosaics

If above det(b?) = 0 in formula (1.4),i.e. (p,q) = (3,6), (6,3), (4,4), then we get
mosaic or tiling in Euclidean plane E2. The latter one is the well-known squared
paper. These follow also by the above elementary observations.

But we can assume in formula (1.4) also det(b”) < 0, i.e. then we get an infinite
series for (p,q) = (3,7),(7,3),(3,8),(8,3),...,(4,5),(5,4),(4,6),(6,4),. ..
Above, we can imagine characteristic triangles with angles 7 /p, /q, ©/2, their
sum is smaller than 7t = 180° as it holds for Euclidean plane E>. We have obtained
anew geometry, the so-called hyperbolic or Bolyai-Lobachevsky plane, denoted by
H?. This geometry was discovered and elaborated first, approximately in the same
time and independently, by the Hungarian Janos Bolyai and the Russian Nikolai
Ivanovi¢ Lobacevskii in 1820’s years.

The area of a triangle with angles ¢, 3, v is equal (proportional) to the defect
m— (a+ B +7y) in H2. (This was observed also by the fore-runners of the new
geometry, so by Carl Friedrich Gauss, who played so important role in the life of
Farkas (Wolgang) and Janos Bolyai, see e.g. [9].) Thus the starting tilings (3,7),
(7, 3) have just a minimal characteristic triangle witharea n/2—n/3—m/7 = n/42.

It turned out, that the formulas of spherical geometry S? become true formulas
in H? if we substitute imaginary radius ki = R into the spherical formulas, e.g. into
(1.1) above (i = v/—1 is the imaginary complex unit as usual). Thus, so-called
hyperbolic functions come into the play, etc. So we get a unifying concept, absolute
geometry in the sense of Janos Bolyai, a joint kernel of geometries E2, S2, H?, and
later in any dimension d for E4, 8¢, HY, where the analogy does not remain so easy,
and we have many open problems.

R =) ol
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Figure 4. The Archimedean solid, {4, 6,6} as truncated octahedron
and its Euclidean manifold E? /P21212, = P.
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However, for the above regular tilings (p, ¢) we have a unified theory (see e.g.
[2] and our Sect. 5), where reflection groups (so-called Coxeter groups, as above
in formulas (1.1 — 4)), play important roles.

An interesting topic is the so-called Archimedean or vertex transitive tilings
(mosaics, see Fig. 2) by polygons, where the symmetry group G of the tiling T
acts transitively on the vertices (i.e. all vertices form one equivalence class under
the symmetry group G(7T'). In addition, for nice pictures, we assume that the tiles
of T are regular polygons (they are possibly non-congruent, of course).

The above series of Coxeter reflection groups, denoted by [2, p, ¢] with funda-
mental triangle of angles /2, /p, m/q, each provides nice Archimedean tiling.
E.g. {4,6,6}, where square-hexagon-hexagon meet at every vertex, is the trun-
cated octahedron as a space filler polyhedron of Euclidean space E3. Analogously
{4,8,8}, where square-octagon-octagon meet at every vertex, is a very popular
pavement of our Euclidean streets (Fig. 2, 4). Moreover, {4,10,10} will be a
hyperbolic tiling in H?, see also [4].

Special interest deserves the football polyhedron {5,6,6}, where pentagon-
hexagon-hexagon meet at every vertex (Fig. 5). Thus, we obtain 12 pentagons
and 20 hexagons with 60 vertices at all. This polyhedron can be obtained from
the regular icosahedron (with group [2,3,5] above) by truncating its 12 vertices
each derives a regular pentagon, so that the 20 triangles become 20 hexagons. This
football “plays important role in our life”, of course, and it turned out, this can play
new roles in the structure of new materials as fullerens in crystallography, may be
in non-Euclidean crystallography as follows in the next sections.

3. Space filler polyhedra in Euclidean and non-Euclidean spaces

We know that the cube is a space filler polyhedron, i.e. we can fil Euclidean space
E? with its congruent copies, face-to-face without gaps and overlaps. Namely, this
can be derived by the arguments close to that of the introduction at the Coxeter-
Schlifli diagram and matrix, now especially with (p,q,r) = (4,3,4) with some
extension:

0 A 1 3 2 4 3
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[ —cos(%) 0 o |
Bi)= (b)) = | G) Lo (g> 0
o e(D) o e(®)]

0 0 —Cos (%) 1
= (cos(n—PBY)). '

That means (Fig. 3), we have a characteristic tetrahedron (simplex) ApA1A2A3 =
b1 b2b3 with the cube centre As, with a face centre A,, with midpoint A; of an edge
incident to the previous face, and a vertex Ag of the previous edge. Furthermore,
b = AjAxA; with {i,j, k, 1} = {0,1,2,3} hold. We apply real (left) vector space
V# for points and its (right) dual space V, for planes up to projective equivalences
~ as usual. Vector coefficients are written in rows on the left to column basis; dual
forms with row basis have column coefficients on the right. Forms act on the right
on vectors.

Now the characteristic simplex has a half-turn symmetry 0 <= 3, 1 < 2 as in-
dicated in the extended diagram (3.1). The simple reflection diagram describes the
crystallographic space group 221. Pm3m with so-called primitive cube lattice [3].
The (with half-turn) extended diagram describes the space group 229. Im3m with
body centred (innenzentriert in German) cube lattice. The last assertions indicate
that our topic has important applications in crystallography, describing atomic or
molecular structures, etc. You find [3] in the Internet for free download. We will
extend these concepts to non-Euclidean geometry as well.

4. A Euclidean space form, as typical example

For the later generalization, we analyse Fig. 4 with the truncated octahedron
{4,6,6} as Archimedean solid that can fil Euclidean space E* with its congruent
copies. To this a famous space filler tetrahedron (simplex) ApAA2A3 = b°b'b?b3,
the so-called sphenoid, with extended diagram in Fig. 4 (to the space group 224.
Pn3m) and Coxeter-Schlifli matrix

— 1 1_
) o —— 1 -2 0 )
(b7) = ((b",V')) = 2 12 1 | = (cos(m —BY)) (4.1)
01 2T
|3 0 —5 1]
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play important roles. That means, the simplex has two opposite rectangles
B%* = B'* = m/2 as dihedral angles, the remaining four dihedral angles are
7/3. Moreover, the simplex has 3 half-turns, their axes connect the corresponding
opposite edge midpoints and meet at the simplex centre A. The images of A will
just form the Archimedean vertex class equivalent under the 24 regular tetrahedron
symmetries around As. Thus, we get the truncated octahedron {4, 6,6} denoted by
P and its so-called Schlegel diagram in Fig. 4 right in E2.

_ Now we organize new face pairing isometries and new space filler tiling with
P = {4,6,6} as fundamental polyhedron under a new fixed-point-free space group
(finally it will be 19. P2,2,2, by [3]).

Our method will be very general, and we apply it in the following.

Look at the sphenoid in Fig. 4 left that 3 truncated octahedron meet at any edge
of the {4,6,6} tiling, along square-hexagon, hexagon-hexagon, hexagon-square.
Thus in Fig. 4 right, we want to construct a new group with fixed-point-free action,
where any point will have a ball-like neighbourhood without its other image point
in that ball. We start a directed edge class consisting of three edges, denoted say
by 1. The first 1 is defined on the boundary of a square and a hexagon denoted by
u~!, then the second 1 is on the u-image hexagon u, while hexagon v—! follows on
its other side, then the third 1 is placed on the v-image hexagon v with a square on
its other side. Now the first square will be denoted by (uv)~! = v=!u~!, the last
square (now with the outer “infinite” face) by uv because the side pairing mapping
with usual conventions:

1, —1

uv:(wv) '=v'u! o wvand (wv) '=vla!

uluw — (w) =Tl (4.2)

Imagine our new tiling as representing the elements of our new group G(=
P2,2,2,) by the images of a starting fundamental domain P! (the identity domain).
The u-image domain P* lies just besides face u with its face (x~!)*. Similarly, the
u~'-image domain P*" ' lies besides face u~" with face (1)"~!. Thus, to the first
edge 1 and face u~! of P, we find three edge-domains each between two faces:

(v DIPY!) then () (P (v
then (v)v—lu—l‘(P)v—lu—l‘(u‘))v—lu—l (4‘3)

then cyclically comes the first identity edge domain, now with a formal general
rule, as uv-image of (P)V~1u~1 je. [(P)V~Tu-1|w = p,

Consider the edge between u and u~!, numbered by 2 as an arrow. The map-
pings u and u~! fixed before, carry this edge 2 into two other edges denoted also
by 2: first to the edge between uand a square face, denoted by u?, second to that
edge between u~! and the square u~2. So, the face pairing isometries to the edge
class 2:

wiu?—wandu? it —u? (4.4)

have also been introduced.
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Then we obtain a straightforward procedure with 12 edge classes: either we
get a new face pairing isometry expressed by generators u and v, mapping P onto
an adjacent image; or we get a trivial relation, going around an edge in the tiling,
e.g. at 6: u>vv~—'u~? =1, as consequence; or we get a non-trivial so-called defining
relation, e.g. at 8: vuv?u~! =1; or we get a consequence of the former defining
relations.

Now it turns out, as a lucky situation, that the procedure goes smoothly to
the end, without contradiction. Every edge class has 3 edges with the same rules
of adjacencies, and two generators are sufficient. So we obtain a presentation
of our space group named 19. P2,2;2, in [3] (see also author’s further papers in
references, especially [5], [7], [10]):

G =P222; = (u,v | vVuvu ! =uPv lulv=1). (4.5)

The vertices of P are divided into 6 equivalence classes, four vertices in each class.
To every vertex classes join 4 edge classes (as chemical bounds between atoms) as
the next formula shows:

0(1,2,4,6); 0(1,3,57); e(@4,58,11,12);

m(59,10,12); ©(27;8;9); [e (3;6;10;11)

Table 1. The truncated octahedron, as fundamental domain for the following
Euclidean space groups [3], with its face pairings given up to its symmetries
(computer classification by Istvan Prok and Zsanett Szuda (BME Math MSc student)).

|N0.|Name|#| |N0.|Name|#| |N0.|Name|#|
1 P1 1 34 | Pnn2 | 1 91 P4,22
2 Pl 2 41 Aea2 | 3 95 P4522 !
4 P2, 2 43 | Fda2 | 1 92 | P4,2,2
5| c2 |3 45 | ha2 |3 9% | P4;2,2 | 2
7 Pc 2 50 | Pban |3 94 [ P4y2,2 | 1
9 Ce 3 54 | Pcca |3 98 | 14122 |1
13 P2/c 3 56 | Pcen | 3 106 | P4be | 1
14 P2/c 10 60 | Pben | 6 110 | Idjed |1
15 C2/c 8 61 | Pbca |3 112 | P42c 1
16 P222 1 68 | Ccce |2 114 | P42ic | 2
18 | P2y2,2 | 2 70 | Fddd | 1 117 | P4b2 1
19 | P2,2/2, | 2 76 | P4y 120 | T4e2 |1
20 | 222, | 2 78 | pay | 122 | 142d4 |1
3| r2 |2 77 | P4, |1 144 | P3,
27 Pcc2 2 81 P4 1 145 P3, 1
29 Pca2, 3 82 14 1 152 | P3;21
32 Pba2 1 86 | Pdry/mn | 1 154 | P3,21 !
33 | Pna2, | 4 88 | 14/a |2
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With the scalar product (b, ') = b¥ of matrix (4.1) we can formally define
a quadratic form (with Einstein-Schouten index convention for summing):

wib"w; = wowo — wowi — wowz + wiwy — wiwa + wawa — waws + wiws3
1 1 3 2 1 2

_ - - 2 - _ = . 2 “ _ 2
= (wo = Swi = 5w3)” + 2(wi = Jwz2 = Zw3)" + 2 (w2 — w3) @)

with sum of three positive squares. We say that the scalar product of matrix (4.1)
is of signature (4, +,+,0), and this is characteristic for Euclidean geometry E?.
The determinant of matrix (4.1) equals to O 