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ABSTRACT

When validating assessment models built with dataing,
generalization is typically tested at thstudent-level where
models are tested on new students. This approhohgh, may
fail to find cases where model performance suffesther aspects
of those cases relevant to prediction are not regliesented. We
explore this here by testing if scientific inquskill models built
and validated for one science topic can predidt demonstration
for new students and a new science topic. Tessoasee chosen
using two methods: student-level stratificationd atratification
based on the amount of trials ran
experimentation. We found that predictive perforomrof the
models was different on each test set, revealimifdtions that
would have been missed from student-level validesione.
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1. INTRODUCTION

Data mining/learning analytics is a powerful apptoafor
building predictive models (“detectors”) that detame if a
student is engaging in a particular behavior (Elg. [2]), and
models that assess whether students demonstratewbatill-
defined skills within interactive learning enviroents (e.g. [3],
[4]). Building models using data mining makes vatidn of those
models easier, because processes like cross-vafidakist to
estimate how well they will generalize to new studeand tasks
not used to build them. Such estimates are impobtacause they
can provide assurance that the behavior / assessnuetels will
correctly identify students who lack skill or engag undesirable
learning behaviors, enabling the system to proeic&urate, real-
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time feedback [5]. Within open-ended interactiveiimmments,
the estimates can also assure that models thattdskall
demonstration can be reused for new tasks/domaitstadents,
paving the way for reliable, scalable performanasen
assessment.

In educational domains, validation is often donehatstudent-
level where models are built using one group of stuslefata
and tested on new students whose data were not ddelm
construction [6], [1]. This ensures models will @m accurate
when applied to completely new students. It is jpdssthough,
that this method may fail to identify specific iastes when
models do not predict adequately, particularlyifhe other aspect
of those cases, other than the student, is nohtake account.
We explore this topic here in the context of detamng how well
two data-mined models that assess whether studentsnstrate
scientific inquiry skills, built and validated fane science topic
[4], [7], can predict demonstration of those skiftsy a new
science topic and a new set of students. Few pdars tested
model effectiveness on different topics ([1] is etteption), but
validating at this level is essential if modelsvbié used beyond
the topics in which they were originally developed.

In our approach, we first take this new topic ahdlent sample,
and construct a test set stratified at the studewt!, where
students are equally represented in the test seénVdoing this,
we find that there is an imbalance in the naturebeliaviors
demonstrated by students. In particular, therenisngbalance in
the number of trials collected by students in thég, a factor
which could influence predictive performance of ooodels (cf.

[7]). To address this, we construct a second dest this time
stratifying over the number of trials, to ensurgreater balance in
student behaviors. We show that utilizing this efiéint kind of
stratification can unveil a different performanceofje than

conducting student-level validation alone, revealirew insights
on the predictive limitations of the models.

2. PRIOR WORK BUILDING INQUIRY
SKILL MODELS

In [4], [7], we developed data-mined models thateas students’
demonstration of scientific inquiry process skillSkills are
assessed as students conduct inquiry within Ing-i€8vities
(formerly known as Science Assistments [8]). Thisinment
aims to automatically assess, scaffold, track,@oslide real-time
feedback on students’ scientific inquiry skillsglrry is assessed
as students explore within interactive simulatiansl use inquiry
support widgets that facilitate experimentation.

Ing-ITS activities are performance assessmentsiaiiry skills.
The actions students take within the simulation andk products
they create are the bases for assessment [8]papir focuses on
assessment of two process skills, designing cdetrol



experiments and testing stated hypotheses. Brieftydents
design controlled experiments when they generatz ttiat make
it possible to determine what the effects of indefeat variables
(factors) are on outcomes. They test stated hypetherhen they
generate data that can support or refute an ettplistated
hypothesis. Since these are process skills, stsichneat assessed
based on the actions they take while collecting.dat

To build data mined assessment models, we empl@edeplay
tagging of log files [9] to generate labels fromighh in part,
models were derived. A text replay is a “chunk’safdent actions
in text format that contains information enablinguaman coder to
identify what occurred in that sequence of actioRer our
domain, text replays leverage human judgment totifjewhether
students demonstrate inquiry skill. These labetsthen used as
“ground truth” for whether or not students demaoatgtia skill, and
subsequently for building and validating detectors.

Prior to this paper, we have validated models fi@sé skills for
one physical science topic, Phase Change, andtotent sample
[4], [7]. One goal of this paper is to determin¢hiése models can
be applied to a new Physical Science topic, Frde &ad to a
new sample of students. As such, we first presehigh-level
description of the text replay tagging process inithe context of
assessing the two skills for Phase Change. A fdiscription of
the distillation process appears in [4], and of thmdel
construction approach in [7].

2.1 Phase ChangeActivities

The Phase Change activities [8] aim to promote rstdeding
about the melting and boiling properties of iceudgnts learn
about the topic by engaging in semi-structuredrdifie inquiry
activities with a simulation. First, students aigeeg an explicit
goal to determine if one of four factors affectsioas measurable
outcomes (e.g. melting or boiling point). Studethisn formulate
hypotheses, collect and interpret data, and watteit claims to
address the goal. As mentioned, we developed datednmodels
that infer whether students design controlled erpamts and test
stated hypotheses [4], [7]. These skills are demnatexl when
students collect data to test their hypothesefién“éxperiment”
task. As such, we describe this task in more detail

In the “experiment” task, students are shown thasehChange
simulation, graphs that track changes of the suobsta

temperature over time, and a table that captutebealdata they
collected thus far. They experiment by collectiragadthat aim to
support or refute their hypotheses. For space nsaswe do not
include a visual of this interface (it can be seefi8]), but it is

similar to the Free Fall interface shown in Figure Students
collect data (trials) by changing the simulation&riable values,
and running, pausing and resetting the simulatidext, we

describe how these interactions were distilled taghed with

skill demonstration.

2.2 Distilling Raw L ogs and Building Clips
Interaction data was collected from 148 middle stistudents
who conducted inquiry within four Phase Changeviis. All
students’ fine-grained actions were timestampedrandrded by
the system. These actions included: interactiorith thie inquiry
support widgets, interactions with the simulationcliding
changing simulation variable values and runninggpagiresetting
the simulation, and transitioning between inquaskss.

Contiguous sequences of these actions were thenesged into
clips. A clip contains all the actions necessary fouuanan coder
to identify (label) whether or not students demmatstthe inquiry
skills. For our domain, a clip has all actions takehile

formulating hypotheses (“hypothesize” actions) arallecting

data (“experiment” actions) in an activity. Clipedhe grain-size
at which data collection skill is labeled, and urnt student
performance is assessed. From there, models diescrthat it

means to demonstrate skill were trained and vadidiased on
(1) labels indicating whether students demonstratelis within

clips, and (2) a set of features that summarizescli

Humans determine whether or not students demoestiitls

within clips, by labelingtext replaysof clips with one or more
tags (see [4] for an example of a text replay). irtext replays
highlight hypothesis creation and experimentatioocpsses. This
enables human to more easily identify skill demigin. Clips

are tagged as designing controlled experimentdintestated
hypotheses, both, or neither. In this prior worke wachieved
acceptable levels of inter-rater reliability in &ing clips [4].

With clip labels in place, features were definedxtn¢hat
summarize clips. We defined a set of 79 featurdste@d to
students’ experimentation [4], [7]. Features ineludasic
aggregations of actions and domain-specific coindiative of
skill demonstration. Examples include: number agl$r run,
counts related collecting unconfounded data, a tcfmrrchanging
the variable stated in a hypothesis, and numbesimiilation
pauses. With clip labels and summary features ddfinve next
describe the model building process.

2.3 Extracting Models from the Data

To construct our models, we employed an approaah rifixed

traditional data mining, iterative search, and diomexpertise,
discussed in [7]. This procedure yielded two modefe for each
skill, that take as input a clip (note that eaaldsnt contributes
multiple clips) and, by examining the clip’s feauwralues, predict
if a student demonstrated skill in that clip. Bigethis procedure
worked as follows.

First, human coders tagged three sets of clipsaiaing set,a
validation setand aheld-out test semore detailed descriptions
of these sets appears in [7]). Next, an init@hdidate feature set
of promising predictors was selected by findingtdeas that
correlated moderately with the skill labels frone ttiaining set.
This reduced the original 79 features to 11 caridideatures.
Then, a manual backwards elimination search wafommeed to
find the optimum feature set yielding the best titg model.
At each stage of the search, a feature with lowrttecal support
was removed from the candidate feature set. ThHeatetupport
for a feature was determined by a domain experdas theory
on features indicative (or not indicative) of skilémonstration.
Then, J48 decision trees were built from the caatdideature set
and training clips to yield a&andidate model The candidate
model was then tested against thalidation setof clips to
determine how well it predicted and kept if it pictdd better than
its predecessor. This process repeated until preglic
performance no longer improved for the validatidipsc The
rationale for using decision trees is describe@]n

Predictive performance was measured using A’ [1@] &ohen’s
Kappa k). A' is the probability that when given two clipsne
labeled as demonstrating skill and one not, the ehadill
correctly identify which clip is which. A model WitA' of 0.5
performs at chance, 1.0 indicates perfect perfocmanmeasures
how well the model agrees with the human label; idicates
chance-level performance, 1.0 indicates perfedbpeance.

Once optimal models were found, their final pragit
performance was measured againstigld-out test setontaining
clips not used in model construction. This step waeded to



better estimate true model goodness since theatalid set was
used during model selection. In prior versionshese models [4],
cross-validation was conducted at the student-lewehere
students were included in either the training ost téolds,
validating that the models could generalize to savdents.

Explore Hypothesize Experiment Analyze data

|Boal: Determine how the ball's starting height affects its kinetic energy at its lowest point.|__

EXPERIMENT: Collect data to help you test your hypothesis. ... more ‘

My Hypothesis:
If I change the mass of the ball so that it increases,
the kinetic energy at the highest point does not change.
height of the drop
mass of the ball

Pause

Clear Charts

Mechanical Energy in Joules

 Mechanical Energy _

|’“§§3§3§@

Trial Data. * All energy units are in Joules
tndependent V Dependent Variables

Tr, |Mass | Height|Potential  [Kinetic

2 |of the | of the |Eneray at  |Energy st

s«+|ball | drop |Highest point|Highest paint)

Mechanical
Energy at
Highast point

Potential
Eneray at
Lowest point

Mechanical
Energy at
Lowest point]

Kinetic
Energy at
Lawest paint

1|10 s0 49033 o 43033 o 49033 49033

redesigned to improve the organization of inforowmtiand

instructions. Second, the number of factors thelestti could
manipulate was smaller (2 here versus 4 in Phasagg). Third,
students could only specify one hypothesis in tofburth,

students were shown three graphs in the “experihmse to
track each of the dependent measures over timellyiunlike

Phase Change, the table showing the results oémstsidrials was
always visible. Next, we describe which clips wtagged to test
the generalizability of the models.

4. DATA SETS

We collected data from 292 eighth grade studemttgractions
with the Free Fall activities. None of these studemere part of
the original data set used to construct the mod8tadents
attended three different schools in suburban Clentra
Massachusetts. All had prior experience conductimgiiry in
Ing-ITS for topics other than Free Fall. Studemgaged in at
most five different Free Fall activities. As perethext replay

tagging process, clips were distilled to cull otident actions

relevant to hypothesizing and collecting data.dralt 1580 clips

were generated.

Since tagging all clips would be time consuming, setected a
representative set of clips. One approach for seteclips for the

test set is to apply student-level stratificationew choosing clips
to code, so that each student is equally repredéntine data set.
We note that this is distinct from student-levebss-validation,
where students are distributed to either trainingest folds, e.g.

200 S0 98067 [ 98067 o 98067 98087

Figure 1. Example Free Fall Activity
2.4 Prior Resultsand Next Steps

In [7], we found that both assessment models cpuddict skill
demonstration for unseen clips quite well. The glesig
controlled experiments model was quite good afrdjsishing a
clip in which the skill was demonstrated from gdh which skill
was not (A’ = .94). It also matched the human cdébels
better than chancek& .45). Similarly, the testing stated
hypotheses model performed very well, A’ = .@15 .70. These
findings meant that the data-mined models couldgaately
identify skill demonstration in the Phase Changgiiry activities
for this sample of students.

Though their performance within the Phase Changeowiorld is
encouraging, these metrics do not provide a measfirtneir
generalizability to other science topics, becatrgerbodels were
built solely from data for the Phase Change aotiwit
Furthermore, the model construction procedure hused the
same students in the training/validation clip setsn the test set.
Thus, we aim here to explore the generalizabilftthese models
to a new Physical Science topic, Free Fall. Toa@ong collected
data from new students who conducted inquiry Fredl F
activities, tagged their resulting clips with s&jlland re-measured
the models’ predictive performance. Using data frardifferent
science topic enables us to assess model trarsféifferent
topics [cf. 1]. Using new students also enablesouassess how
well these models will work for a broader rangestofdents.

3. FREE FALL INQUIRY ACTIVITIES

The Free Fall activities in Ing-ITS (Figure 1) aitn foster
understanding about factors that influence the tidngotential
and mechanical energy of a ball when it is droppete two
factors students could change were the ball's raask starting
height. The look-and-feel and structure of theséviies is
generally similar to Phase Change, but with somé¢abie
differences. First, the layout of components on sheeen was

[6], [1]. Equally representing all students in attset, and using

students different than those used for model coastm provides

more assurance that such models will work for nawdents. In

our work, this stratification was performed asdolk:

¢ Student-stratified test set (291 clip€ne clip per student was
randomly selected and tagged by a human coder. @plyin
which a student ran the simulation at least onceewe
considered for selection. One student did not apipehis set,
because they had no clips with at least one rurthik set,
90.0% of the clips and 87.6% of the clips were &ggs

designing controlled experiments and testing stated
hypotheses, respectively.
During the clip selection process, we noticed that

disproportionate number of clips had exactly 3 d$atian runs.

As shown in Table 1, 70.4% of all clips distilledch3 simulation

runs, and 74.6% in the student-level test set. ghothese
percentages may reflect actual student behavi@ pibssible that
some aspects of the models’ performance may noapwired by
stratifying solely in terms of the student. In jgartar, the models’
performance may be impacted by different numbersirofilation

runs. This is important because we aspire to hawdets that

work for varying numbers of simulation runs, pastarly since
we activate scaffolding in the live system aftardents run the

simulation [7]. To address this, we constructece@ond test set

that ensures clips with a given number of simufatians are

equally represented. This stratification is desatibelow:

¢ Run-stratified test set (245 clipsjo generate a test set that
balances the number of runs per clip, we determiaed
optimal number of clips to have per stratum. Givbe
distribution in Table 1, we used runs = 5, 49 ¢lgsthe base.
We then randomly select 49 clips for each stratuith w
exactly 2 simulation runs, 3 runs, etc. The finaatsim was
for clips with more than 5 runs. As in [7], we dotrtonsider
clips with fewer than 2 simulation runs, because
demonstration of skill requires at least two tridts be
collected. In this set, 93.1% of the clips and 834 the clips



were tagged as designing controlled experimentstesithg
stated hypotheses, respectively. Students’ workldcdae
represented more than once in this test set.

We note it would be more optimal to stratify ovetlbruns and
students, but too few clips would have been avhilétr testing.
In the next section, we present our models’ pragict
performance against these two held-out test sets.

Table 1. Countsof Clipsby Number of Simulation Runs

. . . L #Clipsin #Clipsin
S'”:J:ts'on #C':ESTTtZ'”ed Student Strat. Run Strat.
Test Set Test Set

<2 167 20 0

2 01 18 49

3 1112 217 49

4 102 15 49

5 49 10 49

>5 59 11 49

Total 158 291 24E

5. RESULTS

We estimate how well the two inquiry skill assesstmmodels
built for one science topic, Phase Change, can igireskill
demonstration for another topic, Free Fall, ancea& sample of
students. Generalizability is estimated by meaguniow well the
models predict skill demonstration in two held-aegst sets
containing clips pertaining to Free Fall activitiés the first test
set, clips were randomly chosen via student-leueltification.
Given our interest in understanding how well thedeis work at
finer grain-sizes [7] and the earlier finding tledips with exactly
3 simulation runs were over-represented, we cocistiua second
test set. This set had clips randomly chosen tarens balanced
number of clips with a given number of simulatioons.
Performance is again measured using A' and Kappahough
we also report precision and recall for our modéts
completeness. We focus on these metrics becausg
compensate for successful classification by chamg@ch is
important given the imbalance in clip labels. Farthore, as will
be shown below, most of the models’ precision aswhlt values
are near maximum, whereas the A’ andre more varied. Thus,
we believe A’ ank may better reflect models’ limitations.

5.1 Student Stratification Performance

As shown in Table 2, both models performed quitdl vaé
predicting clips in the student stratified test. sEte designing
controlled experiments model could distinguish i@ @h which
skill was demonstrated from a clip which it was aba rate of A’
= 90%. It also highly agreed with the human codestings,k =
.65. Performance for the testing stated hypothesstel was also
high, A’ = .91,k = .62. These findings imply that the detectors
built for Phase Change generalize to another PalyScience
topic, Free Fall, and to an entirely new studemhpsa, under
student-level stratification.

Recall this set has exactly one randomly chosenpr student.
Furthermore, as shown in Table 1, a majority okéhelips had
exactly 3 runs. Though a majority of students may exactly

three trials, providing credence to being able de the detectors
as-is to assess students, the models’ performaageaifier based

on the number of trials collected. We turn nexpésformance on
the run-level stratification test set.

5.2 Run Stratification Performance

As shown in Table 3, the performance profile onnlve stratified
test set was different than on the student stedtifest set. Though
the performance of the testing stated hypothesetehtemained
high (A'=.78, k=.59), performance dropped for the designing
controlled experiments model, particularly for ragreement with
labels (e.gk) (A’ = .84,k = .26). We inspected these results more
closely by recalculating the metrics for each strabf 49 clips.
As shown in the bottom of Table 3, when model abarfice is not
taken into accountkj, the designing controlled experiments
model had very low agreement with human labelsalbrrun-
levels k = .08 - .17) with the exception of clips with eXgcB
simulation runs K = 1.00). The testing stated hypotheses model
fared better on agreeing with human labels ontedta k = .40 -
.78) except for clips with exactly 4 simulation suf = .00).
When model confidence is taken into account (Agthbmodels
could distinguish clips that demonstrated skillnfrthose that did
not fairly well on each strata, with the exceptafrthe designing
controlled experiments for at least 5 simulationsrgA’ >= .61).

Table 2. Overall Performance on Student-Stratified Test Set
Testing Stated

Designing Controlled

Experiments Hypotheses
True N TrueY True N TrueY
Pred N 26 20 Pred N 21 7
Pred Y 3 242 Pred Y 15 248

Pc=.99, Rc=.92
A'=.90,K =.65

Pc=.94,Rc=.97
A'=.91, K=.62

* Pc = precision; Rc = recall

In summary, both models performed well under sttiimrel
validation. However, under run-level validatione ttesting stated
hypotheses model remained strong while the degigoamtrolled

the experiments models’ performance suffered. In thet section,

we discuss the implications of these finding onegatizability.

6. DISCUSSION AND CONCLUSIONS

We investigated whether data-mined models thatsas$eo

inquiry process skills for activities in one sciertopic [7] could
be reused as-is for assessing those same skilisrfew topic and
new student sample. To explore this, we collectetbwa set of
student interactions for the topic, employed tespplaly tagging
[9], [4] in which student interactions (clips) wetabeled by
humans with skill demonstration, and measured owdeis’

ability to predict those labels. The overarchinglgaf this process
is to measure the degree to which these models ecetble
scalable, reliable performance-based assessmettieofnquiry

skills as students conduct inquiry within simulasd8].

Central to this work was choosing the clips to cdugt would
yield good estimates of model performance, sincdingp all

student interactions would be too laborious. On@regch was to
represent the new students equally in the heldtestt set. We
noticed that when we stratified this way there wasmbalance in
clips for an important kind of student interactiondicative of

skill, the number of times students ran the siniofatAs such, we
constructed a different held-out test set that euswan equal
representation over the number of simulation runs.

Under student-level stratification we found thae thssessment
models of each skill performed quite well in thesasndomain and
new sample of students. These findings provideemngd that the



models can be applied as-is to new topics withetraining [cf.
1]. Under run-level stratification, a different flmmmance profile
for the models emerged. The testing stated hypethassessment
model still maintained high performance providingm stronger
evidence of its generalizability. However, perforoa for the
designing controlled experiments detector decreaBeid model
worked best for clips with exactly three simulatioms, the most
prominent kind of clip; performance on other clias poorer.
Though performance was poorer, if the distributidrelips with
given numbers of runs (Table 1) is representativthe student
population we aim to assess, this model still camuged to assess
in the new topic. As a side note, we did examing pérformance
was hindered (not presented in the results sectie)found that
clips that were misclassified primarily fell underoranch of the
decision tree with features reflecting domain caerjty (the
number of variables changeable by the student).g@ssible way
to improve generalizability would be use ratio-lmhéeatures (e.g.
percent of pairwise controlled trials over all pbks pairs of
trials) instead of a raw counts [7] for handlingrdon complexity.

Table 3. Performance on Run-Stratified Test Set

Designing Controlled
Experiments

Testing Stated Hypotheses

True N TrueY True N TrueY
Pred N 16 60 PredN 22 5
Pred Y 1 168 PredY 19 199

Pc=.99, Rc=.74
A'=.84,K=.26

Pc=.91, Rc=.9¢
A'=.78,K=.59

Runs A' K Pc Rc Runs A’ K Pc¢c Rc

2 100 .08 1.00 .1& 2 8+ 71 89 .94
3 1.00 1.0C 1.00 1.00 3 .83 .40 .91 .98
4 $ .00 1.0C .98 4 .84 .00 .90 1.00
5 .66 .14 1.00 .66 5 .70 51 .89 .8
>5 61 .17 .97 .76 >5 .79 .73 .98 €8

* Pc = precision; Rc = recall
$ = A’ could not be computed because only one tes was prese

This paper offers two contributions towards assegsthe

generalizability of data-mined models used to asstadents’
skills. First, like prior work [1], [3] we measutke transferability
of models built for one task to a new task and setwof students.
In our case, we applied data mining to assess mtsidequiry

skills within physical science simulations. Thougie have
increased evidence of models’ generalizability, wete that the
look-and-feel and task structure of the physicédreme activities
were generally similar. For other science domaike biology,

the nature of the experimentation process may rdiffierther

research is needed to determine if our models getieralize to
entirely new types of tasks and science domaifg8p.

Second, we showed how different kinds of strattfa@ain such a
test set can reveal limitations on the performanicdata mined
models. In particular, the ways in which a modell We used
should be considered when considering generaligabih our

work, we aim for our models to be reusable to asasstudents,
trigger scaffolding [8], and work regardless of howch data the
student collected [7]. Thus it was essential fortaisconsider
performance in the new simulation at the run-leiete this is the
granularity at which we aim to assess student veorit provide
scaffolding. Stratifying on other variables suctttestotal number
of student actions or the specific inquiry activityquestion [cf. 1,

3] may reveal other differences in performance.sering these
additional points may provide more evidence torthesability of

data-mined models in different contexts or revéaitations in

the models that can be addressed to improve peafarenin

specific cases.
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