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Cara, a seventh-grade student with 
learning disabilities (LD) in mathematics, 
believes that the ratio 2:3 is equivalent to 
4:5 because there is a difference of one 
between the two numbers in each ratio 
and there is a difference of two between 
corresponding numbers in the two ratios 
(2 + 2 = 4 and 3 + 2 = 5). This 
misconception affects her ability to find 
equivalent ratios as well as to work with 
ratios and proportions in multiple 
contexts, including determining rates of 
change with functions and other 
contextual situations.

Why are ratios and proportions 
important for students’ success in 
mathematics? What are common 
misconceptions that challenge students 
with persistent mathematics difficulties? 
What lesson components for intensive 
interventions are necessary to address the 
instructional needs and misconceptions 
of students with persistent mathematical 
difficulties? How can progress-monitoring 
results inform instruction and address 
misconceptions? Cara’s teacher seeks to 
find the answers to these questions in 
order to identify ways to support Cara’s 
understanding of ratios and proportions.

Ratios and proportions are foundational 
to student understanding across 
multiple topics in mathematics and 
science. In mathematics, they are 
central to developing concepts and skills 
related to slope, constant rate of change, 
and similar figures, which are all 
fundamental to algebraic concepts and 
skills. Ratios and proportions are used 
in relationships found in triangles, 
including trigonometric ones, such as 
sine, cosine, and tangent, found in later 
algebraic instruction. In science, they 
are used when quantities involve 
density, acceleration, and other 
comparable derived measures. Even in 
real-life situations, ratios and 
proportions are useful when 
determining amounts to be used in 
recipes or finding the mileage per gallon 
of gas. In general, ratios and proportions 
describe relationships between and 
among quantities.

The Common Core State Standards 
in Mathematics (CCSS-M; National 
Governors Association Center for Best 
Practices & Council of Chief State School 

Officers [NGA & CCSSO], 2010) include 
a cluster of standards associated with 
developing a deep understanding of 
ratio and proportional reasoning in 
Grades 6 and 7. For example, one 
standard within Ratios and Proportional 
Relationships is for students to 
"understand ratio concepts and use ratio 
reasoning to solve problems," which 
requires them to:

1. Understand the concept of a ratio and 
use ratio language to describe a ratio 
relationship between two quantities. 
For example, “The ratio of wings to 
beaks in the bird house at the zoo was 
2:1, because for every 2 wings there 
was 1 beak.” “For every vote candidate 
A received, candidate C received 
nearly three votes.”

2. Understand the concept of a unit 
rate a/b associated with a ratio a:b 
with b ≠ 0, and use rate language in 
the context of a ratio relationship. 
For example, “This recipe has a ratio 
of 3 cups of flour to 4 cups of sugar, 
so there is 3/4 cup of flour for each 
cup of sugar.” “We paid $75 for 15 
hamburgers, which is a rate of $5 
per hamburger.”

3. Use ratio and rate reasoning to solve 
real-world and mathematical 
problems (e.g., by reasoning about 
tables of equivalent ratios, tape 
diagrams, double number line 
diagrams, or equations).
a. Make tables of equivalent ratios 

relating quantities with whole-
number measurements, find 
missing values in the tables, and 
plot the pairs of values on the 
coordinate plane. Use tables to 
compare ratios.

b. Solve unit rate problems 
including those involving unit 
pricing and constant speed. For 
example, if it took 7 hours to 
mow 4 lawns, then at that rate, 
how many lawns could be mowed 
in 35 hours? At what rate were 
lawns being mowed?

c. Find a percent of a quantity as a 
rate per 100 (e.g., 30% of a 
quantity means 30/100 times the 
quantity); solve problems 
involving finding the whole, 
given a part and the percent.

d. Use ratio reasoning to convert 
measurement units; manipulate 
and transform units appropriately 
when multiplying or dividing 
quantities. (CCSSM 6.RPA.1)

The depth and complexity of these 
standards increase across the two 
grades and are then used in Grade 8 
with other topics, including slope and 
transformations on the coordinate grid.

The concepts and skills that support 
students’ understanding of ratios and 
proportions include, but are not limited 
to, realizing that (a) the relationship 
between (or among) the quantities in a 
ratio is multiplicative in nature (not 
additive), (b) a unit rate can be found 
even if one of the numbers in the ratio 
is not a factor (or multiple) of the other 
number, and (c) equivalent ratios are 
not necessarily integral multiples of 
another ratio (e.g., 6:9 is equivalent to 
4:6). When these understandings are 
not well situated within students’ 
knowledge about ratios and 
proportions, significant difficulties can 
occur in algebraic contexts. For 
instance, oftentimes students struggle 
with ratios and proportional reasoning 
because of misconceptions that were 
established in earlier grades due to 
practitioners’ poor instruction. Teachers 
must understand, recognize, and 
address these misconceptions so that 
student learning of ratios and 
proportional reasoning are not 
impaired.

Common Misconceptions 
That Challenge Students 
With Persistent Mathematics 
Difficulties

Mathematical misconceptions are 
faulty and incorrect ideas resulting 
from students’ misunderstanding 
about a mathematical idea or concept 
(Allen, 2007). Misconceptions are 
usually based on applications of 
inappropriate generalizations or rules, 
or insufficient teaching (Allen, 2007). 
Instruction often includes giving 
students rules that expire, but 
students hold onto those rules and 
attempt to apply them even when the 
situation is inappropriate. For 
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example, students in the elementary 
grades are often taught to add a zero 
to the end of a whole number when 
multiplying by 10. However, this 
“rule” does not hold when multiplying 
decimals (e.g., 0.65 × 10 = 6.5 rather 
than 0.650; Karp, Bush, & Dougherty, 
2015). Misconceptions related to ratios 
and proportional reasoning focus on 
prerequisite knowledge about 
multiplication and fractions. So, what 
are some common misconceptions, 
such as Cara’s misconception, that 
interfere with the ability to understand 
ratios and proportional reasoning and 
to generalize those understandings to 
algebraic thinking?

Misconception 1: Additive  
Versus Multiplicative 
Comparisons

Students such as Cara have not 
developed an understanding of the 
relationship between additive 
comparison and multiplicative 
comparisons (Fielding-Wells, Dole, & 
Makar, 2014; Norton, 2005; Van 
Dooren, DeBock, & Verschaffel, 2010). 
Students do not understand that 4 more 
than (additive comparison) has a 
different meaning than 4 times 
(multiplicative comparison). For 

example, a recipe calls for 2 cups of 
flour for every 1 cup of sugar. How 
many cups of flour are needed if a 
recipe is increased to 3 cups of sugar? 
Students can think 1 cup of sugar for 2 
cups of flour, 2 cups of sugar for 4 cups 
of flour, and 3 cups of sugar for 6 cups 
of flour. Therefore, the amount of flour 
now needed is 6 cups, which maintains 
the same relationship as the original 
one given (1:2). Students who think 
ratios are additive would have 
mistakenly thought that 3 cups of sugar 
is an increase of 2 cups from the 
original 1 cup. They would then add to 
the original 2 cups of flour 2 more cups 
to get 4 cups needed flour (see 
illustration, Figure 1). For ratios to be 
in proportion, they must be equivalent 
and compare the same types of 
quantities. Equivalent ratios have a 
multiplicative relationship, so students 
must understand the concept of 
multiplicative comparison (Lobato, 
Ellis, & Charles, 2010). Teachers are 
advised to first provide explicit 
instruction with modeling as a 
corrective measure when students have 
established a consistent, faulty pattern 
of responding and then provide 
multiple opportunities for students to 
explain their thinking for creating 
equivalent ratios and use corrective 

feedback to repair faulty 
understandings.

Misconception 2: Incorrect 
Conceptualization of Fractions

When talking about fractions, students 
and their teachers might use the 
language out of—as in “ 3

4
 is 3 parts 

out of 4 parts”—instead of “3 one 
fourths.” When students read 3

4
 as 3 

parts out of 4 parts, the numerator and 
denominator appear to be two whole 
numbers, which represents the 
misconception that the parts are 
separate quantities. Understanding a 
fraction, a

b
, as “a one bths” is 

important for creating a ratio as a 
multiplicative comparison (Lobato  
et al., 2010). For example, a quantity 
representing 3

4
 is 3 times larger then 

the quantity representing the unit 
fraction 1

4
. Teachers can model for 

students the correct language for 
talking about a fraction, such as “3 one 
fourths,” and provide additional 
practice for students to use this same 
language to talk about fraction 
quantities.

Misconception 3: Lack of 
Covariational Thinking

When working to find a pattern in a 
table, students mistakenly look at only 
the pattern from row to row rather than 
using covariational thinking (i.e., 
thinking about how two quantities vary 
together) (Carlson, Jacobs, Coe, Larsen, 
& Hsu, 2002). For example, in Figure 2, 
in row 3, the difference between the 
number of triangles and the number of 
angles is 4. Students who mistakenly do 
not think about how the two quantities 
vary together throughout the table might 
say that in row 4, the answer is 7 (3 +  
4 = 7) rather than seeing the pattern of 
×3 (e.g., 1 × 3 = 3, 2 × 3 = 6, 3 ×  
3 = 9).

Teachers should ask students to 
explain how they determined the missing 
values and the relationship between the 
number of triangles and the number of 
angles. Students should use the 
language, “There [is/are] _____ for every 

Figure 1. Example of an Additive Comparison as a Misconception and the Correct 
Multiplicative Comparison
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______.” For instance, students would 
say, “There is one triangle for every three 
angles” for the unit rate or ratio of 1:3. 
Continue to model the covariational 
aspects, so that students move to 
thinking about the relationships of the 
quantities (Dougherty, Bryant, & Bryant, 
2016)

These are significant misconceptions 
that affect students’ ability to access the 
more complex concepts associated with 
proportional reasoning, such as 
functions, algebraic equations, and 
graphing (Lobato et al., 2010). As noted 
in the CCSS-M, students in Grade 6 
should understand ratio concepts and 
use ratio reasoning and proportional 
relationships to solve problems (CCSS-M 
6.RP; NGA & CCSSO, 2010, p. 42). In 
Grade 7, students use their 
understanding of ratios to solve real-
world problems involving percentage, 
interest, tips, and so forth (CCSS-M 7.RP; 
NGA & CCSSO, 2010, p. 48). In Grade 8, 
students make connections among 
proportional reasoning, lines, and linear 
equations (CCSS-M 8.EE; NGA & CCSSO, 
2010, p. 54). Given the importance of 
understanding ratios and proportional 
relationships, intensive intervention for 
students with mathematics disabilities 
can be structured to promote their 
understanding of ratios and proportional 
reasoning and prevent or ameliorate 
misconceptions.

Responding to the Instructional 
Needs and Misconceptions of 
Students

To support students with persistent 
mathematics difficulties, specific lesson 
components, which are supported by 

multiple research findings in 
mathematics and the Standards for 
Mathematical Practice (Gersten et al., 
2009; NGA & CCSSO, 2010), can be 
incorporated into instruction. These 
include explicit, systematic instruction; 
asking students the right kinds of 
questions; using multiple 
representations; and providing student 
scaffolded instruction.

Explicit, Systematic Instruction

Explicit, systematic instruction (Gersten 
et al., 2009) is frequently used to 
describe the type of instruction for 
students who need intensive 
interventions to learn mathematical 
concepts and skills. There is a general 
structure that is used in these lessons 
that typically includes modeling, guided 
practice, and independent practice. 
According to the National Mathematics 
Advisory Panel (NMAP; 2008), explicit 
instruction is characterized by problem-
solving models, a range of examples, 
practice with feedback, and students’ 
verbalizations of their thinking 
processes. Further, the NMAP 
recommended that students with 
mathematical difficulties “receive some 
explicit mathematics instruction 
regularly. Some of this time should be 
dedicated to ensuring that these 
students possess the foundational skills 
and conceptual knowledge necessary 
for understanding the mathematics they 
are learning at their grade level” (p. 
xxiii). An illustration of this structure is 
provided in Table 1; however, some of 
the terminology is altered for teachers to 
use with older students. To plan for 
explicit instruction using this structure, 

teachers can first consider the essential 
big ideas of mathematics topics and the 
prominent misconceptions that students 
may have. Using these two elements, 
tasks and questions can be developed 
so that students’ attention is focused on 
the important aspects of the 
mathematics topic as illustrated in  
Table 1.

Types of Questions

In many mathematics intervention 
classes, the types of questions that 
students are asked focus primarily on 
low-level information or recall of 
algorithmic steps (Dougherty & Foegen, 
2011). Although factual information 
and algorithms are important and 
students should learn both, they also 
should have opportunities through 
questioning to think more deeply about 
mathematical ideas so that they can 
form connections across older and 
newer learning (Skemp, 1987).

Students with persistent mathematics 
difficulties benefit from learning 
mathematics more deeply through 
instruction that includes three types of 
questions—reversibility, flexibility, and 
generalization—that are important for 
intensive instruction (Dougherty, Bryant, 
Bryant, Darrough, & Pfannenstiel; see 
Table 1 for examples). Reversibility 
questions give students the answer and 
then they create the question. To include 
reversibility thinking in instruction, use 
some of the following guidelines:

•• Give students answers to the types 
of problems being taught and have 
them identify the questions.

•• Ask students how they can show 
(through manipulatives, pictures, 
number lines) how to solve the 
problem.

Flexibility questions ask students to 
solve a problem in multiple ways or find 
similarities and differences between and 
among problems and classes of 
problems. To include flexibility thinking, 
use the following guidelines:

•• Ask students if they have solved  
a problem that is similar to  

Figure 2. Table of Equivalent Ratios to Promote Covariational Thinking

Number of Triangles Number of Angles

1  3

2  6

3  ?

4  ?

7  ?

? 30

Instructions: Mona started a table that shows the number of triangles and the number of angles. 
Decide what should go into the blank cells of the table.
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Table 1. Teaching Ratio and Proportional Reasoning and Preventing Misconceptions

Lesson Component Description Example

Lesson objectives 
(CCSS-M, 6.EE.9; 
National Governors 
Association Center 
for Best Practices 
& Council of Chief 
State School Officers, 
2010, p. 44)

Use appropriate content outcomes and 
associated standards for mathematical 
practice.

Students determine the dependent and independent 
variables in a situation.
Students describe relationships between the dependent 
and independent variables in multiple ways, including 
writing an expression or equation.
Students reason abstractly and quantitatively.
Students look for and express regularity in repeated 
reasoning.

Vocabulary Determine the vocabulary that is 
essential to the lesson.
Use accurate and precise mathematical 
language.

Dependent variable
Independent variable

Misconception Identify the misconceptions that may 
be evident in the processes students 
use to solve problems or in the way in 
which they think about the task. This 
may include misconceptions that have 
developed from previous grades.

Students confuse the variables. For more complex 
situations, it may be difficult to determine the 
relationship between the variables.

Warming up Provide short tasks that (a) include a 
review from previous lessons or (b) 
act as advance organizers for this or 
upcoming lessons.

Example 1: Zach put $25 in his savings account each 
week. Identify the independent and dependent variables.
Use corrective feedback for answers that are not the 
independent and dependent variables. Review the 
vocabulary: independent and dependent variables.

Learning to solve 
(modeling)

Target instruction on a specific, central 
concept.
Use explicit instruction to focus 
students’ attention on specific 
mathematical structures, ideas, or 
common misconceptions.
Include small group or pair tasks to 
engage students as appropriate.
Utilize students’ intuitive or natural 
approach to build the mathematics.
Use questions that improve critical 
thinking (reversibility, flexibility, and 
generalization).
Incorporate multiple representations 
including natural language, tables, 
charts, diagrams, and physical 
materials.

As we learned in previous lessons, tables can be used 
to show equivalent ratios. As a review, look at example 
2. With a partner, complete the table and identify the 
independent and dependent variables.
Example 2: Henna made a table to show the amount of 
money she earns when she works at the craft store.

(continued)
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Lesson Component Description Example

Give students time to complete the example. Ask some 
students to share their responses. Discuss their responses 
as appropriate.
How would you describe the relationship in the table? 
Write your description. (Answers will vary, but focus on 
students saying that the total amount of money earned 
is 5 times the number of hours worked.) (Examples of 
reversibility are shown in rows 6 and 8; answers that vary 
reflect flexibility.)
As students describe the relationships, focus on those 
that indicate the multiplicative nature.
Let us revisit your table and find another way to describe 
the relationship. We can write the relationship in the 
table by using a variable so that it gives us the rule for 
any number we might use. This is called a generalization. 
What is this called? (generalization)
Look at the bottom of the first column. We are going 
to use a variable, in this case x, to help us write the 
generalization. The variable x represents the number 
of hours worked. What does the variable x represent? 
(number of hours worked).

We want to write an expression that describes the 
relationship or the computation that is used on x to give the 
amount in the second column. You told me that the amount 
in the second column is 5 times the amount in the first 
column. We will write 5 times x in the second column.
Model for students how to write 5 times x in the second 
column. Have students do the same.
If students are unclear or do not remember how to show 
5 times a variable, review the symbols for showing 
multiplication with a variable. Explain that there are 
multiple ways to write the multiplication that are 
equivalent for writing an expression using variables. 
Examples include 5x, 5 • x, or (5)(x). It is not advisable 
to use the × because students might confuse the 
multiplication symbol and the variable. Provide another 
example of a generalization.
What if for every hour worked, the pay was $6.00? How 
would that change the generalization (5x) that we wrote? 
What would be the generalization now? (6x)
You can use the generalization to find the amount of pay 
for any hours worked. If the generalization is 6x, what is 
the pay for working 12 hours? ($72)
Continue with similar examples if needed. Conclude by 
asking the following questions.
What generalization did we discuss in this lesson? How 
would you define an independent variable? How would 
you define a dependent variable?

Table 1. (continued)

(continued)
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Lesson Component Description Example

Practicing together 
(guided practice)

Allow time for students to work with a 
partner or small group, independent of 
the teacher.
Use tasks that promote the use of 
multiple representations.
Advise students of the time limit for 
their work and describe what will 
happen at the end of the time allotted.
Have students publicly share their 
processes or solution approaches.
Encourage students to show their 
thinking rather than only sharing an 
algorithm or step-by-step process.
Consider options for students to 
critique each other’s presentations.

Work with your partner to complete the following table.

Trying it on your 
own (independent 
practice)

Create problems that will give you an 
indication of student thinking.
Provide feedback regarding students’ 
responses.
Use reversibility, flexibility, and 
generalization to create the problems.

Sample problem:

a.  1m because m represents the number of math 
problems.

b.  2m because each math problem takes 2 minutes to 
solve.

c.  3m because it takes 6 minutes to solve 3 problems.
d.  10m because it takes 20 minutes to solve 10 problems.

Wrapping it up Focus on a single task that culminates 
the learning experience.
Use tasks that have multiple responses.
Have students share their responses as 
time allows.

Write the generalization using a variable that shows:
For every cup of rice, it takes 3 cups of water to cook it.
Discuss student responses as time allows.

Note. CCSS-M = Common Core State Standards for Mathematics.

Table 1. (continued)
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(or different from) the given 
problem.

•• Ask students how they can  
use what they know about  
the problem to solve the new 
problem.

•• Have students solve the problem in 
a different way using models.

In a related way, generalization 
questions ask students to identify 
patterns and use those patterns to 
make conjectures or generalizations. To 
use generalization questions, apply the 
following guidelines:

•• Have students identify patterns that 
they notice.

•• Ask students to name 
representations they are familiar 
with that work for the new problem.

•• Have students identify a strategy 
that they have learned that can be 
used to solve the problem.

From the introduction of a topic to 
the final lesson in the instructional 
sequence, these questions provide 
opportunities for students to think 
deeply about significant ideas. If they 
are used consistently throughout a unit 
of study, student responses become 
more and more substantive as they 
come to understand how to respond to 
these questions. Each question type is 
included in each of the lesson 
components.

Concurrent Use of Multiple 
Representations

Multiple representations—including 
physical phenomena or manipulatives, 
natural language (written and spoken), 
tables, diagrams, and symbols—can 
facilitate conceptual understanding by 
having students represent concepts and 
talk or write about their representations 
(National Council of Teachers of 
Mathematics, 2000). Rather than 
following a progression of first 
presenting physical models, followed 
by diagrams, and finally by symbols, 
the representations can be presented 
concurrently to support student 
learning (Dougherty, 2008). The 
concurrent presentation helps students 
make connections across the 
representations and create “mental 
residues” of their experiences (Author, 
2008)—the images left behind after 
students have had experiences that 
build a concept. These images connect 

ideas and can be called upon when 
students face problems that require 
them to retrieve ideas from previous 
learning. These connections can then, 
in turn, be called upon (prompted) 

when students face problems that 
require them to retrieve ideas from 
previous learning. In addition, by 
presenting representations 
simultaneously, students can see how 
the symbols represent the action or 
relationship embodied in the physical 
models or diagrams. Moreno, Ozogul, 
and Reisslein (2011) noted that using 
multiple representations fosters 
problem solving and presenting 
representations concurrently enhances 
the likelihood that students can engage 
in the problems. For example, in ratios 
and proportions, students can use 
cubes to model a given ratio, then 
represent the relationship of associated 
equivalent ratios in a table or a picture. 
Figure 3 presents an example of 
multiple representations including 
verbal, symbolic, graphical, and tabular 
representations. The teacher can have 
students translate between the verbal, 
symbolic, graphical, and tabular 
representations to show various 
relationships of information in 
problems.

Scaffolds

Scaffolds or instructional supports 
can help students access the content 
that may be challenging for them. 
Teachers can use scaffolds to assist 
students in attending to and tackling 
problems that may at first appear too 
difficult to attempt (Bryant et al., 
2014). When concepts and skills are 
first introduced, supports may 
include graphic organizers, cognitive 
strategies, teacher prompts,  
and “think-alouds"; supports  
are gradually decreased as students 
gain proficiency.

Another scaffold teachers can 
employ is small groups. Table 1 
provides examples of using small 
groups by purposefully situating 
problems within a small group (either 

Figure 3. Example of Multiple Representations

Verbal:  Avah sells tacos for $2 each in her food cart. How much does she make if she 
sells 3 tacos?

Symbolic:  y = 2x where x represents the number of tacos sold, and y represents the 
amount of money Avah makes.

Graphical: Tabular:

 

By presenting representations simultaneously, students 
can see how the symbols represent the action or 
relationship embodied in the physical models or 
diagrams.
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pairs or groups no larger than four 
students) so that students have a safe 
environment in which to discuss their 
ideas. As students share their thinking 
coupled with teacher facilitation (e.g., 
questioning, prompting), 
misconceptions can be identified and, 
in some cases, self-corrected as 
students become more proficient with 
explaining the mathematics to others. 
Discussions within the small groups 
also can affirm or correct their thinking 
and give students confidence in sharing 
their ideas before the whole class.

Other examples of scaffolds are 
opportunities to respond and student 
verbalizations as they learn new 
concepts and skills. Recommendations 
in the Standards for Mathematical 
Practice (NGA & CCSSO, 2010) 
specifically include the use of multiple 
opportunities for students to solve 
problems, reason abstractly and 
quantitatively, look for and make 
generalizations, construct and critique 
arguments, and make use of 
mathematical structure. A crucial 
component of opportunities to respond 
is that students are also given explicit, 
frequent feedback. Teachers should 
ensure these recommendations are 
systematically included across a series 
of lessons for students to build 
competence in using and 
demonstrating these standards.

Informing Instruction Through 
Progress Monitoring

Teachers often are challenged to find 
measures that specifically assess 
important skills and concepts of 
mathematical elements that are being 
taught (Foegen & Morrison, 2010). 
These specific measures are often 
referred to as proximal measures, 
which are sensitive to student growth; 
as students learn more, they get higher 
scores on the assessments and the 
results can be plotted to demonstrate 
gains.

As already noted, it is especially 
important that progress-monitoring 
measures examine students’ 
misconceptions and ability with 
regard to reversibility, flexibility, and 
generalization (Authors, 2015; 

Krutetskii, 1976). In addition, 
measures should be designed to 
include items that assess both 
procedural knowledge and conceptual 
understanding. Multiple-choice items 
can be developed that include 
response choices indicative of 
mathematical misconceptions, such 
as those Cara demonstrates. Students 
should be able to demonstrate not 
only what the correct answer to a 
problem is but also why an answer is 
correct. By examining closely student 
responses to progress monitoring 
items, teachers can determine 

whether the student is benefiting 
fully from instruction or requires 
additional teaching.

As an example, Figure 4 is a 
trying-it-on-your-own (TIOYO) item 
that represents conceptual 
understanding (because there is a why 
component) and offers potential 
misconceptions as response choices 
(see Table 1 for another example). 
Items such as these help teachers 
understand student thinking.

How students respond to TIOYO 
items can help inform intensive 
intervention. When students continue 
to miss many TIOYO items (e.g., 50% 
or more), it is important to change or 
intensify a component of instruction by 
deploying explicit instruction to correct 
the identified misconception as the first 
approach. Other ways to intensify or 
change a component of instruction 
include increasing the number of 

scaffolds presented, regrouping 
students, administering a supplemental 
lesson that focuses on similar skills, 
and so forth. It is unlikely that students 
who consistently respond poorly to 
TIOYO items will make satisfactory 
progress throughout the remaining 
lessons or do well on high-stakes test 
items.

Some interventions provide 
independent practice items at the end 
of a lesson; others do not. When 
independent practice items are not 
available, teachers can create items 
by examining the skills and concepts 

that were taught in a lesson. What 
problems were used as teaching 
examples or during guided practice? 
Create four or five similar items for 
the students to work on at the end of 
the lesson. If students respond 
correctly to 75% or more of the 
items, teachers can be fairly confident 
that the students benefited from the 
lesson.

Although the number of progress-
monitoring tools for mathematics is 
increasing, it remains difficult to find 
measures that assess skills and 
concepts taught as part of algebra-
readiness interventions. However, the 
National Center for Student Progress 
Monitoring (http://www.
studentprogress.org/) is an excellent 
resource for gaining information. 
Measures that are available at easycbm.
com also are useful progress-
monitoring measures.

Figure 4. Example of a Conceptual Multiple-Choice Question

Are the ratios 3:5 and 6:8 equivalent?

a.  Yes, they are equivalent because 3 + 2 = 5 and 6 + 2 = 8; and 3 + 3 = 6 and 5 + 3 = 8.
b.  Yes, they are equivalent because 6 is twice 3.
c.  No, they are not equivalent because 3 and 5 are odd numbers.
d.  No, they are not equivalent because the product of 3 and 8 is not equal to the 

product of 5 and 6.

Discussions within the small groups also can affirm or 
correct their thinking and give students confidence in 
sharing their ideas before the whole class.
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Final Thoughts

Teachers who work with students with 
persistent mathematics difficulties and 
mathematics disabilities must be aware 
of misconceptions that can interfere with 
student learning of ratios and 
proportional reasoning. In this article, we 
have provided examples of 
misconceptions and lesson components 
for intensive interventions. Teachers can 
incorporate these components into their 
own interventions and stay alert to 
misconceptions that may become evident 
as students solve problems and explain 
their solution strategies. Cara’s 
misconception about additive and 
multiplicative comparisons is a common 
problem shared by struggling students. 
Carefully structuring intensive 
interventions with evidence-based lesson 
components and using results from 
progress-monitoring measures show 
promise in addressing essential needs for 
learning ratios and proportional 
reasoning, which are fundamental 
concepts of algebra.
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