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Abstract 
Evaluating the relation between evidence and theory should be a central activity for science 
learners. Evaluation comprises both hypothetico-deductive analysis, where theory precedes 
evidence, and inductive synthesis, where theory emerges from evidence. There is mounting 
evidence that induction is an especially good way to help learners grasp the deep structure (i.e., 
underlying principles) of phenomena. However, compared to the clear falsification logic of 
hypothetico-deductive analysis, a major challenge for inductive activities is structuring the 
process to be systematic and effective. To address this challenge, we draw on Sir Francis 
Bacon’s original treatise on inductive science. In a pair of experiments, college students used a 
computer simulation to learn about Faraday’s law. In the inductive conditions, students sought a 
general explanation for several cases organized according to Bacon’s tenets. In contrast, other 
students engaged a more hypothetico-deductive approach of sequentially testing (and revising) 
their hypotheses using the simulation. The inductive activity led to superior learning of a target 
principle measured by in-task explanations and posttests of near transfer and mathematical 
understanding. The results provide two important pieces of information. The first is that 
inductive activities organized by Bacon’s tenets help students find the deep structure of empirical 
phenomena. The second is that, without an inductive “push,” students tend to treat instances 
separately rather than searching for how they partake of the same underlying principle. 
 
Keywords: learning, scientific reasoning, induction, explanation, deep structure, transfer, Francis 
Bacon, contrasting cases, physics education, electro-magnetism, college physics, instructional 
methods
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Scientific investigation is a high priority for science education, which reflects broad 

agreement that students of all ages should learn how to engage scientifically with phenomena 
(National Research Council [NRC], 2012). It also reflects an appreciation that scientific inquiry 
is an effective way to learn core concepts (NRC 2000, 2012). At the center of scientific inquiry is 
the coordination of theory and evidence, which the Framework for K-12 Science Education 
(NRC 2012) refers to as “evaluating” (p.45). In a pair of studies, we examine how inductive 
evaluation can support the learning of scientific principles.  

Inductive evaluation, or synthesis, involves generating hypotheses that fit the data in-
hand. It differs from the hypothetico-deductive evaluation, or analysis, where students test 
hypotheses by making predictions and collecting relevant data. Science educators have 
recognized the distinction between these two forms of evaluation, and they have naturally agreed 
that both are important and intertwined in science and science education (NRC, 2012). 
Historically, however, hypothetico-deductive analysis has been more prevalent in science 
instruction (Chen & Klahr, 1999; Karplus, Karplus, Formisano & Paulsen, 1977; Lawson 2010). 
A common example is the Predict-Observe-Explain (POE) sequence of instruction. Students 
predict the outcome of a specific experiment; they observe the results; and, if analysis shows 
discrepancies between their predictions and observations, they need to explain the differences in 
the service of hypothesis revision. POE was originally designed as a formative assessment so 
that teachers could observe student thinking (White & Gunstone, 1992), but it is also an 
approach to instruction in its own right. For instance, if a student prediction is refuted, it can 
create a teachable moment when the instructor introduces or supports a new way of thinking 
(Chin & Brewer, 1993; Joshua & Dupin, 1987; McDermott, 1991). 

The idealized form of hypothetico-deductive analysis, originating from Galileo, involves 
a critical test of two competing theories that shows one of them to be false (Medawar, 1979). The 
head-to-head comparison of two fully formed theories is rarely obtained. More often, a single 
hypothesis is tested using various systems of controls to rule out alternative explanations. As a 
result, hypothetico-deductive practices of science are diverse and complex. They cannot be 
reduced to formulaic expressions of “the steps of the scientific method,” which over-specify the 
processes and reasoning involved. Nevertheless, the tendency toward such over-specification has 
been a persistent problem in science education (Bauer, 1992; Grandy & Duschl, 2007, 
Windschitl, Thompson & Braaten, 2008). 

If hypothetico-deductive analysis sometimes suffers from the problem of over-
specification in educational practice, then inductive synthesis seems to suffer from the opposite 
problem of under-specification. While there is agreement among educators that induction should 
involve a systematic search for patterns in data (NRC 2012), there is scant literature about how 
to foster systematic search. For example, Felder (1993) advocated inductive synthesis to teach 
Ohm’s law by asking students to induce the law from experimental data. Unfortunately, he did 
not discuss ways of structuring the data or the students’ tasks to maximize successful induction. 
More generally, Duschl (2008) pointed out that the value of finding patterns in data depends 
crucially upon how the evaluation is conducted, but left open the question of which approaches 
might be valuable. This lack of specification creates the danger of equating scientific induction 
with simply looking for patterns in data, messing about, or other forms of minimally guided 
discovery. Students can easily flounder in these situations (Kirschner, Sweller, & Clark, 2006; 
Klahr & Nigam, 2004; Mayer, 2004) or stay at the surface of phenomena rather than notice 
underlying patterns.  
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On the assumption that there should be more structure to inductive activities than simply 
looking for patterns, what sorts of structure might be useful? Philosopher and scientist Sir 
Francis Bacon grappled with this question in the early 17th century and wrote a series of 
aphorisms for the organization of data and the search for explanations. In the following, we 
sketch Bacon’s proposals and show how they relate to the contemporary empirical literature on 
inductive learning. We then instantiate his proposal in a set of materials and activities designed 
to foster induction. Afterward, we describe two studies with university students who investigated 
electromagnetic flux using a computer simulation. Students assigned to our inductive treatment 
penetrated to the deep structure of the phenomenon during learning, which in turn enabled them 
to complete near transfer tasks and understand the relevant mathematical formula more deeply. 

Bacon’s Philosophy of Induction and Its Relation to Contemporary Learning Theory 
In 1620, Bacon introduced his classic treatise on inductive science, Novum Organum 

(Bacon, 1620/2000). He wrote that the preliminary work of the scientist is to assemble data in the 
form of three tables. The first table should include a variety of phenomena that share a common 
dimension of interest or “essence.” Bacon used the example of heat and tabulated many different 
things that gave off heat, such as the sun’s rays, fresh horse dung, and quicklime sprinkled with 
water (Book 2, Aphorism XI). The second table should be of negative instances that do not share 
the dimension of interest but are otherwise similar. To exemplify, Bacon tabulated situations 
“where the nature of heat is absent but which are in other ways close to ones where it is present” 
(Book 2, Aphorism XII) such as the fact that the moon’s rays, in contrast to those of the sun, do 
not appear to have a heating effect. The third table should list instances of gradation within the 
phenomena. Staying with the example of heat, Bacon included astronomers’ traditional belief 
that Mars is the hottest planet, then Jupiter, then Venus, and so on down to Saturn (Book 2, 
Aphorism XIII). Once the tables of essence, negative instances, and gradation have been duly 
assembled, then the task of inductive synthesis is to formulate a general explanation. As 
expressed in Bacon’s words, the general explanation must explain all three types of patterns by 
capturing the essence but also accounting for negative instances and gradation: 

After the presentation has been made, induction itself must get to work. After looking at 
each and every instance we have to find a nature which is always present when the given 
nature (in our present case: heat) is present, is always absent when the given nature is 
absent, always increases or decreases with the given nature, and is a special case of a 
more general nature (Book 2, Aphorism XV). 

Bacon’s proposal for a new philosophy of scientific method neatly combines several 
distinct learning processes that support induction and positive learning outcomes. First, the idea 
of analyzing instances that share a common essence is strikingly similar to the literature on 
analogical induction. Studies that focus on analogical induction ask participants, explicitly or 
implicitly, to find the commonality of multiple instances that are otherwise different at the 
surface. For instance, a crested rat and hawk moth caterpillar differ on many dimensions, but 
they do share the common structure of mimicking something more dangerous (a skunk and a 
poisonous snake). Analogical induction improves people’s ability to understand a phenomenon 
in terms of its deep relational structure. A deep structure is an underlying principle or 
fundamental relationship that runs throughout a domain. Appreciating the deep structure of 
different instances is a characteristic of expertise. Physics experts recognize that spring and 
inclined plane problems both critically involve potential energy, whereas physics novices view 
them as different types of problems because one involves springs and the other planes (Chi, 
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Feltovich, & Glaser, 1981). More functionally, finding deep structure supports transfer to new 
situations where surface features differ but the underlying structure is the same (e.g., Gick & 
Holyoak, 1983; Gentner, 1983).  

Second, Bacon’s table of negative instances maps onto present day researchers’ use of 
contrasting cases to promote learning (Schwartz & Bransford, 1998). Here, learning involves 
discerning key features that differentiate the cases. For instance, Rittle-Johnson & Star (2007) 
asked students to notice pairwise differences among algebra solution strategies, which helped the 
students appreciate the unique strengths of each strategy. The ability to discern diagnostic 
properties of a situation is a general characteristic of expertise as shown by studies of 
radiologists, archeologists, and other professions (Goodwin, 1994; Biederman & Shiffrar, 1987). 
Contrasting cases also support transfer, because they help learners recognize precise cues that 
call for one set of ideas versus another (Bransford, Franks, Vye, & Sherwood, 1989). 

Third, Bacon’s table of gradations prefigures research on the importance of systematic 
variation for helping people learn the major underlying dimensions of empirical phenomena 
(Gibson, 1979; Gibson & Gibson, 1955). For instance, O’Kuma, Maloney, and Hieggelke (2000) 
created physics exercises in which students ranked cases to help them appreciate the major 
dimensions of variation. Appreciating systematic variation is important for the meaningful 
quantification of phenomena, so students can map symbolic manipulations to changes in 
empirical magnitude. 

While the three tables specify the necessary information for successful induction, Bacon 
recognized that they are not sufficient. People also need to seek a general explanation of the data. 
Bacon proposed this as a major goal of science – developing generalizable theory. Seeking a 
general explanation may also be valuable for learning, especially transfer. Transfer has been 
broadly linked to the process of explaining (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; 
Siegler, 1995, 2002; Ryoo & Linn, 2014). Seeking a general explanation may be especially 
useful for transfer, compared for example, to explaining a discrepancy in a text or between a 
hypothesis and a result. For instance, in a laboratory categorization task, seeking a general 
explanation yielded better learning and transfer than self-explanation and other processing 
directives (Williams & Lomborozo, 2010). Presumably, this is because seeking a general 
explanation drives learners to find the deep structure that unifies positive instances and 
eliminates negative ones. The current research examines whether asking students to seek a 
general explanation is useful for discovering the deep structure of a scientific phenomenon and 
for transferring to new problems. 

Purpose of the Investigation 
The current investigation has two purposes. One is to exemplify how to structure a 

science learning activity to facilitate Bacon’s style of induction. The other is to point out the 
importance of the inductive orientation to seek the general explanation. The investigation builds 
on earlier work (Schwartz, Chase, Oppezzo, & Chin, 2011) which had middle-school students 
invent a rule for describing a set of “Baconian cases” that exhibited systematic variation in the 
density of objects within containers. Students had to invent a “crowdedness index.” The directive 
of “inventing an index” was a way of conveying the idea of producing a general explanation. The 
students largely found the deep structure and exhibited strong transfer to a new situation that 
shared the deep structure of an intensive ratio but differed on the surface (i.e., spring constant). 
The study did not isolate the value of seeking a general explanation, but it provided a hint as to 
its importance. In a second condition, students were told the density formula beforehand and 
used the exact same cases to practice the formula. These latter students simply applied the 
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formula individually to each problem. They missed the deep structure of ratio that unified the 
instances, and without the ratio concept, there was nothing to transfer to the novel problems. 
Similarly, other authors have found that when exposed to multiple related instances, people will 
often treat each instance separately (Gentner, Loewenstein, & Thompson, 2003; Rittle-Johnson 
& Star, 2007). Thus, students may need explicit directives to seek a general explanation to reap 
the benefits of inductive activities. 

Our primary instructional treatment asked students to synthesize a general explanation for 
a set of cases organized according to Bacon’s tenets. As a comparison point, other students took 
a more hypothetico-deductive approach to the same cases by following the predict-observe-
explain cycle for each case. We chose hypothetico-deductive analysis as the control activity for 
two reasons. First, in the study by Schwartz and colleagues (2011), the control students 
completed tell-and-practice activities for learning about density. Hearing a formula and then 
practicing its application does not naturally call for any sort of analysis or inquiry. Hypothetico-
deductive activities, in contrast, are explicitly investigative. This creates an opportunity to see if 
students will naturally seek a general explanation during inquiry when not explicitly prompted to 
do so.  

Second, we argue for the complementarity of inductive and deductive evaluation. Some 
learning outcomes may benefit more from inductive synthesis and some may benefit more from 
hypothetico-deductive analysis. Well-structured hypothetico-deductive analysis should be 
especially effective for confronting mistaken beliefs by focusing attention (Minda & Ross, 
2004), creating dissonance and reflection, and triggering the search for revised understanding 
(Khishfe & Abd‐El‐Khalick, 2002; Strike & Posner, 1992; Nussbaum & Novick, 1982; Dega, 
Kriek, & Mogese, 2013). In contrast, inductive synthesis may be especially useful for initial 
learning where the goal is for students to learn the deep structure of a new phenomenon about 
which they have few prior beliefs. Hypothetico-deductive analysis works for scientists because 
they already have a strong theory generated from many prior instances, and a single case can test 
their theories. However, a strong theory built up from many instances is exactly what students 
are missing when learning a scientific theory for the first time. Therefore, inductive synthesis 
may be a useful approach when initial theory construction is the pedagogical goal. Given that 
hypothetico-deductive activities are prevalent in schools and educational research, we thought it 
would be useful to demonstrate the unique benefits of Bacon’s well-structured induction while 
isolating the need to support students to seek a general explanation.  

Overview of the Experiments 
The study employed three empirical examples that incorporated essence, negative 

instances, and gradients that students could ideally use to produce a general explanation. Figure 1 
shows simplified versions of the examples. They were chosen to help students understand that a 
changing magnetic field causes current to flow through a coil, as indicated by an attached light 
bulb (Faraday’s law). The cases were not designed to help students learn about the effect of the 
rate of field change. Rather, we wanted them to learn that only a change in the magnetic field 
perpendicular to the face of the coil will induce a current. Cases A and C exhibit a commonality 
– the light turns on when the field perpendicular to the coil is changed. Cases A and C also 
exhibit gradation because there is brighter light with a greater amount of change in perpendicular 
field. Case B provides a negative instance where the bulb does not light because the change in 
magnetic field is not perpendicular to the face of the coil. No single case provides sufficient 
information for inducing the principle, but taken together they may.  
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Please insert Figure 1 about here 

The main experimental manipulation was the method of evaluation used with the cases. 
Undergraduate students completed either hypothetico-deductive or inductive evaluation. For 
both, the students used a computer simulation for about 40 minutes (see Figure 2; Wieman, 
Adams, & Perkins, 2008). Students considered the three cases that are shown in Figure 1. In the 
inductive condition, students gathered data and tried to induce a single general explanation to 
account for all the cases. In the hypothetico-deductive condition, they predicted, tested, and 
explained the results for each case in turn. 

In the first study, we confined the investigation to the straightforward question of whether 
asking students to seek a general explanation with well-organized cases would help them 
penetrate the deep structure of the phenomenon and subsequently transfer. Reciprocally, we also 
wanted to determine whether students in the hypothetico-deductive condition would seek a 
general explanation without prompting. The second study was a replication of the first, while 
addressing secondary questions about task instructions, the optimal composition of the cases, and 
the effects on mathematical understanding.  

Please insert Figure 2 about here 

We evaluated the effects of the treatments on learning in two ways. The first involved an 
analysis of students’ written explanations during learning. Students had to write their 
explanations when working with the simulation. We examined these to determine whether 
students’ explanations identified the deep structure of the phenomenon or whether they focused 
on surface features. Surface features are properties of a problem that are idiosyncratic, compared 
to deep structures which are relations among properties that are common across different 
problems (e.g., Gentner & Markman, 1997; Ross, 1987). Compared to experts, novices in a 
domain often focus on surface features, which may interfere with their abilities to find the deep 
structure (Chase & Simon, 1973; Chi, Feltovich, & Glaser, 1981; Medin & Ross, 1989; 
Kaminski, Sloutsky, & Heckler, 2008).  

Our expectation was that the students who were not told to seek a general explanation 
would more frequently identify surface features in their explanations. This is because they would 
be focusing on each case independently and would often rely on features unique to that case to 
formulate their explanations. For instance, the following explanation is true of case C, but does 
not handle case A:  “when the magnetic field changes direction inside the coil, the light bulb 
turns on.” Thus, we coded whether students gave explanations that relied on surface features.  

 A second expectation was that students who were told to seek a general explanation 
would more frequently identify the key deep structure. This is because they were trying to find 
an explanation that worked for all the cases, which depends on the common deep structure. The 
target deep structure was operationalized as follows:  “to induce a current (and light the bulb) 
there needs to be a change in the x-component (horizontal) of the magnetic field inside the coil.” 
However, it also possible that students could produce general explanations that did not find the 
deep structure, for example, by being vague. For instance, “a change in the magnetic field in the 
coil turns on the light,” is general to all the cases, but it is imprecise and less scientifically 
accurate than the statement, “a change in the x-component of the magnetic field turns on the 
light.” Therefore, we only coded an explanation as having identified the deep structure when it 
was precise and accurate, meaning that it had to explicitly refer to the horizontal component of 
the magnetic field in some way.  
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The second way we evaluated student learning was by examining their performance on a 
posttest of novel paper-and-pencil problems that also involved the magnet and coil. Figure 3 
provides an example. General explanations, by their nature, should generalize and improve 
transfer to novel problems, as shown in the literature on analogical learning (Gick & Holyoak, 
1983; Brown & Kane, 1988), physics problem solving (Chi, Bassok, Lewis, Reimann, & Glaser, 
1989; Bassok & Holyoak, 1989), and explanation (Roscoe & Chi, 2007, 2008; Williams & 
Lombrozo, 2010).  

All told, we predicted that the inductive students, who were instructed to form general 
explanations, would more frequently identify the deep structure during learning, and they would 
better solve transfer problems. In contrast, without the push towards synthesizing a general 
explanation, hypothetico-deductive students would not make effective use of the essence, 
negative instances, and gradients built into the set of cases. Instead, they would be more focused 
on the separate analysis of each case. As a result, they would be more concerned with surface 
features of the cases, less likely to identify the deep structure, and less likely to solve problems 
that require a degree of generalization. 

Please insert Figure 3 about here 

Experiment 1 

The experiment took place during the recitation sections of a calculus-based introductory 
physics course for undergraduate engineering majors. Students completed worksheets which 
directed them to use the computer simulation shown in Figure 2 to learn about electromagnetism 
(Wieman, Adams, & Perkins, 2008). The experiment crossed two factors. The main factor was 
the pedagogical emphasis: inductive (ID) or hypothetico-deductive (HD), shown in Figure 4. 

In the HD condition, students made predictions for all three cases. They then used the 
simulation to test their predictions, recorded the results, and explained each case in turn. This 
gave them a chance to revise their explanations with each case. The HD condition was intended 
to approximate a typical set of HD cycles, except that it presented all three cases together to 
better parallel the ID condition, which necessarily received the cases presented together. Having 
all three cases together, if anything, should have tilted the HD students towards a general 
explanation. In the ID condition, students made no predictions. Instead, they observed and 
recorded results for each case in the simulation and then tried to write a single, general 
explanation for all cases.  

The second factor varied in this study, which is ultimately of less importance, was the 
presence or absence of a measurement tool (MT) within the computer simulation. The tool could 
be moved to any location to provide a numerical value for the magnetic field vector and its 
horizontal and vertical components. The MT factor was included to see whether numerical 
values for field intensity would help students detect field gradations relevant to the deep 
structure. We predicted that the tool would benefit the ID condition more than the HD condition 
because the relevant gradations would occur across the cases rather than within each case. 

Please insert Figure 4 about here 

Methods 
Participants. Participants were 103 undergraduate engineering students from an 

introductory physics course in electricity and magnetism at a highly selective, private university. 
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We collected students’ midterm examination scores, given one week prior to our study, to ensure 
random assignment had not favored one condition over another. The study was timed so that its 
central topic, Faraday’s law, fit into the natural sequence of the course. Just prior to the 
experiment, students attended a lecture on topics that led up to Faraday’s law. One of these 
topics was magnetic flux, which is a way of quantifying how much magnetic field passes 
perpendicular to a surface. The study occurred within one of the course’s recitation periods. 
There were 11 recitation sections ranging in size from 6 to 13 students. Sections were led by one 
of 6 graduate teaching assistants (TAs) who played a minimal role in the instruction; they simply 
introduced the activity. A member of the research team provided clarification to the students 
when needed, typically regarding how to use the measurement tool or position the magnet in the 
simulation for any given case.  

Because the posttest took longer than expected, 23 out of the 103 students left class 
before they had finished the posttest, stating that they had to make another class or appointment. 
These students did not complete at least one of the six questions on the posttest. This left 
complete data for 80 students. We address the threat of attrition in the Results section. 

Design and Procedures. The study used a 2 x 2 between-subjects design that crossed 
pedagogy (HD vs. ID) with the measurement tool (MT vs. NoMT). Sections were randomly 
assigned to one of the four conditions. The number of students in each condition varied due to 
section enrollment: HD-MT (3 sections, 20 students), ID-MT (3 sections, 20 students), HD-
NoMT (2 sections, 15 students), and ID-NoMT (3 sections, 25 students).  

The instructional period was 40 minutes, with an additional 10 minutes allotted to the 
posttest. Students used worksheets which directed them to interact with a computer simulation to 
learn about Faraday’s law. The worksheets also contained the instructions that differentiated the 
four conditions. Students worked in groups of two to three, sharing one laptop computer for the 
simulation, and filling in their worksheets individually. Working in groups was meant to 
facilitate interaction that would promote learning and was consistent with the style of instruction 
in the course recitation sections. At the end of the recitation period, students completed the 
posttest individually.  

In the HD conditions, students completed the three cases on the worksheet in Figure 5 
sequentially. Students first made predictions for all three cases, then they observed what 
happened using the simulation, and finally, they explained why. For the predict phase, cases 
were depicted on a single sheet of paper, and for each case, students were asked to write down 
whether the bulb would light and draw the magnetic field before and after repositioning the 
magnet. During the observe and explain phases, students used the simulation to test their 
predictions by recreating each of the three cases. For each case, there were spaces for students to 
record “what the light did,” describe the light’s brightness, and draw the magnetic field they 
observed for the initial and final magnet positions as depicted in the case. Finally, there was a 
space at the far right of each case to “explain the change in the magnetic field that caused the 
bulb to light.”  

In the ID conditions, students conducted simulations for the same cases as HD using a 
very similar worksheet. There were four main differences. (1) ID students did not make 
predictions. They simply observed and recorded what happened for each case. (2) Instead of 
explaining each case in turn, students were asked to write a single, general explanation for all 
cases. (3) To help students understand the idea of a single, general explanation, a cover sheet 
gave them an example general explanation in the context of buoyancy (see Figure S1). It 
presented three contrasting cases in which objects of different volumes and masses either sank or 
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floated, and it provided one model explanation for all of the cases in terms of density. (4) The ID 
worksheet told students the results of each case – whether the bulb would light, and how 
brightly. All told, the ID activity was meant to simulate situations where scientists have the 
results in hand and are seeking an explanation for them.  

Students in the MT conditions used the magnetic field meter to measure and record 
numerical values for the overall magnetic field intensity at the center of the coil (B) and the x-
and y-components of this intensity (Bx and By), for each case. Students in the NoMT conditions 
were told not to use the measurement tool. 

Please insert Figure 5 about here 

Measures and Coding. Dependent measures comprised worksheet and posttest 
explanations. On the worksheet, students were asked to explain the results of the simulated cases 
(see the right-hand column in Figure 5). On the posttest, students were asked to make predictions 
about novel scenarios and explain them.  

We scored student worksheet explanations as 1 or 0 depending on whether students 
explained magnetic induction in terms of the target deep structure (see Table 1). We further 
coded those explanations that did not reference the deep structure (e.g. non-deep explanations) 
for dependence on surface features – observable features particular to the case at hand.  

The posttest consisted of six items that asked students to make predictions about 
situations that could not be recreated in the simulation, as in the item shown in Figure 3. These 
were considered near transfer items because students had to apply the target deep structure in 
novel circumstances which they had not been exposed to during instruction. Like the worksheet 
explanations, posttest explanations received a score of 1 if the prediction was linked to the deep 
structure; otherwise they received a score of 0. Non-deep posttest explanations were also scored 
for surface feature inclusion. The coding procedure began with two coders independently coding 
a random sample of 20% of the worksheet and posttest data. Agreement was 90% for worksheets 
and averaged 88% for posttest items (minimum 84%). Once inter-rater agreement was 
established, one of the two researchers coded the remainder of the material. 

Posttest items were designed expressly for the study and not pilot tested. After coding 
student responses, we found that two of the items did not discriminate understanding of the deep 
structure as intended, reducing the internal consistency statistic (Alpha) for the test. We 
discarded these two items. The remaining four posttest questions were fairly reliable, α = .70. 
These items are shown in Figure S2 (Items 1- 4).  

Please insert Table 1 about here 

Results 
To check the equivalence of student prior achievement across conditions, we compared 

students’ scores on the midterm exam. An ANOVA crossed the two factors (Pedagogy: HD vs. 
ID, Measurement Tool: MT vs. No-MT) with midterm scores as the dependent measure. There 
were no differences in prior achievement according to pedagogy, F(1,73) = 0.17, p = .68. There 
was a marginal difference by measurement tool, F(1,73) = 3.30, p = .07, however, given that this 
was not the main comparison in our study, we were not concerned with this near difference. 
There was no interaction of the two factors, F(1,73) = 0.02, p = .90. 

Figure 6a indicates that more ID students identified the deep structure in their worksheet 
explanations. In the ID condition, 14 of 45 students identified the deep structure compared to 1 
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of 35 students in the HD condition, χ2 (1, N = 80) = 10.32, p = .0011. The posttest shows a 
similar pattern. ID students nearly doubled the HD students on the posttest score, as shown in 
Figure 6b. A factorial ANOVA crossed pedagogy by measurement tool on posttest score. There 
was a main effect of pedagogy, F(1, 76) = 11.57, p = .001, with no main effect or interaction 
involving the measurement tool, p > .05. When comparing the HD and ID conditions, the effect 
size was d = .73.  

Please insert Figure 6 about here 

We explored the relationship between finding the deep structure during the worksheet 
activity and subsequent posttest accuracy. Because only one student in the HD condition wrote a 
deep explanation on the worksheet, the following analysis considers the ID condition only. ID 
students who explained the deep structure scored roughly twice as high on the posttest as ID 
students who did not, MDeep = 2.93 (SE = .37), MNonDeep = 1.48 (SE = .22), F (1, 43) = 12.61, p = 
.001. Our preferred interpretation is that finding the deep structure during the learning activity 
led students to recognize the deep structure of the novel materials presented at posttest. An 
alternative interpretation is that the students who knew enough to figure out the deep structure 
were also the ones who could solve the new problems. However, the mid-semester exam scores 
were the same for those who did and did not find the deep structure on the worksheet, t (42) = 
.02, p > .05, which makes it unlikely that pre-existing knowledge or ability can explain the 
linkage between worksheet and posttest scores.  

We had predicted that HD analysis would incline students to handle each case 
independently. One way to detect this behavior is to examine whether their worksheet 
explanations hinged on surface information that was specific to a single case rather than all 
cases. To find out, we confined the analysis to those who did not identify the deep structure.  
Sixty-seven percent of HD students wrote surface level explanations. In contrast, only 29% of ID 
students wrote explanations focusing on surface features, χ2 (1, N = 65) = 9.67, p = .002. Most of 
the non-deep explanations of ID students were vague generalities such as “any change in 
magnetic field” lights the bulb rather than specifics to any single case. An attenuated version of 
this worksheet pattern occurred on posttest questions. Looking at the non-deep explanations on 
all items of the posttest, the HD group wrote a descriptively higher percentage of surface-level 
explanations than the ID group, HD= 54.6% (SE = 6.2%), ID = 48.2% (SE = 6.5%). However, 
this difference was not statistically significant, t (1, 68) = 0.72, p > .05. The prevalence of 
surface explanations for the HD condition supports the contention that, without explicit 
encouragement to treat the cases jointly, students tended to treat each case separately and 
inadvertently focused on their unique properties.   

The effects of the measurement tool, while much more moderate than those of pedagogy 
and not statistically significant, were in the expected direction. There was no main effect of 
measurement tool on worksheet explanations. Twenty percent of students in the MT condition 
identified the deep structure in their explanations compared to 18% in the NoMT condition. The 
measurable difference in worksheet explanations occurred within the ID condition, where a 
slightly higher percentage of students indicated the deep structure when using the measurement 
tool, 36% MT vs. 29% NoMT. This difference was not statistically significant, χ2 (1, N = 80) = 

                                                     
1 The worksheets were completed individually but students worked in pairs to do the 
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0.08, p = .78. The advantage for MT on the posttest was slightly more pronounced, MMT = .44, 
MNoMT = .33, F (1, 76) = 3.30, p = .07, but still not significant. More importantly, there was no 
interaction between pedagogy and measurement tool, F (1, 76) = 0.67, p = .41. Thus, the 
prediction that the measurement tool would benefit the ID condition more than the HD condition 
did not turn out. 

While all students completed worksheets, 23 students did not complete one or more of 
the posttest items because they had to leave the session before it ended. These students’ 
worksheet and (partial) posttest results were not included in the preceding analyses. The rate of 
attrition differed by condition: 15% of HD students and 27% of ID students left early. This raises 
the question of whether the ID condition performed better simply because less knowledgeable 
students left early. Evidence indicates this was not the case. The 23 students who departed during 
the posttest did not have different worksheet outcomes than those who completed the test. Of the 
HD students who left before completing the posttest, none of them identified the deep structure 
on the worksheet, whereas 29% of the ID students who left did, which is nearly identical to the 
31% of ID students who remained. With respect to the posttest, 20 of the 23 students who left 
early completed the first two questions on the test. Among those 20, the results were in the same 
direction as the full sample, with students in the ID condition outperforming students in the HD 
condition, F(1, 18) = 19.02, p < .001. 

As a final check, we examined differences in prior midterm scores between students with 
complete and incomplete data. The scores did not differ, MIncomplete = 26.8 (SE = 1.5), MComplete = 
27.0, (SE = 1.0), t(1,97) = 0.09, p = .93. Given these multiple checks, attrition is an unlikely 
explanation for the treatment effects. 

Discussion 
To learn about Faraday’s law, students received three cases and collected simulated data 

for each. One condition was told to find a general explanation for all the results (ID condition), 
whereas the other condition was told to predict-observe-explain for each case in turn (HD 
condition). Only one HD student spontaneously identified the deep structure. Instead, most HD 
students focused their explanations on surface features unique to each specific case. In contrast, 
ID students generated explanations that identified the deep structure more frequently. These 
differences in how students engaged with the three cases had strong implications for their 
learning. On a posttest of novel problems involving the same apparatus (a moving magnet, a coil, 
and a light bulb), ID students were again more likely to identify the deep structure. Moreover, 
identifying the deep structure during the learning activity was significantly associated with how 
well students performed on the posttest.  

Our interpretation of the current results is that inductive synthesis, with its goal of 
producing a general explanation from carefully arranged cases, helped students to find the deep 
structure that represents the unifying principle. However, it is also important to note that many 
students in the ID condition never found the deep structure (they simply wrote vague 
explanations), a concern we address in the General Discussion. Nevertheless, given that the ID 
condition outperformed the HD condition so dramatically, the current results show the value of 
structured induction activities.  

There are alternative interpretations of the results. One is that the HD worksheet did not 
show the outcome of the light bulb as shown on the ID worksheet. For the HD condition, 
showing the outcome would have ruined the prediction task. This difference may have been 
important. The HD students may not have produced the cases accurately enough, so that the 
simulation yielded poor data. Making the simulated magnet behave as shown in the worksheet 



Running Head: INDUCTIVE ACTIVITIES FOR LEARNING AND TRANSFER 
 

11 
 

was prone to manipulation errors (e.g., sliding it a little bit on the x-axis, when it is supposed to 
only move on the y-axis). The next experiment addresses this concern. After making each 
prediction and conducting its associated experiment, HD students received the same outcome 
information as ID students before moving on to give their explanations.  

A second concern is that the ID students received an initial activity that was intended to 
help them understand the nature of a general explanation (Figure S1). The example demonstrated 
that a general explanation accounts for all cases, and it also showed a model explanation. The 
HD students did not receive this instruction, which means they may not have understood the 
components of a high-quality explanation or may have placed little emphasis on the importance 
of their explanations. Therefore, in the next study HD students received a preliminary worksheet 
similar to the ID worksheet where they were shown a model explanation using the same example 
of buoyancy (see Figure S3). 

The effects of the measurement tool were inconclusive. Descriptively, the tool helped the 
ID condition more than the HD condition, but the effect was insignificant and far less than the 
effect of pedagogy. Perhaps it helped a few students detect the gradient of x-component changes 
more precisely. Regardless, given that measurement is a regular feature of scientific 
investigations, we decided to provide the tool for all students in the next study.  

Experiment 2 

Experiment 2 served as a replication of Experiment 1 with adjustments to remove 
potential confounds, as described below. The experiment also incorporated new conditions and 
new measures. It took place one year later at the same course at the same institution.   

One new condition, low-contrast induction (LCID), evaluated Bacon’s proposal that 
negative instances should have an outcome that “is always absent when the given nature is 
absent” (Bacon, 1620/2000, Book 2, Aphorism XV). Bacon recognized that negative instances 
are crucial for induction because they help to rule out plausible false explanations which are 
otherwise consistent with the data. The negative case (Case B, Figure 1) in the ID condition 
implements Bacon’s proposal, because the light does not come on. It was intended to help 
students rule out surface level explanations consistent with Cases A and C, such as the 
explanation that any change in magnetic field would induce a voltage. In the LCID condition, we 
replaced the “absent,” high-contrast case with a low-contrast one where the bulb lights dimly 
because the magnetic field is in between vertical and horizontal (see Figure 7). Otherwise, the 
LCID condition had the same instructions as the ID condition. We predicted that students in the 
LCID condition would do worse than the ID condition, because the low contrast would make it 
harder to notice the significance of the x-component of the field.  

Please insert figure 7 about here 

The other new condition, compare and contrast (CC), evaluated the importance of telling 
students that they should seek a general explanation. Students in this condition received the same 
cases as the ID condition and addressed the cases as a group. However, they did not have an 
explicit prompt to give a general explanation. Instead, their task was to explain the similarities 
and differences between the cases. This condition also mimics instruction from studies of 
analogical induction, where learners are typically asked to compare and contrast a set of 
analogous examples (Catrambone & Holyoak, 1989). We predicted that these students would do 
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more poorly than the ID students, because the “compare and contrast” directive would be 
insufficient inducement to seek a general explanation.  

The posttest was modified to include measures of quantitative understanding, while still 
measuring qualitative understanding. Since the study context was a university physics course that 
largely focused on mathematical explanations, we wanted to determine whether inductive 
activities would have a negative, neutral, or positive effect on mathematical understanding of the 
physics.  

Methods 
Participants. Participants were 316 students from the same course as Experiment 1. As 

before, the study was conducted in students’ recitation sections with minimal TA involvement. 
The study was again timed so that the topic of Faraday’s law fit into the natural sequence of the 
course. There were 26 sections taught by 14 different TAs. Each TA taught two sections 
individually, except that two of the sections were co-taught by a pair of TAs. Each section was 
randomly assigned to condition under the constraint that no TA taught 2 sections from the same 
condition. 

Design and Procedures. The study design had four between-subjects conditions with a 
planned comparison of the ID condition against each of the other three conditions. Table 2 
summarizes the condition differences.  

There were two key changes to procedures in Experiment 2 that were designed to address 
the two potential confounds discussed for Experiment 1. The first was that students in all 
conditions were exposed to a model explanation involving buoyancy, not just the ID condition. 
The model explanation we provided was identical for all students, but in accordance with 
condition differences, there were different task directives for processing it. For the inductive 
conditions, ID and LCID, the task directive was the same as for Experiment 1. It asked students 
to find a general explanation for a set of buoyancy cases; then it gave students the model 
explanation that buoyancy depends on mass per unit volume (see Figure S1). The two non-
inductive conditions, CC and HD, were shown a single buoyancy case and the model explanation 
of buoyancy. Their task was to explain why this explanation was better than an explanation 
based on a single feature of the case, mass. Then they were told that the model explanation was 
better because it was more precise (see Figure S3). Thus, while all conditions were shown the 
model explanation, only the inductive conditions were encouraged to seek this explanation using 
a set of cases. 

A second departure from Experiment 1 is that the HD condition received the results of 
each case to address the possibility that the HD condition’s lower performance could have been 
caused by inaccurate data collected in the simulation. After completing their observations of each 
case, students in the HD condition were directed to a website containing the same outcome data 
that the ID, LCID, and CC students saw. 

Please insert Table 2 about here 

Measures and Coding. As in Experiment 1, the measures were the worksheet 
explanations and posttests.  The posttest in Experiment 2 contained four items. Two were 
qualitative prediction tasks from Experiment 1: rotating magnet prediction and switching magnet 
prediction (see Figure S2, Items 1 and 2). Two new items assessed quantitative understanding. 
One was a physics word problem that measured application of a formula included in Faraday’s 
law (see Figure S2, Item 5). It asked students to calculate a magnetic flux, which by definition 
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requires calculating the dot product of the magnetic field vector, B, and the vector describing the 
surface that the field passes through, dS. This “formula application” problem was included to see 
if the inductive activities put students at risk for computational tasks. Our prediction was that 
they would not; understanding the physical phenomena should not interfere with standard word 
problems.  

The other quantitative item measured insight into the mathematical structure of the same 
formula as the application problem (see Figure S2, Item 6). In this less prototypical item, 
students had to explain, “Why does Faraday’s law take the dot product of B and dS?” The answer 
is that Faraday’s law uses the dot product to quantify the extent to which the magnetic field 
vector, B, is perpendicular to the surface it passes through. We included this “formula insight” 
item to see whether inductive activities helped students understand why a formula takes the 
structure it does (Schwartz & Martin, 2004). We predicted that most students would be able to 
manipulate the formula to achieve the correct answer, but the ID students would better 
understand the formula’s conceptual underpinnings. 

The worksheet explanations and two qualitative prediction items were coded per 
Experiment 1. The formula application item was scored as 1 or 0 depending on whether students 
used the dot product to calculate the magnetic flux. The formula insight item was also scored on 
a 0-1 scale. A score of 1 was given if a student’s explanation of the formula invoked the deep 
structure (i.e., the dot product is used because it takes the component of the magnetic field that is 
perpendicular to the surface through which the field is passing). As in Experiment 1, acceptable 
coder agreement (91% for worksheets and 84-100% for posttest questions) was established on a 
random 20% sample of the data. The remaining data were coded by one of two researchers. 

Results 
Prior achievement was equivalent across conditions based on the students’ preceding 

midterm exam scores, F(3, 307) = 0.67, p = .57; MID = 60.9 (SE = 1.8), MHD = 61.6 (SE = 1.9), 
MCC= 58.2 (SE = 1.8), MLCID  = 59.8 (SE  = 1.9).  

In the remaining analyses, we begin with an omnibus test of condition effects. We then 
apply planned orthogonal contrasts that compare the ID condition to each of the other three 
conditions. 

Figure 8a indicates that more student explanations identified the deep structure on the 
worksheet in the ID condition compared to the other conditions, although this difference was not 
significant, χ2 (3, N = 316) = 3.25, p =.35. The planned comparison of ID to HD was not 
statistically significant, χ2 (1, N = 159) = 2.48, p =.12, nor did ID differ statistically from CC or 
LCID2. While the ID students in this experiment performed similarly to the ID students in 
Experiment 1, the HD students performed much better in Experiment 2. Providing HD students 
with a model explanation and/or outcome data may have caused their improvement.  

Please insert Figure 8 about here 

The ID students scored higher than the other conditions on the transfer posttest. As 
shown in Figure 8b, the ID students had the highest scores, followed by the LCID and CC 
students, and then the HD students, who had the lowest scores. A one-way ANOVA found a 
significant effect of condition on posttest performance, F(3, 312) = 2.71, p = .045. Planned 

                                                     
2 The worksheets were completed individually but students worked in pairs for the 

activities, a caveat for evaluating statistical comparisons of the worksheets.  



Running Head: INDUCTIVE ACTIVITIES FOR LEARNING AND TRANSFER 
 

14 
 

comparisons revealed that the ID group’s posttest score was significantly greater than the HD 
group’s, p = .006, effect size, d = .47. These findings replicate the relative advantage of ID over 
HD found in Experiment 1. There were no significant differences between ID and LCID, p = .19, 
or between ID and CC, p = .28. To check if the LCID and CC conditions significantly 
outperformed the HD condition, we used a Tukey’s post hoc comparison. This non-conservative 
test maximizes the chances of detecting any differences. The contrast of HD with LCID was not 
significant, p = .22, nor was the contrast of HD with CC, p = .35. By inference, the posttest 
scores of the LCID and CC conditions fell between the ID and HD conditions, as they were not 
significantly different from either. In sum, the ID students were best at generalizing to novel 
situations, while HD students fared the worst. 

Given the umbrella protection of the significant ANOVA, we disaggregated the posttest 
to explore whether the results would hold up across the items. Individual Chi-square tests 
compared the ID condition to each of the other three conditions for each posttest question. Table 
3 shows the results of these tests along with the percent of students who correctly answered each 
question in each condition. The statistical advantage of ID over HD holds for the two prediction 
questions and the formula insight question. But, as anticipated, there was no difference between 
ID and HD conditions on the formula application item, which assessed procedural rather than 
conceptual understanding. Again, the LCID and CC conditions tended to fall between the ID and 
HD conditions.  

Please insert Table 3 about here 

As in Experiment 1, we examined the relation between finding the deep structure on the 
worksheet and performance on the posttest. Unlike Experiment 1, we were able to include all 
four conditions in this analysis because sufficient numbers of students identified the deep 
structure in each condition. We separated students who identified the deep structure in their 
worksheet explanations versus those who did not. We then compared their posttest scores 
crossed by condition. Overall, students who identified the deep structure scored twice as well as 
those who did not on the combined posttest prediction and insight problems3, MDeep = 1.75, (SE 
= .12), MNotDeep = 0.88, (SE = .06), F(1, 308) = 42.0, p < .001, d = 0.74 (see Table 4). There was 
no interaction with condition, indicating that an active ingredient for transfer is finding the deep 
structure, regardless of condition.  

Please insert Table 4 about here 

Prior achievement did not explain the relationship between identifying the deep structure 
in the worksheet explanations and posttest performance. An ANCOVA on posttest performance 
crossed the factor of deep and non-deep worksheet explanations with course midterm scores as a 
covariate. When controlling for prior achievement, the effect of identifying the deep structure on 
posttest performance remained unchanged F(1, 302) = 39.9, p < .001, d = .74.  

HD students’ explanations again tended to focus on the surface features of the cases. 
Confining our analysis to those students who wrote non-deep explanations on the worksheet, 
there was a significant difference in the percent of students who wrote surface level explanations 
by condition, χ2 (3, N = 240) = 37.98, p < .001. This was driven by the HD condition, where 

                                                     
3 We excluded the formula application problem since it was not designed to index deep 

understanding of the physics. 
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many students wrote surface level explanations compared to other conditions: HD = 51.7%, ID = 
13.8%, LCID = 7.0% , and CC = 21.5%. Planned comparisons against the ID condition revealed 
that more HD students wrote surface level explanations than ID students, χ2 (1, N = 118) = 
19.12, p < .001, but the comparison of ID to CC and LCID did not yield significant differences. 
Of those students who never found the deep structure across conditions, the HD students were 
most likely to focus on features unique to a given problem4.  

A similar pattern occurred for the posttest problems. Again, we confined the analysis to 
the non-deep explanations on the posttest. A one-way ANOVA found marginal condition 
differences in the number of surface level explanations across posttest problems, F(3, 290) = 
2.46, p = .06. The proportion of surface level explanations out of all non-deep explanations for 
the three explanation problems was: ID = 44.7% (SE=4.2%), HD = 57.2% (SE=4.3%), LCID = 
43.4% (SE=4.7%), and CC = 53.6% (SE=3.9%). Planned comparisons of data from students who 
did not identify the deep structure revealed that the ID condition had fewer surface-level 
explanations than the HD condition, p = .04, but the comparisons of ID to LCID and CC were 
not significant. HD students, who were not explicitly encouraged to consider the cases together, 
tended to analyze each case separately, honing in on the surface features specific to each case. 

Discussion 
Experiment 2 largely replicated Experiment 1 while extending the findings. First, 

students engaged in inductive synthesis (ID) were better at finding the deep structure among the 
three cases than students who engaged in hypothetico-deductive analysis (HD), though this 
difference was smaller than in Experiment 1 and not statistically significant. We speculate that 
the HD condition’s improved worksheet performance in Experiment 2 was caused by the 
addition of the model explanation in the introductory materials and/or the newly provided 
outcome data. 

A more critical replication from Experiment 1 is that students in the inductive synthesis 
condition (ID) were again better at transferring their learning experiences to solve novel 
problems compared to those in the hypothetico-deductive analysis condition (HD). The data 
closely replicated Experiment 1. In Experiment 1, the HD condition performed at 53% of the 
level of the ID students on the posttest, and in the Experiment 2, they were at 49%. Also 
consistent with Experiment 1 is the finding that HD students were more likely to base their 
explanations on surface features of a single problem for both worksheet and posttest problems. In 
sum, Bacon’s inductive synthesis can help lead students to concentrate on the generalizable deep 
structure that supports transfer to new problems that share the same deep structure. In contrast, 
hypothetico-deductive analysis may be better used for helping students focus on the relation of a 
single instance to a hypothesis.  

On the worksheet, the HD and ID students did not statistically differ in the frequency of 
explanations that identified the deep structure. Yet on the posttest, the HD students still did 
substantially worse. While statistical power is implicated in the lack of effect on the worksheets, 
we can still ask, why did HD students who found the deep structure on the worksheet still fail to 
handle the novel problems on the posttest?  One possibility is that finding the deep structure is 
necessary, but not sufficient, for transfer. Perhaps the students in the HD condition never realized 
that one value of an explanation based on deep structure is that it generalizes. For example, HD 

                                                     
4 Students in other conditions tended to give vague responses that did not focus on 
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students often found the deep structure for one of the worksheet cases, but did not use it for all 
the cases on the worksheet. Similarly, they may not have thought to use the deep structure to 
explain the new problems on the posttest. It is potentially informative that, among students who 
found the deep structure on the worksheets, those in the two conditions encouraged to generalize 
(ID and LCID) were more successful on the posttest than those who were not encouraged to 
generalize (HD and CC). While the difference is not statistically significant, it is possible that the 
push to generalize helped students understand that a good explanation is supposed to generalize 
to new situations they might encounter.  

Experiment 2 added measures of quantitative understanding. One measure examined 
whether students could apply a relevant formula to a situation. The ID and HD conditions 
performed similarly. The second measure examined whether students could explain why the 
formula has the structure that it does. For this formula insight problem, the ID condition 
outperformed the HD condition. This provides two pieces of information. The first is the familiar 
observation that knowing how to use an equation is not the same thing as understanding the 
phenomenon it describes. The second is that inductive synthesis does not displace students’ 
learning how to use a mathematical procedure, but rather, this activity can help students 
understand the structure of a quantitative expression more deeply. 

The low contrast inductive condition (LCID) and compare and contrast condition (CC) 
were included to explore possible variations to inductive activities. The LCID condition replaced 
the negative instance of a non-lighting bulb with the low-contrast case of the bulb sliding at an 
angle and producing less light. The CC condition replaced the instructions to seek a general 
explanation with instructions to note the similarities and differences of the cases. Each is a 
degradation of Bacon’s proposal for optimal conditions for induction. Descriptively, LCID and 
CC led to similar results as one another, and fell below the ID condition but above the HD 
condition. However, statistical tests indicated that they were not significantly different from 
either the ID or HD conditions. This makes it difficult to isolate their respective effects with 
confidence. The most prudent conclusion is that LCID and CC are not optimal conditions for 
helping students learn a general explanation, but why they are not optimal requires further study. 

General Discussion 

College students in a calculus-based physics course for non-majors analyzed the 
outcomes of three simulated experiments related to Faraday’s law. In an inductive synthesis 
condition (ID), students collected all the data and then tried to generate a single, general 
explanation to handle the experimental results. In a hypothetico-deductive analysis condition 
(HD), students predicted the results of each experiment in turn and generated an explanation for 
each result. In both experiments, the ID condition showed strong advantages for learning. ID 
students were more likely to find the deep structure of magnetic field changes that cause a 
current to flow in a neighboring coil (i.e., changes to the magnetic field vector perpendicular to 
the coil), particularly in Experiment 1. This success during learning had a positive effect on near 
transfer problems at posttest. The second study also found that the ID students developed a better 
grasp of the mathematical formula. They were better able to explain one of its key components, 
the purpose of the dot product, even though the dot product was not broached in the lesson. In 
contrast, the HD students who completed a more traditional sequence of predicting, testing and 
explaining tended to focus on features unique to an instance to explain a given result. As a result, 
they did not identify the deep structure that spans multiple cases, and therefore, could not handle 
new problems that varied on the surface. 
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Without encouragement to find a general explanation, otherwise well-schooled HD 
students did not naturally look for one. The second experiment included a pair of conditions to 
determine why this was the case. One possibility was that the sequential presentation of the cases 
in the HD condition drove students down the path of treating each case separately. If true, then 
students in the compare and contrast condition (CC) should have done better than the HD 
students, because they were not led to view each case on its own. A different possibility is that 
students simply do not think to find a general explanation without explicit prompting, despite the 
fact that generalizing is central to most real-world scientific inquiry. If true, then the low-contrast 
inductive students (LCID) should have done better than the HD students, because they received 
the relevant prompt. The results showed that the CC and LCID conditions did better than the HD 
condition but worse than the ID condition, and they were not significantly different from either. 
This middle-ground result suggests that both possibilities are in play – many students do not 
think to find the general explanation, and the HD inquiry pulls students to focus on instances. 
The latter point is highlighted by the disproportionate use of surface features in the HD student 
explanations compared to all others. 

Our primary proposal is that the psychological cause of the difference between the ID and 
HD conditions involved what they were searching for – a general explanation versus an 
explanation of a specific result. An alternative possibility is that the conditions exerted unequal 
cognitive load (Paas, Renkl, & Sweller, 2004; Sweller, 1988). On the one hand, trying to find an 
explanation that handles three cases simultaneously seems more taxing of working memory than 
handling one case at a time. On the other hand, trying to remember the results of an earlier 
experiment and integrating it with a current experiment may be even more demanding (Bruner, 
Goodnow, & Austin, 1967). It is informative to note that the HD students focused on surface 
features, which directly implicates a poor search strategy rather than a working memory burden. 
Nevertheless, in-task self-reports of cognitive load could help clarify whether working memory 
demands are causing the treatment differences. 

Notwithstanding the positive effects of inductive synthesis on learning, there are two 
limitations of this investigation that we wish to highlight. First, our studies have made headway 
on, but have not conclusively addressed, a pair of important questions about the design of 
inductive activities. One question asks how to structure data for synthesis. In the second study, 
we predicted that the inclusion of the negative case would be especially important for successful 
generalization. The lower scores for LCID, which omitted the negative case, accorded with our 
prediction, but mean differences did not run to statistical reliability. Future studies could 
concentrate statistical power to better address this question and similar questions about optimal 
combinations of data. The second question asks how to help students adopt the goal of producing 
a general explanation. Our ID condition simply asked students to find an explanation that fit all 
of the data, and then gave them an example showing what we meant. Higher test scores for ID 
compared to CC suggested that this approach helped students adopt the goal of seeking the 
general explanation, as compared to instructions to compare and contrast the cases. However, 
these learning differences provided only indirect evidence of goal adoption, and here again, they 
were not statistically significant. A study providing more direct evidence of students’ goals as 
they process data under different instructional conditions, for instance using think-aloud 
protocols, would settle the issue more conclusively.  

The second limitation (or more precisely, concern) is that the inductive condition, while 
doing the best overall, yielded relatively low performance. One might dismiss the posttest 
performance because it had difficult items. But the worksheets are where the learning occurred, 
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and in both experiments, only a third of the ID student explanations indicated that they had found 
the deep structure. There are three considerations that forestall grave concerns with this poor 
performance, while also pointing to future research needs.  

The first involves the cases we selected. Francis Bacon rejected the idea of induction as 
searching randomly for patterns in data, which he warned would result in “fancies and guesses 
and ill-defined notions and axioms that have to be adjusted daily” (Bacon, 1620/2000, Book 2, 
Aphorism XVIII). Instead, he set forth a clear theory of induction using structured comparisons. 
While this theory is simple to follow in principle, it is not straightforward to apply when 
designing inductive activities. In the present study, we did not follow Bacon’s direction to 
assemble multiple cases of both positive and negative instances (Bacon’s tables). We had two 
positive instances where the magnetic field changed in some way that was perpendicular to the 
coil (the bulb lit), but we only had one negative instance where the field changed parallel to the 
coil, and the bulb stayed dark. A problem with a single negative instance is that it can be viewed 
as an anomaly (Chin & Brewer, 1993). For example, in Experiment 1 the negative case showed 
the vertical movement of the magnet. Because there were not two negative cases, students could 
use the surface feature of vertical movement to say why the bulb did not light, rather than the 
lack of a change to the horizontal component of the magnetic field. We suspect students would 
have done better had we included two negative instances with differing magnet movements, so 
that students could separate the surface from the deep structure that caused the bulb to light and 
not light.  

The second consideration involves the restricted nature and timeline of the experiment. 
To isolate the effects of induction and to minimize class time, students did not receive any 
follow-up instruction such as a lecture or practice problems. Ideally, induction would not sit by 
itself without follow-up of some sort. Prior research indicates that even if one does not achieve 
the correct explanation, inductive tasks can create a time for telling (Schwartz & Bransford, 
1998; Schwartz & Martin, 2004). The failure to find the deep structure does not mean students 
did not learn (Kapur, 2008). In the process of searching for a general explanation, students notice 
the deep features of the phenomena, and this readies them to appreciate the explanation that 
accounts for those features. So, while students engaged in induction earned modest scores on our 
posttest, the experience could have produced unmeasured but lasting benefits, helping them to 
learn related material in the future.  

The third consideration is that the students in the current studies probably did not have 
much experience inducing general explanations. Typically, students are told general principles, 
which means the students featured here may have never explicitly experienced the task of 
generalizing. A more disconcerting prospect is that they may have never learned that 
generalization is a major goal of scientific theory. In Experiment 2, all the conditions did well on 
standard formula application problems as might be found in many physics tests. These students 
knew how to do what they had been taught, so it seems reasonable they may not have practiced 
seeking the general explanation.  

Conclusion 

In two studies, college students engaged in an inductive activity built on Bacon’s tenets 
for scientific generalization. The studies demonstrate the promise of well-designed inductive 
instruction for learning topical content as part of developing generalizable theory from data. 
Several specific contributions are worth reviewing. First, we provided a model of an inductive 
activity that lends needed specificity to the strategy of having students search for and explain 
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patterns in data. We worked from Bacon’s original aphorisms to describe the selection of 
empirical cases to support induction and to provide the goal of finding a general explanation that 
can handle all the cases. Second, we found that this inductive activity led to greater student 
success at discovering the deep structure of the phenomenon, which in turn correlated with 
subsequent performance on novel but related problems. Third, we demonstrated a simple way to 
determine if students understand the purpose of an equation. While most of these students could 
manipulate the relevant equation to compute an answer, students who completed the inductive 
activities could more frequently describe why the formula included a specific operation within it 
(i.e., “why does the formula take the dot product?”). Finally, we found that college students 
needed support to seek general explanations, otherwise, they tended to explain each case 
independently rather than together.  

One broad direction for future research would be to determine whether and how the 
Baconian model generalizes to other topics within physics and beyond. In a similar vein, it 
would be useful to determine the cognitive reach of inductively learned concepts. In the current 
studies, we used near transfer tasks. The posttest questions looked very similar to the learning 
tasks, so students knew what knowledge they should apply. Far transfer tasks, where the problem 
does not resemble the conditions of initial learning, depend on the spontaneous recognition that 
what one has learned is relevant. It would be worthwhile to determine whether inductive learning 
can facilitate far transfer.  

A second general direction for future research involves situating inductive activities 
within the fuller range of inquiry. For instance, how can students learn to select and organize 
data themselves for the purpose of inductive synthesis?  How might teachers best integrate 
inductive synthesis with hypothetico-deductive analysis? As one example, induction could help 
students generate initial hypotheses, which they could then test using a hypothetico-deductive 
approach. While there are many effective activities designed to support hypothetico-deductive 
inquiry, there is always the question of where the hypotheses come from, especially when 
students have low prior knowledge. Inductive activities that support a systematic search for a 
hypothesis seems like a useful approach, at least compared to telling them a hypothesis, asking 
them to conjure a hypothesis from wispy beliefs, or having them mess about until they hit upon 
something.  

Perhaps the most pressing issue involves the evidence that students do not spontaneously 
search for a general explanation across a set of manifestly related instances. In Experiment 1, and 
even in Experiment 2 that included an example of a general explanation, we found that the 
hypothetico-deductive task of generating and testing hypotheses rarely led students to seek the 
general explanation for all the cases. Instead, students were content to use features unique to 
each case at hand to explain a result. This is understandable. The search for specific situated 
solutions is characteristic of human cognition. But as Bacon argued, seeking a general 
explanation is a defining characteristic of disciplined scientific investigation and separates it 
from everyday reasoning. How can we help students develop an inductive scientific disposition? 
This is an essential question for science education given current goals for students to learn the 
attitudes and practices of scientific inquiry (NRC 2012). 
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