
BENCHMARKING ANTHROPOGENIC HEAVY METALS 

EMISSIONS: AUSTRALIAN AND GLOBAL URBAN 

ENVIRONMENTAL HEALTH RISK BASED INDICATORS 

OF SUSTAINABILITY 

Nick Dejkovski 
La Trobe University, Melbourne, Victoria, Australia 

ABSTRACT 

In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions 

of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically 
can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a significant 
exposure pathway for urban soils. The purpose of this paper is to present indicators of sustainability for assessing the 
environmental health risk from exposure of urban soils to anthropogenic waste emissions containing lead, copper, zinc 
and chromium. By benchmarking urban surface soil concentrations of these four metals against Australian and 
international Soil Standards, a data set of indicators of sustainability can be construed for evaluating the potential  
long-term environmental health risks posed by continued exposure of urban soils to heavy metals.  
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1. INTRODUCTION 

The present study focuses on the chemical dimension of soil quality. Soil contamination is a significant threat 

to sustainable soil management (European Commission, 2002a, 2006) and impacts the social and economic 

well-being of societies (Jónsson et al, 2016). A ‘healthy’ environment is defined on the basis of 

environmental risk factors by the World Health Organisation (WHO): ‘Environmental risk factors, such as 

air, water and soil pollution, chemical exposures, climate change, and ultraviolet radiation, contribute to more 

than 100 diseases and injuries’ (WHO, 2016). Human and environmental health are coupled; human health 
and well-being cannot be considered in isolation of the environment: ‘An estimated 12.6 million people died 

as a result of living or working in an unhealthy environment in 2012 – nearly 1 in 4 of total global deaths’ 

(WHO, 2016). The aphorism that human and environmental well-being are ‘coupled’ applies to resource 

consumption and economic growth; societal activities (creating ‘economic gains’) reliant on resource 

consumption (with attendant waste emissions) to sustain economic growth are inextricably coupled (Daly, 

1995; El Serafy, 2006). 

In 1987 the members of the World Commission on Environment and Development (WCED) perceived 

humanity’s predicament at the time to be sufficiently dire as to issue the warning that ‘the same processes 

that have produced these gains have given rise to trends that the planet and its people cannot long bear’ 

(WECD, 1987, p.12). Since the issue of this ‘warning’ almost 30 years ago, background (natural) levels of 

metals including lead (Pb), copper (Cu), zinc (Zn) and chromium (Cr) in air, water and soil have increased by 

anthropogenic flows of metals into the ecosphere by waste disposal and other societal activities (Hamon et al, 
2004). Establishing background concentration for heavy metals has been difficult owing to many decades 

(and centuries) of anthropogenic release of metals (Hamon et al, 2004). Regional and urban background 

metal concentrations in Australia are essential data for gauging pollution levels and signaling need for 

intervention when environmental and human health thresholds are reached (NEPM, 2013).  
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Major anthropogenic airborne sources of lead Pb, Cu, Zn and Cr pollution occur via direct emission or 

loss into the ecosphere (European Commission, 2002b). The hexavalent (Cr-VI) form of chromium, which is 

toxic by inhalation and has been classified as a Class A inhalation carcinogen (IARC, 1990) and, 

environmentally speaking, Cr(VI) compounds are generally considered the most toxic (Shanker et al, 2005; 
Zayed and Terry, 2003). Major anthropogenic sources of atmospheric Cr(VI) are presented in Table 1. 

Windblown dusts contaminated with heavy metals (including the Cr-VI species of chromium) emanating 

from urban soils are a significant source of emissions to air in urban environments. 

Table 1. Top 20 sources of chromium emissions to air, land and water in Australia (1999-2014) 

Rank Source 

1.  Aeroplanes 

2.  Basic Ferrous Metal Manufacturing 

3.  Basic Non-Ferrous Metal Manufacturing 

4.  Burning (fuel red., regen., agric.)/ Wildfires 

5.  Cement, Lime, Plaster and Concrete Product Manufacturing 

6.  Ceramic Product Manufacturing 

7.  Coal Mining 

8.  Commercial Shipping/Boating 

9.  Electricity Generation 

10.  Fuel Combustion - sub reporting threshold facilities 

11.  Gaseous fuel burning (domestic) 

12.  Lawn Mowing 

13.  Metal Ore Mining 

14.  Motor Vehicles 

15.  Other Transport Equipment Manufacturing 

16.  Paved/ Unpaved Roads 

17.  Pulp, Paper and Paperboard Manufacturing 

18.  Recreational Boating 

19.  Water Transport Support Services 

20.  Windblown Dust 
Source: (NPI, 2016). 

Notes: -For National Pollutant Inventory (NPI) reporting purposes, emissions are defined as the release of an NPI substance to the 

environment whether in pure form or contained in other matter and/or in solid, liquid or gaseous form. It includes the release of 

substances to the environment from landfill, sewage treatment plants and tailings dams (National Pollutant Inventory, DEH, 2006-07 

Report, p.18). 

-Approximately 75x10
3
 tonnes of chromium is emitted globally into the atmosphere annually by these sources with approximately  

one-third occurring as the Cr(VI) species (Kieber et al, 2002; Pacyna and Nriagu, 1988).  

1.1 Geochemical Indicators: Rationale for the Study 

Global urban and rural soil investigations have shown that anthropogenic waste outputs contaminate soil in 

cities including: Minneapolis, USA (Mielke et al, 1984); Berlin, Germany (Birke and Rauch, 1997; Mekiffer 

et al, 2000); Aberdeen, Scotland (Paterson et al, 1996); Wolverhampton, England (Hooker et al, 1996; Bridge 

et al, 1997); Birmingham, England (Wang et al, 1997); Tallinn, Estonia (Bityukova et al, 2000); Trondheim, 

Norway (Ottesen and Langedal, 2001); Karlsruhe, Germany (Norra et al, 2001; Norra and Stuben, 2003); 

Gainesville and Miami, Florida, USA (Chirenje et al, 2003); Gibraltar (Mesilio et al, 2003); Newcastle upon 

Tyne, England (Pless-Mulloli et al, 2004); the Totley suburb of Sheffield, England (Knight, 2004); and 

Seville, Spain (Madrid et al, 2004).  

These geochemical studies have focused on soil contamination of large cities with particular emphasis on 
metals such as Pb, mercury (Hg), Cu and Zn. There is a paucity of research on the environmental health risks 

of atmospheric deposition of Cr(VI) and long-term accumulation in the ecosphere, particularly urban soil 

studies of Cr(VI) contamination with accompanying human health risk based indicators of sustainability. 

This study aims to address this research gap by a systematic evaluation of extant data on anthropogenic 

accumulation of Pb, Cu, Zn, Cr and Cr(VI) in urban soils and positing a data set of environmental health risk 

indicators (vis-a-vis urban soil studies) by benchmarking geochemical data (Pb, Cu. Zn and Cr soil 

concentrations) in 13 cities against Australian (NEPM, 2013) and international (CCME, 1999; CEPA, 2005) 

Soil Standards. 
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2. METHOD FOR DEVELOPING INDICATORS OF SUSTAINABILITY 

Table 2 summarises the geochemical studies used for calculating environmental health risk indicator scores 

for Pb, Cu, Zn and Cr. 

Table 2. Australian and global geochemical studies used for calculating health risk indicator scores for Pb, Cu, Zn and Cr 

Study Author(s) 

A
u
st

ra
li

a 

Sydney (estuary catchment) aBirch & Vanderhayden, 2011 

Iron Cove sub-catchment Snowdon and Birch 2004 

Homebush Bay sub-catchment bHodge, 2002 

Parramatta sub-catchment cOlmos, 2004 

Wollongong City area Beavington, 1973 

G
lo

b
al

 

Seoul, Vietnam Chon et al, 1995 

Danang–Hoian Area, Vietnam Thuy et al, 2000 

Berlin metropolitan area Birke and Rauch, 1997 

Great Britain Culbard et al,1988 

Oslo, Norway Tijhuis et al, 2002 

Xuzhou, China Wang and Qin 2007 

Madrid, Spain De Miguel et al. 1998 

Glasgow, Scotland Gibson and Farmer 1986 
a
Birch & Vanderhayden, 2011; soil metal concentrations shown for 50th percentile, normalised 

b
Unpublished study by Hodge (2002) data cited in Birch and Vanderhayden (2011) 

c
Unpublished study by Olmos (2004) data cited in Birch and Vanderhayden (2011) 

2.1 Principles and Precepts of Sustainable Development 

Sustainable development (SD) translates into a series of ‘precepts’ that should be followed to prevent both 

the decline in the quantity and quality of ‘natural stocks’ including soils (Lawn, 2006). Holmberg et al (1996) 

formulated indicators underpinned by four principles ‘that should be fulfilled by a sustainable society’. The 

principles are: 

Precept 3: The rate of high entropy waste generation should not exceed the ecosphere’s waste 

assimilative capacity (Lawn, 2006) 

Principles 1-2: Substances extracted from the lithosphere must not systematically accumulate in the 

ecosphere; and society-produced substances must not systematically accumulate in the ecosphere (Holmberg 

& Eriksson, 1996; Azar et al, 1996). 

These principles and precepts alone do not directly make provision for ‘measuring’ the ‘sustainable 

development’ of a nation; they provide parameters for indicators and measures to be formulated. For the 

purpose of facilitating the development of environmental risk indicators as measures of SD in Australia and 

globally, a conflation of precept 3 (Lawn, 2006) and principles 1 and 2 will be the reference for formulating 

indicator scores for the four elements. A conflation of the sustainability principles and precept leads to the 
following formulation: 
 

Formulation 1 

The sum of the anthropogenic emissions and the natural flows from the lithosphere to the ecosphere should 

not exceed the ecosphere’s waste assimilative capacity.  

2.2 Method for Establishing Background (Natural) Levels of Cu, Pb, Zn, Cr 

Table 3 shows: the background ranges used for calculating indicators; presents Australian and international 

Soil Standards Health Investigation Levels (HILs) data; and provides three sets of background ranges posited 

by different authors (Berkman, 1989; Hamon et al, 2004; Shanker et al, 2005; Zayed and Terry, 2003).  
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Table 3. Benchmarking 13 geochemical studies of soil metal concentrations against soil standards 
M

e
ta

l 

Soil Standard 

d
Background 

(Natural) ranges 

(Nn)
 

h
Geochemical Study (anthropogenic flows) (A1-13) 

a
N

E
P

M
 

b
C

C
M

E
 

c C
E

P
A

 

e
(N1) 

f
(N2) 

g
(N3) 1 2 3 4 5 6 7 8 9 10 11 12 13 

Cu 1000 63 3000 2-100 <70 - 60 170 81 74  343 84 90 43 54 32 38 72 97 

Pb 300 140 80 2-200 <40 - 150  1069  227  217  21  240 84 78  240 56 43 161 216 

Zn 7000 200  23000 10-300 <130 - 259 927  281  341 82  271 153 159  260 160 144 210 207 

Cr - - - 5-1000 - 65
 i

50.0 - - - - - 
 i
92.2 - - 

i
32.5 

i
78.4 

 i
74.7 - 

Cr(VI)  100  0.4   17  - - - 
- 

- - - - - 
- 

- - 
- - - 

- 

Notes: -All metal soil concentrations are mean concentrations shown as mg/kg. 
a
Australian Soil Investigation Standard (Residential HIL A) (NEPM, 2013) 

b
Canadian Standard for residential soil (CCME, 1999) 

c
Californian Standard for residential soil (CEPA, 2010) 

d
Background ranges are natural (Nn) environmental flows. Values shown account for natural flows of the element from weathering and 

volcanic eruptions 
e 
(Berkman, 1989)  

f
(Hamon et al, 2004). Background ranges posited by Hamon (et al, 2004) vary depending on iron (Fe) levels in soil; N2 ranges provided 

are for soils containing 10% Fe 
g
(Shanker et al, 2005; Zayed and Terry, 2003). The mean background total chromium concentration of 65mg/kg is derived from US, 

Canadian, Japanese and Swedish soils 
h
Metal concentrations are anthropogenic (A1) environmental flows determined from the 13 soil studies in Table 2. 

i
Total chromium (non-speciated) concentration shown.  

Geochemical studies: 1
 
(Birch & Vanderhayden, 2011); 2 (Snowdon & Birch 2004); 3

 
(Hodge, 2002); 4

 
(Olmos, 2004); 5

 
(Beavington, 

1973); 6
 
(Chon et al, 1995); 7

 
(Thuy et al, 2000); 8

 
(Birke & Rauch, 1997); 9

 
(Culbard et al, 1988); 10

 
(Tijhuis et al, 2002); 11

 
(Wang & 

Qin, 2007); 12
 
(De Miguel et al, 1998); 13

 
(Gibson & Farmer 1986) 

2.3 Method for Creating Environmental Health Risk Indicators 

Environmental health risk indicator scores I1, I2 and I3 are calculated as anthropogenic metal flows from the 

lithosphere to the ecosphere relative to the corresponding background ranges N1, N2 and N3. The relationship 
between the flow of elements from the lithosphere into the technosphere, and from the technosphere into the 

ecosphere can be shown as: 

I (1, 2, 3) = A (1…13) / N (1, 2, 3)      (Equation 1) 

Where I= Indicator score; A=Anthropogenic flows (based on geochemical studies measuring soil metal 
concentrations in mg/kg-see Table 2); and N=Natural flows (based on data sets positing naturally occurring 

background soil metal concentrations in mg/kg- see Table 3) (Construed from Azar et al, 1996). 

If the indicator scores calculated from geochemical data for the cities in Table 2 are greater than unity, the 

‘conditions for sustainability’ embedded in formulation 1 are not met; the inference being: 

If IN1(1…13), IN2(1…13) and IN3(1…13) scores are >1, then the current rate of anthropogenic outputs and 

deposition in the ecosphere of Pb, Cu, Zn and Cr is not sustainable in those cities (and the risk to human 

health vis-à-vis contaminated soils is increased through continued exposure to Pb, Cu, Zn and Cr 

through anthropogenic release into the ecosphere in those cities). 

3. FINDINGS AND DISCUSSION 

Table 4 shows environmental health indicator scores IN1 (1…13), IN2 (1…13) and IN3 (1…13) derived from urban 
surface soil levels of Pb, Cu, Zn and Cr and Cr(VI) relative to background levels. The indicators in Table 4 

lie in the range 0.32-26.72; the wide range is due to the Iron Cove sub-catchment determination for the metal 

Pb (26.72 mg/kg) being an outlier (Snowdon and Birch, 2004). Where the indicators in Table 4 are equal to 

unity, then the present soil metal concentrations are sustainable (the conditions for SD embedded in 

formulation 1 are met) posing less risk to soil contamination in urban environments. Indicator scores of 

greater than unity indicate metal accumulation in the environment at a rate that is greater than the attendant 
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assimilative capacity of the environment; the inference drawn here is continued contamination of urban soils 

with Pb, Cu, Zn and Cr and Cr(VI) is not sustainable (the conditions for SD embedded in formulation 1are 

not been met). Environmental risk is proportional to the indicator score; indicator scores orders of magnitude 

greater than unity are evident for several studies: the Iron Cove sub-catchment study indicating levels of 
Zn>1( I2(2)=7.13) and Pb>1( I1(2)=5.35) (Snowdon and Birch 2004); the Wollongong study indicating levels 

of Cu >1 (I1(e)=3.43) (Beavington,1973); the Madrid Study indicating levels of Pb>1 (I2(12)=4.03) (De Miguel 

et al,1998); and the Glasgow study indicating levels of Pb>1 (I2(13)=5.40) (Gibson and Farmer,1986). 

The indicator scores in Table 4 reveal: the conditions for SD embedded in formulation 1 have not been 

met for 90% of the cities on the basis of N2 (Hamon et al, 2004) background levels for Pb and Zn; and 

environmental health indicator scores of greater than unity are observed for 12 of the 13 cities on the basis of 

N2 background concentrations. On the basis of N1 background concentrations, 6 cities (Sydney, estuary 

catchment); Danang–Hoian Area, Vietnam; Berlin metropolitan area; Oslo, Norway; Xuzhou, China; and 

Madrid, Spain) met the conditions for SD in formulation 1 when assessed for Pb, Cu and Zn.  

Table 4. Environmental Health Risk Indicator Scores 

Study 

Cu Pb Zn Cr 

I 1
=

A
1
/N

1
 

I 2
=

A
1
/N

2
 

I 3
=

A
1
/N

3
 

I 1
=

A
1
/N

1
 

I 2
=

A
1
/N

2
 

I 3
=

A
1
/N

3
 

I 1
=

A
1
/N

1
 

I 2
=

A
1
/N

2
 

I 3
=

A
1
/N

3
 

I 1
=

A
1
/N

1
 

I 2
=

A
1
/N

2
 

I 3
=

A
1
/N

3
 

1 0.60 0.86 - 0.75 3.75 - 0.86 1.99 - - - 0.77 

2 1.70 2.43 - 5.35 
a
26.72 - 3.09 7.13 - - - - 

3 0.81 1.16 - 1.14 5.68 - 0.94 2.16 - - - - 

4 0.74 1.06 - 1.09 5.43 - 1.14 2.62 - - - - 

5 3.43 4.90 - 0.11 0.53 - 0.27 0.63 - - - - 

6 0.84 1.20 - 1.20 6.00 - 0.90 2.08 - - - - 

7 0.90 1.29 - 0.42 2.10 - 0.51 1.18 - - - 1.42 

8 0.43 0.61 - 0.39 1.95 - 0.53 1.22 - - - - 

9 0.54 0.77 - 1.20 6.00 - 0.87 2.00 - - - - 

10 0.32 0.46 - 0.28 1.40 - 0.53 2.00 - - - 0.50 

11 0.38 0.54 - 0.22 1.08 - 0.48 1.11 - - - 1.21 

12 0.72 1.03 - 0.81 4.03 - 0.70 1.62 - - - 1.15 

13 0.97 1.39 - 1.08 5.40 - 0.69 1.59 - - - - 

Notes: -Sustainability indicators (‘scores’) determined by benchmarking geochemical investigations of soil metal concentrations 

against NEPM, CCME and CEPA Soil Standards. 

-Indicator scores greater than unity are shaded. An Indicator scores of >1 specifies that the conditions for sustainable development 

embedded in Formulations 1 and 2 have not been met. 
a
An outlier (Snowdon and Birch, 2004). 

 

Table 5 summarises the percentage of geochemical studies showing metal concentrations that are greater 

than unity relative to the posited background ranges; 15.4%, 46.2% and 15.4% of geochemical studies 

showed that anthropogenic flows for Pb, Cu and Zn were greater than natural flows when compared to N1 

background data (Berkman, 1989). Environmental health indicator scores for 61.5%, 92.3% and 92.3% of 

geochemical studies showed that anthropogenic flows for Pb, Cu and Zn respectively were greater than 

natural flows when compared against N2 background data (Hamon et al, 2004).  

Table 5. Percentage of geochemical studies within standard EIL limits and background range 

Metal 

% of 

geochemical 

studies showing 

metal 

concentrations 

> NEPM 

standard  

% of 

geochemical 

studies showing 

metal 

concentrations 

> CCME 

standard  

% of 

geochemical 

studies showing 

metal 

concentrations 

> CEPA 

standard  

% of 

geochemical 

studies showing 

metal 

concentrations 

> N1  

% of 

geochemical 

studies showing 

metal 

concentrations 

> N2 

% of 

geochemical 

studies showing 

metal 

concentrations 

> N3  

Cu 0 61.5 0 15.4 61.5  

Pb 7.7 61.5 61.5 46.2 92.3  

Zn 0 61.5 0 15.4 92.3  

Cr  - - - - - 60 
a
Cr(VI) 0 100 100 - -  

a
Environmental health risk indicator scores (I3=A1/N3 in Table 4) for Cr are used as a basis for benchmarking Cr(VI) against the Soil 

Standards. The resulting percentages are based on the probability that approximately one-third of the atmospheric releases of chromium 

are believed to be in the hexavalent form (Kieber et al, 2002; Pacyna and Nriagu, 1988).  
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Construing the indicator scores (Table 4) and the percentage of geochemical studies outside of EIL limits 

(Table 5) together, the inferences drawn from these data are: Pb, Cu and Zn from the lithosphere have spread 

at a rate which has given rise to a systematic increase in the ecosphere thereby implicating the soils in all of 

the cities forming part of this study; and on the basis of N3 background levels, Cr(VI) has spread in cities 
located in Australia, Vitenam, Norway, China and Spain at a rate that potentially increases risk to human 

health through long-term exposure and inhalation of Cr(VI) contaminated dust. 

4. CONCLUSION AND RECOMMENDATIONS 

In Australia there is a significant challenge with the quality of voluntarily reported data from emitters of Cr 
and the other metals. Cr(VI) emissions and total chromium data have large associated errors due to the 

reliance on emitters measuring and reporting quantitative data accurately. According to the Australian 

National Pollutant Inventory (NPI, 2016), the total emissions levels are lower than actual due to: the 

suspected low capture rate (possibly up to 50%) of potential industry emitters voluntarily reporting data; and 

out of date diffuse source estimates and lack of uniform reporting of diffuse sources by jurisdictions (DEH, 

2005). It is therefore highly probable that the environmental health indicator scores posited are lower than 

actual. 

Under reporting of emissions has implications for human health as it is plausible that soil contamination 

with Cr(VI) and Pb, when benchmarked against Soil Standards (CCME, 1999; CEPA, 2010) have exceeded 

human toxicity thresholds in cities including Sydney (Birch & Vanderhayden, 2011), Hoi An in Vietnam 

(Thuy et al, 2000), Xuzhou in China (Wang and Qin, 2007) and Madrid in Spain (De Miguel et al, 1998). 

The findings of this study recommend a deeper analysis and review of the current approach to the 
Australian Human Health Risk Assessment framework (NEPM, 2013).The current definition of ‘potential 

impact’ is too broad; a narrow, specific definition accompanied by provisions in the NEPM framework for 

the long-term environmental monitoring of air and soil Cr(VI) levels would benefit urban populations given 

that continued anthropogenic release of such metals is unlikely to decrease significantly soon. Goodland and 

Daly (1996) conflate equity and sustainability; ‘sustainability indeed has an element of not harming the 

future’ (Goodland and Daly, 1996). Between 1996–97 and 2006–07, the volume of waste produced per 

person in Australia grew at an average annual rate of 5.4%. Australians generated approximately 1,200kg of 

waste per person in 1996–97 and this increased to 2,100kg per person in 2006–07 (Productivity Commission, 

2006). 
On the basis of the data indicating a trend of continually increasing consumption and waste generation, 

the impacts of continued anthropogenic release of Pb, Cu, Zn and Cr, and particularly Pb and Cr(VI), into the 

ecosphere are likely to result in long-term harm, especially to the health of future generation dwelling in 

urban areas. Further research is recommended to assess the long-term environmental and human health 

impacts of urban soil contamination with heavy metals. 
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