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Introduction

Mathematical skills are important for successful living in modern society (Bynner, 2012; Gates,
2009; Geary, 2013; Kilpatrick, Swafford, & Findell, 2001; Parsons & Bynner, 2008; Rakes, Valentine,
McGatha, & Ronau, 2010; Rose & Betts, 2004; Vogel, 2008). The past 20 years have seen a rapidly
expanding literature on the predictors of mathematical skills across ages and types of skill (e.g.,
Aunio & Niemivirta, 2010; Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Cirino, 2011; Cirino, Morris,
& Morris, 2002; Fuchs, Geary, Fuchs, Compton, & Hamlett, 2014; Fuchs et al., 2005, 2008, 2010a,
2010b; Geary, 1993; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Halberda, Mazzocco, &
Feigenson, 2008; Jordan, Hanich, & Kaplan, 2003; Jordan, Kaplan, Ramineni, & Locuniak, 2009;
Koponen, Aunola, Ahonen, & Nurmi, 2007; Krajewski & Schneider, 2009; Mazzocco, Feigenson, &
Halberda, 2011; Siegler & Ramani, 2009; Siegler et al., 2012). Much of that work has focused on the
prediction of early developing mathematical skills (through Grade 3) and has been spurred by the
development of influential models relevant to this stage of development (e.g., Butterworth, 1999,
2005; Dehaene, 2001; Dehaene & Cohen, 1995; Feigenson, Dehaene, & Spelke, 2004; Geary, 1993,
2004, 2013; LeFevre et al., 2010; von Aster & Shalev, 2007). These empirical and theoretical contribu-
tions have yielded strong insights into the relative contribution of differing types of predictors for the
development of primary-grade math skill. Such studies set the stage for research on later developing
mathematical skills given the hierarchical nature of mathematics skill learning (e.g., Fuchs et al., 2006;
National Mathematics Advisory Panel [NMAP], 2008).

Although few studies have focused on more advanced mathematical skills, there have been notable
advances concerning the predictors of fraction performance at later elementary grades (e.g., Hecht &
Vagi, 2010; Jordan et al., 2013; Vukovic et al., 2014). The current study sought to contribute to this
growing literature by clarifying the roles of individual differences from most distal to most proximal,
including cognitive processes (e.g., working memory, language), numerosity (magnitude and estima-
tion), and whole number arithmetic skills, for middle school mathematical competencies. These
include fraction performance and proportional reasoning, which are themselves critical influences
for later developing skills such as algebra (Hecht, Vagi, & Torgesen, 2007; NMAP, 2008; Siegler
et al., 2010). Brown and Quinn (2007a, 2007b) described multiple ways in which algebra critically
depends on fraction concepts (e.g., the importance of understanding of slope, a fraction, for linear
equations).
Supporting competencies of early math skills

The literature on early math prediction supports contributions of both domain-specific and more
general cognitive processes. Domain-specific components typically include magnitude comparison
(approximate number system acuity) and/or estimation, and these are potentially foundational to
later mathematical outcomes (e.g., Butterworth, 2005; Dehaene & Cohen, 1995; Dehaene, Piazza,
Pinel, & Cohen, 2003; Feigenson et al., 2004). These are often collectively referred to as numerosity
and are typically distinguished from addition and other arithmetic operations. Mathematics perfor-
mance also builds on preexisting and developing cognitive processes, including linguistic and spatial
skills and especially working memory (e.g., Raghubar, Barnes, & Hecht, 2010). Two widely used mod-
els, LeFevre and colleagues (2010) and von Aster and Shalev (2007), emphasize the interaction
between domain-general and domain-specific processes for arithmetic but are less clear about their
relative contributions to more advanced mathematical skill in the context of more elementary arith-
metic. Data bearing on this question often come from the early elementary school grades, when math
facts are less likely to be automatized (Ashcraft, 1992; Ashcraft & Christy, 1995; Calhoon, Emerson,
Flores, & Houchins, 2007), although it is recognized that this automization is conditional on practice
and may vary with age or cultural factors (Geary, Bow-Thomas, Liu, & Siegler, 1996),

Empirical results vary with age and the type of mathematical performance considered, but profi-
ciency in both domain-specific and domain-general areas contribute to outcomes, with the former
being more predictive of the earlier developing skills (e.g., basic facts) than later developing or more
complex skills (e.g., procedural computation, word problems); in contrast, domain-general processes
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contribute across the skill range. Typically, more complex mathematical skills have a wider range of
unique predictors that together account for more variance in these skills relative to more basic skills
(e.g., Cowan & Powell, 2014; Fuchs et al., 2010a, 2010b). For example, Fuchs et al. (2010a) found that
both specific processes (e.g., number line estimation, fluency in processing numerical magnitudes
with both symbolic and nonsymbolic stimuli) and general processes (e.g., working memory, attention)
are relevant to varying degrees for different mathematical skills. However, for first-grade computa-
tions, numerosity predictors were more predictive; for first-grade word problems, which are more
complex, general factors were more predictive. In a separate study, Fuchs et al. (2010) showed that
for computational skill, specific predictors were more relevant than general ones; in contrast, for word
problem solving, both types of predictors were equally relevant, with more overall variance being
accounted for, and with more unique predictors, than was the case for computations.

Distinctions are present within both domain-specific and domain-general predictors. For example,
within numerosity, there are mixed findings regarding whether symbolic or nonsymbolic predictors
are more relevant. In students with math learning difficulties, some studies have implicated nonsym-
bolic magnitude (e.g., Halberda et al., 2008; Mazzocco et al., 2011), others have implicated symbolic
magnitude (e.g., Cirino, 2011; Holloway & Ansari, 2009; Lyons, Ansari, & Beilock, 2012; Mundy &
Gilmore, 2009), and others have implicated access to or the mapping of symbolic representations onto
nonsymbolic ones (e.g., Noël & Rousselle, 2011; Rousselle & Noël, 2007). Several studies have shown
that the effect of nonsymbolic magnitude representations is mediated by symbolic skills in both young
children (vanMarle, Chu, Li, & Geary, 2014) and adults (Lyons & Beilock, 2011). A large recent meta-
analysis (Chen & Li, 2014) shows an overall correlation of .20 for nonsymbolic magnitude measures
with mathematics performance (in cross-sectional studies) and suggested that this result, coupled
with power considerations, accounts for much of the empirical heterogeneity observed across individ-
ual studies with regard to the strength of relation between math and nonsymbolic magnitude, with
some evidence of weaker relations (although still present) in older (>17 years) versus younger
(<12 years) samples. Another recent meta-analysis (Fazio, Bailey, Thompson, & Siegler, 2014) shows
a stronger relation of nonsymbolic magnitude to math performance in younger children (r = .40) than
in older children (r = .17) or adults (r = .21).

Among domain-general predictors, the strongest evidence is for working memory (e.g., Alloway,
Gathercole, Kirkwood, & Elliott, 2009; Gathercole, Brown, & Pickering, 2003; Geary, 2004, 2013;
Raghubar et al., 2010). For instance, working memory is required for mathematics to keep in mind
the multiple steps needed to complete a procedural computation. Other related processes important
for mathematical skill include visuospatial functioning and language. For example, Szucs, Devine,
Soltesz, Nobes, and Gabriel (2014) described a model in which visual–spatial working memory mea-
sures are key predictors in 9-year-olds’ math performance (as opposed to number sense measures or
pure spatial measures). Visual–spatial skills may also be important when math problems contain
graphs or figures and for more complex math (e.g., geometry) where spatial skills are invoked more
directly. An important role for language, often in the form of phonological awareness in young chil-
dren, has also been implicated (e.g., Cirino, 2011; Koponen, Mononen, Rasanen, & Ahonen, 2006;
Krajewski & Schneider, 2009; Martin, Cirino, Charp, & Barnes, 2014; Vukovic & Lesaux, 2013). Count-
ing skills also rely in part on language (Koponen, Salmi, Eklund, & Aro, 2013; Koponen et al., 2007), and
there is a predictable progression from counting to arithmetic (Geary, 2004).
Foundations for and prediction of later developing math skills

Relative to the volume of literature regarding math facts, whole number computation, and word
problems, much less is known about fractions, proportional reasoning, and broader math skill at older
ages. Therefore, the current study focused on later developing mathematics skills, when student mas-
tery of math facts and basic whole number computation is expected, and therefore we expected these
to comprise an additional layer of foundational skills. Because math develops in hierarchy, the concep-
tual relevance of procedural computational skills is clear. Facility with basic facts and multistep whole
number operations aids all later mathematics because these are often needed at some point in order to
solve fractions, proportions, and complex word problems.
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The role for the understanding of more basic concepts of numerosity, and of domain-general cog-
nitive skills, for later developing mathematics skills may at first seem unclear. However, both of these
sets of skills have a conspicuous role, although for different reasons. The core ideas of numerosity are
reflected in Siegler and Lortie-Forgues’ (2014) integrative theory of numerical development. In this
view, numerosity represents key milestones of numerical representation, beginning with magnitude
representation, linking symbolic and nonsymbolic representations, and extending this understanding
to include larger numbers, negative numbers, and the space between whole numbers (fractions and
decimals). From this point of view, the stronger the individual and relative representations, the more
easily those representations and their corresponding quantities might be evaluated and manipulated
through mathematical operations. This understanding of quantity, thus, can act as a bridge between
whole number and fraction performance (Siegler, Thompson, & Schneider, 2011). Because fractions
and proportions involve ratios (a task that inherently requires a comparison of two magnitudes based
on their ratio), representations may play a key role in operations that involve them. Geary, Hoard,
Nugent, and Rouder (2015) provided evidence for a nuanced view in relation to algebraic cognition,
with nonsymbolic comparison being more strongly related to numerical or spatial–numerical posi-
tioning, but less so to the proper structure of algebra equations or to more general algebraic achieve-
ment, at least when a strong set of covariates is included.

In Geary’s (2004) framework, language and visuospatial systems support the representation of
material, including (in the case of the latter) that of magnitude and the mental number line. The cen-
tral executive controls (typically including working memory) attentional and inhibitory processes that
are needed to perform procedurally complex computations. Further links are apparent in the model of
von Aster and Shalev (2007), where increasing working memory resources are used in part to develop
a strong mental number line, which itself serves as a representational redescription of a more general
sense of magnitude.

In all, because of these underlying and overlapping contributions to our ability to represent, manip-
ulate, and operate on magnitudes, it is feasible that domain-general skills (e.g., language, visuospatial
skills, working memory), as well as individual differences in the development of numerosity (e.g.,
number line estimation, symbolic and nonsymbolic magnitude comparison), assist in the develop-
ment of whole number skills, including fact retrieval and procedural computations, and may also con-
tribute directly or indirectly through those whole number skills to support later developing
mathematical skills, including fractions and proportional reasoning.

Fractions
For fraction performance in particular, understanding has been rapidly improving (Siegler, Fazio,

Bailey, & Zhou, 2013). Recent studies have focused on the nature/types of fraction competencies
(e.g., Hallett, Nunes, & Bryant, 2010; Hecht & Vagi, 2010; Hecht et al., 2007), on the prediction of frac-
tion performance (Booth, Newton, & Twiss-Garrity, 2014; Hecht & Vagi, 2010; Jordan et al., 2013;
Siegler et al., 2012; Vukovic et al., 2014), and on intervention (Fuchs et al., 2013; Gabriel et al.,
2012). Prediction studies are most common, although their focus varies in terms of grade range and
the kinds of predictor and fraction skills considered. A common focus for such studies is later elemen-
tary school, when fractions become a major component of the school curriculum.

Hecht and Vagi (2010) examined outcomes of fraction estimation, computation, and word prob-
lems in Grades 4 and 5; growth in these outcomes was predicted by whole number skills (arithmetic
retrieval), domain-general skills, and other covariates (e.g., inattention, IQ, word reading) to varying
degrees beyond fourth-grade math skills. Conceptual knowledge of fractions later predicted all frac-
tion outcomes, but earlier procedural competence was weakly related to later conceptual competence.
Jordan and colleagues (2013) and Vukovic and colleagues (2014) focused on a similar grade range. In
Jordan and colleagues’ study, Grade 3 inattention, number line estimation, and calculation fluency
were predictive of Grade 4 conceptual and procedural fraction skills, whereas nonsymbolic compar-
ison was not predictive of either outcome. Furthermore, workingmemory was uniquely related to pro-
cedural (but not conceptual) fraction outcomes, whereas language, reading fluency, and nonverbal
reasoning were predictive of conceptual (but not procedural) fractions. In Vukovic and colleagues’
study, some (but not all) domain-general skills were important for fraction concepts, albeit indirectly
(via whole number computation or number line placement). Number knowledge (fluency in
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processing numerical magnitudes with both symbolic and nonsymbolic stimuli) showed a direct effect
from Grade 1 to Grade 4. In that study, whole number procedural skills were also predictive of fraction
concepts 2 years later.

Few studies have closely examined fraction performance beyond elementary school. An early
exception was Fennema and Tartre (1985), who showed that spatial visualization was related to frac-
tions in middle school students. More recently, Siegler and Pyke (2013) found in a small sample that
differences between lower and higher achieving students in fractions at sixth grade grew wider by
eighth grade. For fraction arithmetic, strong predictors were reading, whole number division, and frac-
tion magnitude but not executive functioning (working memory and inhibition).

Across grades, these studies suggest that some combination of domain-specific and domain-
general processes predicts procedural and conceptual fractions outcomes and that numerosity or
whole number computation may mediate the effects of early domain-general processes on later frac-
tion performance. Yet, inconsistency in findings demonstrates the need for more studies of this nature.
This is especially the case given that fraction performance combines with whole number and concep-
tual knowledge in the prediction of algebra. Siegler and colleagues (2012) found in one large dataset
that fractions, division, and multiplication in particular were strong predictors of algebra performance
5 years later. In the same study with a second large dataset, fraction and division performances were
predictive of algebra (although all items were derived from the Woodcock–Johnson Applied Problems
subtest). Other studies have shown the importance of domain-general skills for algebra outcomes,
such as working memory (Lee, Ng, & Ng, 2009; Tolar, Lederberg, & Fletcher, 2009), although few stud-
ies simultaneously investigated all of the potential predictors, as was done in the current study.

Thus, the current study may provide bridging data to help link findings from the many studies of
early developing math skills to the fewer studies of later developing math skills by focusing on a grade
range in between early elementary school and high school and on outcomes in between whole num-
ber arithmetic and algebra. Because the larger study from which the current data were derived pro-
hibited exhaustive evaluation given the setting, we elected to evaluate fraction performance with a
broad measure that included both procedural and conceptual items but that focused primarily on
computational problems rather than word problems (Brown & Quinn, 2007a, 2007b). We chose this
measure given its demonstrated relation to algebra performance (and because the current study
was completed just prior to the several recent studies referenced above).

Proportional reasoning
Proportional reasoning is potentially also important for algebra because both require the compar-

ison of equivalency between two rational numbers. However, fewer studies have focused on propor-
tional reasoning than on fractions. Gabel, Sherwood, and Enochs (1984) found that low proportional
reasoning negatively impacted chemistry performance. More relevant, Kwon, Lawson, Chung, and
Kim (2000) showed that measures of inhibiting ability, planning ability, figure/ground, and working
memory capacity are predictive of proportional reasoning in adolescents. Recently, Kingston and
Lyddy (2013) found self-efficacy and short-term memory to predict proportional reasoning. It is not
clear whether predictors of individual differences in proportional reasoning are similar to or different
from those of fractions or how either are related to general mathematics performance more generally
following elementary school.

There are few well-researched measures of proportional reasoning available in the literature. How-
ever, Misailidou and Williams (2003) systematically developed a unidimensional instrument using or
adapting an assortment of items previously used in curricular contexts and literature, each of which
requires the determination of a missing value from a proportion given three other values. They devel-
oped a total of 38 items (25 with a graphical model and 13 without) and administered short overlap-
ping forms to a large group of students aged 10 to 14 years. From these, they developed two parallel
13-item diagnostic measures that fit the original Rasch structure. Given the strong development of
this measure, it was adopted for the measure of proportional reasoning used here.

Broad mathematics
Of the studies that have examined general mathematical performance, few systematically include a

range of both specific processes (e.g., numerosity, whole number arithmetic) and general processes
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(e.g., working memory, spatial skills, language), although studies do address these separately. For
example, Fazio and colleagues (2014) found a strong influence for (particularly symbolic) magnitude
knowledge (of whole numbers or fractions) in predicting general math achievement (a state test) in
fifth graders but did not include domain-general predictors. Although not a predictive study,
Matteson (2006) found that algebraic problems on a state test across Grades 3 to 8 were most often
represented verbally (or to a lesser extent graphically) as opposed to numerically or symbolically,
although the reverse was true of the required solutions. Only two studies included a variety of types
of predictive measures. Bailey, Hoard, Nugent, and Geary (2012) found that fraction comparison in
Grade 6 predicts Grade 7 math, but the reverse was not true. With all factors considered, the strongest
predictors of Grade 7 math did not include fraction comparison but rather computational fractions and
computational arithmetic as well as number (number line and fluency in processing numerical mag-
nitudes with both symbolic and nonsymbolic stimuli) and IQ. In Siegler and Pyke (2013), for general
mathematics (state test), strong predictors included reading, executive functions, whole number divi-
sion, and fraction magnitude.

The current study

The current study sought to clarify the relative roles of domain-specific and domain-general con-
tributions to middle school mathematics given that both have crucial importance for later developing
skills including algebra. The current study contributes to the literature in four ways. First, we extend
knowledge regarding the relative roles of domain-specific (numerosity) and domain-general (cogni-
tive) contributors to math skills to an understudied age range. Second, within the numerosity domain,
symbolic and nonsymbolic predictors are distinguished; within the cognitive/neuropsychological
domain, language and visuospatial predictors are each considered. Third, three different types of math
skills relevant in middle school are considered: fraction performance, proportional reasoning, and a
state mathematics assessment. Finally, and perhaps most important, a distal to proximal hierarchy
is evaluated, where the effects of these predictors on outcomes are evaluated both directly and indi-
rectly via numerosity and/or elementary arithmetic skills.

We hypothesized that both domain-specific and domain-general processes would be relevant
across outcomes. This is consistent with studies demonstrating that although domain-general skills
are involved in basic facts, their role grows in importance as the complexity of the mathematics out-
come skill increases (e.g., from computations to word problems; Fuchs et al., 2010a, 2010b). The lit-
erature supports the role of numerosity for basic skills, although less information is available
regarding this role in middle school mathematics performance.

We go beyond this basic hypothesis to more specifically reflect the hierarchy of math development.
For fraction competency, we expected that the mathematics skills most proximal to the outcome
(whole number math facts and procedural computation) would exhibit the strongest direct effects.
We hypothesized that numerosity (e.g., magnitude/number line estimation, symbolic and nonsymbolic
comparison) would have both direct and indirect effects. We expected domain-general skills (e.g., lan-
guage, working memory, spatial) to also have both direct and indirect effects, particularly working
memory. Limited information is available regarding proportional reasoning, but given similar complex-
ity for fractions and proportional reasoning (and because proportional reasoning is involved in fraction
performance; Vukovic et al., 2014), we expected results to be similar to those for fractions. For broad
mathematics (state test), we again expected similar findings, but with the inclusion of fractions and
proportional reasoning as predictors, we expected the role of more distal measures used in other mod-
els to be reduced. This could manifest by finding only indirect effects for numerosity and domain-
general skills in the context of whole number computation, fractions, and proportional reasoning.
Method

Participants

Participants were 162 sixth-grade students, from three schools in a large southwestern metropoli-
tan area of the United States, whose average age was 12.4 years (SD = 0.53). Slightly more than half
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(53%) of the participants were male, and most students were Hispanic/Latino (75%) or African Amer-
ican (20%). All students were instructed in English, although 16% were classified as limited English.
Most students were in regular classes, with 1% classified as gifted/talented and 7% receiving special
educational services. Reduced/free lunch status was not available from one school, but proportions
of economic disadvantage at all locations were high (�80% at the school level and 79–88% for individ-
ual students at the schools where data were available). These demographic characteristics were con-
sistent with the individual schools and districts as a whole. Several of these descriptive variables were
considered as covariates in analyses (see below). Written informed consent was obtained from par-
ents, as was assent from students.
Measures

Table 1 shows means, standard deviations, skew, and kurtosis for measures in their original
metrics.
Domain-general (cognitive/neuropsychological) measures
Spatial working memory was assessed with the Automated Symmetry Span (Kane et al., 2004;

Unsworth, Redick, Heitz, Broadway, & Engle, 2009), which requires students to maintain a series of
spatial locations (recall task) in memory while making veridical judgments about the symmetry of fig-
ures (processing task). Participants are instructed to ascertain symmetry as quickly and accurately as
possible and to maintain a ‘‘correct symmetry” score of at least 85%. There are 12 trials, with 3 trials
each at span lengths of 2, 3, 4, and 5; the order of each trial is randomly generated. The primary mea-
sure used is a ‘‘partial credit load” (PCL) score, which is more reliable than all-or-nothing scoring
(Conway et al., 2005). In PCL scoring, points are assigned for each trial according to the span length,
so the maximum possible score is 42. Four individuals did not have data on the last of the 12 trials
due to computer administration error, and their scores on this trial were prorated. In this sample, a
was .79.

Language was assessed with the Wechsler Abbreviated Scales of Intelligence (WASI) Vocabulary
subtest (Wechsler, 1999), which requires students to define orally presented words and, as such, is
a measure of expressive vocabulary. Reliability is excellent for this subtest (a = .86–.90; Wechsler,
1999). Students also received the Visual–Auditory Learning task of the Woodcock–Johnson III Tests
of Achievement (Woodcock, McGrew, & Mather, 2001). This task requires students to associate a rebus
to a word and ‘‘read” sentences using the symbols. This task assesses memory but in the context of
symbolic association and syntactic manipulation. It requires approximately 10 min, and reliability
among 11- to 15-year-olds is good (range of a = .76–.90; McGrew &Woodcock, 2001). Age-based stan-
dard scores were used as the primary variable from each measure. Both are well standardized and
commonly used in clinical settings. The two measures correlated r = .48 and were formed into a lan-
guage composite for parsimony and given similar expectations for their relations across the outcomes
considered here. Three individuals were outliers in terms of their composite, and these scores were
trimmed to above the next highest value to maintain their rank ordering (and correlations with out-
comes were essentially unchanged relative to original values).

Visuospatial rotation was assessed with the Revised Vandenberg & Kuse Visuospatial Rotation Test
(MRT; Peters, 1995), which is a redrawn version of the Vandenberg and Kuse (1978) figures. Each of
the items has a target figure and four related stimuli; participants must identify which two of the four
stimuli are rotated versions of the target. Participants worked with up to 24 items for 6 min. This mea-
sure loaded highly on a spatial visualization latent factor (.83) and was correlated with measures of
algebra procedural skill (.28–.30) among college students (Tolar et al., 2009). Reliability in this sample
was a = .76. The score used was the number of items answered correctly; the maximum was 24
because to complete an item correctly, participants needed to identify both of the rotated versions
of the stimulus figure. Three individuals were outliers, and these scores were trimmed to above the
next highest value to maintain their rank ordering (and correlations with outcomes were essentially
unchanged relative to original values).



Table 1
Descriptive statistics of (original) measures (N = 150–162).

Area Measure Scale Mean (SD) Skew Kurtosis

Domain general
Working memory Raw (0–42) 21.19 (8.45) �0.48 �0.04
WASI vocabulary Scale score (50/10) 44.97 (8.97) �0.49 0.46
WJ-III visual auditory learning Scale score (100/15) 90.29 (12.68) �0.56 1.20
Visuospatial rotation Raw (0–24) 4.5 (3.09) 1.26 2.81

Domain specific (number)
Nonsymbolic comparison Weber fraction 0.24 (0.10) 3.05 13.93
Symbolic comparison Mean correct response time (ms) 798 (249) 2.24 7.36
Number line estimation Mean absolute deviation (cm) 81.76 (51.28) 2.56 8.17

Fact-based retrieval
Single digit addition Raw (0–99) 28.27 (8.70) 1.42 4.32
Single digit multiplication Raw (0–99) 31.62 (13.89) 0.08 0.66

Procedural computation
ETS subtraction and multiplication Raw (0–60) 12.04 (7.03) �0.06 0.37
ETS addition and subtraction Raw (0–60) 17.58 (5.66) 0.35 0.90

Grade 6 mathematical outcomes
Fraction competency Raw (0–25) 4.93 (2.92) 0.80 0.43
Proportional reasoning Raw (0–10) 3.06 (1.98) 0.55 0.08
State test Raw (0–52) 32.00 (10.55) �0.13 �0.90

Note. The data show original values. Transformation/outliers (typically minor and/or few) significantly improved distributions
of visuospatial rotation, nonsymbolic comparison, symbolic comparison, and number line estimation. See text for descriptions.
The combined variables of language (vocabulary and visual auditory learning), fact-based retrieval, and procedural computation
all showed good distributional properties. WJ-III, Woodcock–Johnson II I; ETS, Educational Testing Service.
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Domain-specific (numerosity) measures
Numerosity was assessed with three measures. Panamath is a research-based, downloadable com-

puterized measure (Halberda et al., 2008; http://www.panamath.com) and is widely used as a mea-
sure of acuity of the approximate number system (Hyde, Khanum, & Spelke, 2014; Jordan et al.,
2013; Libertus, Odic, & Halberda, 2012). Students see dots on a computer screen (yellow on the left
and blue on the right) for 600 ms, followed by a backward mask and then a fixation symbol; students
decide as quickly as possible which side has more dots by pressing a key on the left or right side of the
keyboard. Dot size, area, and the ratio between the dot set sizes vary systematically. For the purposes
of the current study, 200 trials were administered and varied the extent to which dot size and area
were consistent versus inconsistent with numerosity as well as the ratio of dots to one another.
The key measures are percentage correct, response time (RT), and discriminability (Weber fraction,
where lower fractions indicate the ability to discriminate dot sets that appear similar). Four individ-
uals were outliers in terms of their Weber fraction, and their scores were trimmed to above the next
highest value to maintain their rank ordering (and correlations with outcomes were essentially
unchanged relative to original values). Across the different types of trials, Weber fraction scores gen-
erated from each correlated >.80 with one another and >.90 with their corresponding percentage cor-
rect scores.

Symbolic Comparison has 91 trials in which students see two Arabic numerals (either single digit
or double digit). The task is to decide which is greater as quickly and accurately as possible. The ratio
of the two numbers was designed to maximally overlap with those of the nonsymbolic presentation of
dots (i.e., Panamath). The primary variables are accuracy and RT (mean, median, and standard devia-
tion across trials), although as expected accuracy was high (mean of 85/91 correct) except for one stu-
dent, who was excluded for this measure due to chance performance. In this sample, a = .98 for RT. For
the three indexes of RT, three individuals were outliers (slower than others); these data were trimmed
to above the next highest value to maintain their rank ordering. These scores were also log trans-
formed due to some skewness. The three indexes were strongly correlated and similarly distributed;
therefore, only mean RT (trimmed and transformed) was used.

http://www.panamath.com
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The Number Line Estimation task (Booth & Siegler, 2006; Siegler & Booth, 2004) is strongly predic-
tive of math achievement. Students see an Arabic numeral and a line anchored with the numerals 0
and 1000, and they place the numeral on the number line. The score was the mean deviation from
the number’s actual line position (Booth & Siegler, 2006; Siegler & Booth, 2004; Siegler & Opfer,
2003). Raw scores were positively skewed and kurtotic (a significant minority of students had larger
error scores). Therefore, a log-transformed measure was used in analyses. Correlations with outcome
measures did not differ whether the variable was log transformed or whether participants with the
most deviant scores were trimmed or deleted. Reliability in this sample was a = .88.

Whole number retrieval and computation
Two measures of fact-based retrieval were used, each with a similar format. Problems appeared

across two pages with 17 rows and 6 items per row for a total of 99 problems for each (the last
row had 3 items), and participants had 1 min to complete as many problems as possible. For Single
Digit Addition, problems comprised all possible combinations of the addends 0 through 9; Single Digit
Multiplication multiplicands and multipliers ranged from 0 to 9. For both measures, problems were
organized systematically and then randomized for presentation. The score was the number of cor-
rectly completed problems within the time limit minus the number of incorrect responses (although
errors were relatively uncommon). The two measures were combined to form a math fact retrieval
composite; the correlation between them was r = .53.

Two measures from the ETS Kit of Factor-Referenced Cognitive Tests (Ekstrom, French, Harman, &
Derman, 1976) were used to assess procedural computation. The Subtraction and Multiplication Test is
part of the Number Facility factor and consists of alternating rows of subtraction and multiplication
problems. Minuends and subtrahends in all subtraction problems are two digits (e.g., 98 � 75). Mul-
tiplication problems have two-digit multiplicands and single-digit multipliers (e.g., 86 � 6). This test
has two parts, but only the first part, with 60 items, was completed with a 2-min time limit. Reliability
is .92 for sixth-grade students and ninth-grade boys (Ekstrom et al., 1976). The Addition and Subtrac-
tion Correction Test consists of 60 items in two rows, showing two-digit numbers and a potential sum
in horizontal format (e.g., 26 � 14 = 13); students identify whether the problem and its sum is correct.
The score for each measure is the number of correct items minus the number of incorrect responses.
The two measures were combined to form a whole number procedural computation composite; the
correlation between them was r = .67.

Mathematical outcomes
Three additional measures assessed fraction performance, proportional reasoning, and general math-

ematics. The Brown and Quinn Fraction Competency Test (Brown & Quinn, 2007a, 2007b) is a 25-item
broad measure of fractions meant to assess conceptual knowledge and procedures, with presentation
primarily computational and only a few word problems (e.g., ‘‘Find the sum of 5/12 and 3/8”; ‘‘If n gets
very large, then 1/n gets . . . [very close to 1, very close to 0, very large too]”). The full items are pro-
vided in Brown and Quinn (2007a, 2007b) and were rearranged here by the order of difficulty found in
the original study. Items are classed into six categories: algorithmic applications, application of basic
fraction concepts in word problems, elementary algebraic concepts, specific arithmetic skills that are
prerequisite to algebra, comprehension of the structure of rational numbers, and computational flu-
ency. However, the authors noted that that items could fall into more than one category (Brown &
Quinn, 2006); in addition, the number of items in each group was rather small and the groups of items
were not described as subtests, nor were separate reliability statistics provided. Among 138 first-year
algebra students (predominantly Grade 9), total performance accuracy was 52%, with r = .58 with their
algebra course final exam (Brown & Quinn, 2007a, 2007b). Students were given 10 min to complete as
many items as possible. Reliability in this sample was a = .69. The total score was used for analyses.

The Diagnostic Assessment of Proportional Reasoning (Misailidou & Williams, 2003) has 13 items
calibrated with 303 students (ages 10–14 years) using item response theory (IRT) techniques. Corre-
lation between item difficulty estimates was r = .93 between the two samples. Item selection, devel-
opment, and other psychometric properties are described in some detail in the original publication,
and all items are presented explicitly (Misailidou & Williams, 2003). From this item pool, 13 items
were scaled to a diagnostic test that could serve as an assessment of ratio attainment as well as to pull
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for additive errors in solving ratio and proportion problems. This 13-item test was cross-validated on a
second sample (N = 212, ages 10–13 years); for the current study, 10 of these 13 content-unique items
were used, with thresholds (difficulty parameters in the IRT context) that ranged from �2.72 to +2.01.
The following is an example item (b = .65): ‘‘10 campers camped at the ‘Blue Mountain’ camp the pre-
vious week. Each day the camp’s cook baked eight loaves of bread for them to share. This Monday 15
campers will camp at the ‘Blue Mountain’ camp. How many loaves will the cook need to bake each
day?” A total score is available for analyses, consistent with its development. Students were given
10 min to complete as many items as possible. Because the assessment was developed in the United
Kingdom, unfamiliar language was modified (e.g., for a money question, changing ‘‘pounds” to ‘‘dol-
lars”). Reliability in this sample was a = .69.

Finally, the state standardized assessment for mathematics in Grade 6 was used. At this grade,
there are 52 questions across five sections: (a) numbers, operations, and quantitative reasoning (16
items); (b) patterns, relationships, and algebraic reasoning (12 items); (c) geometry and spatial rea-
soning (8 items); (d) measurement (8 items); and (e) probability and statistics (8 items). The total
raw score was used. The five individual portions of this assessment correlated in the range of r = .53
to .73.

Procedures

Students were assessed in their schools during late spring of 2012 at times convenient to their
schedules and to school staff/personnel. Total assessment time was approximately 2.5 h, including
breaks as needed. Test order was quasi-randomized, primarily for logistic reasons, including the
length of the battery, the computer equipment needed for some (not all) measures, and the school set-
ting. This prevented both a fixed order and a regimented random ordering. Instead, examiners (mon-
itored by on-site supervisors) were encouraged to begin at different points and to work in forward or
reverse order, depending on whether computers were involved. Examiners were trained and super-
vised by the authors, and most examiners were experienced both with children in schools and with
standardized test administration and similar measures on other projects. In addition, examiners par-
ticipated in a full-day training session that included didactic presentations and practice. Examiners
then practiced independently and with other research staff members and passed a ‘‘checkout” proce-
dure with the testing coordinator prior to actual testing. On-site supervision was also provided.

Analysis plan

Preliminary analyses included examination of variable distributions, outliers, and influential obser-
vations within and across conditions described above and reported in Table 1. Next, covariates of age,
sex, ethnicity, language status (limited English), and educational status (receiving special education
services or not) were considered. Age was significantly (negatively) related to each outcome. Sex
was unrelated to primary outcomes and so was not further considered. Ethnicity (Hispanic/Latino
or not [predominantly African American]) was related to each outcome, with students who were His-
panic/Latino outperforming those who were not. Language status was correlated with fractions
(p < .015) and proportional reasoning (p < .046) outcomes, where it accounted for a small proportion
of variance; language status was unrelated to the state test. Similarly, educational status (e.g., special
education) was related to proportional reasoning (p < .006) and to the state test (p < .010) but not to
fractions. When age, ethnicity, special education, and language status were considered together, age
and ethnicity (and language status for fractions and proportional reasoning) were significant predic-
tors of outcomes, accounting for 11% to 21% of the variance in outcomes. Finally, models were run with
and without these covariates, with unique contributions for age and ethnicity (but not language sta-
tus) for proportional reasoning and state test outcomes; the addition of these covariates did not alter
(enhance or ameliorate) the contributions of the cognitive, number, or arithmetic variables to the
models and did not interact with them. Therefore final models are presented without covariates.

The primary analytical approach was path analyses via Mplus (Muthen & Muthen, 2007). Although
we used only observed variables (and composites), we chose this approach over multiple regression
(or hierarchical regression) even though they are related. We did so because we could simultaneously
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estimate direct and all manners of indirect effects, and we could test the model (which has degrees of
freedom because some paths are constrained to zero) as a whole. Doing so more accurately represents
our hypothesis of a hierarchy of math skill and its influences. In this way, direct effects of variables
offer an index of a variable-unique contribution, considering all other variables (similar to what would
be obtained in a hierarchical regression), but also evaluates the extent to which cognitive and
numerosity variables operate through whole number arithmetic. In path analysis with some degrees
of freedom, there are fit indexes at both the global level (e.g., chi-square [v2], comparative fit index
[CFI], Tucker–Lewis index [TLI], root mean square error of approximation [RMSEA], standardized root
mean square residual [SRMR]) and the local level (parameter estimates). Furthermore, if data are miss-
ing for endogenous variables (which was generally rare in this study, with covariance coverage typi-
cally being >95%), model-implied covariances are based on all available participants and global fit is
assessed via maximum likelihood; only individuals missing data on exogenous variables (n = 3), in
our case the cognitive variables, were excluded. In addition, direct and indirect effects can be produced
all at once rather than computed by hand. Finally, bootstrapped confidence intervals are computed
(because indirect or mediational effects are often non-normally distributed; Preacher & Hayes,
2004, 2008; Shrout & Bolger, 2002), and this approach can extend more traditional perspectives
(Hayes, 2009; MacKinnon & Fairchild, 2009). The path analytic framework is important for this study
because several of the proposed indirect effects operate through more than one intervening variable.
Further details regarding path analyses, mediation, and related techniques may be found in relevant
texts and reviews (e.g., Klein, 2010; MacKinnon, 2008).

The interpreted model for each outcome evaluated the overall schema hypothesized here, in line
with the hierarchy of math development. Here, cognitive variables (language, working memory, and
visuospatial rotation) support numerosity variables (number line, symbolic comparison, and nonsym-
bolic comparison); then, cognitive and numerosity variables support fact retrieval and procedural
computation, and each variable predicts math outcomes (fractions, proportional reasoning, and gen-
eral math achievement), either directly or indirectly via more proximal effects. Indexes of both global
fit (overall model) and local fit (variable parameter estimates) were evaluated. Regarding the latter, we
specifically evaluated total, direct, total indirect, and specific indirect effects, in line with our hypoth-
esized variable ordering. In the text, and in the tables and figures, we present effects as standardized
regression coefficients (b) to help ease interpretability. Direct effects are analogous to unique effects in
a standard multiple regression analysis. Specific indirect effects are the result of multiplying the coef-
ficients along a given route to the outcome (e.g., the coefficients of the paths from language to number
line times the coefficient of the path from number line to fact retrieval and so on to procedural com-
putation and to fractions); the most ‘‘distal” variables (i.e., the cognitive variables) have the highest
number of specific indirect effects. The cumulative or total indirect effect is the sum of all the specific
indirect effects. The total effect is the sum of the cumulative indirect and direct effects.
Results

Correlations among variables are found in Table 2. These show moderate to strong relationships
among outcomes, with similarly strong relationships between outcomes and the whole number vari-
ables, in particular procedural computation.
Fractions

The first descriptive step simply included all predictors (as noted, results were highly similar when
covariates were considered) and so is a multiple regression. The predictors accounted for R2 = 47% of
the variance in fraction performance, with unique contributions for whole number (procedural com-
putation), numerosity (symbolic comparison), and visuospatial rotation. The first overidentified model
(with domain-general variables predicting numerosity, both of these predicting whole number com-
putation/retrieval, and all variables predicting fractions performance) was ill-fitting (e.g.,
RMSEA = 0.371, CFI = 0.751); however, this was due to a strong, unaccounted-for relation between
the intermediary whole number variables (math facts and procedural computation). Given that math



Table 2
Correlations of variables used in path models (N = 150–162).

1 2 3 4 5 6 7 8 9 10 11

1. Working memory 1.00
2. Language .226 1.00
3. Visuospatial rotation .194 .121 1.00

4. Nonsymbolic comparison �.136 �.044 �.005 1.00
5. Symbolic comparison �.252 �.302 �.139 .078 1.00
6. Number line estimation �.164 �.214 �.122 .162 .133 1.00

7. Fact-based retrieval .276 .193 .060 �.139 �.495 �.345 1.00
8. Procedural computation .325 .311 .142 �.056 �.606 �.301 .769 1.00

9. Fraction competency .253 .288 .201 .048 �.307 �.264 .466 .650 1.00
10. Proportional reasoning .296 .355 .176 �.155 �.366 �.318 .474 .551 .498 1.00
11. State test .265 .372 .247 �.248 �.323 �.418 .438 .542 .421 .681 1.00

Note. Correlations with absolute values > .160 are p < .05; correlations > .200 are p < .01; correlations > .263 are p < .001.
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facts are clearly developed prior to procedural computations in the math hierarchy, we related these
by including a step (from math facts to procedural computations); indirect effects for this additional
step were also considered. This model fit very well (v2 = 3.928, df = 3, CFI = 0.997, RMSEA = 0.044, 90%
confidence interval [CI] = 0.000–0.148; SRMR = 0.025), R2 = 47%, but revealed no total, direct, or indi-
rect effects involving visuospatial rotation or nonsymbolic comparison.

Significant direct paths for this model appear in Fig. 1 but were apparent only for procedural com-
putations; select (significant and cumulative) indirect path statistics appear in Table 3 (under Model
1). The impact of specific predictors is read as follows. Because visuospatial rotation and nonsymbolic
comparison showed no direct or indirect effects, there is no line from these variables to fractions in
Fig. 1, and only the total indirect effects, which are not significant (with the total number of indirect
paths for each variable listed in parentheses), appear in Table 3 (in italics). Language showed a differ-
ent combination of effects, although the direct path is not displayed in Fig. 1 because, as noted, this
effect was not significant. There was a strong total effect (b = .226) and cumulative indirect effect
(b = .141). The two significant specific indirect paths appear in Table 3, each of which operated
through procedural computations (in addition to others). Spatial working memory showed a similar
pattern, that is, no direct effect but strong total (b = .175) and cumulative indirect (b = .139) effects;
the only significant specific indirect effect was the route through symbolic comparison, fact retrieval,
and procedural computations. Symbolic comparison also showed no direct effect but significant total
(b = �.202) and total indirect (b = �.343) effects; two significant specific indirect paths operated
through procedural computations. Number line showed no direct effect either, although with signif-
icant total (b = �.184) and cumulative indirect (b = �.126) effects; one significant specific indirect path
via math fact retrieval and procedural computations appears in Table 3. Finally, there was no direct
effect of fact retrieval, but the total effect (b = .371) and cumulative indirect effect (there are no sep-
arate specific indirect effects because only one is available) were significant.

Proportional reasoning

Again, the first descriptive multiple regression step simply included all predictors (with similar
results with and without covariates considered), which accounted for R2 = 40% of the variance, with
unique contributions only for whole number (procedural computation), language, and numerosity
(number line). Fact retrieval was again added as a path between numerosity and procedural compu-
tations. The resultant model fit very well (v2 = 3.579, df = 3, CFI = 0.998, RMSEA = 0.035, 90% CI = 0.000
to 0.143, SRMR = 0.024), R2 = 38%, but similar to the fractions model revealed no total, direct, or indi-
rect effects involving visuospatial rotation or nonsymbolic comparison.

Significant direct paths for this model (language and procedural computations) are displayed in
Fig. 2; significant specific indirect (and all cumulative indirect) path statistics appear in Table 3 (under
Model 2). Again, all indirect paths operated through procedural computations, and in turn all paths to



Fig. 1. Path model predicting fraction competency. Values shown are standardized beta weights. Only significant paths are
shown for clarity. Standard errors and residuals are not shown for space reasons. Select indirect path statistics (all significant
indirect paths and all cumulative indirect effects) appear in Table 3. All specific significant indirect effects in Table 3 are
computable from the values in the figure.
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procedural computations operated through math facts or symbolic comparison. As noted, visuospatial
rotation and nonsymbolic comparison showed no direct or indirect effects. Language showed a strong
direct effect (b = .183; see Fig. 2) and total effect (b = .303). The cumulative indirect effect was signif-
icant, with two significant specific indirect paths (see Table 3). Considering spatial working memory,
number line, and symbolic comparison, none showed significant direct effects, but each showed total
effects (b = .209, b = �.205, and b = �.221, respectively) and cumulative indirect effects (b = .138,
b = �.095, and b = �.222, respectively). As indicated in Table 3, these variables had zero, one, and
two significant specific indirect effects, respectively. For fact retrieval, similar to fraction performance,
there was no direct effect, but the total (b = .306) and cumulative indirect effects were significant.
General mathematics

The descriptive model accounted for R2 = 46% of the variance, with unique contributions for visu-
ospatial rotation, language, numerosity (number line estimation and nonsymbolic comparison), and
procedural computations. The overall model (considering direct and indirect effects, including those
from math facts and procedural computation, as per the models above) fit extremely well
(v2 = 3.263, df = 3, CFI = 0.999, RMSEA = 0.023, 90% CI = 0.000 to 0.138; SRMR = 0.024), R2 = 44%.

Significant direct paths for this model were the same as those found for the descriptive regression
model and are displayed in Fig. 3; significant specific and cumulative indirect path statistics appear in
Table 3 (under Model 3). The total effects for each variable in the model were significant (spatial work-
ing memory, b = .167; language, b = .319; visuospatial rotation, b = .183; number line, b = �.294; sym-
bolic comparison, b = �.158; nonsymbolic comparison, b = �.172; fact retrieval, b = .239). Cumulative
indirect effects were significant for each predictor except visuospatial rotation and nonsymbolic
rotation, and significant specific indirect effects were noted for language (three), number line (one),
symbolic comparison (two), and fact retrieval (one) (see Table 3). Each of these specific indirect effects



Table 3
Standardized total indirect and significant indirect results.

Predictor Indirect path Estimate Confidence interval

Model 1 (fraction performance)
Visuospatial rotation Cumulative Indirect (15) 0.044 �0.051 to 0.139
Language Cumulative Indirect (15) 0.141 0.042 to 0.240

? Symbol Compare? Procedures ? 0.045 0.007 to 0.083
? Symbol Compare? Facts? Procedures ? 0.044 0.011 to 0.077

Working memory Cumulative Indirect (15) 0.139 0.040 to 0.238
? Symbol Compare? Facts? Procedures 0.031 0.000 to 0.063

Nonsymbolic
comparison

Cumulative Indirect (3) 0.027 �0.073 to 0.126

Symbolic comparison Cumulative Indirect (3) �0.343 �0.449 to �0.237
? Procedures ? �0.184 �0.282 to �0.085
? Facts? Procedures ? �0.180 �0.265 to �0.095

Number line Cumulative Indirect (3) �0.126 �0.216 to �0.035
? Facts? Procedures ? �0.114 �0.183 to �0.045

Facts Cumulative Indirect (1, via Procedures) 0.421 0.272 to 0.570

Model 2 (proportional reasoning)
Visuospatial rotation Cumulative Indirect (15) 0.031 �0.040 to 0.101
Language Cumulative Indirect (15) 0.120 0.035 to 0.204

? Symbol Compare? Procedures ? 0.022 0.001 to 0.043
? Symbol Compare? Facts? Procedures ? 0.022 0.003 to 0.040

Working memory Cumulative Indirect (15) 0.138 0.059 to 0.217

Nonsymbolic
comparison

Cumulative Indirect (3) 0.009 �0.054 to 0.072

Symbolic comparison Cumulative Indirect (3) �0.222 �0.307 to �0.138
? Procedures ? �0.091 �0.154 to �0.028
? Facts? Procedures ? �0.090 �0.149 to �0.030

Number line Cumulative Indirect (3) �0.095 �0.157 to �0.033
? Facts? Procedures ? �0.056 �0.102 to �0.010

Facts Cumulative Indirect (1, via Procedures) 0.209 0.082 to 0.336

Model 3 (state test outcome)
Visuospatial rotation Cumulative Indirect (15) 0.035 �0.043 to 0.112
Language Cumulative Indirect (15) 0.128 0.032 to 0.225

? Number Line ? 0.037 0.002 to 0.071
? Symbol Compare? Procedures ? 0.027 0.002 to 0.052
? Symbol Compare? Facts? Procedures ? 0.026 0.004 to 0.049

Working memory Cumulative Indirect (15) 0.148 0.057 to 0.238

Nonsymbolic
comparison

Cumulative Indirect (3) 0.017 �0.047 to 0.082

Symbolic comparison Cumulative Indirect (3) �0.213 �0.302 to �0.124
? Procedures ? �0.110 �0.183 to �0.038
? Facts? Procedures ? �0.109 �0.180 to �0.037

Number line Cumulative Indirect (3) �0.079 �0.143 to �0.015
? Facts? Procedures ? �0.067 �0.120 to �0.014

Facts Cumulative Indirect (1, via Procedures) 0.253 0.107 to 0.399

Model 4 (state test outcome with fractions and proportional reasoning)
Visuospatial rotation n/a n/a n/a
Language Cumulative Indirect (14) 0.190 0.098 to 0.283

? Proportions ? 0.099 0.033 to 0.165
? Number Line ? 0.032 0.000 to 0.064
? Symbol Compare? Procedures? Proportions ? 0.018 0.001 to 0.035
? Symbol Compare? Facts? Procedures? Proportions ? 0.015 0.002 to 0.027

Working memory Cumulative Indirect (12) 0.075 0.020 to 0.129
? Facts? Procedures? Proportions 0.019 0.000 to 0.039
? Symbol Compare? Procedures? Proportions ? 0.014 0.000 to 0.029
? Symbol Compare? Facts? Procedures? Proportions ? 0.012 0.001 to 0.022

108 P.T. Cirino et al. / Journal of Experimental Child Psychology 145 (2016) 95–119



Table 3 (continued)

Predictor Indirect path Estimate Confidence interval

Nonsymbolic
comparison

n/a n/a n/a

Symbolic comparison Cumulative Indirect (7) �0.288 �0.384 to �0.192
? Procedures ? �0.109 �0.195 to �0.023
? Procedures? Proportions ? �0.075 �0.114 to �0.035
? Facts? Procedures ? �0.088 �0.157 to �0.019
? Facts? Procedures? Proportions ? �0.060 �0.089 to �0.031

Number line Cumulative Indirect (4) �0.059 �0.105 to �0.013
? Facts? Procedures ? �0.046 �0.089 to �0.004
Facts? Procedures? Proportions ? �0.032 �0.054 to �0.009

Facts Cumulative Indirect (3) 0.329 0.191 to 0.467
? Procedures ? 0.204 0.058 to 0.351
? Procedures? Proportions ? 0.139 0.079 to 0.199

Procedures Cumulative Indirect (2) 0.207 0.091 to 0.323
? Proportions ? 0.232 0.142 to 0.322

Note. Nonsymbolic Comparison: Panamath (comparison of dot arrays of varying ratios, often used as a measure of approximate
number system acuity); Symbolic Comparison: comparison of Arabic numerals of varying ratios; Number Line: estimation of
location of a given Arabic numeral along an analog scale bounded by 0 and 1000; Facts: single-digit addition and multiplication;
Procedures: ETS Subtraction/Multiplication and Addition/Subtraction Correction. Cumulative Indirect effects are shown for each
predictor (summed over all possible indirect effects, noted in parentheses); those in italics are not significant (bootstrapped
confidence intervals cross zero). Specific indirect effects that are not significant are not listed in the table (and, therefore, the
cumulative indirect effect is not the sum of the specific indirect effects shown in the table). The number of specific indirect
effects in Model 4 is fewer than that in other models because it was built from them. See text for description of pattern of direct
effects and total effects; see figures for graphical display of direct effects.
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operated through procedural computations except for the pathway from language through number
line to state test performance.

The above analyses for general mathematics performance were repeated but including fraction
performance and proportional reasoning in the model as additional predictors (see Fig. 4 and Table 3
under Model 4). The regression model showed unique effects for visuospatial rotation, numerosity
(nonsymbolic comparison and number line estimation), procedural computations, and proportional
reasoning (although not for language), accounting for R2 = 58%. Because previous models had already
evaluated the impact of cognitive, numerosity, and whole number variables on fractions and propor-
tional reasoning, only those effects found in those previous models were included as follows. General
mathematics was regressed on all predictors/covariates. Fraction performance was regressed only on
procedural computations, and proportional reasoning was regressed on language and procedural com-
putations for analogous reasons. Procedural computation was regressed on math fact retrieval and
symbolic comparison, whereas math fact retrieval was regressed on symbolic comparison, number
line estimation, and spatial working memory. Finally, symbolic comparison was regressed on language
and spatial working memory, and number line was regressed only on language. Thus, all indirect
effects operated via these routes; only direct effects were allowed for visuospatial rotation and non-
symbolic comparison given results of other models. This model fit was marginal (v2 = 53.090, df = 28,
CFI = 0.952, RMSEA = 0.076, 90% CI = 0.044 to 0.107, SRMR = 0.074), R2 = 54%, although it should be
noted that this model was substantiallymore restrictive than any of the other models evaluated; direct
effects again were the same as those of the regression analyses.

In this model, total effects were significant for all variables in the model except spatial working
memory (language, b = .308; visuospatial rotation, b = .109; number line, b =�.242; symbolic comparison,
b = �.202; nonsymbolic comparison, b = �.144; fact retrieval, b = .260; and procedural computations,
b = .547). Cumulative indirect effects were present for all variables for which they were evaluated.
Finally, significant specific indirect effects were noted for language (four), spatial working
memory (three), number line (two), symbolic comparison (four), fact retrieval (two), and procedural
computations (one), each of which appears in Table 3.

To summarize, in the model for the state test without fractions or proportional reasoning (see
Fig. 3), all indirect effects operated through number line estimation, symbolic comparison, fact



Fig. 2. Path model predicting proportional reasoning skill. Values shown are standardized beta weights. Only significant paths
are shown for clarity. Standard errors and residuals are not shown for space reasons. Select indirect path statistics (all
significant indirect paths and all cumulative indirect effects) appear in Table 3. All specific significant indirect effects in Table 3
are computable from the values in the figure.
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retrieval, and/or procedural computations. When fractions and proportional reasoning were added,
direct effects were highly similar (except that in this model proportional reasoning was a unique
predictor and language was not, relative to the model without fractions and proportional reasoning).
All indirect effects operated via the same variables as the former model; in addition, three small
specific indirect effects were present in the latter model but not the former one.

Discussion

The aim of this study was to evaluate domain-specific and domain-general contributions to key
mathematical skills in middle school and to situate these within a hierarchy of distal to proximal
effects. Both general and specific processes were relevant, although frequently the more proximal
arithmetic skills mediate the impact of the general processes and more distal specific processes. Direct
effects for the most distal (cognitive) processes were weak and primarily evident only for the general
mathematics measure. Overall, a clear hierarchy was evidenced, with sixth-grade math performance
relying most heavily on whole number arithmetic skill (procedural computations). The influence of
math facts on middle school mathematics was mediated by procedural computations, and in turn
the effect of numerosity (particularly symbolic comparison) was mediated by fact retrieval. However,
for more complex outcomes, the number of direct effects from cognitive and numerosity domains
increased.

Fraction performance

The results for fraction performance were only partially consistent with expectations given that
the only significant direct effect on fractions was for procedural computations. Visuospatial and
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Fig. 3. Path model predicting general mathematics. Values shown are standardized beta weights. Only significant paths are
shown for clarity. Standard errors and residuals are not shown for space reasons. Select indirect path statistics (all significant
indirect paths and all cumulative indirect effects) appear in Table 3. All specific significant indirect effects in Table 3 are
computable from the values in the figure.

P.T. Cirino et al. / Journal of Experimental Child Psychology 145 (2016) 95–119 111
nonsymbolic comparison showed neither direct nor indirect effects, but all other (cognitive and
numerosity) predictors did show indirect effects. All indirect paths operated through procedural
computations; in turn, all paths to procedural computations operated through math facts or symbolic
comparison. These findings demonstrate the importance of symbolic representations and computa-
tional manipulations for fraction competency in middle school. Results are consistent with recent
studies of fraction performance, showing the importance of whole number skills for fraction skill
(Hecht & Vagi, 2010; Jordan et al., 2013).

Regarding domain-general predictors, Fennema and Tartre (1985) demonstrated the relation of
spatial visualization to fractions, although that study did not control for the range of constructs
considered here. On the other hand, Siegler and Pyke (2013) did not show contributions of working
memory to eighth-grade fraction competence, although only direct effects were considered and
sixth-grade fraction performance was included in their models. That study showed domain-
general contributions, although the primary cognitive measure was IQ and behavioral inattention
was also included as a predictor. Although one could argue that inclusion of IQ in the current study
would yield differing results, the current study did include a vocabulary measure from an IQ battery
and it is the most heavily ‘‘g-loaded” measure (e.g., Sattler, 2008)1; furthermore, Jordan and
colleagues (2013) did not show a relation of nonverbal reasoning to procedural fractions. Working
memory in Jordan and colleagues’ study was not related to conceptual fractions but was related to
1 We did not have a measure of nonverbal reasoning to form an IQ composite directly. However, we do note that there was no
significant difference in the two language measures used here with the outcomes; where this difference was directionally the
largest (favoring vocabulary with regard to proportional reasoning), post hoc models employing only the vocabulary measures
yielded a highly similar pattern of direct and indirect effects.
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procedural fractions; in the current study, the effects of working memory were only indirect. However,
the current results are consistent with those of Vukovic and colleagues (2014), where domain-general
predictors were only indirectly related to fractions (concepts).

Regarding numerosity, the only study to evaluate the contribution of nonsymbolic number skills to
fractions was Jordan and colleagues (2013), who did not find a relation to either procedural or concep-
tual fractions, and in that respect results of the current study are consistent. We did not show direct
effects of basic facts, whereas Jordan and colleagues did, although that study did not also include pro-
cedural computations in its predictive models and both are indicators of whole number facility. Jordan
and colleagues showed direct effects for number line estimation, whereas here its effect was only indi-
rect. In Vukovic and colleagues (2014), only a measure of fluency in processing numerical magnitude
with both symbolic and nonsymbolic stimuli showed a direct effect across grades; however, it is not
clear whether this would be the case in the context of whole number arithmetic.

In sum, the results here are consistent with prior work in showing that fraction performance is
related to a wide variety of predictors in both cognitive and numerosity domains. Our results extend
these by more strongly implicating whole number facility, particularly when it is more complex than
basic facts. More work is needed to more precisely elucidate these relationships when there is an
identifiable skill hierarchy present. An important caveat is that our fraction measure was unable to
cleanly separate procedural components from conceptual ones, although items of both types were
included, whereas other studies included separate measures of procedural and conceptual skills
(e.g., Jordan et al., 2013). It could be argued that the role of procedural computations is likely to be
larger in the case of computational and procedural fractions relative to those that emphasize concep-
tual and/or word problems; in the case of the latter, one could argue that more direct contributions
from language, working memory, and magnitude understanding in particular would emerge. Future
studies would be needed to evaluate these hypotheses directly.
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Proportional reasoning

There was strong correspondence in terms of the predictors of fraction performance and propor-
tional reasoning. This is perhaps not surprising given that proportions can be expressed as fractions.
In the one study that specifically examined predictors of proportional reasoning, Kwon and colleagues
(2000) found working memory to be a significant predictor along with other executive and visuospa-
tial skills. Working memory did not show direct effects in the current study, but it was a contributor to
symbolic comparison, which in turn had indirect effects, primarily though procedural computations.
The visuospatial measure used in the current study did not contribute to proportional reasoning,
whereas the visuoperceptual measure of Kwon and colleagues did. However, results are difficult to
compare because it should be noted that, relative to the current study, those students were older,
the sample size was smaller, and the students were selected for difficulty in proportional reasoning
and received one of two types of proportional reasoning tutoring. Furthermore, the visuoperceptual
measure used by Kwon and colleagues was a measure of embedded figures, whereas the current study
used a rotational measure.

Some differences relative to fractions prediction were also evident. The current study found direct
effects of language on proportional reasoning, consistent with an older study (Lawson, Lawson, &
Lawson, 1984) that identified linguistic skills as crucial for solving problems involving proportional
reasoning. The linguistic demands of the proportional reasoning measure used here were more promi-
nent than those of the fraction measure. Because students read and answered the proportional reason-
ing questions on their own, this suggests that both the content and style in which problems are
presented, not just the mathematical manipulations, are relevant to determining the corpus of abilities
and skills needed for successful performance. This may be more evident at later ages relative to studies
of younger students, where problems are often read aloud to students (e.g., Cirino, Fuchs, Elias, Powell,
& Schumacher, 2015). The current study also found an indirect role for number line estimation (via
fact retrieval), and Rouder and Geary (2014) recently identified a link between number line perfor-
mance and proportional reasoning. Multidigit skills, such as number line estimation, were also a
strong predictor of a variety of mathematical skills, including math facts, written computation, and
word problems in Grade 3 (Cowan & Powell, 2014), although that study did not also consider the hier-
archy of math skills.

For both fraction performance and proportional reasoning, somewhat surprisingly, domain-general
measures of working memory and visuospatial rotation showed only weak effects (directly or indi-
rectly). These findings suggest that for students who struggle with mathematics, it is likely more fruit-
ful to focus on directly teaching lower levels in the math hierarchy than otherwise attempting to
increase more removed (cognitive) abilities, particularly at later ages. However, to the extent that
foundational skills are weak, and given that indirect effects were clearly present, developing strategies
that mitigate cognitive demands on more intermediary skills may have ‘‘downstream” implications for
later developing skill.

An alternative consideration involves the use of a visuospatial working memory measure in the
current study, which could promote overlapping contributions relative to the visuospatial rotation
measure as well as diminish the apparent role of working memory. The two measures were signifi-
cantly (albeit weakly) related in the current study, and each showed similarly modest relationships
with the three outcomes and in the case of working memory with whole number arithmetic (see
Table 2). However, in post hoc analyses, dropping either of these measures from final models did
not change conclusions regarding the other measures’ direct or indirect significance. Given the
influence of language for this proportional reasoning measure, as well as the consistent (albeit
indirect) role of symbolic comparison of Arabic numerals as well as whole number arithmetic, it is
possible that more verbally mediated measures of working memory (e.g., Digit Span, Listening Span,
Counting Span) could have yielded stronger ties to the outcomes. We view this as relatively unlikely,
at least when language is directly measured and when proximal whole number skills are also
included. Although the current results do provide strong initial results for how these sets of predictors
impact both fractions and proportional reasoning, more nuanced studies that more carefully
parameterize these measures along the lines of content (procedural vs. conceptual) and presentation
(e.g., computational, graphical, word problems) are warranted.
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State test

The general mathematics measure was substantially broader in content than either of the other
intermediary math outcomes (e.g., items involving numerical patterning, spatial reasoning, and mea-
surement were specifically included). Although the proportion of variance accounted for by all
domain-general and domain-specific predictors, along with arithmetic, was similar for all three out-
comes (range = 38–47% variance), the unique contributors to general mathematics included procedu-
ral computations (similar to both fractions and proportional reasoning) as well as language (similar to
proportional reasoning). However, there was some divergence, with visuospatial rotation, number line
estimation, and nonsymbolic comparison each also having direct effects for this outcome. To a greater
degree than either the fraction or proportional reasoning measure, the state test presented most items
as word problems, which may more readily engage language skills. Similarly, the role of visuospatial
rotation may have been more direct here given that one grouping of the state test items included
geometry and spatial reasoning. This pattern was solidified even when fractions and proportional rea-
soning were included as additional indirect predictors, with the exception that now most indirect
effects occurred via proportional reasoning, including the previously direct effect of language. An
alternative explanation for the additional contributions of domain-general predictors to the state test
may involve the fact that the state test addresses topics in the sixth-grade curriculum. It may be that
the contribution of domain-general skills is most relevant during learning. Longitudinal studies would
be helpful in this regard.

As with the other mathematical outcomes, somewhat more puzzling was the lack of a direct effect
for working memory. In the model without fractions and proportional reasoning, there was only a
cumulative indirect effect, but with those intermediary outcomes working memory did show several
(albeit small) indirect effects through procedural computations and proportional reasoning. Three
possibilities may be operating. One is that for very broad tasks (e.g., the state test), the effect of work-
ing memory must compete with a wider array of demands (e.g., the language-based presentation,
whether graphs or figures are required). Second, the resource demands on working memory operate
at lower levels such that they are depleted in the context of nonfluent whole number skill. If this were
true, then one might expect that working memory might be a stronger direct predictor of broad math-
ematical competency when more basic elements of the mathematical hierarchy (and perhaps other
cognitive resources) are at least adequate, although this question was beyond the scope of the current
study (and perhaps its sample size). Third, working memory was measured with a single task, and
more comprehensive measurement may have produced more robust results. We view all of these pos-
sibilities as relevant for thinking about the divergence of these results (especially for working mem-
ory) relative to prior studies of younger students. The current results do, however, imply that in the
context of hierarchical skills, the role of working memory and other predictors needs to consider these
more proximal measures.

Among numerosity predictors, symbolic comparison showed only indirect effects, whereas both
number line estimation and nonsymbolic comparison showed direct effects. Again, the task items,
including measurement, may account in part for the wider array of not only cognitive but also
numerosity predictors. Siegler and Lortie-Forgues’ (2014) integrative theory of numerical develop-
ment provides another potential explanation in that a more clear representation of quantity and their
manipulation is reintroduced with more complex tasks. However, it is not immediately clear why non-
symbolic comparison in particular would exhibit consistent effects, particularly given the array of
other predictors considered in the model, and only for the state test and not fraction performance
and proportional reasoning. It is notable that several prominent studies of this effect involved older
students (e.g., Halberda et al., 2008; Mazzocco et al., 2011), including a training study in adults
(DeWind & Brannon, 2012). One recent meta-analysis did not find age differences in the size of the
effect (Chen & Li, 2014), although another one did (Fazio et al., 2014). It is interesting to note that
the relationship between nonsymbolic comparison with the fraction, proportional reasoning, and state
test outcomes varied slightly (see Table 2; rs = .201, .176, and .247, respectively). The directionally
highest correlation was for the state test measure, which was slightly higher than the overall size
of these meta-analytic effects relevant to this age range (rs = .20 and .17, respectively) and may be
due in part to the wider range of content and variability for this measure.
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That proportional reasoning was more impactful of general mathematics competence than frac-
tions may be in part due to the necessity of identifying relationships among quantities in the service
of problem solving, or it may be that the proportional reasoning measure, more so than fractions, was
framed in terms of word problems. Either way, considering school-related mathematics, the kinds of
skills important for performance included the full range of predictors across cognitive/neuropsycho-
logical measures and domain-specific numerosity measures as well as arithmetic and other interme-
diary math outcomes.
Limitations and conclusions

Before offering conclusions, we draw readers’ attention to study limitations. First, although
results of the path analyses appear as a step-by-step depiction of how complex math skills develop,
the current study is limited to concurrent relations at one grade level. Longitudinal studies are
required to establish the true extent to which earlier developing skills are impactful of later devel-
oping ones. Even cross-sectional studies across a grade range would add at least indirect evidence
of how skills differ at different developmental or learning epochs. Furthermore, the model fits evi-
denced here would be equal to alternative models with similar paths, albeit in different directions.
However, it was the case that the ordering of the variables was based on previous studies indicating
the hierarchical and developmental progression of mathematics. The path analytic framework is a
useful one for considering direct and indirect effects. Although a more fully latent variable approach
may have offered a more complete picture, such measurement would have required a likely
prohibitive investment of time and of school and participant resources. This was not possible in
the current situation. Clearly, building on these findings in longitudinal fashion would be one
way to enhance the impact of these results. At the same time, the current findings do offer testable
predictions for how such development might occur and what types of skills ought to emerge in
what order.

Furthermore, as noted, outcomemeasures could have better distinguished between procedural and
conceptual outcomes as well as other parameters related to their presentation. Doing so may have
revealed different sets of predictors of, for example, fraction concepts versus fraction arithmetic, par-
ticularly over time, as others have found (Hecht & Vagi, 2010; Vukovic et al., 2014). Again, this study is
one step toward considering a wide array of useful predictors, which when taken together offer infor-
mation on these three outcomes that may be expanded in future studies.

Third, although a number of predictors were included, not all potential variables were considered.
For example, working memory is one primary factor found to be important for math but could have
been assessed more comprehensively (e.g., with verbal content), and other skills within the executive
function family (e.g., inhibition, shifting, planning, fluency) may have been considered as well. Addi-
tional skills such as attention (assessed via behavioral ratings and/or cognitive measures) may also
play a predictive role. Within the number domain, assessing other domains of measurement (e.g., frac-
tion number line) or of whole number (e.g., subtraction, division) may have offered a more complete
picture.

With these study limitations in mind, we offer the following conclusions. The current study, first
and foremost, highlights the progressive development of mathematical skills. It also demonstrates
that along a procedural or computational continuum, it is critically important to understand students’
whole number arithmetic skills as well as the foundational contributors to these skills, which can be
domain general (cognitive) or domain specific (numerosity). These findings are consistent with studies
of younger students demonstrating that a wider range of skills is necessary for more complex math-
ematics (Cowan & Powell, 2014; Fuchs et al., 2010a, 2010b) but extends this pattern to students in
middle school. Thus, our hypothesis about both cognitive and numerosity predictors having an impact
on sixth-grade mathematics was generally supported. Their role was either direct or indirect (via
whole number arithmetic), with direct effects being more common for mathematical skills that
require multiple components (e.g., probability, statistics, geometry), differential presentations (e.g.,
charts, graphs, tables), and increasing language (e.g., word problems).
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