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Millions of adults in the United States lack the necessary literacy skills for most living wage jobs. For stu-
dents from adult learning classes, we used a lexical decision task to measure their knowledge of words
and we used a decision-making model (Ratcliff’s, 1978, diffusion model) to abstract the mechanisms
underlying their performance from their RTs and accuracy. We also collected scores for each participant
on standardized IQ tests and standardized reading tests used commonly in the education literature. We
found significant correlations between the model’s estimates of the strengths with which words are rep-
resented in memory and scores for some of the standardized tests but not others. The findings point to
the feasibility and utility of combining a test of word knowledge, lexical decision, that is well-
established in psycholinguistic research, a decision-making model that supplies information about
underlying mechanisms, and standardized tests. The goal for future research is to use this combination
of approaches to understand better how basic processes relate to standardized tests with the eventual
aim of understanding what these tests are measuring and what the specific difficulties are for individual,
low-literacy adults.

� 2015 Published by Elsevier B.V.
1. Introduction

The number of adults in the United States who have only the
lowest of literacy skills is staggeringly high (The National Center
for Education Statistics; Baer, Kutner, & Sabatini, 2009;
Greenberg, 2008; Kutner, Greenberg, & Baer, 2006; Miller,
McCardle, & Hernandez, 2010). The International Adult Literacy
Survey Institute (2011) found that about 23% of adults in the Uni-
ted States read prose at the lowest level scored, indicating diffi-
culty with comprehending even the most basic textual
information; the National Assessment of Adult Literacy (Kutner
et al., 2006) found that 43% lack the necessary literacy skills for
most living wage jobs; and the Organization for Economic Co-
operation and Development (OECD, 2013) found that one in six
adults, about 36 million (two-thirds of them born in the United
States) have low literacy skills (the comparable figure for Japan,
for example, is one in 20). As Nicholas Kristof of the New York
Times put it recently (October 26, 2014), these data ‘‘should be a
shock to Americans.” The Institute of Education Sciences in the
United States Department of Education has made research to
understand the skills these adults lack and how to teach those
skills a high priority for funding (e.g., Calhoon, Scarborough, &
Miller, 2013; Miller et al., 2010). The study we report here was
designed to examine the viability of one new approach to the read-
ing comprehension problems of this population.

We used a simple lexical decision task that is often used to
study word comprehension, a skill that must figure largely in read-
ing comprehension. In the lexical decision task, participants are
given strings of letters and asked to decide as quickly and accu-
rately as possible for each string whether it is or is not a word.
For college undergraduates, accuracy on this task is typically above
90% and response times (RTs) average around 700 ms. The partici-
pants in our study were students in Adult Basic Learner classes
with reading comprehension levels from the fourth through sev-
enth grades. To their data, we applied a widely-accepted model
for decision-making that decomposes RTs and accuracy into the
cognitive mechanisms that underlie performance, namely, Rat-
cliff’s diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008).

One question was which mechanisms are deficient for low-
literacy readers. Another was whether the model-based analyses
we conduct can give insights into performance on a standardized
language placement test for low-literacy adults, the TABE (Test of
Adult Basic Education). A more general aim was to provide a
proof-of-concept that diffusion model analyses are capable of
informing practical education issues.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2015.10.009&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2015.10.009
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In the diffusion model, the information encoded from a stimu-
lus is accumulated over time from a starting point to a criterion
(a boundary), at which time a response is executed. For lexical
decision, information accumulates toward a word boundary for
‘‘word” responses and toward a nonword boundary for ‘‘nonword”
responses (Ratcliff, Gomez, & McKoon, 2004). Central to the model
is that the accumulation of information is noisy – at any instant of
time, the process may move toward one of the boundaries or it
may move toward the other, but on average, a process will move
to the word boundary for strings of letters that are words and to
the nonword boundary for strings that are not. However, the noise
is large enough that the incorrect boundary can sometimes be
reached, resulting in an error, and that responses for the same item
can reach a boundary at different times.

The model splits the decision process into three main compo-
nents of processing. One is the settings of the boundaries, that is,
how far they are from the starting point; this is assumed to be
under the control of the individual making the decision (instruc-
tions to a participant or payoffs for one response over the other
lead to adjustments in boundary settings, Ratcliff, Thapar, &
McKoon, 2001, 2003; Ratcliff, Gomez et al., 2004). Another compo-
nent is the quality of the information encoded from a stimulus,
which determines the rate at which information is accumulated
and is called ‘‘drift rate.” For lexical decision, the quality of encoded
information is determined mostly by the strength with which a
word is represented in lexical memory (e.g., the representation of
common words is stronger than the representation of rare words
and so the rate of accumulation would be faster for common
words). The third component is made up of processes outside the
decision process itself: the time to execute a response and the time
to encode a stimulus and transform it into a representation to drive
the accumulation process. These processes are combined into one
parameter of the model called ‘‘nondecision” time. In the model,
the same decision process – from starting point to a boundary –
determines the rate at which information is accumulated and
which boundary will be reached.

For the purposes of this article, drift rates are the most interest-
ing component because they measure the quality of the informa-
tion about a word that an individual knows. This offers a new
level of analysis for low-literacy research in three ways. First, often
studies investigate correlations between individual-difference
variables such as scores on tests of short-term memory, phonemic
decoding, vocabulary, and standardized tests. Some of these tests
have aspects of accuracy, the number of responses correct, and
time, the amount of time given to produce responses, but none
of these measure directly an individual’s knowledge of words in
the way the lexical decision task with a diffusion model analysis
does. Second, the model can be applied to commonly used tests
like those just mentioned. For example, short-term memory could
be tested in a paradigm that asks individuals to decide whether or
not a word was present in a just-presented list of words or vocab-
ulary could be tested in a paradigm that asks individuals to decide
which of two choices is the better match to a word’s meaning.
Paradigms like these could break performance into the compo-
nents of processing defined by the diffusion model. Third, the
model has been used to assess what readers know about the texts
they read, for example, what the referent of a pronoun is, what the
relations among elements of a text are, what the appropriate infor-
mation to be inferred from a text is, and what the relations
between information in a text and memory are (see McKoon &
Ratcliff, 2015).

In performing lexical decision, and many other tasks, individu-
als can trade accuracy for speed or speed for accuracy. They can
make their responses faster by setting their boundaries nearer
the starting point, thus increasing the probability that the accumu-
lated information will reach the wrong boundary. They can make
their responses more accurate by setting their boundaries farther
apart, thus making their responses slower.

In studies with low-literacy adults in the education literature,
the speed/accuracy tradeoffs that individuals adopt and how these
tradeoffs relate to underlying components of processing have not
been explicitly considered. Understanding these tradeoffs is essen-
tial: An individual may respond with low accuracy to test items
because the quality of the information encoded from the items is
poor or because the quality of the information is good, but the
boundaries are set close together. An individual may respond
slowly to test items because the quality of the encoded information
is poor or because it is good but the boundaries are set far apart.
Another way to say this is that individuals with the same speed
may have differences in accuracy and therefore differences in
underlying mechanisms, and individuals with the same accuracy
may have differences in speed and therefore differences in under-
lying mechanisms. It is these considerations that require speed and
accuracy to be explained in concert and it is these considerations
that require a model like the diffusion model to separate an indi-
vidual’s boundary settings from the quality of the information he
or she encodes from a stimulus.

The importance of this separation is illustrated by applications
of the diffusion model in aging research. Ratcliff et al. (2001,
2003), Ratcliff, Gomez et al. (2004), Ratcliff, Thapar, and McKoon
(2007, 2010, 2011) have found that the usual aging effect – slower
responses for older adults – often comes about not because the
quality of the information they obtain from stimuli is less (i.e.,
not because their drift rates are lower) but instead because their
nondecision component is slower and because they set more con-
servative boundaries, requiring more information to be accumu-
lated before executing a response (e.g., Starns & Ratcliff, 2010).
Thus, the frequently stated conclusion that older adults’ cognitive
processes are, overall, worse than young adults’ because all cogni-
tive processes are slowed is incorrect. In lexical decision, for exam-
ple, older adults’ drift rates have been as good or better than young
adults’ (Ratcliff, Thapar, Gomez, & McKoon, 2004).

In the sections below, we discuss research in education with
low-literacy adults and research in cognitive psychology on word
comprehension, then present the diffusion model in detail, and
then describe the study we conducted.
2. Examples of multivariate research in the education literature

Many individual-difference studies in the education literature
with low-literacy adults have used a psychometric approach to
explore basic constructs that might contribute to the ability to
understand written words. To illustrate this approach, we use
three, quite recent, examples, studies by MacArthur, Konold,
Glutting, and Alamprese (2010), Mellard, Fall, and Woods (2010),
and Mellard, Woods, Desa, and Vuyk (2013; see also Nanda,
Greenberg, & Morris, 2010, Tighe & Schatschneider, 2014). We dis-
cuss these in some detail to show the exploratory nature of the
studies and to compare them to the diffusion model. The examples
illustrate how psychometric approaches can differ from the diffu-
sion model we use in this article. Those approaches look for broad,
general constructs and how they are related to each other whereas
the diffusion model provides analyses of the basic cognitive mech-
anisms that underlie comprehension skills. In other words, for con-
structs like those used in the three example studies, it would be
possible, in principal, to use diffusion-model-like analyses to
attempt to understand the mechanisms that determine
performance.

In the 2010 study by Mellard et al., which had 174 participants
in adult literacy classes, it was hypothesized that there are seven
constructs relevant to reading comprehension: rapid automatic
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naming, phonemic decoding, auditory working memory, word
reading, reading fluency, vocabulary, and comprehension of spoken
language. Information was assumed to flow among them from
early processes to later ones to reading comprehension. To mea-
sure comprehension, participants were asked to read short pas-
sages and fill in a word that was left blank (a close procedure).
They hypothesized that over 20 of the paths among the various
tasks used to measure the constructs might be significant contrib-
utors to reading comprehension.

The model was tested by path analysis (a method related to
multiple regression), which represents hypothesized relationships
(‘‘pathways”) among variables. The method determines which
coefficients (i.e., which pathways) among variables are significant.
Mellard et al. found only 13 such pathways. For example, although
the path from auditory working memory to spoken language com-
prehension was significant, other expected paths were not – nei-
ther rapidly naming letters nor phonemic encoding nor fluency
contributed significantly to comprehension of spoken language.

MacArthur et al. (2010) divided reading-related skills into five
clusters, each with tasks to measure it: decoding (three tasks),
word recognition (three tasks), spelling (two tasks), fluency (two
tasks), and comprehension (one task). The participants in this
study were 486 students from Adult Basic Learner classes with
reading comprehension levels from the fourth through seventh
grades. The scores from the 11 tasks were entered into confirma-
tory factor analysis in order to group the tasks according to similar-
ity in individual differences. Analyses showed that a five-cluster
model explained the correlational structure of the tasks better than
two- or three-cluster models and so it was concluded that abilities
corresponding to the five clusters should be assessed separately for
studies of low-literacy individuals.

Mellard et al. (2013) used a third approach in describing the
skills of 290 low-literacy adults who were Job Corps students. They
hypothesized six constructs as determinants of reading compre-
hension: phonological processing, word reading, spelling, vocabu-
lary, processing speed (fluency), and cognitive ability. For each of
the constructs, there were three tasks. For example, processing
speed was measured with a task for which the students were given
a row of pictures and asked to quickly identify the two most con-
ceptually similar.

Mellard et al. (2013) applied principal axis factoring to the data.
This analysis method is different from the two above in that it does
not impose a preconceived structure; rather it identifies the struc-
ture and relationships among variables. It produces clusters of
variables such that each cluster is made up of the variables that
are correlated with each other more than with any of the others.
Then, with these clusters, Mellard et al. used multiple regression
to see how well performance was predicted on two standardized
reading tests.

The results showed only four clusters, not the hypothesized six.
Mellard et al. (2013) labeled the four clusters as encode/decode
(seven of the 18 tasks), vocabulary (five of the tasks), processing
speed (three of the tasks), and working memory (four of the tasks).
The tasks were also organized differently than Mellard et al. had
expected. For the encode/decode cluster, reading single words
and spelling were grouped together; for the vocabulary cluster,
the three expected tasks plus two phonological coding tasks were
grouped together; for the processing speed cluster, the two pro-
cessing speed tasks plus word reading were grouped together;
and for the working memory cluster, the expected three working
memory tasks and one of the others were grouped together. In
addition, some of the results were odd, for example, the task of
blending spoken sounds together to make a word and the task of
completing spoken words with missing letters were not grouped
with the tasks in the encoding/decoding cluster.
These studies give valuable information about how the various
tasks and constructs may be related through individual differences
and this is information that can be used to develop hypotheses to
guide further research. The studies provide topics for further
research such as how and why tasks are related to each other
and how and why they are related to hypothesized constructs.
However, currently, interpretations of results like those just
reviewed cannot be seen as being completely settled. If low-
literacy individuals do well on some tasks, it is tempting to con-
clude that the construct at which the tasks are aimed is not prob-
lematic for them. But, as noted, constructs can be turned into
experimental tasks in many ways and successful performance on
one or two of them does not necessarily mean successful perfor-
mance on others. Similarly, if low-literacy adults fail to show
expected relations among constructs, it could be that the tasks
used to test the constructs were the wrong ones to show the
expected relationship, that there was no relationship, that there
was not sufficient power in the tasks to detect relationships, or that
the tests have not been validated for low-literacy adults.

3. Cognitive psychology approaches

There is a huge amount of research on word comprehension in
experimental cognitive psychology, especially with adults and chil-
dren who have reading disabilities such as dyslexia. This research
differs from the diffusion model approach in two important ways.
First, much of this research has used only RT as the dependent vari-
able. However, as discussed above, any explanation of behavior
should explain speed and accuracy simultaneously; they must
come from the same underlying mechanisms. A second difference
is that, while most models in this area can explain the effects of
independent variables qualitatively, they have not been shown to
fit experimental data and so explain them quantitatively. Further-
more, because they are not fit to data quantitatively, they are not
able to estimate parameters of processing for individual partici-
pants and so cannot be used to examine the effects of and relation-
ships to individual differences such as IQ.

Many studies of word comprehension difficulties have used the
lexical decision task (e.g., Grainger & Jacobs, 1996; Seidenberg &
McClelland, 1989) to examine a host of independent variables. To
name just a few, responses are easier for words that occur fre-
quently in English than those that occur less frequently; responses
to a word are more difficult if there are many words similar to it
(e.g., back is more difficult than most words because there are
many words similar to it: buck, tuck, luck, lack...); responses to
words learned early in life are easier than those learned later;
and words with clusters of letters in them that occur frequently
are easier than those with clusters that occur less frequently. There
are also semantic priming effects such that a response to a word is
speeded if it is immediately preceded in a test list of strings of let-
ters by a semantically related word (e.g., nurse preceded by doc-
tor). Importantly, the fact that these variables affect lexical
decision performance means the lexical decision task taps the rep-
resentations and meanings of words in lexical memory.

There are several models that have attempted to explain the
effects of all of these variables on the strength with which a word
is encoded in lexical memory (Grainger & Jacobs, 1996; McClelland
& Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007; Seidenberg &
McClelland, 1989). For example, all other things being equal, the
strength of high-frequency words should be greater than the
strength of low-frequency words. In the models, the various pro-
cesses that determine the strength of a word operate with both
top-down and bottom-up processes, and all of the disparate pro-
cesses come together to support word recognition in just a few
hundred ms. Higher level processes support lower level processes
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and lower level processes support higher level processes, and pro-
cesses that operate in parallel are integrated with processes that
operate serially.

Models like these can produce values of the strengths with
which words are represented in lexical memory but they have
not linked this strength with a decision model that explains accu-
racy and RTs in the lexical decision task. Ideally, a full model would
take output from a word comprehension model and use that to
drive a decision model, but this has rarely been attempted
(although see Dufau, Grainger, & Ziegler, 2012; Norris, 2006;
Ratcliff, Gomez et al., 2004).

Often, when word comprehension models have been used to
explore the locus of word comprehension disabilities such as dys-
lexia (e.g., Harm, McCandliss, & Seidenberg, 2003; McLeod,
Shallice, & Plaut, 2000; Patterson, Seidenberg, & McClelland,
1989; Ziegler et al., 2008), the model for normal comprehension
is damaged by, for example, reducing the numbers of units in the
hidden layers of a connectionist model, and then the behavior of
the damaged model is compared to the behavior of patients. How-
ever, as noted above, these models have not been explicitly fit to
data from individual participants and so it has not been demon-
strated that these models can measure effects at the level of indi-
vidual participants in experiments.
4. The two-choice diffusion model

The model is intended to explain all of the data from two-choice
tasks like lexical decision for which responses are made in under a
second or two: accuracy, the mean RTs for correct responses, the
mean RTs for incorrect responses, and the full distributions of
RTs for correct and incorrect responses, and it is intended to
explain speed and accuracy simultaneously with the same decision
process. It has been successful in doing all of this in many studies
(see examples in Ratcliff and McKoon (2008)).

The model is illustrated in Fig. 1. The noisy information encoded
from a stimulus, in this case, from a string of letters, accumulates
from the starting point, ‘‘z,” toward the decision boundaries. In
the top panel of Fig. 1, the arrow shows the mean rate of approach,
that is, drift rate, to the word boundary for a letter string that is a
word. With this drift rate, the arrow is heading fairly steeply
toward the word boundary and so most responses would be fairly
fast ‘‘word” responses. The drift rates for easier words (e.g., com-
mon words) are higher than those for more difficult words (e.g.,
rare words). Letter strings that are nonwords have negative values
of drift rate. Their absolute values are larger for letter strings that
are quite different from real words than for strings that are similar
to real words.

The total processing time for a decision is the sum of the time
taken by the decision process to reach a boundary and the time
taken by the nondecision component (middle panel of Fig. 1).
The bottom panel of Fig. 1 illustrates the role the model plays in
relating performance to underlying mechanisms. Accuracy and
the distributions of RTs for correct and error responses for each
condition of an experiment map through the model to drift rates,
boundaries, and nondecision times.

The three paths in the top panel of Fig. 1 have the same mean
drift rate but, because of the noise in the accumulation process,
they lead to different outcomes. One leads to a fast correct deci-
sion, one to a slow correct decision, and one to an error. This noise
is responsible for the shapes of RT distributions, as shown in the
figure. Most responses are reasonably quick responses, but there
are slower ones that spread out the right-hand tails of distribu-
tions. The third path in the figure illustrates that even when drift
rate is strongly positive, the accumulation of information can reach
the negative boundary.
Each component of the model – drift rate, the settings of the
decision boundaries, and the nondecision component – is assumed
to vary across the trials of an experiment. The idea is that partici-
pants in an experiment cannot hold the values exactly constant
from one trial to the next. This is called ‘‘between-trial” variability,
contrasting it with the ‘‘within-trial” noise in the accumulation
process (i.e., the noise illustrated in Fig. 1). The assumption of
across-trial variability allows the model to account for the relative
speeds of correct and error responses (see Ratcliff & McKoon,
2008).

Speed/accuracy tradeoffs are handled mainly by the boundary
settings, not drift rates or the nondecision component. The separa-
tion of boundary settings and nondecision times from drift rates is
fundamental to the model. To illustrate, suppose that for skilled
readers, lexical decision RTs average 700 ms and accuracy averages
95% and for poor readers, RTs average 900 ms and accuracy aver-
ages 98%. The question is whether drift rates could be the same
for the two groups even though the poor readers are considerably
slower but 3% more accurate. In fact they can. These data were sim-
ulated from the model with drift rate set to 0.45 (fairly strong
toward the word boundary) for both groups. In the simulated data,
the poor readers differed in RTs and accuracy only because they set
their boundaries farther apart.

As discussed in the introduction, the model provides an under-
standing of why accuracy and RT are not correlated across subjects.
This results from the separation of drift rates, boundaries settings,
and nondecision times, which are (largely) independent compo-
nents of processing. Accuracy is mostly determined by drift rates
and RTs mostly by boundary settings and to a lesser degree by non-
decision time (and sometimes slightly by drift rates). The separa-
tion explains why results from studies that measure only RT can
lead to conclusions that conflict with those from studies that mea-
sure only accuracy (e.g., the studies with older adults cited above).
The former are determined more by boundaries and nondecision
times and the latter more by drift rates.

A key feature of the model is that, when it is fit to data, the vari-
ability in the estimate of a component is substantially less than the
variability among individuals. This means that it can measure com-
ponents of processing at the level of an individual, which has led to
interpretable differences among individuals in a number of appli-
cations (e.g., Ratcliff, Schmiedek, & McKoon, 2008; Ratcliff,
Thapar, & McKoon, 2006, 2010, 2011; Ratcliff, Thompson, &
McKoon, 2015; Schmiedek, Oberauer, Wilhelm, Sub, & Wittmann,
2007; Spaniol, Madden, & Voss, 2006; Wagenmakers, Van Der
Maas, & Grassman, 2007).

Fitting the model to data is accomplished by a minimizing rou-
tine that iteratively adjusts parameter values (drift rate, bound-
aries, the nondecision component, and the variability across trials
in each of them) until the values that best predict the data are
obtained (see Ratcliff & Tuerlinckx, 2002, for details). For each con-
dition in an experiment, quantile RTs are generated and these,
through the model, generate the proportions of predicted
responses between the quantiles. These proportions multiplied
by the number of observations are used to produce a chi-square
value and the model parameters are adjusted to make the chi-
square value (summed over conditions and correct and error
responses) a minimum. Recently, three software packages have
been developed and they are in wide use (Vandekerckhove &
Tuerlinckx, 2008; Voss & Voss, 2007; Wiecki, Sofer, & Frank,
2013; see Ratcliff & Childers, 2015, for an evaluation). However,
we used Ratcliff’s routines for the experiment here because we
can adapt them more quickly and easily than the packages.

Essential to a model is that it be identifiable and falsifiable.
While it is relatively easy for the diffusion model to fit mean RTs
and accuracy, and it can do so with a range of different parameter
values (i.e., it would not be identifiable), it is severely constrained



Fig. 1. An illustration of the diffusion process. The top panel shows three simulated paths with drift rate v, starting point z, and boundary separation a. Drift rate is normally
distributed with SD g and starting point is uniformly distributed with range sz. Nondecision time is composed of encoding processes, processes that turn the stimulus
representation into a decision-related representation, and response output processes. Nondecision time has mean Ter and a uniform distribution with range st. The bottom
panel illustrates the mapping between accuracy and RT distributions to diffusion model parameters.
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by the shapes of RT distributions. Ratcliff (2002) made up several
sets of fake but quite plausible data and showed that the diffusion
model failed (dramatically) to fit them. Jones and Dzhafarov (2014)
have recently claimed that the model is not falsifiable, but their
claim is valid only for models in which there is no or almost no
within-trial variability (see Smith, Ratcliff, & McKoon, 2014 for
detailed discussion). Also, in most comparisons made so far, e.g.
Ratcliff, Thapar, Smith, and McKoon (2005), we have found similar
interpretations of data from competing models (e.g., Usher &
McClelland, 2001; see also Donkin, Brown, Heathcote, &
Wagenmakers, 2011).

It is important to point out two distinctions between the empir-
ical methods used for diffusion model analyses and those used for
many standardized tests like the TABE or the TOWRE tests. The dif-
fusion model applies to decisions that are made quickly, under a
second or two. They are ‘‘one-shot” decisions in that they involve
only one decision process, not multiple attempts to encode stimuli
and consider which response to make. With RTs short, the model
assesses ‘‘automatic” processes, not ‘‘strategic” ones. Automatic
processes occur quickly, passively, without conscious effort and
strategic processes take more time and involve some effort. Auto-
matic processes determine much of the information understood
during reading (e.g., the contextually appropriate meanings of
words, the referents of pronouns) and they are mainly responsible
for ‘‘moment-to-moment” comprehension. This is reflected in, for
example, college students’ average reading rate, which is about
250 ms per word. Lexical decision has been shown to rely primarily
on automatic processes (Neely, 1977; Posner & Snyder, 1975a,
1975b; Ratcliff & McKoon, 1981). Tests like the TABE and TOWRE
have a more strategic nature.

The second distinction is that speed of processing is handled
quite differently in the diffusion model than in tasks for which
the measure is the number of test items that an individual com-
pletes in a fixed amount of time. Performance on the latter involves
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speed, but speed cannot be separated from the quality of the infor-
mation that guides decisions. Also, it may not measure the same
aspect of speed that rapid RT tasks measure.
5. Experiment

The population of adults with poor reading skills is extremely
heterogeneous (e.g., Greenberg, 2008). In addition to wide varia-
tions in age, socio-economic status, ethnicity, and employment his-
tory, there are any number of reasons that individuals may not
have learned to read well, including, for example, financial difficul-
ties, lack of motivation, peer pressure, deficits such as dyslexia, or
non-native home languages. As a result, differences among individ-
uals in various components of reading can be quite large even
when they read at approximately the same level as measured by
some standardized test. This is one of the motivations for analyzing
reading performance at the level of individuals.

The population of low-literacy adults also presents a challenge
for the diffusion model. The model has been developed with a typ-
ical undergraduate population; undergraduates are easily avail-
able, easy to test, and usually have good reading skills. The
diffusion model has also been successful with a number of other
populations, including children (Ratcliff, Love, Thompson, &
Opfer, 2012), sleep-deprived individuals (Ratcliff & Van Dongen,
2009), aphasic individuals, (Ratcliff, Perea, Colangelo, &
Buchanan, 2004), hypoglycemic individuals (Geddes et al., 2010),
children with ADHD (Mulder et al., 2010), children with dyslexia
(Zeguers et al., 2011), individuals with anxiety, and individuals
with depression (White, Ratcliff, Vasey, & McKoon, 2009; White,
Ratcliff, Vasey, & McKoon, 2010a, 2010b). However, individuals in
these populations either have no significant deficits in reading
skills or have major diagnosed problems, so it is an open question
whether the model can be successful with adults with non-specific
low reading skills.

In the experiment, there were 124 students from Adult Basic
Literacy Education (ABLE) classes in the Columbus, Ohio, area, all
native speakers of English, ranging in age from 18 to 78. These
classes are free and anyone can attend. We collected six individual
difference variables: age and performance on the TABE, WAIS
vocabulary IQ, WAIS matrix reasoning IQ, the TOWRE test for
words, and the TOWRE test for nonwords.

The TABE is used to assign reading levels for students in ABLE
classes. It is a widely used test of adults’ reading ability (Beder,
1999; Ehringhaus, 1991). It consists of a series of texts, each with
several paragraphs, on topics such as household cleaners, cell
phone purchasing plans, and ‘‘The Power of Color,” with several
multiple choice questions for each.

The WAIS tests are untimed tests. The vocabulary test asks par-
ticipants to give definitions of 33 words. The words increase in dif-
ficulty from beginning to end and testing is stopped when a
participant cannot give a definition for six words in a row. The
score is the number of points earned, with each word worth a max-
imum of two points (one point is awarded for a partially-correct
definition). For the WAIS matrix reasoning test, each of 26 items
is made up of a logic puzzle with a missing piece and participants
are asked to choose from five choices which would be the one that
completes the puzzle. The items increase in difficulty from begin-
ning to end and testing is stopped when a participant is incorrect
for four items in a row or four out of five items in a row. The score
is the number of correct responses.

The TOWRE test for words contains 108 words and the TOWRE
test for nonwords contains 66 nonwords (Torgesen & Wagner,
1999). For both, the items increase in difficulty from the beginning
of the list to the end. The score is the number of items pronounced
correctly in 45 s.
We note that scores on the TABE have extra variability because
different individuals receive different versions of the test. Individ-
uals first take a ‘‘locator test,” which determines whether they will
be tested on the easy, medium, difficult, or advanced version of the
TABE, and then their score on the TABE is scaled to give their read-
ing grade level. The result is that someone at a grade level of 4.6,
for example, could have achieved that from any of the four ver-
sions. This is unlike the TOWRE and WAIS tests in which a single
instrument is used.

The TOWRE tests and the TABE test were chosen because they
are frequently used in educational research with low-literacy
adults. Age and the two IQ measures were chosen because they sig-
nificantly affect performance on many cognitive tasks. For the
standardized tests, the same items are used for every individual
who takes them, with the aim of reducing variability among indi-
viduals. For lexical decision (and many other tasks in cognitive
psychology), words are drawn from a large pool with each partic-
ipant getting a different random sample from the pool. The aim is
to generalize findings across as many words as possible.

For this experiment, we did not generate predictions about
which individual-difference measures and which components of
the model would be correlated; in this sense, the experiment
was largely exploratory. However, the model has a significant bar
to pass: interpretations of data cannot proceed until it has success-
fully accounted for the data (i.e., accuracy and the distributions of
RTs for every condition in the experiment). In this way, it contrasts
with the individual-differences research from education that we
described above where scores on various tests are entered directly
into analyses (e.g., multiple regression, path analysis).

There were also 56 undergraduate students in the experiment.
The individual difference measures were not collected for them;
they were included in the experiment only to provide a benchmark
against which the ABLE students’ RTs, accuracy, and components of
the diffusion model could be compared.
6. Method

6.1. Materials

Overall, 4211 words were tested for lexical decision. Each par-
ticipant was tested on only a subset of the words, with the subsets
ranging from 660 words to 1040 words. For each subset, the num-
ber of nonwords tested was equal to the number of words and the
nonwords were matched to the words in terms of number of let-
ters. The words and nonwords were presented in random order.

We divided the words into two sets that were chosen on the
basis of the results of the experiment, 3641 for which accuracy
was above 80% for the ABLE students and 570 for which accuracy
for them was 80% or below (mean 68% for ABLE students, 85% for
undergraduate students). We call the former ‘‘good words” and
the latter ‘‘bad words” (we use the term ‘‘bad” to be evocative
and easy to remember). The experiment also served the purpose
of determining whether a word is well known or not to the ABLE
students and so could be used or not in later text processing exper-
iments. For the good words, the frequency of occurrence in English
(Kucera-Francis) averaged 49.2 and for the bad words, it averaged
14.3. 189 bad words were repeated in three of the subsets (i.e.,
with three groups of participants – every participant was tested
on this same set of 189 words) and it was these that we used for
the analyses reported below. As the results below show, the sepa-
ration of bad words from good words gave more information about
ABLE students’ performance than if all the words were analyzed
together.

Nonwords and bad words were two conditions of the experi-
ment. In order to provide an extra condition (to give more con-
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straints on the diffusion model), we divided the good words into
two conditions, 2069 medium-frequency words and 1571 low-
frequency words. The mean frequency (Kucera-Francis) for the
medium-frequency ones was 81.2 (with SD 89.8) and the mean
for the low-frequency ones was 6.8 (with SD 5.8).

6.2. Procedure

For the lexical decision task, letter strings were displayed on the
screen of a PC. Participants were asked to respond to each one as
quickly and accurately as possible, indicating a ‘‘word” response
by pressing one key on the PC keyboard and ‘‘nonword” with
another key. Each letter string was displayed until a participant
made a response. If the response was correct, there was a blank
screen for 50 ms, and then the next string of letters was displayed.
If the response was incorrect, then the word ERROR was displayed
for 900 ms, then a blank screen for 50 ms, and then the next string.
After between 44 and 60 trials (depending on the number of words
being tested), participants could take a break and then press the
space bar on the keyboard to continue.

6.3. Participants

For the 124 students from ABLE classes, means and standard
deviations of the individual difference measures are shown in
Table 1. The 56 undergraduates were students at Ohio State
University who participated in the experiment for credit in an
undergraduate psychology course. None of the individual differ-
ence measures were collected from them.

7. Results

7.1. Data

For lexical decision, responses longer than 4000 ms and shorter
than 400 ms were excluded from analyses (about 2% of the data).
Mean RTs and accuracy values were calculated for all the partici-
pants for all the words. These values and their standard deviations
are shown in Table 2.

7.2. The diffusion model fit the data well

The model accounted well for the data from the ABLE students
and the undergraduates, just as it has in previous studies with lex-
ical decision with other populations (Ratcliff, Gomez et al., 2004;
Ratcliff, Thapar, Gomez et al., 2004; Ratcliff et al., 2010). Plots of
experimental versus predicted values of accuracy and the 0.1,
0.5, and 0.9 quantiles of RTs for correct responses are shown in
Fig. 2. For ABLE participants, each plot contains 124 participants
by four experimental conditions (480 points per plot) and for
undergraduate participants, each plot contains 56 participants by
four experimental conditions (224 points per plot). There are some
misses but the proportion of them that are serious is small. The
mean chi-square values, shown in Table 3, are near twice the
Table 1
Background measures ABLE students.

Yrs edu Age Voc raw Voc scal Mat raw Mat scal IQ

Mean 9.80 41.7 24.1 6.09 11.30 8.11 83.2
min 5 18.6 7 2 4 3 63
max 12 77.8 54 13 24 16 123
SD 1.47 14.0 8.2 1.95 5.21 2.73 10.0

Yrs edu is the number of years of education completed; age is the subject’s age; Voc raw, V
and matrix reasoning subtests); IQ is estimated IQ; TOWR word and TOWR nonwd ar
Educational Functioning Level from TABE; Grade level is the estimated reading grade le
critical value (47.4 with 33 degrees of freedom) but the chi-
square is a conservative test and the number of observations per
participant is large (1200–2000), which means that even small dif-
ferences between theory and data lead to large values for chi-
square (see Ratcliff, Gomez et al., 2004, for further discussion).
Table 3 shows the means of the values of the parameters that pro-
duced the best fits to the data.

7.3. ABLE students compared to undergraduates

A central question for this study was whether ABLE students’
performance was worse than undergraduates’ (longer RTs and
lower accuracy) because their knowledge of words was worse, as
would be expected. As described above, the diffusion model can
answer this question directly because it separates drift rates from
boundary settings and nondecision times. In fact, the drift rates
were significantly different between the ABLE students and the
undergraduates, F(1,178) = 67.1, p < .05. However, not all of the
difference in performance was due to drift rates; the ABLE students
set their boundaries more conservatively (i.e., the distance
between their boundaries was larger), t(161) = 9.1, p < .05, and
their nondecision times were longer, t(177.8) = 7.7, p < .05.

We can take the question a step further by examining how
much of the RT and accuracy differences were due to differences
in boundaries and how much were due to differences in drift rates.
To look at boundaries, we replaced the boundary separation (i.e.,
the value of a) and starting point (i.e., z) for the undergraduates
with the boundary separation and starting point for the ABLE stu-
dents. When we did this, accuracy increased by 0.8–3.5% depend-
ing on condition and mean RT increased by 81–180 ms. When
we replaced the drift rates for the undergraduates with the drift
rates for the ABLE students, accuracy decreased by 2–16% depend-
ing on condition and mean RT increased by 45–58 ms. This analysis
shows that the reduction in accuracy from undergraduates to ABLE
students was due to a reduction in drift rates and half the increase
in RTs was due to boundaries, with the other half shared by nonde-
cision time (a difference of 58 ms) and drift rates.

Comparing the two groups on the other components of the
model, starting points were approximately equidistant from the
boundaries for both groups and the three variability parameters
were similar. We also modeled the proportions of ‘‘contaminant”
responses, those that were likely due to processes other than those
of interest, for example, distraction. To represent these trials, we
assume that, on some proportion of trials (po), a uniform-
distributed random delay between the minimum and maximum
RT for the condition is added to the decision RT (see Ratcliff &
Tuerlinckx, 2002). The estimates of the proportion of these con-
taminants were also similar between the ABLE students and the
undergraduates.

7.4. Correlational analyses

In fitting the model to the data, the standard deviations in the
parameter values were less than the standard deviations among
TOWR word TOWR nonwd TOWR non strt TABE Grade level

75.07 36.30 32.97 3.80 6.89
34 10 7 1 1.9
106 62 62 6 12.9
11.48 12.44 12.37 1.00 2.41

oc scal, Mat raw, Mat scal are the raw and scaled scores on the WAIS-III (vocabulary
e the number of words and nonwords correct on TOWRE-2; TABE is the reading
vel.



Fig. 2. Plots of accuracy and the .1, .5 (median), and .9 RT quantiles for data (x-axis) and predicted values from fits of the diffusion model (y-axis) for correct responses for
ABLE students and undergraduates.

Table 2
Accuracy and mean RT.

Low-frequency words Medium-frequency
words

Bad words Nonwords

Accuracy RT Accuracy RT Accuracy RT Accuracy RT

ABLE mean 0.934 955 0.957 873 0.686 1206 0.875 1059
Ugrad mean 0.962 698 0.979 659 0.849 798 0.946 749
ABLE SD 0.057 193 0.041 176 0.139 271 0.094 248
Ugrad SD 0.029 71 0.017 66 0.071 90 0.055 94
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participants, which means that correlations among the values as
well as correlations among the values and standardized test
scores could be meaningfully calculated. The success of these
analyses is especially noteworthy for two reasons. One is that
the ABLE students had a limited range of abilities, all scoring
between the fourth and seventh grade levels on the TABE and



Table 3
Diffusion model parameters.

a z Ter g sz po st vlow vmed vbad vnon v2

ABLE mean 0.193 0.095 0.512 0.103 0.075 0.015 0.164 0.232 0.295 0.065 -0.162 84.4
Ugrad mean 0.146 0.076 0.454 0.099 0.066 0.020 0.130 0.308 0.379 0.160 -0.269 79.0
ABLE SD 0.040 0.024 0.065 0.049 0.038 0.024 0.093 0.074 0.090 0.053 0.065 36.9
Ugrad SD 0.025 0.017 0.028 0.048 0.024 0.027 0.050 0.071 0.086 0.050 0.068 30.0

Note: a = boundary separation, z = starting point, Ter = nondecision component of response time, g = standard deviation in drift across trials, sz = range of the distribution of
starting point (z), po is the proportion of contaminants, st = range of the distribution of nondecision times, v = drift rates, and v2 is the chi-square goodness of fit statistic.
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almost all scoring below 100 on the IQ tests. The other reason, for
correlations that included the TABE, scores on it are merged from
several different versions of it. As mentioned above, the power of
the correlations might come, at least in part, from there being
more heterogeneity in the ABLE population than small ranges of
grade levels suggest (e.g., Greenberg, 2008; Keenan & Meenan,
2014).

A first important result for the ABLE students was that drift
rates were not significantly correlated with boundary settings or
nondecision times. That is, wherever an individual set his or her
boundaries or whatever his or her nondecision time, the model
provides a measure of the individual’s knowledge of words. This
is the signal contribution of the model.

Given that drift rates measure word knowledge, then it can be
asked whether such knowledge is implicated in the other measures
that we used as it should be. This was the case: drift rates corre-
lated significantly with WAIS IQ vocabulary and TOWRE word
and nonword scores. For TABE scores, it might be thought that
understanding the complexity of a text would swamp the effect
of knowledge of individual words, but TABE scores were signifi-
cantly correlated with drift rates.

In the next paragraphs, we more fully describe five findings for
the ABLE students.

(1) Fig. 3 shows histograms, scatter plots, and correlations for
the finding of no significant correlations among drift rates,
boundary settings, and nondecision times (with one weak
exception, the correlation between drift rate and boundary
separation). The figure also shows what would be expected
from other diffusion model analyses: that boundary settings
and nondecision times correlated significantly with RTs but
not with accuracy and drift rates correlated significantly
with accuracy and only weakly with RTs.

(2) Fig. 4 shows the significant correlations among all the word-
related measures, drift rates, WAIS vocabulary IQ, the
TOWRE scores, and TABE scores, and their histograms and
scatter plots. For WAIS vocabulary IQ and matrix reasoning
IQ, the scores are integer numbers and many of them are
identical (they range between 2 and 16). If the values were
plotted, 30 observations for a score of 10 would not appear
different from 1 observation for a score of 10 (the 30 points
would all lie on top of each other) and thus provide a false
view of the correlations. Instead, plots should show the den-
sity of points and to do this, we added to each score a ran-
dom normally distributed number with SD 0.2 of the score,
i.e., we jittered the scores. This gives plots that show a dense
region when there are many scores with the same value, as
in Fig. 4. However, all of the correlations were performed on
the unjittered data.
The correlations among WAIS vocabulary IQ, TOWRE scores,
TABE scores, and drift rates were all larger for the bad words
than the good words or the nonwords. It might be thought
that the correlations for the good words or the nonwords
were low because performance was at ceiling and so esti-
mates of drift rates were uncertain. However, if ceiling
effects were the problem then the correlation between non-
words and good words would be smaller than the correla-
tions between either of them and bad words (because both
nonwords and good words would have ceiling effect issues).
Instead, drift rates for good words and nonwords correlated
.74 with each other, a value that is larger than the correla-
tion between bad words and good words (.54) and between
bad words and nonwords (.40). Thus for ABLE students,
scores lined up the same way across individuals for good
words and nonwords (if someone had a high score on one,
they had a high score on the other), but they lined up some-
what differently for bad words relative to either good words
or nonwords.

(3) Age correlated significantly with boundary settings and non-
decision times, but not drift rates, reflecting the standard
finding that older subjects are slower than younger ones
because of their conservative boundary settings and nonde-
cision times, not because their information about words is of
lesser quality (Ratcliff et al., 2001; Ratcliff et al., 2003;
Ratcliff, Gomez et al., 2004; Ratcliff et al., 2010; Ratcliff
et al., 2011). Fig. 5 shows histograms, scatter plots, and cor-
relations among age, boundary settings, nondecision times,
and drift rates, and correlations among them and TOWRE
scores. There were no significant correlations among all of
these variables andWAIS vocabulary orWAIS matrix reason-
ing scores. For the TOWRE tasks, the significant correlations
between their scores and nondecision times are plausible:
For lexical decision, nondecision time is the time taken up
by processes outside the decision process and so it is reason-
able that they have commonalities with the processes by
which strings of letters are pronounced.

(4) Fig. 6 shows the histograms, scatter plots, and correlations
among accuracy and RTs averaged over word and nonword
conditions and WAIS vocabulary IQ, WAIS matrix reasoning
IQ, TOWRE scores, and TABE scores. The correlations
between accuracy and RTs and WAIS vocabulary IQ, TOWRE
scores, and TABE scores were significant, although only
modestly so for those that involved RTs. WAIS matrix rea-
soning IQ did not correlate significantly with accuracy or
mean RTs. Fig. 6 also shows the non-significant correlation
between speed and accuracy that we have discussed (.05,
top left correlation and scatter plot). Also, in the second
row of numbers in the top two lines, it shows the correla-
tions for the bad words. These values are similar to the cor-
relations for the mean RT and accuracy values averaged
across conditions. Accuracy and mean RT for the medium-
and low-frequency words and the nonwords gave correla-
tions lower than the values in Fig. 6.

(5) WAIS matrix reasoning IQ was significantly (but only
modestly) correlated with the TABE scores and WAIS
vocabulary IQ, but not with anything else (Fig. 4). This
suggests that performance on the lexical decision task,
the TOWRE tests, and vocabulary IQ is at least somewhat



Fig. 3. Scatter plots, histograms, and correlations for boundary separation, nondecision time, mean drift rate across conditions, mean accuracy across conditions, and mean RT
across conditions. The top panel is for ABLE students and the bottom panel for undergr
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separate from reasoning skills. The small but significant
correlation between WAIS matrix reasoning IQ and TABE
scores suggests that the TABE may involve reasoning
skills as well as the word and reading skills represented
by the other measures.
7.5. Correlations for the undergraduates
For accuracy, RTs, drift rates, boundary settings, and nondeci-
sion times, the patterns of the correlations (Fig. 3) were the same
as for the ABLE students except that the undergraduates’ boundary

aduates.



Fig. 4. Scatter plots, histograms, and correlations for drift rates for good and bad words, nonwords, WAIS IQ vocabulary and WAIS matrix reasoning, TOWRE words, TOWRE
nonwords, and TABE scores.
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settings were significantly positively correlated with accuracy (the
slower students were more accurate, the opposite of a speed-
accuracy tradeoff). This is not what might be expected if partici-
pants who had lower accuracy tried to improve performance by
increasing boundary separation, but this may be a motivational
issue with undergraduates who participate for credit in a psychol-
ogy course.

Drift rates for good words correlated with the drift rates for bad
words, .70, and with the drift rates for nonwords, .76. The drift
rates for bad words correlated .68 with the drift rates for non-
words. Compared with the ABLE students, the correlations in drift
rates between good words and nonwords were about the same, but
the correlations between bad words and both good words and non-
words were considerably larger. In other words, drift rates lined up
the same way for good words, bad words, and nonwords. This con-
trasts with the ABLE students, for whom scores lined up the same
way for good words and nonwords, but they lined up somewhat
differently for bad words relative to either good words or
nonwords.
7.6. Predictions from combinations of variables

To look at howwell combinations of variables predicted a target
variable, we used step-wise multiple regression with the TABE
scores, WAIS scores, TOWRE scores, and drift rates. The t-values
for the regression coefficients are shown in Table 4.
7.7. Do combinations of the individual-difference variables predict
drift rates?

Drift rates measure the knowledge of words that is represented
in lexical memory. In that sense, they may provide an outcome
measure that is, in part, the product of an individual’s skills with



Fig. 5. Scatter plots, histograms, and correlations for boundary separation, nondecision time, age, TOWRE word, and TOWRE nonword scores. Each dot represents an
individual participant.
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reading words. We performed analyses with the bad words
because their drift rates were the most strongly correlated with
the individual-difference variables. The TOWRE scores, WAIS
scores, drift rates for medium- and low-frequency words, drift
rates for nonwords (we took the negative of these so higher num-
bers mean better performance), TABE scores, and age were entered
as predictor variables. The correlations for each factor separately
are shown in Fig. 4.

The drift rates for the bad words were predicted by the drift
rates for the medium-frequency words and the drift rates for the
nonwords; in other words, the bad word drift rates were predicted
by how good an individual was at the lexical decision task. The bad
word drift rates were also predicted by WAIS vocabulary IQ, which
means that there is something more in the drift rates than just how
good an individual was at the lexical decision task and this is cap-
tured by the vocabulary IQ scores. The results of the multiple
regression analyses are shown in Fig. 7, top panel. The conjunction
of medium-frequency words’ drift rate, nonwords’ drift rate, and
WAIS vocabulary IQ predicted drift rates with a correlation of .78.

When the drift rates for the medium-frequency words and non-
words were dropped out of the regression, a combination of WAIS
vocabulary IQ and TOWRE nonword scores predicted bad words’
drift rates (0.64) and when vocabulary IQ was dropped out, TOWRE
nonword scores and TABE scores predicted bad words’ drift rates
(0.56). Thus, overall, there is shared variance between drift rates,
vocabulary IQ, TOWRE nonword scores, and TABE scores.

To test reliability and possible over-fitting, we present one rep-
resentative example of cross-validation for the above combination
of WAIS vocabulary IQ and TOWRE nonword scores predicting bad
words’ drift rates (correlation 0.64). We performed the multiple
regression analysis on the data from half of the participants and
then examined whether the predictions from the obtained regres-
sion coefficients produced a correlation for the other half. The anal-
ysis for the first half gave a correlation of 0.67 and when the
coefficients were used for the second half, the correlation was
0.58. Thus, the regression coefficients obtained from fits to half
the data generalized to the second half of the data.

We performed the same analyses for drift rates for the medium-
and low-frequency words and the nonwords as those for the bad
words’ drift rates. For the medium- and low-frequency words, only
the TOWRE word scores significantly predicted drift rates (r = .38
and .39, respectively). For the nonwords, TOWRE word scores



Fig. 6. Scatter plots, histograms, and correlations for mean accuracy (PR) and mean RT across conditions, WAIS vocabulary andWAIS matrix reasoning, TOWRE word, TOWRE
nonword, and TABE scores. The second row of correlations for accuracy and mean RT are those for the bad words.

Table 4
Correlations and t-values for multiple regressions results.

Predictors Dependent variable

TABE TABE Bad word
drift

Bad word
drift

Bad word
drift

TABE – – ns 4.1 ns
Bad word drift ns 3.9 – – –
Med. freq.

drift
ns ns – – 6.7

Nonword drift ns ns – – 2.7
WAIS vocab. 3.4 – 6.1 – 5.5
WAIS matrix 2.3 2.9 ns ns ns
TOWR word ns ns ns ns ns
TOWR

nonword
3.0 3.0 2.1 3.7 ns

R .63 .58 .64 .56 .78

Note: A dash means the variables was not entered in the multiple regression and ns
means the variable was not significant.
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and WAIS vocabulary IQ predicted drift rates (r = .45). None of
these correlations were as strong as those for the drift rates for
the bad words.
7.8. Do combinations of the individual-difference variables predict
TABE scores?

TABE scores are of importance from a practical perspective
because they are the basis for ABLE class placement. We performed
step-wise multiple regression with the scores on the TABE as the
dependent variable. WAIS vocabulary IQ, WAIS matrix reasoning
IQ, and TOWRE nonword scores predicted TABE scores with a cor-
relation of .63, but the drift rates for good words, bad words, and
nonwords were not significant predictors; they explained no vari-
ance in TABE scores beyond that explained by vocabulary IQ and
TOWRE nonword scores.



Fig. 7. The top panel shows drift rates for bad words plotted against the predictor
values from step-wise multiple regression with WAIS vocabulary IQ, TOWRE
nonword scores, and age as predictors. The bottom panel shows scaled TABE scores
plotted against bad word drift rates, TOWRE nonword scores, and WAIS matrix
reasoning scores as predictors.
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To show that vocabulary IQ and bad-word drift rates served the
same purpose in the regression analysis, we dropped out vocabu-
lary IQ. The correlation was reduced modestly to .58 and drift rates
for the bad words replaced vocabulary IQ as a predictor (predic-
tions are shown in Fig. 7, bottom panel), demonstrating that drift
rates for the bad words were related to scores on the TABE place-
ment test. The TABE involves answering questions about just-read
paragraphs, which means that it reflects skills that build represen-
tations of multiple pieces of information, with appropriate connec-
tions among the pieces and appropriate inferences from them.
Also, as described earlier, a TABE score could come from one of four
different tests (the scores are then scaled). It is somewhat surpris-
ing that, despite this complexity, the drift rates for the bad words
were still a significant predictor.

7.9. Are the bad words bad simply because they are low-frequency
words?

It might be hypothesized that there is nothing special about our
bad words, that all of the findings for them can be accounted for by
their word frequency. The low-frequency words in the experiment
(data and drift rates presented in Tables 2 and 3) had a mean
Kucera-Francis word frequency of 9.23 whereas the bad words
had a mean frequency of 4.99, so it could be that this is the reason
for their high correlations with the TOWRE and TABE tests and
their high predictive values in the multiple regression analyses.
However, this was not the case. To show this, we divided the
low-frequency words into two subsets, one with frequencies
higher than 10 and one with frequencies between 1 and 10. The
frequencies of the latter group had a mean of 4.89, which matches
the bad words. We fit the diffusion model to the data as before but
with the low-frequency words divided into the two subsets (giving
5 drift rates instead of the 4 shown in Table 3).

We found that the drift rates for the low-frequency words that
matched the bad words had much lower correlations with all of the
measures (WAIS, TOWRE, TABE) than the drift rates for the bad
words. For example, we examined which variables predicted drift
rates for these matched low-frequency words (without the other
drift rates), as in the third column of Table 4. The significant pre-
dictors were WAIS vocabulary and TOWRE words, with a correla-
tion of .35. For comparison, for bad words the predictors were
WAIS vocabulary and TOWRE nonwords, with a correlation of
.64. We also examined whether the drift rates for the matched
low-frequency words were significant in accounting for TABE
scores whenWAIS vocabulary scores were not included in the mul-
tiple regression, as was the case for the bad word drift rates, but
they were not. From these comparisons, we conclude that there
is something special for our population of low-literacy adults
beyond word frequency for our set of bad words.
8. Discussion

The results from this study show the potential benefits of con-
ducting model-based analyses of psycholinguistic tasks in combi-
nation with standardized IQ, achievement, and reading tests.
Lexical decision is a task for which responses are fast, passive,
and automatic and it has been repeatedly demonstrated in psy-
cholinguistic research to assess the knowledge of words that is
used in reading, the knowledge that is abstracted by the diffusion
model from RTs and accuracy (Ratcliff, Gomez et al., 2004). Because
the standard deviations in the model’s parameter values were less
than the standard deviations among participants, meaningful cor-
relations could be computed among the mechanisms identified
by the model and individual-difference variables. The significant
correlations between drift rates and WAIS vocabulary IQ, TOWRE
scores, and TABE scores verify that the lexical decision task mea-
sures information that has been considered important for discrim-
inating the skills with which readers do and do not have difficulty.
To put it another way, lexical decision is a task known to assess
lexical knowledge and so when the diffusion model abstracts drift
rates that correlate with the IQ, TOWRE, and TABE scores, it maps
those scores to lexical knowledge. It is also the case that correla-
tions among drift rates and the scores were higher for the bad
words in our study, indicating that they reflected near the limit
of the ABLE students’ knowledge.

The structure of the diffusion model separates components of
processing from each other. In support of this, there were no signif-
icant correlations among boundary settings, nondecision times, or
drift rates. It would seem possible that individuals like the ABLE
students who have difficulties in reading words (i.e., low drift
rates) would attempt to counter these problems by setting their
boundaries further apart than individuals with better skills, but
this did not happen. For the TOWRE tests in particular, it might
have been expected that the scores would be significantly corre-
lated with boundaries because they are timed tests. Likewise, it
would seem possible that an individual who is limited in the speed
with which he or she can carry out nondecision processes (e.g.,
encoding strings of letters, accessing lexical memory, executing
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responses) might set their boundaries further apart, but again this
did not happen. It may be that an individual’s boundary settings
are to some large degree determined by his or her decision-
making style across all of the many decision-making domains of
everyday life.

A result we stress is that speed and accuracy were not signifi-
cantly correlated across the participants in the study (as they have
not been in previous studies with a variety of tasks, e.g., Ratcliff
et al., 2010, 2015). A participant’s accuracy did not imply anything
about his or her speed and a participant’s speed did not imply any-
thing about his or her accuracy. It follows from this that individuals
cannot be equated on the basis of accuracy alone. Two individuals
(or two groups of individuals) who have the same level of accuracy
cannot be said to have the same skills because their speeds are
likely to be different. The faulty conclusions that can be drawn
when using only one of the dependent variables have been demon-
strated with the finding that older adults’ responses are not slower
than young adults’ because their drift rates are lower but rather
because they set their boundaries farther apart and their nondeci-
sion times are longer (Ratcliff et al., 2001, 2003, 2010, 2011;
Ratcliff, Gomez et al., 2004). This issue is relevant to interpretations
of scores on the TOWRE, TABE, and IQ tests because they were all
significantly correlated with RTs as well as accuracy. For the
untimed tests especially (the TABE and IQ tests), it might have
been thought that accuracy is directly related to comprehension
and knowledge of words and this is the implicit assumption that
underlies most uses of the tests. But the findings that the tests also
reflect speed and that speed and accuracy are independent means
that speed and accuracy must both be considered.

There is a puzzle in the individual differences literature as to
why RTs in general and lexical decision RTs in particular are related
to some but not all reading measures that involve speeded process-
ing. For example, Katz et al. (2011) examined RTs for lexical deci-
sion and naming for 99 adults with a wide range of reading
abilities and found that RTs on lexical decision and naming corre-
lated strongly with word identification (as measured by subtests of
the Woodcock–Johnson, TOWRE, and GORT reading tests), mod-
estly with vocabulary size (as measured by subtests of the Wood-
cock–Johnson, the Wechsler Abbreviated Scale of Intelligence, and
the Peabody Picture Vocabulary Test), and not at all with reading
comprehension (as measured by theWoodcock–Johnson and GORT
comprehension tests). Accuracy for lexical decision was high,
around 90% correct, and was not used in any of the analyses.

In another example, Stringer and Stanovich (2000) examined
RTs for two-choice tasks that used simple visual stimuli (choosing
between a circle with a line through it and three squares) and sim-
ple auditory stimuli (choosing between two tones of different fre-
quencies). The participants were 81 adults with a wide range of
reading abilities. Stringer and Stanovitch found that there was little
direct relationship between the RTs and phonological awareness,
general cognitive ability, or word recognition ability.

Our results from application of the diffusion model suggest a
way to understand the results of these two studies. Because indi-
vidual differences in drift rate are determined mainly by accuracy
and individual differences in RT are determined mainly by bound-
ary separation and nondecision time and there are no correlations
between accuracy and RT, the studies may have picked the wrong
dependent measure to use. However, because accuracy was high in
those studies (near ceiling), individual differences may not have
been particularly strong. This reflects the larger issue that in the
domain of word comprehension, the primary dependent variable
is usually RT. As we have shown here, RTs are less useful for exam-
ining individual differences (they produce weaker relationships
with reading scores) and the diffusion model analysis provides a
way of understanding why this occurs.
This leads into a methodological point concerning whether drift
rates or accuracy values provide the best dependent variable. Our
results showed that drift rates produced marginally higher correla-
tions than accuracy values. In other studies, drift rates have tracked
accuracy and the two provide similar interpretations of individual
differences. However, if accuracy approaches ceiling, as it might for
high frequency words in lexical decision, drift rates become more
constrained by RTs than accuracy (Ratcliff, 2014). This means that
power is increased for drift rates relative to accuracy values. Also, if
there are relatively few critical items in a condition of an experi-
ment (e.g., clinical applications), then the drift rates obtained from
fitting the data for the critical items and filler items simultaneously
can produce twice the power to detect differences as accuracy or
RTs (McKoon & Ratcliff, 2012; White et al., 2010a).

We note a previous application (Naples, Katz, & Grigorenko,
2012) of the diffusion model to individual differences in several
reading-related studies (the participants were Russian children
with ages between 7 and 12). Naples et al. measured RTs and accu-
racy for a task in which the children were asked to decide whether
two strings of letters or two strings of numbers matched. They
found that the reading-related measures correlated strongly with
drift rates but only weakly with nondecision times. Their conclu-
sion was that speed of processing, as measured by RTs, is related
to reading but mainly expressed through drift rates (see also
Zeguers et al., 2011). This is the same result that we found, that
RTs were less strongly correlated than drift rates with reading
measures.
9. Conclusions

For low-literacy individuals, the study reported here is the first
to begin to break reading comprehension into the mechanisms
responsible for it in such a way as to separate the information on
which responses are based from the speed with which they are
made. This separation allows exploration of relations between
individual-difference measures and underlying lexical knowledge
and it allows exploration of relations among individual-
difference measures in terms of underlying knowledge, rather than
directly to each other.

Our results point to the need for future research that attempts
to better understand what it is that leads to significant correlations
among some tests and processing mechanisms but not others. For
example, it might be fruitful to test readers on lexical decision, one
or more of the individual-difference measures we used, and other
standardized measures of reading difficulties such as the Wood-
cock–Johnson tests.

WAIS vocabulary IQ was significantly correlated with scores on
all three standardized tests that we used (the TOWRE and TABE
tests) and it was significantly correlated with the knowledge of
words that is measured by drift rates in the diffusion model. The
strength of the correlations suggests that tests of WAIS vocabulary
IQ should be regularly used in conjunction with other standardized
tests and with new tests that may be developed. In addition, WAIS
vocabulary IQ may be especially important in designing interven-
tions to improve reading skills because different levels of IQ may
require different kinds of interventions. From a theoretical per-
spective, the words used in the WAIS vocabulary test increase in
difficulty through the test, but they seem to tap into the same
assessment of difficulty that our bad words (sorted on lexical deci-
sion performance) did.

It is important to point out that despite the more strategic nat-
ure of the TABE, we find that drift rates for lexical decision are
quite highly correlated with the TABE. So an important component
of the TABE is captured by word knowledge, especially that part of
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knowledge related to words that are at the limit of knowledge (our
‘‘bad” words) for this class of participants.

To summarize, it is our hope that, for low-literacy individuals,
cognitive psychology can provide methods that can successfully
investigate fast automatic processes, real-time reading processes,
and speed/accuracy tradeoffs, and their consequences. Standard-
ized reading tests like the TOWRE and TABE tests can get us only
so far. They can show relationships between some aspects of pro-
cessing and reading, for example, phonological coding, knowledge
of vocabulary, and so on, but they themselves involve many differ-
ent mechanisms of reading. The TOWRE words test, for example,
may involve knowledge about the regularity and frequency of
occurrence of letter and phonemic bigrams, trigrams, and syllable
structures, and the meanings of words. It also may involve knowl-
edge about the mappings between variables like those just listed
and the processes that produce spoken words. It has a large speed
component that might be closely intertwined with the variables or
that might have some aspects that are separate and malleable.
Because tests like the TOWRE tests and the TABE have so many dif-
ferent aspects, they do not pinpoint specific processes in the way
that cognitive models sometimes can.
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