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Abstract 

The goal of the current research was to better understand when and why feedback has positive 

effects on learning and to identify features of feedback that may improve its efficacy. In a 

randomized experiment, second-grade children received instruction on a correct problem-solving 

strategy and then solved a set of relevant problems. Children were assigned to receive no 

feedback, immediate feedback, or summative feedback from the computer. On a posttest the 

following day, feedback resulted in higher scores relative to no feedback for children who started 

with low prior knowledge. Immediate feedback was particularly effective, facilitating mastery of 

the material for children with both low and high prior knowledge. Results suggest that minimal 

computer-generated feedback can be a powerful form of guidance during problem solving.  
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The benefits of computer-generated feedback for mathematics problem solving 

Feedback often has powerful, positive effects for children across development. For 

example, feedback has been shown to improve performance for preschoolers on a card sort task 

(Bohlmann & Fenson, 2005), middle-school students on a writing assignment (Gielen et al., 

2010), and undergraduates on a multiple-choice test of general knowledge (Butler & Roediger, 

2008). However, the effects of feedback are not universally beneficial (Mory, 2004). The goal of 

the current research is to better understand when feedback has positive effects and to identify 

features of feedback that may improve its efficacy. Specifically, we manipulated the presence 

and timing of feedback to experimentally test their impact on children’s mathematics learning.  

The Mixed Effects of Feedback 

In most learning contexts, the purpose of feedback is to provide information that the 

learner can use to confirm or modify prior knowledge. This feedback can promote the correction 

of errors (Kulhavy, 1977) and increase motivation (Mory, 2004). In many cases, feedback is 

helpful as intended and improves learning and performance. Indeed, meta-analyses consistently 

show that, on average, feedback has a positive effect relative to no feedback (Bangert-Drowns et 

al., 1991; Kluger & DeNisi, 1996). However, the impact of feedback varies, and under some 

circumstances, feedback can have neutral or negative effects (see Hattie & Gan, 2011). For 

example, negative effects have occurred for both right/wrong feedback (Pashler et al., 2005) and 

correct-answer feedback (Hays, Kornell, & Bjork, 2010) on adults’ word learning.  

Recent research suggests that learners who already have some knowledge in the domain 

are especially likely to experience negative effects of feedback. For example, in Fyfe, Rittle-

Johnson, and DeCaro (2012), second- and third-grade children solved novel math problems. 

Some children received trial-by-trial right/wrong feedback, while others received no feedback. 
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For children with low prior knowledge on the pretest, feedback resulted in higher posttest scores 

than no feedback. However, for children with higher prior knowledge, feedback resulted in lower 

posttest scores than no feedback. Similar results were found when prior knowledge was 

manipulated via instruction on a correct strategy (Fyfe & Rittle-Johnson, 2015). Given that 

feedback can hinder learning under certain circumstances, more research is needed to understand 

when and why this occurs and to identify features of feedback that may improve its efficacy. 

The Timing of Feedback 

The timing of feedback may be one feature that influences the efficacy of feedback. 

Some researchers believe that feedback should be given immediately after a response in order to 

eliminate incorrect ways of thinking and reinforce correct ones (Skinner, 1954). Further, 

immediate feedback may provide motivation to practice, as progress can be easily monitored 

(Shute, 2008). However, others believe delaying feedback is more beneficial. First, it may 

prevent learners from becoming over-reliant on the immediate presentation of feedback, which in 

turn may increase the need to exert effort on one’s own response (Bangert-Drowns et al., 1991). 

Second, delaying feedback allows for the strength of initially incorrect responses to dissipate, 

which may make processing correct responses easier (Kulhavy, 1977). Finally, delaying 

feedback allows for spaced presentation of information (Butler, Karpicke, & Roediger, 2007).  

Several meta-analyses point to the advantages of immediate feedback, particularly in 

computer based instruction (Azevedo & Bernard, 1995) and applied classroom studies (Kulik & 

Kulik, 1988). Indeed, multiple experiments have demonstrated the superiority of immediate 

feedback over delayed feedback for the acquisition of verbal materials (Beeson, 1973; Brosvic, 

Dihoff, & Epstein, & Cook, 2006; Dihoff, Brosvic, & Epstein, 2003). However, a substantial 

body of research has found no difference between immediate and delayed feedback (e.g., Nakata, 
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2015; Smits, Boon, Sluijsmans, & Van Gog, 2008) or significant advantages of delayed feedback 

(Bangert-Drowns et al., 1991; Butler et al., 2007; Butler & Roediger, 2008; Clariana et al., 2000; 

Kulhavy, 1977; Metcalfe, Kornell, & Finn, 2009; Smith & Kimball, 2010). For example, Butler 

and Roediger (2008) had undergraduate students study general knowledge passages and take a 

multiple-choice test. Feedback after each response resulted in a lower proportion of correct 

responses on a one-week posttest than delayed feedback after all test questions were completed.  

Recent work has found advantages of delaying feedback even after controlling for key 

confounds. For example, Metcalfe et al. (2009) found that delayed feedback was more effective 

than immediate feedback for sixth-grade students’ vocabulary learning after controlling for the 

shorter retention interval between delayed feedback and the time of testing (but see Nakata, 

2015). Recently, Mullet et al. (2014) found benefits of delayed feedback after controlling for 

time spent processing the feedback. Specifically, undergraduate engineering students had to view 

the feedback on their weekly homework assignments in order to get credit, regardless of when 

the feedback was provided. Students who received feedback one week after the assignments 

scored higher on a final exam than students who received feedback right after each assignment. 

Thus, in general the evidence on the timing of feedback is mixed, although more and 

more research is finding benefits of delayed feedback. However, there are still several gaps in the 

literature that need to be addressed. First, the majority of research is in the context of adults 

learning from multiple-choice tests and the effects of feedback on their recall of information. 

Although this work is informative, it may not generalize to children learning mathematics and 

their ability to generate a solution strategy to a class of novel problems.  

Second, there has been no systematic, experimental investigation of the timing of 

feedback in relation to learners’ prior knowledge. As mentioned above, prior knowledge often 
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predicts whether learners benefit from the presence versus absence of feedback (e.g., Fyfe et al., 

2012; Gielen et al., 2010; Krause et al., 2009). Thus, it seems plausible that prior knowledge may 

also predict learning from immediate versus delayed feedback. Indeed, several researchers have 

suggested that low-knowledge learners may benefit from immediate feedback as they need to 

correct initial errors, but high-knowledge learners may benefit from delayed feedback as they 

need to process problems deeply with little intrusion (e.g., Gaynor, 1981). 

Third, little attention has been paid to how the timing of feedback impacts learners’ 

affective states. A leading theory suggests that feedback is less likely to be effective when it 

directs attention to the self as opposed to the task, because attention on the self can produce 

affective reactions that interfere with task-relevant processing (Kluger & DeNisi, 1996). For 

example, negative feedback can produce ego-threat, which may reduce one’s confidence or 

motivation to continue. One possibility is that immediate trial-by-trial feedback results in higher 

negative affect because it is provided during the learning task. An alternative possibility is that 

delayed, summative feedback results in higher negative affect because it draws a lot of attention 

to the self all at once, with no subsequent task on which to redeem one’s self-image. 

Current Study 

The goal of the current study was to address these gaps in the literature. Specifically, we 

manipulated the presence and timing of feedback to experimentally test their impact on 

mathematics learning for children with varying levels of prior knowledge. We based our study 

design on our previous work (Fyfe & Rittle-Johnson, 2015). In that study, children who received 

prior instruction on the math problems exhibited better learning on the posttest when they 

received practice without feedback than practice with feedback. Further, the negative effect of 

feedback did not depend on children’s prior knowledge on a pretest. Here, we used the same 
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basic method and assessments. For example, the instruction script and practice problems were 

identical to those in the previous study, as were the pretest and posttest items. However, we 

made key changes to enhance the external validity of the results. 

First, the tutor’s presence was removed during problem solving and the feedback was 

provided solely by the computer. The use of computers and computer tutor systems in 

classrooms is increasing rapidly (Greaves & Hayes, 2008), and these systems often provide 

targeted practice with feedback. Indeed, the oft-cited benefit of computer programs is the ability 

to give immediate feedback on every student’s responses. Thus, it is imperative to understand 

how the presence and timing of computer-generated feedback affects mathematics learning. 

Second, the feedback in this study did not provide an explicit right/wrong judgment. It only 

contained the correct answer so as to focus students’ attention on the problem solution as 

opposed to whether the learner was right or wrong. Third, the posttest was administered the next 

day, rather than immediately following the task, so as to measure more stable knowledge change.  

 In the experiment, we examined the impact of feedback for children learning to solve 

math equivalence problems (e.g., 3+4+5=3+__), which require an understanding that both sides 

of an equation represent the same quantity. We hypothesized that feedback would result in 

higher posttest scores relative to no feedback, particularly for children with low prior knowledge. 

Method 

Participants 

Initial participants were 88 second-grade children from one public and one private 

school. Of these children, 77 met criteria for participation because they scored below 80% on a 

problem-solving screening measure. This ensured that children had room to learn from the 
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intervention. Data from two children were excluded for failing to complete all activities. The 

final sample contained 75 children (M age = 8.2 yrs, range = 7.4–9.2 yrs; 41 girls; 34 boys). 

Design  

The study had a between-subjects design with children randomly assigned to conditions: 

no feedback (n=24), immediate feedback (n=25), and summative feedback (n=26). There were 

no significant differences between conditions in terms of age or gender, ps>.4. 

Materials 

 Screening Measure. The screening measure was three tasks that tap understanding of 

math equivalence (from McNeil et al., 2011). For equation solving, children solved five math 

equivalence problems. For equation encoding, children reconstructed four math equivalence 

problems after viewing each for five seconds to assess how they mentally represented the 

structure of the problem. They received one point for each accurate reconstruction (up to four 

points). For defining the equal sign, children provided a written definition of the equal sign and 

received one point if they provided a relational definition (e.g., “the same amount”). 

Intervention Problems. The 12 intervention problems consisted mostly of four- and 

five-addend math equivalence problems with operations on both sides of the equal sign, with the 

unknown after the equal sign (e.g., 3+7=__+6) or at the end (e.g., 5+3+9=5+__). Three problems 

had an operation on the right side only (e.g., 9=6+__). 

Self-Assessment. We obtained children’s subjective ratings of self-assessment to explore 

whether they considered their performance to reflect negatively on their traits. We adapted a 

measure used with kindergarten students in Kamins and Dweck (1999). Children responded to 

each of four items (e.g., “The problem-solving task made me feel like I was a smart student.”) on 
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a 4-point scale ranging from strongly disagree to strongly agree. Scores on each item were 

averaged to form a single score out of four (α=.80). 

Posttest. The posttest, adapted from past work (Rittle-Johnson et al., 2011), was a 

broader measure that assessed equation-solving success. It included 8 items that assessed 

children’s use of correct strategies to solve math equivalence problems (α=.87). Half of the items 

were similar to those presented during the intervention, and half differed on a key problem 

feature, such as inclusion of subtraction (i.e., 5+6–3=5+__). We administered several additional 

measures that were not informative for the current results and are thus not discussed further.  

Coding. We coded children’s problem-solving strategies on the screening measure, 

intervention problems, and posttest, based on their numerical answers (e.g., for the problem 

2+7=6+__, an answer of 15 indicated an incorrect “add all” strategy and an answer of 3 indicated 

a correct strategy). Responses within one of the correct answer were coded as correct. To 

establish inter-rater reliability, a second rater (who was blind to the initial strategy code) coded 

children’s strategies on 30% of all problems. Inter-rater agreement was high (kappa=.98). 

Procedure  

Children completed the screening measure in their classrooms in a 10-minute session. 

Those who met the inclusion criteria then completed a one-on-one tutoring intervention in a 

single session lasting approximately 25 minutes. This session was conducted in a quiet area at 

the school with one of two trained tutors, and included strategy instruction and problem solving.  

 Strategy Instruction. All children received instruction on a correct problem-solving 

strategy with four math equivalence problems with the blank at the end (e.g., 3+4+2=3+__). 

Children were instructed on the commonly used equalize strategy, which involves adding the 

numbers on one side of the equal sign and then counting up from the number on the other side to 
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get the same amount. Children were asked to answer questions to ensure they were attending to 

instruction. To check that the instruction worked, all children then solved a math equivalence 

problem on their own. If they solved the problem correctly, they proceeded to the next activity. If 

they solved it incorrectly, instruction on the equalize strategy was repeated without revealing the 

correct answer, and they were asked to solve another problem until they solved one correctly 

(although the children were not told this criteria). We set the protocol such that after three failed 

attempts the experiment was discontinued and children received more remedial tutoring. Two 

children were excluded for this reason resulting in a sample of 73 children. 

Problem Solving. Children were then asked to solve 12 math problems presented one at 

a time on a computer (see Materials for a description of the problems). First, the tutor described 

the task and whether or not the computer would provide feedback. Second, during the problem-

solving task, the tutor’s presence was removed. Specifically, children were told they would work 

on the computer by themselves for this portion of the session so that they could work at their 

own pace and not worry about the tutor. Then, the tutor sat a short distance away and engaged in 

a different task (e.g., read a book) until the child had completed the problem-solving task.  

In the no-feedback condition, children did not receive feedback and were simply directed 

to click when they were ready for the next problem. In the immediate-feedback condition, 

children received trial-by-trial correct-answer feedback after each problem. In the summative-

feedback condition, children received correct-answer feedback after all 12 problems had been 

solved. The problems with the child’s answers reappeared one at a time on the computer screen 

along with the feedback message. The problems and correct answers remained on the screen 

while the next problem appeared (up to four problems at a time), which allowed some 

spontaneous comparison across problems during the provision of feedback, much like a 
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summative answer key. In both feedback conditions, the feedback was presented visually on the 

computer screen for each problem (e.g., “10 is the correct answer.”). Importantly, it did not 

contain an explicit right/wrong verification, it only contained the correct answer. Although the 

right/wrong judgment was implicit (via comparison of the child’s answer with the correct 

answer), there were no explicit signals from the computer (e.g., check mark, error noise, etc.).  

Following problem solving, children rated their self-assessment, and then returned to 

class. The following day, children completed the posttest. Due to absences, one child in the no-

feedback condition completed the posttest 2 days later and two children in the immediate-

feedback condition completed the posttest 4 and 5 days later.  

Data Analysis 

Children’s scores on most measures were analyzed using ANCOVAs. Scores that were 

not normally distributed were converted into a dichotomous outcome (i.e., 1 for success and 0 

otherwise) and logistic regression was used to predict the odds of success. In all models, 

condition was the dependent variable. It was dummy coded with immediate feedback and 

summative feedback entered into the models, and no feedback as the reference group. Children’s 

age and score on the screening measure were entered as covariates. To test if the effects of 

condition depended on prior knowledge, the interaction between condition and screening 

measure was included. Thus, each model included two condition variables, age (mean centered), 

screening measure score (mean centered), and two condition by screening measure interactions.   

Results 

Screening Measure  

On average, children in the final sample (n=73) solved 1.4 (SD=1.3) problems correctly 

(out of 5), encoded 1.8 (SD=1.4) problems correctly (out of 4), and 14% provided a relational 
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definition of the equal sign. Performance did not differ by condition on any task, ps>.5. As in 

prior work (McNeil et al., 2011; Fyfe & Rittle-Johnson, 2015), we created a composite measure 

by summing z-scores across the three tasks (M=0.00, SD=2.09, range=–2.75 to 6.15). The 

composite score served as a prior knowledge covariate in subsequent analyses.  

Intervention Problems 

We analyzed performance on the intervention problems to examine how feedback 

impacted the on-going task. Across all 12 problems the frequency of correct strategy use was 

similar in the immediate-feedback (M=80%, SD=19%), summative-feedback (M=78%, SD 

=29%), and no-feedback (M=73%, SD=29%) conditions. An ANCOVA revealed no main effect 

of immediate-feedback, p=.16, or summative-feedback, p=.14, relative to no-feedback. There 

was no summative-feedback by prior knowledge interaction, p=.40; but, there was a marginal 

immediate-feedback by prior knowledge interaction, F(1, 66) = 3.83, p = .055, ηp
2 = .06.  

To follow up the interaction, we tested the effect of immediate-feedback for children with 

lower and higher prior knowledge. Screening measure scores were centered at one standard 

deviation below the mean in one ANCOVA and one standard deviation above the mean in a 

second ANCOVA (see Aiken & West, 1991). For children with low prior knowledge, there was 

a main effect of immediate-feedback, F(1, 66) = 5.50, p = .02, ηp
2 = .08. The model estimates a 

~20% differential between immediate- and no-feedback (M = 71% vs. 50%). But, for children 

with high prior knowledge, there was no main effect of immediate-feedback, F(1, 66) = 0.11, p = 

.74, ηp
2 = .00. The model estimates a ~3% differential favoring no-feedback (M = 89% vs. 92%). 

Thus, immediate trial-by-trial feedback boosted the problem-solving performance of children 

with low prior knowledge, but had minimal impact for children with higher prior knowledge. 
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Descriptively, a trial-by-trial plot of intervention performance suggests differences were 

strongest on the last few items (see Figure 1). Indeed, if we split the intervention problems into 

three blocks (first four problems, middle four problems, and last four problems), significant 

effects only emerged on the last block. On these last four problems, the raw frequency of correct 

strategy use was high in the immediate-feedback condition (M=88%, SD=18%), but lower in the 

summative- (M=77%, SD=35%), and no-feedback (M=71%, SD=33%) conditions. There was a 

significant main effect of immediate-feedback, F(1, 66) = 6.87, p = .01, ηp
2 = .10, and no effect 

of summative-feedback, p=.13. Again, a significant immediate-feedback by prior knowledge 

interaction, F(1, 66) = 6.16, p = .02, ηp
2 = .09, indicated that the positive effect of immediate 

feedback was present for low-knowledge, but not high-knowledge, children. Immediate feedback 

seemed to help children maintain strong performance on difficult problems. For example, 

children who did not receive feedback during the task scored higher on the first, simpler block of 

problems than on the last, more difficult block of problems (M = 80% vs. 74%). However, 

children who received trial-by-trial feedback maintained high scores from the first block to the 

last block (M = 85% vs. 88%), despite the increase in problem difficulty.  

Although most children used a correct strategy on the majority of problems, their errors 

were informative for examining the types of incorrect strategies they employed. Across all 

children, the most common incorrect strategies were to add the numbers before the equal sign 

(11% of all trials) and to add all the numbers in the problem (5% of all trials). For example, for 

the problem 3 + 7 = __ + 6, an answer of 10 indicates an add-before-equal sign strategy and an 

answer of 16 indicates an add-all-numbers strategy. Children in the immediate-feedback 

condition used these two incorrect strategies less often (M=10%, SD=27%) than children in the 

summative- (M=17%, SD=26%) and no-feedback conditions (M=21%, SD=27%). An ANCOVA 
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confirmed this revealing a main effect of immediate-feedback, F(1, 66) = 4.21, p = .04, ηp
2 = .06, 

no main effect of summative-feedback, p = .19, and no interactions with prior knowledge, 

ps>.10. Overall, these two strategies accounted for 61% of all the errors made. This was 

particularly true for children who did not receive feedback during the task (accounting for 68% 

of errors in summative- and no-feedback, but only 46% of errors in immediate-feedback). 

 

Figure 1. Trial-by-trial performance on each intervention problem by condition 

 

Self-Assessment 

Children’s ratings of positive self-assessment after the problem-solving task were similar 

in the immediate-feedback (M=3.5 out of 4, SD=0.4) and no-feedback (M=3.4, SD=0.4) 

conditions, but lower in the summative-feedback condition (M=3.1, SD=0.5). An ANCOVA 

revealed no main effect of immediate-feedback, p=.73, but a significant main effect of 

summative-feedback relative to no-feedback F(1, 66) = 4.33, p = .04, ηp
2 = .06. There were no 
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condition-by-prior knowledge interactions, ps>.14. A follow-up analysis revealed a significant 

difference between the two feedback types, F(1, 66) = 6.08, p = .02, ηp
2 = .09.  

Across all children, ratings of self-assessment were not correlated with performance on 

the intervention problems, r(71) = .14, p = .26, or on the posttest, r(71) = .10, p = .41. Looking 

by condition, the correlations were negligible in the no-feedback condition (intervention 

problems, r(22) = .08, p = .72, and posttest, r(22) = .01, p = .95) and in the immediate-feedback 

condition (intervention, r(22) = -.08, p = .72, and posttest, r(22) = -.09, p = .69). However, the 

correlations were moderate, though non-significant, in the summative-feedback condition 

(intervention problems, r(23) = .30, p = .14, and posttest, r(23) = .30, p = .14). This suggests the 

ratings of self may have played a larger role when the feedback was provided all at once. 

Posttest 

On the next-day posttest, percent correct was highest with immediate-feedback (M=86%, 

SD=22%), lower with summative-feedback (M=78%, SD=27%), and lowest with no-feedback 

(M=65%, SD=38%). An ANCOVA revealed main effects of immediate-feedback, F(1, 66) = 

10.02, p = .002, ηp
2 = .13, and summative-feedback, F(1, 66) = 5.06, p = .03, ηp

2 = .07, relative to 

no-feedback. However, prior knowledge interacted with both immediate-feedback, F(1, 66) = 

5.78, p = .02, ηp
2 = .08, and summative-feedback, F(1, 66) = 4.56, p = .04, ηp

2 = .07. 

To follow up the interactions, two ANCOVAs tested the effect of condition for children 

with lower and higher prior knowledge (see Figure 2). For children with low prior knowledge, 

there were large effects of both immediate-feedback, F(1, 66) = 14.61, p < .000, ηp
2 = .18, and 

summative-feedback, F(1, 66) = 9.46, p = .003, ηp
2 = .13. The model estimates a ~35–45% 

differential between the feedback conditions and no-feedback (see Figure 2). But, for children 

with high prior knowledge, there were no main effects of immediate-feedback, F(1, 66) = 0.39, p 
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= .53, ηp
2 = .01, or summative-feedback, F(1, 66) = 0.00, p = .99, ηp

2 = .00. The model estimates 

a 0–5% differential between the feedback conditions and no feedback (see Figure 2). 

 

Figure 2. Posttest scores by condition and prior knowledge. 

Note. Estimated scores are plotted at plus/minus one standard deviation from the mean.  
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a main effect of immediate-feedback, β = 1.74, p = .03, OR = 5.72, but no effect of summative-

feedback, β = 0.49, p = .48, OR = 1.63, relative to no-feedback. A follow-up analysis revealed a 

marginal difference between the two feedback types, β = 1.25, p = .08, OR = 3.50. Prior 

knowledge did not interact with immediate-feedback or summative-feedback, ps > .10.  

The results are similar, though less robust, if we use less stringent criteria. For example, 

in a logistic regression predicting the log of the odds of scoring 75% or higher, there is a 

marginal effect of immediate-feedback, β = 1.79, p = .08, OR = 6.01, no effect of summative-

feedback, β = 0.51, p = .49, OR = 1.66, and no interactions with prior knowledge, ps > .15. 

Together, these results suggest that immediate and summative feedback improve posttest 

scores relative to no feedback for low-knowledge learners. However, only immediate feedback 

improves mastery of the material, and this is true for both low- and high-knowledge learners. To 

better understand these condition effects, we further explored performance in two ways. First, we 

split the posttest into two subscales: learning and transfer (see Table 1). On the learning items, 

scores were similar with immediate- (M = 88%, SD = 19%) and summative-feedback (M = 85%, 

SD = 27%), and both were higher than no-feedback (M = 72%, SD = 35%). But, on the transfer 

items, scores were highest with immediate-feedback (M = 83%, SD = 29%), lower with 

summative-feedback (M = 70%, SD = 36%), and lowest with no-feedback (M = 58%, SD = 

45%). Indeed, for learning scores, there were significant main effects of both immediate-

feedback, F(1, 66) = 6.52, p = .01, ηp
2 = .09, and summative-feedback, F(1, 66) = 5.60, p = .02, 

ηp
2 = .08. For transfer scores, the main effect was significant for immediate-feedback, F(1, 66) = 

8.01, p = .006, ηp
2 = .11, but not for summative-feedback, F(1, 66) = 2.39, p = .13, ηp

2 = .04. 
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Table 1 

Posttest Learning Subscale (α = .72) Posttest Transfer Subscale (α = .86) 

Structurally similar to problems presented 
during the intervention  

Contained novel feature: new position of the 
blank or included subtraction 

8 = 6 + __  __ + 2 = 6 + 4 

3 + 4 = __ + 5 8 + __ = 8 + 6 + 4 

3 + 7 + 6 = __ + 6 5 + 6 – 3 = 5 + __ 

7 + 6 + 4 = 7 + __ 5 – 2 + 4 = __ + 4 
 

 

Second, we compared the distribution of scores on the intervention problem-solving task 

and on the posttest (see Figure 3). Descriptively, an interesting pattern emerged such that the 

biggest change occurred in the immediate-feedback condition. Immediate feedback seemed to 

push children who exhibited moderate performance during the intervention toward levels of 

mastery on the posttest. In contrast, for the summative-feedback condition, the distribution of 

scores was nearly identical at intervention and posttest. There was some change in the no-

feedback condition such that the extremes were more common (relatively low or relatively high 

performance) at posttest. These patterns suggest that children who did not receive feedback 

during the intervention task either got it or not – and this was reflected on the posttest as well. 

However, children who received immediate trial-by-trial feedback were able to learn during the 

task and exhibit their better understanding of the problems on the next-day posttest.  
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Figure 3. Distribution of scores by condition at intervention and at posttest. 

 

Note. No FB = No-feedback condition. Imm FB = Immediate-feedback condition. Sum FB = 
Summative-feedback condition. 
	
  
 

Discussion 

 The results from the current study show positive effects of computer-generated feedback 

on mathematics learning for children who received prior instruction on the problems. During the 

tutoring session, immediate feedback boosted problem-solving performance and decreased the 

use of common incorrect strategies for low-knowledge children. Immediate feedback did not 

impact ratings of self-assessment, but summative feedback led to lower ratings of self-

assessment. On the next-day posttest, both immediate and summative feedback resulted in higher 
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equation-solving success than no feedback for low-knowledge children. However, only 

immediate feedback facilitated mastery for both low- and high-knowledge children. 

 Despite increasing evidence in favor of delaying the presentation of feedback, the present 

findings indicate that immediate feedback may be more effective for promoting children’s 

mathematics problem solving (see also Brosvic et al., 2006). In addition to facilitating learning, 

immediate feedback facilitated transfer to novel problems and mastery of the material. Several 

pieces of evidence suggest that these benefits may be attributable to the trial-by-trial nature of 

the feedback and children’s opportunity to use the feedback on subsequent problems. First, 

immediate feedback improved performance on the last block of training problems, but not the 

first block. This suggests children were able to learn from the initial feedback and maintain high 

performance on the later, more difficult problems. Second, immediate feedback reduced the use 

of the incorrect ‘add-all’ and ‘add-to-equal’ strategies. That is, when children in the immediate 

feedback condition made errors, they were less likely to use common incorrect strategies that 

stem from entrenched misconceptions (McNeil & Alibali, 2005) and more likely to try 

something different. Third, only immediate feedback resulted in a big change in the distribution 

of children at mastery. This suggests a progression of knowledge such that children started out 

variable, learned from the feedback, and were able to exhibit mastery by the posttest. This is in 

contrast to the no-feedback and summative-feedback groups which were more stable. 

 Indeed, with one exception, children in the summative-feedback condition performed 

similarly to children in the no-feedback condition, indicating that summative feedback had 

minimal benefits. One reason may have been the lack of an opportunity to use the feedback right 

away. Unlike immediate feedback, there was no subsequent problem on which to try a new 

strategy until the next-day posttest. Another reason may have been increased attention on the 
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self. Summative feedback led to lower ratings of positive self-assessment relative to no feedback 

and immediate feedback. Further, these ratings in the summative feedback condition were 

moderately, negatively correlated with posttest performance (although these correlations did not 

reach standard levels of significance). Thus, it seems possible that receiving feedback on all of 

the problems at once increased attention on the self, produced a negative affective response (e.g., 

ego-threat), and influenced children’s general confidence or motivation to learn.  

Although these two reasons may play a role in explaining why summative feedback was 

minimally beneficial, there are other possibilities related to the design of the current experiment. 

First, the summative feedback may have been less visually and cognitively overwhelming if each 

problem had been presented individually (as opposed to remaining on the screen). Second, 

summative feedback may have been more effective given a longer retention interval between the 

instructional session and posttest. Indeed, Butler et al. (2007) found that the benefits of delayed 

feedback over immediate feedback emerged on a one-week posttest, but not on a one-day 

posttest. Further, experiments with motor tasks have consistently found that while immediate 

feedback results in more efficient learning, delayed feedback results in improved retention and 

fewer errors on subsequent assessments (Schmidt & Bjork, 1992). Third, summative feedback in 

the current study was still somewhat immediate in the sense that it was given right after the 

practice task. Several studies have found advantages to providing summative feedback the next 

day rather than after the task (e.g., Bardwell, 1981; Butler et al., 2007; but see Dihoff et al., 

2004). More generally, future research needs to parse the differences between trial-by-trial 

versus summative and immediate versus delayed. Often, “delayed” feedback is relative to the 

conditions used in a particular experiment making it difficult to compare across studies. 
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Future research should also continue to examine how feedback relates to learners’ prior 

knowledge. The current findings are consistent with previous work demonstrating that feedback 

often has stronger, positive effects for children with low prior knowledge on a pretest than 

children with higher prior knowledge. For example, feedback on middle-school students’ writing 

assignments improved performance for learners with low prior knowledge on a pretest, but not 

for learners with higher prior knowledge (Gielen et al., 2010). Similarly, undergraduate students 

with high prior knowledge of statistics performed just as well on a posttest whether they received 

correct-answer feedback during training or not (Krause et al., 2009). Indeed, the biggest benefits 

of feedback in this study occurred for low-knowledge children during training and at posttest. 

However, these results are slightly at odds with our previous study. In Fyfe and Rittle-

Johnson (2015), children who received prior instruction exhibited better learning without 

feedback. Further, this negative effect of feedback did not depend on children’s prior knowledge 

on the pretest. Here, children who received prior instruction exhibited better learning with 

feedback, though this was more pronounced for children with low prior knowledge. Why were 

the effects of feedback positive in this study? One possibility is that feedback is more effective in 

environments that reduce attention on the self. There are three critical differences between the 

current study and the previous study: (1) the presence of the human tutor during problem solving 

was removed and feedback was provided solely by the computer, (2) the feedback message only 

contained the correct answer; it did not contain an explicit right/wrong judgment, and (3) the 

posttest was administered the following day as opposed to immediately after the learning task. 

The first two changes reduce attention to self and evaluation, while the third change allows for 

any effects that may arise from attention on the self to dissipate prior to testing. These differing 

results are potentially consistent with the hypothesis that feedback will lead to larger gains when 
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it draws attention to the task as opposed to the self (Kluger & DeNisi, 1996), though future 

experimental research is needed to test the causal nature of this claim. 

 In conclusion, the present study provides experimental evidence for the benefits of 

computer-generated feedback on children’s mathematics learning. Specifically, for children 

given instruction on the target problems, both immediate and summative feedback resulted in 

higher performance on a next-day posttest relative to a no-feedback control for children with 

lower prior knowledge. Further, immediate feedback increased transfer and mastery of the 

material for both low- and high-knowledge children. These results reinforce the notion that even 

minimal feedback on a computer can be a powerful form of guidance during problem solving. 
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