A hybrid approach for correcting grammatical errors

Kiyoung Lee¹, Oh-Woog Kwon², Young-Kil Kim³, and Yunkeun Lee⁴

Abstract. This paper presents a hybrid approach for correcting grammatical errors in the sentences uttered by Korean learners of English. The error correction system plays an important role in GenieTutor, which is a dialogue-based English learning system designed to teach English to Korean students. During the talk with GenieTutor, grammatical error feedback and better expressions are offered to learners. We surveyed the grammatical mistakes that occurred in the English sentences uttered by Korean learners. These errors involve preposition errors, verb form errors, agreement errors, noun countability errors and determiner errors. The hybrid error correction system consists of 5 components: an error memory based correction system, a machine learning based correction system, an n-gram based correction system, an edit distance based correction system and a selector. The correction performance of each component is different depending on error types. To evaluate the hybrid system, we used a test set comprising of 858 sentences extracted from utterances by Korean learners. The test set includes not only ungrammatical sentences, but also correct sentences. We conducted various experiments and examined the effect of the hybrid approach on grammatical error correction. The experiments show promising results for correcting grammatical errors.

Keywords: grammatical error correction, dialogue-based computer assisted language learning.

1. Electronics and Telecommunications Research Institute, Daejeon, Korea; leeky@etri.re.kr
2. Electronics and Telecommunications Research Institute, Daejeon, Korea; ohwoog@etri.re.kr
3. Electronics and Telecommunications Research Institute, Daejeon, Korea; kimyk@etri.re.kr
4. Electronics and Telecommunications Research Institute, Daejeon, Korea; yklee@etri.re.kr

362
A hybrid approach for correcting grammatical errors

1. Introduction

Recently, there has been a growing interest in Computer-Assisted Language Learning (CALL). Particularly in Korea, the time and cost to learn English are enormous and have been on the rise every year. We have developed GenieTutor (Kwon et al, 2015), which is a dialogue-based English learning system for Korean learners. The system consists of non-native optimized speech recognition modules and semantic/grammar correctness evaluation based tutoring modules (Kwon, Lee, Kim, & Lee, 2015). A learner has a talk with GenieTutor on various topics of scenarios consisting of 3 to 4 turns. During the talk with GenieTutor, grammatical error feedback and better expressions are offered to learners. These scenarios help learners not to be out of basic flow of dialogue. Learners take lessons on pronunciation, grammar and useful expressions from conversation with the virtual tutor. In this paper, we describe the hybrid grammatical correction system. Section 2 of this paper gives an overview of our system to detect and correct grammatical mistakes. Section 3 illustrates experimental results. In section 4, we sum up the discussion and show the future research direction.

2. Method

2.1. Grammatical error types

The grammatical error correction system plays an important role in GenieTutor, which is a dialogue based English learning system. The task of the grammatical error correction system is to detect and to correct grammatical mistakes made by an English learner. We defined target errors based on the Cambridge Learner Corpus (Nicholls, 2003) and the NUS Corpus (Dahlmeier, Ng, & Wu, 2013). These errors frequently occur in sentences or utterances by Korean learners. Table 1 shows the grammatical error types which we aim to correct.

<table>
<thead>
<tr>
<th>Error Tag</th>
<th>Error Category</th>
<th>Error Tag</th>
<th>Error Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV</td>
<td>Replacing a verb</td>
<td>TV</td>
<td>Verb tense</td>
</tr>
<tr>
<td>FV</td>
<td>Verb form</td>
<td>AGV</td>
<td>Subject-verb agreement</td>
</tr>
<tr>
<td>MV</td>
<td>Missing a verb</td>
<td>UV</td>
<td>Unnecessary verb</td>
</tr>
<tr>
<td>RT</td>
<td>Replacing a preposition</td>
<td>MT</td>
<td>Missing a preposition</td>
</tr>
<tr>
<td>UT</td>
<td>Unnecessary preposition</td>
<td>MD</td>
<td>Missing a determiner</td>
</tr>
<tr>
<td>UD</td>
<td>Unnecessary determiner</td>
<td>RD</td>
<td>Replacing a determiner</td>
</tr>
<tr>
<td>RN</td>
<td>Replacing a noun</td>
<td>AGN</td>
<td>Noun agreement</td>
</tr>
<tr>
<td>FN</td>
<td>Noun form</td>
<td>MN</td>
<td>Missing a noun</td>
</tr>
<tr>
<td>UN</td>
<td>Unnecessary noun</td>
<td>CN</td>
<td>Noun countability</td>
</tr>
</tbody>
</table>
2.2. **Hybrid grammatical error correction**

Grammatical errors have their unique characteristics. The clues to detect and correct mistakes are also different from error types. There are various approaches to detect and correct grammar mistakes. We devised a hybrid correction system that combines four types of correction systems and a selector. Figure 1 shows the configuration of our hybrid grammatical error correction system. Each correction system takes as an input a sentence uttered by a learner and generates correction candidates according to their strategy to detect and correct errors. A selector then decides a final error type and a correction among correction candidates from each system.

Figure 1. The configuration of a hybrid grammatical error correction system

![Hybrid grammatical error correction system diagram](image)

The knowledge for correction used by each component is based on 21,400 learner utterances excluding system’s utterances in predefined scenarios.

2.2.1. **Error memory based error correction**

An error memory is a pattern with context and correction information. An error memory is as follows: *i am interest/interested/FV in music.*

The above error memory is applied to an input sentence “I am interest in music”. In this sentence, ‘interest’ should be replaced by ‘interested’ and a mistake type is FV (Verb Form). The recall of error memory based correction is low. Its precision, however, is very high.

2.2.2. **Machine learning based error correction**

A machine learning based error correction system requires a grammatical error tagged training corpus for training classifiers. To build the training corpus we
automatically generated erroneous sentences and tagged error codes for the 21,400 sentences mentioned above. At the same time, we collected learner utterances from test service. Then, mistakes were tagged by human using error tags. We used a SVM classifier to detect and correct grammatical errors.

2.2.3. N-gram based error correction

N-gram data is extracted from common 21,400 sentences. In the n-gram correction model, the window size is set to 2 to 5 words. By replacing an input word with a possible form of the word, an n-gram model generates correction candidates and calculates their frequencies.

2.2.4. Edit distance based error correction

Dialogue scenarios consist of system utterances and corresponding correct answers. So, by searching correct answers that are most similar to an input sentence made by a learner, a correction candidate can be generated from the difference. An edit distance based error correction uses this characteristic.

2.2.5. Selector

A selector decides a final error type and correction information using the weight based on the performance of each correction system on error types. We assigned a different weight on each correction method depending on error types and their performance. For example, it is difficult for the error memory based correction system to find the mistakes detected by considering a broad context.

3. Experiments

To evaluate the hybrid grammatical error correction system, 858 sentences were randomly extracted from sentences uttered by Korean learners. The test set includes not only sentences involving words or phrases used ungrammatically, but also correct sentences. Table 2 and Table 3 show the precision and the recall on test.

Table 2. The performance comparison

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error memory based correction</td>
<td>98.6%</td>
<td>30.5%</td>
</tr>
<tr>
<td>Edit distance based correction</td>
<td>90%</td>
<td>15.5%</td>
</tr>
<tr>
<td>Machine learning based correction</td>
<td>64.2%</td>
<td>14.6%</td>
</tr>
<tr>
<td>N-gram based correction</td>
<td>65.3%</td>
<td>27.5%</td>
</tr>
<tr>
<td>Hybrid correction</td>
<td>91.3%</td>
<td>45.1%</td>
</tr>
</tbody>
</table>
We surveyed the effect of a hybrid grammatical error correction method. There still remain some problems to be solved:

- How to improve the performance of a hybrid error correction system for more general domains? Our system works well for dialogues similar to given scenarios. However, it is susceptible to correct grammatical errors in sentences which are out of given scenarios. We think that a machine learning based method and an n-gram method will be helpful to solve these coverage problems. So we are consistently collecting and building a training corpus and a n-gram data.

- In our hybrid system, it is very effective to maximize the performance of a selector. Modelling a selector by the performance of each correction system according to error types is needed.

- Because a false alarm is very critical for learning systems, we focused on correction precision for test service. By the same token, we assigned higher weight on the correction candidate of an error memory based system and an edit distance based system. As a future research direction, we consider to improve the recall of our hybrid method.

4. Conclusions

We have described a hybrid grammatical mistake correction system. Our hybrid error correction system consists of five components: an error memory based correction system, a machine learning based correction system, an n-gram based
A hybrid approach for correcting grammatical errors

correction system, an edit distance based correction system and a selector. Since grammatical errors are very diverse and have unique characteristics, it is difficult to cover these errors using only one correction system.

We plan to improve recall rate of our system on out of scenario sentences. To do that, the role of a machine learning and an n-gram based error correction approach is very important.

5. Acknowledgements

This work was supported by the ICT R&D program of MSIP/IITP. [R0126-15-1117, Core technology development of the spontaneous speech dialogue processing for the language learning]

References

