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Abstract Body 
 

Background / Context:  
A central goal of the education literature is to demonstrate that specific educational 
interventions–instructional interventions at the student or classroom level, structural 
interventions at the school level, or funding interventions at the school district level, for 
example–have a “treatment effect” on student achievement. In rare cases (e.g., Nye et al., 2000), 
researchers have the opportunity and resources to conduct randomized experiments in which the 
intervention or treatment is randomly assigned to units. However, randomization is often not 
feasible in educational settings. For example, it is not possible for a school to randomly assign 
federally-mandated interventions (like special education) to students, for a district to deprive 
resources from a random subset of schools, or for a state to randomly assign districts to one of 
two funding systems. Thus in the vast majority of cases, researchers must estimate the treatment 
effect of an educational intervention from observational data in which the intervention has not 
been randomly assigned to units. 
 
Extensive literatures on estimating treatment effects from observational data exist in Economics 
(e.g., Imbens and Wooldridge, 2008), Sociology (e.g., Winship and Morgan, 1999), and Statistics 
(e.g., Rosenbaum and Rubin, 1983). The unifying concern is that estimates of treatment effects 
from observational data may be biased by confounding if there are unobserved variables that are 
correlated both with the probability of receiving the intervention and with the outcome of interest 
(in our case, student achievement). Countless papers have discussed the assumptions necessary 
for various estimation methods to produce unbiased estimates of a treatment effect in the 
presence of confounding.  
 
However, researchers in different fields discuss these assumptions differently. Researchers in 
Statistics, Economics, and other social sciences often discuss confounding and causality with 
potential outcomes, while computer scientists, epidemiologists, and sociologists often utilize 
directed acyclic graphs (DAGs). Recently, Richardson and Robins (2013) introduced Single 
World Intervention Templates (SWITs), a unification of these approaches to causality. We argue 
that SWITs provide an intuitive graphical framework for education researchers to discuss 
assumptions related to confounding and causality.  
 
Purpose / Objective / Research Question / Focus of Study: 
This paper has three objectives. First, we explain both how SWITs unify two existing approaches 
to causality—potential outcomes and DAGs—and their utility as a framework for discussing 
confounding and causality. Second, we introduce a specific SWIT that can be used to discuss 
confounding and causality in a “pre/post” study of an educational intervention. Finally, we use 
this SWIT to discuss the assumptions necessary for common estimation methods to produce an 
unbiased estimate of the treatment effect of a non-randomized educational intervention. 
 
Significance / Novelty of study: 
For simplicity, we will discuss a typical “pre/post” observational study of an educational 
intervention. For each student in the sample, we observe test scores 

€ 

Yt−1 at a time t-1 prior to the 
intervention and 

€ 

Yt  at a time t after the intervention. A subset of students receives an intervention 
in year t that is intended to have an effect on student performance in that year. For each student, 
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let 

€ 

At =1 if the student receives the intervention in year t and 

€ 

At = 0 if the student does not 
receive the intervention in year t. The goal is to estimate the treatment effect of 

€ 

At  on 

€ 

Yt . 
 
Potential outcomes provide one framework for discussing causality in this setting. Specifically, 
we can assume that each student in the study has two “potential outcomes”: 

€ 

Yt (at =1) =Yt (1) is 
the student’s test score in year t if (potentially contrary to fact) the student received the 
intervention; and 

€ 

Yt (at = 0) =Yt (0)  the student’s test score in year t if the student did not receive 
the intervention. One potential estimand of interest is the “average treatment effect” 

€ 

E{Yt (1) −Yt (0)}; that is, the average difference between how students would have performed had 
they received the intervention and how students would have performed had they not received the 
intervention. In the potential outcomes literature, the effect of 

€ 

At  on 

€ 

Yt  is unconfounded if 

€ 

At

€ 

Yt (at )∀ at . One common assumption in observational studies is that observed variables are 
sufficient to control for confounding between

€ 

At  and 

€ 

Yt . In the potential outcomes literature, if 

€ 

X  
is an observed variable that may be correlated with both 

€ 

At  and 

€ 

Yt , the effect of 

€ 

At  on 

€ 

Yt  is 
unconfounded conditional on 

€ 

X  if 

€ 

At

€ 

Yt (at ) | X ∀ at . 
 
Another framework for reasoning about confounding and causality is directed acyclic graphs 
(DAGs). Figure 1 shows two simple DAGs. Figure 1a shows a simple unconfounded relationship 
between 

€ 

At  and 

€ 

Yt , while figure 1b shows the same relationship that is confounded by an 
unobserved variable 

€ 

M . DAGs provide a simple graphical representation of confounding: if 
there is a “backdoor path” from 

€ 

At  to 

€ 

Yt  (for example, the path 

€ 

At← M →Yt  in figure 1b), then 
the effect of 

€ 

At  on 

€ 

Yt  is confounded. 
 

(Please insert Figure 1 here) 
 

DAGs also provide a straightforward way to establish conditional independence relationships 
between variables. Suppose we observe a variable 

€ 

X  about each student, and assume that the 
null hypothesis that 

€ 

At  has not effect on 

€ 

Yt  holds. The DAG literature contains a criterion called 
d-separation (Pearl 2000) that allows us to establish that 

€ 

At

€ 

Yt | X . Table 1 contains the 
relevant definitions and theorems from this literature. 
 

(Please insert Table 1 here) 
 
Figure 2 illustrates two scenarios. In figure 2a, there are no paths d-connecting

€ 

At  and 

€ 

Yt  given X, 
so 

€ 

At

€ 

Yt | X in figure 2a. Figure 2b, on the other hand, contains the path 

€ 

At← M →Yt , which d-
connects 

€ 

At  and 

€ 

Yt  given X. Thus 

€ 

At

€ 

Yt | X  in figure 2b. 
 

(Please insert Figure 2 here) 
 

But DAGs do not allow us to relate these conditional independencies to the potential outcomes 
definition of confounding. For this reason, Richardson and Robins (2013) introduced Single 
World Intervention Templates (SWITs). Figure 3 shows the causal relationships in Figure 1 as 
SWITs. The vertex that represents the intervention in figure 3a is “split” into the random variable 

€ 

At  and hypothetical intervention 

€ 

at , while the vertex representing the outcome 

€ 

Yt  has been 
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relabeled as a potential outcome that depends on the hypothetical intervention 

€ 

at .  
 

(Please insert Figure 3 here) 
 

SWITs give a clear graphical interpretation of confounding that is consistent with the potential 
outcomes definition. In figure 3a, there is no path from 

€ 

At  to 

€ 

Yt (at ) , so 

€ 

At

€ 

Yt (at )∀ at  and the 
effect of 

€ 

At  on 

€ 

Yt  is unconfounded. In figure 3b, the backdoor path 

€ 

At← M →Yt (at ) means that 

€ 

At

€ 

Yt (at )∀ at  and the effect of 

€ 

At  on 

€ 

Yt  is confounded. 
 
More importantly, SWITs allow us to connect the potential outcomes definition of conditional 
confounding to the DAG criterion for conditional independence (d-separation, Table 1). Figure 4 
contains SWITs representing the same two scenarios shown in Figure 2.  
 

(Please insert Figure 4 here) 
 

In figure 4a, the d-separation of 

€ 

At  and 

€ 

Yt (at )  conditional on X allows us to conclude that 

€ 

At

€ 

Yt (at ) | X ∀ at  so the effect of 

€ 

At  on 

€ 

Yt  is unconfounded conditional on 

€ 

X  by the potential 
outcomes definition of confounding. In figure 4b, on the other hand, 

€ 

At  and 

€ 

Yt (at )  are d-
connected conditional on X, so 

€ 

At

€ 

Yt (at ) | X ∀ at  so the effect of 

€ 

At  on 

€ 

Yt  is confounded 
conditional on 

€ 

X . 
 
Statistical, Measurement, or Econometric Model:  
In estimating the treatment effect of a non-randomized educational intervention 

€ 

At  on student 
tests scores 

€ 

Yt , researchers must worry about potential confounders that are observed and 
unobserved, as well as potential confounders that vary over time (time-variant) and do not vary 
over time (time-invariant). Researchers must also account for the reality that test scores can be 
noisy measures of student achievement. Table 2 summarizes the notation we use in this more 
realistic framework. 
 

(Please insert Table 2 here) 
 

Figure 5 shows the relationships between these variables in this framework. A key departure 
from the previous discussion is that student test scores 

€ 

Yt  are now an unbiased estimate of 
unobserved student achievement 

€ 

Yt
*. In figure 5, black vertices represent variables that are 

observed to the researcher, while gray vertices represent unobserved variables. Black solid edges 
represent causal relationships between potential confounders and student achievement and test 
scores that are assumed to always exist. The red dotted line is the causal relationship of interest. 
Finally, the blue dotted lines represent causal relationships between potential confounders and 
the probability of treatment that may or may not exist depending on assumptions. A central 
message of our paper is that the assumptions that justify many common methods of evaluating 
educational interventions, such as covariate-adjustment models, student fixed effects models, and 
instrumental variables models, can be expressed in terms of the existence of and relationships 
between the blue dotted lines in figure 5. 

 
(Please insert Figure 5 here) 
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Usefulness / Applicability of Method:  
We will focus exclusively on covariate-adjustment models (e.g., regression or matching), 
although in our paper we also use the SWIT in figure 5 to discuss the assumptions that justify 
student fixed effects models and instrumental variables models. The assumption that justifies a 
covariate-adjustment model is the oft-cited “strong ignorability condition” (Rosenbaum and 
Rubin 1983). In terms of the variables in Table 2, this assumption can be written as follows: 
 
Assumption 1: 

€ 

At

€ 

Ut−1,Yt−1
* ,M | X,Lt−1,Yt−1. 

 
In other words, the probability of receiving the intervention must be independent of all 
unobserved variables, conditional on the observed variables. Figure 6 shows the causal 
relationships under assumption 1. The black dashed edges in figure 6 represent relationships 
between potential confounders and the probability of receiving the intervention that are allowed 
to exist under this assumption. In figure 6, there is no path that d-connects 

€ 

At  and 

€ 

Yt
*(at ) given 

X, Lt-1, and Yt-1, so 

€ 

At

€ 

Yt
*(at ) | X,Lt−1,Yt−1 ∀ at . This implies that the effect of 

€ 

At  on 

€ 

Yt
* is 

unconfounded conditional on X, Lt-1, and Yt-1 by the potential outcomes definition of 
confounding. Since researchers can control for X, Lt-1, and Yt-1 in a covariate-adjustment model, 
this demonstrates that covariate-adjustment models can produce an unbiased estimate of the 
treatment effect of a non-randomized educational intervention under assumption 1. 
 

(Please insert Figure 6 here) 
 

Estimates from covariate-adjustment models can be biased under violations of assumption 1. The 
dotted blue lines in Figure 7 show causal relationships that violate assumption 1. Suppose, for 
example, that the edge between M and 

€ 

At  exists (i.e., the probability of treatment is a function of 
an unobserved, time-invariant variable). Then 

€ 

At  and 

€ 

Yt (at )  are d-connected conditional on X, 
Lt-1, and Yt-1, so 

€ 

At

€ 

Yt
*(at ) | X,Lt−1,Yt−1 ∀ at  and the effect of 

€ 

At  on 

€ 

Yt  is confounded conditional 
on X, Lt-1, and Yt-1. This conclusion is surely intuitive to most researchers, but we believe our 
framework is novel and useful because it provides both a graphical and causal interpretation of 
the assumptions necessary for methods like covariate-adjustment models to “work”. 
 

(Please insert Figure 7 here) 
 
Conclusions:  
When researchers must use observational data to evaluate a non-randomized educational 
intervention, the appropriate estimation method depends entirely on the assumptions that the 
researcher is willing to make. Because of this reality, it is imperative for researchers to clearly 
communicate their assumptions to the reader or audience (not to mention to themselves!) A 
central goal of this paper is to illustrate the utility of graphs, and single world intervention 
templates (SWITs) in particular, as a means of communicating these assumptions. As we 
illustrate in the previous section, SWITs allow researchers not only to clarify the assumptions 
they have made, but connect these assumptions to the potential outcomes definition of 
confounding to illustrate how these assumptions lead to an unbiased estimate of the treatment 
effect. Our perspective is that if the education research community incorporates SWITs into 
discussions about assumptions and causality, it could bring much-needed clarity about the 
assumptions underlying much of the research in the education literature.
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Appendix B. Tables and Figures 
 
 
 
 
 
Definition 1. A directed acyclic graph (DAG) is a graph containing directed edges (

€ 

→) and no 
directed cycles (  

€ 

V →→V ). 
Definition 2. The parents of a vertex V with respect to a graph G are 

€ 

paG (V ) = {X | X →V} . 
Definition 3. A vertex A is an ancestor of a vertex D if one of two conditions holds: (a) there is a 
directed path   

€ 

A→→D from A to D; or (b) A = D. 
Definition 4. A distribution P is Markov with respect to a DAG G if 

  

€ 

P(
 

V ) = P(V | paG (V ))
V∈
 

V 

∏  

Definition 5. A path π between vertices X and Y consists of a sequence of distinct vertices that 
are connected by edges. 
Definition 6. A non-endpoint vertex V on a path π is a collider if π takes the form 
  

€ 

X→V←Y . Non-endpoints that are not colliders are called non-colliders. 
Definition 7. A path π d-connects vertices X and Y conditional on a set Z if X and Y are the 
endpoints of π, every non-collider on π is not in Z, and every collier on π is an ancestor of Z (or 
is in Z). If there is no path d-connecting X and Y given Z, then X and Y are d-separated given Z. 
Theorem. In any distribution P that is Markov with respect to G, if X and Y are d-separated 
given Z then X  Y | Z in P. 
Table 1. Relevant definitions and theorems from DAG literature. 
 
 
 
 
 
Yt = observed test score in year t 
At = indicator for whether student received the intervention in year t 
X = observed, time-invariant characteristics (e.g., race and gender) 
Lt = observed, time-variant characteristics (e.g., teacher and school) in year t 
M = unobserved, time-invariant characteristics (e.g., ability) 
Ut = unobserved, time-variant characteristics (e.g., motivation) in year t 
Yt* = unobserved student achievement (e.g., reading skills) in year t 
Table 2. Variables defined for each student in general framework for pre/post evaluation of an 
educational intervention. 

 



 

SREE Spring 2014 Conference Abstract Template B-2 

 
 
 
 
 
 

 
Figure 1. Two directed acyclic graphs (DAGs). In all figures, black vertices represent observed 
variables, while gray vertices represent unobserved variables. Black edges represent causal 
relationships between variables, while the red dotted line is the treatment effect of interest. 
 
 
 
 
 

 
Figure 2. Two DAGs illustrating (a) conditional independence and (b) conditional dependence 
of 

€ 

At  and 

€ 

Yt  given 

€ 

X . 



 

SREE Spring 2014 Conference Abstract Template B-3 

 
 

 
 
 
 
 
 

 
Figure 3. Two single-world intervention templates (SWITs). 
 
 
 
 
 
 
 

 
Figure 4. Two SWITs illustrating (a) an unconfounded causal effect of 

€ 

At  on 

€ 

Yt  given 

€ 

X  and 
(b) a confounded causal effect of 

€ 

At  on 

€ 

Yt  given 

€ 

X . 
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Figure 5. General SWIT for pre/post evaluation of educational intervention (see Table 2 for a 
definition of each variable). 
 
 
 

 
Figure 6. General SWIT under assumptions that justify a covariate-adjustment model. Dashed 
black lines represent edges that are allowed to exist for a covariate-adjustment model to produce 
an unbiased estimate of the treatment effect. 
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Figure 7. General SWIT illustrating violations of the assumptions that justify a covariate-
adjustment model. Dotted blue lines represent edges that cannot exist for a covariate-adjustment 
model to produce an unbiased estimate of the treatment effect. 


