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Background / Context:  
In recent years, the impetus on experiments for educational research and evaluation has 

particularly revolved around experiments that involve clustering (Spybrook & Raudenbush, 
2009; Institute of Education Sciences, 2013). A cluster-randomized trial (CRT) relies on random 
assignment of intact clusters to treatment conditions, such as classrooms or schools (Raudenbush 
& Bryk, 2002). One specific type of CRT, a multi-site CRT (MSCRT), is commonly employed 
in educational research and evaluation studies (Spybrook & Raudenbush, 2009; Spybrook, 2014; 
Bloom, Richburg-Hayes, & Black, 2007). The three-level MSCRT is a nested design with the 
level-three units (or sites) treated as a blocking variable, and the level-two units randomly 
assigned to treatment and control within each site.  

As in all experimental studies, evaluators must design CRTs with appropriate power to 
detect an expected effect. A common challenge for evaluators planning CRTs is selecting an 
appropriate intraclass correlation (ICC), an estimate of the percentage of total variance that exists 
at the group level, to accurately power the study. For studies with more than one level of nesting, 
multiple ICCs must be estimated. For a three-level MSCRT with treatment at level-two, the 
evaluator must specify the within-site ICC, since the between-site variance is removed by 
blocking (Konstantopoulos, 2008). 

Empirically estimating ICCs for use in mathematics, reading, and science are a common 
trend in the education literature (Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 
2007; Brandon, Harrison, & Lawton, 2013; Hedges & Hedberg, 2013; Schochet, 2008; Jacob, 
Zhu, & Bloom, 2010; Westine, Spybrook, & Taylor, 2013). These estimates are typically based 
on completed evaluations, district datasets, and statewide databases. Until recently, the majority 
of these estimates were computed using two-level models (e.g., students nested in schools). 
However, many studies are being designed as MSCRTs with districts as sites and schools as the 
unit of randomization (Spybrook, 2014).  
 
Purpose / Objective / Research Question / Focus of Study: 

In this study, I aim to improve the design of MSCRTs for science achievement studies by 
producing estimates of within-district ICCs across all districts in an entire state.  The result is a 
distribution of within-district ICCs which can be used to power a three-level MSCRT with 
treatment at the school level. Currently, evaluators planning trials focused on science outcomes 
must estimate ICCs based on empirical estimates from two-level or three-level models that do 
not block on district (Zhu, Jacob, Bloom, & Xu, 2012; Westine, Spybrook, & Taylor, 2013). The 
distribution of within-district ICCs serves as an empirical basis for the selection of an ICC value 
in order to facilitate better designs of MSCRTs in science education. Recent empirical work for 
mathematics and reading outcomes by Hedberg and Hedges (2011) suggests that distributions of 
within-district ICCs for states are asymmetrical.  I examine if this holds for the outcome of 
science achievement.   

Additionally, I investigate how an evaluator would utilize the distributional information 
to estimate a within-district ICC for a MSCRT design. In particular, an evaluator must select a 
point estimate to summarize the variances of participating districts. This estimate is needed in 
order to perform a power analysis, but such analyses typically occur before districts are even 
recruited. This analysis focuses on investigating whether within-district ICC estimates differ for 
(1) MSCRTs that include only a few districts with a larger number of schools per district; and (2) 
MSCRTs that include several more districts with a smaller number of schools per district. Using 



 

SREE Spring 2015 Conference Abstract Template 2 

actual student outcomes, I empirically investigate how the structure of an MSCRT impacts ICC 
estimates. 

In summary, the following research questions guide this investigation:  
1. What is the distribution of within-district ICCs for science education? 
2. Does the number of districts in an MSCRT affect the mean within-district ICC? 

 
Population / Participants / Subjects:  

Data from the Texas Education Agency (TEA) for the academic year 2010-2011 is used 
for this study. The dataset includes student-level achievement data for science from the Texas 
Assessment of Knowledge and Skills (TAKS), student demographic information, and school and 
district identifiers. As in many other states, in Texas, science is tested in grades 5, 8, 10, and 11. 
 
Significance / Novelty of study: 

The specific choice of districts to include can significantly affect the number of schools 
per district needed to appropriately power a study because sample sizes are impacted by the 
within-district ICC. This gives rise to the notion of evaluators developing ways to improve 
MSCRT designs according to desired purposes (e.g., IES goal 3 or goal 4 studies) by 
strategically recruiting districts for their designs. However, there has been little empirical 
research with regard to specific strategies for district selection in three-level MSCRTs, and how 
this affects within-district ICCs because empirical examples of ICCs from large state databases, 
which enable examinations across sets of districts, are relatively recent, and none have looked at 
MSCRTs for science studies.  This study contributes to this discussion and extends the 
discussion to the context of science education. 
 
 
 
Statistical, Measurement, or Econometric Model:  

The primary design examined is the three-level MSCRT with districts treated as sites and 
schools randomly assigned within sites. However, within-district ICCs are estimated using an 
unconditional two-level HLM for each individual district. In the interest of space, I present only 
the model for a two-level CRT.  

To empirically estimate ICCs for each district I utilize a two-level HLM for each district. 
The unconditional model for the two-level HLM with students (Level 1) nested in schools (Level 
2) is as follows. The Level 1 or student-level model is: 

                                                               (    )  [1] 

where     is the outcome for individual   {      } in school   {     },     is the average 
achievement at school j, and     is a random student effect, which is assumed to be normally 
distributed with a mean of 0 and homogeneous variance   .   Therefore,    is the variance in 
achievement among students within schools. The Level 2 or school-level model is:  
                                                          (     )  [2] 

where     is the grand mean, and     is a random school effect, which is assumed to be normally 
distributed with a mean of 0 and homogeneous variance    . Therefore,     is the variance in 
mean achievement among schools. A single ICC represents the proportion of total variance that 
exists among schools, 
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  [3] 

 
Data Collection and Analysis:  
 With the Texas dataset I first create a distribution of school-level ICCs for each district in 
the state with at least four schools and      students per school, using the two-level model. 
Using Stata (StataCorp, 2011), I execute LONEWAY by grade (for grades 5, 8 10, and 11) with 
school as a random factor to compute variance estimates for each district. The choice to use 
    is based on an initial investigation across all districts, and in response to findings from 
Hedberg and Hedges (2011) that districts with only a few schools can produce considerable 
variance in the school-level ICC. The result is a distribution of unconditional within-district ICCs 
for each grade.  
 Next, I investigate the variability of within-district ICCs across districts by generating 
and comparing confidence intervals on the mean within-district ICC for MSCRTs of different 
sizes. The two broader classes of MSCRTs, based on size, that are commonly used in the 
education literature are operationalized as follows. For a MSCRT with only a few districts I use 
    districts with a corresponding value of      schools per district. For a MSCRT with 
many districts, I use      with a corresponding value of       . The number of schools 
per district is used to identify sets of eligible districts for the different types of MSCRTs.
 Considering the sets of eligible districts, I explore the range of within-district ICC values 
that could occur in a design for each grade in which science is tested. For each grade, I test if 
there is a difference in mean within-district ICC for districts with     ,  ̅       , and districts 
with       ,  ̅       . Formally, this test is written a follows:  
 

     ̅         ̅                                      ̅         ̅            
 
Findings / Results:  

In Texas, there are 154 districts with four or more schools that include fifth grade, 84 
districts with four or more schools that include eighth grade, 50 districts with four or more 
schools that include tenth grade, and 51 districts with four or more schools that include eleventh 
grade. In Figure 1, I present the distribution of school-level ICCs for each district by grade using 
a bandwidth of 0.02. In order to plot all grades on the same graph, the percentage (rather than the 
count) of districts meeting the corresponding ICC level is shown.  

 
(Insert Figure 1 about here.) 

 
The distributions are fairly consistent across grades as well, as can be seen in Table 1. 

The mean within-district ICC for each grade ranges between 0.0781 and 0.0982. An F-test using 
analysis of variance under equal variances shows no significant difference (p=0.2610) in mean 
within-district ICC across grades. 

 
(Insert Table 1 about here.) 

 
Conceptually, the number of districts in an MSCRT does not change the underlying 

variance structure of the data. However, this choice does affect the number of districts eligible 
for a study, and therefore the sampling frame of districts for MSCRTs of various configurations 
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can be quite different. Respectively, in Grades 5, 8, 10, and 11, there are 46, 4, 2, and 2 districts 
meeting the sample size requirements for an MSCRT with     districts,      schools per 
district, and      students per school. Similarly, across grades, there are 68, 49, 19, and 21 
districts that meet the sample size requirements for the MSCRT with      districts,     
   schools per district, and      students per school. 

In Table 2, I present a comparison, by grade, of the mean within-district ICC for a 
MSCRT with many districts, and a MSCRT with only a few districts. In Grade 5, a significant 
difference exists in the mean within-district ICC for the two designs (p=0.0020). More 
specifically, I find for the design with only a few districts,  ̅               (         ), and 
for the design with many districts,  ̅               (         ). In Grades 8, 10 and 11, the 
ability to test for significant differences in the mean within-district ICC for the two designs is 
limited by the number of eligible districts. 

 
(Insert Table 2 about here.) 

 
Conclusions:  

The two common MSCRT design types drastically, but uniquely limit the eligibility of 
districts for each design by grade. The findings in grade 5 demonstrate that ICC estimates for 
MSCRTs can be refined further in some cases.  

When estimating a within-district ICC value for a MSCRT power analysis, the evaluator 
should note the size of the districts in the sample from which the estimate is derived, and plan 
accordingly.  Estimates for a design with only a few districts and a large number of schools per 
district were significantly larger than for a design with many districts and a smaller number of 
schools per district. This would suggest that prioritizing the recruitment of smaller districts into 
studies would tend to reduce participation requirements.  However, while this logic is beneficial 
to researcher designing IES goal 3 or similar-type studies where generalization is not prioritized, 
it does not fit with the requirements of IES goal 4 or similar-type studies that do prioritize 
generalization.  The results of this study are from one large, and representative (in terms of the 
grades in which testing occurs) state.  Educational systems in other states may be structured quite 
differently, and further work in this area is needed to empirically estimate design parameters for 
planning MSCRTs.  It will also be useful to explore whether significant differences exist 
between mean within-district ICC values in higher grades.  
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Appendix B. Tables and Figures 
 
 

 
 
Figure 1. Distribution of unconditional school-level ICCs in science by grade for districts with 
four or more schools in Texas. 
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Table 1. 
Average within-district ICC by grade for districts with     

Grade K  ̅ SE 
5 154 0.0964 0.0060 
8 84 0.0781 0.0069 

10 50 0.0982 0.0099 
11 51 0.0933 0.0118 

F(3,335) 1.340   
p 0.2601   
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Table 2. 
Comparison of mean ICC values by grade for MSCRTs with many districts and only a few districts 

 MSCRT with many 
districts 

MSCRT with only a 
few districts  

     

 (           ) (         )      
Grade K  ̅        SE K  ̅        SE Difference SE d.f. t p 

5 68 0.0843 0.0069 46 0.1295 0.0098 -0.0452 0.0116 112 3.9058 0.002 
8 49 0.0877 0.0096 4 0.1102 0.0300 -0.0225 0.0347 51 0.6484 0.5196 

10 19 0.0957 0.0153 2 N/A N/A N/A N/A N/A N/A N/A 
11 21 0.0893 0.0135 2 N/A N/A N/A N/A N/A N/A N/A 
            

 
 
 
 
  


