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ABSTRACT
There is increasing evidence that fine-grained aspects of student 
performance and interaction within educational software are 
predictive of long-term learning. Machine learning models have 
been used to provide assessments of affect, behavior, and 
cognition based on analyses of system log data, estimating the 
probability of a student’s particular affective state, behavior, and 
knowledge (cognition). These measures have (in aggregate)
successfully predicted outcomes such as performance on 
standardized exams. In this paper, we employ a different approach 
of relating interaction patterns to learning outcomes, using 
dynamical methods that assess patterns of fine-grained measures 
of affect, behavior, and knowledge as they occur across time. We 
use Hurst exponents and Entropy scores computed from 
assessments of affect, behavior, performance, and knowledge 
acquired from 1,376 middle school students who used a math 
tutoring system (ASSISTments), and analyze the relations of these 
dynamical measures to the students’ end-of-year state test 
(MCAS) performance. Our results show that fine-grained changes 
in affect, behavior, and knowledge are significantly related to and 
predictive of their eventual MCAS performance, providing a new 
lens on the dynamic and nuanced nature of student interaction 
within online learning platforms and how it affects achievement.
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1. INTRODUCTION 
The increasing deployment of educational software in classrooms 
has provided new opportunities for studying a broad range of 
student modeling constructs. The ability of these systems to log 
student interaction in fine-grained detail has led to the 
development of automated detectors or models of student learning 
and engagement [1, 4, 5, 6, 10]. It has been demonstrated through 
discovery with models analyses [20] that detector assessments of 
engagement and learning can be used to predict long-term student 
outcomes such as performance in end-of-year standardized exams 
[24], college enrollment [31] and college major choice [33], even 
several years after the student engages in online learning. The 
fine-grained measures of learning and engagement at the action 
level are then aggregated at the student-level in forming a training 
dataset for the prediction of learning outcomes. However, these 
assessments often use simple aggregation methods such as 
student-level averages, whereas it is known that there are complex 

patterns in how affect develops over time (e.g. [14]). Hence these
simple methods of aggregation may miss fine-grained and 
nuanced patterns in affect or behaviors that manifest across time. 

Indeed, research has also shown that students’ learning behaviors 
are complex and dynamic in nature [19]. Recent work has begun 
to evaluate interaction patterns within learning tasks. This work 
has revealed that fine-grained pattern analysis can shed light upon 
various cognitive, behavioral, and learning outcomes [21, 22, 29, 
30, 37, 38]. For example, Lee and colleagues [21], and Liu and 
colleagues [22] evaluated how 3-step sequences of confusion [21, 
22] and frustration [22] correlate to learning outcomes. Rodrigo 
and colleagues [29] also found that 3-step sequences of affective 
states (boredom, engaged concentration, confusion, and delight) 
from fine-grained detectors correlated to differences in learning 
outcomes. Sabourin and colleagues [30] found that the impact of 
student behavior on learning outcomes depended in part on the 
affect that preceded the behavior. Results from these studies 
reveal that fluctuations in students’ affect and behavior over time 
(assessed through automated detectors) play important roles in 
learning outcomes.  

However, much of this work had the limitation of only 
considering changes over brief periods of time. In this paper, we 
address this limitation by employing dynamical methodologies to 
quantify nuanced patterns of student affect, behavior, and learning 
across time, specifically two academic school years. We utilize 
fine-grained measures of affect, behavior, and knowledge 
(cognition) from middle school students who used the 
ASSISTments systems, and compute dynamical measures (i.e., 
Hurst and Entropy) of these constructs for each student. These 
measures (see below for details) characterize the occurrence and 
type of behavior across time for the constructs of interest (affect, 
behavior, knowledge) for each student within the ASSISTments 
environment.   

We use two types of dynamical analysis techniques, Entropy and 
Hurst exponents. Entropy is a statistical measure used to assess 
the amount of predictability present within a time series [34]. 
Previously, Entropy has been used in EDM analyses by Snow and 
colleagues [38], to quantify the amount of randomness in
students’ interaction patterns within a game-based interface. 
Using this methodology they found that students who acted in
more controlled (and predictable) manners had significantly 
higher task performance compared to students who acted in more 
random (or unpredictable) fashions. Hurst exponents are similar to 
Entropy in that they categorize the amount of order present within
a system; however, unlike Entropy, Hurst exponents act as long-
term correlations that capture how each moment in a time series 
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relates to the others. Thus, Hurst provides an even finer-grained 
look at the emergence of patterns across long periods of time. 
Recently, Hurst exponents have been used to characterize 
students’ learning behaviors within game-based environments. 
For instance, Snow and colleagues [36] used this technique to 
examine nuanced fluctuations in students’ choice patterns across 
time. Using the Hurst exponent, Snow and colleagues again found 
that students who acted in more deterministic manners (i.e., 
controlled and planned) were more likely to demonstrate higher 
learning gains compared to students who acted in more random 
(or impetuous) manners.

In the current work, we evaluate the degree to which Entropy and 
Hurst exponent measures based on affect, behavior, and 
knowledge (cognition) predicts a longer-term outcome, students’ 
end-of-year state exam performance. This research was conducted
on a dataset of 1,376 students who used ASSISTments when they 
were in middle school during the school years of 2004-2005 to 
2005-2006 and took the standardized end-of-year state exams. We
investigate in particular, the following research questions: 

1) How are fluctuations in patterns of students’ affect, 
behavior, and knowledge related to their end-of-year 
state math achievement test scores?

2) Are dynamical measures of affect, behavior, and 
knowledge predictive of student performance outcomes 
(end-of-year test score, i.e., MCAS)? 

2. METHODOLOGY 
2.1 Data Source: The ASSISTments System 
This study explores students’ learning outcomes and their 
interaction patterns from their usage of the ASSISTments system 
[27], a web-based tutoring system for middle-school mathematics, 
provided to students for free by Worcester Polytechnic Institute 
(WPI). As of 2013, ASSISTments has been used by over 50,000 
students a year as part of their regular mathematics classes. 
ASSISTments assesses a student’s knowledge while assisting
them in learning, providing teachers with formative assessment of 
students as they progress in their acquisition of specific 
knowledge components.  

Within the system, each problem maps to one or more cognitive 
skills. When students who are working on an ASSISTments 
problem answer correctly, they proceed to the next problem. 
When they answer incorrectly (Figure 1), the system scaffolds 
instruction by dividing the problem into component parts, 
stepping students through each before returning them to the 
original problem (as in Figure 2). Once the correct answer to the 
original question is provided, the student is prompted to go to the 
next question. Teachers use ASSISTments in designing problem 
sets completed by students either during class time or as 
homework assignments. ASSISTments provides data on student 
performance that is used by teachers to track misconceptions and 
discuss them in class.

Figure 1. Example of an ASSISTments problem. 

Figure 2. Example of Scaffolding and Hints in an 
ASSISTments Problem. 
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2.2 Data 
2.2.1 State Exam Scores 
Students who used ASSISTments when they were in middle 
school also took the MCAS (Massachusetts Comprehensive 
Assessment System) state standardized test near the end of their 
school years. The test is composed of English Language Arts, 
Mathematics and Science, and Technology subjects. This study 
analyzes usage of a tutoring system in mathematics; consequently, 
we examined the relationship of performance to the MCAS test 
scores for the math portion. Raw scores for the math portion range 
from 0 to 54 and are later scaled by the state after all tests have 
been scored. The scaled scores can be categorized into four 
groups: Failing, Needs Improvement, Proficient, and Advanced. 
Students in Massachusetts are required to score above failing to be 
able to graduate from high school; if students score in the 
Advanced group, they automatically earn a scholarship to a state 
college.

2.2.2 ASSISTments Data 
Interaction log files from ASSISTments were obtained for 1,376 
students who used the system when they were in middle school 
ranging from school years 2004-2005 to 2005-2006 (these school 
years were used due to the availability of the state exam data for 
these particular cohorts). These students, diverse in terms of both 
ethnicity and socio-economic status, were drawn from middle 
schools in an urban district in New England who used the 
ASSISTments system systematically during the school years. The 
1,376 students generated a total of 830,167 actions within the 
system (an action may be answering a question, or requesting 
help), across around 3,700 original and scaffolding problems from 
ASSISTments, with an average of approximately 220 
ASSISTments problems per student. Affect, behavior, and
knowledge models were applied to this dataset to evaluate 
interaction patterns.  

2.3 Computing Interaction Features  
The interaction features used to compute dynamical assessments 
were generated using automated detectors of student engagement 
and learning previously developed and validated for 
ASSISTments. These included existing models of educationally-
relevant affective states (boredom, engaged concentration, 
confusion, frustration), disengaged behaviors (off-task behavior 
and gaming the system), and student knowledge. Each of the 
detectors was applied to every action in the existing data set, in 
the same fashion as in previous publications [24]. We also 
included in our feature set of interactions, information on student 
correctness over time within ASSISTments.  

2.3.1 Affect and Disengaged Behaviors  
To obtain assessments of affect and disengaged behaviors, we 
leveraged existing detectors of student affect and behavior within 
the ASSISTments system [24]. Detectors of four affective states 
were utilized: boredom, engaged concentration, confusion, and 
frustration. Detectors of two disengaged behaviors are utilized: 
off-task behavior and gaming the system. Because our sample of 
students came from urban middle schools, their respective data 
were labeled using models optimized for students in urban schools 
[23, 24].
The affect and behavior detectors were developed in a two-stage 
process: first, student affect labels were acquired from field 
observations conducted using the BROMP protocol and HART 
Android app (reported in [24]), and then those labels were 
synchronized with the log files generated by ASSISTments at the 

same time. This process resulted in automated detectors that can 
be applied to log files at scale, specifically the data set used in this 
project (interaction log files for the 1,376 students). The detectors 
were constructed using only log data from student actions within 
the software occurring at the same time as or before the 
observations. The models performed as well as or better than 
other published models of sensor-free affect detection in 
educational software [3, 11, 13, 30]. They were then applied to the 
data set used in this paper to produce confidence values for each 
construct over time, which were then used to create dynamical 
assessments of affect and behavior. 

2.3.2 Student Knowledge  
Corbett and Anderson’s [12] Bayesian Knowledge Tracing (BKT) 
model, a knowledge-estimation model that has been used in a 
considerable number of online learning systems, was applied to 
the data for this study. Models were fit by employing brute-force 
grid search (see [2]). BKT infers students’ latent knowledge from 
their performance on problems that exercise the same set of skills. 
Each time a student attempts a problem or problem step for the 
first time, BKT recalculates the estimates of that student’s 
knowledge for the skill (or knowledge component) involved in 
that problem. Estimations for each skill are made along four 
parameters: (1) LO, the initial probability that the student knows 
the skill, (2) T, the probability of learning the skill at each 
opportunity to use that skill, (3) G, the probability that the student 
will give the correct answer despite not knowing the skill, and (4) 
S, the probability that the student will give an incorrect answer 
despite knowing the skill. The estimates obtained via BKT were 
calculated based on the student’s first response to each problem, 
and were applied to each of the student’s subsequent attempts on 
that problem. 
We were able to distill interaction features –affect, behavior and 
knowledge using these models, as well as correctness – for each 
student action within the ASSISTments system. Affect and 
behavior features were initially computed at a 20-second grain-
size and then applied to all relevant actions. These action-level 
features values are then used to compute student-level dynamical 
measures of Hurst and Entropy scores. 

2.4 Dynamical Assessments of Student 
Interaction Features 
Variations in students’ interaction features (affect, behavior, 
knowledge, correctness) were assessed using two dynamical 
methodologies: Entropy analyses and Hurst exponents. These 
dynamic techniques are used to quantify (in standardized values)
variations in students’ interaction features and examine how these 
variations impacted students’ year-end standardized test scores 
(i.e., MCAS). A description and explanation of Entropy analyses 
and Hurst exponents are described below.

2.4.1 Entropy 
Entropy analyses were conducted to quantify the degree to which 
fluctuations in students’ affective states were ordered (i.e., 
predictable) or disordered (i.e., unpredictable). Entropy analysis is 
a statistical measure that quantifies the overall tendency (i.e., 
amount of predictability) of a time series [34]. Entropy has been 
used across a variety of domains to measure random and ordered 
processes [15, 17, 34, 35, 38]. In the current study, Entropy is 
used to gain a deeper understanding of how changes in students’ 
affective states across time may reflect ordered and disordered 
processes. To calculate Entropy, we applied the affect, behavior, 
and knowledge series produced from the models discussed above, 
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to data from school years 2004-2005 and 2005-2006. Entropy was 
then calculated using the following (standard) formula:  

H(x)= -

Within the Entropy equation, P(xi) represents the probability of a 
given affective state. For instance, the Entropy for student X is the 
additive inverse of the sum of products calculated by multiplying 
the probability of each affect state by the natural log of the 
probability of that state. This formula affords the ability to capture 
the degree to which fluctuations in students’ affect, behavior, 
knowledge, and correctness are ordered or disordered.  

2.4.2 Hurst 
While Entropy provides an overall quantification of a time series, 
it does not calculate how each moment in the time series may be 
related to the next. Thus, a more fine-grained analysis is needed to 
examine how fluctuations in students’ affect, behavior, 
knowledge, and correctness manifest and change across time. To 
classify the tendency of students’ affective states, Hurst exponents 
were calculated using Detrended Fluctuation Analysis (DFA) 
[26]. To calculate the Hurst exponent, the DFA integrates the 
normalized time series and then divides the series into equal 
intervals of length, n. Each interval is then fit with a least squares 
line and the integrated time series is detrended by subtracting the 
local predicted values (i.e., least square lines for each interval) 
from the integrated time series. The procedure is repeated for 
intervals of different lengths, increasing exponentially by the 
power of 2. Finally, each interval size is assigned a characteristic 
fluctuation, F(n), that is calculated as the root mean square 
deviation of the integrated time series from local least squares 
lines. Log2 F(n) is then regressed onto log2(n); which produces the 
slope of the regression line or Hurst exponent, H. Hurst exponents 
range from 0 to 1 and can be interpreted as follows: 0.5 <H ≤ 1 
indicates persistent (controlled) behavior, H = 0.5 signifies 
random (independent) behavior, and 0 ≤ H< 0.5 denotes anti-
persistent (reversion to the mean) behavior. 

2.5 Predictive Modeling of State Test Scores 
Prior work has shown that student usage choices while receiving 
tutoring in ASSISTments can predict as much of the variance in 
students’ end-of-year state test scores as student performance can 
on items designed to assess test-related knowledge [16, 28]. It has 
also been shown that machine-learned and fine-grained 
assessments of affect and behavior can improve predictions of test 
score performance [24]. We extend this further and explore the 
value of also understanding the role of the degree of 
order/disorder of interaction (through occurrences of affect, 
behavior, knowledge, and correctness) in predicting student 
learning outcomes as reflected by students’ end-of-year 
standardized examination scores.  
After obtaining the aggregate student-level Hurst and Entropy 
scores for each student’s patterns of affect, behavior, knowledge, 
and correctness, we examined how the degree of variation in the 
students’ interaction patterns within ASSISTments was related to 
their MCAS math performance. We further examined these 
relations by conducting linear regression analyses on the students’ 
MCAS math performance. We fit a cross-validated (6-fold, 
student-level) machine-learned model using linear regression with 
M5’ feature selection to examine how students’ dynamical
assessments of interaction were predictive of their MCAS math 
scores. We generated reduced linear regression models that used 
three feature sets: (1) Hurst scores of interaction only, (2) Entropy 

scores of interaction only, and (3) both Hurst and Entropy scores 
of interaction. We then compared their cross-validated model 
performances and evaluated the features in the model with best 
performance values. 

3. RESULTS 
3.1 Hurst, Entropy, and State Test Scores 
We first explore the relations between the MCAS scores for math 
and students’ interaction patterns (i.e., their Hurst and Entropy 
scores) by examining the graphs of student proficiency (from 
MCAS performance) and the corresponding trends in Hurst and 
Entropy values. We grouped the students according to their scaled 
score groupings of Failing, Needs Improvement, Proficient, and 
Advanced, then computed for the average values of their Hurst 
and Entropy scores for affect, behavior, knowledge, and 
correctness in ASSISTments.  
The graph of test proficiency and entropy measures (Figure 3) 
shows that low-achieving and high-achieving students experience 
fluctuations in affect, behavior, knowledge, and correctness while 
using ASSISTments in varying degrees. Students who have higher 
MCAS scores (i.e., Advanced) exhibited less fluctuation (lower 
entropy score) in their frustration (F(3,1372) = 56.009, p< 0.001,
adjusted  = 0.013), engaged concentration (F(3,1372) = 27.334, 
p< 0.001, adjusted  = 0.023), off-task behavior ( 2(3) = 64.089,
p< 0.001, adjusted  = 0.030), and gaming the system ( 2(3) = 
238.350, p< 0.001, adjusted  = 0.007), but more fluctuation 
(higher entropy score) for boredom ( 2(3) = 26.999, p< 0.001,
adjusted  = 0.040), confusion ( 2(3) = 29.759, p< 0.001, adjusted 

 = 0.033), correctness ( 2(3) = 185.310, p< 0.001, adjusted =
0.010), and knowledge ( 2(3) = 639.111, p< 0.001, adjusted =
0.003). [We used one-way ANOVA (F-test) for features with 
equal group variances, and Kruskal-Wallis test ( 2 test) for 
features with unequal group variances.] 

Figure 3. Entropy Scores by MCAS Test Score Category.
These trends suggest that students who performed better in MCAS 
showed overall consistency across time in exhibiting engaged 
concentration, frustration, off-task behaviors, and gaming the 
system, and an overall higher degree of variability across time in 
exhibiting boredom, confusion, correctness, and knowledge. It is 
possible that highly successful students may be more aware of 
their engaged concentration, frustration, off-task, and gaming 
behaviors within the system, compared to their awareness of the 
other constructs. Indeed, students who have achieved a higher 
level of proficiency or mastery of the material may also be more 
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efficient at controlling and maintaining the negative learning 
behaviors, and be more engaged. Interestingly, successful students 
show more variability, indicative of less control, in their boredom, 
confusion, correctness, and knowledge, possibly due to the nature 
of the learning task. These successful students may find some 
problems within ASSISTments too easy or too difficult with 
respect to their skills, causing them to experience varying degrees 
of boredom and confusion across time. In other words, the 
environment may be a major driver of the variability in these 
constructs. Another possibility comes from results in [24], where 
more successful students were more likely to be bored or confused 
when answering original problems, and less bored and confused 
when answering scaffolding problems. These successful students 
may also be overconfident in answering problems and become 
careless [32], exhibiting varying degrees of correctness and 
knowledge across time. 
These relationships suggest that students with higher year-end 
exam scores were able to control their engagement by becoming 
less off-task and more consistent in overcoming their frustration 
and avoiding gaming the system, and be more engaged during 
their time in ASSISTments. However, a relevant area of future 
work may be to investigate whether the fluctuations across time 
for our interaction features are more a function of students’ 
individual differences (e.g. proficiency) and their ability to control 
their learning behaviors [38], or a function of the learning task 
(e.g. type of problem, difficulty, etc.) and the learning behaviors it 
elicits from the students. 
While Figure 3 shows the intensity or strength of fluctuations of 
our constructs across the entirety of student usage of 
ASSISTments, it does not demonstrate behavior of these 
fluctuations in fine-grained moments (i.e., persistence or anti-
persistence of these constructs; how rapid were the fluctuations?). 
This is where looking at the Hurst measures of our constructs 
comes in useful. Figure 4 shows the graph of test proficiency and 
Hurst measures, where students who have higher MCAS scores 
achieved lower Hurst scores for engaged concentration ( 2(3) = 
134.719, p< 0.001, adjusted  = 0.017), frustration (F(3,1372)= 
27.543, p< 0.001, adjusted  = 0.020), off-task behavior ( 2(3) = 
70.736, p< 0.001, adjusted  = 0.027), and confusion (F(3,1372)= 
9.969, p< 0.001, adjusted  = 0.037), while higher Hurst scores 
for knowledge ( 2(3) = 23.935, p< 0.001, adjusted  = 0.043) and 
gaming the system ( 2(3) = 12.425, p= 0.006, adjusted =
0.047). 

Figure 4. Hurst Scores by MCAS Test Score Category. 

This trend in Hurst scores suggests that students who scored high 
on the MCAS had greater tendency to vary their behaviors,
indicative of their actively adapting their learning behaviors. They 
instead showed regulation strategies in their ability to bounce 
back from frustration, resolve their confusion, and to re-engage 
after going off-task. Interestingly, more successful students show 
more mean reversion in engaged concentration than less 
successful students. Thus, more successful students were more 
variable in their engaged concentration (higher probability of 
concentration at one moment, lower probability of concentration 
on the next). Along with the Hurst scores for confusion, off-task 
and frustration, this Hurst trend for engaged concentration may 
indicate that students who began to feel confused or frustrated 
switched their focus and went off-task. Conversely, the trend for 
more successful students showed less variability in their display 
of knowledge and gaming the system behavior, which would 
suggest their ability to maintain their high level of knowledge and 
to not game the system. An understanding of the differences of 
rate of momentary fluctuations provides a lens on how students 
who vary in proficiency are able to effectively manage and adjust 
their affect, behavior, and knowledge within a learning task. It
suggests that in the case of ASSISTments, it may be beneficial to 
teach less successful students strategies for quickly bouncing back 
from being off-task or ways to resolve their confusion and 
frustration.
We examine the significance of these differences in trends further 
by looking at the Pearson correlations between MCAS test scores 
and student Hurst and Entropy scores for affect, behavior, 
knowledge, and correctness (Table 1). We also utilize the 
Benjamini and Hochberg false discovery rate post-hoc correction 
to adjust the required alpha for significance and to reduce the 
occurrence of false positives, controlling for inflation of Type 1 
error [8].

Table 1. Correlations with MCAS State Test Scores                         
(** - significant, p < 0.01; * - significant, p < 0.05) 

Hurst and Entropy Features r p-value Adjusted 

Knowledge-Entropy .705** <0.001 0.003

Gaming-Entropy -.441** <0.001 0.007

Concentrating- Hurst -.324** <0.001 0.010

Frustration-Entropy -.314** <0.001 0.013

Correctness-Entropy .275** <0.001 0.017

Frustration- Hurst -.252** <0.001 0.020

Off-task-Entropy -.211** <0.001 0.023

Concentrating-Entropy -.206** <0.001 0.027

Off-task- Hurst -.183** <0.001 0.030

Confusion- Hurst -.160** <0.001 0.033

Bored-Entropy .139** <0.001 0.037

Bored-Hurst -.100** <0.001 0.040

Knowledge- Hurst .076** 0.005 0.043

Confusion-Entropy .076** 0.005 0.047

Gaming- Hurst .059* 0.029 0.050

Correctness-Hurst N/A N/A N/A
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Table 1 shows that there are statistically significant, and 
reasonably strong relations between MCAS performance and 
Entropy measures of boredom, engaged concentration, confusion, 
frustration, off-task, gaming behavior, knowledge and correctness,
and Hurst measures of boredom, engaged concentration, 
confusion, frustration, off-task, gaming behavior and knowledge.
Note that for correctness only an Entropy score was calculated as 
it was a dichotomous measure of a student’s answer (1 – correct, 0 
– incorrect), and Hurst was not calculated for correctness as Hurst 
becomes less accurate when the inputs in the time series are 
discrete rather than continuous (which our other features are). 

3.2 Prediction of State Test Scores  
To examine the relations of these dynamical measures to MCAS 
performance, we conducted regression analyses to evaluate the 
predictive power of these measures (Table 2). 

Table 2. State Test Score Model Performance Values Using 
Different Feature Sets (feature count is after feature selection)

Feature Set R R2 RMSE Number of 
Features

Hurst Features Only 0.400 0.160 11.251 5

Entropy Features Only 0.762 0.581 7.941 6

Both Hurst and Entropy 
Features

0.768 0.590 7.862 9

Combined, Hurst and Entropy assessments of affect, behavior, 
knowledge and correctness within ASSISTments are predictive of 
long-term performance (end-of-year state test score, MCAS) with 
reasonably high model performance. This finding shows that 
when our automated detectors of affect, behavior, and knowledge 
are applied at scale, the patterns generated are significantly related 
to learning outcomes. The specific patterns and contexts in which 
these interactions occur, however, remain to be further analyzed - 
for example using methods such as sequential pattern mining or 
recurrence analysis. Moreover, it is also worth noting that despite 
the interesting findings discussed above, the model created from 
dynamical assessments of machine-learned measures of 
interaction is not much better than a model created from just 
averaging our interaction features per student (for our sample, this 
model had a cross-validated R = 0.764) [24]. This suggests that 
averaging remains a good tool for predicting standardized exam 
scores, though it does not shed as much light on the phenomena of 
interest compared to the approach discussed here. 
Optimized for predictor significance and model performance, our 
final model (Table 3) consists of either Hurst or Entropy scores 
(or both) of boredom, engaged concentration, confusion, 
frustration, gaming the system, knowledge, and correctness being 
predictive of MCAS performance.  
Our final model leverages the relationships between MCAS and 
Hurst and entropy measures previously found. Stronger 
fluctuations across time for knowledge and correctness (positive 
coefficient for Entropy), and less persistence or quicker reversions 
in knowledge and engaged concentration (negative coefficient for 
Hurst), are associated with higher test scores for students. 
Furthermore, weaker fluctuations across time for boredom, 
confusion, gaming the system, and frustration (negative 
coefficient for Entropy), and more persistence or slow fluctuations 
for gaming the system (positive coefficient for Hurst), are 
associated with higher test scores for students. These relationships 
suggest that students with higher year-end exam scores were able 

to control their engagement by resolving their confusion, 
bouncing back from being bored, overcoming their frustration, 
and to show active learning, and be more consistent in not gaming 
the system during their time in ASSISTments.   
Table 3. Final Model of Hurst and Entropy Scores Predicting 

State Test Scores

Predictors B Std. 
Error t Sig

(Constant) 28.821 3.258 8.845 <0.001

Correctness-Entropy 39.566 4.672 8.469 <0.001

Concentrating-Hurst -34.185 10.738 -3.183 0.001

Gaming-Hurst 22.952 6.853 3.349 0.001

Knowledge-Hurst -22.935 4.579 -5.009 <0.001

Bored-Entropy -21.318 2.773 -7.687 <0.001

Frustration-Entropy -17.874 1.892 -9.447 <0.001

Knowledge-Entropy 17.463 0.723 24.169 <0.001

Gaming-Entropy -9.371 1.126 -8.320 <0.001

Confusion-Entropy -6.157 1.803 -3.416 0.001

4. DISCUSSION AND CONCLUSION 
In this paper, we utilized dynamical methodologies to investigate 
how nuanced patterns of affect, behavior, knowledge, and 
correctness were related to and predictive of students’ end-of-year 
exam scores. Fine-grained models of student affect (boredom, 
engaged concentration, confusion, frustration) behavior (off-task 
behavior, gaming the system), and knowledge were applied to 
data from 1,376 students who used an educational software in 
mathematics over the course of a year during their middle school 
to generate interaction features. We then utilized dynamical
measures of Hurst exponents and Entropy analysis to quantify the 
degree of randomness (or non-randomness) present within 
patterns of these interaction patterns. 

Our results show that these dynamical assessments of students’ 
interactions throughout the year (affect, behavior, knowledge, and 
correctness) are significantly associated with their end-of-year 
performance in a state test. Entropy scores of students for all of 
our interaction features showed significant differences between 
students in varied test proficiencies (as measured by the year-end 
exam). Across time, the more control a student demonstrated in 
frustration, engaged concentration, off-task behaviors, and gaming 
the system behaviors, as well as more flexibility in boredom, 
confusion, knowledge and correctness, the higher the student 
scored on the year-end exam. Students’ Hurst scores also showed 
significant relations with the learning outcome, where students 
with more occurrences of fluctuations for engaged concentration, 
confusion, frustration, and off-task behaviors, and more 
persistence for knowledge and gaming the system were likely to 
perform better. These relations were supported by these 
dynamical assessments being predictive of performance in the 
end-of-year state test. 

It is notable that most Hurst exponent values fell well below 0.5, 
indicating that overall, fine-grained machine-learned estimates of 
affect, behavior, knowledge in the system interaction of the 1,376 
students are not random, and according to students’ state or the 
learning task within the system, students show signs of switching 
between various degrees of affect, behavior, and knowledge over 
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time. In the future, it may be useful to examine sequential patterns 
of each interaction feature, looking also at the context and 
circumstances in the usage of the system that lead to students 
having increasing or decreasing occurrences (as well as points of 
inflection) in affect, behavior, and knowledge. The Hurst and 
Entropy may be able to be used in real-time to capture these 
affective changes and then provide feedback to a user model (or 
teacher) about the student. Less successful students may be made 
aware of their learning behaviors so they may more effectively 
regulate them, in particular for frustration, confusion, off-task-
behavior, and gaming the system. They may also be taught 
strategies to more quickly bounce back from being off-task or 
even resolve their frustration and confusion.  

Overall, these exploratory findings obtained when we dynamically 
assess the measures of interaction take a step further in evaluating 
how fine-grained machine-learned assessments of affect, 
behavior, and knowledge relate to learning outcomes. Looking at 
patterns using a combination of machine-learning techniques 
provides an avenue for observing the degree to which students 
regulate their actions in a learning task. Self-regulation research 
shows that when students are motivated to achieve learning goals 
they are more likely to regulate their behaviors [7]. This current 
study provides a preliminary lens on how dynamic measures of 
fine-grained series of distinctive affect (academic emotions) and 
behavior (engagement) are reflective of students’ emotional and 
motivational regulation within a learning environment [9, 18], as 
well as the roles of affect and behavior on self-regulated learning 
[25]. 
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