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A typical mathematics assignment consists primarily of practice problems requiring the strategy intro-
duced in the immediately preceding lesson (e.g., a dozen problems that are solved by using the
Pythagorean theorem). This means that students know which strategy is needed to solve each problem
before they read the problem. In an alternative approach known as interleaved practice, problems from
the course are rearranged so that a portion of each assignment includes different kinds of problems in an
interleaved order. Interleaved practice requires students to choose a strategy on the basis of the problem
itself, as they must do when they encounter a problem during a comprehensive examination or subsequent
course. In the experiment reported here, 126 seventh-grade students received the same practice problems
over a 3-month period, but the problems were arranged so that skills were learned by interleaved practice
or by the usual blocked approach. The practice phase concluded with a review session, followed 1 or 30
days later by an unannounced test. Compared with blocked practice, interleaved practice produced higher
scores on both the immediate and delayed tests (Cohen’s ds � 0.42 and 0.79, respectively).
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The ongoing effort to improve students’ mathematics profi-
ciency has included a wide variety of interventions. Some are
rooted in theoretical models of cognition, some are designed to
eliminate misconceptions, and still others aim to reduce students’
mathematics anxiety. Here we describe an intervention that is
inspired by what is perhaps the simplest principle of learning: the
practice of a skill improves the performance of that skill. It might
seem that this robust maxim is already widely used in the math-
ematics classroom because nearly all teachers assign practice prob-
lems like the ones appearing on tests. However, most practice
assignments are arranged in a way that simplifies the solution to
each problem, and this crutch is usually not available to students
when they are tested.

To see why this is the case, we must first point out that the
solution to nearly any mathematics problems includes two distinct
steps, as illustrated by the following problem.

A girl hikes 8 km east and then 15 km north. How far is she from
her starting point?

This problem is solved by the Pythagorean theorem (the answer
is 17 km because the unknown distance is the hypotenuse of a right
triangle, and 82 � 152 � 172). However, before students can use

the Pythagorean theorem to solve this problem, they must first
infer that they should use it. In other words, the solution to a
mathematics problem requires students to choose a strategy, not
only execute the strategy, and students often find the choice of
strategy to be more challenging than its execution (e.g., Kester,
Kirschner, & van Merriënboer, 2004; Siegler, 2003; Siegler &
Shrager, 1984). In formal terms, the choice of an appropriate
strategy requires students to both discriminate between different
kinds of problems (i.e., problems requiring different strategies) and
associate each kind of problem with an appropriate strategy (Fig-
ure 1).

The choice of an appropriate strategy is often difficult because
superficially similar problems sometimes require different strate-
gies (e.g., Chi, Feltovich, & Glaser, 1981; Siegler, 2003). For
example, word problems often lack explicit cues that indicate the
kind of problem it is. For example, the previous word problem
required the Pythagorean theorem, but the problem did not include
any mention of the Pythagorean theorem or the words triangle or
hypotenuse. In algebra, students must solve equations, but the
instruction “Solve for x” does not indicate which of the different
strategies is useful (e.g., factoring, quadratic formula, and so on).
Similarly, much of calculus is devoted to integration, and students
must learn to discriminate between problems that look alike yet
require different integration techniques (e.g., �ex e dx and �xe x dx). In
short, students at nearly every level of mathematics must learn to
discriminate between different kinds of problems with similar
surface features.

Yet students need not learn to choose a strategy when every
problem within a practice assignment requires the same strate-
gy—an approach known as blocked practice. With blocked prac-
tice, students know the strategy before they read the problem. For
example, if a lesson on proportions is followed by a dozen word
problems requiring students to create a proportion, students need
not learn which features of a problem indicate that it can be solved
by a proportion. In short, blocked practice does not provide stu-
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dents with an opportunity to choose an appropriate strategy on the
basis of the problem itself, and yet they must perform this skill
when they sit for an exam consisting of multiple kinds of prob-
lems.

Blocked practice can dramatically reduce the difficulty of a
mathematics problem, partly because students need not discrimi-
nate between problems requiring different strategies. Consider this
example.

Chloe baked 24 cookies. Her father ate 10 of the cookies. How
many cookies remain?

This problem is solved by simple subtraction (24 – 10 � 14), but
students who are capable of subtraction may not be able to infer
that they should subtract, possibly because the problem does not
include cues such as the words subtract or difference. However, if
this problem follows other problems requiring subtraction, stu-
dents know the strategy in advance. In fact, they could solve this
problem without reading anything other than the two integers (24
and 10). Put another way, blocked practice sometimes allows
students to solve word problems without reading any words.

Aside from excusing students from having to discriminate be-
tween different kinds of problems, blocked practice can also im-
pede the learning of the association between a problem and an
appropriate strategy. For example, the instruction “Find the perim-
eter” indicates unambiguously that the problem is solved by add-
ing the lengths of the sides of the given polygon (e.g., a square
with sides of length 3), and this salient feature of the problem
presumably makes it easier for students to recognize what kind of
problem it is (perimeter problem). Yet, if a practice assignment
includes a block of perimeter problems, students can solve each
problem without reading or attending to the instruction “Find the
perimeter.” This repeated failure to perceive the word perimeter
weakens the association between the kind of problem (perimeter)
and the strategy (add the lengths of the sides). In effect, blocked
practice allows students to complete an assignment without being
aware of the kind of problem they were solving.

Blocked mathematics practice is prevalent. We inspected sev-
eral commonly used middle school mathematics textbook series
and found that most of the practice problems in each textbook
appear in a block of problems devoted to the same concept or
procedure. In particular, the prototypical assignment may in-

clude problems in a variety of formats (e.g., procedural prob-
lems, word problems, open-ended questions, and standardized test
practice problems), but most of the practice problems are dedicated
to the immediately preceding lesson. In some of the textbooks,
each practice assignment consists of many dozens of problems
(sometimes more than 100, presumably so that teachers can choose
a subset of problems), and the latter portion of each assignment
includes a group of between five and 10 problems drawn from
previous lessons and grouped within a section labeled Mixed
Review or Spiral Review. However, these review problems com-
prised less than 15% of the total number of practice problems in
our informal survey. It is also true that many textbooks include
periodic review assignments, usually at the end of a chapter,
although these assignments typically include a small block of
problems for each lesson (e.g., a few problems based on the first
lesson of the chapter, followed by a few problems based on the
second lesson, and so forth). Moreover, the traditional mathemat-
ics textbook is increasingly supplemented or replaced by a “con-
sumable workbook,” in which students are asked to write their
solutions on tear-away pages, and our survey indicates that these work-
books rely more heavily on blocked practice than do the textbooks.
Unfortunately, the predominance of blocked practice cannot be
precisely gauged because teachers may omit parts of the materials
adopted by their school or school district, or they might choose
their own materials (e.g., assignments freely downloaded from the
Internet). Nevertheless, it appears that the vast majority of math-
ematics students devote most of their practice effort to blocked
practice. For that reason, blocked practice served as the control in
the present study.

In an alternative approach that served as the intervention in the
present study, practice problems are merely rearranged so that a
portion of each assignment includes a set of different kinds of
problems presented in an intermixed order—a technique known as
interleaved mathematics practice (e.g., Higgins & Ross, 2011;
Richland, Bjork, Finley, & Linn, 2005; Richland, Linn, & Bjork,
2007; Rohrer & Taylor, 2007; Schmidt & Bjork, 1992). With
interleaved practice, students must learn to choose the strategy on
the basis of the problem itself. One hypothetical illustration of
interleaved mathematics practice is shown in Figure 2.

Figure 1. The solution of a mathematics problem. Students must learn to choose a strategy and execute the
strategy. The choice of an appropriate strategy requires that students discriminate between different kinds of
problems and associate each kind of problem with an appropriate strategy. Students do not need to choose a
strategy if every practice problem within an assignment requires the same strategy (blocked practice).
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In addition to the juxtaposition of different kinds of problems
within the same assignment, interleaved practice guarantees that
problems of the same kind are distributed or spaced across differ-
ent assignments (Figure 2). Dozens of studies have demonstrated
that spacing improves classroom learning, and the effect of spacing
is one of the largest and most robust effects in the learning
literature (e.g., for recent reviews, see Cepeda, Pashler, Vul,
Wixted, & Rohrer, 2006; Dunlosky, Rawson, Marsh, Nathan, &
Willingham, 2013; Küpper-Tetzel, 2014; Roediger & Pyc, 2012).
Furthermore, several studies have shown that spacing can improve
the learning of mathematics (Bahrick & Hall, 1991; Gay, 1973;
Grote, 1995; Rohrer & Taylor, 2006, 2007; Yazdani & Zebrowski,
2006). In the creation of interleaved mathematics assignments, the
spacing intervals between consecutive problems of the same kind
might expand, meaning that a particular kind of problem might
appear initially in each of several consecutive assignments and
then turn up with decreasing frequency thereafter, as in the hypo-
thetical illustration in Figure 2. Alternatively, the spacing interval
between consecutive problems of the same kind may be fixed so
that problems of the same kind appear once every, say, week or
two, as in the present study. (There is some debate about whether
equal or expanding spacing intervals are more effective, and the
optimal choice seemingly depends on a variety of circumstances,
e.g., Balota, Duchek, & Logan, 2007; Küpper-Tetzel, 2014; Storm,
Bjork, & Storm, 2010). To summarize, interleaved mathematics
practice has two beneficial features: problems of different kinds
are juxtaposed, which requires students to choose a strategy, and
problems of the same kind are spaced, which improves retention.

The earliest studies of interleaved practice examined its effects
on skill learning (e.g., Hall, Domingues, & Cavazos, 1994; Shea &
Morgan, 1979). For instance, in the study reported by Hall et al.,
college baseball players practiced hitting three types of pitches
(fastball, curveball, and change-up) that were either blocked by
type or interleaved, and interleaved practice led to better hitting on

a final test requiring batters to hit pitches of all three types without
knowing the type of pitch in advance, just as they would need to
do in a game. This kind of batting test is analogous to a mathe-
matics test in which students do not know the kind of problem in
advance.

With regard to mathematics learning, we know of five studies of
interleaved practice, and four of these studies were conducted in a
nonclassroom setting. In the first of these studies, Mayfield and
Chase (2002) had remedial college students learn several simple
algebraic rules (e.g., x5 x2 � x7) with a practice schedule that
provided either interleaved or blocked practice, and interleaved
practice produced superior test scores (effect size unknown). Al-
though the two groups of students in this study did not receive
exactly the same problems or even the same number of problems
because the study was not designed to assess interleaved practice,
we believe it is the first demonstration of a mathematics interleav-
ing effect. In a later study that explicitly compared interleaved and
blocked practice, Rohrer and Taylor (2007) taught college students
to find the volume of several obscure solids (e.g., spheroid and
spherical cone) and found a positive interleaving effect on a test
given 1 week later (Cohen’s d � 1.34). This finding was later
replicated (with the same materials but a different procedure) by
Le Blanc and Simon (2008), who found a large interleaving effect
(�p

2 � .32) and further observed that interleaving improved stu-
dents’ ability to predict their test scores. Finally, Taylor and
Rohrer (2010) taught fourth-grade students how to solve problems
relating to prisms (e.g., “Find the number of faces on a prism with
a 5-sided base”), and they found that a session of interleaved
practice (rather than blocked practice) led to greater scores on a
test given 1 day later (d � 1.21).

Most recently, Rohrer, Dedrick, and Burgess (2014) assessed
the effects of interleaved mathematics practice in a classroom-
based experiment. Seventh-grade students received a dozen prac-
tice problems of each of several kinds that were interleaved or

 Assignment  

 25 26 27 28 29 30     35     40          50

4 problems 
on the skill 

learned 
that day 

1 �� � � � � � � � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � � � � � � � � � � � � �

1 problem 
on each of 
8 different 

skills 
learned 

previously  

5 � � � � � � � � � � � � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � � � � � � � � � � � � �

10 ▮ � � � � � � � � � � � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � � � � � � � � � � � � �
12 	 � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 2. Interleaved mathematics practice. In this hypothetical illustration, Assignment 25 includes a small
block of four problems (squares) and eight problems of interleaved practice (non-squares). For example, if
Assignment 25 follows a lesson on proportions, it would include four problems on proportions and one problem
on each of eight different skills learned earlier in the course or during a prior course. Eight additional proportion
problems are distributed across subsequent assignments. The empty squares are placeholders for unidentified
kinds of problems.
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blocked, and interleaved practice produced greater scores on a
final test (d � 1.05). Unlike the kind of problems used in previous
studies of interleaving, the different kinds of problems were su-
perficially dissimilar (e.g., proportion word problems, solving a
linear equation, graphing equations), showing that the benefits of
interleaving are not necessarily limited to scenarios in which
students see only similar kinds of problems like those chosen in the
laboratory studies summarized previously.

The present study differed from previous studies of interleaved
mathematics practice in two fundamental ways. First, in the pres-
ent study, the last practice assignment was followed by a review.
Though seemingly innocuous, the inclusion of a review addresses
a weakness that is inherent in a design comparing interleaved and
blocked practice. Without a review, the use of interleaved rather
than blocked practice intrinsically shortens the delay between the
last practice problem of each kind and the test, as illustrated by the
hypothetical illustration in Figure 2. This confounding works in
favor of interleaved practice because shorter test delays improve
test scores. The inclusion of a review in the present study therefore
equated the delay between the final practice problem and the test,
as shown in Figure 3. However, even with a review, most of the
practice problems appeared later in the experiment if practice
problems were interleaved rather than blocked, although this dif-
ference is arguably an intrinsic benefit of interleaved practice.

Furthermore, the inclusion of a review in the present study
means that the blocked practice condition is a more suitable
counterfactual. This is because even teachers who rely heavily on
blocked practice assignments often give their students a review
before a cumulative exam or high-stakes test. For instance, al-
though students might have added fractions in only the first week
of the school year, a review provides one more dose shortly before

the test. This in turn guarantees that these students benefit from
spaced practice. In brief, the inclusion of a review ensures that the
counterfactual used in the present study will be more effective and
more characteristic of prevailing teaching practices than that used
in previous studies of interleaving.

The second difference between the present study and previous
interleaving studies is that the present one included an independent
manipulation of test delay (1 or 30 days). This was done so that we
could assess whether the benefits of interleaved practice decrease
over time. Such a finding would dramatically curtail the utility of
interleaved practice, and this possibility is not a straw man hy-
pothesis. In fact, even some recommended learning strategies
produce a boost in test scores that decreases markedly within a few
weeks (e.g., Driskell, Willis, & Cooper, 1992).

In the experiment reported here, seventh-grade students saw
their teachers’ usual lessons and received assignments that we
created. Every student received the same problems, but the sched-
uling of the problems was altered so that students received blocked
or interleaved practice. Later, students received a review, followed
1 or 30 days later by an unannounced test.

Method

Participants

The study took place at a large public middle school in Tampa,
Florida, during the 2013–2014 school year. Three mathematics
teachers and nine of their seventh-grade classes participated. Each
of the teachers had taught middle school mathematics for more
than 5 years. The participating classes included only students who
had received a passing score (3 or higher on a scale from 1 to 5)
on the Grade 6 mathematics section of the 2013 Florida Compre-
hensive Assessment Test (FCAT, Version 2.0; Florida Department
of Education, Bureau of K–12 Assessment, 2014), which they had
taken in April 2013, near the end of the previous school year. A
passing score on this test was achieved by 58% of the sixth-grade
students at the participating school and by 52% of the sixth grade
students in the state (Florida Department of Education, 2013).

Participation in the study required documentation of parent
permission and student assent, which we received from 150 of the
164 students in the participating classes. Of these 150 students,
126 (84%) attended mathematics class on both the day of the
unannounced review and the day of the unannounced test, and only
their data were analyzed. Thus, the final sample included 126
students. Nearly every student was 12 years old at the beginning of
the study, and 61 were girls (48%).

We did not ask students for information about their socioeco-
nomic background or ethnicity because of privacy concerns, but
the school district provided demographic data for the sample in
aggregate. By these data, 38% of the students received free or
reduced-price lunch, and the sample was ethnically diverse (10%
Asian, 14% Black, 22% Hispanic, 6% multiracial, and 47%
White).

Materials

Students received graph problems and slope problems, and no
student saw the same problem more than once during the experi-
ment. Graph problems required students to graph a linear equation

Figure 3. Procedure: The 10 assignments included 12 graph problems
and 12 slope problems. The 12 problems of each kind were either grouped
into a single assignment (blocked practice) or distributed across multiple
assignments (interleaved practice). The dark squares indicate the location
of the graph problems. The location of the slope problems is given in
Appendix A.
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of the form, y � mx � b, where m and b were nonzero single-digit
integers. Examples include y � 2x � 1, y � �x � 3, and
y � �3x � 2. Each problem included the instruction “Graph the
equation” and was accompanied by a Cartesian grid. Students were
permitted to use any appropriate method, but they were taught to
find points by substituting at least two x values into the equation
and find the corresponding y values. For example, for the equation
y � 2x � 1, the substitution of x � 2 yields y � 3. For slope
problems, students found the slope of the line passing through two
given points on the Cartesian plane. Each problem began with the
instruction, “Find the slope of the line that passes through the
points” followed by a pair of points such as “(1, 5) and (8, 9)” or
“(3, 1) and (9, –4).” Students were taught to find the slope by
calculating �y/�x, which is known colloquially as “rise over run.”
For example, the line passing through points (1, 5) and (8, 9) has
slope 4/7. In every slope problem, the two given points had integer
coordinates, and the slope equaled a nonzero fraction between –1
and 1.

Design

We manipulated practice schedule (interleaved or blocked) and
test delay (1 or 30 days). Test delay was manipulated by randomly
assigning each student within each class to either the 1-day or
30-day delay (n � 63 for each group). This meant that each class
included students at both test delays.

Practice schedule was a counterbalanced within-subject vari-
able. Students in Group 1 received interleaved practice of graph
problems and blocked practice of slope problems, and Group 2
received the reverse. Group 1 (n � 59) included four classes (two
taught by Teacher A, and two taught by Teacher B). Group 2 (n �
67) included five classes (two by A, two by B, and one by C).
Classes were assigned to groups as follows. Two of the classes
were designated as “honors/gifted” by the school, and these two
classes were randomly assigned to different groups. The remaining
seven classes were deemed by the school as being at the same
level, and each of these classes was randomly assigned to one of
the two groups with the constraint that teachers with more than one
participating class had an equal number of classes in each group.
The two groups scored similarly well on a test consisting of six
multiple-choice problems from the Grade-8 mathematics portion
of the National Assessment of Educational Progress, or NAEP
(National Center for Education Statistics, 2013), 76% (SD � 22%)
vs. 79% (SD � 22%), t(108) � 0.62, p � .54, Cohen’s d � 0.12.

Procedure

The study consisted of 10 practice assignments, a review ses-
sion, and a test. Each practice assignment consisted of 12 problems
presented on two sides of a single sheet of paper. The 10 assign-
ments included 12 graph problems and 12 slope problems, and the
remaining problems were drawn from unrelated topics (fractions,
proportions, percentages, statistics, and probability). Teachers pre-
sented a tutorial on the graph problems immediately before giving
Assignment 1, which included the first four graph problems, and
they presented a tutorial on the slope problems immediately before
giving Assignment 2, which included the first four slope problems.
However, the scheduling of the remaining eight graph and eight
slope problems varied. With blocked practice, students saw the

remaining eight problems immediately, which is to say that all 12
problems of a particular kind (graph or slope) appeared in the same
assignment. With interleaved practice, the remaining eight prob-
lems were distributed across subsequent assignments (Figure 3 and
Appendix A).

Students received the 10 assignments on Days 1, 6, 14, 32–33,
33 or 35, 35 or 38, 45–46, 72–75, 81–82, and 86–88. Students
were asked to complete each assignment before the following
school day, and the final practice assignment was collected by
teachers on Days 87––89. On the due date for each assignment,
teachers presented the solution to every problem with the aid of a
slide show created by the authors. As teachers presented the
solutions, students were asked to correct their errors. Teachers then
collected the assignments. Within three school days, one or more
authors visited the school and scored each student’s assignment
without making any marks on the assignments. The assignments
were then returned to the teachers.

Students’ scores on the practice assignments do not provide a
valid measure of learning because students corrected their solu-
tions before giving their assignments to their teachers. Even if
teachers had collected the assignments at the beginning of class,
the students might have received help from their parents or other
students. This ambiguity is typical of students’ mathematics as-
signments, and many teachers encourage students to seek help with
practice assignments.

Yet the scoring of the practice assignments provided an objec-
tive measure of the fidelity of the intervention (which consisted
solely of the assignments). Most important, these scoring visits to
the school revealed that each teacher distributed each of the 10
assignments to their students, and students’ self-corrected solu-
tions further demonstrated that the teachers presented the solutions
to the practice assignments. (Of course, this perfect rate of teacher
compliance might have been achieved because we collected the
assignments.) The scoring of the assignments also provided a
rough measure of student compliance. When the graph or slope
problems were blocked, students averaged 81% correct. In the
interleaved practice condition, students averaged 84% correct, and
they averaged 82% correct for the last eight of the 12 problems
(which were the only problems that were part of an interleaved
assignment, as shown in Figure 3). Thus, by this measure, the
intervention and the counterfactual produced nearly equal rates of
student compliance.

On Days 66–69, every student received a large set of review
problems created by the school district, and this review assignment
was designed to prepare students for a standardized semester exam
given to all students in the district. (The exam is taken on a
computer without the presence of a teacher, and the teachers do not
see the test items in advance.) The review assignment included two
problems on the graphing of a line and four problems on slope,
though the problems were stated differently than the ones in the
study.

Before the completion of the practice phase, teachers completed
an anonymous survey about their views on interleaved practice.
Each of the three teachers received a paper copy of the survey on
Day 66. We visited the school on Day 75 and collected an
envelope with their completed surveys. The survey is shown in
Appendix B.

Every student received the same review on Day 93, about 5 days
after teachers collected the last practice assignment (Days 87–89,
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depending on the class). The review included one graph problem,
one slope problem, and eight unrelated problems. The graph and
slope problems were the sixth and seventh problem, respectively.
Students received the review assignment at the beginning of the
class period, and teachers presented the solutions at the end of the
same class period. Teachers then collected the assignment from
students, and one of the authors collected the assignments from the
teachers at the end of that school day. The mean scores on the
review problems were slightly higher, but not statistically so, for
problems learned by interleaved practice rather than by blocked
practice (94% vs. 89%). Again, we present these data as a measure
of compliance rather than a measure of learning because, as with
the practice assignments, students were given an opportunity to
correct their solutions before turning in their assignments.

Students were tested 1 or 30 days after the review. Students
were tested during their regular class meeting, and the teacher and
one author proctored the administration of each test. For each of
the two test dates (1 and 30 days after the review), students who
were not scheduled to receive the test received a filler test con-
sisting of six math problems unrelated to the experiment, all of
which were drawn from the Grade-8 mathematics section of a
recent NAEP (National Center for Education Statistics, 2013). We
asked teachers not to inform students of the tests in advance, and
teachers did not see any test problems until the experiment was
completed. The test booklet included a cover sheet, a sheet of
paper with three graph problems, and a sheet of paper with three
slope problems. We created six versions of the test by reordering
the problems within each page, and the page with the slope
problems preceded the page with the graph problems in three of
the six versions. None of the problems had appeared in either a
practice assignment or the review. Students were allotted 18 min to
complete the test and allowed to use their school-supplied basic
calculator. Each test was scored at the school on the day of the test
by two raters who were blind to condition. The two raters inde-
pendently scored each answer as correct or not and later resolved
the few discrepancies (six in 756). Internal consistency reliabili-
ties, as measured by Cronbach’s alpha, were .89 and .77 for the
slope and graphing problems, respectively.

Results

Interleaved practice produced higher test scores than did
blocked practice (Figure 4). Students tested 1 day after the review
showed a moderate benefit of interleaving, 80% (SD � 33%) vs.
64% (SD � 42%), t(62) � 2.39, p � .02, d � 0.42, 95%
confidence interval (CI) [0.07, 0.77]. Students tested 30 days after
the review showed a large benefit of interleaving, 74% (SD �
39%) vs. 42% (SD � 43%), t(62) � 4.54, p � .001, Cohen’s d �
0.79, 95% CI [0.43, 1.15]. A two-way analysis of variance (with
practice schedule as a within-subject variable and test delay as a
between-subjects variable) showed that interleaved practice was
superior to blocked practice, F(1, 124) � 24.43, p � .001, �p

2 �
.165, and that test scores were greater at the shorter test delay, F(1,
124) � 7.69, p � .01, �p

2 � .058. However, the interaction between
practice schedule and test delay was not statistically significant,
F(1, 124) � 2.84, p � .09.

Secondarily, we analyzed the effect of interleaved practice on
test scores for the graph and slope problems separately for both the
1-day and 30-day test delays, resulting in four different compari-

sons. Each difference was assessed by an independent t test, and in
three of the four cases, the assumption of equal variances was
rejected. We therefore did not use the pooled estimate for the error
term for the t-statistic, and we adjusted the degrees of freedom
using the Welch–Satterthwaite method. This correction did not
affect the outcome of any of the four null hypothesis tests. For the
1-day test delay, interleaved rather than blocked practice resulted
in higher mean test scores for the graph problems, 89% (SD �
18%) vs. 73% (SD � 36%), t(50.6) � 2.25, p � .029, d � 0.54,
but the effect of interleaved practice on the slope problems was
positive but not statistically significant, 73% (SD � 41%) vs. 54%
(SD � 47%), t(56.0) � 1.67, p � .10, d � 0.43. For the test given
after a 30-day delay, there was a statistically significant benefit of
interleaving for both graph problems 84% (SD � 30%) vs. 54%
(SD � 44%), t(56.7) � 3.28, p � .002, d � 0.81, and slope
problems, 65% (SD � 43%) vs. 29% (SD � 39%), t(61) � 3.44,
p � .001, d � 0.87.

The results of the teacher survey are shown in Appendix B.
Although teachers responded anonymously and were encouraged
to give their honest assessments, the sample size of only three
teachers means that these data are speculative at best. Still, each
teacher indicated that he or she would “use the intervention in the
future if it was an option” and “would recommend the intervention
to other math teachers.” All three also reported that interleaved
practice did not “interfere with how [they] usually teach” and that
“going over assignments” was no harder when assignments were
interleaved rather than blocked. However, their opinions were split
when they were asked whether their students found interleaved
practice to be less likable, more challenging, or more time-
consuming than blocked practice.

Discussion

The present study explicitly compared interleaved and blocked
mathematics practice in a classroom setting and found that inter-
leaved practice produced superior scores on a final test given 1 or
30 days later. Put another way, the mere rearrangement of practice

80% 
74% 

64% 

42% 

1 day 30 days

M
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Test Delay 

Interleaved
Blocked

Figure 4. Results: Interleaving produced greater test scores at both test
delays. Error bars represent 1 standard error. See the online article for a
color version of this figure.
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problems improved mathematics learning in the classroom. The
study is also the first to demonstrate that the test benefit of
interleaving does not diminish over time and perhaps grows larger.
Finally, apart from its superiority to blocked practice, interleaved
practice provided near immunity against forgetting, as the 30-fold
increase in test delay reduced test scores by less than a tenth (from
80% to 74%).

Although the size of the effects might seem surprisingly large
for a study conducted in a classroom, the effect sizes observed here
are nevertheless much smaller than interleaving effects observed in
the laboratory. Whereas the effects in the present study were
medium to large (ds � 0.42 and 0.79), laboratory studies of
interleaving have uniformly found larger effects (d � 1.34, d �
1.21, and �p

2 � .32; see introduction). In brief, the present findings
are an instantiation—not a violation—of the adage that an inter-
vention loses some of its efficacy when it is moved from the
laboratory to the classroom (e.g., Hulleman & Cordray, 2009).

Another reason for the large effects of interleaving observed
here and elsewhere is that interleaved mathematics practice inher-
ently guarantees that students space their practice. That is, in
addition to the juxtaposition of different kinds of problems within
an assignment, problems of the same kind are spaced across
assignments. However, the review session in the present study
meant that even the blocked practice condition provided spacing,
although to a lesser degree than that provided by the interleaved
practice condition (Figure 3). In brief, the large effect observed
here probably reflects the spacing effect, which is an inherent
benefit of interleaved mathematics practice, but the contribution of
spacing might have been reduced by the use of a review session.

The large effects notwithstanding, the present study has limita-
tions. For instance, although the test problems were novel, the test
problems and practice problems had the same format, and the
observed effects might have been smaller if the test problems had
required a greater degree of transfer. Also, the test benefit of
interleaving might have been reduced if the review had included
more than one problem of each kind (graph problem and slope
problem), simply because a more intensive review session might
have benefitted the blocked practice condition more than it did the
interleaved practice condition. More broadly, it remains unknown
whether the interleaving effects observed here would be found in
a study with a wider variety of material and a greater number of
teachers and students. Still, the ecological validity of the present
study was reasonably good. Students learned from their teachers,
the learning phase lasted 3 months, and the 1-month test delay was
educationally meaningful.

We also should emphasize that the findings reported here do not
suggest that blocked practice be avoided entirely. In fact, a small
block of problems might be optimal, especially at the outset of an
assignment given immediately after students are introduced to that
kind of problem, perhaps because it gives students an opportunity
to focus on the execution of a strategy (e.g., procedural steps and
computation). Yet students who work more than a few problems of
the same kind in immediate succession are likely to receive sharply
diminishing returns on their additional effort (e.g., Rohrer &
Taylor, 2006; Son & Sethi, 2006).

Although most mathematics textbooks rely heavily on blocked
practice, the Saxon series of mathematics textbooks include as-
signments with mostly interleaved practice (e.g., Saxon, 1997).
Nevertheless, findings like the one reported here do not necessarily

suggest that Saxon texts produce higher test scores than do non-
Saxon texts. This is because Saxon texts differ from non-Saxon
texts in a number of ways other than the use of interleaved
practice, and one or more of these other unique features may work
against the efficacy of a Saxon text. In Saxon texts, for example,
even the lessons are intermixed so that lessons on related topics
(e.g., prism, cylinder, pyramid, and cone) do not appear consecu-
tively—a feature that is not supported by the present study. Inci-
dentally, Saxon texts have been criticized by some educators
because of their purported emphasis on the mastery of procedures
at the expense of conceptual understanding (e.g., Kamii & Domin-
ick, 1998). However, we emphasize that this criticism of Saxon
texts is orthogonal to the efficacy of interleaved practice. None of
the authors of the present study have ever had any affiliation with
Saxon textbooks.

Interleaved mathematics practice appears to be a feasible inter-
vention. Creators of mathematics textbooks or instructional soft-
ware need only rearrange practice problems before releasing the
next edition, without altering the problems or lessons. Classroom
implementation would also seem to require relatively little effort
from teachers because they need not alter their classroom lessons
or the manner in which they solve a particular problem. The
intervention would also presumably require little or no teacher
training, although teacher buy-in might require that teachers un-
derstand the logic underlying interleaved practice (namely, that it
requires students to choose a strategy and not merely repeat the
strategy used in the previous practice problem). The feasibility of
an intervention also depends on whether students and teachers like
it, yet little is known about the likability of interleaved practice.
The few teachers in the present study indicated that they liked
interleaved practice, even before the study was complete (i.e.,
before they learned of the intervention’s efficacy), but their views
might have been biased because of their close involvement with
the project. Also, the present study did not include a survey of the
students. Future research is needed to better gauge both students’
and teachers’ perceptions of interleaved practice.

Apart from its efficacy and feasibility, interleaved mathematics
practice might be useful at all levels of mathematics, and this
potential breadth contributes as much to the impact of an inter-
vention as does its efficacy. Indeed, benefits of interleaved practice
have been consistently observed with a variety of mathematics
skills and with students in elementary school, middle school, and
college. As argued here, these benefits arise because interleaved
practice provides students with an opportunity to learn how to
choose an appropriate strategy (or learn that they cannot do it). In
short, interleaved practice simply provides students with an op-
portunity to practice the very skill they are expected to learn.
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Appendix A

Serial Position of Each Graph and Slope Problem in the Assignments

Students/Problem
type

Practice assignment

Review1 2 3 4 5 6 7 8 9 10

Group 1
Graph 1–4 — 1 7 4 6 10 1 10 10 6
Slope — 1–12 — — — — — — — — 7

Group 2
Graph 1–12 — — — — — — — — — 6
Slope — 1–4 1 7 4 6 10 1 10 10 7

Note. For example, for students in Group 1, Assignment 1 included four graph problems at the beginning of the assignment (Nos. 1–4), and Assignment
4 included one graph problem near the middle of the assignment (No. 7). The two groups received identical review assignments, and the graph and slope
problems were the sixth and seventh problems, respectively. No student saw the same problem more than once during the study (including practice, review,
and test).

Appendix B

Frequency of Responses of Three Teachers to Statements About Interleaved Practice

Statement
Strongly
disagree Disagree

Neither agree
nor disagree Agree

Strongly
agree

1. Going over assignments was harder for me when the assignments were
interleaved rather than blocked. (Neg) 2 1

2. Going over assignments took more time when the assignments were
interleaved rather than blocked. (Neg) 1 1 1

3. Using interleaved assignments interfered with how I usually teach. (Neg) 2 1
4. Students thought that interleaved assignments were more challenging

than blocked assignments. (Neg) 1 1 1
5. Students found that interleaved practice took longer than blocked

practice. (Neg) 1 1 1
6. Students liked interleaved practice less than blocked practice. (Neg) 2 1
7. Interleaved assignments improved my students’ learning more than did

blocked practice. 3
8. I would recommend interleaved practice to other math teachers. 3
9. I would use interleaved practice in the future if it was an option. 2 1

10. I would use interleaved practice rather than blocked practice with lower-
achieving students. 1 1 1

Note. Statements regarding interleaved practice were framed negatively (Neg) in Statements 1–6.
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