What is this study about?

The study examined whether students taught by teachers in the Teach for America (TFA) and The New Teacher Project Teaching Fellows (Teaching Fellows) programs had greater mathematics achievement than students taught by teachers who were not in either of these programs. This WWC report focuses on the TFA intervention, and a separate single study review provides information about the Teaching Fellows intervention.

The TFA study included two cohorts of students in grades 6–12 (one from the 2009–10 school year and one from the 2010–11 school year). Students came from eight states, 11 school districts, and 45 schools.

Within each school, students were randomly assigned to a mathematics classroom taught by either a TFA teacher or a comparison teacher who did not enter teaching through a highly selective alternative route. In total, the TFA study randomly assigned over 6,000 students to either a TFA teacher or a comparison teacher.

Mathematics achievement was assessed for students in grades 6–8 using scores from state-required assessments. For students in grades 9–12, the authors administered end-of-course math assessments developed by the Northwest Evaluation Association (NWEA).

Features of Teach for America (TFA)

TFA is a highly selective alternative certification program for new teachers. Each program recruits, selects, trains, places, and provides support to teachers in low-income, high-need schools across the country.

TFA’s primary focus for recruitment is recent college graduates from prestigious colleges and universities. Recruits receive training during a 5-week summer institute. Program directors provide support to their teachers during the school year. TFA teachers are required to commit to teaching for 2 years.

WWC Rating

The research described in this report meets WWC group design standards without reservations

The TFA study is a well-executed randomized controlled trial with low levels of sample attrition.

What did the study find?

The study authors found, and the WWC confirmed, that TFA teachers were more effective than comparison teachers in raising the mathematics achievement of their students (effect size of 0.07).
Appendix A: Study details

Setting
The Teach For America (TFA) study was conducted in eight states, 11 school districts, and 45 schools.

Study sample
In each participating school, researchers matched two or more math classrooms so that at least one classroom would be taught by a TFA teacher, and at least one classroom would be taught by a teacher who did not participate in a highly selective alternative route to certification (such as TFA or Teaching Fellows). Students in grades 6–12 were randomly assigned to these classrooms, typically at the beginning of the school year. However, students who entered a participating school after the beginning of the school year were randomly assigned to classrooms through rolling random assignment. The TFA study was conducted with two cohorts of students in the 2009–10 and 2010–11 school years. The study authors noted that the TFA study sample was comprised primarily of middle school classrooms (75%).

The TFA study was conducted in 45 schools located in eight states, with 111 classroom matches covering 66 intervention and 70 comparison teachers. For this study, 3,075 students were randomly assigned to a TFA teacher, and 3,103 students were randomly assigned to a comparison teacher. The analytic sample included 2,292 students in the intervention group and 2,281 students in the comparison group.

Intervention group
The intervention group consisted of classrooms of TFA teachers. TFA recruits, selects, trains, places, and provides support to teachers in low-income, high-need schools across the country. Participants must commit to teaching in the program for 2 years. TFA’s primary focus for recruitment is recent college graduates from prestigious colleges and universities. The program is highly selective (TFA accepts about 12% of applicants) and has a substantial application and selection process that includes a written application, a telephone interview, an analysis and writing exercise, an in-person interview, a monitored group discussion, and a 5-minute sample teaching lesson. Once selected, TFA provides training through a 5-week summer institute that precedes the start of the first year of teaching and three other shorter training activities. TFA recruits also attend regional induction programs for several days, during which they learn more about the TFA program, as well as the region and school they will be teaching in. The TFA study’s intervention group included teachers in the process of completing their 2-year teaching commitments, as well as those who continued teaching after their TFA commitment ended.

Comparison group
Classrooms were eligible to be in the comparison group if their teachers were certified through a route other than TFA, Teaching Fellows, or a similar program.
Outcomes and measurement

For students in grades 6–8, the authors measured mathematics achievement using scores obtained on state-required assessments. For students in grades 9–12, the authors administered end-of-course mathematics assessments developed by the Northwest Evaluation Association (NWEA). All test scores were converted to z-scores to facilitate comparisons across classrooms, schools, and districts. For a more detailed description of these outcome measures, see Appendix B.

Support for implementation

TFA recruits are required to (a) complete 30–40 hours of independent study, (b) attend a 5-week pre-service summer institute that includes curriculum instruction and 40 hours of practice teaching, and (c) participate in post-institute training activities (Round Zero) that include 25 hours of online coursework. Most TFA teachers are also required to enroll in a state’s alternative certification program. TFA program directors provide support to the teachers during the school year by leading classroom observations with feedback and one-on-one and group meetings.

Reason for review

This study was identified for review by the WWC by receiving media attention.
Appendix B: Outcome measure for the mathematics achievement domain

<table>
<thead>
<tr>
<th>Mathematics achievement</th>
<th>For students in grades 6–8, the authors measured mathematics achievement using scores from state-required assessments. These assessments were administered at the end of the school year in which the students were randomly assigned.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For students in grades 9–12, the authors administered end-of-course mathematics assessments developed by the Northwest Evaluation Association (NWEA). These computer-adaptive assessments covered general high school math, Algebra I, Geometry, or Algebra II, depending upon the course content.</td>
</tr>
<tr>
<td></td>
<td>All test scores were converted to z-scores. For state assessments administered to middle school students, the reference population was the full population of students in the same state, year, and grade who took the same assessment. For NWEA end-of-course assessments administered to high school students, the reference population was the NWEA's nationwide norming sample for that assessment.</td>
</tr>
</tbody>
</table>
Appendix C: Study findings for the mathematics achievement domain, *TFA* study

<table>
<thead>
<tr>
<th>Domain and outcome measure</th>
<th>Study sample</th>
<th>Sample size</th>
<th>Mean (standard deviation)</th>
<th>WWC calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics assessment</td>
<td>Cohorts 1 and 2</td>
<td>45 schools/136 teachers/4,573 students</td>
<td>nr</td>
<td>nr</td>
</tr>
<tr>
<td>Mathematics achievement</td>
<td></td>
<td></td>
<td></td>
<td>Mean difference</td>
</tr>
<tr>
<td>Domain average for mathematics achievement</td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
</tbody>
</table>

Table Notes: For mean difference, effect size, and improvement index values reported in the table, a positive number favors the intervention group and a negative number favors the comparison group. The effect size is a standardized measure of the effect of an intervention on student outcomes, representing the average change expected for all students who are given the intervention (measured in standard deviations of the outcome measure). The improvement index is an alternate presentation of the effect size, reflecting the change in an average student’s percentile rank that can be expected if the student is given the intervention. The statistical significance of the study’s domain average was determined by the WWC. *nr* = not reported. Note: the study reports adjusted means, which are reflected in the effect size estimates, but it does not report the raw means.

Study Notes: No corrections for clustering or multiple comparisons and no difference-in-differences adjustment were needed. The *p*-value presented here was reported in the original study. The effect size is the impact estimate from the study because the outcome was scaled to be in standard deviation units. This study is characterized as having a statistically significant positive effect because the effect for at least one measure within the domain is positive and statistically significant, and no effects are negative and statistically significant. For more information, please refer to the WWC Standards and Procedures Handbook, version 3.0, pages 26–27.
Endnotes
1 Single study reviews examine evidence published in a study (supplemented, if necessary, by information obtained directly from the author[s]) to assess whether the study design meets WWC evidence standards. The review reports the WWC’s assessment of whether the study meets WWC evidence standards and summarizes the study findings following WWC conventions for reporting evidence on effectiveness. This study was reviewed using the single study review protocol, version 2.0. A quick review of this study was released on November 7, 2013, and this report is the follow-up review that replaces that initial assessment.

2 Absence of conflict of interest: This study was conducted by staff from Mathematica Policy Research. Therefore, Mathematica reviewers were not involved in the WWC review of this study.

3 The study also examined the impact of The New Teachers Project Teaching Fellows (Teaching Fellows) relative to a separate comparison group that was formed by random assignment. The findings from that analysis are reported in a separate single study review by the WWC because the impacts of the two programs were measured separately. The authors also noted that the study was not designed to compare the effectiveness of Teach For America relative to Teaching Fellows.

4 The WWC verified low study attrition through an author query.

5 The study also examined impacts by subgroups including school level (e.g., middle and high) and by type of comparison teacher (e.g., traditionally certified and alternatively certified). However, the study did not provide enough information to determine a rating for these analyses, so they are not presented in this single study review.

Recommended Citation
Attrition: Attrition occurs when an outcome variable is not available for all participants initially assigned to the intervention and comparison groups. The WWC considers the total attrition rate and the difference in attrition rates across groups within a study.

Clustering adjustment: If intervention assignment is made at a cluster level and the analysis is conducted at the student level, the WWC will adjust the statistical significance to account for this mismatch, if necessary.

Confounding factor: A confounding factor is a component of a study that is completely aligned with one of the study conditions, making it impossible to separate how much of the observed effect was due to the intervention and how much was due to the factor.

Design: The design of a study is the method by which intervention and comparison groups were assigned.

Domain: A domain is a group of closely related outcomes.

Effect size: The effect size is a measure of the magnitude of an effect. The WWC uses a standardized measure to facilitate comparisons across studies and outcomes.

Eligibility: A study is eligible for review if it falls within the scope of the review protocol and uses either an experimental or matched comparison group design.

Equivalence: A demonstration that the analysis sample groups are similar on observed characteristics defined in the review area protocol.

Improvement index: Along a percentile distribution of students, the improvement index represents the gain or loss of the average student due to the intervention. As the average student starts at the 50th percentile, the measure ranges from –50 to +50.

Multiple comparison adjustment: When a study includes multiple outcomes or comparison groups, the WWC will adjust the statistical significance to account for the multiple comparisons, if necessary.

Quasi-experimental design (QED): A quasi-experimental design (QED) is a research design in which subjects are assigned to intervention and comparison groups through a process that is not random.

Randomized controlled trial (RCT): A randomized controlled trial (RCT) is an experiment in which investigators randomly assign eligible participants into intervention and comparison groups.

Single-case design (SCD): A research approach in which an outcome variable is measured repeatedly within and across different conditions that are defined by the presence or absence of an intervention.

Standard deviation: The standard deviation of a measure shows how much variation exists across observations in the sample. A low standard deviation indicates that the observations in the sample tend to be very close to the mean; a high standard deviation indicates that the observations in the sample are spread out over a large range of values.

Statistical significance: Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups. The WWC labels a finding statistically significant if the likelihood that the difference is due to chance is less than 5% ($p < 0.05$).

Substantively important: A substantively important finding is one that has an effect size of 0.25 or greater, regardless of statistical significance.

Please see the WWC Procedures and Standards Handbook (version 3.0) for additional details.