
U.S. Department of Education 
January 2014

Testing the importance of individual 
growth curves in predicting 

performance on a high-stakes reading 
comprehension test in Florida

Yaacov Petscher 
Sarah Kershaw 
Sharon Koon 

Barbara R. Foorman

Florida Center for Reading Research at the Florida State University

Key findings

To what extent does individual student change (growth) over the academic 
year statistically explain why students differ in end-of-year performance 
after accounting for performance on interim assessments? The four growth 
estimates examined in this report (simple difference, average difference, 
ordinary least squares, and empirical Bayes) all contributed significantly to 
predicting performance on the end-of-year criterion-referenced reading test 
when performance on the initial (fall) interim assessment was used as a 
covariate. The simple difference growth estimate was the best predictor 
when controlling for mid-year (winter) status, and all but the simple 
difference estimate contributed significantly when controlling for final 
(spring) status. Quantile regression suggested that the relations between 
growth and the outcome were conditional on the outcome, implying that 
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Districts and schools use progress monitoring to assess student progress, to identify stu-
dents who fail to respond to intervention, and to further adapt instruction to student 
needs. Researchers and practitioners often use progress monitoring data to estimate student 
achievement growth (slope) and evaluate changes in performance over time for individual 
students and groups of students.

The literature reports mixed findings on whether measuring individual student change 
over time on an interim progress monitoring assessment adds value to understanding 
student differences in future performance on an assessment. Specifically, to what extent 
does change over the academic year statistically explain why students differ in end-of-year 
performance after accounting for performance at the fall, winter, or spring assessment 
period (status variable). Some studies suggest that individual growth during the year does 
statistically predict variable differences in future performance on an assessment (Kim, Pet-
scher, Schatschneider, & Foorman, 2010). Others find no contribution beyond that pre-
dicted by performance on an interim assessment (Schatschneider, Wagner, & Crawford, 
2008; Yeo, Fearrington, & Christ, 2012).

Monitoring student progress is central to accountability systems in general and is useful 
for measuring how well students respond to instruction or intervention. Progress monitor-
ing entails tracking individual growth across the academic year. Thus, it is important to 
understand why individual students differ on an outcome beyond what can be known by 
accounting for performance on a status assessment.

This study examines the relations among descriptive measures of growth (simple differ-
ence and average difference) and inferential measures (ordinary least squares and empir-
ical Bayes) for students in grades 3–10 and considers how well such measures statistically 
explain differences in end-of-year reading comprehension after controlling for student per-
formance on a mid-year status assessment. The study also looks at how the results change 
when controlling for initial (fall) and final (spring) status and when the relations among 
individual growth curves, status, and end-of-year reading comprehension performance 
depend on end-of-year reading comprehension performance.

Using archival data for 2009/10, the study analyzes a stratified random sample of 800,000 
Florida students in grades 3–10: their fall, winter, and spring reading comprehension 
scores on the Florida Assessments for Instruction in Reading (FAIR) and their reading 
comprehension scores on the 2010 end-of-year state accountability assessment, the Florida 
Comprehensive Assessment Test (FCAT). Student differences in reading comprehension 
performance were explained by the four growth estimates (measured by the coefficient of 
determination, R2) and differed by status variable used (performance on the fall, winter, or 
spring FAIR reading comprehension screen).

All four growth estimates significantly contributed to the prediction of FCAT performance 
when controlling for fall status, as did all but the simple difference estimate when con-
trolling for spring status. But only the simple difference score was a good predictor when 
controlling for winter status. Quantile regression suggested that the relations between 
growth estimates and FCAT performance were conditional on the FCAT, implying that 
traditional linear regression analyses could mask the predictive relations.

Summary
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Why this study?

When an interim progress monitoring assessment is administered multiple times over an 
academic year, data from a sample of individual students are typically used to evaluate 
changes in performance over time. These data can be used to estimate what is called an 
individual growth curve, which is the estimated amount of change a student is expected 
to make over time. An individual growth curve can be used to test whether a student’s 
performance is improving (growing), as well as whether the student is growing faster or 
slower than other students in the sample. It can also be used to identify students whose 
score at the first assessment period and whose growth trends differ from the sample mean. 
For example, it might be possible to identify a set of students who began the school year 
at a similarly low level of reading performance but who display different individual growth 
curves, with some improving faster than others.

In addition to revealing changes in an individual student’s progress and comparing changes 
across students, individual growth curves can be used to identify students who fail to 
demonstrate adequate progress relative to an aggregate mean (for example, the classroom 
or school mean) or to a benchmark assessment standard. Widely used curriculum-based 
measurement programs for reading, such as the Dynamic Indicators of Basic Early Literacy 
Skills assessments (DIBELS; Good & Kaminski, 2002), include criteria for fluency rates 
that are aligned with a set of predictive validity analyses. The cutpoints for risk between 
any two assessment points (for example, 77 correct words per minute in the fall of grade 3 
and 92 correct words per minute in the winter) can be used to calculate the between- 
assessment change needed to achieve the appropriate benchmark (92–77  =  an increase 
of 15 correct words per minute). Interim progress monitoring/benchmarking assessments 
administered between the two points could then be used to determine whether a student is 
on track to meet the later benchmark.

The four types of score evaluations—individual student growth, student-to-student com-
parison, student-to-sample comparison, and student-to-benchmark comparison—can be 
depicted graphically. Figure 1 documents the progress of two hypothetical students, Jacob 
and Gwen, on a measure of oral reading fluency (correct words per minute) at three points 
during the year relative to the classroom mean and the benchmark goals at each point. 
These graphs provide a wealth of information about student performance and growth. 
First, they show that Jacob made greater gains from winter to spring (gain of 25 correct 
words per minute) than from fall to winter (gain of 20 correct words), while Gwen’s prog-
ress was stable (gain of 15 correct words per minute in both periods). Second, comparing 
Jacob’s progress with Gwen’s shows that Gwen began the year with a higher score but that 
Jacob improved faster, narrowing the initial gap by the spring assessment. Third, Gwen 
consistently performed above the classroom mean (the sample), while Jacob performed 
below it until the spring assessment. Finally, Gwen’s performance was at or above the 
benchmark standard during the period, while Jacob’s was consistently below it.

Using growth estimates from progress monitoring to identify students who are not responding 
to instruction

This example shows how growth can be used as an isolated measure of responsiveness to 
intervention. Recently, studies within the response to intervention framework have tested 
whether individual student growth on progress monitoring assessments by a particular 
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Figure 1. Sample individual progress plot demonstrating the potential for four types 
of score evaluation
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Source: Authors’ illustration.

population statistically explained sample differences in selected outcome performance 
beyond what could be predicted by performance at a single point in time (initial, middle, 
or final performance; Kim et al., 2010; Schatschneider et al., 2008; Yeo et al., 2012; Zumeta, 
Compton, & Fuchs, 2012).

Yeo et al. (2012) used latent parallel process growth models to test how well intercepts and 
individual growth estimates from curriculum-based measures of reading fluency and maze 
(a multiple-choice cloze task1) explained sample differences on the Tennessee Comprehen-
sive Assessment Program. They found that individual growth curves from the structural 
portion of the model did not statistically explain differences beyond the first assessment. 
Zumeta et al. (2012) used nonlinear individual growth curve analysis and multiple regres-
sion to evaluate the correlations between growth in word identification fluency and several 
outcome measures, including the Woodcock Reading Mastery Test- Revised (Woodcock, 
1998) and both the sight word and decoding portions of the Test of Word Reading Effi-
ciency (Torgesen, Wagner, & Rashotte, 1999). Weak to moderate correlations between the 
measures of growth and the selected outcomes were observed. 

Because Yeo et  al. (2012) and Zumeta et  al. (2012) used different samples and different 
measures of reading skills, their conflicting findings cannot be compared. However, two 
other studies using the same measures with approximately the same sample also yielded 
conflicting findings (Kim et al., 2010; Schatschneider et al., 2008).

Kim et al. (2010) used a combination of growth curve modeling and dominance analysis 
(Azen, 2013) to test whether growth in oral reading fluency as measured by the DIBELS 
assessment (Good & Kaminski, 2002) explained variations in student scores on the Stan-
ford Achievement Test, 10th edition (SAT-10; Harcourt Brace, 2003) for a cohort of stu-
dents followed from grade 1 through grade 3. The study reported that about 15 percent 
of the growth occurred during grade 1, 15 percent during grade 2, and 6 percent during 
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grade  3. Individual student growth in oral reading fluency during grade  2 explained 
7 percent of the variance in SAT-10 scores at the end of the school year but did not explain 
grade 3 sample differences in SAT-10 performance when other variables were controlled 
for. Finally, growth in oral reading fluency during grade  3 accounted for approximately 
6 percent of sample differences in grade 3 SAT-10 performance.

In a similar study using DIBELS as a measure of growth in oral reading fluency, Schatsch-
neider et al. (2008) used a combination of linear analysis of individual growth curves and 
multiple regression to predict grade 1 performance on the SAT-10. The study found that 
growth in oral reading fluency did not explain variation in student performance on the 
SAT-10 after controlling for initial status. Although form effects are often an issue when 
oral reading fluency is used as a measure of growth (Ardoin & Christ, 2009; Cummings, 
Park, & Schaper, 2013; Francis et al., 2008; Hintze & Christ, 2004; Petscher, Cummings, 
Biancarosa, & Fien, 2013; Petscher & Kim, 2011), Kim et al. (2010) and Schatschneider 
et al. (2008) used approximately the same sample and oral reading fluency probes, so the 
sharp contrast in their conclusions needs to be explained.

Limitations of prior research

All these studies show how growth on interim progress monitoring measures might expand 
the understanding of why students vary in their performance on selected outcome mea-
sures. Each study had specific limitations in study design and sampling, but three method-
ological differences across the studies are especially worth noting: the status variable used 
as a covariate in predicting the outcome, the type of growth estimate used to predict the 
outcome, and the achievement level of the sample.

• The status variable used. The predictive studies by Kim et al. (2010), Yeo et al. (2012), 
and Zumeta et al. (2012) used the first assessment point (student performance in 
the fall) as the status variable. Schatschneider et al. (2008) used the final assess-
ment point (spring). Each study addressed the broad question of how well individ-
ual growth curves explain differences in selected outcomes beyond what can be 
explained by a status variable. Schatschneider et al. framed the research questions 
around how individual growth curves uniquely predicted outcomes beyond pre-
dictions based on end-of-year status, while the other three studies looked at using 
individual growth curves to explain differences in outcome performance beyond 
the contributions based on beginning-of-year status. The choice of the first or the 
last assessment point affects the understanding of how individual growth curves 
can account for individual differences in an outcome, controlling for fall or spring 
status. The use of different status covariates in these studies means that the results 
are not directly comparable.

An ancillary consideration is that none of these predictive models used the 
mid-year assessment as a status variable. The mid-year has appeal both instruc-
tionally and practically. From an instructional perspective it marks the first time 
that a learning gain within the same school year can be evaluated. Knowing the 
unique contribution of gains from the fall to the mid-year for predicting outcomes 
at the end of the school year could enable teachers to modify instruction accord-
ingly. From a practical perspective, using mid-year status makes more sense than 
using beginning-of-year status, when no growth has yet taken place, or end-of-year 
status, when teachers can no longer adapt instruction to individual differences in 
gains over the year.
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• Type of growth estimate used. All the studies but Yeo et al. (2012) used individual 
growth curves estimated with ordinary least squares (OLS) regression to predict 
the selected outcomes; Yeo et al. used latent growth curves with a maximum like-
lihood estimator. None of the studies used an empirical Bayes slope (model-based 
estimate of individual growth curves), often considered a best practice for esti-
mating individual growth (Singer & Willett, 2003) because it combines OLS esti-
mates with the grand mean (population mean). The empirical Bayes slope shrinks 
an OLS estimate toward the grand mean by a factor proportional to its individual 
unreliability; thus, individual OLS growth values at the tails of the slope distri-
bution get pulled much closer to the grand mean because they are typically less 
reliable—and therefore less likely to reflect the true slope. Although the empir-
ical Bayes estimate yields a more reliable slope, it often comes at a cost: biased 
estimates (Singer & Willett, 2003). (The next section on estimation frameworks 
discusses the differences between OLS and empirical Bayes estimates.)

• Achievement level of the sample. A final methodological consideration concerns the 
nature of the sample. Yeo et al. (2012), noting that the lack of predictive validity 
of individual growth curves might have been related to their sample not consist-
ing predominantly of students at high risk of low performance, conjectured that 
individual growth curves might be more predictive for these students. Zumeta 
et al. (2012) found that growth on the word identification fluency task was more 
strongly associated with outcomes for the low-performing subsample than for the 
average and high-performing subsamples. Because frequent progress monitoring 
often focuses on students with the highest risk of low performance, the types of 
regression models typically used to evaluate differential predictive validity might 
fail to adequately capture how well individual growth curves explain differences in 
FCAT performance for individuals at the low end of the achievement distribution 
for the dependent variable.

Despite study differences in status variables, estimators, and samples, the broad research 
question was the same: To what extent are individual growth curves related to the out-
comes? Another way to frame this query in order to test the conclusion by Yeo et al. (2012) 
that individual growth curves might be more predictive for students at high risk of low 
performance: Does the relation between the individual growth curve and the outcome for 
students at the lower end of the distribution on the outcome differ from the relation for 
students at the middle and upper ends of the distribution?

Traditional fixed- and random- effects regression models are often underpowered for address-
ing this type of question, as these models require splitting up the sample to test whether one 
point of the distribution differs from another. This approach produces a restricted range of 
values for the dependent variable and reduces the sample to observations above or below 
the selected cutpoint in the distribution. A conditional median model such as quantile 
regression (Koenker, 2005) can overcome these limitations. Quantile regression includes 
no assumptions about the sample distribution (for example, normality) and uses the entire 
sample to compute coefficients at each quantile (Koenker, 2005; Petscher & Logan, in 
press; Petscher, Logan, & Zhou, 2013). Rather than asking the question, “To what extent 
do individual growth curves explain sample differences in outcome performance?” quantile 
regression asks, “To what extent do individual growth curves explain sample differences in 
outcome performance based on the outcome performance itself?” The section on estima-
tion frameworks expands on this analytic tool’s benefits and limitations.
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Study questions

The growing reliance on interim progress monitoring assessments in both response to 
intervention and broader accountability systems (such as those mandated by the No Child 
Left Behind Act of 2001) elevates the importance of studying how well individual growth 
curves predict performance on a selected outcome beyond what can be accounted for by 
the status variable alone. The literature has produced mixed findings, with some studies 
showing that growth in reading statistically explains such differences (Kim et al., 2010) but 
others finding it does not (Schatschneider et al., 2008; Yeo et al., 2012).

Differences in the type of growth estimates used in the study (OLS or maximum likelihood) 
and in the status variable used as a covariate (fall or spring assessment) have been proposed 
as the reason for the conflicting results. Thus, two immediate goals of this study were to 
evaluate the extent to which different approaches to estimating individual growth curves 
differentially predict an outcome beyond what is predicted using a single status variable (for 
example, results of the fall interim assessment), as well as the extent to which the statistical 
significance of the individual growth curve might vary when the status variable changes 
(for example, from fall to spring). In addition, the study sought to expand the research base 
by testing the extent to which individual growth curves predict performance beyond what 
is predicted by a mid-year (winter) status variable and by studying what the unique relations 
might look like in understudied populations (for example, students in secondary grades).

K–3 students have been the population of interest in many response to intervention 
studies, with less focus on middle and secondary school students (Barth et  al., 2012; 
Espin, Wallace, Lembke, Campbell, & Long, 2010; Pyle & Vaughn, 2012; Tichá, Espin, 
& Wayman, 2009). The National Center on Response to Intervention noted that most 
states use response to intervention as a prevention/intervention model, while some use it 
for identifying students with learning disabilities. Recent research has found secondary 
school students to be responsive to targeted, intensive literacy interventions (Calhoon, 
2005; Calhoon & Petscher, 2013; Edmonds et al., 2009; Vaughn et al., 2010, 2011, 2012). 
That makes it important to characterize the extent to which growth in measures of reading 
comprehension and related skills explain variation in scores on outcomes for both primary 
and secondary school students. That is especially relevant considering studies such as 
Silber glitt and Hintze (2007) that find differences in expected growth rates as grade level 
rises, with average growth slowing from grade 2 to grade 6 on interim progress monitoring 
assessments (administered three times a year).

In a typical response to intervention framework, progress monitoring assessments are 
administered once or twice a week. Considering the practical obstacles of scheduling 
weekly or more frequent assessments, recent research has examined the viability of shifting 
to fewer assessments (Jenkins, Graff, & Miglioretti, 2009). Most recently, Ardoin, Christ, 
Morena, Cormier, and Klingbeil (2013) used simulation to study the validity and reliability 
of growth estimates dependent on the schedule and duration of progress monitoring assess-
ments, as well as the dataset quality. They found growth estimates from monthly assess-
ments over a 17-week period to be sufficiently valid and reliable for low-stakes decisions 
when the dataset was of very high quality.

Florida administers interim progress monitoring assessments three times a year, as well as 
the end-of-year FCAT. This provides an opportunity to study how well individual growth 
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curve estimates explain individual differences in the end-of-year reading comprehension 
test with a large, diverse sample. Shaped by the limitations of previous research and gaps in 
developmental research on progress monitoring, the following research questions consider 
student growth for grades 3–10 in 2009/10:

• What are the relations among descriptive measures of student change (simple 
difference and average difference) and inferential measures of individual growth 
curves (OLS and empirical Bayes)?

• Controlling for students’ mid-year status, how well do the measures of student 
change and individual growth curves explain differences in end-of-year reading 
comprehension performance?

• Controlling for students’ initial or final status, how well do the measures of student 
change and individual growth curves explain differences in end-of-year reading 
comprehension performance?

• Controlling for the type of estimator, how well do the measures of student 
change and individual growth curves explain differences in end-of-year reading 
comprehension performance conditional on end-of-year reading comprehension 
performance?

Before the findings are presented, the next three sections outline the theoretical frame-
work for the analyses and discuss the sample, the measures used in the study, and the 
methods used to analyze the data.

Specifying the estimation framework

The four types of estimates for measuring student change range from descriptive, compu-
tationally simple measures of change (simple difference and average difference scores) to 
complex, inferential measures (OLS and empirical Bayes).

Descriptive measures of change

Simple difference score. The simple difference score, one of the earliest methods of analyz-
ing data over multiple assessments (Lord, 1956), is depicted by:

ΔXi = X2i – X1i ,

which captures the change, ΔXi, for student i from time X1i to time X2i. The ease of cal-
culating the simple difference score makes it appealing, but the measure fell out of favor 
when many researchers—for example, Cronbach and Furby (1970)—incorrectly consid-
ered it unreliable and thus invalid. Rogosa, Brandt, and Zimowski (1982) refuted those 
arguments, showing that the supposed unreliability of the change score was often a func-
tion of a lack of individual differences in change over time, as measured by

ρ(ΔX) =
 σ2

ΔT 
,

σ 2
ΔT + σ 2

Δe

where σ 2
ΔT is the true score variance and σ 2

Δe is the error score variance. If there is no vari-
ance in σ 2

ΔT, the reliability of the change score is 0. This does not mean that meaningful 
change does not occur, but rather that it is impossible to detect reliable change when there 
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is no variance in the estimated change score because all students change by approximately 
the same amount (positive or negative). As the rate of change varies across students, reli-
ability will increase when the error score variance is low.

Average difference scores. When a student’s performance is measured on more than two 
occasions, the simple difference score cannot capture change over the academic year 
because growth rates might vary across semesters (Ardoin & Christ, 2008). Bench-
mark/interim assessments are typically administered to students three times a year: at 
the beginning of the school year in the fall, at the mid-point in the winter, and at the 
end in the spring. The average difference score would represent the average amount of 
change observed across the two change scores (the change from fall to winter plus the 
change from winter to spring divided by two). By drawing on more information than the 
simple difference, the average difference score may better reflect student progress across 
the year.

Inferential measures of change

An alternative method for estimating change when there are more than two waves of 
assessments is student growth curve analysis. This framework uses inferential models to 
characterize change.

Ordinary least squares. OLS models provide a simple structure for the data, allowing indi-
vidual trajectories to be estimated for each student based on the student’s assessment data. 
A structural form of the OLS regression model for growth is

Yti = ß0i + ß1i(TIME)ti + eti ,

where Yti is the predicted score for student i at time t and is a function of the intercept (ß0i), 
slope (ß1i), and residual (eti). OLS regression is useful for characterizing change because it 
is readily available in most statistical software packages, which routinely provide summary 
statistics (R2 and residual variance) that can be used for evaluating the goodness of fit for 
each student.

Despite the ease of testing, this model has several limitations. First, OLS regression 
assumes that the errors between the observations are not correlated and that the resid-
uals have constant variance. As Singer and Willett (2003) note, these assumptions are 
often untenable with longitudinal designs because errors over repeated observations for 
an individual are frequently correlated. A second limitation is the need for a nearly com-
plete dataset to estimate an empirical slope. Missing data pose a particular problem with 
OLS because growth curves cannot be estimated for individuals with fewer than two data 
points. Despite these concerns, running OLS regressions is often worthwhile, because it 
is practical and produces unbiased estimates of the intercept and slope (Singer & Willett, 
2003). Although the estimated individual growth curves for some individuals will appear 
to depart significantly from the rest of the distribution, they remain unbiased as long as the 
model assumptions are met.

Empirical Bayes. Using a multilevel approach can avoid the OLS problems of poor reliabil-
ity and precision. Multilevel modeling (or random-effects mixed modeling) is a flexible 
framework that allows fitting individual growth curves to multiple waves of data over 
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time. One of the most basic individual growth curve specifications is the linear growth 
model:

Level 1: Yti = π0i + π1i(TIME)ti + eti

Level 2: π0i = ß00 + r0i 
 π1i = ß00 + r1i 

. 
 

In level 1, Yti is score Y for student i at time t. The score is predicted by intercept π0i for 
each student (status), slope coefficient π1i for each student (growth), and an occasion- level 
residual eti, which is the difference between a student’s score and predicted score at time t. 
In level 2, ß00 is the overall mean intercept, and ß10 is the overall mean slope; r0i and 
r1i are the deviations of the student’s intercept and slope from the overall mean, where 
r0i ~ (0,τ00) and r 2

1i ~ (0,τ11).

For estimating individual growth curves the multilevel model has two main advantages over 
OLS: it does not require complete data, and it estimates an individual slope more precisely.

Multilevel models use an empirical Bayes procedure to estimate individual growth curves, 
creating a composite slope from the average slope for the sample and an individual’s predict-
ed slope (Raudenbush & Bryk, 2002). As a result, the empirical Bayes curve will generally 
fall somewhere between an individual’s OLS growth curve and the sample average growth 
curve. As a weighted average based on OLS and the average trajectory for a sample, an 
empirical Bayes trajectory will vary across individuals within a sample, but its variance will 
likely be smaller than that of the OLS because the empirical Bayes includes the average 
trajectory as part of its estimate (Singer & Willett, 2003). The farther an estimated slope 
is from the average trajectory, the lower the reliability of that slope. Thus, the empirical 
Bayes estimate yields a more reliable estimate of growth by bringing the OLS slope closer 
to the mean. Figure 2 illustrates this advantage by graphing the performance of a grade 4 
student in Florida whose reading comprehension was assessed three times a year using the 
FAIR. This graph shows how the empirical Bayes brings the OLS growth curve closer to 
the sample mean trajectory.

A second advantage of the multilevel model is that the empirical Bayes approach often 
provides a more precise estimate of an individual slope. The multilevel model estimate of 
change assumes that the level-1 residual variance is the same for everyone, whereas the 
OLS model estimates a variance for each student. Reducing the number of variances esti-
mated confers greater reliability to the individual growth curves.

The empirical Bayes individual growth curve also has limitations, the most notable being 
bias because the individual’s growth curve estimate is weighted by the sample mean. When 
using such estimates from multilevel models in a secondary analysis, researchers must 
decide which attribute is more important to the analysis: a more reliable slope (empirical 
Bayes) or a more unbiased estimate of it (OLS).

Selecting the appropriate growth measure

Each of the four growth measures outlined here has conceptual or statistical properties that 
can influence a decision on how to estimate growth. One measure’s statistical merits might 
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Figure 2. Estimates of individual student growth using observed data, the sample 
mean, the ordinary least squares trajectory, and the empirical Bayes trajectory

Scaled score

321

Ordinary least squares Empirical Bayes Observed Mean

Time

100

200

300

400

500

Source: Authors’ illustration.

need to be weighed against its computational demands. For example, local or state educa-
tion agency personnel might prefer the descriptive measures of growth (simple and average 
difference scores), because they allow teachers to estimate student change across the year 
by calculating simple scores. But a researcher interested in using individual growth curves 
for analysis might be drawn to an inferential measure that maximizes reliability (empir-
ical Bayes) or provides an unbiased estimate of change (OLS). Researchers will typically 
opt for the more reliable estimate of growth, as minimizing error in measured variables is 
always desirable. Further, a score’s validity depends on the degree of error in the measure. 
Thus, differences in the predictive validity of the individual growth curves for each growth 
measure are important to consider.

Using quantile regression for analyzing the relation between individual growth curves and the 
selected outcome, conditional on the outcome

The fourth research question is concerned with how well individual growth curves and a 
status measure explain differences in the selected outcome, conditional on the outcome. 
Conventional regression models, such as multiple regression, are conditional means models—
when the relation between two variables (X and Y) is being estimated, the resulting coeffi-
cients for the independent variables are interpreted as mean effects. As a conditional median 
model, quantile regression models examine the relation between X and Y conditional on the 
score of Y (the pth quantile). The conceptual underpinnings of a quantile are similar to those 
of a percentile: the pth quantile refers to the place in a distribution of scores where the pro-
portion of the population below that value is p. Thus, the .25 quantile is similar to the 25th 
percentile; both refer to the point below which 25 percent of the sample distribution lies. 
(For more detail on quantile regression, see Koenker, 2005, and Petscher et al., 2013.)

More broadly, multiple regression answers the question: “What is the relation between X 
and Y?” Quantile regression answers the question: “What is the relation between X and Y 
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for those who vary in their score on Y?” This approach illuminates relations throughout 
the distribution of the outcome variable that conditional means models cannot detect.

In linear regression, an estimated value of Y is calculated based on the corresponding X 
value:

(1) Yi = ß0 + ß1Xi + εi ,

where ß0 is the intercept, ß1 is the slope, Xi is the score for individual i on independent 
variable X, and εi is the error term, which is assumed to be identically, independently, and 
normally distributed, with a mean of 0 and variance of σ2. The intercept and slope por-
tions of the model are estimated such that the values are relative to the mean of Y, given X. 
The relation of X to Y is estimated by minimizing the squared difference between the pre-
dicted value of Y and the observed value of Y (the sum of the squared error). The result of 
the prediction equation can be represented by a single line through a scatterplot of points.

Similarly, quantile regression can be used to estimate the relation of X to Y at a given 
quantile within the distribution of Y. This can be done by identifying the sample score 
in the distribution associated with the quantile (τ) of interest and estimating the coeffi-
cients for the independent variables. However it may seem, quantile regression is not akin 
to dividing the sample into multiple subgroups based on percentiles or cutpoints of the 
dependent variable and then fitting a linear regression to each subgroup. Rather, the selec-
tion of a given quantile occurs through minimization of the sum of absolute residuals, 
which is dependent on the given quantile. The minimization function is represented by:

(2) ,

where Yi is the vector of independent variables, ξ  is the dependent variable, and τ is the τ
quantile to be estimated. The relation between the independent and dependent variables 
can then be expressed as:

(3) Yi = ß 0
(p) + ß1

(p)Xi + ε i
(p) .

Equation 3 is structurally similar to equation 1, with the addition of a superscript p (the 
pth quantile) above the intercept, slope, and error parameters. A distinguishing feature 
of equation 3 (quantile estimation) is that no assumption is made about the distribution-
al form for ε (p)  

i (for example, normal, poisson), while the corresponding εi in equation 1 
(typical linear regression) is assumed to be normally distributed. This critical difference 
allows quantile regression equations to be fitted to dependent or independent variables 
with non-normal distributions.

Just as with linear regression, equation 3 would also be represented by a single line through 
a scatterplot, but that line would be unique to the specified quantile rather than the average 
for the entire distribution. Although quantile regression can be viewed as an extension of 
median regression (a regression where τ = .5), the quantile approach can extend beyond 
the median through the asymmetric weighting system outlined in equation 2. Positive 
residuals would be given a weight of τ; negative residuals, a weight of 1–τ.

Quantile regression 
answers the 
question: “What 
is the relation 
between X and 
Y for those who 
vary in their 
score on Y?”
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One way to illustrate differences between OLS and quantile regression is through an 
example of both methods using a simulated dataset: 200 participants with scores on a 
dependent variable, Y, and one independent predictor, X. Variables X and Y have a mean 
of 0 and a standard deviation of 3. Figure 3, top panel, displays a scatterplot of X and Y 
with the OLS regression line, where the fit line represents the minimization of the sum of 
squared residuals. Figure 3, bottom panel, represents the results of a quantile regression on 

Figure 3. Comparison of scatterplots and fit lines from ordinary least squares and 
quantile regressions at the .25, .50, and .75 quantiles, using simulated data
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the same data, displaying three fit lines: one each for the .25, .50, and .75 quantiles. The 
fit line for the .50 quantile (the median) is very similar to that for the OLS regression (see 
figure 3, top panel). The line for the .25 quantile is not as steep as that for the .50 or .75 
quantile, suggesting that scores at the 25th percentile of Y demonstrate a weaker relation 
between X and Y than do scores at or above the median.

Constructing the sample and describing the measures

Data for this study are from the Progress Monitoring and Reporting Network (PMRN), a 
database hosted and maintained by the Florida Department of Education. The measures 
used are the results on the state achievement test, the FCAT, and on the FAIR, adminis-
tered three times a year for progress monitoring.

Constructing a stratified subsample

The study drew on archival data from the PMRN on 1,132,263 students in grades 3–10 
for 2009/10. The PMRN contains progress monitoring data in reading reported three 
times a year, as well as outcome data for the FCAT. A key consideration was that the 
findings reflect Florida’s student population. As such, it was important to compare the 
demographics and academic achievement of students in the PMRN data with those of 
the student population in Florida as a whole. An initial investigation revealed that the 
PMRN sample did not precisely reflect the achievement distribution of all grade 3–10 
students in the state. To correct for differences, a stratified subsample was constructed 
to reflect the observed achievement distribution across the five FCAT proficiency levels 
(see section on measures). State-aggregated data on the population distribution on the 
FCAT (see bottom of table 1) were used as known parameters for constructing the strat-
ified random sample.

From the full PMRN sample (1,132,263 students), a stratified random sample of 800,000 
students (100,000 per grade) was created. The achievement distribution for the stratified 
PMRN sample (see table 1) more closely matched the state population. The demographic 
characteristics of the stratified PMRN sample matched those of the state population as 
well: 51 percent male, 48 percent White, 24 percent Hispanic, 19 percent Black, 4 percent 
more than one race/ethnicity, 2 percent Asian, and less than 1 percent other (table 2). 
Approximately 7  percent of students were identified as English language learners, and 
56 percent were eligible for free or reduced-price lunch, a proxy for low-income status.

Explaining the measures

Florida Comprehension Assessment Test. The FCAT is part of Florida’s effort to assess 
student achievement in reading, writing, math, and science, as outlined in Florida’s 
Sunshine State Standards (Florida Department of Education, 2001). The FCAT reading 
comprehension subtest is an end-of-year, group- administered, criterion-referenced test 
consisting of informational and narrative reading passages with multiple-choice questions 
(Florida Department of Education, 2005). Students receive a developmentally scaled score 
and a proficiency level score, with level 1 the lowest proficiency and level 5 the highest. 
Students meet grade-level standards if they score at level 3 or higher. The current study 
used FCAT developmental scale scores from the end of the 2009/10 school year.
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levels to more 
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Table 1. Proportion of students in the full PMRN sample, stratified random PMRN 
sample, and state population scoring at proficiency levels 1–5 on the 2010 FCAT, 
by grade
(percent)

FCAT 
proficiency levela

Grade

3 4 5 6 7 8 9 10

PMRN sample

1 16 17 17 20 17 21 24 37

2 12 14 16 18 20 30 33 30

3 33 32 32 31 34 32 26 16

4 31 28 27 22 21 14 11 6

5 8 10 8 8 8 3 6 10

Stratified PMRN sample

1 16 16 15 17 14 17 21 32

2 12 13 15 16 17 27 30 29

3 33 32 33 32 34 34 28 18

4 31 29 28 26 24 17 13 8

5 8 11 9 9 10 4 7 13

State population

1 16 16 15 17 14 17 21 32

2 12 13 15 16 17 27 30 29

3 33 32 33 32 34 34 28 18

4 31 29 28 26 24 17 13 8

5 8 11 9 9 10 4 7 14

PMRN is Progress Monitoring and Reporting Network. FCAT is Florida Comprehensive Assessment Test. 

a. Of the five proficiency levels on the FCAT, 1 is the lowest and 5 is the highest. Students are designated as 
meeting grade-level standards if they score at level 3 or higher.

Source: Authors’ analysis based on data from Florida Department of Education (2010) and http://fcat.fldoe.
org/results/default.asp.

Table 2. Student demographics for the stratified PMRN sample, by grade, 2009/10
(percent)

Grade

Variable Average 3 4 5 6 7 8 9 10

Male 51 51 51 51 52 51 51 52 50

Race/ethnicitya

White 48 44 49 50 49 48 50 49 50

Hispanic 24 28 23 23 23 23 23 23 23

Black 19 22 21 20 19 22 22 22 21

More than one 4 4 4 4 4 4 3 3 3

Asian 2 2 3 2 2 2 2 2 3

Other 1 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.3

English language 
learner studentb 7 11 8 7 6 5 5 5 6

Student eligible for free 
or reduced-price lunch 56 62 59 58 58 57 55 50 46

PMRN is Progress Monitoring and Reporting Network.

a. Unless otherwise noted, Hispanic includes Latino and Black includes African-American.

b. Students identified as English language learners took all assessments in English.

Source: Authors’ analysis based on data from Florida Department of Education (2010).

http://fcat.fldoe.org/results/default.asp
http://fcat.fldoe.org/results/default.asp
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Reported reliability for the FCAT is high, at .90 (Florida Department of Education, 2005). 
Moreover, content validity and concurrent validity of test scores have been established 
through a series of expert panel reviews and data analyses (Florida Department of Educa-
tion, 2001). The validity of the FCAT as a comprehensive assessment of reading outcomes 
received strong empirical support in an analysis of its correlations with a variety of other 
reading comprehension, language, and basic reading measures (Schatschneider et al., 2004).

Florida Assessments for Instruction in Reading. The FAIR consists of interim reading assess-
ments given three times a year in kindergarten through grade 10 (Florida Department of 
Education, 2009). In grades 3–10 students take a computer-adaptive reading comprehen-
sion screen consisting of up to three passages with multiple-choice questions similar in 
format to those on the FCAT. Performance is reported as an ability score (a developmental 
scaled score that can track growth from grade  3 through grade  10). The current study 
used the FAIR ability scores from the fall, winter, and spring assessments for the 2009/10 
school year.

Reported reliability for the ability scores from the reading comprehension screen is at least 
.90 for 60 percent of students and at least .80 for 98 percent of students (Florida Depart-
ment of Education, 2009). Recent technical reporting on the FAIR showed strong cor-
relations (r > .66) across assessment points (fall, winter, and spring administration) for the 
FAIR reading comprehension screen for students in grades 3–10 (Foorman & Petscher, 
2010a). In addition, the screen has been shown to explain individual differences in FCAT 
reading performance beyond that predicted using prior-year performance on the FCAT 
(average ΔR2 = 3.7 percent; Foorman & Petscher, 2010b). Together, these reports indicate 
that performance on the FAIR can help explain individual student differences on the 
FCAT beyond those explained by data for the prior-year FCAT.

Missing data. The amount of data missing in the stratified sample increased with grade 
level and decreased across FAIR assessment points within grade for all grades (table 3). 
Because all students are required to take the FCAT, missingness was not related to the 
outcome variable (end-of-year reading comprehension). Thus, the data were assumed to be 
missing at random.3

Table 3. Rates of missing data for the three FAIR assessment points, by grade, 
2009/10
(percent)

Grade Fall Winter Spring

3 4.0 2.8 4.7

4 4.6 4.1 5.2

5 5.0 4.3 5.3

6 9.4 6.6 6.4

7 10.0 7.2 7.3

8 10.7 8.1 7.2

9 13.4 10.0 9.4

10 26.6 21.3 22.1

FAIR is Florida Assessments for Instruction in Reading.

Note: The Florida Comprehension Assessment Test had 0 percent missing data due to the stratified random 
sampling procedure.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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As noted, a disadvantage of using OLS to estimate growth is that complete data are nec-
essary for estimating parameters, whereas empirical Bayes can be used to estimate individ-
ual growth curves using full information maximum likelihood so missing data are not an 
impediment. To compare these measures of growth, therefore, it was necessary to evalu-
ate both complete case and missing data conditions. All missing data were imputed using 
PROC MI in SAS.4

Analyzing the data

This section describes the data analysis for each research question, looking at student 
growth in grades 3–10.

What are the relations among descriptive measures of student change and inferential measures of 
individual growth curves?

To explore the relations among the four measures, each was used to calculate and estimate 
growth. For the two descriptive measures (simple difference and average difference) the 
observed measures of reading comprehension ability (fall, winter, and spring FAIR ability 
scores) were used. Calculating the simple difference score allows teachers to estimate how 
much change in reading performance relative to instruction has occurred and to compare 
student change. The simple difference score was calculated as the change occurring 
between the fall and winter assessments (the first estimate of change that can be calculated 
during the academic year using interim/benchmark assessments). The average difference 
score was calculated as the difference between the fall and spring assessments divided by 
the number of change scores (two) during the year. The simple difference between winter 
and spring was not calculated because it cannot be an actionable score for modifying 
instruction to help students meet an end-of-year benchmark for a state achievement test.

The two inferential measures of growth (OLS and empirical Bayes) were estimated using 
a multilevel growth model in HLM6 software (Raudenbush, Bryk, Cheong, & Congdon, 
2004). Growth curve analyses were run for each grade, and the residual files were retained 
so that the OLS and empirical Bayes estimates could be used in the secondary multiple 
regression analysis. The individual growth curves were used to estimate the means and 
variances for each measure by grade and to evaluate the distribution of each measure. 
Simple bivariate correlations and scatterplots were used to examine the relations among 
growth measures.

Controlling for students’ mid-year status, how well do the measures of student change and 
individual growth curves explain differences in end-of-year reading comprehension performance?

A series of hierarchical multiple regression analyses were run for each grade level using the 
generated measures of growth. The baseline regression model included the intercept and 
the winter FAIR ability score. The resulting R2 conveyed how much of the individual vari-
ation in the FCAT was explained by the winter FAIR reading comprehension ability score. 
To estimate a total R2 based on both the winter FAIR and each growth measure, four 
additional models were run iteratively, with each measure of growth entered as a second 
independent variable. The difference between the total R2 and the R2 for each of the 
added- growth models was used to evaluate which measures of growth best explained differ-
ences in the FCAT for each grade level. Although there are methods for testing whether 
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two R2 values are statistically differentiated (Alf & Graf, 1999), such analysis would not 
yield meaningful information with a sample so large. Instead, the difference in R2 values 
between estimators was compared using Cohen’s (1988) criteria: ΔR2 of 2–12  percent is 
considered a small yet practically important effect; 13–25 percent, a moderate effect; and 
26 percent or greater, a large effect.5

Controlling for students’ initial or final status, how well do the measures of student change and 
individual growth curves explain differences in end-of-year reading comprehension performance?

As with the previous research question, a series of hierarchical multiple regression anal-
yses were run for each grade level, but for this question the baseline regression model 
was changed. The regression models were run using the fall FAIR reading comprehen-
sion ability score rather than the winter score as the status variable before including each 
growth measure. A second set of regressions was then run using the spring FAIR score as 
the status variable.

Controlling for the type of estimator, how well do the measures of student change and individual 
growth curves explain differences in end-of-year reading comprehension performance conditional 
on end-of-year reading comprehension performance?

Quantile regressions were run using the quantreg procedure in SAS 9.3 for each grade 
level (SAS Institute Inc., 2012). Modeling procedures for the quantile analysis were similar 
to those for the previous research questions: a baseline model was iteratively run using the 
fall, winter, or spring assessment results as an independent variable but with four addi-
tional hierarchical multiple quantile regressions added, sequentially changing the slope 
coefficient as a predictor.

Explaining the results

The extent to which individual differences in student FCAT performance were explained 
by each of the four growth estimates differs by status variable (performance on the fall, 
winter, or spring FAIR) and measure of growth used. All four growth estimates contrib-
uted significantly to the prediction of FCAT performance when controlling for initial 
(fall) status, as did all but the simple difference estimate when controlling for final (spring) 
status. But only the simple difference score (difference between the fall and winter test 
administrations) was a good predictor when controlling for mid-year (winter) status. Quan-
tile regression suggested that the relations between growth estimates and FCAT scores 
were conditional on the outcome, implying that traditional linear regression analyses 
could mask the predictive relations.

Descriptive analyses of reading comprehension test results

In 2009/10 the FAIR reading comprehension ability scores across grades 3–10 ranged from 
200 to 800, and the FCAT developmental scale score ranged from 86 to 3008 (table 4). 
The mean FAIR reading comprehension ability score rose from fall to spring for all stu-
dents across grades.
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Table 4. Mean, standard deviation, minimum, and maximum for the fall, winter, and 
spring FAIR reading comprehension ability scores and the FCAT developmentally 
scaled scores, by grade, 2009/10

Variable Mean Standard deviation Minimum Maximum

Grade 3

Fall FAIR 353.95 109.65 200 784

Winter FAIR 387.51 109.02 200 708

Spring FAIR 412.12 111.58 200 784

FCAT 1,386.86 371.22 86 2,514

Grade 4

Fall FAIR 431.14 109.82 200 766

Winter FAIR 449.10 107.81 200 766

Spring FAIR 467.41 107.32 200 766

FCAT 1,599.32 334.03 295 2,638

Grade 5

Fall FAIR 478.51 106.51 200 799

Winter FAIR 490.34 105.15 200 799

Spring FAIR 503.94 104.65 200 799

FCAT 1,653.21 334.88 474 2,713

Grade 6

Fall FAIR 500.11 104.31 200 800

Winter FAIR 502.87 112.37 200 800

Spring FAIR 515.03 113.11 200 800

FCAT 1,727.62 342.57 539 2,758

Grade 7

Fall FAIR 518.58 109.09 200 793

Winter FAIR 520.70 116.02 200 793

Spring FAIR 531.67 115.58 200 793

FCAT 1,832.20 301.73 671 2,767

Grade 8

Fall FAIR 544.99 95.23 200 793

Winter FAIR 550.02 101.48 200 793

Spring FAIR 560.40 102.88 200 793

FCAT 1,893.81 237.71 886 2,790

Grade 9

Fall FAIR 563.15 96.07 200 800

Winter FAIR 564.76 103.27 200 800

Spring FAIR 572.36 103.93 200 800

FCAT 1,948.38 269.92 772 2,943

Grade 10

Fall FAIR 588.17 93.03 317 800

Winter FAIR 587.33 100.33 317 800

Spring FAIR 592.98 100.24 317 800

FCAT 1,970.62 330.04 844 3,008

FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Reading comprehension performance remained fairly stable across the three assessment points of 
the Florida Assessments for Instruction in Reading, and correlations with the Florida Comprehensive 
Assessment Test were strong

The FAIR reading comprehension ability scores were strongly and positively correlated 
across the three assessment points, indicating that performance remained fairly stable 
within grades (table 5). Correlations of the fall and winter FAIR with the FCAT were 
strong within and across grades as well (r = .70–.75 across grades and time points; table 6). 
Moreover, the concurrent correlation between the spring FAIR and the FCAT ranged 
from .70 to .76 across grades.

What are the relations among descriptive measures of student change and inferential measures 
of individual growth curves? The simple difference score was calculated as the difference 
between the fall and winter FAIR reading comprehension ability scores, whereas the 
average difference score was calculated as the difference between the spring and fall scores 
divided by two. The two inferential measures of growth were the residuals from the multi-
level model nesting time within student.6

Table 5. Correlations among the three FAIR reading comprehension ability scores, 
by grade, 2009/10

Grade Fall to winter Winter to spring Fall to spring

3 .74 .75 .70

4 .70 .73 .67

5 .71 .68 .73

6 .74 .71 .74

7 .73 .70 .73

8 .74 .70 .73

9 .73 .69 .72

10 .73 .72 .69

FAIR is Florida Assessments for Instruction in Reading.

Note: All correlations are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).

Table 6. Correlations among the three FAIR reading comprehension ability scores 
and the FCAT developmental scaled score, by grade, 2009/10

Grade Fall FAIR and FCAT Winter FAIR and FCAT Spring FAIR and FCAT

3 .73 .75 .76

4 .70 .73 .75

5 .71 .73 .74

6 .75 .74 .74

7 .73 .71 .71

8 .74 .73 .73

9 .72 .70 .70

10 .74 .71 .71

FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: All correlations are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Change-based means on the descriptive measures revealed that simple difference scores 
across grades ranged from –0.84 point in grade 10 to 33.56 points in grade 3 (table 7). A 
negative average score may appear counterintuitive considering that a developmentally 
scaled score should produce average increases over time. Indeed, comparing the observed 
means in table 4 (588.17 in the fall and 587.33 in the winter for grade  10) shows that 
the decrease from fall to winter was negligible (Cohen’s d = 0.009). A similar pattern was 

Table 7. Mean scores, standard deviations, minimum scores, and maximum scores 
for descriptive and inferential growth estimates, by grade, 2009/10

Variable Mean Standard deviation Minimum Maximum

Grade 3

Simple difference 33.56 77.58 –472.00 446.00

Average difference 29.09 42.64 –224.50 254.00

Ordinary least squares 0.00 12.46 –68.54 65.58

Empirical Bayes 0.00 2.19 –11.61 11.45

Grade 4

Simple difference 17.96 88.84 –442.00 505.00

Average difference 18.13 44.32 –204.50 245.00

Ordinary least squares 0.00 13.03 –61.37 66.96

Empirical Bayes 0.00 2.43 –11.47 12.56

Grade 5

Simple difference 11.83 80.49 –456.00 464.00

Average difference 12.71 42.43 –244.50 249.00

Ordinary least squares 0.00 12.53 –74.54 68.56

Empirical Bayes 0.00 2.08 –12.30 11.46

Grade 6

Simple difference 2.76 79.17 –600.00 488.00

Average difference 7.46 41.96 –246.00 227.50

Ordinary least squares 0.00 13.03 –70.77 63.81

Empirical Bayes 0.00 1.92 –8.58 7.40

Grade 7

Simple difference 2.12 82.77 –494.00 593.00

Average difference 6.54 43.77 –296.50 296.50

Ordinary least squares 0.00 13.64 –83.68 83.15

Empirical Bayes 0.00 1.77 –10.13 9.41

Grade 8

Simple difference 5.03 71.89 –487.00 416.00

Average difference 7.71 38.55 –196.50 246.00

Ordinary least squares 0.00 12.05 –59.59 66.29

Empirical Bayes 0.00 1.85 –8.28 7.85

Grade 9

Simple difference 1.62 73.37 –457.00 483.00

Average difference 4.61 39.70 –224.00 205.50

Ordinary least squares 0.00 12.62 –66.15 56.40

Empirical Bayes 0.00 1.90 –8.96 7.09

Grade 10

Simple difference –0.84 71.52 –457.00 447.00

Average difference 2.40 38.16 –228.50 231.00

Ordinary least squares 0.00 12.27 –67.33 65.20

Empirical Bayes 0.00 1.81 –8.66 7.80

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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observed for the average difference score ranged from a between-assessment gain of 2.40 
points in grade 10 to 29.09 points in grade 3. The pattern of average change across grades 
was fairly systematic: the largest gains were made by students in the lowest grades.

While the OLS and empirical Bayes both had a mean of 0 across grades, their standard 
deviations differed. Across grades 3–10 standard deviations ranged from 12.05 to 13.64 for 
OLS-based individual growth curves and from 1.77 to 2.43 for empirical Bayes–based indi-
vidual growth curves (see table 7). This difference was no surprise considering the shrink-
age in growth when estimated using empirical Bayes (the individual slope is weighted by 
the average of the sample).

To better understand the relations among the four slope scores, as well as their bivariate 
correlations with the FCAT, figure 4 depicts a matrix scatterplot that includes Pearson 
correlations (upper diagonal), histograms (diagonal), and scatterplots (lower diagonal). 
The histograms for all variables within grades show that the scores follow a fairly normal 
distribution.

Several correlational trends are worth noting. First, the growth measures are shown to be 
moderately to perfectly correlated across grades. For students in grades 3–5 a nearly perfect 
correlation is observed between empirical Bayes and OLS (r = .99–1.00), empirical Bayes 
and average difference (r =  .95–.96), and OLS and average difference (r =  .96–.97). For 
students in grades 6–10 the correlations decrease slightly but remain strong (r =  .83–.90 
between empirical Bayes and OLS, r = .77–.83 between empirical Bayes and average differ-
ence, and r = .89–.92 between OLS and average difference). Further, for students in grades 
3–10 moderate correlations are observed between simple difference and empirical Bayes 
(r = .38–.50), simple difference and OLS (r = .37–.51), and simple difference and average 
difference (r = .48–.58).

Second, as already noted, a limitation of the progress monitoring literature is that many 
of the studies evaluating the relation of growth with outcomes used samples that did not 
consist predominately of low-ability/high-risk students. The same criticism can be leveled 
here, as the sample of 100,000 students in each grade contained students with low, average, 
and above average reading ability (see table 1). The scatterplots in figure 4 corroborate 
this in that the correlations among growth measures are stronger at the lowest end of 
the reading ability distribution. That being the case, the Pearson correlations shown in 
figure 4 would mask the correlations among variables for students at the lowest end of the 
reading ability distribution because the coefficients were estimated in a conditional means 
model (which estimates the average relation).

To evaluate whether correlations at the lowest end of the ability distribution were being 
masked by the Pearson correlations displayed in figure 4, simple quantile regressions were 
run at the .25 quantile (25th percentile) for the correlations among growth measures. A 
comparison of the bivariate quantile correlations (table 8) with the Pearson correlations 
(figure 4) shows that the correlations did not differ more than .03 for any grade between 
empirical Bayes and OLS, empirical Bayes and average difference, or OLS and average dif-
ference. In addition, the correlations between simple difference and all other measures of 
growth did not increase more than .06, suggesting that the Pearson correlation adequately 
captures the correlations among growth measures for students at the lowest end of the 
reading ability distribution.
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Figure 4. Matrix scatterplot depicting Pearson correlations (upper diagonal), 
histograms (diagonal), and scatterplots (lower diagonal) for the FCAT and growth 
measures, by grade, 2009/10

Grade 3 Grade 4 Grade 5 Grade 6

Grade 7 Grade 8 Grade 9 Grade 10

FCAT is Florida Comprehensive Assessment Test. EBAYES is empirical Bayes. OLS is ordinary least squares. 
SIMPLE is simple difference. AVG is average difference.

Source: Authors’ analysis based on data from Florida Department of Education (2010).

Table 8. Correlations among growth measures at the .25 quantile, by grade, 2009/10

Grade

Empirical 
Bayes and 

ordinary least 
squares

Empirical 
Bayes and 
average 

difference

Empirical 
Bayes and 

simple 
difference

Ordinary 
least squares 
and average 
difference

Ordinary 
least squares 

and simple 
difference

Average 
difference 
and simple 
difference

3 1.00 .98 .51 .97 .47 .55

4 1.00 .96 .50 .96 .50 .59

5 1.00 .96 .48 .96 .49 .57

6 .84 .78 .43 .92 .44 .54

7 .91 .84 .44 .92 .44 .55

8 .89 .82 .44 .92 .44 .55

9 .92 .83 .43 .90 .42 .54

10 .90 .82 .41 .89 .41 .52

Note: All correlations were significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).

Third, unlike the correlations among the growth measures, the correlations between the 
growth measures and the FCAT were near zero for all grades (see figure 4), with the excep-
tion of the correlation between empirical Bayes and the FCAT for students in grades 6–10 
(r =  .50 in grade 6; r =  .36 in grade 7; r =  .42 in grade 8; r =  .37 in grade 9; r =.39 in 
grade 10). The lack of a correlation between most of the slope measures and the FCAT 
suggests that differences in the individual growth curves would not explain differences 
in the FCAT outcome but that once status was included as a predictor, individual growth 
curves could contribute.
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Controlling for students’ mid-year status, how well do the measures of student change and indi-
vidual growth curves explain differences in end-of-year reading comprehension performance? 
Hierarchical multiple regressions used to estimate how well the four measures of growth 
explain differences in the FCAT after accounting for mid-year (winter) status on the FAIR 
found that the measures accounted for 49–56 percent of the variance for students in grades 
3–10 in the baseline model (table 9).7 Adding the average difference score and the OLS 
slope did not explain FCAT differences among students beyond that accounted for by the 
winter assessment, and adding the empirical Bayes explained only a negligible amount of 
additional variance (ΔR2 = 0–2 percent). By contrast, adding the simple difference score 
(change from the fall FAIR to the winter FAIR) explained an additional 6–10 percent of 
the variance in FCAT scores across grades 3–10. Based on Cohen’s criteria for evaluating 
the strength of an R2, these measures added small yet practically important effects.

Controlling for students’ initial or final status, how well do the measures of student change and 
individual growth curves explain differences in end-of-year reading comprehension performance? 
Results for the hierarchical multiple regressions controlling for students’ initial (fall) status 
showed that the base model accounted for 48–56 percent of the variance in FCAT perfor-
mance for students in grades 3–10 (table 10).8 In general, all growth measures explained 
additional variance in FCAT performance for all grades after controlling for fall status. 
Simple difference explained an additional 7–12  percent of variance, average difference 
explained 7–14  percent, OLS explained 5–12  percent, and empirical Bayes explained 
6–12 percent. As was the case for the base (winter status variable) model, the amount of 
variance explained by the four growth measures was interpreted as a small effect.

Results for the hierarchical multiple regressions controlling for students’ final (spring) 
status showed that the base model accounted for 49–58 percent of the variance in FCAT 
performance for students in grades 3–10 (table 11).9 In general, average difference, OLS, 
and empirical Bayes measures of growth explained significant variance in FCAT perfor-
mance after controlling for fall status, whereas the simple difference measure of growth 
explained no additional variance. Average difference added 7–12 percentage points, OLS 
added 7–10 percentage points, and empirical Bayes added 5–8 percentage points. Auxiliary 
comparisons between growth measures controlling for spring status showed that average 

Table 9. Proportion of variance in FCAT scores explained by growth measures after 
controlling for mid-year (winter) status (base model) on the FAIR, by grade, 2009/10

ΔR2 from base model

Grade Base
Simple  

difference
Average 

difference
Ordinary least 

squares
Empirical  

Bayes

3 56 7 0 0 1

4 54 6 0 0 0

5 54 7 0 0 0

6 54 9 0 0 2

7 51 9 0 0 1

8 53 9 0 0 1

9 49 9 0 0 1

10 51 10 0 0 1

FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: ΔR2 ≥ 1 percent is significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table 10. Proportion of variance in the FCAT scores explained by growth measures 
after controlling for initial (fall) status (base model), by grade, 2009/10

ΔR2 from base model

Grade Base
Simple  

difference
Average 

difference
Ordinary least 

squares
Empirical  

Bayes

3 53 10 12 11 11

4 48 12 14 12 12

5 50 11 12 10 10

6 56 8 9 7 9

7 53 7 8 6 7

8 54 8 9 7 8

9 52 7 8 6 7

10 55 7 7 5 6

FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: ΔR2 ≥ 1 percent is significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).

Table 11. Proportion of variance in the FCAT scores explained by growth after 
controlling for final (spring) status (base model), by grade, 2009/10

ΔR2 from base model

Grade Base
Simple  

difference
Average 

difference
Ordinary least 

squares
Empirical  

Bayes

3 58 0 7 8 7

4 56 0 7 7 7

5 54 0 8 8 8

6 55 0 10 9 5

7 51 0 11 9 7

8 53 0 10 9 6

9 49 0 11 9 6

10 50 0 12 10 7

FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: ΔR2 ≥ 1 percent is significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).

difference, OLS, and empirical Bayes explained the same amount of variance in FCAT 
scores for students in grades 3–5. However, in grades 6 and 8 average difference and OLS 
explained 3–5 percentage points more variance than empirical Bayes. Further, in grades 
7, 9, and 10 average difference explained 2 percentage points more variance than OLS, 
which explained 2–3 percentage points more than empirical Bayes. Except for the simple 
difference score, the amount of variance explained by the growth measures was interpret-
ed as a small effect.

Controlling for the type of estimator, how well do the measures of student change and individual 
growth curves explain differences in end-of-year reading comprehension performance condition-
al on end-of-year reading comprehension performance? This research question was explored 
using the same hierarchical multiple regression models tested for the other three questions 
but in a quantile regression framework. Appendixes B, C, and D contain quantile process 
plots that depict the relation between growth and reading comprehension conditional on 
FCAT after controlling for status. For each measure of growth the appendixes contain 
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plots for the intercept and for the two predictors. The intercept plot shows that students 
at lower quantiles of reading comprehension have lower reading comprehension ability 
scores. The other two plots reflect the slope coefficients for status and growth condition-
al on reading comprehension ability. The growth plots show that the slope coefficient 
decreases as reading comprehension ability increases.

Several trends emerged across grades, statuses, and growth measures. When controlling 
for initial (fall) status (appendix B), growth had a stronger relation to the FCAT score 
beyond that predicted by fall status for students at the lowest comprehension ability level. 
Across most grades and measures of growth the coefficient for growth was larger for stu-
dents whose fall FAIR scores were below the .20 quantile (20th percentile).

This trend was amplified when controlling for mid-year (winter) status (appendix C) for 
grades 6–10; however, the direction of the coefficient for growth was dependent on end-of-
year reading comprehension performance: students with low FCAT scores had a positive 
slope coefficient, and students with high FCAT scores had a negative slope coefficient.

When controlling for final (spring) status (appendix D), average difference, OLS, and 
empirical Bayes demonstrated a trend of equal coefficients for growth across the quantiles, 
though small increases were observed from the lower to the upper ends of the distribution. 
The trend for simple difference across grades, however, consistently showed a negative 
coefficient across the quantiles that was stronger for students in the middle of the distribu-
tion and weaker for those at the tails.

Conclusions, implications, and limitations

The results from a combination of multilevel growth curves, hierarchical multiple regres-
sion, and quantile regression suggest that the extent to which individual growth curves 
explain variance beyond what can be explained by any one status variable depends on 
grade level, growth measure, and the status variable controlled for.

Although grade-level differences were not specifically examined, the data suggest that 
grade level interacts with the status variable when the effect of the individual growth 
curve is compared for elementary school and either middle or high school. In grades 3–5 
the average amount of variance in FCAT scores explained by the individual growth curve 
was 11 percent when controlling for the fall FAIR score and 6 percent when controlling 
for the spring FAIR score, while in grades 6–10 it was 8 percent when controlling for either 
the fall or the spring score.

The status covariate was found to affect how individual growth curves relate to FCAT per-
formance. When the fall score was used as the status variable in the base model, all four 
growth measures added a small yet practically important contribution (average 9–11 percent) 
to the prediction of the FCAT score. When the spring FAIR score was used, the simple 
difference growth measure was no longer predictive, and when the winter score was used, 
the simple difference growth measure was the only one that consistently added a practically 
important contribution to the explanation of differences in the outcome across grades.

How well the type of growth estimate explained student FCAT scores was most strongly 
associated with the status variable covariate. Bivariate correlations demonstrated that the 
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slope coefficients were at least moderately associated with one another (see figure 1). The 
average correlation among the four growth measures across grades was r = .70, suggesting 
that the stability or rank ordering of students by slope was fairly consistent across the esti-
mates. Although the correlations among the slope estimates were large, the correlations of 
the slope estimates and the outcome depended entirely on the status variable (except for 
the empirical Bayes slope). This finding is consistent with estimates reported by Zumeta 
et  al. (2012), who found near-zero correlations for slope with the selected outcomes of 
decoding and reading fluency for the representative sample of 25 percent students of low 
ability, 50 percent of average ability, and 25 percent of high ability.

Traditional regression analysis might mask predictive correlations with an outcome. Consider 
that the analysis of the effect of individual growth curves when controlling for winter status 
on the FAIR suggested that the average difference, OLS, and empirical Bayes growth mea-
sures consistently did not explain differences in the FCAT. However, this result might reflect 
only the average for the sample. Quantile regression (appendix C) yielded several results that 
were small but statistically different from zero for several slope scores in grades 6 and higher. 
This finding needs to be contextualized. Many of the observed negative or nonzero effects 
for slope occurred at quantiles greater than .80 and less than .20. A body of research in 
quantile regression summarized by Petscher et al. (2013) noted that such values should be 
interpreted with caution because there may be fewer individuals at the extreme quantiles. 
Thus, although the average amount of variance explained in FCAT scores may be zero, it 
might well be that this would change for students with low or high reading comprehension 
ability. More research is needed to confirm such observations from the present sample.

When considering how well growth explains differences in outcomes, it is important to 
think about how to characterize growth and about which status variable is most appro-
priate. One option is to take a developmental progression perspective. Statistical models 
are agnostic to the data, and it is up to the user to define a model that is both statistically 
and theoretically sound. When the fall score is used as the status variable, any growth 
has yet to take place, so using the estimated slope yields little practical information, on 
average, for practitioners. When the winter score is used in the baseline model, the simple 
difference growth measure may be the most meaningful because the average difference, 
OLS, and empirical Bayes growth measures all incorporate information on students that 
is not yet available when controlling for the status variable. The only status variable for 
which a within-year growth estimate should be used is the spring score; from a practical 
perspective, however, the spring score is less useful for teachers and practitioners looking 
for a growth measure to use during the year to identify students requiring intervention.

Statistically, the developmental progression perspective resolves many issues with the appar-
ently conflicting results based on centering. Consider the results for grade 3 students. The 
statistical outcomes for the fall model showed that 53 percent of the variance in the FCAT 
outcome was explained by the base model and 10 percent by individual growth curves, for a 
total of 63 percent. In the winter model, the base model accounted for 56 percent of the vari-
ance, an increase of 3 percentage points (56 percent minus 53 percent), but adding individual 
growth curves would not explain FCAT differences. The idea of losing explanatory power 
as the criterion is approached does not sit well: It is difficult to explain how a 63 percent 
total variance explained in the fall drops to 56 percent in the winter and then increases to 
65 percent in the spring (57 percent base model plus 8 percent additional variance). Taking a 
developmental perspective instead shows that 53 percent of the variance is explained in the 
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fall (no slope added), 63 percent in the winter (simple difference score added), and 65 percent 
in the spring (average difference, OLS, or empirical Bayes score added).

Taken as a whole, these findings suggest several broad recommendations, with the noted 
limitation that such generalizations relate solely to the data used in this study:

• When evaluating the within-year effects of individual growth curves, using OLS- 
or empirical Bayes–estimated individual growth curves is relevant from a develop-
mental perspective only when the analysis controls for the final (spring) assessment 
rather than the initial or mid-year assessment. Although it was observed that the 
OLS and empirical Bayes individual growth curves explained student differences in 
the FCAT after controlling for the fall assessment, this appears to be due to includ-
ing more statistical information in the model than a developmental perspective 
would allow. An individual growth curve with fall status in the statistical model 
contains information on growth that occurs during the academic year. Thus, how 
well individual growth curves explain differences in the FCAT beyond the fall 
assessment is based on the fact that growth estimates inherently include informa-
tion on student performance in the winter and spring. It is natural to expect that 
an individual growth curve would predict beyond the fall status variable. Thus, 
from a developmental perspective, the information that individual growth curves 
provide to explain student differences on FCAT is potentially misleading.

• For both researchers and practitioners the simple difference score may provide 
valuable information on student differences in an outcome beyond that provided 
by the mid-year status variable. The results in this study showed a statistically sig-
nificant effect for the simple difference score. It is developmentally appropriate to 
include this measure of student change in the statistical model because it includes 
mid-year status. The simple difference score does not contain additional informa-
tion on future performance when mid-year status is included. Thus, its statistical 
relevance, coupled with its ease of calculation, suggests that this score type may be 
a useful measure of student change to explain differences in an outcome beyond a 
status variable.

• The average difference score may provide information on student performance 
differences on the FCAT beyond that of the spring assessment. This score type 
explained student differences in the FCAT at a level comparable to the OLS and 
empirical Bayes individual growth curves. Because this score type was statistical-
ly relevant in explaining student differences beyond the spring assessment and 
is computationally simple for researchers and practitioners, it should be further 
explored as an explanatory variable of student outcomes in conjunction with the 
simple difference score.

While the findings of this study expand on the previous research on the value of interim 
assessments beyond primary grades (Kim et al., 2010; Schatschneider et al., 2008; Yeo et al., 
2012) to middle and secondary school grades using a large sample, they are limited by the 
measures used in the population, the subject matter assessed (reading comprehension), the 
frequency of assessments, and the type of student growth estimates used. The findings 
might differ if the number of interim assessments changed or if other growth measures 
were used. Future work could examine the reliability of the score types and how prior-year 
individual growth curves could be used to inform predictions beyond those of the fall and 
winter status variables and prior-year FCAT performance. In that way, individual growth 
curves could be informative predictors beyond those assessment periods.
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Appendix A. Unstandardized regression coefficients 
for each model by grade and controlling for status

Table A1. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 3, 2009/10

Model Variable B Standard error t-value

1 Intercept 516.50 2.73 189.43

Fall FAIR 2.46 0.01 334.17

2a Intercept 427.66 2.44 175.17

Fall FAIR 2.71 0.01 410.45

Empirical Bayes 57.74 0.33 174.38

2b Intercept 375.10 2.54 147.44

Fall FAIR 2.86 0.01 414.21

Ordinary least squares 10.30 0.06 169.46

2c Intercept 257.08 2.73 94.14

Fall FAIR 2.92 0.01 429.14

Average difference 3.26 0.02 186.31

2d Intercept 312.52 2.73 114.64

Fall FAIR 2.89 0.01 406.79

Simple difference 1.58 0.01 163.24

1 Intercept 400.31 2.88 139.08

Winter FAIR 2.55 0.01 356.05

2a Intercept 412.49 2.88 143.28

Winter FAIR 2.51 0.01 351.41

Empirical Bayes 13.01 0.36 36.46

2b Intercept 400.25 2.87 139.58

Winter FAIR 2.55 0.01 357.42

Ordinary least squares 1.72 0.06 27.55

2c Intercept 392.58 2.91 134.97

Winter FAIR 2.54 0.01 355.90

Average difference 0.32 0.02 17.27

2d Intercept 312.52 2.83 114.64

Winter FAIR 2.89 0.01 409.79

Simple difference –1.30 0.01 –134.96

1 Intercept 346.59 2.93 118.44

Spring FAIR 2.52 0.01 368.30

2a Intercept 120.79 3.09 39.05

Spring FAIR 3.07 0.01 420.14

Empirical Bayes –53.63 0.37 –143.72

2b Intercept 178.68 2.89 61.90

Spring FAIR 2.93 0.01 431.16

Ordinary least squares –8.98 0.06 –147.39

2c Intercept 257.08 2.73 94.14

Spring FAIR 2.92 0.01 429.14

Average difference –2.58 0.02 –144.94

2d Intercept 347.98 2.93 118.75

Spring FAIR 2.53 0.01 368.33

Simple difference –0.08 0.01 –8.05

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A2. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 4, 2009/10

Model Variable B Standard error t-value

1 Intercept 688.01 3.08 223.58

Fall FAIR 2.11 0.01 305.59

2a Intercept 450.61 3.04 148.05

Fall FAIR 2.66 0.01 386.86

Empirical Bayes 53.16 0.31 170.79

2b Intercept 488.79 2.93 167.13

Fall FAIR 2.58 0.01 389.92

Ordinary least squares 9.73 0.06 174.77

2c Intercept 392.88 3.02 130.22

Fall FAIR 2.67 0.01 409.04

Average difference 3.17 0.02 196.15

2d Intercept 462.03 3.01 153.47

Fall FAIR 2.58 0.01 387.13

Simple difference 1.49 0.01 171.27

1 Intercept 580.55 3.08 188.36

Winter FAIR 2.69 0.01 339.94

2a Intercept 574.95 3.09 186.19

Winter FAIR 2.28 0.01 341.08

Empirical Bayes 6.05 0.30 20.38

2b Intercept 578.99 3.07 188.44

Winter FAIR 2.27 0.01 341.52

Ordinary least squares 1.42 0.06 25.83

2c Intercept 576.43 3.09 186.59

Winter FAIR 2.27 0.01 340.16

Average difference 0.26 0.02 15.80

2d Intercept 462.03 3.01 153.47

Winter FAIR 2.58 0.01 387.13

Simple difference –1.08 0.01 –126.61

1 Intercept 514.24 3.14 163.56

Spring FAIR 2.32 0.01 354.11

2a Intercept 385.31 3.02 127.65

Spring FAIR 2.60 0.01 411.64

Empirical Bayes –39.03 0.28 –140.03

2b Intercept 352.97 3.11 113.51

Spring FAIR 2.67 0.01 409.72

Ordinary least squares –7.40 0.05 –137.98

2c Intercept 392.88 3.02 130.22

Spring FAIR 2.67 0.01 409.04

Average difference –2.16 0.02 –137.15

2d Intercept 513.89 3.14 163.49

Spring FAIR 2.33 0.01 353.99

Simple difference –0.07 0.01 –7.71

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A3. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 5, 2009/10

Model Variable B Standard error t-value

1 Intercept 586.13 3.44 170.57

Fall FAIR 2.23 0.01 318.13

2a Intercept 344.41 3.44 100.02

Fall FAIR 2.74 0.01 387.48

Empirical Bayes 56.76 0.36 156.76

2b Intercept 383.79 3.31 115.82

Fall FAIR 2.65 0.01 391.05

Ordinary least squares 9.25 0.06 160.44

2c Intercept 303.86 3.37 90.23

Fall FAIR 2.74 0.01 408.43

Average difference 3.04 0.02 180.71

2d Intercept 359.72 3.35 107.29

Fall FAIR 2.67 0.01 393.49

Simple difference 1.47 0.01 163.37

1 Intercept 510.45 3.44 148.28

Winter FAIR 2.33 0.01 339.5

2a Intercept 506.43 3.46 146.55

Winter FAIR 2.34 0.01 339.32

Empirical Bayes 4.26 0.35 12.21

2b Intercept 508.88 3.44 148.00

Winter FAIR 2.33 0.01 340.37

Ordinary least squares 1.01 0.06 17.59

2c Intercept 508.97 3.45 147.64

Winter FAIR 2.33 0.01 339.55

Average difference 0.13 0.02 7.40

2d Intercept 359.72 3.35 107.29

Winter FAIR 2.67 0.01 393.49

Simple difference –1.20 0.01 –135.72

1 Intercept 463.63 3.52 131.84

Spring FAIR 2.36 0.01 345.49

2a Intercept 312.71 3.34 93.65

Spring FAIR 2.66 0.01 409.18

Empirical Bayes –48.78 0.33 –148.88

2b Intercept 274.69 3.44 79.85

Spring FAIR 2.74 0.01 408.06

Ordinary least squares –8.22 0.06 –146.75

2c Intercept 303.86 3.37 90.23

Spring FAIR 2.74 0.01 408.43

Average difference –2.44 0.02 –147.24

2d Intercept 462.77 3.52 131.63

Spring FAIR 2.36 0.01 345.75

Simple difference –0.09 0.01 –10.59

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A4. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 6, 2009/10

Model Variable B Standard error t-value

1 Intercept 503.56 3.54 142.32

Fall FAIR 2.45 0.01 353.41

2a Intercept 653.12 3.31 197.24

Fall FAIR 2.15 0.01 330.88

Empirical Bayes 55.20 0.35 156.61

2b Intercept 388.19 3.36 115.68

Fall FAIR 2.68 0.01 407.18

Ordinary least squares 7.19 0.05 136.66

2c Intercept 331.71 3.33 99.71

Fall FAIR 2.75 0.01 426.61

Average difference 2.59 0.02 161.34

2d Intercept 369.34 3.34 110.57

Fall FAIR 2.71 0.01 414.46

Simple difference 1.26 0.01 146.15

1 Intercept 596.86 3.35 177.95

Winter FAIR 2.25 0.01 345.43

2a Intercept 719.17 3.88 185.27

Winter FAIR 2.01 0.01 264.36

Empirical Bayes 26.46 0.44 59.65

2b Intercept 599.02 3.35 178.65

Winter FAIR 2.24 0.01 344.87

Ordinary least squares 0.87 0.06 15.45

2c Intercept 597.59 3.36 178.04

Winter FAIR 2.25 0.01 343.90

Average difference 0.09 0.02 5.31

2d Intercept 369.34 3.34 110.57

Winter FAIR 2.71 0.01 414.46

Simple difference –1.45 0.01 –156.35

1 Intercept 573.00 3.40 168.74

Spring FAIR 2.24 0.01 348.12

2a Intercept 17.50 5.85 2.99

Spring FAIR 3.32 0.01 294.52

Empirical Bayes –75.30 0.66 –113.47

2b Intercept 345.58 3.39 101.92

Spring FAIR 2.68 0.01 415.40

Ordinary least squares –8.64 0.06 –154.08

2c Intercept 331.71 3.33 99.71

Spring FAIR 2.75 0.01 426.61

Average difference –2.92 0.02 –167.77

2d Intercept 568.80 3.41 166.59

Spring FAIR 2.25 0.01 347.16

Simple difference –0.10 0.01 –11.20

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).



A-5

Table A5. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 7, 2009/10

Model Variable B Standard error t-value

1 Intercept 785.85 3.17 247.89

Fall FAIR 2.02 0.01 337.28

2a Intercept 837.97 2.94 285.10

Fall FAIR 1.92 0.01 345.54

Empirical Bayes 46.23 0.34 135.51

2b Intercept 680.95 3.08 221.11

Fall FAIR 2.22 0.01 381.34

Ordinary least squares 5.68 0.05 122.09

2c Intercept 632.83 3.08 205.75

Fall FAIR 2.29 0.01 397.15

Average difference 2.06 0.01 143.82

2d Intercept 669.40 3.07 218.36

Fall FAIR 2.24 0.01 386.80

Simple difference 0.99 0.01 130.06

1 Intercept 869.46 3.09 281.80

Winter FAIR 1.85 0.01 319.68

2a Intercept 920.04 3.34 275.86

Winter FAIR 1.75 0.01 279.12

Empirical Bayes 15.73 0.41 38.33

2b Intercept 869.84 3.09 281.96

Winter FAIR 1.85 0.01 319.60

Ordinary least squares 0.38 0.05 7.63

2c Intercept 869.27 3.09 281.69

Winter FAIR 1.85 0.01 319.41

Average difference –0.05 0.02 –3.19

2d Intercept 669.40 3.07 218.36

Winter FAIR 2.24 0.01 386.80

Simple difference –1.25 0.01 –153.64

1 Intercept 844.16 3.15 267.61

Spring FAIR 1.86 0.01 320.53

2a Intercept 431.00 4.39 98.11

Spring FAIR 2.64 0.01 322.19

Empirical Bayes –67.25 0.53 –126.21

2b Intercept 650.16 3.13 207.49

Spring FAIR 2.22 0.01 384.48

Ordinary least squares –7.32 0.05 –149.45

2c Intercept 632.83 3.08 205.75

Spring FAIR 2.29 0.01 397.15

Average difference –2.51 0.02 –165.05

2d Intercept 838.71 3.16 265.05

Spring FAIR 1.87 0.01 321.15

Simple difference –0.15 0.01 –17.82

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).



A-6

Table A6. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 8, 2009/10

Model Variable B Standard error t-value

1 Intercept 894.04 2.96 301.86

Fall FAIR 1.83 0.01 342.67

2a Intercept 971.31 2.73 355.44

Fall FAIR 1.69 0.01 342.51

Empirical Bayes 37.72 0.26 148.06

2b Intercept 797.46 2.83 281.55

Fall FAIR 2.01 0.01 392.53

Ordinary least squares 5.32 0.04 131.33

2c Intercept 750.18 2.81 266.70

Fall FAIR 2.07 0.01 411.17

Average difference 1.94 0.01 155.77

2d Intercept 775.06 2.82 274.42

Fall FAIR 2.04 0.01 401.27

Simple difference 0.96 0.01 142.94

1 Intercept 954.07 2.83 336.62

Winter FAIR 1.71 0.01 337.16

2a Intercept 1,023.48 3.13 327.19

Winter FAIR 1.58 0.01 281.97

Empirical Bayes 15.34 0.31 49.76

2b Intercept 955.49 2.83 337.35

Winter FAIR 1.71 0.01 336.88

Ordinary least squares 0.66 0.04 15.53

2c Intercept 954.60 2.84 336.66

Winter FAIR 1.71 0.01 335.95

Average difference 0.07 0.01 5.46

2d Intercept 775.06 2.82 274.42

Winter FAIR 2.04 0.01 401.27

Simple difference –1.08 0.01 –150.14

1 Intercept 950.85 2.85 333.30

Spring FAIR 1.68 0.01 336.07

2a Intercept 549.38 4.29 128.10

Spring FAIR 2.40 0.01 315.47

Empirical Bayes –50.65 0.42 –119.57

2b Intercept 767.35 2.86 267.91

Spring FAIR 2.01 0.01 398.61

Ordinary least squares –6.38 0.04 –148.26

2c Intercept 750.18 2.81 266.70

Spring FAIR 2.07 0.01 411.17

Average difference –2.20 0.01 –163.95

2d Intercept 947.92 2.86 330.97

Spring FAIR 1.69 0.01 335.43

Simple difference –0.08 0.01 –10.80

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A7. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 9, 2009/10

Model Variable B Standard error t-value

1 Intercept 809.48 3.52 229.75

Fall FAIR 2.02 0.01 327.93

2a Intercept 872.46 3.30 264.33

Fall FAIR 1.91 0.01 330.58

Empirical Bayes 37.52 0.29 128.50

2b Intercept 705.26 3.43 205.29

Fall FAIR 2.21 0.01 366.71

Ordinary least squares 5.25 0.05 114.53

2c Intercept 656.79 3.41 192.48

Fall FAIR 2.28 0.01 383.10

Average difference 1.99 0.01 138.21

2d Intercept 689.53 3.41 202.19

Fall FAIR 2.23 0.01 373.96

Simple difference 0.98 0.01 125.70

1 Intercept 913.17 3.38 269.95

Winter FAIR 1.83 0.01 311.10

2a Intercept 973.04 3.66 266.24

Winter FAIR 1.73 0.01 270.58

Empirical Bayes 14.30 0.35 41.26

2b Intercept 913.67 3.38 270.24

Winter FAIR 1.83 0.01 311.11

Ordinary least squares 0.54 0.05 11.12

2c Intercept 913.31 3.39 269.84

Winter FAIR 1.83 0.01 310.57

Average difference 0.02 0.02 1.23

2d Intercept 689.53 3.41 202.19

Winter FAIR 2.23 0.01 373.96

Simple difference –1.25 0.01 –148.76

1 Intercept 912.69 3.43 266.30

Spring FAIR 1.81 0.01 307.13

2a Intercept 469.27 4.91 95.68

Spring FAIR 2.58 0.01 303.64

Empirical Bayes –55.57 0.47 –119.46

2b Intercept 696.63 3.45 201.89

Spring FAIR 2.19 0.01 367.59

Ordinary least squares –7.12 0.05 –145.38

2c Intercept 656.79 3.41 192.48

Spring FAIR 2.28 0.01 383.10

Average difference –2.57 0.02 –164.91

2d Intercept 907.57 3.44 263.63

Spring FAIR 1.82 0.01 307.15

Simple difference –0.12 0.01 –14.24

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A8. Summary of hierarchical multiple regressions using different measures of 
growth to predict end-of-year reading comprehension scores, controlling for status, 
grade 10, 2009/10

Model Variable B Standard error t-value

1 Intercept 425.84 4.49 94.82

Fall FAIR 2.63 0.01 348.25

2a Intercept 525.60 4.24 124.02

Fall FAIR 2.46 0.01 345.05

Empirical Bayes 46.63 0.37 127.48

2b Intercept 295.73 4.39 67.34

Fall FAIR 2.85 0.01 385.79

Ordinary least squares 6.25 0.06 111.73

2c Intercept 235.93 4.34 54.34

Fall FAIR 2.94 0.01 403.92

Average difference 2.45 0.02 137.81

2d Intercept 272.69 4.32 63.12

Fall FAIR 2.89 0.01 397.57

Simple difference 1.23 0.01 129.61

1 Intercept 590.82 4.34 136.17

Winter FAIR 2.35 0.01 322.62

2a Intercept 666.45 4.78 139.34

Winter FAIR 2.22 0.01 275.87

Empirical Bayes 16.27 0.45 36.48

2b Intercept 590.95 4.34 136.18

Winter FAIR 2.35 0.01 322.53

Ordinary least squares 0.09 0.06 1.53

2c Intercept 589.00 4.34 135.64

Winter FAIR 2.35 0.01 322.67

Average difference –0.16 0.02 –8.59

2d Intercept 272.69 4.32 63.12

Winter FAIR 2.89 0.01 397.57

Simple difference –1.66 0.01 –163.22

1 Intercept 593.39 4.44 133.72

Spring FAIR 2.32 0.01 314.76

2a Intercept –18.50 6.50 –2.85

Spring FAIR 3.35 0.01 307.99

Empirical Bayes –73.71 0.60 –122.24

2b Intercept 304.75 4.39 69.44

Spring FAIR 2.81 0.01 384.00

Ordinary least squares –9.33 0.06 –156.02

2c Intercept 235.93 4.34 54.34

Spring FAIR 2.94 0.01 403.92

Average difference –3.43 0.02 –179.63

2d Intercept 583.54 4.46 130.85

Spring FAIR 2.34 0.01 315.43

Simple difference –0.20 0.01 –19.11

FAIR is Florida Assessments for Instruction in Reading.

Note: All coefficients are significant at p < .001.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A9. Comparison of ΔR2 between growth estimates when controlling for the 
fall FAIR, by grade, 2009/10

Growth comparison

Grade 3

Empirical Bayes – ordinary least squares .00

Empirical Bayes – average difference –.01

Empirical Bayes – simple difference .01

Ordinary least squares – average difference –.01

Ordinary least squares – simple difference .01

Average difference – simple difference .02

Grade 4

Empirical Bayes – ordinary least squares .00

Empirical Bayes – average difference –.02

Empirical Bayes – simple difference .00

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference .00

Average difference – simple difference .02

Grade 5

Empirical Bayes – ordinary least squares .00

Empirical Bayes – average difference –.02

Empirical Bayes – simple difference –.01

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference –.01

Average difference – simple difference .01

Grade 6

Empirical Bayes – ordinary least squares .02

Empirical Bayes – average difference .00

Empirical Bayes – simple difference .01

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference –.01

Average difference – simple difference .01

Growth comparison

Grade 7

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference –.01

Empirical Bayes – simple difference .00

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference –.01

Average difference – simple difference .01

Grade 8

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference –.01

Empirical Bayes – simple difference .00

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference –.01

Average difference – simple difference .01

Grade 9

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference –.01

Empirical Bayes – simple difference .00

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference –.01

Average difference – simple difference .01

Grade 10

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference –.01

Empirical Bayes – simple difference –.01

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference –.02

Average difference – simple difference .00

FAIR is Florida Assessments for Instruction in Reading.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A10. Comparison of ΔR2 between growth estimates when controlling for the 
winter FAIR, by grade, 2009/10

Growth comparison

Grade 3

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference .01

Empirical Bayes – simple difference –.06

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.07

Average difference – simple difference –.07

Grade 4

Empirical Bayes – ordinary least squares .00

Empirical Bayes – average difference .00

Empirical Bayes – simple difference –.06

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.06

Average difference – simple difference –.06

Grade 5

Empirical Bayes – ordinary least squares .00

Empirical Bayes – average difference .00

Empirical Bayes – simple difference –.07

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.07

Average difference – simple difference –.07

Grade 6

Empirical Bayes – ordinary least squares .02

Empirical Bayes – average difference .02

Empirical Bayes – simple difference –.07

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.09

Average difference – simple difference –.09

Growth comparison

Grade 7

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference .01

Empirical Bayes – simple difference –.08

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.09

Average difference – simple difference –.09

Grade 8

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference .01

Empirical Bayes – simple difference –.08

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.09

Average difference – simple difference –.09

Grade 9

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference .01

Empirical Bayes – simple difference –.08

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.09

Average difference – simple difference –.09

Grade 10

Empirical Bayes – ordinary least squares .01

Empirical Bayes – average difference .01

Empirical Bayes – simple difference –.09

Ordinary least squares – average difference .00

Ordinary least squares – simple difference –.10

Average difference – simple difference –.10

FAIR is Florida Assessments for Instruction in Reading.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Table A11. Comparison of ΔR2 between growth estimates when controlling for the 
spring FAIR, by grade, 2009/10

Growth comparison

Grade 3

Empirical Bayes – ordinary least squares –.01

Empirical Bayes – average difference .00

Empirical Bayes – simple difference .07

Ordinary least squares – average difference .01

Ordinary least squares – simple difference .08

Average difference – simple difference .07

Grade 4

Empirical Bayes – ordinary least squares .00

Empirical Bayes – average difference .00

Empirical Bayes – simple difference .07

Ordinary least squares – average difference .00

Ordinary least squares – simple difference .07

Average difference – simple difference .07

Grade 5

Empirical Bayes – ordinary least squares .00

Empirical Bayes – average difference .00

Empirical Bayes – simple difference .08

Ordinary least squares – average difference .00

Ordinary least squares – simple difference .08

Average difference – simple difference .08

Grade 6

Empirical Bayes – ordinary least squares –.04

Empirical Bayes – average difference –.05

Empirical Bayes – simple difference .05

Ordinary least squares – average difference –.01

Ordinary least squares – simple difference .09

Average difference – simple difference .10

Growth comparison

Grade 7

Empirical Bayes – ordinary least squares –.02

Empirical Bayes – average difference –.04

Empirical Bayes – simple difference .07

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference .09

Average difference – simple difference .11

Grade 8

Empirical Bayes – ordinary least squares –.03

Empirical Bayes – average difference –.04

Empirical Bayes – simple difference .06

Ordinary least squares – average difference –.01

Ordinary least squares – simple difference .09

Average difference – simple difference .10

Grade 9

Empirical Bayes – ordinary least squares –.03

Empirical Bayes – average difference –.05

Empirical Bayes – simple difference .06

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference .09

Average difference – simple difference .11

Grade 10

Empirical Bayes – ordinary least squares –.03

Empirical Bayes – average difference –.05

Empirical Bayes – simple difference .07

Ordinary least squares – average difference –.02

Ordinary least squares – simple difference .10

Average difference – simple difference .12

FAIR is Florida Assessments for Instruction in Reading.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Appendix B. Unstandardized multiple quantile regression 
process plots centering time at the initial (fall) status 
on the Florida Assessments for Instruction in Reading

This appendix contains quantile process plots that depict the relation between growth 
and reading comprehension performance conditional on student reading comprehension 
performance after controlling for initial (fall) status. Three graphs are included in each 
reported process plot because the models have two predictors as well as an intercept; the 
base model plot, which includes only one predictor (status) plus an intercept, has just two 
graphs. The intercept portion of the process plot displays the predicted reading compre-
hension score (y-axis) across the distribution of Florida Comprehensive Assessment Test 
(FCAT) scores when fall status and growth measure are 0 (x-axis). This plot shows that 
students at lower quantiles of FCAT performance have lower reading comprehension 
scores. The remaining plots reflect the slope coefficients for status and growth conditional 
on reading comprehension performance. Most pertinent is the growth plot, which shows 
that the coefficient decreases as FCAT performance increases.
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Figure B1. Grade 3: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10

Base model 
 

Empirical Bayes

Ordinary least squares 
 

Average difference

Simple difference

FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure B2. Grade 4: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10

Base model 
 

Empirical Bayes
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure B3. Grade 5: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure B4. Grade 6: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure B5. Grade 7: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure B6. Grade 8: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure B7. Grade 9: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure B8. Grade 10: unstandardized multiple quantile regression process plots 
centering time at the fall FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Appendix C. Unstandardized multiple quantile regression 
process plots centering time at the mid-year (winter) 

status on the Florida Assessments for Instruction in Reading

This appendix contains quantile process plots that depict the relation between growth 
and reading comprehension performance conditional on student reading comprehension 
performance after controlling for initial (fall) status. Three graphs are included in each 
reported process plot because the models have two predictors as well as an intercept; the 
base model plot, which includes only one predictor (status) plus an intercept, has just two 
graphs. The intercept portion of the process plot displays the predicted reading compre-
hension score (y-axis) across the distribution of Florida Comprehensive Assessment Test 
(FCAT) scores when winter status and growth measure are 0 (x-axis). This plot shows 
that students at lower quantiles of FCAT performance have lower reading comprehension 
scores. The remaining plots reflect the slope coefficients for status and growth conditional 
on reading comprehension performance. Most pertinent is the growth plot, which shows 
that the coefficient decreases as FCAT performance increases.
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Figure C1. Grade 3: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure C2. Grade 4: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure C3. Grade 5: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure C4. Grade 6: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure C5. Grade 7: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure C6. Grade 8: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure C7. Grade 9: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure C8. Grade 10: unstandardized multiple quantile regression process plots centering 
time at the winter FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Appendix D. Unstandardized multiple quantile regression 
process plots centering time at the final (spring) status 
on the Florida Assessments for Instruction in Reading

This appendix contains quantile process plots that depict the relation between growth 
and reading comprehension performance conditional on student reading comprehension 
performance after controlling for initial (fall) status. Three graphs are included in each 
reported process plot because the models have two predictors as well as an intercept; the 
base model plot, which includes only one predictor (status) plus an intercept, has just two 
graphs. The intercept portion of the process plot displays the predicted reading compre-
hension score (y-axis) across the distribution of Florida Comprehensive Assessment Test 
(FCAT) scores when spring status and growth measure are 0 (x-axis). This plot shows 
that students at lower quantiles of FCAT performance have lower reading comprehension 
scores. The remaining plots reflect the slope coefficients for status and growth conditional 
on reading comprehension performance. Most pertinent is the growth plot, which shows 
that the coefficient decreases as FCAT performance increases.
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Figure D1. Grade 3: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure D2. Grade 4: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure D3. Grade 5: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure D4. Grade 6: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure D5. Grade 7: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).



D-7

Figure D6. Grade 8: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure D7. Grade 9: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Figure D8. Grade 10: unstandardized multiple quantile regression process plots centering 
time at the spring FAIR: estimated parameter by quantile for the FCAT, 2009/10
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FAIR is Florida Assessments for Instruction in Reading. FCAT is Florida Comprehensive Assessment Test.

Note: At 95 percent confidence intervals.

Source: Authors’ analysis based on data from Florida Department of Education (2010).
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Notes

1. In a cloze task students are presented with a portion of text with certain words removed 
(cloze text) and asked to replace the missing words. Cloze tasks require that students 
understand context and vocabulary.

2. For more technical information on multilevel models, see Raudenbush and Bryk 
(2002), Hox (2010), and O’Connell and McCoach (2008).

3. Little’s (1985) “missing completely at random” was assessed for all variables by grade, 
and in all instances the null hypothesis (that data were missing completely at random) 
was rejected (p < .001).

4. The pattern of results was the same regardless of whether data used were the origi-
nal scores or the imputed data. Cohen’s d for the difference between the original and 
imputed data ranged from –0.05 to 0.00 and averaged –0.02, –0.03, and –0.02 for fall, 
winter, and spring FAIR across grades 3–10. Results are available from the first author 
on request.

5. In each model the model-adjusted R2 was equal to the model-estimated R2 due to the 
large samples at each grade level (n = 100,000) and the small number of predictors 
(two) in each model.

6. Model diagnostics for the multilevel analysis included an evaluation of the residuals by 
time-point. All models indicated that the residuals at each time-point were centered 
on 0. Results are available from the first author on request.

7. Unstandardized regression coefficients for each model by grade are reported in appen-
dix A, tables A1–A8. Table A10 reports the ΔR2 between growth measures controlling 
for winter status by grade.

8. Unstandardized regression coefficients for each model by grade are reported in appen-
dix A, tables A1–A8. Table A9 reports the ΔR2 between growth measures controlling 
for fall status by grade.

9. Unstandardized regression coefficients for each model by grade are reported in appen-
dix A, tables A1–A8. Table A11 reports the ΔR2 between growth measures controlling 
for spring status by grade.
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