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A fundamental goal of educational research is identifying students’ current stage of
skill mastery (complete/partial/none). In recent years a number of cognitive diagnosis
models have become a popular means of estimating student skill knowledge. However,
these models become difficult to estimate as the number of students, items, and skills
grows. There exist alternatives such as sum-scores and the capability matrix. While
initial theoretical work on sum-scores has been done, the behavior of sum-scores and
the capability matrix is not well understood with respect to each other or to estimates
from cognitive diagnosis models. In this paper we compare the performance of the
three estimates of student skill knowledge under a variety of clustering methods using
simulated data with varying levels of missing values.

1 Introduction
A fundamental goal of educational research is identifying students’ current stage of

skill mastery (complete/partial/none). In addition, finding groups of students with similar
skill set profiles is important to provide feedback for classroom instruction. In recent years
a number of cognitive diagnosis models [3,8] have become a popular means of estimating
student skill knowledge. However, these models become difficult and time-consuming
to estimate as the number of students, items, and skills increases [8]. Two alternative
estimates, sum-scores [3,6] and the capability matrix [1], can be used to estimate student
skill knowledge in (near to) real time. Estimates are subsequently clustered to identify
similar skill set profiles.

While initial theoretical work on sum-scores has been done [3], the behavior and per-
formance of sum-scores and the capability matrix is not well understood in comparison
with each other or with estimates from cognitive diagnosis models. The performance of
the methods when missing values occur is also of interest. Moreover, which clustering
method to employ is an open question. In this work we take a step back and compare
the performance of three estimates of student skill knowledge under a variety of clustering
methods. In Section 2, we describe the three different estimates of student skill knowledge.
In Section 3, we give a brief introduction to the clustering methods used. In Section 4,
we show results from a simulation study incorporating varying amounts of missing data.
Finally, in Section 5, we offer conclusions and thoughts on future work.

2 Estimates of Student Skill Knowledge
While there may be several possible methods to estimate student skill knowledge, this

paper will consider one traditional Bayesian estimation procedure and two simpler statis-
tics. First, we introduce notation that will be common among the methods. We begin by
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assembling the skill dependencies of each item into a Q-matrix [2,12]. The Q-matrix, also
referred to as a transfer model or skill coding, is a J × K matrix where q jk = 1 if item j
requires skill k and 0 if it does not, J is the total number of items, and K is the total number
of skills. The Q-matrix is usually an expert-elicited assignment matrix. This paper assumes
the Q-matrix is known and correct.

There are (at least) two ways in which Q-matrices can differ. First, each item could
require only a single skill or multiple skills. A Q-matrix can then be comprised of all
single skill items, single and multiple skill items, or all multiple skill items. Second, the
Q-matrix may have a balanced or unbalanced design. In a balanced design, all single skill
items occur the same number of times, and each combination of skills occurs the same
number of times. For example, if K = 3 and J = 30 one possible balanced design would
be: five single skill items for each skill, four double skill items for each pair of skills, and
three triple skill items. A design could be unbalanced in two ways. Either all skills or
combinations of skills are present but do not occur the same number of times or there are
missing skills or combinations of skills.
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We then assemble student responses in a N × J response matrix Y where yi j indicates
both if student i attempted item j and whether or not they answered item j correctly and
N is the total number of students. If student i did not answer item j then yi j = NA. The
indicator Iyi j,NA = 0 expresses this missing value. If student i attempted item j ( Iyi j,NA = 1),
then yi j = 1 if they answered correctly, or 0 if they answered incorrectly.

2.1 DINA Model Estimates

The first method of estimating student skill knowledge uses a common conjunctive
cognitive diagnosis model. The deterministic inputs, noisy “and” gate model (DINA; [8])
models student responses as

P(Yi j = 1 | ηi j, s j, g j) = (1 − s j)ηi jg1−ηi j
j (1)

where αik = I{Student i has skill k} indicates if student i possesses skill k, ηi j =
∏K

k=1 α
q jk
ik

indicates if student i has all skills needed for item j, s j = P(Yi j = 0 | ηi j = 1) is the slip
parameter, and g j = P(Yi j = 1 | ηi j = 0) is the guess parameter. If a student is missing any
of the required skills, the probability that they will answer an item correctly drops due to
the conjunctive assumption.

We estimate the student skill knowledge parameters of the DINA model, the αik, using
Markov Chain Monte Carlo methods with the program WinBUGS (Bayesian Inference
Using Gibbs Sampling, [9]). In the model, the αik are 0/1 indicating whether or not student
i has mastered skill k. Our estimates will be α̂ik ∈ [0, 1]. We can think of the α̂ik as the
probability that student i has mastered skill k.
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2.2 Sum-scores

The second estimate we consider is the sum-score method of [3,6]. Here Wi = (Wi1,

Wi2, ...,WiK) is a vector of sum-scores where the kth component is defined as

Wik =

J
∑

j=1
yi jq jk, (2)

where yi j and q jk are the corresponding entries from the response matrix Y and Q-matrix.
Thus, the components of Wi are simply the number of items student i answered correctly
for each skill k. When an item requires more than one skill it will contribute to more than
one component of Wi. The range of Wik may be different for each k if the skills are required
by a different number of problems.

2.3 Capability Matrix

Finally, we consider the capability matrix defined in [1]. The capability matrix B is an
N × K matrix where Bik is the proportion of correctly answered items involving skill k that
student i attempted. Thus,

Bik =

∑J
j=1 Iyi j,NA · yi j · q jk
∑J

j=1 Iyi j,NA · q jk
, (3)

where yi j and q jk are the corresponding entries from the response matrix Y and Q-matrix.
The capability matrix expands on sum-scores by accounting for the number of items re-
quiring skill k that student i answered. In this manner the statistic scales for the number of
items in which the skill appears as well as for missing data. If a student has not seen all
of the items requiring a particular skill, we still derive an estimate based on the available
information. If student i completes no items involving skill k, then Bik = NA. In this case,
we impute an uninformative value (e.g., 0.5, mean, median) to map students to the hyper-
cube. Exploring the performance of these imputation choices is ongoing. For this paper we
assume that the data are complete or that missing B-values are appropriately imputed.

We can note that both the DINA model estimates and the B-matrix values map students
into a K-dimensional hypercube (for each dimension, zero indicates total lack of skill mas-
tery, one is complete skill mastery, and values in between are less certain). The 2K corners
of the hypercube correspond to natural skill set profiles Ci = {Ci1,Ci2, ...,CiK},Cik ∈ {0, 1}.

Additionally, we can note theoretical connections between the sum-scores and B-matrix
values. If there are no missing response values yi j, then

Wik = JkBik, (4)

where Jk is the number of items that require skill k. When all students have answered
all questions and there is a balanced Q-matrix design (i.e., J1 = J2 = ... = JK), the two
estimates will mapto the same (scaled) feature space. In this case, we expect the two
estimates to perform similarly. However, when there is either missing data or an unbalanced
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Q-matrix design, the space to which the estimates map will be different. In this case, we
cannot guarantee that performance will be similar.

3 Clustering Methods
To identify groups of students with similar skill set profiles, we cluster the student

skill knowledge estimates. In this paper we will compare the performance of three com-
mon clustering methods: hierarchical agglomerative clustering, K-means, and model-based
clustering. In the sections below we briefly introduce each of these methods.

3.1 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HAC; [10]) links groups in order of closeness to
form a tree structure from which a clustering solution can be extracted. Euclidean distance
is most commonly used to measure the distance between groups. The method also requires
the user to specify how to measure the distance between groups. We will use “complete”
linkage where the distance between any two groups is defined as the largest distance be-
tween two observations, one from each group. In HAC, all observations begin as their own
group. The two closest groups are merged and all inter-group distances are recalculated.
We continue merging groups and recalculating distances until a single group with all ob-
servations is formed. Once the tree structure is formed, we can extract the desired number
of clusters G by cutting the tree at a height corresponding to G branches.

3.2 K-means

K-Means [5] is a popular iterative descent algorithm for data X = {x1, x2..., xn}, xi ∈ <
K .

It uses squared Euclidean distance as a dissimilarity measure and tries to minimize within-
cluster distance and maximize between-cluster distance. For a given number of clusters G,
K-Means searches for cluster centers mg and assignments A that minimize the criterion

min
A

G
∑

g=1

∑

A(i)=g
‖xi − mg‖

2.

The algorithm alternates between optimizing the cluster centers for the current assign-
ment (by the current cluster means) and optimizing the cluster assignment for a given set
of cluster centers (by assigning to the closest current center) until convergence (i.e. clus-
ter assignments do not change). It tends to find compact, spherical clusters and requires a
priori both the number of clusters G and a starting set of cluster centers. The final clus-
ter assignment can be sensitive to the choice of centers; a common method for initializing
K-Means is to randomly choose G observations.

3.3 Model-based Clustering

Model-based clustering [4, 11] is a parametric statistical approach that assumes: the
data X = {x1, x2, ..., xn}, xi ∈ <

K are an independently and identically distributed sample
from an unknown population density p(x); each population group g is represented by a
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Table 1: Clustering the DINA Model Estimates of Student Skill Knowledge
N J K Q-matrix design DINA HAC K-means MBC MBC 2K

250 30 3 Single, bal 1.000 1.000 0.8739 0.9966 1.000
(0.0054) (0.0054) (0.0736) (0.0895) (0.0349)

250 30 3 Both, bal 0.9793 0.9781 0.8367 0.8915 0.9632
(0.0179) (0.0200) (0.1192) (0.0882) (0.1087)

250 30 3 Both,unbal, all 0.9657 0.9657 0.7789 0.9129 0.9350
(0.0285) (0.2920) (0.0941) (0.0505) (0.0758)

250 30 3 Both,unbal,miss 0.9240 0.9131 0.7696 0.8811 0.9132
(0.0395) (0.0427) (0.0858) (0.0696) (0.0428)

250 30 3 Mult, bal 0.4677 0.5127 0.5012 0.5282 0.4979
(0.0292) (0.0443) (0.0578) (0.0690) (0.0411)

250 30 3 Mult, unbal, all 0.4629 0.4874 0.4948 0.5130 0.4790
(0.0430) (0.0536) (0.0816) (0.0736) (0.0495)

250 30 3 Mult, unbal, miss 0.3239 0.4070 0.3835 0.4266 0.4090
(0.0380) (0.0596) (0.0521) (0.0837) (0.0630)

500 68 5 Both, bal 0.9463 0.9428 0.7132 0.8348 0.9243
(0.0184) (0.0188) (0.0428) (0.1123) (0.0488)

500 68 5 Both, unbal, miss 0.8724 0.8729 0.6665 0.8213 0.8624
(0.0247) (0.0219) (0.0466) (0.0960) (0.0226)

300 40 7 Single 0.9041 0.8891 0.7674 0.3050 0.8881
(0.0262) (0.0286) (0.0409) (0.1203) (0.0282)

(often Gaussian) density pg(x); and p(x) is a weighted mixture of these density components,
i.e. p(x) = ∑G

g=1 πg · pg(x; θg) where ∑ πg = 1, 0 < πg ≤ 1 for g = 1, 2, ...,G, and
θg = (µg,Σg) for Gaussian components. The method chooses the number of components
G by maximizing the Bayesian Information Criterion (BIC) and estimates the means and
variances (µg,Σg) via maximum likelihood. While it may assume Gaussian components, its
flexibility on their shape, volume, and orientation allows student groups of varying shapes
and sizes. When multiple students map to the same location, model-based clustering is
known to overfit the data by using spikes with near singular covariance in these locations
[4]. To alleviate this concern, we jitter the student skill estimates by a small amount (0.01).
The effect on our results is minimal.

4 Simulation Study
To compare the skill knowledge estimates and clustering methods described above we

did a simulation study using generated data from the DINA model (Equation 1). The Q-
matrix design is varied to include balanced and unbalanced combinations of single and
multiple skill items. Then, for a fixed Q-matrix design, we simulate 20 different student
populations. Skill difficulties are always set to equal medium difficulty; inter-skill correla-
tions are set to zero. These choices evenly spread students among the 2K natural skill set
profiles [0, 1]K. For each student population, we generate true skill set profiles Ci. We then
draw slip and guess parameters from a random uniform distribution (s j ∼Unif(0,0.30); g j ∼
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Table 2: Clustering the Sum-scores Estimates of Student Skill Knowledge
N J K Q-matrix design HAC K-means MBC MBC 2K

250 30 3 Single, bal 0.9910 0.8549 0.9191 0.9957
(0.0110) (0.0960) (0.2899) (0.0071)

250 30 3 Both, bal 0.7644 0.8156 0.9321 0.9442
(0.1095) (0.1110) (0.1181) (0.0515)

250 30 3 Both,unbal, all 0.6398 0.7707 0.6970 0.8494
(0.0889) (0.0951) (0.2138) (0.0713)

250 30 3 Both,unbal,miss 0.6482 0.6728 0.7066 0.7661
(0.0511) (0.0650) (0.2064) (0.1095)

250 30 3 Mult, bal 0.3950 0.4720 0.4383 0.4375
(0.0339) (0.0648) (0.0675) (0.0517)

250 30 3 Mult, unbal, all 0.3862 0.4606 0.4380 0.4481
(0.0533) (0.0670) (0.0696) (0.0428)

250 30 3 Mult, unbal, miss 0.2689 0.2827 0.3314 0.3099
(0.0273) (0.0848) (0.0352) (0.0347)

500 68 5 Both, bal 0.4006 0.5859 0.5893 0.6523
(0.0560) (0.0442) (0.1223) (0.0432)

500 68 5 Both, unbal, miss 0.4104 0.54412 0.6010 0.6265
(0.0373) (0.0366) (0.0537) (0.0397)

300 40 7 Single 0.7348 0.6474 0.0973 0.7080
(0.0526) (0.0456) (0.0362) (0.0453)

Unif(0,0.15)). Given profiles and slip/guess parameters, we generate the student response
matrix Y .

As we know the true underlying skill set profiles Ci, we can calculate their agreement
with the clustering partitions using the Adjusted Rand Index (ARI; [7]), a common mea-
sure of agreement between two partitions. The expected value of the ARI is zero and the
maximum value is one, with larger values indicating better agreement.

Tables 1, 2, and 3 show the clustering results for the DINA model estimates, sum-
scores, and the capability matrix, respectively. In each table, N is the number of students,
J is the number of items, and K is the number of skills. The Q-matrix design describes
the Q-matrix used when generating the student responses (see Section 2 for more details).
Here single indicates that there were only single skill items, both indicates that there were
both single and multiple skill items, and mult indicates that there were only multiple skill
items. Also, bal indicates that the Q-matrix had a balanced design. An unbalanced design
is denoted by unbal and all or miss shows whether all combinations were present or if some
were missing. For the DINA model estimates (Table 1), we rounded the α̂ik to 0/1 to find the
closest skill set profile. For the remaining methods in Table 1 and for all methods in Tables 2
and 3 we cluster the unrounded α̂ik. When using HAC and K-means, we set the number of
clusters equal to 2K as suggested by [3]. For MBC we search over an appropriate range;
MBC 2K indicates that we set the number of clusters to 2K . For each set of 20 simulations,
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Table 3: Clustering the Capability Matrix Estimates of Student Skill Knowledge
N J K Q-matrix design HAC K-means MBC MBC 2K

250 30 3 Single, bal 0.9910 0.8190 0.9957 0.9957
(0.0104) (0.0835) (0.0071) (0.0071)

250 30 3 Both, bal 0.7644 0.7947 0.9353 0.9411
(0.1095) (0.1056) (0.1583) (0.0300)

250 30 3 Both,unbal, all 0.7273 0.8082 0.6252 0.8281
(0.0867) (0.1227) (0.1719) (0.1543)

250 30 3 Both,unbal,miss 0.6698 0.7390 0.4563 0.6693
(0.0813) (0.0778) (0.1267) (0.1628)

250 30 3 Mult, bal 0.4045 0.4530 0.4586 0.4499
(0.0347) (0.0508) (0.0624) (0.0382)

250 30 3 Mult, unbal, all 0.3899 0.4585 0.4518 0.4580
(0.0509) (0.0550) (0.0822) (0.0589)

250 30 3 Mult, unbal, miss 0.2700 0.3638 0.2803 0.2840
(0.0291) (0.0737) (0.0620) (0.0457)

500 68 5 Both, bal 0.4096 0.5711 0.5951 0.6647
(0.0504) (0.0543) (0.1284) (0.0928)

500 68 5 Both, unbal, miss 0.4327 0.5435 0.5560 0.6291
(0.0405) (0.0350) (0.2027) (0.1050)

300 40 7 Single 0.7399 0.6437 0.0906 0.7109
(0.0545) (0.0402) (0.0168) (0.0409)

we report the median ARI and the standard deviation.

First, we examine performance differences across Q-matrix designs. The first Q-matrix
has only three skills; each skill occurs in 10 single skill items. The ARI for all three meth-
ods of estimation and all clustering methods is 1 in nearly all cases. Across the methods,
K-means has the lowest ARI. This is not surprising as we randomly select 2K = 8 observa-
tions as the starting centers. A more informed set of starting centers (i.e., the natural skill
set profiles) may lead to better performance. For the K = 3 examples, the ARI is higher
when there are only single skill items compared to when there are both single and multi-
ple skill items and only multiple skill items. The lone exception is MBC with sum-scores
(Single, bal = 0.9191, Both, bal = 0.9321). The standard deviation in this case (0.2899) is
rather large and indicates a wide range of ARI values for these 20 simulated datasets.

We now take a closer look at Q-matrices with at least some multiple skill items. We can
note that the performance of all three clustering methods is better (as indicated by a higher
ARI) when there are both single and multiple skill items in the Q-matrix, compared to only
multiple skill items (also true across all three methods of estimation). In addition, when
the Q-matrix has a balanced design, as opposed to an unbalanced design, the recovery of
the true skill set profiles is better. In general, the performance of the three estimates of the
student skill knowledge is similar across the clustering methods. This similar performance
is particularly interesting since using sum-scores and the capability matrix yield large com-
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Table 4: Clustering the DINA Model Estimates of Student Skill Knowledge for N =

250, J = 30,K = 3 with Missing Response Data
Q-matrix design % missing DINA HAC K-means MBC MBC 2K

Both, bal 0 0.9793 0.9781 0.8367 0.8915 0.9632
Both, bal 10 0.4584 0.4690 0.4750 0.4725 0.4754
Both, bal 20 0.4326 0.4550 0.4581 0.4544 0.4567
Both, bal 30 0.4006 0.4340 0.4276 0.4267 0.4306
Both, bal 40 0.3513 0.3825 0.3850 0.3655 0.3681

Both, unbal, miss 0 0.9240 0.9131 0.7696 0.8811 0.9132
Both, unbal, miss 10 0.9084 0.9057 0.7516 0.8274 0.8009
Both, unbal, miss 20 0.8775 0.8651 0.7294 0.7560 0.7578
Both, unbal, miss 30 0.8193 0.8160 0.7256 0.7052 0.6948
Both, unbal, miss 40 0.7694 0.7746 0.7181 0.6515 0.6114

Table 5: Clustering the Sum-Score Estimates of Student Skill Knowledge for N = 250, J =
30,K = 3 with Missing Response Data

Q-matrix design % missing HAC K-means MBC MBC 2K

Both, bal 0 0.7644 0.8156 0.9321 0.9442
Both, bal 10 0.6255 0.7671 0.8280 0.8489
Both, bal 20 0.5000 0.6717 0.4854 0.7526
Both, bal 30 0.4191 0.5855 0.4131 0.5309
Both, bal 40 0.3168 0.5072 0.2951 0.3867

Both, unbal, miss 0 0.6482 0.6728 0.7066 0.7661
Both, unbal, miss 10 0.5744 0.6091 0.3608 0.6563
Both, unbal, miss 20 0.4834 0.5556 0.3264 0.5414
Both, unbal, miss 30 0.3686 0.4876 0.2725 0.3961
Both, unbal, miss 40 0.3266 0.4203 0.2514 0.2624

putational savings when compared to estimating the DINA model using WinBUGS (up to
700 times faster; [1]). Moreover, in this simulation study the data are generated from the
DINA model; we would expect the Bayesian estimation to perform well in this best-case
scenario. For sum-scores and the capability matrix to perform as well as, and better than in
some cases, the DINA model is noteworthy.

The above results are for student populations with complete response data. In practice,
missing responses (unanswered questions) will be ubiquitous. We chose two Q-matrix
designs with N = 250, J = 30, and K = 3 (Both, bal and Both, unbal, miss) and removed
0, 10, 20, 30, and 40% of the student responses completely at random for each of the
20 student populations. Results can be seen in Tables 4, 5, and 6. Note that the 0%
missing corresponds to the previously shown results. Again, we report the median ARI.
The standard deviations are not shown due to space limitations. They ranged from 0.03 to
0.16 and were generally ordered as DINA model (lowest), capability matrix, and sum-score
(highest).
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Table 6: Clustering the Capability Matrix Estimates of Student Skill Knowledge for N =
250, J = 30,K = 3 with Missing Response Data

Q-matrix design % missing HAC K-means MBC MBC 2K

Both, bal 0 0.7644 0.7947 0.9353 0.9411
Both, bal 10 0.6682 0.7894 0.6633 0.8786
Both, bal 20 0.6028 0.7491 0.5350 0.7655
Both, bal 30 0.6022 0.7141 0.5021 0.5505
Both, bal 40 0.4842 0.6103 0.3948 0.4086

Both, unbal, miss 0 0.6698 0.7390 0.4563 0.6693
Both, unbal, miss 10 0.6032 0.6980 0.4766 0.5473
Both, unbal, miss 20 0.5761 0.6629 0.4687 0.4654
Both, unbal, miss 30 0.5351 0.6251 0.4764 0.4775
Both, unbal, miss 40 0.5108 0.5658 0.4144 0.4335

In general, as the amount of missing data increases, the ARI decreases across all three
estimation methods and all methods of clustering. However, some methods show more
substantial decreases than others. When using the capability matrix, K-means shows rel-
atively stable performance for both Q-matrix designs. For the Both, unbal, miss design,
HAC and MBC also show stable performances. When using sum-scores, the performance
drops more noticeably across all clustering methods which may reflect that the capability
matrix scales for the number of questions answered while sum-scores do not. In the Both,
bal case, the performance of the capability matrix estimates is generally better than both
the DINA model estimates and the sum-scores (particularly true for K-means). For HAC,
sum-scores and the capability matrix perform similarly (both better than the DINA model
estimates). For the Both, unbal, miss case, the performance of the DINA model estimates is
better than both sum-scores and the capability matrix estimates. When using the capability
matrix estimates, K-means clustering performs best; its ARI values are only slightly lower
than those of the DINA model.

5 Conclusions
Simulated examples show that recovery of the true skill set profiles is best when only

single skill items occur. For Q-matrices with multiple skill items, recovery is improved if
there are also single skill items present. These results hold across all three clustering meth-
ods and all three estimates of student skill knowledge. In addition, we note that the more
computationally attractive capability matrix and the sum-score estimates perform similarly
to the Bayesian estimation of the DINA model.

However, when there are missing responses, the performance of the estimation proce-
dures changes. In general, the ARI values decrease as the percent of missingness increases
(across all estimation and clustering methods). When the Q-matrix has a Both, bal design,
the capability matrix estimates perform better than both the DINA model and sum-score
estimates. In the Both, unbal, miss design, the DINA model estimates perform better than
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sum-scores and the capability matrix estimates.

These results can be used to guide the design of exams and tutor problems. For better
estimation of student skill knowledge, single skill items should be included for each skill.
In addition, students should be encouraged to finish all items. Whether or not it is by
design, when students use online tutors, for example, they often do not complete all the
items. In this case, it is particularly important for single skill items to be included. In the
presence of missing responses, however, care should be taken when choosing an estimation
method and a clustering method. The best choice is not obvious.

While there are benefits of using the capability matrix and/or sum-scores, we note that
if an item requires multiple skills and a student answers incorrectly, all skills required by
the item will receive a penalty, even if the student has mastered one (or more) of the skills.
In future work, we will explore the behavior of alternative estimates that better account
for multiple skill items. Possible methods could use empirical performance on single skill
items or weight by the number of skills required by the incorrectly answered item.
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