

EDM 2011

4™ International Conference on
Educational Data Mining

PROCEEDINGS OF THE
FOURTH INTERNATIONAL CONFERENCE ON
EDUCATIONAL DATA MINING

Eindhoven, July 6-8, 2011

Mykola Pechenizkiy, Toon Calders,
Cristina Conati, Sebastian Ventura,
Cristobal Romero and John Stamper

Mykola Pechenizkiy, Toon Calders, Cristina Conati, Sebastian Ventura,
Cristobal Romero and John Stamper

International Conference on Educational Data Mining (EDM) 2011
Proceedings of the 4™ International Conference on Educational Data Mining
Mykola Pechenizkiy, Toon Calders, Cristina Conati, Sebastian Ventura,
Cristobal Romero and John Stamper (eds.)

Eindhoven, 6-8 July, 2011

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-2537-9
Cover: Flying pins with the background the Chamber of Commerce located at the TU/e

campus.
Printing and binding: TU/e printservice

Preface

The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers
from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to
answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9,
2011, follows the three previous editions (Pittsburgh 2010, Cordoba 2009 and Montreal 2008), and a
series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS, and UM conferences.

The increase of e-learning resources such as interactive learning environments, learning management
systems, intelligent tutoring systems, and hypermedia systems, as well as the establishment of state
databases of student test scores, has created large repositories of data that can be explored to understand
how students learn. The EDM conference focuses on data mining techniques for using these data to
address important educational questions. The broad collection of research disciplines ensures cross
fertilization of ideas, with the central questions of educational research serving as a unifying focus.

This year’s conference includes short papers as a new submission category targeting original and
unpublished research with merit in terms of originality and importance rather than maturity and technical
validation. In the paper track, we received 60 long and 20 short papers, each of which was reviewed by
three experts in the field, resulting in 20 long and 17 short papers accepted for presentation at the
conference (some of the long paper submissions have been accepted as short paper). We also received 22
posters, targeting work in progress and last minute results with high potential to foster new developments
and interesting discussions during the conference’s poster presentation sessions. These sessions included
the presentation of 30 posters, 14 from the original pool of poster submissions and the reminder from the
pool of paper submissions.

All accepted submissions appear in these proceedings. The conference also includes invited talks by
Barry Smyth (University College, Dublin, Ireland), John Stamper (Carnegie Mellon University, USA)
and Erik-Jan van der Linden (MagnaView B.V., the Netherlands), with abstract in these proceedings.

We would like to thank Eindhoven University of Technology for the sponsorship and hosting of
EDM’2011. We would like to thank the Netherlands Organization for Scientific Research (NWO),
Belgium-Netherlands Association for Artificial Intelligence (BNVKI) and the Dutch Research School for
Information and Knowledge Systems (SIKS), University of Cordoba and PSLC DataShop.

We also want to acknowledge the amazing work of the program committee members and additional
reviewers, who with their enthusiastic contributions gave us invaluable support in putting this conference
together.

Our special thanks to the local organizing team and additional thanks to Evgeny Knutov and Jorn Bakker
for their technical support on putting these proceedings together.

Last but not least we would like to thank Arnon Hershkovitz who has served as the Web Chair of EDM
series from its first edition.

June 2011
Cristina Conati and Sebastian Ventura — Program Chairs

Mykola Pechenizkiy and Toon Calders — Conference Chairs
Cristobal Romero and John Stamper — Posters Chairs

Organization

CONFERENCE CHAIRS

Mykola Pechenizkiy

Toon Calders

Eindhoven University of Technology, The Netherlands
Eindhoven University of Technology, The Netherlands

PROGRAM CHAIRS

Cristina Conati
Sebastian Ventura

POSTERS CHAIRS

Cristobal Romero
John Stamper

WEB CHAIR

Arnon Hershkovitz

University of British Columbia, Canada
University of Cordoba, Spain

University of Cordoba, Spain
Carnegie Mellon University, USA

Tel Aviv University, Israel

LOCAL ORGANIZING TEAM

Jorn Bakker
Ekaterina Vasilyeva

Paul De Bra Lam Hoang Evgeny Knutov Riet van Buul
Yongming Luo George Fletcher Ine van der Ligt

STEERING COMMITTEE

Esma Aimeur
Ryan Baker
Tiffany Barnes
Joseph E. Beck

Michel C. Desmarais

University of Montreal, Canada

Worcester Polytechnic Institute, USA
University of North Carolina at Charlotte, USA
Worcester Polytechnic Institute, USA

Ecole Polytechnique de Montreal, Canada

Neil Heffernan Worcester Polytechnic Institute, USA
Cristobal Romero Cordoba University, Spain

Kalina Yacef University of Sydney, Australia
PROGRAM COMMITTEE

Esma Aimeur University of Montreal, Canada

Elizabeth Ayers Carnegie Mellon Univesity, USA

Ryan S.J.d. Baker Worcester Polytechnic Institute, USA

Tiffany Barnes University of North Carolina at Charlotte, USA
Joseph Beck Worcester Polytechnic Institute, USA

Bettina Berendt Katholieke Universiteit Leuven , Belgium

Gautam Biswas
Jesus G. Boticario
Min Chi
Cristophe Choquet
Richard Cox
Michel Desmarais
Sidney D'Mello
Mingyu Feng
Davide Fosatti
Eva Gibaja
Daniela Godoy

Vanderbilt University, USA

U.N.E.D., Spain

University Of Pittsburgh, USA

Université du Maine, France

University of Sussex, UK

Ecole Polytechnique de Montreal, Canada
University of Memphis, USA

SRI International, USA

Carnegie Mellon University, Qatar
Universidad de Cordoba, USA
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Neil Heffernan
Arnon Hershkovitz
Roland Hubscher
Sebastian Iksal
Juday Kay

Jihie Kim

Mirjam Kock
Kenneth Koedinger
Vanda Luengo

Tara Madhyastha
Brent Martin
Noboru Matsuda
Manolis Mavrikis
Riccardo Mazza
Gordon McCalla
Agathe Merceron
Julia Mingullon Alfonso
Jack Mostow

Rafi Nachmias
Roger Nkambou
Alvaro Ortigosa
Alexandros Paramythis
Philip I. Pavlik
Mykola Pechenizkiy
Cristobal Romero
Carolyn Rose

Erin Shaw

John Stamper
Jun-Ming Su
Steven Tanimoto
Sebastian Ventura
Stepehn Weibelzahl
Kalina Yacef
Michael Yudelson
Amelia Zafra
Osmar Zaiane

Worcester Polytechnic Institute, USA
Worcester Polytechnic Institute, Israel
Bentley University, USA

Université du Maine, France

University of Sydney, Australia
University of Southern California, USA
Johannes Kepler University, Austria
Carnegie Mellon University, USA
Université Joseph Fourier Grenoble, France
University of Washington, USA
Canterbury University, New Zealand
Carnegie Mellon University, USA

The University of Edinburgh, UK

University of Lugano/University of Applied Sciences of South. Switzerland

Univerisity of Saskatchewan, Canada

Beuth University of Applied Sciences, Germany

Universitat Oberta de Catalunya, Spain
Carnegie Mellon University, USA
Tel Aviv University, Israel

Université du Québec a Montréal (UQAM), Canada

Universidad Auténoma de Madrid, Spain
Johannes Kepler University, Austria
Carnegie Mellon University, USA

Eindhoven University of Technology, Netherlands

Cordoba University, Spain

Carnegie Mellon University, USA
University of Southern Californi, USA
Carnegie Mellon University, USA
National Chiao Tung University, Taiwan
University of Washington, USA
Cordoba University, Spain

National College of Ireland, Ireland
University of Sydney, Australia
University of Pittsburgh, WPI
Universidad de Cordoba, Spain
University of Alberta, Canada

ADDITIONAL REVIEWERS

Yue Gong Sujith Gowda John Kinnebrew
Zach Pardos Terry Peckham Michael Sao Pedro
Benjamin Shih Vilaythong Southavilay = Fodé Touré

Jaebong Yoo

Daniel Mack
Soo Won Seo
Jianfei Wu

Sponsors
Technische Universiteit
I Eindhoven
University of Technology

Ny O

Netherlands Organisation for Scientific Research

PSLC DATASHOP

a data analysis service for the learning science community

UNIVERSIDAD B CORDOBA

http://www.tue.nl
http://www.unimaas.nl/bnvki
http://www.nwo.nl
http://www.siks.nl
https://pslcdatashop.web.cmu.edu/
http://www.uco.es

Vi

Table of Contents

Invited Talks (abstracts)

Social Information Discovery
Barry Smyth

On exploration and mining of data in educational practice

Erik-Jan van der Linden, Martign Wigffelaars, Thomas Lammers

EDM and the 4th Paradigm of Scientific Discovery - Reflections on the 2010
KDD Cup Competition

John Stamper

Full Papers

Factorization Models for Forecasting Student Performance
Nguyen Thai-Nghe, Tomds Horvdth and Lars Schmidt- Thieme

Analyzing Participation of Students in Online Courses Using Social Network
Analysis Techniques

Reihaneh Rabbany Khorasgani, Mansoureh Takaffoli and Osmar Zaiane

A Machine Learning Approach for Automatic Student Model Discovery
Nan Li, William Cohen, Kenneth R. Koedinger and Noboru Matsuda

Conditions for effectively deriving a Q-Matrix from data with Non-negative Ma-
trix Factorization
Michel Desmarais

Student Translations of Natural Language into Logic: The Grade Grinder Trans-
lation Corpus Release 1.0

Dave Barker-Plummer, Richard Cox and Robert Dale

Instructional Factors Analysis: A Cognitive Model For Multiple Instructional
Interventions
Min Chi, Kenneth Koedinger, Geoff Gordon, Pamela Jordan and Kurt Vanlehn

The Simple Location Heuristic is Better at Predicting Students Changes in Error
Rate Over Time Compared to the Simple Temporal Heuristic

Adaeze Nwaigwe and Kenneth Koedinger

Items, skills, and transfer models: which really matters for student modeling?
Yue Gong and Joseph Beck

Avoiding Problem Selection Thrashing with Conjunctive Knowledge Tracing
Kenneth Koedinger, Philip 1. Pavlik Jr., John Stamper, Tristan Nizon and Steven Ritter

Less is More: Improving the Speed and Prediction Power of Knowledge Tracing

by Using Less Data
Bahador Nooraei B., Zachary Pardos, Neil Heffernan and Ryan Baker

vii

11

21

31

41

51

61

71

81

91

101

Analysing frequent sequential patterns of collaborative learning activity around
an interactive tabletop

Roberto Martinez Maldonado, Kalina Yacef, Judy Kay, Ahmed Kharrufa and Ammar Al-
Qaraghuli

Acquiring Item Difficulty Estimates: a Collaborative Effort of Data and Judg- 121
ment

Kelly Wauters, Piet Desmet and Wim Van Den Noortgate

111

Spectral Clustering in Educational Data Mining 129
Shubhendu Trivedi, Zachary Pardos, Gdbor Sdrkézy and Neil Heffernan

Does Time Matter? Modeling the Effect of Time with Bayesian Knowledge

Tracing 139

Yumeng Qiu, Yingmei Qi, Hanyuan Lu, Zachary Pardos and Neil Heffernan

Learning classifiers from a relational database of tutor logs 149

Jack Mostow, José Gonzdlez-Brenes and Bao Hong Tan

A Framework for Capturing Distinguishing User Interaction Behaviors in Novel

Interfaces 159

Samad Kardan and Cristina Conati
How to Classify Tutorial Dialogue? Comparing Feature Vectors vs. Sequences 169

José Gonzalez-Brenes, Jack Mostow and Weisi Duan

Automatically Detecting a Students Preparation for Future Learning: Help Use
is Key
Ryan S.J.D. Baker, Sujith Gowda and Albert Corbett

179

Ensembling Predictions of Student Post-Test Scores for an Intelligent Tutoring
System

Zachary Pardos, Sujith Gowda, Ryan S.J.D. Baker and Neil Heffernan

189

Improving Models of Slipping, Guessing, and Moment-By-Moment Learning
with Estimates of Skill Difficulty

Sugith M. Gowda, Jonathan P. Rowe, Ryan S.J.D. Baker, Min Chi and Kenneth R.
Koedinger

199

Short Papers

A Method for Finding Prerequisites Within a Curriculum 211

Annalies Vuong, Tristan Nizon and Brendon Towle

Estimating Prerequisite Structure From Noisy Data 217

Emma Brunskill

What can closed sets of students and their marks say? 223

Dmitry Ignatov, Serafima Mamedova, Nikita Romashkin, and Ivan Shamshurin

How university entrants are choosing their department? Mining of university

admission process with FCA taxonomies. 229

Nikita Romashkin, Dmitry Ignatov and Elena Kolotova

viii

What’s an Expert? Using learning analytics to identify emergent markers of
expertise through automated speech, sentiment and sketch analysis

Marcelo Worsley and Paulo Blikstein

Using Logistic Regression to Trace Multiple Subskills in a Dynamic Bayes Net
Yanbo Xu and Jack Mostow

Monitoring Learners Proficiency: Weight Adaptation in the Elo Rating System
Kelly Wauters, Piet Desmet and Wim Van Den Noortgate

Modeling students activity in online discussion forums: a strategy based on time
series and agglomerative hierarchical clustering

Germdn Cobo, David Garcia-Solérzano, Eugénia Santamaria, Jose Antonio Moran, Javier
Melenchon and Carlos Monzo

Prediction of Perceived Disorientation in Online Learning Environment with
Random Forest Regression

Gékhan Akcapinar, Erdal Cosgun and Arif Altun

Analysing Student Spatial Deployment in a Computer Laboratory

Viadimir Ivancevic, Milan Celikovic and Ivan Lukovic

Predicting School Failure Using Data Mining

Carlos Marquez-Vera, Cristobal Romero and Sebastin Ventura

A Dynamical System Model of Microgenetic Changes in Performance, Efficacy,
Strategy Use and Value during Vocabulary Learning

Philip 1. Pavlik Jr. and Sue-Mei Wu

Desperately Seeking Subscripts: Towards Automated Model Parameterization

Jack Mostow, Yanbo Xu and Mdahaduzzaman Munna

Automatic Generation of Proof Problems in Deductive Logic
Behrooz Mostafavi, Tiffany Barnes and Marvin Croy

Comparison of Traditional Assessment with Dynamic Testing in a Tutoring Sys-
tem

Mingyu Feng, Neil Heffernan, Zachary Pardos and Cristina Heffernan

Evaluating a Bayesian Student Model of Decimal Misconceptions

George Goguadze, Sergey Sosnovsky, Seiji Isotani and Bruce Mclaren

Exploring user data from a game-like math tutor: a case study in causal modeling
Dovan Rai and Joseph Beck

Posters

Goal Orientation and Changes of Carelessness over Consecutive Trials in Science
Inquiry
Arnon Hershkovitz, Ryan S.J.D. Baker, Janice Gobert and Michael Wizon

Towards improvements on domain-independent measurements for collaborative
assessment

Antonio R. Anaya and Jesis G. Boticario

235

241

247

253

259

265

271

277

283

289

295

301

307

315

317

A Java desktop tool for mining Moodle data
Rafael Pedraza Perez, Cristobal Romero and Sebastidn Ventura

Using data mining in a recommender system to search for learning objects in
repositories

Alfredo Zapata Gonzalez, Victor Hugo Menéndez Dominguez, Manuel Prieto and Cristobal
Romero

E-learning Web Miner: A data mining application to help instructors involved
in virtual courses
Diego Garcia-Saiz and Marta Zorrilla Pantaledn

Computerized Coding System for Life Narratives to Assess Students?’ Person-
ality Adaption

Qiwei He, Bernard Veldkamp and Gerben Westerhof

Partially Observable Sequential Decision Making for Problem Selection in an
Intelligent Tutoring System

Emma Brunskill and Stuart Russell

Mining Teaching Behaviors from Pedagogical Surveys

Joana Barracosa and Claudia Antunes

Variable Construction and Causal Modeling of Online Education Messaging
Data: Initial Results
Stephen Fancsali

The Hospital Classrooms Environments Challenge

Carina Gonzdlez and Pedro A. Toledo

Combining study of complex network and text mining analysis to understand
growth mechanism of communities on SNS

Osamu Yamakawa, Takahiro Tagawa, Hitoshi Inoue, Koichi Yastake and Takahiro Sumiya

Logistic Regression in a Dynamic Bayes Net Models Multiple Subskills Better!
Yanbo Xu and Jack Mostow

Studying the problem-solving strategies in the early stages of learning program-
ming

Edgar Cambranes-Martinez and Judith Good

Brick: Mining Pedagogically Interesting Sequential Patterns

Anjo Anjewierden, Hannie Gijlers, Nadira Saab and Robert De Hoog

Intelligent evaluation of social knowledge building using conceptual maps with
MLN
Lorenzo Moreno, Carina Gonzdlez, Romdn Estévez and Beatrice Popescu

Identifying Influence Factors on Students Success by Subgroup Discovery
Florian Lemmerich, Marianus Ifland and Frank Puppe

Analyzing University Data for Determining Student Profiles and Predicting Per-
formance
Dorina Kabakchieva, Kamelia Stefanova and Valentin Kisimov

The EDM Vis Tool
Matthew Johnson, Michael FEagle, Leena Joseph and Tiffany Barnes

319

321

323

325

327

329

331

333

335

337

339

341

343

345

347

349

Towards Modeling Forgetting and Relearning in ITS: Preliminary Analysis of
ARRS Data

Yutao Wang and Neil Heffernan
Quality Control and Data Mining Techniques Applied to Monitoring Scaled

Scores
Alina Von Davier

eLAT: An Exploratory Learning Analytics Tool for Reflection and Iterative Im-
provement of Technology Enhanced Learning

Anna Lea Dyckhoff, Dennis Zielke, Mohamed Amine Chatti and Ulrik Schroeder

Predicting graduate-level performance from undergraduate achievements
Judith Zimmermann, Kay H. Brodersen, Jean-Philippe Pellet, Elias August and Joachim
M. Buhmann

Mining Assessment and Teaching Evaluation Data of Regular and Advanced
Stream Students
Irena Koprinska

Investigating Usage of Resources in LMS with Specific Association Rules

Agathe Merceron

Towards parameter-free data mining: Mining educational data with yacaree

Jose Balcdzar, Diego Garcia-Saiz and Marta Zorrilla

Factors Impacting Novice Code Comprehension in a Tutor for Introductory Com-
puter Science

Leigh Ann Sudol DeLyser and Jonathan Steinhart

Investigating the Transitions between Learning and Non-learning Activities as
Students Learn Online

Paul Salvador Inventado, Roberto Legaspi, Merlin Suarez and Masayuki Numao

Learning parameters for a knowledge diagnostic tools in orthopedic surgery

Sebastien Lallé and Vanda Luengo

Problem Response Theory and its Application for Tutoring
Petr JaruSek and Radek Peldanek

Towards Better Understanding of Transfer in Cognitive Models of Practice
Michael Yudelson, Philip I. Pavlik and Kennth R. Koedinger

Xi

351

353

355

357

359

361

363

365

367

369

371

373

INVITED TALKS

(abstracts)

Social Information Discovery

Barry Smyth, University College Dublin, Ireland

The world of web search is usually viewed as a solitary place. Although millions of
searchers use services like Google and Yahoo everyday, their individual searches take
place in isolation, leaving each searcher to fend for themselves when it comes to
finding the right information at the right time. Recently, researchers have begun to
question the solitary nature of web search, proposing a more collaborative search
model in which groups or users can cooperate to search more effectively.

For example, students will often collaborate as part of class projects, bringing
together relevant information that they have found during the course of their
individual searches. Indeed, despite the absence of explicit collaboration features
from mainstream search engines, there is clear evidence that users implicitly engage
in many different forms of collaboration as they search, although, these collaboration
"work-arounds" are far from ideal. Naturally, this has motivated researchers to
consider how future web search engines might better support different types of
collaboration to take advantage of this latent need; for example, how might students
collaborate as they search rather than defer the sharing of information as a post-search
activity.

In this talk we focus on some of the ways in which web search may become a more
social and collaborative experience. This will include lessons learned from both the
theory and practice of a more collaborative approach to web search and we will
describe recent attempts to bring collaboration support to mainstream search engines.
We will consider a number of educational use-cases during the course of this talk to
describe how instructors and learners can take full advantage of this more social
perspective on web search.

eknutov
Rectangle

eknutov
Rectangle

On exploration and mining of data in educational practice

Erik-Jan van der Linden, MagnaView B.V., the Netherlands
Martijn Wijffelaars, MagnaView B.V., the Netherlands

Thomas Lammers, MagnaView B.V. and
Eindhoven University of Technology, the Netherlands

Educational institutions are confronted with increasing pressure from authorities and
governments to justify their spending of public means. This, in turn, has led to increased
internal use of the huge amounts of data in information systems on results, careers,
absence, etc. Experience with a data analysis product that is actively used in 20+ schools
(secondary education) indicates that visual presentation and user interaction are crucial to
have analyses of large datasets lead to real improvement. Intricate and finely-tuned
interaction between methods from the field of data mining and these interactive
techniques may further aid schools.

eknutov
Rectangle

EDM and the 4th Paradigm of Scientific Discovery -
Reflections on the 2010 KDD Cup Competition

John Stamper, Carnegie Mellon University, USA

Technology advances have made the ability to collect large amounts of data easier
than ever before. These massive datasets provide both opportunities and challenges
for many fields and education is no different. Understanding how to deal with
extreme amounts of student data in the EDM field is a growing problem. The 2010
KDD Cup Competition, titled "Educational Data Mining Challenge", included data
for over 10,000 students. The students completed over 30 million problem steps
collected over a year long courses from Carnegie Learning Inc.'s Cognitive Tutors.
We believe these are the largest educational dataset at this level of granularity to be
released publicly. The competition drew broad interest from the data mining
community, but it was also clear that many in the research community could not
handle datasets of this size. In this talk, John will discuss the 2010 KDD Cup and the
impact of larger and larger amounts of data coming available for educational data
mining and how this will drive the direction of educational research in the future.

eknutov
Rectangle

FULL PAPERS

Factorization Models for Forecasting Student Performance

Nguyen Thai-Nghe, Tom4as Horvath and Lars Schmidt-Thieme, University of Hildesheim, Germany

Predicting student performance (PSP) is one of the educational data mining task, where we would like to know how much
knowledge the students have gained and whether they can perform the tasks (or exercises) correctly. Since the student’s
knowledge improves and cumulates over time, the sequential (temporal) effect is an important information for PSP. Previous
works have shown that PSP can be casted as rating prediction task in recommender systems, and therefore, factorization
techniques can be applied for this task. To take into account the sequential effect, this work proposes a novel approach which
uses tensor factorization for forecasting student performance. With this approach, we can personalize the prediction for each
student given the task, thus, it can also be used for recommending the tasks to the students. Experimental results on two large
data sets show that incorporating forecasting techniques into the factorization process is a promising approach.

1. INTRODUCTION

Predicting student performance, one of the tasks in educational data mining, has been taken into account
recently [Toscher and Jahrer 2010; Yu et al. 2010; Cetintas et al. 2010; Thai-Nghe et al. 2011]. It was
selected as a challenge task for the KDD Cup 2010! [Koedinger et al. 2010]. Concretely, predicting student
performance is the task where we would like to know how the students learn (e.g. generally or narrowly), how
quickly or slowly they adapt to new problems or if it is possible to infer the knowledge requirements to solve
the problems directly from student performance data [Corbett and Anderson 1995; Feng et al. 2009], and
eventually, we would like to know whether the students perform the tasks (exercises) correctly (or with some
levels of certainty). As discussed in Cen et al. [2006], an improved model for predicting student performance
could save millions of hours of students’ time and effort in learning algebra. In that time, students could
move to other specific fields of their study or doing other things they enjoy. From educational data mining
point of view, an accurate and reliable model in predicting student performance may replace some current
standardized tests, and thus, reducing the pressure, time, as well as effort on “teaching and learning for
examinations” [Feng et al. 2009; Thai-Nghe et al. 2011].

To address the problem of predicting student performance, many papers have been published but most
of them are based on traditional classification/regression techniques [Cen et al. 2006; Feng et al. 2009;
Yu et al. 2010; Pardos and Heffernan 2010]. Many other works can be found in Romero et al. [2010].
Recently, [Thai-Nghe et al. 2010; Toscher and Jahrer 2010; Thai-Nghe et al. 2011] have proposed using
recommendation techniques, e.g. matrix factorization, for predicting student performance. The authors have
shown that predicting student performance can be considered as rating prediction since the student, task,
and performance would become user, item, and rating in recommender systems, respectively. We know that
learning and problem-solving are complex cognitive and affective processes that are different to shopping and
other e-commerce transactions, however, as discussed in Thai-Nghe et al. [2011], the factorization models
in recommender systems are implicitly able to encode latent factors of students and tasks (e.g. “slip” and
“guess”), and especially in case where we do not have enough meta data about students and tasks (or even
we have not enough background knowledge of the domain), this mapping is a reasonable approach.

Lhttp://pslcdatashop.web.cmu.edu/KDDCup/

Author’s address: Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Marienburger Platz 22,
31141 Hildesheim, Germany. Emails: {nguyen, horvath, schmidt-thieme}@ismll.de

eknutov
Rectangle

12 Nguyen Thai-Nghe, Tomas Horvath and Lars Schmidt-Thieme

Moreover, from the pedagogical aspect, we expect that students (or generally, learners) can improve their
knowledge over time, thus, the temporal /sequential information is an important factor in predicting student
performance. Thai-Nghe et al. [2011] proposed using three-mode tensor factorization (on student/task/time)
instead of matrix factorization (on student/task) to take the temporal effect into account.

Inspired from the idea in Rendle et al. [2010], which used matrix factorization with Markov chains to
model sequential behavior of the user in e-commerce area, and also inspired from the personalized forecasting
methods [Thai-Nghe et al. 2011], we propose a novel approach, tensor factorization forecasting, to model
the sequential effect in predicting student performance. Thus, we bring together the advantages of both
forecasting and factorization techniques in this work. The proposed approach can be used not only for
predicting student performance but also for recommending the tasks to the students, as well as for the other
domains (e.g. recommender systems) in which the sequential effect should be taken into account.

2. RELATED WORK

Many works can be found in [Romero and Ventura 2006; Baker and Yacef 2009; Romero et al. 2010] but
most of them relied on traditional classification/regression techniques. Concretely, Cen et al. [2006] proposed
a semi-automated method for improving a cognitive model called Learning Factors Analysis that combines a
statistical model, human expertise and a combinatorial search; Thai-Nghe et al. [2009] proposed to improve
the student performance prediction by dealing with the class imbalance problem, using support vector
machines (i.e., the ratio between passing and failing students is usually skewed); Yu et al. [2010] used
linear support vector machines together with feature engineering and ensembling techniques for predicting
student performance. These methods work well in case we have enough meta data about students and tasks.

In student modeling, Corbett and Anderson [1995] proposed the Knowledge Tracing model, which is widely
used in this domain. The model assumes that each skill has four parameters: 1) initial (or prior) knowledge,
which is the probability that a particular skill was known by the student before interacting with the tutoring
systems; 2) learning rate, which is the probability that student’s knowledge changes from unlearned to learned
state after each learning opportunity; 3) guess, which is the probability that a student can answer correctly
even if he/she does not know the skill associated with the problem; 4) slip, which is the probability that a
student makes a mistake (incorrect answer) even if he/she knows the required skills. To apply the knowledge
tracing model for predicting student performance, the four parameters need to be estimated either by using
Expectation Maximization method [Chang et al. 2006] or by using Brute-Force method [Baker et al. 2008].
Pardos and Heffernan [2010] propose a variant of knowledge tracing by taking individualization into account.
These models explicitly take into account the “slip” and “guess” latent factors.

Recently, researchers have proposed using recommender system techniques (e.g. matrix factorization) for
predicting student performance [Thai-Nghe et al. 2010; Toscher and Jahrer 2010]. The authors have shown
that predicting student performance can be considered as rating prediction since the student, task, and
performance would become wuser, item, and rating in recommender systems, respectively; Extended from
these works, Thai-Nghe et al. [2011] proposed tensor factorization models to take into account the sequential
effect (for modeling how student knowledge changes over time). Thus, the authors have modeled the student
performance as a 3-dimensional recommender system problem on (student, task, time).

In this work, the problem setting is similar to our previous work [Thai-Nghe et al. 2011], however, we
introduce two new methods - tensor factorization forecasting models - for predicting student performance.

3. PREDICTING STUDENT PERFORMANCE (PSP)

The problem of predicting student performance is to predict the likely performance of a student for some
exercises (or part thereof such as for some particular steps) which we call the tasks. The task could be to
solve a particular step in a problem, to solve a whole problem or to solve problems in a section or unit, etc.

Factorization Models for Forecasting Student Performance 13

Detailed descriptions can be found in [Thai-Nghe et al. 2011]. Here, we are only interested in three features,
e.g. student 1D, task ID, and time ID.

More formally, let S be a set of students, I be a set of tasks, and P C R be a range of possible performance

scores. Let D% C (S x I x P)* be a sequence of observed student performances and D*** C (S x I x P)*
be a sequence of unobserved student performances. Furthermore, let

T SXIXP— P, (s,i,p)—p
and
s SXIXxP—8xI, (si,p)—(s1)

be the projections to the performance measure and to the student/task pair. Then the problem of student
performance prediction is, given D" and 75 ;(D!*!), to find

P =p1,D2;--- 7ﬁ|DteSt|
such that

‘thest |

err(pp) = S (m1—)
1=1
is minimal with p := m,(D"*"). Some other error measures could also be considered.

As discussed in Thai-Nghe et al. [2011], the problem of predicting student performance can be %) casted as
rating prediction task in recommender systems since s,¢ and p would be user, item and rating, respectively,
and 1) casted as forecasting problem (illustrated in Figure 1b-top) to deal with the potentially sequential
effects (e.g. describing how students gain experience over time) which is discussed in this work. An illustration
of predicting student performance which takes the data sequence into account is presented in Figure la.
Figure 1b-bottom is an example of representing student performance data in a three-mode tensor.

=
w
o
£
m
E J
: £
E . . L] L] » [F.
c . . - %
1] L . .] .,]] ? ?
E . History length L 0 —————————— >
= -+ = >
2 Problem1 Problem 2 Problem i II)
— > —> Time,
0" — 1+ttt
=~ C = o : = Time € | Step
o oo o o o o o @
ST T 2 @ a a @ _g
Ainilh B " & in i #

Predicting student performance

Fig. 1. An illustration of casting predicting student performance as forecasting problem, which uses all historical performance
data controlled by the history length L to forecast the next performance

14 Nguyen Thai-Nghe, Tomas Horvath and Lars Schmidt-Thieme

4. TENSOR FACTORIZATION FORECASTING

In this work, we will use three-mode tensor factorization which is a generalization of matrix factorization.
Given a three-mode tensor Z of size U x I x T, where the first mode describes U students, the second
mode describes I tasks (problems), and the third mode describes the time. Then Z can be written as a sum
of rank-1 tensors by using CANDECOM-PARAFAC [Carroll and Chang 1970; Harshman 1970; Kolda and
Bader 2009]:

K
Zzz)\kwkohkOQk (1)

k=1

where o is the outer product; Az € R*; and each vector w, € RY, h;, € RY, and ¢, € R describes the latent
factor vectors of the student, task, and time, respectively (see the articles [Kolda and Bader 2009; Dunlavy
et al. 2011] for details). In this work, these latent factors are optimized for root mean squared error (RMSE)
using stochastic gradient descent [Bottou 2004].

As mentioned in the literature, “the more the learners study the better the performance they get”, and
the knowledge of the learners cumulates over time, thus the temporal effect is an important factor to predict
the student performance. We adopt the ideas in the previous works [Dunlavy et al. 2011]?, [Thai-Nghe et al.
2011; Thai-Nghe et al. 2011] to incorporate forecasting model into the factorization process, which we call
tensor factorization forecasting.

For simplification purpose, we apply the moving average approach (the unweighted mean of the previous
n data points [Brockwell and Davis 2002]) with a period L on the time mode. The performance of student
u given task i is predicted by:

K
PuiT = Z Wurhit P, (2)
k=1
where
N ET—TLLW)
where T is the current time in the sequence; g;. and p; are the time latent factor and the student performance
of the previous time, respectively; L is the number of steps in the history to be used by the model (refer back
to Figure 1 to see the value of L). We call this method TFMAF (Tensor Factorization - Moving Average
Forecasting).

As shown in [Toscher and Jahrer 2010; Thai-Nghe et al. 2011], the prediction result can be improved if one
employs the biased terms into the prediction model. In educational setting, those biased terms are “student
bias” which models how good a student is (i.e. how likely is the student to perform a task correctly), and
“task bias” which models how difficult/easy the task is (i.e. how likely is the task to be performed correctly).
To take into account the “student bias” and “task bias”, the prediction function (2) now becomes:

K

Puire = 1+ by +bi + > wukhik®rek (4)
k=1

where p is the global average (average performance of all students and tasks in D!rei"):

Zpeptrain p

|’Dtrain| (5)

:u‘:

2This work used tensor factorization for link prediction

Factorization Models for Forecasting Student Performance 15

b, is student bias (average performance of student u deviated from the global average):

Zpue'Dt'r'u.in (p" - u)
|pu c Dtrain|

by =

and b; is task bias (average performance on task i deviated from the global average):

by — ZpieDf,v‘a,in (pl - N) 7
o pi c Dtrain| ()

Moreover, in e-commerce area, Rendle et al. [2010] have used matrix factorization with Markov chains
to model sequential behavior by learning a transition graph over items that is used to predict the next
action based on the recent actions of a user. The authors proposed using previous “basket of items” to
predict the next “basket of items” with high probabilities that the users might want to buy. However, in
educational environment, one natural fact is that the performance of the students not only depend on the
recent knowledge (e.g. the knowledge in the previous problems or lessons, which act as “previous basket of
items”) but also depend on the cumulative knowledge in the past that the students have studied. Thus, we
need to adapt this method by using all previous performances which are controlled by history length L (see
Figure 1) for forecasting the next performance.

The @7+, in equation (3) now becomes:
tT=T*1—L ik Qerpt ®8)

L
where hj, is the latent factor of the previous solved task in the sequence. We call this method TFF (Tensor
Factorization Forecasting).

(I)T*k} =

5. EVALUATION

In this section, we first present two real-world data sets, then we describe the baselines for comparison. We
show how we set up the models, and finally, the results of tensor factorization forecasting are discussed.

5.1 Data sets

We use 2 real world data sets which are collected from the Knowledge Discovery and Data Mining Challenge
20103. These data sets, originally labeled “Algebra 2008-2009” and “Bridge to Algebra 2008-2009” will be
denoted “Algebra” and “Bridge” for the remainder of this paper. Each data set is split into a train and a test
partition as described in Table I. The data represents the log files of interactions between students and the
tutoring system. While students solve math related problems in the tutoring system, their activities, success
and progress indicators are logged as individual rows in the data sets.

Table I. Original data sets

Data set #Attributes | #Instances
Algebra-2008-2009 train 23 8,918,054
Algebra-2008-2009 test 23 508,912
Bridge-to-Algebra-2008-2009 train 21 20,012,498
Bridge-to-Algebra-2008-2009 test 21 756,386

The central element of interaction between the students and the tutoring system is the problem. Every
problem belongs into a hierarchy of unit and section. Furthermore, a problem consists of many individual

Shttp://pslcdatashop.web.cmu.edu/KDDCup/

16 Nguyen Thai-Nghe, Tomas Horvath and Lars Schmidt-Thieme

steps such as calculating a circle’s area, solving a given equation, entering the result and alike. The field
problem view tracks how many times the student already saw this problem. The other attributes we have
not used in this work. Target of the prediction task is the correct first attempt (CFA) information which
encodes whether the student successfully completed the given step on the first attempt (CFA = 1 indicates
correct, and CFA = 0 indicates incorrect). The prediction would then encode the certainty that the student
will succeed on the first try.

As presented in Thai-Nghe et al. [2010], these data sets can be mapped to user,item, and rating in
recommender systems. The student becomes the user, and the correct first attempt (CFA) becomes the
rating, bounded between 0 and 1. The authors also presented several options that can be mapped to the item.
In this work, the item refers to a solving-step, which is a combination (concatenation) of problem hierarchy
(PH), problem name (PN), step name (SN), and problem view (PV). The information of student, task, and
per formance is summarized in Table II.

Table II. Information of students, tasks (solving-steps), and performances (CFAs)
Data set | #Student (as User) | #Task (as Item) | #Performance (as Rating)
Algebra 3,310 1,416,473 8,018,054
Bridge 6,043 887,740 20,012,498

5.2 Evaluation metric and model setting

Evaluation metric: The root mean squared error (RMSE) is used to evaluate the models.

i test \Pui — Aui 2
Ry \/zmep, (o — Pu))

'Dtest|

Baselines: We use the global average as a baseline, i.e. predicting the average of the target variable from
the training set. The proposed methods are compared with other methods such as student average (user
average in recommender systems), biased-student-task (this method originally is user-item-baseline in Koren
[2010]). Moreover, we also compare the proposed approach with matriz factorization (MF) since previous
works [Toscher and Jahrer 2010; Thai-Nghe et al. 2010] have shown that MF can produce promising results.
For MF, the mapping of user and item as the following;:

student — user;
Problem hierarchy (unit, section), problem name, step name, problem view — item;
performance — rating

Hyper parameter setting: Hyper parameter search was applied to determine the hyper parameters* for
all methods (e.g, optimizing the RMSE on a holdout set). We will report later the hyper parameters for some
typical methods (in Table IV). Please note that we have not performed the significance test (t-test) because
the real target variables of the two data sets from KDD Challenge 2010, until now, have not been published
yet. We have to submit the results to the KDD Challenge 2010 website to get the RMSE score. Thus, all
the results reported in this study are the RMSE score from this website (it is still opened for submission
after the challenge). Of course, one can use the internal split (e.g. splitting the training set to sub-train and
sub-test) but we have not experimented in this way since we would like to see how good the results of our
approach are compared to the other approaches on the given data sets.

4Using similar approach described in [Thai-Nghe et al. 2010]

Factorization Models for Forecasting Student Performance 17

Dealing with cold-start problem: To deal with the “new user” (new student) or “new item” (new task),
e.g., those that are in the test set but not in the train set, we simply provide the global average score for
these new users or new items. However, using more sophisticated methods, e.g. in [Gantner et al. 2010], can
improve the prediction results. Moreover, in the educational environment, the cold-start problem is not as
harmful as in the e-commerce environment where the new users and new items appear every day or even
hour, thus, the models need not to be re-trained continuously.

5.3 Results

To justify why forecasting method can be a choice in predicting student performance (especially embedding
in the factorization process) and how the sequential (temporal) information affects to the performance of the
learners, we plot the student performance on the y — azis and the problem ID (in sequence) on the z — axis.
However, in the experimental datasets, the true target variable (the actual performance) for each single step
is encoded by binary values, i.e., 0 (incorrect) and 1 (correct), thus, the student performance does not show
the trend line when we visualize these data sets.

0.85 1 Algebra 0.85 Bridge
080 -
0.0 -
075 - .
. 085 - |
0.70 -
D.SS T T T LI T T T T T T T T T T T T T 1 D.SD T T T T T T T T T T T T T T T T LI 1
1 3 5 7 9 1113 15 17 19 1 3 5 7 9 111315 17 19

Fig. 2. Sequential effect on the student performance: y — axis is the average of correct performances and x — axis is the
sequence of problems (ID) aggregated from the steps. Typical results of Unit 1 and Section 1 of Algebra and Bridge datasets

We aggregate the performance of all steps in the same problem to a single value and plot the aggregated
performance to Figure 2. From this, we can see the sequential effect on the sequence of solving problems (from
left to right). The average performance increases with the trend line, which implicitly means that forecasting
methods are appropriate to cope with predicting student performance. Please note that by aggregating,
we will come up with new data sets and the task now is to predict/forecast the whole problem instead of
predicting/forecasting the single step in that problem. This work is, however, out of the scope of this paper,
so we leave the experimental results on these new aggregated data sets for future work.

Also, in these specific data sets, the actual target variable (the actual performance) is encoded by 0
(incorrect) and 1 (correct), so we modify the equations (3) and (8) to avoid the zero value of the factor
product. The @7~ in equation (3) now becomes:

Z;‘F:;LL qer((pe — 0.5) - 2)

Drpapy = T (10)
and the ®; in equation (8) now becomes:
T -1
_re_r h —0.5)-2
By, = =1L tk‘Zth((Pt)-2) (11)

However, other modifications on these specific data sets can also be used.

18 Nguyen Thai-Nghe, Tomas Horvath and Lars Schmidt-Thieme

0.335 - O Global Average 0.320 4 O Global Average
0330 4 B Student Average 0.315 W Student Average
0.325 B Biased-Student-Task | 0.310 - B Biased-Student-Task

' Matrix Factorization 0.305 A Matrix Factorization
0.320 I TFMAF 0.300 4 O TFMAF
0.315 0.205 4
0.310 0290 4
0.305 0285

Algebra Bridge

Fig. 3. RMSE results of taken into account the temporal effect using tensor factorization which factorize on student/solving-
step/time.

Figure 3 presents the RMSE of the tensor factorization forecasting methods which factorize on the student
(as user), solving-step (as item), and the sequence of solving-step (as time). The results of the proposed meth-
ods show improvement compared to the others. Moreover, compared with matrix factorization which does
not take the temporal effect into account, the tensor factorization methods have also improved the prediction
results. These results may implicitly reflect the natural fact that we mentioned before: “the knowledge of the
student improves over time”. However, the results of TFF has a small improvement compared to TFMAF
method.

Table III presents the RMSE of the proposed methods and the well-known Knowledge Tracing [Corbett
and Anderson 1995] which estimates the parameters by using Brute-Force (BF) [Baker et al. 2008], on
Bridge data set. Since this data set is quite large, it is intractable when using Expectation Maximization
(EM) method [Chang et al. 2006]. The tensor factorization forecasting models have significant improvements
compared to the Knowledge Tracing model. However, the comparison with other methods, e.g. Performance
Factors Analysis [Pavlik et al. 2009] and Prior Per Student [Pardos and Heffernan 2010], is leaved for future
work.

Table III. RMSE of Knowledge Tracing vs. Tensor
Factorization Forecasting models

Data set | Knowledge Tracing (BF) | TFMAF TFF
Algebra 0.30561 0.30398 | 0.30159
Bridge 0.30649 0.28808 | 0.28700

For referencing, we report the hyper parameters found via cross-validation and approximation of running
time in Table IV. Although the training time of TFF is high (e.g. ~15 hours on Algebra) but in educational
environment where the models need not to be retrained continuously, this running time is not an issue.

Table IV. Hyper parameters and running time. 3 is learning rate, A is regularization term, K is the
number of latent factors, #iter is the number of iterations, and L is the history length.

Method Data set | Hyper parameters Train (min.) | Test (sec.)
Matrix Factorization | Algebra £=0.005, #iter=120, K=16, A=0.015 16.83 0.15
TFMAF Algebra B=0.015, #iter=30, K=16, A=0.015, L=8 108.84 9.17
TFF Algebra | 8=0.001, #iter=60, K=16, A=0.015, L=10 908.71 15.11
Matrix Factorization | Bridge B=0.01, #iter=80, K=64, A=0.015 40.15 0.34
TFMAF Bridge | 8=0.005, #iter=20, K=64, A=0.015, L=10 629.07 51.06
TFF Bridge | B=0.0015, #iter=60, K=16, A=0.005, L=5 466.01 6.61

Factorization Models for Forecasting Student Performance 19

6. DISCUSSION AND CONCLUSION

Predicting student performance is an important task in educational data mining, where we can give the
students some early feedbacks to help them improving their study results. A good and reliable model which
accurately predicts the student performance may replace the current standardized tests, thus, reducing the
pressure on teaching and learning for examinations as well as saving a lot of time and effort for both teachers
and students.

From educational point of view, the learner’s knowledge improves and cumulates over time, thus, sequential
effect is an important information for predicting student performance. We have proposed a novel approach
- tensor factorization forecasting - which incorporates the forecasting technique into the factorization model
to take into account the sequential effect.

Indeed, factorization techniques outperform other state-of-the-art collaborative filtering techniques [Koren
2010]. They belong to the family of latent factor models which aim at mapping users (students) and items
(tasks) to a common latent space by representing them as vectors in that space. The performance of these
techniques are promising even we do not know the background knowledge of the domain (e.g. the student /task
attributes). Moreover, we use just two or three features such as student ID, task ID and/or time, thus, the
memory consumption and the human effort in pre-processing can be reduced significantly while the prediction
quality is reasonable. Experimental results have shown that a combination of factorization and forecasting
methods can perform nicely compared to previous works which only use factorization techniques.

Another advantage of this approach is that we can personalize the prediction for each student given the
task, and thus, besides predicting student performance, one could use the proposed methods to recommend
the tasks (exercises) to students when building a personalized learning system.

A simple forecasting technique, which is moving average, was incorporated into the factorization model.
However, applying more sophisticated forecasting techniques, e.g. Holt-Winter [Chatfield and Yar 1988;
Dunlavy et al. 2011], may produce better results.

ACKNOWLEDGMENTS

The first author was funded by the “Teaching and Research Innovation Grant” project of Cantho university,
Vietnam. Tom&s Horvéth is also supported by the grant VEGA 1/0131/009.

REFERENCES

BAKER, R. S., CORBETT, A. T., AND ALEVEN, V. 2008. More accurate student modeling through contextual estimation of
slip and guess probabilities in bayesian knowledge tracing. In Proceedings of the 9th International Conference on Intelligent
Tutoring Systems. Springer-Verlag, Berlin, Heidelberg, 406-415.

BAKER, R. S. AND YACEF, K. 2009. The state of educational data mining in 2009: A review and future visions. Journal of
Educational Data Mining (JEDM) 1, 1, 3-17.

BotTou, L. 2004. Stochastic learning. In Advanced Lectures on Machine Learning, O. Bousquet and U. von Luxburg, Eds.
Lecture Notes in Artificial Intelligence, LNAI 3176. Springer Verlag, Berlin, 146-168.

BROCKWELL, P. J. AND DaAvis, R. A. 2002. Introduction to Time Series and Forecasting. Springer.

CARROLL, J. AND CHANG, J.-J. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization
of eckart-young decomposition. Psychometrika 35, 283—-319.

CEN, H., KOEDINGER, K., AND JUNKER, B. 2006. Learning factors analysis a general method for cognitive model evaluation
and improvement. In Intelligent Tutoring Systems. Vol. 4053. Springer Berlin Heidelberg, 164-175.

CETINTAS, S., S1, L., XIN, Y., AND HORD, C. 2010. Predicting correctness of problem solving in its with a temporal collaborative
filtering approach. In International Conference on Intelligent Tutoring Systems. 15-24.

CHANG, K., BECK, J., MosTow, J., AND CORBETT, A. 2006. A bayes net toolkit for student modeling in intelligent tutoring
systems. In Proceedings of International Conference on Intelligent Tutoring Systems (ITS 2006). Springer, 104-113.

CHATFIELD, C. AND YAR, M. 1988. Holt-winters forecasting: Some practical issues. Special Issue: Statistical Forecasting and
Decision-Making. Journal of the Royal Statistical Society. Series D (The Statistician) 37, 2, 129-140.

20 Nguyen Thai-Nghe, Tomas Horvath and Lars Schmidt-Thieme

CORBETT, A. T. AND ANDERSON, J. R. 1995. Knowledge tracing: Modeling the acquisition of procedural knowledge. User
Modeling and User-Adapted Interaction 4, 253—-278.

DunvLavy, D. M., KoLpa, T. G., AND ACAR, E. 2011. Temporal link prediction using matrix and tensor factorizations. ACM
Trans. Knowl. Discov. Data 5, 10:1-10:27.

FENG, M., HEFFERNAN, N., AND KOEDINGER, K. 2009. Addressing the assessment challenge with an online system that tutors
as it assesses. User Modeling and User-Adapted Interaction 19, 3, 243—-266.

GANTNER, Z., DRUMOND, L., FREUDENTHALER, C., RENDLE, S., AND SCHMIDT-THIEME, L. 2010. Learning attribute-to-feature
mappings for cold-start recommendations. In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM
2010). IEEE Computer Society.

HARSHMAN, R. A. 1970. Foundations of the PARAFAC procedure: Models and conditions for an ”explanatory” multi-modal
factor analysis. UCLA Working Papers in Phonetics 16, 1, 84.

KOEDINGER, K., BAKER, R., CUNNINGHAM, K., SKOGSHOLM, A., LEBER, B., AND STAMPER, J. 2010. A data repository for the
edm community: The pslc datashop. In Handbook of Educational Data Mining, C. Romero, S. Ventura, M. Pechenizkiy, and
R. Baker, Eds. Lecture Notes in Computer Science. CRC Press.

KorLpa, T. G. AND BADER, B. W. 2009. Tensor decompositions and applications. SIAM Review 51, 3, 455-500.

KOREN, Y. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data 4, 1,
1-24.

PARDOS, Z. A. AND HEFFERNAN, N. T. 2010. Using hmms and bagged decision trees to leverage rich features of user and skill
from an intelligent tutoring system dataset. KDD Cup 2010: Improving Cognitive Models with Educational Data Mining.
Pavuik, P. I., CEN, H., AND KOEDINGER, K. R. 2009. Performance factors analysis —a new alternative to knowledge tracing. In

Proceeding of the 2009 Conference on Artificial Intelligence in Education. IOS Press, Amsterdam, The Netherlands, 531-538.

RENDLE, S., FREUDENTHALER, C., AND SCHMIDT-THIEME, L. 2010. Factorizing personalized markov chains for next-basket
recommendation. In Proceedings of the 19th International Conference on World Wide Web (WWW’10). ACM, New York,
USA, 811-820.

ROMERO, C. AND VENTURA, S. 2006. Data Mining in E-learning. WIT Pr Computational Mechanics.

ROMERO, C., VENTURA, S., PECHENIZKIY, M., AND BAKER, R. S. 2010. Handbook of Educational Data Mining. Chapman and
Hall/CRC Data Mining and Knowledge Discovery Series.

THAI-NGHE, N., BUSCHE, A., AND SCHMIDT-THIEME, L. 2009. Improving academic performance prediction by dealing with class
imbalance. In Proceeding of 9th IEEE International Conference on Intelligent Systems Design and Applications (ISDA’09).
Pisa, Italy, IEEE Computer Society, 878-883.

THAI-NGHE, N., DRUMOND, L., HORVATH, T., KROHN-GRIMBERGHE, A., NANOPOULOS, A., AND SCHMIDT-THIEME, L. 2011. Fac-
torization techniques for predicting student performance. In Educational Recommender Systems and Technologies: Practices
and Challenges (In press), O. C. Santos and J. G. Boticario, Eds. IGI Global.

THAI-NGHE, N., DRUMOND, L., KROHN-GRIMBERGHE, A., AND SCHMIDT-THIEME, L. 2010. Recommender system for predicting
student performance. In Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning
(RecSysTEL 2010). Vol. 1. Elsevier’s Procedia CS, 2811 — 2819.

THAI-NGHE, N.;, GANTNER, Z., AND SCHMIDT-THIEME, L. 2010. Cost-sensitive learning methods for imbalanced data. Proceedings
of the IEEE International Joint Conference on Neural Networks (IJCNN 2010).

THAI-NGHE, N., HORvATH, T., AND SCHMIDT-THIEME, L. 2011. Personalized forecasting student performance. In Proceedings
of the 11th IEEE International Conference on Advanced Learning Technologies (ICALT 2011) (to appear). IEEE CS.

TOSCHER, A. AND JAHRER, M. 2010. Collaborative filtering applied to educational data mining. KDD Cup 2010: Improving
Cognitive Models with Educational Data Mining.

Yu, H.-F., Lo, H.-Y., ..., AND LiN, C.-J. 2010. Feature engineering and classifier ensemble for kdd cup 2010. KDD Cup 2010:
Improving Cognitive Models with Educational Data Mining.

Analyzing Participation of Students in Online Courses Using Social
Network Analysis Techniques

Reihaneh Rabbany k., Mansoureh Takaffoli and Osmar R. Zaiane,
Department of Computing Science, University of Alberta, Canada
rabbanyk,takaffol, zaiane@ualberta.ca

There is a growing number of courses delivered using e-learning environments and their online discussions play an important
role in collaborative learning of students. Even in courses with a few number of students, there could be thousands of messages
generated in a few months within these forums. Manually evaluating the participation of students in such case is a significant
challenge, considering the fact that current e-learning environments do not provide much information regarding the structure of
interactions between students.There is a recent line of research on applying social network analysis (SNA) techniques to study
these interactions. And it is interesting to investigate the practicability of SNA in evaluating participation of students. Here we
propose to exploit SNA techniques, including community mining, in order to discover relevant structures in social networks we
generate from student communications but also information networks we produce from the content of the exchanged messages.
With visualization of these discovered relevant structures and the automated identification of central and peripheral participants,
an instructor is provided with better means to assess participation in the online discussions. We implemented these new ideas
in a toolbox, named Meerkat-ED. Which prepares and visualizes overall snapshots of the participants in the discussion forums,
their interactions, and the leader/peripheral students. Moreover, it creates a hierarchical summarization of the discussed topics,
which gives the instructor a quick view of what is under discussion. We believe exploiting the mining abilities of this toolbox
would facilitate fair evaluation of students’ participation in online courses.

1. INTRODUCTION

There is a growing number of courses delivered using e-learning environments, especially in postsecondary
education, using computer-supported collaborative learning (CSCL) tools, such as Moodle ,WebCT and
Blackboard . Online asynchronous discussions in these environments play an important role in collaborative
learning of students. It makes them actively engaged in sharing information and perspectives by interacting
with other students [Erlin et al. 2009]. There is a theoretical emphasis in CSCL on the role of threaded
discussion forums for online learning activities. Even basic CSCL tools enable the development of these
threads where the learners could access text, revise it or reinterpret it; which allow them to connect, build,
and refine ideas, along with stimulating deeper reflection [Calvani et al. 2009]. There could be thousands of
messages generated in a few months within these forums, containing long discussion threads bearing many
interactions between students. Therefore the CSCL tools should provide a means to help instructors for
evaluating participation of students and analyzing the structure of these interactions; which otherwise could
be very time consuming, if not impossible, for the instructors to be done manually.

Up to now, current CSCL tools do not provide much information regarding the participation of students
and structure of interactions between them in discussion threads. In many cases, only some statistical infor-
mation is provided such as frequency of postings, which is not a useful measure for interaction activity [Erlin
et al. 2009]. This means that the instructors who are using these tools, do not have access to convenient in-
dicators that would allow them to evaluate the participation and interaction in their classes [Willging 2005].
Instructors usually have to monitor the discussion threads manually which is hard, time consuming, and
prone to human error. On the other hand, there exists a large body of research on studying the participa-
tion of students in such discussion threads using traditional research methods: content analysis, interviews,

eknutov
Rectangle

eknutov
Rectangle

22

Reihaneh Rabbany Khorasgani, Mansoureh Takaffoli and Osmar Zaiane

survey observations and questionnaires [de Laat et al. 2007]. These methods try to detect the activities
that students are involved in while ignoring the relations between students. For example, content analysis
methods, as the most common traditional methods, provide deep information about specific participants.
However, they neglect the relationships between the participants while their focus is on the content, not on
the structure [Willging 2005]. In order to fully understanding the participation of students, we need to under-
stand their patterns of interactions and answer questions like who is involved in each discussion, who is the
active/peripheral participant in a discussion thread [de Laat et al. 2007]. Nurmela et al. 1999 demonstrated
the practicality of social network analysis methods in CSCL, as a method for obtaining information about
relations and fundamental structural patterns. Moreover, there is a recent line of work on applying social
network analysis techniques for evaluating the participation of students in online courses like works done by
Sundararajan 2010, Calvani et al. 2009, de Laat et al. 2007, Willging 2005, Laghos and Zaphiris 2006, and
Erlin et al. 2009. The major challenges these works tried to tackle are: extracting social networks from asyn-
chronous discussion forums (might require content analysis), finding appropriate indicators for evaluating
participation (from education’s point of view) and measuring these indicators using social network analysis.
As clarified in the related works, Section 2, none of these works provides a complete or specific toolbox for
analyzing discussion threads. However, they attempted to address one of these challenges to some extent.

Here, we elaborate on the importance of social network analysis for mining structural data in the field of
computer science and its applicability to the domain of education. for monitoring and evaluating participation
of students in online courses. We propose Meerkat-ED, a specific and practical toolbox for analyzing interac-
tions of students in asynchronous discussion forums of online courses. Meerkat-ED analyzes the structure of
these interactions using social network analysis techniques including community mining. It prepares and visu-
alizes overall snapshots of participants in the discussion forums, their interactions, and the leader/peripheral
students in these discussions. Moreover, it analyzes the content of the exchanged messages in this discussions
by building an information network of terms and using community mining techniques to identify the topics
discussed. Meerkat-ED creates a hierarchical summarization of these discussed topics in the forums, which
gives the instructor a quick view of what is under discussion in these forums. It further illustrates how much
each student has participated in these topics, by showing his/her centrality in the discussions on that topic,
the number of posts, replies, and the portion of terms used by that student in the discussions. In the follow-
ing, we first introduce some basic backgrounds of social network analysis and elaborate on its applications
in the context of on-line Education. We then present Meerkat-ED — our solution for social network analysis
of online courses in Section 3 and illustrate its practicability on our own case study data in Section 4.

2. BACKGROUND AND RELATED WORKS

Social networks are formally defined as a set of actors or network members whom are tied by one or more type
of relations [Marin and Wellman 2010]. The actors are most commonly persons or organizations, however,
they could be any entities such as web pages, countries, proteins, documents, etc. There could also be many
different types of relationships, to name a few, collaborations, friendships, web links, citations, information
flow, etc. [Marin and Wellman 2010]. These relations represented by the edges in the network connecting
the actors and may have a direction (shows the flow from one actor to the other) and a strength (shows how
much, how often, how important).

Unlike proponents of attribute based social sciences, social network analysts argue that causation is not
located in the individuals, but in the social structure [Marin and Wellman 2010]. Social network analysis
is the study of this structure. Rooted in sociology, nowadays, social network analysis has became an in-
terdisciplinary area of study, including researchers from anthropology, communications, computer science,
education, economics, criminology, management science, medicine, political science, and other disciplines
[Marin and Wellman 2010]. Social network analysis examines the structure and composition of ties in the
network to provides insights into: 1) understanding the central actors in the network (prestige); 2) detecting

Analyzing Participation of Students in Online Courses 23

the individuals with the most outgoing connections (influence), the most incoming connections (prominence),
and the least connections (outlier); 3) identifying the proportion of possible ties that actually exist (density);
4) tracking the actors that are involved in passing information through the network (path length); 5) find-
ing the actors that are communicating more often with each other (community), etc. The availability and
growth of large datasets of information networks makes community mining a very challenging research topic
in social networks analysis. There has been a considerable amount of work done to detect communities in
social networks [Palla et al. 2005], [Newman and Girvan 2004], [Chen et al. 2009], etc.

2.1 Social Network Analysis of Asynchronous Discussions in Online Courses

In order to apply social network analysis techniques to assess participation of students in an e-learning
environment, we need to first extract the social network from the e-learning course. Then we consider which
measures show an effective participation, and finally report these measures in an appropriate way. Here, we
give an overview of the previous works related to each of these phases.

Extraction of Social Network. CSCL tools record log files
that contain the detailed actions that occurring within them.

Extent of roles

Hence, log files include information about the activity of the Enrolled | 7 Group A2G5

participants in the discussion forums [Nurmela et al. 1999]. mg;’: El) Extent of participation

de Laat et al. 2007, Willging 2005, Erlin et al. 2009 and Laghos Conclusivenes “~ Proposing
and Zaphiris 2006 used these log files to extract the social net- "‘“de

work underneath of discussion threads. Laghos et al. stated Reactivity to &y};‘& Equal
that they considered each message as directed to all partici- proposals Av'g' participation
pants in that discussion thread while others considered it as %

R
&

Rhythm

only directed to the previous message. Gruzd and Haythornth-
waite 2008 and 2009, proposed an alternative and more com- Reciprocal reading
plicated way of extracting social networks, called named net-
work. They argue that using this common method (connecting
a poster to the previous poster in the thread) would result in
losing much of the connections. Their approach briefly is: first Fig. 1: This nanogram illustrates a comparison
using named entity recognition to find the nodes of the net- ©f participation of one group (blue lines) with
work, then counting the number of times that each name is t.he average part1§1p§tlo§ of Other‘groups (red
. . . . lines) using the nine indicators defined by Cal-
mentioned in posts by others to obtain the ties, and finally vani et al. 2009, Figure reproduced from [Cal-
weighting these ties by the amount of information exchanged . . 2009].
in the posts. However, their final reported results are not that
promising and even obtaining those results requires many man-
ual corrections during the process. Regarding what we should consider as the participation in extracting the
social network, Hrastinski 2008 suggested that apart from writing, there are other indicators of participation
like accessing the e-learning environment, reading posts or the quantity and quality of the writing. However,
all of these methods extracted networks just based on posts by student (writing level).

|—0— Group Values «---m----- Groups’ average |

Measuring the Effectiveness of Participation. Daradoumis et al. 2006 defined high level weighted (showing
the importance) indicators to represent collaboration learning process; task performance, group function-
ing, social support, and help services. They further divided these indicators to skills and sub-skills, and
assigned every sub-skill to an action. For example, group functioning is divided into: active participation
behavior, task processing, communication processing, etc. On the other hand, communication processing is
itself divided into more sub-skills: clarification, evaluation, illustration, etc. and clarification is then mapped
to the action of changing description of a document or url. In the education context, Calvani et al. 2009
defined 9 indicators for measuring the effectiveness of participation to compare different groups within a

24

Reihaneh Rabbany Khorasgani, Mansoureh Takaffoli and Osmar Zaiane

class; extent of participation (number of messages), proposing attitude (number of messages with proposal
label), equal participation (variance of messages for users), extent of role (portion of roles used), rhythm
(variance of daily messages per day), reciprocal reading (portion of messages that have been read), depth
(average response depth), reactivity to proposal (number of direct answers to messages with proposal label)
and conclusiveness (number of messages with conclusion label); all summarized in a nonagon graph which
shows the group interactions relatively to the mean behavior of all groups (Figure 1). However, for measuring
the effectiveness of participation, most of the previous works simply used general social network measures
(different centrality measures, betweenness, etc.), available in one of the common general social network
analysis toolboxes. Sundararajan 2010, de Laat et al. 2007, Willging 2005, Erlin et al. 2009 used UCINET
[UCINET] and Laghos and Zaphiris 2006 used NetMiner [NetMiner].

3. SOCIAL NETWORK ANALYSIS FOR EDUCATION: MEERKAT-ED

In this section, we illustrate the practicability of social network analysis in evaluating participation of students
in online discussion threads. We present our specific social network analysis toolbox, named Meerkat-ED, to
analyze online courses. Meerkat-ED is designed for assessing the participation of students in asynchronous
discussion forums of online courses. It analyzes the structure of interactions between students in these
discussions using social network analysis techniques. It exploit community mining techniques in order to
discover relevant structures in social networks generated from student communications and also information
networks produced from the content of the exchanged messages. With visualization of these discovered
relevant structures and the automated identification of central and peripheral participants, an instructor is
provided with better means to assess participation in the online discussions.

Meerkat-ED prepares and visualizes overall snapshots of participants in the discussion forums, their inter-
actions, and the leader /peripheral students. It creates a hierarchical summarization of the topics discussed
in the forums using community mining, which gives the instructor a quick view of what is under discussion
in these forums. It further illustrates how much each student has participated on these topics, by showing
his/her centrality in the discussions on that topic, the number of posts, replies, and the portion of terms
used by that student in discussions on the topic. Meerkat-ED builds and analyzes two kinds of networks out
of the discussion forums: social network of the students where links represent correspondence, and network
of the phrases used in the discussions where links represent co-occurrence of phrases in the same sentence.
Interpreting the first network shows the interaction structure of the students participated in the discussions.
Furthermore, centrality of students in this network corresponds to their leadership in the discussions. In-
terpreting terms network depicts the terms used in the discussion and the relations between these terms.
Finding the hierarchical communities in this network demonstrates the topics addressed in the discussions.
Choosing each of these topics outlines the students who participated in that topic and the extent of their
participation.

3.1 Interpreting Students Interaction Network

Interpreting the network of interaction between students helps instructors monitor the interaction structure
of students, and examine which students are the leaders in given discussions and who are the peripheral
students. Here, we first describe how the network is extracted based on the information from the discussion
threads. Then, we continue by bringing an analysis of leadership of the students based on their centrality in
this network. The student network shows the interaction between students in the discussion forums, where
the nodes represent students of the course and edges are the interaction between these students (i.e. messages
exchanged). The edges are weighted by the number of messages passed between the two incident students.
This network could be built both directed or undirected (chosen by the instructor); in the directed model,
each message is considered connecting the author of the message to the author of its parent message. The
leadership and influence of students in the discussions could be compared by examining the centrality of

Analyzing Participation of Students in Online Courses 25

nodes corresponding to them in the network; as the nodes’ centrality measures their relative importance
within a network. Moreover, students could be ranked more explicitly in a concentric centrality graph in
which the more central/powerful the node is, the closer it is to the center (Figure 4).

3.2 Interpreting Term Network

Interpreting the term network, depicts the terms used in the discussions and the relation between these
terms. Moreover, finding the hierarchical communities in this network, demonstrates the topics exchanged in
the discussions. Furthermore, choosing each of these topics would outline the students who participated in
that topic and the extent of their participation. In the term network, nodes represent noun phrases occurring
in the discussions; and edges show the co-occurrence of these terms in the same sentence. Each co-occurrence
edge contains the messages in which its incident terms occurred together; and is weighted by the number
of sentences in which these terms co-occurred. For building this network, we need to first extract the noun
phrases from the discussions, then build the network by setting the extracted phrases as nodes and checking
their co-occurrence in all the sentences of every message for creating the edges.

We have used the OpenNlp toolbox [OpenNlp| for extracting noun phrases out of discussions. OpenNlp
is a set of natural language processing tools for performing sentence detection, tokenization, pos-tagging,
chunking, parsing, and etc. Using sentence detector in OpenNlp, we first segmented the content of messages
to their consisting sentences. The tokenizer was used to break down those sentences to words. Having the
tokenized words, we used the Part-Of-Speech tagger to determine their grammatical tags — whether they are
noun, verbs, adjective, etc. Then using the chunker, we grouped these words to the phrases, and we picked
the detected noun phrases, which are sequences of words surrounding at least one noun and functioning as
a single unit in the syntax. For obtaining better sets of terms to represent the content of the discussions,
pruning on the extracted noun phrases was necessary. We removed all the stopwords, and split the phrases
that have stop word(s) within into two different phrases. For example the phrase ”privacy and confidentiality”
is split into two terms: “privacy”, and “confidentiality”. To avoid having duplicates, the first characters were
converted to lower case (if the other characters of the phrase are in lowercase) and plurals to singular forms
(if the singular form appeared in the content). For instance “Patients” would be “patients” then “patient”.
As final modification, we removed all the noun phrases that just occurred once; which would prune most of
unwanted phrases.

The term Network could be further analyzed to group the terms co-occurring mostly together. These groups
represent the different topics discussed in the messages and could be obtained by detecting the communities
in the term network. This idea is similar to work done in Chen et al. 2008. For creating the hierarchy of
the topics, we applied a community mining algorithm repeatedly to divide one of the current connected
components of the network, until the size of all components is smaller than a threshold, or the division of
any of the components would result in a loose partitioning. We used FastModularity [Clauset et al. 2004] as
the community detection algorithm, however it could be any other community mining approach. Based on
the detected term communities, the participation of students and how wide their participation are could be
validated. In other words, students who participated in different topics could be considered more active than
students that just talked about a smaller number of topics. This evaluation could be examined by selecting
each student and checking how many topics he/she participated in.

4. CASE STUDY

In this section, we validate the feasibility of Meerkat-ED and illustrate its practical application on our
own case study data. Here, Meerkat-ED is used for visualizing, monitoring and evaluating participation of
students in the discussion forums. The data set we have used is obtained from a postsecondary course. The
course titled Electronic Health Record and Data Analysis, and was offered in Winter 2010 at University of
Alberta. The permission to use the anonymized course data for research purposes was obtained from all the

26

Reihaneh Rabbany Khorasgani, Mansoureh Takaffoli and Osmar Zaiane

students registered in the course, at the end of the semester so as not to bias the communications taking
place. This data is further anonymized by assigning fake names to students and replacing any occurrence of
first, last or user name of the students in the data (including content of the messages in discussion forums)
with the assigned fake name. We also removed all email addresses from the data.

In the chosen course, as is also usual in other courses, the instructor initiated different discussion threads.
For each thread he posted a question or provided some information and asked students to discuss the issue.
Consequently students posted subsequent messages in the thread, responding to the original question or
to the response of other students. This course was offered using Moodle which is a widely-used course
management system. Moodle like other CSCL tools, enables interaction and collaborative construction of
content, mostly using its Forum tool which is a place for students to share their ideas [Moodle]. Only using
Moodle, to evaluate student participation the instructor is limited to shallow means such as the number
of posts per thread and eventually the apparent size of messages. The instructor would have to manually
monitor the content of each interaction to measure the extent of individual participation, which is hard, time
consuming and even unrealistic in large classes or forums with large volume, where different participants can
be assigned to moderate different discussions and threads.

To assess participation, we build and analyze two kinds of networks from these information: the social
network of students and the network of the terms used by them. The instructor of the course denoted the
usefulness of the results of these analysis in evaluating the participation of students in the course. Like in
[Sundararajan 2010] where the authors noted that using SNA it was easy to identify the workers and the
lurkers in the class, in this case study, the instructor reported that using Meerkat-ED it was easy to have an
overview of the whole participation and it was possible to identify influential students in each thread as well
as identify quiet students or unvoiced opinions, something that would have been impossible with the simple
statistics provided by Moodle. More importantly, focusing on the relationships in the graph one can identify
the real conduit for information rather than simply basing assessment of patrticipation on message size or
frequency of submissions. Learners who place centarly in the network as conduit for the information control
and can cause more knowledge exchange which is desirable in an online class. Regardless of the frequency of
messages, their size or content, if they do not have influence, their authors remain marginal and sit on the
periphery of the network (See Figure 4). This role of conduit of information versus mariginal students can
change during the course of the semester or from one discussed thread to the other. The systematic analysis
of centrality of participants per topic discussed provided by Meerkat-ED allowed a better assessment of the
participation of learners at each discussion topic level.

4.1 Interpreting Students Interaction Network

As explained before, first of all we have to extract the students network from the discussion thread. Figure 2
shows the visualized network of students in the course. The size of the nodes corresponds to their degree
centrality in the network — the number of incident edges. This means that the bigger a node is, the more
messages the student represented by that node sent and received. The thickness of the edges in the net-
work represents the weight of interactions which is based on the number of messages in the interaction of
communicating students. Choosing an edge would bring up a pop up window that shows these messages as
illustrated in Figure 3. The next step is to analysis the leadership of the students based on their centrality in
this network. The nodes’ centrality is depicted by the size of the nodes in the visualized network as illustrated
in Figure 2. Moreover, students could be ranked more explicitly in a concentric centrality graph in which
the more central/powerful the node is, the closer it is to the center, as presented in Figure 4.

4.2 Interpreting Term Network

For this specific course, we extract the term network from the discussion forum. Figure 5 presents the
visualization of this term network, where the size of the nodes represents the frequency of their corresponding

Analyzing Participation of Students in Online Courses 27

File View Analyze Setting

Students’ SN_| Students' SN
id name cent
[Eric 25
1 Seima 11
b Monica, 12
EJ |V ahic 7
b3 ames
5 Mohamecdt
& ane 4
7 ivang b
2ng
ara 3
Hua 4
Aexander i
[Ethan]
Emily
[Anthony
5 Olivia B
7 Chioe 12
[va 4
Viadimir
Walid 3
Emma
|Andrea 6.3

(a) Directed Network (b) Undirected Network

Fig. 2: Visualized Student Network: The left panel lists the students in the course. The right panel shows the social network of
interaction of students in the course. The size of nodes corresponds to their centrality/leadership in the discussions. The width
of edges represents the weight of communication between incident nodes.

File View Analyze Setting

Students' SN | Students’ SN

id name cent
[0 ric 20
elma 7
Aonica
ahid
s
5 Aohamed 1
6 jane 1
7 liyang
g
B
0 Hua 1
1 |Alexander 4
2 Ethan
X Emily
4, § |Anthany 4
Olivia El
Chloe 0
Re: Class i |Title: Re: Privacy Preservation from: Chioe to Eric
e e C6o0 Class Pretimivany dert[Thece are several important reasons o protect privacy and |+
Emma Re 0690 Class Preliminary den] | COLfiCERtIlity. One is that privacy and confidendiality are
Andrea 11 e Fint Brajecs emen widely regardled as rights of all people, and such protections | |

help to accord them respect. Privacy and confidentiality B
protections also benefit public health. People who fear
disclosure of personal in formation are less likely to seek ot |
professional assistance, increasing the risks that contagion
will be spread and malaclies will g0 untreated

Re: Physician use of electronic
Re: Privacy Presenvation

protection of patients’ privacy and confidentiality as a value
is competing with the free access to information, and
designers of Health Information Systems have to find the
good balance between those two competing values.

Co | o] 4T i I Dl]

Fig. 3: Visualization of messages in an interaction: the interaction window shows the messages passed between nodes incident to
the selected edge: Chloe and Eric. Selecting each message from the left panel would show its title, sender, receiver and content.

terms and the thickness of edges represents the weight of the co-occurrences (i.e. the number of sentences
in which incident terms occurred together). Selecting an edge would show these messages as illustrated
in Figure 6. In this visualization the instructor would see a list of the discussion threads in the course
while selecting any set of those discussions/messages would bring up the corresponding term network, along
with the list of terms occurring in them and the list of students that participated in these selected set of
discussions/messages. Selecting any of these terms would show the students that used that term. Likewise,
selecting any of the students would outline the terms used by that student, as illustrated in Figure 5; which
is highlighting the terms discussed by the student named Chloe. The difference between the number of

28

Reihaneh Rabbany Khorasgani, Mansoureh Takaffoli and Osmar Zaiane

File View Analyze Setting

S s s |
T = :
0 ric 20 [[
? " . L
2 Monica > ¥
: pang
5 e

faanea 13

e

e

=

b
5 2
T
T
T
S
o
S
6 |Ava
T
—r
——
s Janenes—ox

®
FTI| I 0} < D]

Fig. 4: Comparing centrality of students: the students closer to the center are more central in the student network, i.e., have
participated more in the discussions of the course. Likewise, the further from the center, the less the student was active; here
James is the least active student in the discussions and is placed on the outer circle.

File View Analyze Setting

Students’ SN_| Students' SN_| Terms' SN

[Course

o News and Notices

o Course Discussion

o Teachers' Forum

& Welcome to CMPUT 590

o Electronic Health Record

& EHR vs EMR vs PMR w EPR.

& Coding Medical Data

o Canada Health Infoway

o Data entry issues

= Dcision Support for Administrators

- Health Informatics and training

% Privacy presenvation

% Privacy Preservation
Frivacy Preservation
Re: Privacy Presenvation
Re: Privacy Presenvation
Re: Privacy Presenvation
Re: Privacy Presenvation
PARIS project’s privacy problems
Re: Privacy Presenvation
¢ Privacy preservation: conserns and is

Frivacy prasenvation: conserns an

[[¢] "name T# of posts[# o
HEnc
Oivia
(Chioe.
Andrea
Jane
Sara
Alexander
Emily.
Selma
Emma
Vahid

Monica
livana
| |Mohamed

term

patient
information
privacy
people

Elw|E

Re: Privacy preservation: consern
Re: Privacy preservation: consern
Re: Privacy preservation: consern
Re: Privacy preservation: consern
Re: Privacy preservation: consern
Re: Privacy preservation: consern
Re: Privacy preservation: consern
¢ Anonymous-based approach for pri
Anonymous-based approach for
Re: Anonymous-based approach

28
S8
e

access
security
person
health information

concern
medical record
rules
protection
'~ |cottection

<1 Ii I KT [Il Iv] irecora

il

Fig. 5: Visualized Term Network: The left panel lists the discussion threads in the course. The middle panel shows the network
of terms in the selected set of discussions. The upper right panel shows list of students participated in the selected discussions,
along with some statistics about their participation such as number of posts, replies, etc. The bottom right panel shows the
terms used in these discussions. Selecting each student, would outline the terms used by that student.

terms discussed by the students could help the instructor to compare the participations of the students:
students who discuss more terms participate more as well. In order to further analyzed the term Network,
as explained before, we group the terms co-occurring mostly together. Figure 7a shows the detected topics
(term communities) in the network given in Figure 5. The green nodes show the representative nodes of
communities. Each representative node, contains 10 most central terms of the terms in the community it
represents. The size of the representative nodes corresponds to the number of terms in their communities;
while the size of the leaf nodes, terms, is related to their frequency, same as the term network. Similar to
the term network, here also one could select a set of terms, usually within a topic, to see who participated
in a discussion with that topic and to what extent, as illustrated in Figure 7b.

Analyzing Participation of Students in Online Courses 29

CoOccurence detals for < confider b T used terms
[Thie Re: Privacy Preservaron from: Chio to Eric : &

There are several important reasons to protect privacy and

privacy y
regarded as rights of all people, and such protections help to accord.
be:

[public health. People who fear disclosure of personal information are
less likely to seek out professional assistance, increasing the risks that
contagion vl be spread and maladies will g0 untreated.

protection of patients' privacy and confidentiality as a value is
competing with the free access to information, and designers of Health
Information Systems have to find the good balance between those two
competing vatues.

(enemn-1,

Re Freservati
¢ Piivacy preservation: conserns and is
(i

Re: Anonymous-based approach

Fig. 6: Co-occurrence of terms: selecting a co-occurrence edge would bring up a pop op window that shows the messages these
incident terms co-occurred together in, highlighting the corresponding terms in the content.

[Course
o News and Notices
o Course Discussion

o Canada Health Infoway
o Data entry Issues
- Decision Support for Administrators
o Health Informatics and training
¢ Frivacy preservation
cy Preservation

Privacy Preservation

Re: Privacy Preservation

Re: Privacy Preservation

term fre: cent
PARIS project’s privacy problems)

Re: Privacy Preservation

9 Privacy presenvation: conserns and is

vty presenaton: <onsems an
e Pty preceratn: <ansem 3
e Fiacy presenvaton: onsem z
Re: Privacy preservation: consern;
Re: Privacy preservation: consern clety]s 2 39
Re: Privacy preservation: consern: security. 36
Re: Privacy preservation: consern: n 36
Re vy preservalon; consen el 5
o Atorymous-oased spproach o i sstem 3
oomious-based approath o A =
e Anoryme_iased ok H e =
3
y medical reco_. |5 2
L rules B 2
il L I Of K I I I o fopom £ I
(a) Term communities (Topics) (b) Term communities (Topics), zoomed

Fig. 7: Term communities (Topics): The gray circles outline the communities boundaries and the green nodes represent the
community representatives. Each community representative is accompanied with its top 10 phrases in its community. These
could be seen in the tooltip in the figure. Selecting each topic, would outline the students who participated in a discussion
with the topic, and the terms in that topic. Here, the topic is roughly about ”patient, disclosure, confidentiality and society”.
Moreover, students who participated in this topic and their contribution could be seen in the upper right panel.

5. CONCLUSIONS

In this paper we elaborated the importance of social network analysis for mining structural data and its
applicability in the domain of education. we introduced social network analysis and community mining for
studying the structure in relational data. We illustrated the place and need for social network analysis in
study of the interaction of users in e-learning environments; then summarized some recent studies in this
area. We also proposed Meerkat-ED, a specific and practical toolbox for analyzing students interactions in
asynchronous discussion forums. Our toolbox prepares and visualizes overall snapshots of participants in the
discussion forums, their interactions, and the leaders/peripheral students. Moreover, it creates a hierarchical
summarization of the discussed topics, which gives the instructor a quick view of what is under discussion.

30

Reihaneh Rabbany Khorasgani, Mansoureh Takaffoli and Osmar Zaiane

It further illustrates individual student participation in these topics, measured by their centrality in the
discussions on that topic, their number of posts, replies, and the portion of terms used by them. We believe
exploiting the mining abilities of this toolbox would facilitate fair evaluation of students’ participation in
online courses.

REFERENCES

BLACKBOARD. http://en.wikipedia.org/wiki/Blackboard Learning System.

CALvANI, A., FINI, A.; MOLINO, M., AND RANIERI, M. 2009. Visualizing and monitoring effective interactions in online collab-
orative groups. British Journal of Educational Technology.

CHEN, J., ZATANE, O. R., AND GOEBEL, R. 2008. An unsupervised approach to cluster web search results based on word sense
communities. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology - Volume 01. IEEE Computer Society, Washington, DC, USA, 725-729.

CHEN, J., ZAIANE, O. R., AND GOEBEL, R. 2009. Detecting communities in large networks by iterative local expansion. In
CASoN. 105-112.

CLAUSET, A., NEWMAN, M. E. J., AND MOORE, C. 2004. Finding community structure in very large networks. Phys. Rev. E 70,
066111.

DARADOUMIS, T., MARTINEZ-MONES, A., AND XHAFA, F. 2006. A layered framework for evaluating on-line collaborative learning
interactions. Int. J. Hum.-Comput. Stud. 64, 7, 622—635.

Davis, R. H. 1981. Social network analysis - an aid in conspiracy investigations. F'BI Law Enforcement Bulletin 50, 12, 11-19.
The use of social network analysis in the conduct of investigations of conspiracies is described.

DE LAAT, M., LALLY, V., LIPPONEN, L., AND SIMONS, R.-J. 2007. Investigating patterns of interaction in networked learning and
computer-supported collaborative learning: A role for social network analysis. International Journal of Computer-Supported
Collaborative Learning 2, 1, 87-103.

ERLIN, YUusor, N., AND RAHMAN, A. A. 2009. Students’ interactions in online asynchronous discussion forum: A social network
analysis. In International Conference on Education Technology and Computer. IEEE Computer Society, Los Alamitos, CA,
USA, 25-29.

GRUZD, A. AND HAYTHORNTHWAITE, C. A. 2008. The analysis of online communities using interactive content-based social
networks. extended abstract. In Proceedings of the American Society for Information Science and Technology (ASISET)
Conference. Columbus, OH, USA, 523-527.

GRuUzZD, A. A. 2009. Automated discovery of social networks in online learning communities. Ph.D. thesis, University of Illinois
at Urbana-Champaign.

HRASTINSKI, S. 2008. What is online learner participation? a literature review. Computers & Education 51, 4, 1755-1765.

KEELING, M. J. AND EaMES, K. T. 2005. Networks and epidemic models. Journal of the Royal Society, Interface / the Royal
Society 2, 4, 295-307.

LAGHOS AND ZAPHIRIS. 2006. Sociology of student-centred e-learning communities: A network analysis. In TADIS international
conference. e-Society, Dublin, Ireland.

MARIN, A. AND WELLMAN, B. forthcoming, 2010. Handbook of Social Network Analysis. Sage, Chapter Social Network Analysis:
An Introduction.

MOODLE. http://en.wikipedia.org/wiki/Moodle.

NETMINER. http://www.netminer.com/NetMiner/.

NEWMAN, M. E. J. 2004. Detecting community structure in networks. Eur. Phys. J.B 38, 321-330.

NEWMAN, M. E. J. AND GIRVAN, M. 2004. Finding and evaluating community structure in networks. Physical Review E 69.

NURMELA, K., LEHTINEN, E., AND PALONEN, T. 1999. Evaluating cscl log files by social network analysis. Computer Support
for Collaborative Learning.

OPENNLP. http://opennlp.sourceforge.net/README.html.

PaLLA, G., DERENYI, 1., FARKAS, 1., AND VICSEK, T. 2005. Uncovering the overlapping community structure of complex networks
in nature and society. Nature 435, 814-818.

SUNDARARAJAN, B. 2010. Emergence of the most knowledgeable other (mko): Social network analysis of chat and bulletin board
conversations in a cscl system. FElectronic Journal of e-Learning 8, 191-208.

UCINET. http://www.analytictech.com/ucinet/.

WEBCT. http://en.wikipedia.org/wiki/WebCT.

WILLGING, P. A. 2005. Using social network analysis techniques to examine online interactions. US-China Education Re-
view 2, 9, 46-56.

A Machine Learning Approach for Automatic Student Model
Discovery

Nan Li and Noboru Matsuda and William W. Cohen and Kenneth R. Koedinger, Carnegie Mellon
University

Student modeling is one of the key factors that affects automated tutoring systems in making instructional decisions. A student
model is a model to predict the probability of a student making errors on given problems. A good student model that matches
with student behavior patterns often provides useful information on learning task difficulty and transfer of learning between
related problems, and thus often yields better instruction. Manual construction of such models usually requires substantial
human effort, and may still miss distinctions in content and learning that have important instructional implications. In this paper,
we propose an approach that automatically discovers student models using a state-of-art machine learning agent, SimStudent.
We show that the discovered model is of higher quality than human-generated models, and demonstrate how the discovered
model can be used to improve a tutoring system’s instruction strategy.

1. INTRODUCTION

A student model is a set of knowledge components (KC) encoded in intelligent tutors to model how students
solve problems. The set of KCs includes the component skills, concepts, or percepts that a student must
acquire to be successful on the target tasks. For example, a KC in algebra can be how students should proceed
given problems of the form Nv=N (e.g. 3z = 6). It provides important information to automated tutoring
systems in making instructional decisions. Better student models match with real student behavior. They
are capable of predicting task difficulty and transfer of learning between related problems, and often yield
better instruction. Traditional ways to construct student models include structured interviews, think-aloud
protocols, rational analysis, and so on. However, these methods are often time-consuming, and require expert
input. More importantly, they are highly subjective. Previous studies [Koedinger and Nathan 2004; Koedinger
and McLaughlin 2010] have shown that human engineering of these models often ignores distinctions in
content and learning that have important instructional implications. Other methods such as Learning Factor
Analysis (LFA) [Cen et al. 2006] apply an automated search technique to discover student models. It has
been shown that these automated methods are able to find better student models than human-generated
ones. Nevertheless, one key limitation of LFA is that it carries out the search process only within the space
of human-provided factors. If a better model exists but requires unknown factors, LFA will not find it.

To address this issue, we propose a method that automatically discovers student models not depending on
human-provided factors. The system uses a state-of-art machine learning agent, SimStudent [Matsuda et al.
2009], to acquire skill knowledge. Each skill corresponds to a KC that students need to learn. The model then
labels each observation of a real student based on skill application. We evaluated the approach in algebra
using real student data. Experiment results show that the discovered model fits with real student data better
than human-generated models, and provides useful insights in finding better instructional methods.

In the following sections, we begin with a review of SimStudent. Next, we report experiment results that
demonstrate the benefits of the SimStudent model over the human-generated model. After this, we discuss
the possible improvements that can be made to a tutoring system suggested by the SimStudent model. In
closing, we discuss related work as well as future directions for this work.

Author’s address: Nan Li; email: nlil@Qcs.cmu.edu; Nobour Matsuda; email: Noboru.Matsuda@cs.cmu.edu; William W. Cohen;
email: wcohen@cs.cmu.edu; Kenneth R. Koedinger; email: koedinger@cmu.edu; 5000 Forbes Ave, Pittsburgh, PA 15232

eknutov
Rectangle

eknutov
Rectangle

32

Nan Li et al.

2. A REVIEW OF SIMSTUDENT

SimStudent is an intelligent agent that inductively learns skills to solve problems from demonstrated solu-
tions and from problem solving experience. It is a realization of programming by demonstration [Lau and
Weld 1998] and employs inductive logic programming [Muggleton and de Raedt 1994] as one of its learning
mechanisms. For more details about SimStudent, please refer to Matsuda et al. [2009].

2.1 Input

SimStudent is given a set of feature predicate symbols and a set of operator symbols as prior knowledge before
learning. Each predicate is a boolean function that describes relations among objects in the domain (e.g. (has-
coefficient -3x)). Operators specify basic manipulations (e.g. (add 1 2), (coefficient -3z)) that SimStudent
can apply to objects in the problem solving interface, like numbers or character strings. Operators are
divided into two groups, domain-independent operators and domain-specific operators. Domain-independent
operators (e.g. (add 1 2)) are basic manipulations that are applicable across multiple domains. Real students
usually have knowledge of these simple skills prior to class. Domain-specific operators (e.g. (add-term 5z-
5 5), (coefficient -3z)), on the other hand, are more complicated manipulations that are associated with
only one domain. From a learner modeling perspective, beginning students may not know domain-specific
operators and thus providing such operators to SimStudent may produce learning behavior that is distinctly
different from human students [Matsuda et al. 2009]. Operators in SimStudent (whether domain-independent
or domain-specific) have no explicit encoding of preconditions and effects. This matches the intuition that
human students often “know how” without “knowing when”.

During the learning process, given the current state of the problem (e.g., -8z = 6), SimStudent first tries
to find an appropriate production rule (skill knowledge acquired by SimStudent) that proposes a plan for
the next step (e.g. (coefficient -3z ?coef) (divide ?coef)). If it finds one, it executes the plan, performs an
action in the system interface, and waits for feedback from the human user/author /tutor. If the user provides
positive feedback, SimStudent continues to the next step. If not, SimStudent records this negative feedback
and may try again. If SimStudent does not find a production rule that generates a correct action, it requests
a demonstration of the next step, which the user performs in the interface. SimStudent uses any negative
feedback to modify existing productions. It uses the next-step demonstration, if provided, to learn a new
production rule.

In the experiments we describe here, the user/author/tutor role is simulated by a hand-engineered algebra
tutor [Koedinger et al. 1995], which provides SimStudent with feedback and next-step demonstrations as
needed via an API. For each demonstrated step, the user/tutor specifies a tuple of (selection, action, input)
(SAT tuple) for a skill. SimStudent is given a skill label (e.g. “divide”) generated by the cognitive tutor,
which corresponds to the type of skill applied. “Selection” in the SAI tuple (e.g. -3z and 6 for -3z = 6) is
associated with elements in the graphical user interfaces (GUI). It shows where a “focus of attention” is
—that is, where to look for relevant information. “Action” (e.g. entering some text) indicates what action
to take with the “input” (e.g. (divide -3) for problem -3z = 6). In this example, the full plan might be to
first retrieve coefficient and then to divide by it (e.g. (coefficient -3z ?coef) (divide ?coef)), but the tutor
only demonstrates the final action (e.g., (divide -3)) to SimStudent. Taken together, the given information
forms one record indexed by the skill label, R=(label, (selection, action, input)) (e.g. R=(divide, ((-3z, 6),
input text, (divide -3)))). In learning, SimStudent acquires one production rule for each skill label, based on
the set of associated records gathered at that point.

2.2 Production Rules

The output of the learning agent is represented as production rules. Each production rule corresponds to
one knowledge component. The left side of Figure 1 shows an example of a production rule learned by
SimStudent. A production rule indicates “when” (precondition) to apply a rule to what information found
“where” (focus of attention (FoA)) in the interface and “how” (operator sequence) the problem state should
be changed. For example, the rule shown in the left side of Figure 1 would be read as “given a left-hand side

A Machine Learning Approach for Automatic Student Model Discovery

33

Original: Extended:
Skill divide (e.g. -3x = 6) Skill divide (e.g. -3x = 6)
FoAs: FoAs:

Left side (-3x)
Right side (6)
Precondition:

Left side (-3x) does not

have constant term
Operator sequence:

Get coefficient (-3) of left

side (-3x)

Divide both sides with the

coefficient (-3)

Left side (-3, -3x)
Right s (6)

Left side (-3x) does not
have constant term
Operator sequence:
- ffici (-3) of lef
side (-3x)
Divide both sides with the
coefficient (-3)

Fig. 1. Original and extended production rules for divide in a readable format.

(i.e. -3z) and a right-hand side (i.e. 6) of the equation, when the left-hand side does not have a constant
term, then get the coefficient of the term on the left-hand side and divide both sides by the coefficient.” The
focus of attention of the production represents paths through the task-specific GUI interface that retrieve
the items needed by the operator sequence. The precondition of a production rule includes a set of feature
tests, representing preconditions for applying the rule. The operator sequence specifies a plan to execute.

2.3 Learning Mechanism

SimStudent uses three different learning components for the three parts of the production rules. The first
component (the “where learner”) learns how to focus attention on the relevant aspects of the interface by
generalizing paths from the element for the interface as a whole to the specific elements of the interface that
have the information needed to execute the operator sequence. The elements in the GUI are organized in a
tree structure. In the algebra domain, the root node is a table node that links to columns, and each column
has multiple cells as children. The “where learner’s” task is to find the right paths in the tree to reach the
nodes in the focus-of-attention (e.g. Cell 11 and Cell 21). A FoA (e.g. Cell 21) can be reached either 1) by
the path to its exact position (e.g. Cell 21) in the tree, 2) by a generalized path (e.g. Cell 27, Cell ?7) to its
position. Therefore, given a set of FoAs from positive records, for each position, the “where learner” searches
for one least general path that covers all of the FoAs at that position.

The second part of the learning mechanism is a precondition learner (the “when learner”, which acquires
the precondition of the production rule using the given feature predicates. The precondition learner utilizes
FOIL [Quinlan 1990], an inductive logic programming system that learns Horn clauses from both positive
and negative examples expressed as relations. For each rule, the precondition learner creates a new predicate
that corresponds to the precondition of the rule, and sets it as the target relation for FOIL to learn. The
arguments of the new predicate are associated with the FoAs. Each training record serves as either a positive
or a negative example for FOIL. For example, (precondition-divide -3z 6) is a positive example for the new
predicate (precondition-divide ?FoA; ?FoAs). The precondition learner also computes the truthfulness of all
predicates bound with all possible permutations of FoA values, and sends it as input to FOIL. Given these
inputs, FOIL will acquire a set of clauses formed by feature predicates describing the precondition predicate.

The last component is the operator sequence learner (the “how learner”). For each positive record, R;,
the learner takes the FoAs, FoAs;, as the initial state, and sets the step, step;, as the goal state. We say
an operator sequence explains a FoAs-step pair, (FoAs;, step;), if the system takes FoAs; as an initial state
and yields step; after applying the operators. For example, with the FoAs-step pair in the example, {(-3z,
6), (divide -3)), the operator sequence (coefficient -3z ?coef) (divide ?coef) is a possible explanation for this
pair. The learner searches for the shortest operator sequence that explains all of the (FoAs, step) pairs using
iterative-deepening depth-first search.

34

Nan Li et al.

Expression Expression
SignedNumber Variable MinusSign
MinusSign Number Number Variable
\ \/ \/ \
—_— 3 X —_ 3 X

Fig. 2. Correct and incorrect parse trees for —3z.

Last, although SimStudent tries to learn one rule for each label, it might fail to do so (e.g., when no
operator sequence can explain all records). In that case, SimStudent learns a disjunctive rule just for the last
record. This effectively splits the records into two clusters. Later, for each new record, SimStudent tries to
acquire a rule for each of the clusters with the new record, and stops whenever it successfully learns a rule
with one of the clusters, or creates another new cluster.

2.4 Extending SimStudent to Learn Deep Features

Previous study [Chi et al. 1981] has shown that one of the key differences between experts and novices is
that experts view the world in terms of deep features, whereas novices only see shallow features. Recently,
we have extended SimStudent to support acquisition of deep features using Li et al. [2010]’s algorithm.
They model deep feature learning as a grammar induction problem. In the algebra domain, expressions are
modeled with a probabilistic context free grammar (PCFG), and the deep features (e.g., “coefficient”) are
intermediate symbols in the grammar rules. Moreover, Li et al. [2010] showed that student errors can be
modeled as incorrect parsing, as shown at the right side of Figure 2. Li et al. [2010]’s deep feature learner
extends an earlier PCFG learner [Li et al. 2009] to support feature learning and transfer learning.

The input of the system is a set of observation-feature pairs such as (-3z, -3). The output is a PCFG with
a designated intermediate symbol in one of the rules set as the target feature. The learning process contains
two steps. The system first acquires the grammar using Li et al. [2009]’s algorithm. After that, the feature
learner tries to identify an intermediate symbol in one of the rules as the target feature. To do this, the system
builds parse trees for all of the observation sequences, and picks the intermediate symbol that corresponds
to the most training records as the deep feature. To model transfer learning, Li et al. [2010] further extend
the feature learner to acquire PCFGs based on previously acquired knowledge. When the learner is given a
new learning task, it first uses the known grammar to build parse trees for each new record in a bottom-up
fashion, and stops when there is no rule that could further merge two parse trees into a single tree. The
learner then switches to the original learner and acquires new grammar rules as needed. Having acquired
the grammar for deep features, when a new problem is given to the system, the learner will extract the deep
feature by first building the parse tree of the problem based on the acquired grammar, and then extracting
the subsequence associated with the feature symbol from the parse tree as the target feature. However, this
model is only capable of learning and extracting deep features without using them to solve problems.

As we have mentioned above, SimStudent is able to acquire production rules in solving complicated
problems, but requires a set of operators given as prior knowledge. Some of the operators are domain-
specific, and require expert knowledge to build them. On the other hand, the feature learner acquires the
deep features that are essential for effective learning, but is limited to information extraction tasks. In order
to both reduce the amount of prior knowledge engineering needed for SimStudent and to extend the deep
feature learner’s capability, we integrated the deep feature learner into SimStudent.

Extending Perceptual Learning. Previously, the FoAs encoded in production rules are always associ-
ated with paths to elements in the GUI (such as cells in the algebra example). Intuitively, the deep features
discussed above represent perceptual information—however, it is domain-specific, learned perceptual infor-

A Machine Learning Approach for Automatic Student Model Discovery 35

mation. To exploit this information, we extend the perceptual hierarchy for the GUI to further include the
most probable parse trees from the learned PCFG in the contents of the leaf nodes. We implement this by
appending the parse trees to their associated leaf nodes, marking the appended nodes as type “subcell”. In
the algebra example, this extension means that cells representing algebraic expressions (e.g., those corre-
sponding to left-hand sides or right-hand sides of the equation) are linked to parse trees for these expressions.
Using -3z as an example, the extended hierarchy includes the parse tree for -3z as shown on the left side of
Figure 2 as a subtree connected to the cell node associated with -3z. With this extension, the coefficient (-3)
of -3z is now explicitly represented in the percept hierarchy. Hence if the extended SimStudent includes this
subcell as a FoA in production rules, as shown at the right side of Figure 1, the production rule would no
longer need the domain-specific engineered operator “coefficient”.

However, extending the percept hierarchy presents challenges to the original “where learner”. First of all,
since the extended subcells are not associated with GUI elements, we can no longer depend on the tutor
to specify FoAs for SimStudent. Nor can we simply put all of the subcells in the parse trees as FoAs: if we
did, the acquired production rules would contain redundant information that might hurt the generalization
capability of the “where learner”. For example, for problem -3x=6, among all inserted subcells, only -3 is
a relevant FoA in solving the problem. Second, the paths to the relevant FoAs are typically more diverse:
for example, for problems -3z=6 and Jz=8, the original where learner would not be able to find one set of
generalized paths that explain both training examples, since -3z has eight nodes in its parse tree, while 4z
has only five. To address these challenges, we extend the original “where learner” to support acquisition of
FoAs with redundant and non-fixed length FoA lists.

To do this, SimStudent first includes all of the inserted subcells as candidate FoAs, and calls the operator
sequence learner to find a plan that explains all of the training examples. The “where learner” then removes
all of the subcells that are not used by the operator sequence from the candidate FoA list. Since all of the
training records share the same operator sequence, the number of FoAs remained for each record should
be the same. Next, the “where learner” arranges the remained subcell FoAs based on their orderings of
being used by the operator sequences. After this process, the “where learner” now has a set of FoA lists
that contains fixed number of FoAs ordered in the same fashion. We can then switch to the original “where
learner” to find the least general paths for the updated FoA lists. In our example for skill “divide”, as shown
at the right side of Figure 1, the FoAs of the production rule would contain three elements, the left-hand side
and right-hand side cells which are the same as the original rule, and a coefficient subcell which corresponds
to the left child of the variable term. Note that since we removed the redundant subcells, the acquired
production rule now works with both -3z=6 and 4z=8.

Extending Precondition Acquisition. In addition to extending the feature learner, we also extend the
vocabulary of feature symbols provided to the precondition learner. As implied by its name, the deep feature
learner acquires information that reveal essential features of the problem state. It is natural to think that
these deep features could also be used in describing desired situations to fire a production rule. Therefore, we
construct a set of grammar features that are associated with the acquired PCFG. The set of new predicates
describe positions of a subcell in the parse tree. For example, we create a new predicate called “is-left-child-
of”, which should be true for (is-left-child-of -8 -3z) based on the parse tree shown in the left side of Figure 2.
Importantly, these new predicates are not domain-specific (although they are specific to the PCFG-based
approach to deep feature learning). All of the grammar feature predicates are then included in the set of
existing feature predicates for the precondition learner to use later.

3. EXPERIMENT STUDY
3.1 Method

In order to evaluate the effectiveness of the proposed approach, we carried out a study using an algebra
dataset. We compared the SimStudent model with a human-generated KC model by first coding the real
student steps using the two models, and then testing how well the two model codings fit with real student
data.

36

Nan Li et al.

For the human-generated model, the real student steps were first coded using the “action” label associated
with a correct step transaction, where an action corresponds to a mathematical operation(s) to transform
an equation into another. As a result, there were nine KCs defined (called the Action KC model) — add,
subtract, multiply, divide, distribute, clt (combine like terms), mt (simplify multiplication), and rf (reduce a
fraction). Four KCs associated with the basic arithmetic operations (i.e., add, subtract, multiply, and divide)
were then further split into two KCs for each, namely a skill to identify an appropriate basic operator and a
skill to actually execute the basic operator. The former is called a transformation skill whereas the latter is a
typein skill. As a consequence, there were 12 KCs defined (called the Action-Typein KC model). Not all steps
in the algebra dataset can be coded with these KC models — some steps are about a transformation that we
do not include in the Action KC model (e.g., simplify division). There were 9487 steps that can be coded
by both KC models mentioned above. The “default” KC model, which were defined by the productions
implemented for the cognitive tutor, has only 6809 steps that can be coded. To make a fair comparison
between the “default” and “Action- Typein” KC models, we took the intersection of those 9487 and 6809
steps. As a result, there were 6507 steps that can be coded by both the default and the Action-Typein KC
models. We then defined a new KC model, called the Balanced-Action-Typein KC model that has the same
set of KCs as the Action-Typein model but is only associated with these 6507 steps, and used this KC model
to compare with the SimStudent model.

To generate the SimStudent model, SimStudent was tutored on how to solve linear equations by interacting
with a Carnegie Learning Algebra I Tutor like a human student. We selected 40 problems that were used to
teach real students as the training set for SimStudent. Given all of the acquired production rules, for each
step a real student performed, we assigned the applicable production rule as the KC associated with that
step. In cases where there was no applicable production rule, we coded the step using the human-generated
KC model (Balanced-Action-Typein). Each time a student encounters a step using some KC is considered
as an “opportunity” for that student to show mastery of that KC.

Having finished coding real student steps with both models (the SimStudent model and the human-
generated model), we used the Additive Factor Model (AFM) [Cen et al. 2006] to validate the coded steps.
AFM is an instance of logistic regression that models student success using each student, each KC, and the
KC by opportunity interaction as independent variables,

In # =0, + Zﬁk@kj + ZBka](’Yszk) @
v k k

Where:

i. represents a student i.

j. represents a step j.

k. represents a skill or KC k.

pij. is the probability that student i would be correct on step j.

0;. is the coefficient for proficiency of student i.

By is coefficient for difficulty of the skill or KC k

Qr;- is the Q-matrix cell for step j using skill k.

k- is the coefficient for the learning rate of skill k;

Nji. is the number of practice opportunities student i has had on the skill k;

We utilized DataShop [Koedinger et al. 2010], a large repository that contains datasets from various
educational domains as well as a set of associated visualization and analysis tools, to facilitate the pro-

cess of evaluation, which includes generating learning curve visualization, AFM parameter estimation, and
evaluation statistics including AIC (Akaike Information Criterion) and cross validation.

A Machine Learning Approach for Automatic Student Model Discovery 37

Expression Expression
SignedNumber Variable MinusSign Variable

PN

MinusSign Number

\ Y

— 3 X — X

Fig. 3. Different parse trees for -3x and -x.

3.2 Dataset

We analyzed data from 71 students who used an Carnegie Learning Algebra I Tutor unit on equation
solving. The students were typical students at a vocational-technical school in a rural/suburban area outside
of Pittsburgh, PA. The problems varied in complexity, for example, from simpler problems like 3z=6 to harder
problems like z/-5+7=2. A total of 19,683 transactions between the students and the Algebra Tutor were
recorded, where each transaction represents an attempt or inquiry made by the student, and the feedback
given by the tutor.

3.3 Measurements

To test whether the generated model fits with real student data, we used AIC and a 3-fold cross validation.
ATC measures the fit to student data while penalizing over-fitting. We did not use BIC (Bayesian Information
Criterion) as the fit metric, because based on past analysis across multiple DataShop datasets, it has been
shown that AIC is a better predictor of cross validation than BIC is. The cross validation was performed over
three folds with the constraint that each of the three training sets must have data points for each student
and KC. We also report the root mean-squared error (RMSE) averaged over three test sets.

3.4 Experiment Result and Implications on Instructional Decision

The SimStudent model contains 21 KCs. Both the AIC (6448) and the cross validation RMSE (0.3997)
are lower than the human-generated model (AIC 6529 and cross validation 0.4034). This indicates that the
SimStudent model better fits with real student data without over-fitting.

In order to understand whether the differences are significant or not, we carried out two significance
tests. The first significance test evaluates whether the SimStudent model is actually able to make better
predictions than the human-generated model. During the cross validation process, each student step was
used once as the test problem. We took the predicated error rates generated by the two KC models for
each step during testing. Then, we compared the KC models’ predictions with the real student error rate
(0 if the student was correct at the first attempt, and 1 otherwise). After removing ties, among all 6494
student steps, the SimStudent model made a better prediction than the human-generated KC model in
4260 steps. A sign test on this shows that the SimStudent model is significantly (p < 0.001) better in
predicting real student behavior than the human-generated model. In the second test, due to the random
nature of the folding process in cross validation, we evaluated whether the lower RMSE achieved by the
SimStudent model was consistent or by chance. To do this, we repeated the cross validation 20 times, and
calculated the RMSE for both models. Across the 20 runs, the SimStudent model consistently outperformed
the human-generated model. Thus, a paired t-test shows the SimStudent model is significantly (p < 0.001)
better than the human-generated model. Also note that differences between competitors in the KDD Cup
2010 (https://psledatashop.web.cmu.edu/KDDCup/Leaderboard) have also been in this range of thousands

38

Nan Li et al.

=—— Real Student
0.9H = © = Human-generated Model
= ® = SimStudent Model

0.8

071

06

Error Rate

051

0.4r

___o___o___o

7
03 =R

n

0.2 A
~Nv=N Nv=-N Nv=N N=Nv -N=Nv -Nv=-N N=-Nv -v=N -v=-N -N=-v
Problem Abstractions

Fig. 4. Error rates for real students and predicted error rates from two student models.

in RMSE. Therefore, we conclude that the SimStudent model is a better student model than the human-
generated KC model.

We can inspect the data more closely to get a better qualitative understanding of why the SimStudent
model is better and what implications there might be for improved instruction. Among the 21 KCs learned
by the SimStudent model, there were 17 transformation KCs and four typein KCs. It is hard to map the
SimStudent KC model directly to the expert model. Approximately speaking, the distribute, clt, mt, rf KCs
as well as the four typein KCs are similar to the KCs defined in the expert model. The transformation skills
associated with the basic arithmetic operators (i.e. add, subtract, multiply and divide) are further split into
finer grain sizes based on different problem forms.

One example of such split is that SimStudent created two KCs for division. The first KC (simSt-divide)
corresponds to problems of the form Az=B, where both A and B are signed numbers, whereas the second
KC (simSt-divide-1) is specifically associated with problems of the form -z=A, where A is a signed number.
This is caused by the different parse trees for Az vs -z as shown in Figure 3. To solve Az=B, SimStudent
simply needs to divide both sides with the signed number A. On the other hand, since -z does not have -1
represented explicitly in the parse tree, SimStudent needs to see -z as -1z, and then to extract -1 as the
coefficient. If SimStudent is a good model of human learning, we expect the same to be true for human
students. That is, real students should have greater difficulty in making the correct move on steps like -z =
6 than on steps like -3z = 6 because of the need to convert (perhaps just mentally) -z to -1z. To evaluate
this hypothesis, we computed the average error rates for a relevant set of problem types — these are shown
with the solid line in Figure 4 with the problem types defined in forms like - Nv=N, where the Ns are any
integrate number and the v is a variable (e.g., -3z=6 is an instance of -Nv=N and -6=-z is an instance of
-N=-v). We also calculated the mean of the predicted error rates for each problem type for both the human-
generated model and the SimStudent model. Consistent with the hypothesis, as shown in Figure 4, we see
that problems of the form Az=B (average error rate 0.283) are much simpler than problems of the form
-z=A (average error rate 0.719). The human-generated model predicts all problem types with similar error
rates (average predicted error rate for Az=B 0.302, average predicted error rate for -z=A 0.334), and thus
fails to capture the difficulty difference between the two problem types (Az=B and -z=A). The SimStudent
model, on the other hand, fits with the real student error rates much better. It predicts higher error rates
(0.633 on average) for problems of the form -z=A than problems of the form Az=B (0.291 on average).

SimStudent’s split of the original division KC into two KCs, simSt-divide and simSt-divide-1, suggests
that the tutor should teach real students to solve two types of division problems separately. In other words,
when tutoring students with division problems, we should include two subsets of problems, one subset
corresponding to simSt-divide problems (Az=B), and one specifically for simSt-divide-1 problems (-z=A4).
We should perhaps also include explicit instruction that highlights for students that -z is the same as -1z.

A Machine Learning Approach for Automatic Student Model Discovery 39

4. RELATED WORK

The objective of this paper is using a machine learning agent, SimStudent, to automatically construct student
models. There has been considerable work on comparing the quality of alternative cognitive models. LFA
automatically discovers student models, but is limited to the space of the human-provided factors. Other
works such as [Pavlik et al. 2009; Villano 1992] are less dependent on human labeling, but may suffer from
challenges in interpreting the results. In contrast, the SimStudent approach has the benefit that the acquired
production rules have a precise and usually straightforward interpretation. Baffes and Mooney [1996] applies
theory refinement to the problem of modeling incorrect student behavior. Other systems [Tatsuoka 1983;
Barnes 2005] use Q-matrix to find knowledge structure from student response data. None of the above
approaches use simulated students to construct cognitive models.

Other research on creating simulated students [Vanlehn et al. 1994; Chan and Chou 1997; Pentti Hietala
1998] also share some resemblance to our work. VanLehn [1990] created a learning system and evaluated
whether it was able to learn procedural “bugs” like real students. Biswas et al. [2005]’s system learns causal
relations from a conceptual map created by students. None of the above approaches compared the system
with learning curve data. To the best of our knowledge, our work is the first combination of the two whereby
we use cognitive model evaluation techniques to assess the quality of a simulated learner.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduced an innovative application of a machine-learning agent, SimStudent, for an
automatic discovery of student models. An empirical study showed that a SimStudent generated student
model was a better predictor of real students learning performance than a human-coded student model. The
basic idea is to have SimStudent learn to solve the same problems that human students did and use the
productions that SimStudent generated as knowledge components to codify problem-solving steps. We then
used these KC coded steps to validate the models prediction. Unlike the human-engineered student model,
the SimStudent generated student model has a clear connection between the features of the domain contents
and knowledge components. An advantage of the SimStudent approach of student modeling over previous
techniques like LFA is that it does not depend heavily on the human-engineered features. SimStudent can
automatically discover a need to split a purported KC or skill into more than one skill. During SimStudents
learning, a failure of generalization for a particular KC results in learning disjunctive rules. Discovering such
disjuncts is equivalent to splitting a KC in LFA, however, whereas human needs to provide potential factors
to LFA as the basis for a possible split, SimStudent can learn such factors. The use of the perceptual learning
component, implemented using a probabilistic context-free grammar learner, is a key feature of SimStudent
for these purposes as we hypothesized that a major part of human expertise, even in academic domains like
algebra, is such perceptual learning.

Our evaluation demonstrated that representing the rules SimStudent learns in the student model improves
the accuracy of model prediction, and showed how the SimStudent model could provide important instruc-
tional implications. Much of human expertise is only tacitly known. For instance, we know the grammar of
our first language but do not know what we know. Similarly, most algebra experts have no explicit aware-
ness of subtle transformations they have acquired like the one above (seeing -z as -1z). Even though such
instructional designers may be experts in a domain they have thus have some blind spots regarding subtle
perceptual differences like this one, which may make a real difference for novice learners. A machine learning
agent, like SimStudent, can help get past such blind spots by revealing challenges in the learning process
that experts may not be aware of.

The current study used a single dataset in a single domain. The generality and validity of the proposed
student-modeling technique could be extended by training SimStudent with one dataset and applying a
discovered KC model to another dataset. For instance, the experiment dataset was from one high school.
An interesting future study would be to examine data from other schools or grade levels, and evaluate
the generality of the proposal technique. We should also apply this approach in other domains such as
stoichiometry, fraction addition and so on. The Pittsburgh of Science of Learning Centers DataShop contains

40

Nan Li et al.

over 200 datasets in algebra and other domains that could be used for such cross-dataset or cross-domain
validation.

6. ACKNOWLEDGEMENTS

The research reported here was supported by National Science Foundation Award No. DRL-0910176 and the
Institute of Education Sciences, U.S. Department of Education, through Grant R305A090519 to Carnegie
Mellon University. The opinions expressed are those of the authors and do not represent views of the Institute
or the U.S. Department of Education. This work is also supported in part by the Pittsburgh Science of
Learning Center, which is funded by the National Science Foundation Award No. SBE-0836012.

REFERENCES

Barres, P. T. AND MOONEY, R. J. 1996. A novel application of theory refinement to student modeling. In Proceedings of the
thirteenth national conference on Artificial intelligence. AAAT Press, 403-408.

BARNES, T. 2005. The Q-matrix method: Mining student response data for knowledge. In Proceedings AAAI Workshop
Educational Data Mining. Pittsburgh, PA, 1-8.

Biswas, G., SCHWARTZ, D., LEELAWONG, K., AND VYE, N. 2005. Learning by teaching: A new agent paradigm for educational
software. Applied Artificial Intelligence 19, 363-392.

CEN, H., KOEDINGER, K., AND JUNKER, B. 2006. Learning factors analysis - a general method for cognitive model evaluation
and improvement. In Proceedings of the 8th International Conference on Intelligent Tutoring Systems. 164-175.

CHAN, T.-W. AND CHoU, C.-Y. 1997. Exploring the design of computer supports for reciprocal tutoring. International Journal
of Artificial Intelligence in Education 8, 1-29.

Cui, M. T. H., FELrovicH, P. J., AND GLASER, R. 1981. Categorization and representation of physics problems by experts and
novices. Cognitive Science 5, 2, 121-152.

KOEDINGER, K. R., ANDERSON, J. R., HADLEY, W. H., AND MARK, M. A. 1995. Intelligent Tutoring Goes to School in the Big
City. In Proceedings of the 7th International Conference on Artificial Intelligence in education.

KOEDINGER, K. R., BAKER, R. S., CUNNINGHAM, K., SKOGSHOLM, A., LEBER, B., AND STAMPER, J. 2010. A data repository
for the EDM community: The PSLC DataShop.

KOEDINGER, K. R. AND MCLAUGHLIN, E. A. 2010. Seeing language learning inside the math: Cognitive analysis yields transfer.
In Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Austin, TX, 471-476.

KOEDINGER, K. R. AND NATHAN, M. J. 2004. The real story behind story problems: Effects of representations on quantitative
reasoning. The Journal of Learning Sciences 13, 2, 129-164.

Lau, T. aAND WELD, D. S. 1998. Programming by demonstration: An inductive learning formulation. In Proceedings of the
1999 International Conference on Intelligence User Interfaces. 145—-152.

L1, N., CoHEN, W. W., AND KOEDINGER, K. R. 2010. A computational model of accelerated future learning through feature
recognition. In Proceedings of 10th International Conference on Intelligent Tutoring Systems. 368-370.

L1, N., KAMBHAMPATI, S., AND YOON, S. 2009. Learning probabilistic hierarchical task networks to capture user preferences.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, CA.

MATsuDpA, N., LEE, A., COHEN, W. W., AND KOEDINGER, K. R. 2009. A computational model of how learner errors arise from
weak prior knowledge. In Proceedings of Conference of the Cognitive Science Society.

MUGGLETON, S. AND DE RAEDT, L. 1994. Inductive logic programming: Theory and methods. Journal of Logic Programming 19,
629-679.

Paviik, P. I., CEN, H., AND KOEDINGER, K. R. 2009. Learning Factors Transfer Analysis: Using Learning Curve Analysis
to Automatically Generate Domain Models. In Proceedings of 2nd International Conference on Educational Data Mining.
121-130.

PENTTI HIETALA, T. N. 1998. The competence of learning companion agents. International Journal of Artificial Intelligence
in Education 9, 178-192.

QUINLAN, J. R. 1990. Learning logical definitions from relations. Machine Learning 5, 3, 239-266.

Tatsuoka, K. K. 1983. Rule space: An approach for dealing with misconceptions based on item response theory. Journal of
Educational Measurement, 345—-354.

VANLEHN, K. 1990. Mind Bugs: The Origins of Procedural Misconceptions. MIT Press, Cambridge, MA, USA.

VANLEHN, K., OHLSSON, S., AND NASON, R. 1994. Applications of simulated students: an exploration. Journal of Artificial
Intelligence in Education 5, 135-175.

VILLANO, M. 1992. Probabilistic student models: Bayesian belief networks and knowledge space theory. In Proceedings of the
2nd International Conference on Intelligent Tutoring Systems. Heidelberg, 491-498.

Conditions for effectively deriving a Q-Matrix from data with
Non-negative Matrix Factorization

MICHEL C. DESMARAIS, Polytechnique Montréal

The process of deciding which skills are involved in a given task is tedious and challenging. Means to automate it are highly desir-
able, even if only partial automation that provides supportive tools can be achieved. A recent technique based on Non-negative
Matrix Factorization (NMF) was shown to offer valuable results, especially due to the fact that the resulting factorization allows
a straightforward interpretation in terms of a Q-matrix. We investigate the factors and assumptions under which NMF can
effectively derive the underlying high level skills behind assessment results. We demonstrate the use of different techniques to
analyse and interpret the output of NMF. We propose a simple model to generate simulated data and to provide lower and
upper bounds for quantifying skill effect. Using the simulated data, we show that, under the assumption of independent skills,
the NMF technique is highly effective in deriving the Q-matrix. However, the NMF performance degrades under different ratios
of variance between subject performance, item difficulty, and skill mastery. The results corroborates conclusions from previous
work in that high level skills, corresponding to general topics like World History and Biology, seem to have no substantial effect
on test performance, whereas other topics like Mathematics and French do. The analysis and visualization techniques of the
NMF output, along with the simulation approach presented in this paper, should be useful for future investigations using NMF
for Q-matrix induction from data.

1. INTRODUCTION

The construction of a Q-matrix from data is a highly desirable goal for tutoring systems. Not only would it
waive the expertise and labour intensive task of assigning which skills are involved in which task, but it would
also offer a more objective and replicable means of getting the correct skill-to-task mapping. Furthermore, it
might also allow a more effective means to build Q-matrices, as machine learning methods often outperform
humans over a range of complex tasks.

However, the success in achieving this goal remains limited. Nowadays, we find no reliable method to
automate the mapping of skills to tasks from data, but some progress has been made.

Working with log data from tutoring systems, data which is characterized by the fact that the knowledge
state of the student dynamically changes in the data as the student learns, Cen et al. [2006; 2005] have used
a technique known as Learning Factor Analysis (LFA) in order to bring improvements over an initially hand
built Q-matrix (also termed a transfer model). This technique was shown useful for bringing improvements
to the Q-matrix composed of fine-grained skills which are deemed necessary to complete certain exercises.

Inspired from the work of Tatsuoka [1983], Barnes [2006] developed a method of mapping skills to items
based on a measure of the fit of a potential Q-matrix to the data. This method and the other methods
described below rely on static student knowledge states, as opposed to the dynamically changing knowledge
states of the LFA technique. Barnes method is fully automated and it was shown to perform at least as well
as Principal Component Analysis for skill clustering analysis. However, it involves an algorithm that does
not scale well to a Q-matrix that comprises 20 or more items.

Winters et al. [2005] investigated how a number of standard clustering techniques can effectively match
skills to test items. They applied these techniques to a wide array of test outcomes, from SAT topics such as
Mathematics, Biology and French, to computer science exams, and to different trivia topics. Their findings
show that for skills associated to topics within a single course, for example, the techniques were essentially
no better at classifying test items than random clustering. The same conclusion applies for topics like World

492 Michel Desmarais

history and Biology. However, the techniques were relatively successful at separating items that belongs to
totally different topics, such as Mathematics and French.

In this paper, we replicate parts of the study by Winters et al. [2005] and focus on one of the cluster
algorithms they used, Non-negative Matrix Factorization (NMF). We use visualization techniques to analyze
in greater details the results of the factorization. We propose a model to simulate student data and show
that the NMF technique is indeed effective under certain assumptions. We use the simulation data model
parameters as a means to quantify and estimate the effect of skills over the observed examinee performance
in some of the real data of Winters et al. original study. First, let us give some details about NMF.

2. NON-NEGATIVE MATRIX FACTORIZATION AND Q-MATRIX INTERPRETATION

Non-negative matrix factorization (NMF) decomposes a matrix into two smaller matrices. It is used for
dimensionality reduction, akin to Principal Component Analysis and Factor analysis. NMF decomposes a
matrix of n X m positive numbers, V, as the product of two matrices:

V ~ WH (1)

The matrices W and H are respectively n x r and r x m, where r is called the rank of the factorization. For
our purpose, matrix V represents the observed test outcome data for n question items and m respondents.
Therefore, the product of W and H reproduces the observed patterns of success/failures of the m examinee
to the n items. The matrix W can be considered as a Q-matrix, whereas H can be considered as the skills
mastery for each m examinee. In the case of a Q-matrix, r represents the number of skills, which can take
any value but should normally conform to: r < nm/(n +m) [Lee and Seung 1999].

Let us take an example to better explain NMF in our context. Assume the following Q-matrix, W,
composed of 3 skills and 4 items, and the following skills mastery matrix, H, for 5 examinees:

skills examinees

1
W= 2 80(1) gz (L1101
T8 100 “Zloo0101
' 001 “\N01011

Given this Q-matrix and the skills mastered by the 5 examinees, the expected results are:

examinees

e (00101
V:WHzg 01011
X 11101

01011

For example, taking the first item and the first examinee, we have, from W, that item 1 requires skill 2,
but, from H, we see that examinee 1 only masters skill 1, therefore item 1 is failed by examinee 1. In fact,
examinee 1’s only success is over item 3 since all other items require either skills 2 or 3.

It is important to emphasize that there are many solutions to V.= WH. For example, the same results
as those above can be obtained with different Q-matrix and skills matrix:

examinees skills examinees
00101 010
n o [, 2 w (02022
gl101011)=2(L00]| =
g g1 2, Z 00202
2111101 =10z =(000
01011 100

Conditions for effectively deriving a Q-Matrix from data with Non-negative Matrix Factoriz. 43

Notice that the weights are changed as well as the ordering of rows and columns compared to the first
solution. Nevertheless, it remains a valid factorization of V that could be derived by some NMF' algorithm.

Indeed, there are many NMF algorithms that were developed since its introduction by Lee and Seung
[1999] and they can yield different solutions. We refer the reader to Berry et al. [2007] for a more thorough
and recent review of this technique which has gained strong adoption in many different fields.

Whereas the other matrix factorization techniques often impose constraints of orthogonality among factors,
NMF imposes the constraint that the two matrices, W and H, be non-negative. This constraint makes the
interpretation much more intuitive in the context of using this technique for building a Q-matrix. It implies
that the skills (latent factors) are additive “causes” that contribute to the success of items, and that they
can only increase the probability of success and not decrease it, which makes good sense for skill factors.
Note that negative values in W can be interpreted as misconceptions and would lower the expected score
to items, but allowing negative values in the factorization also opens up the space of possible solutions and
raises the issue of convergence and of the multiplicity of solutions, making the interpretation of W much
more speculative.

The non-negative constraint and the additive property of the skills bring a specific interpretation of the
Q-matrix. For example, if an item requires skills a and b with the same weight each, then each skill will
contribute equally to the success of the item. This corresponds to the notion of a compensatory or additive
model of skills.

In our study, we focus on high level skills, which we term topic skills. However, if an item requires two
specific lower level skills, such as mastery of the rules a/b+ ¢/b = (a + b)/c and a/b-b = a, a conjunctive
model would be necessary, indicating that a failure is expected if any skill is not mastered. The standard
interpretation of the Q-matrix corresponds to the conjunctive model, and the W matrix of NMF does not
correspond to this interpretation, unless and as mentioned, we assume that each item belongs to a single
skill and for which case the two interpretations are indiscernible.

A last remark on NMF': as mentioned above, the factorization can produce multiple solutions, even with a
sigle algorithm, which raises the issue of stability of the results. However, Schachtner et al. [2010] discuss this
issue and suggest that for binary data the problem may not appear at all. Nevertheless, we will assess the
extent to which the multiple solution issue impacts the validity and usefullness of the approach by running
multiple folds simulations.

3. Q-MATRIX EXTRACTION FROM SIMULATED DATA

Let us start with an assessment of the validity of the NMF technique to extract the Q-matrix from simulated
data and ascertain under which assumptions its effectiveness can be shown.

For the sake maintaining the similarity with real data analyzed later in this paper, let us use a 4 skill
Q-matrix. Under the assumption that the topic (skill) is the only factor that affects performance and that
each item depends on a single topic, the simulated data for 40 items and 100 examinees can be generated
from a matrix 40 x 100, P, where each column contains 40 probabilities, one probability per item, structured
as a sequence of 10 x 4 probabilities:

(p1,1,p1,2, -y P1,10,P2,15 --+, P2,10, P3,15 -+, P3,10, P4,1, -~-,P4,1o)

where pq1 to p1,10 are all equal, pa 1 to p2 10 are all equal, and so on. Each column contains therefore only 4
distinct and independent probabilities, one for each skill. These probabilities are generated from a random
variable, z, taken from a normal standard distribution and transformed into a probability by computing the
cumulative distribution function (the area [—oo, z]).

Given the probability matrix P, a data matrix having the same dimensions as P is generated, D, by
sampling a success or failure, {0,1} using P; ; as the probability of success and 1 — P; ; for failure. The
matrix D corresponds to V in equation (1). A sample of this data is provided in figure 1(a). By grouping

44 Michel Desmarais

i
- -
-tk
Skill
3

Item

40 60 80 100 10 20 30 40
Examinee Item

(a) Simulated item outcome data of 40 questions and
100 examinees.

Image output of Q-matrix from NMF for 4 skills
and 40 question items.

(b)

Fig. 1. Simulated data (a) and the corresponding Q-matrix (b) under the assumption that topic is the only factor that affects
success. Skill mastery follows a standard normal distribution. A perfect match from items to skills is obtained with this Q-matrix.

items in 4 contiguous groups of 10, the effect of the different levels of skill is apparent: a high probability
of mastery will appear as a vertical pattern (single examinee) consisting mostly of pale square dots between
vertical stretches of 10 contiguous items, whereas a low probability appears as a pattern composed of mostly
dark red dots. No horizontal pattern is apparent since we do not define an item difficulty factor in this
data. Similarly, no vertical pattern is apparent across the groups of 10 contiguous items because no general
ability factor is attributed to examinee (however, vertical patters are apparent within the 10 contiguous item
arrangement).

When NMF is applied to D the resulting W matrix can be considered as the Q-matrix. For simulated
data generated according to the procedure described above, the NMF algorithm is perfectly accurate in
assigning the contiguous items in the same group, as can be seen in figure 1(b) where we find 4 bright
squares representing the clusters. The figure’s image represent the values of the 40 x 4 W matrix in NMF
(transposed in this image) that directly represents what can be considered as a Q-matrix. Values are mapped
to color gradients ranging from pale yellow to dark red.

Items 1 to 10 can readily be assigned to skill 3, items 10 to 20 to skill 4, and so on. The pattern is
very obvious to the eye. A simple algorithm, that takes the maximum value for each item in the Q-matrix
of figure 1(b) as the main skill, can systematically and correctly classify all question items in the correct
skill cluster. These results are, for all practical purposes, deterministic, even though some variance could
theoretically occur (we report variance when it becomes substantial later).

The visual results of the Q-matrix leaves little doubt that, under the assumption that topic skill is the only
factor that affects performance, the NMF technique is highly effective. We now turn to real data and replicate
some experiments by Winters et al. [2005] to verify how the results come out under realistic conditions.

Conditions for effectively deriving a Q-Matrix from data with Non-negative Matrix Factoriz. 45

4. Q-MATRIX EXTRACTION FROM REAL DATA

Winters et al. [2005] experimented with NMF over SAT Subject Test data (see CollegeBoard [2011])!. The
data is broken down in 4 topics: (1) Mathematics, (2) Biology, (3) World History, and (4) French. These
topics are sufficiently far apart that we can expect that they have strong intra-topic correlation and are
therefore discernible for clustering. The data is composed of a total of 297 respondents who completed the
40 question items tests over the Internet. The profile of the respondents is unknown but they are probably
from the university student community.

This data has the same structure as the simulated data of section 3: 40 question items broken down into
4 topics of 10 items each. The results of the NMF algorithm over this data is reported in figure 2. Variation
in the difficulty of each topic is apparent in figure 2(a), where items 1 to 10 show a higher success rate than
items 10 to 20. Individual item difficulty is also apparent by the horizontal patterns, as can be expected.
Although we can discern some vertical patterns across item groups, it is far less apparent (except intra-topic
vertical patterns), suggesting that examinee ability does not span very much across topics.

Figure 2(b) shows the Q-matrix obtained from the SAT data. It is consistent with the results from Winters
et al. [2005]. Clustering of the Mathematics (items 1 to 10) and the French items (31 to 40) is relatively well
defined, but not so with the Biology (21 to 30) and World History (31 to 40).

As mentioned, clustering is based on the simple algorithm which assigns each item to one of the 4 clusters
based on the maximum column value in matrix W. Given that we know the actual category of each item,
the accuracy of the clustering can be computed. This is obtained by a two step process. First, a contingency
table is compiled from the clustering algorithm. Next, the lines are reordered so that the sum of the diagonal
is maximized. The ratio of this sum over the total represents the accuracy of the assignment. An example of
the contingency table obtained is given below for the SAT data along with its reordering:

Cluster Cluster
Category | 1 2 3 4 Category | 1 2 3 4
115 5 0 0 Reordering 4110 0 0 O
21 0 0 10 O == 115 5 0 0
3|1 0 1 8 21 0 0 10 O
4110 0 0 O 3/ 1 0 1 8

Note that the category and the cluster labels are irrelevant for measuring accuracy, but it it interesting to
note that in this example the values of 10 are the Mathematics and French categories/clusters. As mentioned,
the sum of the diagonal over the sum of all values represents the accuracy of this assignment: 33/40 = 0.825.

Let us now turn to another data set from Winters et al. [2005] for which the task of deriving a Q-matrix
from data was shown very challenging. They used used questions published from the Trivial Pursuit game
and assembled a test that mimics the 4 topic structure of the SAT with 10 questions on each of: (1) Arts
and entertainment, (2) Sports and leisure, (3) Science and nature, and (4) Geography. The results of our
replication of this experiment are reported in figure 3.

Winters et al. [2005] results over the Trivia data concurs with our experiment and show that the NMF is
no better than chance at correctly clustering items and building a Q-matrix. The most troubling findings
from their experiments is that the Trivia results are similar to the results they obtain over a number of test
outcome from different computer science courses: “Nearly every course behaves the same as the trivia data.
Only our smallest data set, the Algorithms course data, showed any significant hint of topic structure.” This

IThe data sets from [Winters et al. 2005] were made available from http://alumni.cs.ucr.edu/~titus/. The simulation scripts
of this paper are available from http://www.professeurs.polymtl.ca/michel.desmarais/Papers/EDM2011/scripts.html.
They are based on the NMF package from the statistical software R.

46 Michel Desmarais

o
<]
] <
° " -
(]
L} L] ™
8 % : Z
N
o
— 1
g -
- It idp. - '_i_-.ll -
\ \ \ \
20 40 60 80 100
Examinee Item
() Item outcome from SAT scores of 4 topics and a (b) Image output of Q-matrix from NMF for 4 skills

sample of 100 examinees. and 40 question items.

Fig. 2. NMF results over SAT data.

o
<
<
o
™
[32]
8 % 2
N
o
-
-
20 40 60 80 100 10 20 30 40
Examinee Item
() Item outcome from Trivia scores of 4 topics and a (b) Image output of Q-matrix from NMF for 4 skills

sample of 100 examinees. and 40 question items.

Fig. 3. NMF results over Trivia data.

conclusion casts a gloomy picture for high level transfer models, where we aim to assess the mastery of topic
specific skills from similar topic skills.

However, statistical characteristics of the test data may also influence what can be extracted from this
data. For example, skewness of the scores towards 0% or 100% will result in sparsity of success/failure that
can can negatively affect the ability to extract a valid Q-matrix from the data. The Trivia data shows such
skewness towards low success rate and we can question whether this is not the source of the low accuracy.

In the next section, we investigate the influence of the success rates and item and examinee variance over
the Q-matrix validity.

Conditions for effectively deriving a Q-Matrix from data with Non-negative Matrix Factoriz. 47

5. INVESTIGATING THE PARAMETER SPACE OF SIMULATED STUDENT DATA

We turn back to simulated data to assess how the validity of the Q-matrix degrades under relaxed assumptions
and under different ratios variance ratios between the skill, item difficulty, and examinee ability factors. This
will allow us to better quantify the effect of the skill factor on examinee performance with respect to item
difficulty and examinee ability.

First, we verify if NMF can extract the Q-matrix if we drop the unrealistic assumption set in section 3
and assume that item difficulty and person ability each contribute to the probability of success of an item
by the same amount that topic skill can influence the probability of success.

Recall that the matrix P, as defined in section 3, contains independent normally distributed probabilities,
each probability representing the chances of success to items of a single topic and for a single examinee. To
account for the fact that item difficulty also affects item success, the probability of each item is modulated
by a random quantity that is normally distributed with the same mean and variance (0,1) as the topic skill
probability. Akin to item difficulty, examinee ability is accounted for by a similar quantity added on an
examinee basis. Therefore, the probability of success by an examinee, m, to an individual item, n, belonging
to topic, ¢, is defined as:

P(anq) = (p(ﬂm + Bn + 6{1) (2)

where ®(z) is the cumulative distribution function of the standard normal distribution, and where B, fn
and 3, are random Gaussian variables where the mean and standard deviation of 3,, and 3, are:

Bin ~ N(X, 5m)
ﬁn ~ N(Ya sn)

The variable X is constrained to be the mean of the whole data (matrix D). Variables s,, and s, are
respectively the individual examinee and item specific standard deviations. In the case of 3, the mean can
vary across each skill and is therefore defined as:

By ~ N(Yquq)

The parameter Yq is the specific mean of a skill and the different values must be congruent with X (the
weighted sum of the mean for each skill times the number of items belonging to that skill must be equal
to X). s, is the inter-skill standard deviation, measured by averaging the standard deviations of cluster
means on an examinee basis.

Equation (2) can be considered as a simple model of examinee performance as a function of topic skill
mastery, item difficulty, and examinee general ability (which spans across topics). In spite of its simplicity
compared to other means of generating simulated data (for eg., see [Desmarais and Pelczer 2010)), it remains
realistic for our context where we assume that topic skills are relatively independent, or at least this is an
assumption we want to investigate and therefore it makes sense that our model follows that same assumption.

Figure 4(b) displays the Q-matrix (W) obtained from applying NMF over the data generated according
to equation (2) with values of 0 for the mean and of 1 for the standard deviation for all 8 parameters. The
raw data is displayed in figure 4(a).

Although we can visually appreciate that the clustering in the Q-matrix is not quite as sharp as in figure 1,
these results still yield a perfect match of item to skills using the simple algorithm outlined in section 4.

Figure 4 shows that, when the mean and variance of the different 8 parameters in equation (2) are all
equal (standard normal), the Q-matrix from NMF perfectly matches the underlying Q-matrix. Of course,
as the effect of the topic skill parameter, 3,, becomes weaker compared to the other two parameters, the

48 Michel Desmarais

o _iF -
™ ..:l O [
" L] g 3]
c . L =
o | —~ X
2 & 74 1 7
L . ; 1 L . - ol ~
o | 1 1
-

20 40 60 80 100 10 20 30 40
Examinee Item
(a) Item outcome. (b) Image output of Q-matrix from NMF.

Fig. 4. NMEF results over random data from randomly distributed data according to equation (2), reflecting equal effect of
topic, item difficulty, and examinee ability over the probability of success.

accuracy of the item-skill match will become lower. This can be observed in table I where the link between
accuracy and parameter ratios is quantified.

Table I reports the accuracy results of 14 N-folds simulation experiments conducted with different param-
eters. For simplicity, we consider a single mean of 0 for 3,. We also restrict the standard deviations to 1
for B, and f3,, given that they have the same effect according to equation (2) and and that we are interested
in the values of the parameters respective to one another, therefore we can keep them fixed and vary s, only.
Note also that positive and negative values for the means (3,, and (,, have symmetric effect such that only
positive values are reported.

The first experiment reports an accuracy of 0.36 when no topic skill is defined?. As the variance increases
(“S.d.”: standard deviation column in the table), the accuracy over a 20-fold simulation gradually reaches 1
as its variance approaches that of the other two parameters. This trend is expected, but it quantifies, in
terms of relative variance, the relation between the effect of the topic skill and the item and examinee effect.
When the variance of the topic factor is comparable to that of item and examinee factors, the method yields
very high accuracy.

Experiments 6 to 9 show the results of variations over the means of 3, and (,. Experiment 7 shows
that when both means of 3, and S, are increased to 1 (in z score of the standard normal distribution),
the accuracy starts to drop slightly to 0.98. Only for means of 1.5 and 2.0 does the performance decrease
noticeably to 0.90 and 0.81 respectively.

In experiment 10, the simulation parameters replicate those of the Trivia data set, whereas experiment 12
is done with parameters from the SAT data set. Experiments 11 and 13 report the accuracies of NMF over
the real data, corresponding respectively to figures 3 and 2.

For the Trivia data, the accuracy is comparable to the random, no topic skill condition. This results concurs
with the conclusion of Winters et al. [2005], namely that topic subject is not a determining factor that affects

2If we had a very large number of items, this number, 0.36, would be close to 0.25, the theoretical accuracy of a random
match in a 4 X 4 contingency table. However, the 40 items distribution in this table create an opportunity of over fit for the
algorithm that decides which cluster is assigned to which skill. The difference of 0.11 (0.36 — 0.25) can be attributed to this
over-fitting.

Conditions for effectively deriving a Q-Matrix from data with Non-negative Matrix Factoriz. 49

Table I.
Experiments over the parameter space of skills, items, and examinee
(respectively Bq, Bn, and Bm in equation (2)).

Parameter space

Topic skill (84) Item (Br) Examinee (8y,) Accuracy
Mean S.d. Mean S.d. Mean S.d. N folds Mean acc. S.d. acc.
1* 0 0 0 1 0 1 20 0.36 0.05
2 0 0.10 0 1 0 1 20 0.48 0.07
3 0 0.25 0 1 0 1 20 0.60 0.11
4 0 0.50 0 1 0 1 20 0.93 0.08
5 0 1 0 1 0 1 20 1 0
6 0 1 0.50 1 0.50 1 20 1.00 0.01
7 0 1 1 1 1 1 20 0.98 0.07
8 0 1 1.50 1 1.50 1 20 0.90 0.12
9 0 1 2 1 2 1 20 0.81 0.16
Trivia data parameters
10 0 0.12 -1.05 0.73 -1.05 0.45 20 0.75 0.12
11** n.a. 0.12 -1.05 0.73 -1.05 0.45 20 0.35 0.08
SAT data parameters
12 0 0.24 -0.33 0.86 -0.33 0.50 20 0.98 0.05
13** n.a. 0.24 -0.38 0.86 -0.38 0.50 20 0.72 0.02
14%*%* n.q. 0.24 -0.33 0.86 -0.33 0.50 20 0.96 0.05

* No topic skill effect conditions
** Real data
*** Real data and scoring for the Mathematics and French topics only

test performance. Considering that they obtained similar results for topics from academic computer science
courses, these results are disconcerting.

However, we conjectured earlier that the low success rate of the Trivia data could explain the low accuracy
results obtained. This is only partly the case. When the simulations parameters are set to the same values
as the Trivia data, the accuracy obtained is 0.75 (experiment 10%) whereas the real data results are 0.35 (ex-
periment 11). Therefore, results of experiment 10 suggest that the gap between 0.75 and 0.35 is attributable
to the lack of skill effect in this data.

Comparing the results to the accuracy reported on experiments 11 and 13 for real data, we observe that
for SAT data, the accuracy is lower than experiment 12 and somewhere between experiments 3 and 4, which
corresponds to a standard deviation of topic skill between 0.25 and 0.5 when §,, and f,, have a (0,1) standard
distribution. In other words, the skill effect is a little less than half the item and examinee effects.

If we look only at the clustering for Mathematics and French (experiment 14) which are the most separable
topics, then the accuracy goes up to 0.96, which is much closer to experiment 12. In terms of relative effect,
the skill effect between Mathematics and French is close to the 0.93 accuracy obtained in 4, for which the
standard deviation of skill effect is 0.50 of the item and examinee parameters.

In summary, the Trivia data shows negligible effect of topic skill, whereas the SAT data shows an effect
that is essentially attributable to the Mathematics and French topics that can be clearly distinguished in the
Q-matrix derived with NMF. The topic skill effect can be quantified as somewhere between 1/4 to 1/2 of the

3Experiment 10 has a relative skill-item s.e. of 0.12/0.73 = 0.16, standing between experiments 2 and 3, and a relative skill-
examinee s.d. of 0.12/0.45 = 0.27, standing close to experiment 3. If the performance followed some additive function of each
of these ratios, we would expect the performance to be no better than that of experiment 3, 0.60. Given that it stands higher
at 0.75, we have to conclude that the effect of s.d. ratios over the performance is more complex, possibly a ratio of s.d. such as
topic/(item X examinee).

50 Michel Desmarais

item and examinee effect as measured by the standard deviation, and over 1/2 if we only take Mathematics
and French effects alone.

6. DISCUSSION

In undertaking this exploratory work, we were hoping to show that the failure to find an effective Q-matrix
from some data sets, such as the Trivia data set, was due to highly skewed tests scores: either the scores are
too high or too low, and the raw data becomes too sparse of successes or failures to allow the NMF algorithm
to derive a reliable Q-matrix. Results from our experiments suggest that, in fact, this is only partly the case.
It still leaves open the suggestion that the topic skill factor has sometimes a negligible effect on performance,
or at least a much lower effect than we are generally are inclined to believe. From Winters et al.’s [2005]
previous results, we can expect this to be the case for many courses that divide their content according to
sub-topics.

Our results further indicate that for well delineated topic skills like Mathematics and French, the effect is
relatively strong, in a range around half that item difficulty and examinee ability according to the results
in table I, at least for highly separable topics like Mathematics and French. In this case, the accuracy of
matching items to skills with NMF is well in the range of 90%, which confirms the effectiveness of this
technique under these conditions.

This study was conducted under the assumption that we know the number of skills for the clustering
and for building the Q-matrix. This is not the case in general. However, the visualization technique used
throughout this paper shows that for well delineated topic skills, clustering with NMF is easily perceived
through the human eye.

REFERENCES

BARNES, T. 2006. Evaluation of the g-matrix method in understanding student logic proofs. In Proceedings of the Nineteenth
International Florida Artificial Intelligence Research Society Conference, Melbourne Beach, Florida, USA, May 11-13, 2006,
G. Sutcliffe and R. Goebel, Eds. AAAI Press, 491-496.

BERRY, M. W., BROWNE, M., LANGVILLE, A. N., Pauca, V. P., AND PLEMMONS, R. J. 2007. Algorithms and applications for
approximate nonnegative matrix factorization. Computational Statistics € Data Analysis 52, 1, 155 — 173.

CEN, H., KOEDINGER, K. R., AND JUNKER, B. 2005. Automating cognitive model improvement by A* search and logistic
regression. In FEducational Data Mining: Papers from the 2005 AAAI Workshop., J. Beck, Ed. Technical Report WS-05-02.
Menlo Park, California: AAAI Press, 47-53.

CEN, H., KOEDINGER, K. R., AND JUNKER, B. 2006. Learning factors analysis — A general method for cognitive model evaluation
and improvement. In Intelligent Tutoring Systems, 8th International Conference, ITS 2006, Jhongli, Taiwan, June 26-30,
2006, Proceedings. 164-175.

COLLEGEBOARD. 2011. Sat subject tests practice questions. http://sat.collegeboard.com/practice/
sat-subject-test-preparation (consulted on April 2, 2011).

DesMARAIS, M. C. AND PELCZER, I. 2010. On the faithfulness of simulated student performance data. In 3rd Inter-
national Conference on Educational Data Mining EDM2010, R. S. J. de Baker, A. Merceron, and P. I. Pavlik, Eds.
www.educationaldatamining.org, 21-30.

LEE, D. D. AND SEUNG, H. S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 6755,
788-791.

SCHACHTNER, R., POPPEL, G., AND LANG, E. 2010. A nonnegative blind source separation model for binary test data. Circuits
and Systems I: Regular Papers, IEEE Transactions on 57, 7, 1439 —1448.

TaTsvoka, K. K. 1983. Rule space: An approach for dealing with misconceptions based on item response theory. Journal of
FEducational Measurement 20, 345-354.

WINTERS, T., SHELTON, C., PAYNE, T., AND MEI, G. 2005. Topic extraction from item level grades. In American Association
for Artificial Intelligence 2005 Workshop on Educational Datamining.

Student Translations of Natural Language into Logic:
The Grade Grinder Corpus Release 1.0

Dave Barker-Plummer, Richard Cox and Robert Dale

Students find logic hard. In particular, they seem to find it hard to translate natural language sentences into their corresponding
representations in logic. As an enabling step towards determining why this is the case, this paper presents the public release of a
corpus of over 4.5 million translations of natural language (NL) sentences into first-order logic (FOL), provided by 55,000 students
from almost 50 countries over a period of 10 years. The translations, provided by the students as FOL renderings of a collection
of 275 NL sentences, were automatically graded by an online assessment tool, the Grade Grinder. More than 604,000 are in
error, exemplifying a wide range of misunderstandings and confusions that students struggle with. The corpus thus provides a
rich source of data for discovering how students learn logical concepts and for correlating error patterns with linguistic features.
We describe the structure and content of the corpus in some detail, and discuss a range of potentially fruitful lines of enquiry.
Our hope is that educational data mining of the corpus will lead to improved logic curricula and teaching practice.

1. INTRODUCTION

From a student’s perspective, logic is generally considered a difficult subject. And yet it is an extremely
valuable and important subject: the ability to reason logically underpins the Science, Technology, Engineering
and Mathematics (STEM) fields which are seen as central in advanced societies. We believe it is in society’s
interests to make logic accessible to more students; but to do this, we need to have an understanding of
precisely what it is about logic that is hard, and we need to develop techniques that make it easier for
students to grasp the subject.

One key component skill in the understanding of logic is a facility for manipulating formal symbol systems.
But such a skill is abstract and of little value if one does not also have the ability to translate everyday
descriptions into formal representations, so that the formal skills can be put to use in real-world situations.
Unfortunately, translating from natural language into logic is an area where students often face problems.

It seems obvious that the difficulties students face in this translation task will, at least in part, be due
to characteristics of the natural language statements themselves. For example, we would expect it to be
relatively easy to translate a natural language sentence when the mapping from natural language into logical
connectives is transparent, as in the case of the mapping from and to ‘A’, but harder when the natural
language surface form is markedly different from the corresponding logical form, as in the translation of
sentences of the form A provided that B. However, evidence for this hypothesis is essentially anecdotal, and
we have no quantitative evidence of which linguistic phenomena are more problematic than others.

It is against this background that we present in this paper the release of a publicly-available anonymised
corpus of more than 4.5 million translations of natural language (NL) sentences into first-order logic (FOL)
sentences, of which more than 604,000 (approximately 13%) are categorized by an automatic assessment tool
as being in error. For each item in the corpus, we know what NL sentence was being translated, and we have
both the FOL translation the student provided, and a ‘gold-standard’ answer representing the class of correct

Author’s addresses:

Dave Barker-Plummer, CSLI, Cordura Hall, Stanford University Stanford, CA, 94305, USA; email: dbp@stanford.edu;
Richard Cox, Department of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK; email: rcox@inf.ed.ac.uk;
Robert Dale, Center for Language Technology, Department of Computing, Macquarie University, Sydney, NSW, 2109, Aus-
tralia; email: Robert.Dale@mq.edu.au.

eknutov
Rectangle

eknutov
Rectangle

52

Dave Barker-Plummer, Richard Cox and Robert Dale

answers.! Students are identified by unique anonymised IDs, so the corpus allows us to determine how many
previous attempts the student has made at the same exercise and the time intervals between attempts, and
also to correlate any given student’s performance across exercises. The data thus makes possible a broad
range of analyses of student behaviors and performance. We are making the corpus available to the wider
community in the hope that this will encourage research that leads to improvements in the teaching of logic.?

Section 2 explains the wider context in which this data has been collected, which has allowed us to gather
a very large corpus of data regarding student performance at various tasks in logic learning. Section 3
then describes the focus of this paper—what we call the Translations Subcorpus—in more detail. Section 4
describes the format of the data as it appears in the corpus. Section 5 provides summary statistics over the
errors in the corpus, and makes some observations about the nature of these errors. Section 6 concludes with
some illustrative analyses and suggestions for ways in which this corpus can be exploited.

2. BACKGROUND

The data described here consists of student-generated solutions to exercises in Language, Proof and Logic
(LPL; [Barwise et al. 1999]), a courseware package consisting of a textbook together with desktop applications
which students use to complete exercises.? The LPL textbook is divided into three parts covering, respectively,
Propositional Logic, First-Order Logic and Advanced Topics. The first two parts cover material typical of
introductory courses in logic. Students completing these two parts of the textbook will have been exposed
to notions of syntax and semantics of first-order logic and a natural deduction—style system for constructing
formal proofs. Each of these areas of the course are supported by a number of software applications which
provide environments where students can explore the concepts being taught.

The LPL textbook contains 748 exercises, which fall into two categories: 269 exercises which require that
students submit their answers on paper to their instructors, and 489 for which students may submit answers
to the Grade Grinder, a robust online automated assessment system that has assessed approximately 2.75
million submitted exercises by more than 55,000 individual students in the period 2001-2010. This student
population is drawn from approximately a hundred institutions in almost fifty countries. Figure 1 provides
statistics on how this data breaks down across the 10 years that the corpus represents.*

Student users of the system interact with the Grade Grinder by constructing computer files that contain
their answers to particular exercises that appear in the LPL textbook. These exercises are highly varied, and
make use of the software applications packaged with the book. Some focus on the building of truth tables
using an application called Boole; some involve building blocks world scenarios using a multimodal tool
called Tarksi’s World, in which the student can write FOL sentences and simultaneously build a graphical
depiction which can be checked against the sentences; and some require the construction of formal proofs
using an application called Fitch. The Grade Grinder provides us with significant collections of data in all
these areas. The exercises of interest here are what we call translation exercises; they form the basis of
the corpus whose release this paper describes, and we discuss them in detail in Section 3 below.

The Grade Grinder corpus is similar to some of the corpora in the PSLC Datashop repository [Koedinger
et al. 2010]. It shares with these the characteristics of being extensive (millions of data points) and longitu-

ISince the same information can be expressed by many different FOL sentences, any answer that is provably equivalent to this
gold-standard answer is considered correct.

2A website is under development; in the interim, the corpus may be obtained by contacting the authors. A longer version of
this paper which describes the corpus in more detail is available as a technical report[Barker-Plummer et al. 2011].

3See http://1pl.stanford.edu.

4The ‘Domains’ column shows the number of different internet country domains found in the email addresses of the student
population for the year in question; definitively correlating these with countries is difficult since a student may use an email
address in a domain other than that of their home country, the international use of .com mail hosts being the most obvious
instance.

Student Translations of Natural Language into Logic 53

Year | Submissions Students Instructors Domains
2001 190,653 4,097 142 23
2002 237,942 5,219 152 26
2003 238,104 5,106 168 33
2004 251,898 5,473 196 28
2005 255,974 5,295 182 27
2006 266,208 5,295 207 31
2007 304,719 6,444 224 33
2008 322,273 7,174 243 31
2009 331,746 6,489 212 33
2010 352,262 7,404 217 23

Fig. 1. Grade Grinder Usage Statistics: 2001-2010

dinal (repeat submissions by students over a semester or longer). However, it is not as fine-grained as many
DataShop datasets.’ For example, the DataShop Geometry tutor dataset contains data on students’ actions
and system responses at the level of knowledge components (skills or concepts). In contrast, a Grade Grinder
submission represents the end-point of a student’s work on an exercise. The corpus described here also differs
from many DataShop corpora in that is not derived from an intelligent tutoring system or cognitive tutor,
but from a blended learning package consisting of courseware, several desktop computer applications, and
an online grading system.

3. NATURAL LANGUAGE TO LOGIC TRANSLATIONS

As noted above, the exercises in LPL cover a range of different types of logic exercises, and so the Grade
Grinder’s collection of assessments is very large and varied. Over time, we aim to make the various components
of this corpus available; as a first step, we are making available what we believe may be the most useful
component of the corpus, this being the part that is concerned with students’ translations of natural language
sentences into logic.

Translation exercises ask the student to translate a number of what we will call translatable sentences,
writing their answers in a single file, which is then submitted to the Grade Grinder. We will refer to each
submission of a translated sentence as a translation act. Figure 2 shows an example exercise that calls for
the student to translate twenty English sentences into the language of FOL. The student’s response to such
an exercise is considered correct if it contains a translation act for every translatable sentence in the exercise,
and every translation act corresponds to a correct translation. The LPL textbook contains 33 translation
exercises, involving a total of 275 distinct translatable NL sentences.

The Grade Grinder examines each submitted file, making a note of errors that are found within the
student’s answers. The files are saved to the corpus, the errors are noted, and an email message is sent to
the submitter summarizing these errors. Currently, the Grade Grinder offers only flag feedback [Corbett and
Anderson 1989], indicating only whether a submitted solution is correct. The software makes no attempt to
diagnose the error that has been made, apart from reporting the difference between a well-formed expression
of logic that is incorrect, and an ill-formed expression which is meaningless. Figures 3 and 4 respectively
give examples of the feedback for the submission of correct and incorrect solutions to the exercise shown in
Figure 2. The feedback report in Figure 4 indicates that the student has submitted an incorrect answer to
the second sentence, and an ill-formed expression in answer to the sixth sentence. The solution for sentence
eighteen is also reported as ill-formed, since there is no text in this slot of the solution.

Each student may submit solutions to the same exercise as many times as desired. Once a student is
satisfied with their work, they may submit the work again, this time requesting that a copy of the system’s

5However, note the File Timestamps information discussed in Section 4.

54

Dave Barker-Plummer, Richard Cox and Robert Dale

+ Exercise 7.12 (Translation) Translate the following English sentences into FOL. Your translations will use all of the propo-
sitional connectives.

1) If a is a tetrahedron then it is in front of d.

2) a is to the left of or right of d only if it’s a cube.
3; c is between either a and e or a and d.
4; c is to the right of a, provided it (i.e., c) is small.
5) c is to the right of d only if b is to the right of ¢ and left of e.
6; If e is a tetrahedron, then it’s to the right of b if and only if it is also in front of b.
7) If b is a dodecahedron, then if it isn’t in front of d then it isn’t in back of d either.
8) c is in back of a but in front of e.
9) e is in front of d unless it (i.e., e) is a large tetrahedron.
10; At least one of a, c, and e is a cube.
11) a is a tetrahedron only if it is in front of b.
12; b is larger than both a and e.
13) a and e are both larger than c, but neither is large.
14; d is the same shape as b only if they are the same size.
15) a is large if and only if it’s a cube.
16; b is a cube unless c is a tetrahedron.
17) If e isn’t a cube, either b or d is large.
18; b ord is a cube if either a or c is a tetrahedron.
19) a is large just in case d is small.
20) a is large just in case e is.

Fig. 2. An example exercise (7.12) from LPL

Grade report for Oedipa Maas (oedipa@yoyodyne-industries.com)
Submission ID: 11.076.18.28.21.L00-0002222

Submission received at: Thu Mar 17 18:28:21 GMT 2011
Submission graded at: Thu Mar 17 18:28:33 GMT 2011
Submission graded by: gradegrinder.stanford.edu

No instructor name was given. The report was sent only to the student.

The following files were submitted:
Sentences 7.12

EXERCISE 7.12

Sentences 7.12 (Student file: "Sentences 7.12")
Your sentences are all correct. Hurrah!

Fig. 3. Example feedback from the Grade Grinder: A translation exercise without errors

email response be sent to a named instructor. The effect of this pattern of interaction with the Grade Grinder
is that the corpus contains a trace of each student’s progression from their initial submission to their final
answer.

We can categorize the translation exercises along three dimensions as follows, and as summarized in
Figure 5.

Logical Language. The LPL textbook introduces the language of first-order logic in stages, starting with
atomic formulae in Chapter 1, then the Boolean connectives (A, V and =) in Chapter 3, followed by conditional
connectives (— and <) in Chapter 7. These connectives together define the propositional fragment of first-
order logic. Finally, the universal and existential quantifiers (V,3) are introduced in Chapter 9 to complete
the language of first-order logic. Exercises have correspondingly complex languages according to the position
in which they appear.

Student Translations of Natural Language into Logic 55

Grade report for Tyrone Slothrop (tyrone@yoyodyne-industries.com)
Submission ID: 11.076.18.30.56.L00-0002222

Submission received at: Thu Mar 17 18:30:56 GMT 2011

Submission graded at: Thu Mar 17 18:31:02 GMT 2011

Submission graded by: gradegrinder.stanford.edu

No instructor name was given. The report was sent only to the student.

The following files were submitted:
Sentences 7.12

EXERCISE 7.12

Sentences 7.12 (Student file: "Sentences 7.12")

We found problems in your sentences:

*** Your second answer, "“SameCol(a d)->Cube(a)", isn’t well formed.

*** Your sixth sentence, "Tet(e)->(RightOf(e, b)->FrontO0f(e, b))", is not
equivalent to any of the expected translations.

*x% Your fifteenth sentence, "Large(a)->Cube(a)", is not equivalent to any
of the expected translatioms.

x% Your eighteenth answer, "", isn’t well formed.

*x** Your nineteenth sentence, "Large(a)->Small(d)", is not equivalent to
any of the expected translations.

**x Your twentieth sentence, "Large(a)->Large(e)", is not equivalent to
any of the expected translationms.

Fig. 4. Example feedback from the Grade Grinder: A translation exercise with errors

Domain Language. While the majority of the exercises in LPL use the language of the blocks world used
in Figure 2, eight translation exercises use one of two other languages. In particular we have a language
involving the care and feeding of various pets by their associated people. In this language, it is possible to
give a translation for sentences like Max fed Pris at 2:00. This language is used in six of the translation
exercises. The third language is used in only two exercises and is used to make claims about numbers, such
as There is a number which is both even and prime.

Supporting and Additional Tasks. Each of the exercises in the pet and number languages require only
the translation of sentences from NL into FOL. However, the use of the Tarski’s World application provides
scope for variety in the blocks language tasks. For example, some exercises call for students to complete their
translations while looking at a world in which the English sentences are true; some call for them to verify the
plausibility of their answers by examining a range of worlds in which the sentences have different truth values;
and yet others call for the students to build a world making all of the English sentences true de novo. These
alternatives represent a range of exercises in which the agency of the student varies. The act of constructing,
from scratch, a blocks world that is consistent with a list of sentences (such as Example 7.15) requires more
engagement and ‘deeper’ processing than one in which the student checks the truth of a sentence against a
pre-fabricated diagram (such as Example 7.1). The effect of this variety in agency is one of many possible
analyses that could be carried out using this corpus.

Figure 5 lists the different translation exercises and their characteristics. The ‘Language’ column indicates
the target language, which is full FOL unless otherwise noted. In the exercises involving the blocks world
language, the different kinds of agency that the students have are indicated. Looking at world indicates
that students are instructed to look at a world in which the sentences are true as they translate the sentences,
while with world check means that students are instructed to check their translations in specific worlds
after the exercise is completed. With world construction indicates that students are required to construct

56

Dave Barker-Plummer, Richard Cox and Robert Dale

Exercise Sentences Language Supporting Tasks
1.4 12 blocks (atoms)

3.20 10 blocks (Boolean) indirect + looking at world

3.21 12 blocks (Boolean) with world check in next exercise
7.11 10 blocks (Propositional) indirect 4 looking at world

7.12 20 blocks (Propositional) with world check in next exercise
7.15 12 blocks (Propositional) with world construction

9.12, 11.4, 14.4 10, 8, 7 blocks indirect + looking at world
9.16 16 blocks one existential + with world check
9.17 15 blocks one universal + with world check
9.18, 11.14, 11.40, 14.28 5,2,11,5 blocks looking at world, with world check
11.16 10 blocks skeleton translation given + with world check
11.17,11.18,11.19, 14.3 10, 5,5, 5 blocks with world check
11.20, 11.39 12,6 blocks looking at world

14.6 11 blocks incomplete information

14.8 2 blocks
14.27 2 blocks with world construction

1.9 6 pet (atoms)
3.23 6 pet (Boolean)
7.18 5 pet (Propositional)
9.19, 11.21, 11.41 10,10, 5 pet
9.13, 9.25 5,5 number

Fig. 5. Exercises involving English sentences (N=33)

(and submit) a world in which their sentences are true. Incomplete information means that not all relevant
aspects of the world that they are looking at can be seen (e.g., a block may be obscured by a larger one).
The remaining annotations reflect other information given to the student. Indirect indicates that trans-
lations are given in the form ‘Notice that all the cubes are universal. Translate this’. In the exercises marked
with one existential/universal students are told that their translations have the specified form, while
skeleton translation given indicates that students are given a partial translation that they must complete.

4. THE DATA IN THE TRANSLATIONS SUBCORPUS

The Translations Subcorpus represents all of the solutions to translation exercises submitted in the period
2001-2010. Translation exercises have in common that some number of sentences must be translated from
NL into FOL. As noted above, we refer to the submission of a single answer to the translation of a sentence
as a translation act; the corpus records a row of data for each translation act consisting of:

Unique ID. The unique identifier of this translation act (an integer).
Submission ID. The unique identifier of the submission in which this act occurs (an integer).
Subject ID. The unique identifier of the subject performing this act (an integer).

Instructor ID. The unique identifier of the instructor to whom this submission was copied (an integer).
This field can be empty if the submission was not copied to an instructor.

Task. An indication of the task to which this is a response (for example, ‘Exercise 1.4, Sentence 7’).
Status. One of the values correct, incorrect, ill-formed, not-a-sentence, undetermined, missing
(explained further below).

Answer. The text of the subject’s answer (a string).

Canonical. The canonicalized text of the subject’s answer (a string), where canonicalization simply
involves removing whitespace from the answer, so that we can recognize answers which differ only in the
use of whitespace.

Student Translations of Natural Language into Logic 57

Field A Correct Act | An Incorrect Act
ID 7982509 7982763
Submission ID 3808583 4172630
Subject ID 68114 68114
Instructor ID NULL NULL
Task 7.12.1 7.12.15
Status correct incorrect
answer Tet(a) — FrontOf(a,d) Cube(a) — Large(a)
canonical Tet(a) — FrontOf(a,d) Cube(a) — Large(a)
Timestamp 2009-05-02 14:01:24 2009-05-02 14:49:32
File Timestamps (C1241297735665D1241298049184 | suppressed—see text

Fig. 6. Example data for two translation acts from the corpus

Correct Incorrect Missing Ill-formed Non-sentence Undetermined Total

First 3,260,979 604,965 481,851 233,605 19,378 45,085 4,645,863
Submission 70% 13% 10% 5% 0.4% 0.9%

All 17,254,818 1,805,268 481,851 843,183 58,532 245,055 20,688,707
Submissions 83.40% 8.73% 2.33% 4.08% 0.28% 1.18%

Fig. 7. Total submitted translation acts, classified by status

Timestamp. The time at which the submission was made.

File Timestamps. An indication of timing data concerning the file in which this act appears (explained
further below).

Corpus data for two translation acts are shown in Figure 6. Each is an answer to one task within Exer-
cise 7.12 (see Figure 2); the first data column shows a correct answer for Sentence 7.12.1, and the second
represents an incorrect answer for Sentence 7.12.15.

The different Status values indicate different conditions that can occur when the student’s submitted
sentence is judged against the gold-standard answer. In addition to correct and incorrect, a solution
may be ill-formed, indicating that the solution is not syntactically correct; not-a-sentence, indicating a
well-formed FOL expression which does not express a claim (the closest analog in NL is a sentence with an
unresolved anaphor); or undetermined, indicating that the Grade Grinder could not determine whether
the submitted answer was correct. Finally, a solution can be missing. Because translations are packaged
together into submissions of solutions for an exercise which contains multiple translation tasks, we code
a solution as missing if the subject submitted translations for some, but not all of, the sentences in the
exercise. A status of missing therefore represents a missed opportunity to submit a solution to accompany
others that were submitted.

File Timestamps are an integral part of the Grade Grinder system, and record the times of save and
read operations on the submissions file being constructed on the user’s desktop. Each time a student opens
or saves a file, a timestamp for this operation is added to a collection which is stored in the file. The
collection of timestamps serves as a ‘fingerprint’ for the file, which allows the Grade Grinder to detect the
sharing of files between students. Since these timestamps are accurate to the millisecond, it is extremely
unlikely that files constructed independently will share any timestamps, and so two students submitting
files whose timestamps are the same have likely shared the file. This fingerprinting mechanism is similar to
the more familiar checksum algorithms which are often used to fingerprint files; the difference here is that
the timestamp fingerprints are not dependent on the content of the file. This is important since some LPL
exercise have a unique solution: consequently, arrival at the same content should not be considered evidence
of sharing of a file.

58

Dave Barker-Plummer, Richard Cox and Robert Dale

Note that this timestamp data can be used to measure the amount of time that subjects spent considering
their answers at a more fine-grained level than is indicated by the time between submissions. In the case of
the first answer in Figure 6, the timestamp indicates that this file was opened (the segment beginning with
C) and then saved (the segment beginning with D) about five minutes later (313,519ms being the precise
difference between the two numbers). The timestamp data for the second answer contains fifteen segments,
and so has been suppressed here because it is too large to display.

5. SOME SUMMARY DATA

The corpus contains a total of 4,645,563 initial submissions of translation acts by students, with 604,965
(13%) considered to be in error by the Grade Grinder. The breakdown of these initial submissions as provided
by the Grade Grinder is shown in the upper half of Figure 7.

In fact, however, these numbers form a lower bound on the number of translation acts in the corpus. As
noted earlier, a typical interaction with the Grade Grinder consists in a sequence of submissions, each of
which may contain many translation acts. Initially, some of the translations in the submission will be correct
and others incorrect. In each subsequent submission, some of the incorrect sentences will be corrected, while
the correct sentences will be resubmitted; finally, the student may verify that all sentences are correct, and
the student will likely then resubmit the complete set copied to their instructor. We therefore store multiple
instances of the same translation acts.

The same phenomenon impacts on incorrect translation acts. If a student has made a mistake in both
Sentence n and Sentence n + 1, a common behavior is to repeat the submission first with a correction for
Sentence n, but leaving the incorrect translation of Sentence n + 1 unmodified from the previous submission,
only returning to this once a correct answer for Sentence n has been achieved. This results in multiple
instances of the same incorrect translation act. However, it is important to observe that in some cases these
resubmitted incorrect answers may reflect deliberate acts, and so the real number of intended translation
acts in the corpus may in fact be larger than our initial counts suggest. We provide all translation acts in
the distributed corpus, with the corresponding counts shown in the lower half of Figure 7. The distributed
corpus thus contains a total of 20,688,707 translation acts; this opens the door to additional analyses that
would not be possible if only first submissions were available.

Note that we count as errors only those translations that are assessed by the Grade Grinder as definitely
incorrect. Expressions which are offered as translations but which are not well-formed expressions of FOL,
and those which are well-formed but not sentences, are counted separately. Of course, these expressions are
really different kind of errors, and may serve to shed light on student behavior in other ways.

Among the translation exercises, the sentences most commonly mistranslated on the student’s first attempt
are shown in Figure 8. In this figure, the column headed N represents the total number of translation acts
concerning this sentence, while the column headed error/IN is the proportion of these acts that are marked
as incorrect. The column headed Count applies to the distinct incorrect sentences, and indicates the number
of translation acts that result in this answer.

6. POTENTIAL ANALYSES OF THE CORPUS

We conclude by outlining a number of ways in which the Translations Subcorpus can be analysed.

Sentence Features. What features of sentences are particularly difficult for all students (in the aggregate)
to translate? We report on work of this type in [Barker-Plummer et al. 2011]. We categorized the sentences
according to whether they contained shape, size and spatial predicates, and then examined the error rates for
for eight resulting types of sentences. Sentences that mix shape and spatial predicates, and size and spatial
predicates are each harder to translate than sentences that contain all three kinds of predicates.

Student Translations of Natural Language into Logic 59
Task Answer N Error/N Count
11.39.4 Every small cube is in back of a particular large cube 3520 69.0%
11.39.4 Correct 3Ix (Large(x) A Cube(x) A Vy ((Small(y) A Cube(y)) — BackOf(y,x)))
Incorrect Vx ((Cube(x) A Small(x)) — Jy (Cube(y) A Large(y) A BackOf(x,y))) 818
Incorrect x ((Small(x) A Cube(x)) — Jy (Large(y) A Cube(y) A BackOf(x,y))) 420
Incorrect Vx ((Cube(x) A Small(x)) — 3y (Large(y) A Cube(y) A BackOf(x,y))) 281
Incorrect Vx Jy ((Cube(x) A Small(x)) — (Cube(y) A Large(y) A BackOf(x,y))) 207
Incorrect Vx ((Small(x) A Cube(x)) — Jy (Cube(y) A Large(y) A BackOf(x,y))) 164
11.20.1 Nothing to the left of a is larger than anything to the left of b 9101 54.9%
11.20.1 Correct —3x (LeftOf(x,a) A Vy (LeftOf(y,b) — Larger(x,y)))
Incorrect Vx Vy ((LeftOf(x,a) A LeftOf(y, b)) — —Larger(x,y)) 941
Incorrect Vx (LeftOf(x,a) — Vy (LeftOf(y,b) — —Larger(x,y))) 913
Incorrect — —3x (LeftOf(x,a) A Vy (LeftOf(y, b) A Larger(x,y))) 582
Incorrect Vx Vy ((LeftOf(x,a) A LeftOf(y, b)) — —Larger(x,y)) 406
Incorrect Vx (LeftOf(x,b) — —3y (LeftOf(y,a) A Larger(y, x))) 307
3.21.5 Neither e nor a is to the right of ¢ and to the left of b 34608 54.4%
3.21.5 Correct —(RightOf(e,c) A LeftOf(e, b)) A =(RightOf(a, c) A LeftOf(a, b))
Incorrect —(RightOf(e, c) A RightOf(a,c)) A =(LeftOf (e, b) A LeftOf(a, b)) 4681
Incorrect —RightOf(e,c) A —RightOf(a,c) A —LeftOf(e, b) A —LeftOf(a, b) 1777
Incorrect —(RightOf(e, c) A LeftOf(e, b)) V —(RightOf(a, c) A LeftOf(a, b)) 1678
Incorrect —(RightOf(e,c) V RightOf(a,c)) A —(LeftOf(e, b) Vv LeftOf(a, b)) 1569
Incorrect —(RightOf(e, c) A RightOf(a, c) A LeftOf(e, b) A LeftOf(a, b)) 1345
3.23.5 2:00pm is between 1:55pm and 2:05pm 14747 50.4%
3.23.5 Correct 1:55<2:00A2:00<2:05
Incorrect Between(2:00,1:55,2: 05) 14546
Incorrect Between(1 : 55,2 : 00,2 : 05) 319
Incorrect Between(2:00,2: 05,1 : 55) 178
Incorrect Between(2,1:55,2:05) 133
Incorrect 2:00 < 2:05 91
11.40.3 There is a dodecahedron unless there are at least two large objects 3887 48.7%
11.40.3 Correct —3x Jy (x # y A Large(x) A Large(y)) — 3z Dodec(z)
Incorrect Ix Jy (Large(x) A Large(y) A x # y) — —3z Dodec(z) 84
Incorrect 3x Jy ((Large(x) A Large(y) A x #y) — —3 zDodec(z)) 67
Incorrect 3 x3 y3z (Dodec(x) — —(Large(y) A Large(z) Ay # z)) 54
Incorrect 3x Jy ((Large(x) A Large(y) Ax #y) — 3z (Dodec(z) ANz #x Az #y)) 48
Incorrect Vx Vy ((Large(x) A Large(y) A x # y) — —3z Dodec(z)) 46

Fig. 8. The top five erroneous answers to the each of the five most error-prone tasks

Error Typology. Can the errors that students make in their translations be categorized according to type?
In [Barker-Plummer et al. 2008] we examined the most frequent errors in the solution of Exercise 7.12, and
discovered that the failure to distinguish between the conditional and biconditional was a significant source of
error. Another significant source of error appears to be an expectation that names will appear in contiguous
alphabetical order in a sentence (we call these ‘gappy’ sentences); so, a sentence like ‘a is between b and d’
is frequently mistranslated with c in place of d.

Response to Errors. How do subjects go about finding solutions when their initial attempt is incorrect? We
can ask whether the difficulty of repair correlates with the subject, the sentence or with the particular error
that was initially made. We have carried out preliminary work [Barker-Plummer et al. 2009] investigating
the differences between, on the one hand, translation tasks which are difficult to get right initially but which

60

Dave Barker-Plummer, Richard Cox and Robert Dale

are easy to recover from, and on the other hand, those which are perhaps less error-prone, but hard to repair.
We think both aspects of the task contribute to the ‘difficulty’ of a task.

Exercise-Level Strategies. There is potential in the corpus for examining strategies that the students adopt
when they make multiple errors. Some students appear to attempt to fix all of their incorrect sentences, and
others proceed one at a time. These strategies might correlate with success. We can detect differences between
these strategies by looking at the sequence of submissions that occurs after the initial submission. In some
cases only one sentence will be modified in each subsequent submission; in others many may be altered.

Modality Heterogeneity of Task. Exercises differ in the extent to which they are linguistically and graphi-
cally heterogeneous. Some require translation from NL sentences to FOL, whereas others require translation
followed by blocks world diagram building. In [Cox et al. 2008], we compared students’ constructed diagram-
matic representations of information expressed in NL sentences to their FOL translations, and determined
that the error patterns differed in their graphical versus their FOL translations.

Agency in the Task. As discussed in Section 3, translation tasks vary in the degree of agency they require
on the part of the student. Using the corpus it would be possible to analyze variability in student performance
with agency, to see if these adjunct tasks have an effect on translation accuracy.

Time Course. The timestamp information in the corpus makes it possible to ask how much time students
spend (re)considering their answers: does the bulk of time go to particular tasks, or is it evenly distributed?

7. CONCLUSION

With the first release of this corpus, we invite colleagues to exploit its potential for educational data mining.
Our hope is that further analyses will provide additional insights into student cognition in the difficult
domain of logic, and that findings will inform improved educational practice in logic teaching. In our own
work, we aim to (1) enrich the feedback that Grade Grinder provides to students, (2) investigate task agency
effects upon learning outcomes, and (3) identify evidence-based improvements to the logic curriculum.

REFERENCES

BARKER-PLUMMER, D., Cox, R., AND DALE, R. 2009. Dimensions of difficulty in translating natural language into first order
logic. In Second International Conference on Educational Data Mining. Cordoba Spain.

BARKER-PLUMMER, D., Cox, R., AND DALE, R. 2011. Student translations of natural language into logic: The Grade Grinder
corpus release 1.0. Technical Report OP-TR-01. Available from openproof.stanford.edu.

BARKER-PLUMMER, D., Cox, R., DALE, R., AND ETCHEMENDY, J. 2008. An empirical study of errors in translating natural
language into logic. In Proceedings of the 30th Annual Cognitive Science Society Conference, V. Sloutsky, B. Love, and
K. McRae, Eds. Lawrence Erlbaum Associates.

BARKER-PLUMMER, D., DALE, R., AND CoX, R. 2011. Impedance effects of visual and spatial content upon language-to-logic
translation accuracy. In Proceedings of the 32nd Annual Cognitive Science Society Conference, C. Hoelscher, T. F. Shipley,
and L. Carlson, Eds. Lawrence Erlbaum Associates.

BARWISE, J., ETCHEMENDY, J., ALLWEIN, G., BARKER-PLUMMER, D., AND Liu, A. 1999. Language, Proof and Logic. CSLI
Publications and University of Chicago Press.

CORBETT, A. T. AND ANDERSON, J. R. 1989. Feedback timing and student control in the lisp intelligent tutoring system. In
Proceedings of the Fourth International Conference on Artificial Intelligence and Education, D. Bierman, J. Brueker, and
J. Sandberg, Eds. IOS Press Amsterdam Netherlands.

Cox, R., DALE, R., ETCHEMENDY, J., AND BARKER-PLUMMER, D. 2008. Graphical revelations: Comparing students’ translation
errors in graphics and logic. In Proceedings of the Fifth International Conference on the Theory and Application of Diagrams,
G. Stapleton, J. Howse, and J. Lee, Eds. Lecture Notes in Computer Science LNAI 5223, Berlin: Springer Verlag.

KOEDINGER, K., BAKER, R., CUNNINGHAM, K., SKOGSHOLM, A., LEBER, B., AND STAMPER, J. 2010. A data repository for the
EDM community: The PSLC datashop. In Handbook of Educational Data Mining, C. Romero, S. Ventura, M. Pechenizky,
and R. Baker, Eds. CRC Press Boca Raton Florida.

Instructional Factors Analysis: A Cognitive Model For Multiple
Instructional Interventions

Min Chi, Stanford University, CA USA

Kenneth Koedinger, Carnegie Mellon University, PA USA
Geoff Gordon, Carnegie Mellon University, PA USA
Pamela Jordan, University of Pittsburgh, PA USA

Kurt VanLehn, Arizona State University, AZ USA

In this paper, we proposed a new cognitive modeling approach: Instructional Factors Analysis Model (IFM). It belongs to a
class of Knowledge-Component-based cognitive models. More specifically, IFM is targeted for modeling student’s performance
when multiple types of instructional interventions are involved and some of them may not generate a direct observation of
students’ performance. We compared IFM to two other pre-existing cognitive models: Additive Factor Models (AFMs) and
Performance Factor Models (PFMs). The three methods differ mainly on how a student’s previous experience on a Knowledge
Component is counted into multiple categories. Among the three models, instructional interventions without immediate direct
observations can be easily incorporate into the AFM and IFM models. Therefore, they are further compared on two important
tasks—unseen student prediction and unseen step prediction—and to determine whether the extra flexibility afforded by addi-
tional parameters leads to better models, or just to over fitting. Our results suggested that, for datasets involving multiple types
of learning interventions, dividing student learning opportunities into multiple categories is beneficial in that IFM out-performed
both AFM and PFM models on various tasks. However, the relative performance of the IFM models depends on the specific
prediction task; so, experimenters facing a novel task should engage in some measure of model selection.

1. INTRODUCTION

For many existing Intelligent Tutoring Systems (ITSs), the system-student interactions can be viewed as a
sequence of steps [VanLehn 2006]. Most I'TSs are student-driven. That is, at each time point the system elicits
the next step from students, sometimes with a prompt, but often without any prompting (e.g., in a free form
equation entry window where each equation is a step). When a student enters an attempt on a step, the ITS
records whether it is a success or failure without the tutor’s assistance and may give feedbacks and/or hints
based on the entry. Students’ first attempt records on each step are then collected for student modeling.
Often times in I'TSs, completion of a single step requires students to apply multiple Knowledge Components.
A Knowledge Component (KC) is: “a generalization of everyday terms like concept, principle, fact, or skill,
and cognitive science terms like schema, production rule, misconception, or facet” [VanLehn et al. 2007].
They are the atomic units of knowledge. Generally speaking, students’ modeling on conjunctive-KC steps
are more difficult than that on steps that require a single KC.

The three most common student modeling methods are: Knowledge Tracing (KT) [Corbett and Ander-
son 1995], Additive Factor Models (AFM) [Cen et al. 2006; 2008], and Performance Factor Models
(PFM) [Pavlik et al. 2009]. When performing student modeling we seek to construct a cognitive model
based upon these observed behaviors and to apply the model to make predictions. Generally speaking, we
are interested in three types of predictions: type 1 is about how unseen students will perform on the observed
steps same as those in the observed dataset; type 2 is about how the same students seen in the observed data
will perform on unseen steps; and type 3 is about how unseen students will perform on unseen steps, that
is, both. For the present purposes we classifie students or steps that appear in the observed training data

eknutov
Rectangle

eknutov
Rectangle

62

Min Chi et al.

as seen and those that appear only in the unobserved test data as unseen. In this paper we will examine
prediction types 1 and 2 and leave type 3 for future work.

Previously KT and PFM have been directly compared both on datasets involved single-KC steps [Pavlik
et al. 2009] and those involved conjunctive-KC steps[Gong et al. 2010]. Results have shown that PFM is as
good or better than KT for prediction tasks under Bayesian Information Criteria (BIC) [Schwarz 1978] in
[Pavlik et al. 2009] or using Mean Squared Error (MSE) as criteria in [Gong et al. 2010]. For both BIC and
MSE;, the lower the value, the better.

While PFM and KT have been compared on datasets involved conjunctive-KC step, prior applications of
AFM and PFM have mainly been with single-KC steps and indicated no clear winner. More specifically, while
AFM is marginally superior to PFM in that the former has lower BIC and cross-validation Mean Absolute
Deviance (MAD) scores in [Pavlik et al. 2009], PFM performed better than AFM under MAD scores in
[Pavlik et al. 2011]. For MAD, same as MSE, the lower the value, the better. On the other hand, previous
research have shown that AFM can, at least in some cases, do a fine job in modeling conjunctive KCs [Cen
et al. 2008]. Therefore, in this paper we will compare AFM and PFM directly on a dataset involving many
conjunctive-KC steps.

Moreover, most prior research on cognitive modelings was conducted on datasets collected from classical
student-driven ITSs. Some ITSs, however, are not always student-driven in that they may involve other
instructional interventions that do not generate direct observations on student’s performance. The dataset
used in this paper, for example, was collected from a tutor that, at each step chose to elicit the next step
information from students or to tell them the next step. In our view these tell steps should also be counted
as a type of Learning Opportunity (LO) as they do provide some guidance to students. Yet on the other
hand, these steps do not allow us to directly observe students’ performance. KT model is designed mainly for
student-driven ITSs in that its parameters are directly learned from the sequences of student’s performance
(right or wrong) on each step. When there are multiple instructional interventions and some of them do
not generate direct observations, it is not very clear how to incorporate these interventions directly into
conventional KT models. Therefore, in this paper we are mainly interested in comparing AFM and PFM.

Our dataset was collected from an ITS that can either elicit the next step from the student or tell them
directly. Incorporating tell steps into AFM model is relatively easy in that tells can be directly added to
total LO counts. The PFM, however, uses student’s prior performance counts, the success or failure, in the
equation. Since tells do not generate any observed performance, it is hard to include them in the PFM.
Therefore, we elected to add a new feature to represent instructional interventions such as tells. As shown
later, the new model can be easily modified for modeling datasets with multiple instructional interventions
and thus it is named as Instructional Factors Analysis Model (IFM).

To summarize, in this paper we will compare three models, AFM, PFM and IFM, on a dataset involving
many conjunctive-KC steps and multiple instructional interventions. Previous research has typically focused
on how well the models fit the observed data. In the following, we also investigated how well they perform at
making the predictions of unseen students’ performance on seen steps (type 1) and seen students’ performance
on unseen steps (type 2). Before describing our general methods in details we will first describe the three
models.

2. THREE MODELS: AFM, PFM, AND IFM

All three models, AFM, PFM, and IFM, use a @Q-matriz to represent the relationship between individual
steps and KCs. Q-matrices are typically encoded as a binary 2-dimensional matrix with rows representing
KCs and columns representing Steps. If a given cell Q; = 1, then step j is an application of KC k. Previous
researchers have focused on the task of generating or tuning Q-matrices based upon a dataset [Barnes 2005;
Tatsuoka 1983]. For the present work we employed a static Q-matrix for all our experiments. Equations 1,

Instructional Factors Analysis: A Cognitive Model For Multiple Instructional Interventions 63

2, and 3 present the core of each model. Below the equations are the detailed descriptions of each term used
in the three equations.

The central idea of AFM was originally proposed by [Draney et al. 1995] and introduced into ITS field by
[Cen et al. 2006; 2008]. Equation 1 shows that AFM defines the log-odds of a student ¢ completing a step j
correctly to be a linear function of several covariates. Here p;; is a student 4’s probability of completing a step
j correctly, Ny is the prior LO counts. AFM models contain three types of parameters: student parameters
0;, KC (or skill) parameters S, and learning rates ;. While AFM is sensitive to the frequency of prior
practice, it assumes that all students accumulate knowledge in the same manner and ignores the correctness
of their individual responses.

PFM, by contrast, was proposed by [Pavlik et al. 2009] by taking the correctness of individual responses
into account. It can be seen as a combination of learning decomposition [Beck and Mostow 2008] and AFM.
Equation 2 expresses a student i’s log-odds of completing a step j correctly based upon performance features
such as S; (the number of times student ¢ has previously practiced successfully relevant KC k) and Fyj, (the
number of times student ¢ has previously practiced unsuccessfully relevant KC k). PFM may also include
student parameters such as 6; and skill parameters, such as ;. Additionally, PFM employs parameters to
represent the benefit of students’ prior successful applications of the skill u; and the benefit of prior previous
failures py.

While PFM was originally proposed without a 6;, it is possible to include or exclude these student pa-
rameters from either PFM or AFM. In prior work, Corbett et al. noted that models which tracked learning
variability on a per-subject basis, such as with € outperform models that do not [Corbett and Anderson
1995]. Pavlik [Pavlik et al. 2009] further noted that the full AFM model seemed to outperform PFM with-
out # which in turn outperformed AFM without . Pavlik et al. also hypothesized that PFM with 6 would
outperform the other models and they investigated it in their recent work. In this study, our analysis showed
that prediction is better with student parameters, especially for AFM models, thus we include 6; in our
versions of both AFM and PFM.

From PFM, IFM can be seen as adding a new feature to represent the tells together with the success
or failure counts, shown in Equation 3. Equation 3 expresses a student i’s log-odds of completing a step
j correctly based upon performance features including S;i, Fik, Tix (the number of times student i has
previously got told on relevant KC k). IFM also includes student parameters 6;, skill parameters Sy, ik, Pk,
and the benefit of prior previous tells vy.

AFM: In 1’% =0:+ Y BeQrj+ Y Qui(wNik) (1)
(¥ k k

PFM: Ino fl; =0; + Z BrQurj + Z Qrj (xS + prFir,) (2)
1] k k

IFM: In % =0+ > BQuj + Y Quj(peSin + puFir + viTir) (3)
1] k k

Where:

i. represents a student i.

j. represents a step j.

k. represents a skill or KC k.

pij. is the probability that student ¢ would be correct on step j.
0;. is the coefficient for proficiency of student 3.

Bj. is coefficient for difficulty of the skill or KC k.

64

Min Chi et al.

Q;- is the Q-matrix cell for step j using skill &.

k. is the coefficient for the learning rate of skill & (AFM only);

N is the number of practice opportunities student i has had on the skill & (AFM only);
ug. is the coefficient for the benefit of previous successes on skill £ (PFM & IFM);

Sik. 1s the number of prior successes student ¢ has had on the skill & (PFM & IFM);

pk- is the coefficient for the benefit of previous failures on skill k£ (PFM & IFM);

Fjj. is the number of prior failures student ¢ has had on the skill £ (PFM & IFM);

vy the coefficient for the benefit of previous tells on skill £ (IFM only);

T;. the number of prior Tells student ¢ has had on the skill & (IFM only);

3. TRAINING DATASET AND EIGHT LEARNING OPPORTUNITY MODES

The original dataset was collected by training 64 students on a natural-language physics tutoring system
named Cordillera [VanLehn et al. 2007; Jordan et al. 2007] over a period of four months in 2007. The physics
domain contains eight primary KCs including the weight law (K C}), Definition of Kinetic Energy (K Cyp),
Gravitational Potential Energy (K Cs), and so on. All participants began with a standard pretest followed
by training 7 physics problems on Cordillera and then a post-test. The pre- and post-tests are identical in
that they both have the same 33 test items. The tests were given online and consisted of both multiple-choice
and open-ended questions. Open-ended questions required the students to derive an answer by applying one
or multiple KCs.

In this study, our training dataset comprises 19301 data points resulted from 64 students solving 7 training
problems on Cordillera. Each student completed around 300 training problem steps. Note that the training
dataset does not include the pre- or posttest. In other words, a data point in our training dataset is either
the first attempt by a student on an elicit step or a system tell during his/her training on Cordillera only.

There are two types of steps in Cordillera. The primary steps are necessary problem-solving and conceptual
discussion steps. The justification steps, on the other hand, are optional steps that occur when students are
asked to justify the primary step they have just completed. The primary steps are designed to move the
solution process forward while the justification steps are designed to help the students engage with the
domain knowledge in a deeper way. When collecting our dataset the Cordillera system decided whether to
elicit or tell each step randomly. Thus, we have two types of LOs: elicit and tell for the primary steps; and
self-explain or explain for the justifications.

Figure 1 shows a pair of sample dialogues taken from the cordillera system for the same series of primary
steps with the same domain content. In dialogue (1.a) the system elects to elicit the students’ answer (steps
2- 3), while in dialogue (1.b) the system chooses to tell the student the answer (steps 2). Similarly in Figure 2
we present a similar comparison between a pair of self-explain and explain dialogues. As before both dialogues
cover the same domain content. In dialogue (2.a) the system asks the student to self-explain their answer
to the question in qualitative terms (steps 3-4). In dialogue (2.b) they are provided with a short qualitative
explanation (step 3).

For the primary steps, the average number of decisions ranges from 2.5 for KC to 31 for KCyq for elicit
steps and ranges from 4 for K Cy to 47 for K Cyq for the tell steps. Compared with primary steps, justification
steps are significantly less frequent in that the average number ranges from 0 for KC to 3.5 for KCy,; for
self-explain steps and ranges from 0 for KCy to 2.5 for KCy for explain steps.

In most of the prior research that we have surveyed the authors mainly used datasets involving quantitative
problem-solving steps similar to the primary steps in Cordillera. So when counting LOs in this study, we
first need to decide whether or not to include justification steps. Additionally, most previous research did not
include students’ performance on the pretest when counting LOs. While this makes some sense as students

Instructional Factors Analysis: A Cognitive Model For Multiple Instructional Interventions 65

(1.a) Elicit Version

(1) T: So let’s start with determining the value of v1.

(2) T: Which principle will help you calculate the rock’s instantaneous magnitude of velocity at T1? {ELICIT}
(3) S: definition of kinetic energy

(4) T: Let me just write the equation for you: KE1 = 0.5¥m*v1"2.

(1.b) Tell Version

(1) T: So let’s start with determining the value of v1.

(2) T: To calculate the rocks instantaneous magnitude of velocity at T1, we will apply the definition of kinetic
energy. {TELL}
(3) T: Let me just write the equation for you: KE1 = 0.5¥m*v1"2.

Fig. 1. Learning Opportunities on Problem-Solving Steps: Elicit vs. Tell

(2.a) Self-Explain

(1) T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic energy at T1? {ELICIT}
(2) S:nope.

(3) T:Excellent! Please explain why. {Self-Explain}

(4) S:Only the magnitude of the velocity and not the direction of it is part of the definition of kinetic energy.

(5) T:Excellent! Now that we know v1, ---

(2.b) Explain

(1) T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic energy at T1? {ELICIT}

(2) S:nope.

(3) T:Excellent! This is because the kinetic energy only depends on mass and the magnitude of velocity, not the direction
of velocity.{Explain}

(4) T:Now that we know v1, ---

Fig. 2. SelfExplain vs. Explain

receive no feedback indicating their successes or failures during the test, it is still the case that they do
practice their skills. Secondly we need to decide whether or not to include student’s pretest performance in
the LO counts.

In order to explore how different choices of LOs would impact different cognitive models, we defined four
ways to count the LOs. In the primary mode we count only the primary steps within the ITS. In pretest-
primary we count the primary mode steps plus the pretest (each test item is treated as one step for training).
Primary-Justify mode counts the primary and justification steps within the ITS alone. And finally the overall
mode counts all steps in both the pretest and ITS training.

Note that using different modes of LOs neither changes the size of the training dataset which is generated
along students’ logs when training on Cordillera nor changes the number of parameters to be fit. Using
pretest in the LO count means that various LOs do not start with 0 for the pretest-primary and overall

66

Min Chi et al.

modes but are based on the frequency of KC appearances (and, in the case of PFM, the accuracy) in the
pretest. For example, if a Ky is tested 20 times in the pretest and a student was correct 5 times and
wrong 15 times, then the student’s LOs on Ky for pretest-primary and overall mode would start with
LO = 20, Success = 5, Fail = 15,Tell = 0. For Primary and Primary-Justify modes, all LOs start with 0.
Coupled with this variation we can also count LOs additively or logarithmically. Using logarithmic count
is inspired by the power law relationship between measures of performance (reaction time or error rate) and
the amount of practice [Newell and Rosenbloom 1981]. But others [Heathcote et al. 2000] have argued that
the relationship is an exponential, which corresponds to additive counting. To summarize, we have {Primary,
Pretest-Primary, Primary-Justify, Overall} x {count, In(count)}, a total of eight LO modes.

4. RESULTS

Two measures of quality, the Bayesian Information Criteria (BIC) and the cross-validation Root Mean
Squared Error (RMSE), are used to evaluate how well various instantiated models perform. For both BIC
and cross-validation RMSE, the lower the value, the better. BIC [Schwarz 1978] is a criterion for model
selection among a class of parametric models with different numbers of parameters. In prior research on the
evaluation and comparison of different cognitive models [Cen et al. 2006; Pavlik et al. 2009; Gong et al. 2010]
the authors used BIC as a measure of success. In machine learning, however, it is conventional to use the
cross-validation RMSE, which is a more interpretable metric and, we believe, a more robust measure. For
the purposes of this paper, we will report both BIC and RMSE.

4.1 AFM, PFM, vs. IFM.

First, we will investigate whether considering Tell and Explains into the LOs is beneficial. In traditional
cognitive modeling the focus is solely on steps where the student’s performance is observed. In the context
of Cordillera that means counting only the elicit and self-explain steps as both require students to apply
their knowledge without support and their performance can be directly evaluated. For AFM models, we thus
compared the AFM algorithms shown in equation 1 by either including Tells and Explains into N;; or by
excluding them out of N;;. The two resulted models are referred as AFM-Tell and AFM+Tell respectively.
Therefore, in this section we compared four models: AFM-Tell, AFM+Tell, PFM and IFM across eight LO
modes.

For each of the four models, its corresponding count LOs on corresponding {Primary, Pretest-Primary,
Primary-Justify, Overall} modes are defined in Table I. For example, the IFM has three LO counts: prior
success S;, prior failures Fyj, and prior tells T;,. Under the Primary-Justify mode (shown in the left bottom
of the table), S;, = Success in (Elicit + Self-Explain) on the KC k, F;; = prior failure in (Elicit + Self-
Explain) on the KC k, and Tj; = prior tells and explains on the KC k. Once the count mode is defined, the
corresponding Ln(Count) mode is simply taking each count logarithmically. For example, under {Primary-
Justify, Ln(Count)} mode, we have S;;, = In[Success in (Elicit + Self-Explain) on KC k|, Fj;, = In[prior
failure in (Elicit + Self-Explain) on KC k|, and T}, = In[prior tells and explains on the KC k.

For each model on each mode, we carried out a 10-fold cross-validation. Such procedure resulted in 8
(modes) x 4 (models) = 32 BIC values and CV RMSE values. Table II shows the comparisons among the
four models when using {Primary-Justify, Count} and {Primary-Justify, Ln(Count)} LO modes respectively.
It shows that across both modes, the IFM is more accurate (both lower BIC and RMSE) than the PFM;
similarly, the latter is more accurate than AFM+Tell and AFM-Tell. However, it is harder to compare
AFM-Tell and AFM+Tell. For example, on {Primary-Justify, Count} mode, although AFM-Tell has lower
BIC than AFM+Tell 9037 vs. 9058, the latter has lower RMSE than the former: 4.456E-01 vs. 4.459E-01.
So on both {Primary-Justify, Count} and {Primary-Justify, Ln(Count)} modes, we have IFM > PFM >
AFM+Tell, AFM-Tell. Such pattern is consistence across all eight modes.

Instructional Factors Analysis: A Cognitive Model For Multiple Instructional Interventions 67

Table I. {Primary, Pretest-Primary, Primary-Justify, Overall} Learning Opportunity Modes

Primary H Pretest-Primary

AFM-Tell N Elicit Pretest+Elicit
AFM+Tell | Ny Elicit+Tell Pretest+Elicit+Tell
PFM Sik Success(Elicit) Success in (Pretest + Elicit)

Fik Failure(Elicit) Failure in (Pretest + Elicit)
IFM Sik Success(Elicit) Success in (Pretest + Elicit)

Fik Failure(Elicit) Failure in (Pretest + Elicit)

T; Tell Tell

‘ Primary-Justify ‘ ‘ Overall ‘

AFM-Tell N Elicit + SelfExplain Pretest+ Elicit+SelfExplain
AFM+Tell | N;x | Elicit+Tell 4+ SelfExplain +Explain Pretest+ Elicit+Tell 4+ SelfExplain+Explain
PFM Sik Success in (Elicit 4+ Self-Explain) Success in (Pretest+ Elicit 4+ Self-Explain)

Fip Failure in (Elicit 4+ Self-Explain) Failure in (Pretest+ Elicit 4+ Self-Explain)
IFM Sik Success in (Elicit 4+ Self-Explain) Success in (Pretest+ Elicit + Self-Explain)

Fi Failure in (Elicit 4+ Self-Explain) Failure in (Pretest+ Elicit 4+ Self-Explain)

Tir Tell4+ Explain Tell4+ Explain

Table II. Compare AFM-Tell, AFM+Tell, PFM and IFM on
{Primary-Justify, Count} and {Primary-Justify, Ln(Count)} mode

{Primary-Justify, Count} | {Primary-Justify, Ln(Count)}
Model BIC | 10-fold RMSE || BIC | 10-fold RMSE
AFM-Tell [9037 4.460E-01 9037 4.459E-01
AFM~+Tell || 9117 4.470E-01 9058 4.456E-01
PFM 8474 4.235E-01 8461 4.236E-01
IFM 8347 4.217E-01 8321 4.211E-01

In order to compare the performance among four models, Wilcoxon Signed Ranks Tests were conducted
on resulted BICs and RMSEs. Results showed that IFM significantly outperformed the PFMs across eight
modes: Z = —2.52, p = 0.012 for both BIC and cross-validation RMSE. Similarly, it was shown that
across all eight modes IFM beat corresponding AFM-Tell across eight modes significantly on both BIC and
RMSE: Z = —2.52, p = 0.012. Similar results were found between IFM and AFM+Tell in that the former
out-performed the latter across eight modes significantly on both BIC and RMSE: Z = —2.52, p = 0.012.

Comparisons between PFM and AFM-Tell and AFM+Tell showed that PFM beats corresponding AFM-
Tell across eight modes significantly on both BIC and RMSE: Z = —2.52, p = 0.012; and PFM also beat
AFM+Tell significantly on both BIC and RMSE: Z = —2.52, p = 0.012. Finally, comparisons between AFM-
Tell and AFM+Tell showed that adding Tells and Explains into LOs did not statistically significantly improve
the BIC and RMSE of the corresponding AFM model: Z = —0.28, p = 0.78 for BIC and Z = —1.35, p = 0.18
for RMSE respectively. Therefore, our overall results suggested: IFM > PFM > AFM-Tell, AFM+Tell.

Next, we investigated which way of counting LOs is better, using logarithmic or additive tabulation?
Wilcoxon Signed Ranks Tests were conducted on comparing the BIC and RMSE of the performances when
using Count versus using Ln(Count) on the same model and mode. Results showed using Ln(Count) per-
formed significantly better than using Count: Z = —2.27, p = 0.008 for BIC and Z = —2.33, p = 0.02
for RMSE respectively. This analysis is interesting in relation to a long-standing debate about whether the
learning curve is exponential (like additive tabulation) or a power law (logarithmic tabulation) [Heathcote
et al. 2000]. Our results appear to favor the power law.

Next, we investigated the impact of four LO modes. The BICs and RMSEs were compared among the
{Primary, Pretest-Primary, Primary-Justify, Overall} modes regardless of Count and Ln(Count). A pairwise
comparisons on Wilcoxon Signed Ranks Tests showed that the {Primary-Justify} modes generated signifi-

68

Min Chi et al.

cantly better models than using {Primary} modes Z = —2.1, p = 0.036; the {Primary} modes generated
better models than using {Pretest-Primary} and {Overall} Z = —2.27, p = 0.018 and Z = —2.521, p = 0.012
respectively. While no significant difference was found between {Pretest-Primary} and {Overall} modes. Sim-
ilar results was found on RMSE. Therefore, it suggested that adding justification steps into LOs is beneficial
in that Primary-Justify mode beats Primary; however, adding pretest into the LOs did not produce better
models and it may even have resulted worse models: the benefit of adding justification steps into LOs was
seemingly washed out by including pretest in the LOs in that {Overall} modes generate worse models than
{Primary-Justify} and {Primary}.

To summarize, for modeling the training data, applying IFM model and using {Primary-Justify, Ln(Count) }
as LOs generated the best fitting model. Additionally, comparisons among the IFM, PFM, AFM-Tell,and
AFM+Tell showed that IFM > PFM > AFM-Tell, AFM-+Tell. In this paper, our goal is to compare cognitive
models on datasets involving multiple types of instructional interventions. As shown above, for AFM the tell
steps can be directly added into existing opportunity count N;x; For the PFM model, however, there is no
direct way how tells should be incorporated. Therefore, in the following we will mainly compare IFM and
AFM-+Tell. For the convenient reasons, we will refer to AFM+Tell as AFM.

4.2 IFM vs. AFM for Unseen Student Prediction (Type 1)

Next we compared the AFM and IFM models on the task of unseen student prediction. In order to predict
unseen student’s performance, Student ID was treated as a random factor in both AFM and IFM models.
Here we conducted Leave-one-student-out cross-validation. In other words, 64 students resulted in a 64-fold
cross validation. Thus, we have 8 (modes) x 2 (AFM vs.IFM) BIC values and Cross-Validation RMSE values.

Table I1I shows the correpsonding BIC and RMSE values of AFM and IFM models using { Primary-Justify,
Ln(Count)} mode. Table III shows that IFM generates better prediction models (both lower BIC and RMSE)
than AFM and the difference is large. Such pattern is consistence across all eight modes.

Table IT1I. AFM vs. IFM On Unseen Students
with Random Effect Student Parameters

[Model | BIC [64-fold Cross-Validation RMSE |

AFM 8724 4.6144E-01

IFM 7952 4.1661E-01

To compare IFM and AFM across eight modes, Wilcoxon Signed Ranks Tests were conducted on both
BICs and cross-validation RMSEs. Consistent with the patterns shown in Table III, results showed that
IFM is significant better than AFM across eight modes: Z = —2.52, p = 0.012 for both BIC and cross-
validation RMSE. To summarize, IFM with random student parameter is a better model for predicting
unseens students’ performances on seen steps than AFM model with random student parameter. The best
performance was generated IFM model using {Primary-Justify, Ln(Count)} as LOs.

4.3 AFM vs. IFM for Unseen Step prediction (Type 2).

Finally we compared AFM and IFM models on the task of unseen step prediction. Here we used training
dataset and tested each models’ prediction using students’ post-test performance. For each model on each
mode, we carried out a 10-fold cross-validation. Such procedure again resulted in 8 x 2 BIC values and CV
RMSE values.

Table TV shows the results on comparisons for the AFM and IFM models on both {Primary-Justify,
Ln(Count)} and {Overall, Ln(Count)} modes. Across the eight LO modes, the performance of AFM reaches
its best when using {Primary-Justify, Ln(Count)} mode and IFM reaches its best when using {Overall,
Ln(Count)} mode. Table III shows that when using {Primary-Justify, Ln(Count)} mode, the AFM is even

Instructional Factors Analysis: A Cognitive Model For Multiple Instructional Interventions 69

more accurate (both lower BIC and RMSE) than the corresponding IFM model; while when using {Overall,
Ln(Count)} LO mode, the IFM is more accurate (both lower BIC and RMSE) than the corresponding AFM.
Moreover, the best IFM model, using {Overall, Ln(Count)} LO mode, is still better than the best AFM
which using {Primary-Justify, Ln(Count)} LO mode. Thus, cross 8 modes on both AFM and IFM, the best
prediction model is still generated by IFM but using {Overall, Ln(Count)} LO mode.

Table IV. AFM vs. IFM On Predicting Post-test
Performance by {Primary-Justify, Ln(Count)} and {Overall,
Ln(Count)} modes

[Mode [Model | BIC [10-fold RMSE |
{Primary-Justify, Ln(Count)} | AFM 2414 4.6632E-01
IFM 2428 4.6791
{Overall, Ln(Count)} AFM 2443 4.7027E-01

IFM 2252 4.4529E-01

In order to compare AFM and IFM across eight modes, Wilcoxon Signed Ranks Tests were again conducted
on resulted 8 x 2 BIC and RMSE results. Result showed that IFM is marginally significant better than AFM
across eight modes: Z = —1.68, p = 0.093 for BIC and Z = —1.82, p = 0.069 for 10-fold CV RMSE
respectively. Previously, the best model for fitting the training dataset and type 1 predictions are generated
by IFM using {Primary-Justify, Ln(Count)} LOs; on the task of predicting students’ posttest performance
(type 2), however, the best model is still IFM but using {Overall, Ln(Count)} LO counts. To summarize, the
best performance of IFM is better than the best AFM and across the eight LO modes and IFM is marginally
better than AFM model on type 2 prediction.

5. CONCLUSION

In this paper we investigated student modeling on a dataset involving multiple instructional interventions. We
proposed a cognitive model named IFM. We compared IFM with AFM and PFM on the training dataset.
We determined that including non-standard LOs such as tells and explains as a separated parameter is
effective in that the IFM models’ out-performance PFM, AFM-Tell, and AFM+Tell across all modes; but
for AFM modes, simply adding tells into AFM LO counts did not seemingly significantly improved the AFM
model’s performance. This is probably because AFM gives a same learning rate for different instructional
interventions. For example, under the {Primary, Count} mode, the N;; in AFM+Tell model is Elicit + Tell.
On one KC, KCy, the AFM had: the learning rate v, = 0.011462. By contrast, the corresponding IFM
has three parameters: p for benefit of previous successes on skill k; py is the coefficient for the benefit of
previous failures, and v the coefficient for the benefit of previous tells on skill k. For the same KC, the
IFM resulted px = 0.083397; pr. = —0.213746, v, = 0.031982. The values of the three parameters are quite
different from each other, which suggested the the benefit of tells is in the middle of the benefit of success
and failure. Such patterns on learned parameters between AFM and IFM showed throughout our analysis.
It suggested that rather than using one learning rate parameters for different instructional interventions, it
is better to break them into categories and learn seperated parameters.

In order to fully exploring the effectiveness of three models, we further compared them on two prediction
tasks — unseen student prediction (type 1) and unseen step prediction (type 2). Our results indicate that the
IFM model is significantly better than the AFM model on predicting unseen student’s performance on seen
steps (type 1) and marginal significant better on predicting seen students’ performance on posttest (type 2).

Additionally, we examined the impact of including pretest performance in the LOs as well as qualitative
justification steps in the LOs. We found that the Primary-Justify mode seems to be most effective. Generally
speaking, models trained with logarithmic tabulation outperformed those trained with additive tabulation

70

Min Chi et al.

probably because the number of prior LOs counts in this study can be ralatively large. For example, the
average number of primary steps (including both elicits and tells) in the training data varies from 6 for KC
to 83 for K.

Even though IFM model performed the best on modeling the training data on both type 1 and type 2
predictions, its performance is heavily dependent upon the specific prediction task being performed and the
way in which the specific LOs were counted. For modeling the training data and type 1 prediction, it is the
best to using (Primary-Justify,Ln(Count)) mode; but for type 2 predictions, it was best to include the pretest
data as well and thus using(Overall,Ln(Count)) mode for LO counts. Thus we conclude that, for datasets
involving multiple learning interventions, IFM is a more robust choice for student and cognitive modeling.
However the performance of IFM is heavily dependent upon the specific prediction task being performed and
the way in which the specific LOs were counted. Experimenters facing a novel task should engage in some
measure of parameter-fitting to determine the best fit.

ACKNOWLEDGMENTS
NSF (#SBE-0836012) and NSF (#0325054) supported this work.

REFERENCES

BARNES, T. 2005. The g-matrix method: Mining student response data for knowledge.

BECK, J. E. AND MosTow, J. 2008. How who should practice: Using learning decomposition to evaluate the efficacy of different
types of practice for different types of students. See Woolf et al. [2008], 353-362.

CEN, H., KOEDINGER, K. R., AND JUNKER, B. 2006. Learning factors analysis - a general method for cognitive model evaluation
and improvement. In Intelligent Tutoring Systems, M. Ikeda, K. D. Ashley, and T.-W. Chan, Eds. Springer, 164-175.

CEN, H., KOEDINGER, K. R., AND JUNKER, B. 2008. Comparing two irt models for conjunctive skills. See Woolf et al. [2008],
796-798.

CORBETT, A. T. AND ANDERSON, J. R. 1995. Knowledge tracing: Modelling the acquisition of procedural knowledge. User
Model. User-Adapt. Interact. 4, 4, 253-278.

DraNEY, K., PiroLLI, P., AND WILSON, M. 1995. A Measurement Model for a Complex Cognitive Skill. Erlbaum, Hillsdale,
NJ.

GoONG, Y., BECK, J., AND HEFFERNAN, N. 2010. Comparing knowledge tracing and performance factor analysis by using multiple
model fitting procedures. In Intelligent Tutoring Systems, V. Aleven, J. Kay, and J. Mostow, Eds. Lecture Notes in Computer
Science Series, vol. 6094. Springer Berlin / Heidelberg, 35-44. 10.1007/978-3-642-13388-6_8.

HEATHCOTE, A., BROWN, S., AND D.J.K., M. 2000. The power law repealed: The case for an exponential law of practice.
Psychonomic Bulletin and Review 7, 2, 185207.

JORDAN, P. W., HALL, B., RINGENBERG, M., CUE, Y., AND RosE, C. 2007. Tools for authoring a dialogue agent that participates
in learning studies. In AIED, R. Luckin, K. R. Koedinger, and J. E. Greer, Eds. Frontiers in Artificial Intelligence and
Applications Series, vol. 158. IOS Press, Los Angeles, California, USA, 43-50.

NEWELL, A. AND ROSENBLOOM, P. 1981. Mechanisms of Skill Acquisition and the Law of Practice. Erlbaum Hillsdale NJ.

PavLik, P. I., CEN, H., AND KOEDINGER, K. R. 2009. Performance factors analysis —a new alternative to knowledge tracing. In
Proceeding of the 2009 conference on Artificial Intelligence in Education. I0S Press, 531-538.

PavLik, P. I., YUDELSON, M., AND KOEDINGER, K. 2011. Using contextual factors analysis to explain transfer of least common
multiple skills.

ScHwARz, G. E. 1978. Estimating the dimension of a model. Annals of Statistics. 6, 2, 461464.

TaTsvoka, K. 1983. Rule space: An approach for dealing with misconceptions based on item response theory. Journal of
FEducational Measurement. 20, 4, 345-354.

VANLEHN, K. 2006. The behavior of tutoring systems. International Journal Artificial Intelligence in Education 16, 3, 227—-265.

VANLEHN, K., JORDAN, P., AND LiTMAN, D. 2007. Developing pedagogically effective tutorial dialogue tactics: Experiments
and a testbed. In Proceedings of SLaTE Workshop on Speech and Language Technology in Education ISCA Tutorial and
Research Workshop. 17-20.

Woorr, B. P., AIMEUR, E., NKAMBOU, R., AND LAJOIE, S. P., Eds. 2008. Intelligent Tutoring Systems, 9th International
Conference, ITS 2008, Montreal, Canada, June 23-27, 2008, Proceedings. Lecture Notes in Computer Science Series, vol.
5091. Springer.

The Simple Location Heuristic is Better at
Predicting Students’ Changes in Error Rate Over
Time Compared to the Simple Temporal Heuristic

A.F. NWAIGWE

AMERICAN UNIVERSITY OF NIGERIA, NIGERIA
AND

K.R. KOEDINGER

CARNEGIE MELLON UNIVERSITY, U.S.A

In a previous study on a physics dataset from the Andes tutor, we found that the simple location
heuristic was better at making error attribution than the simple temporal heuristic when evaluated
on the learning curve standard. In this study, we investigated the generality of performance of the
simple location heuristic and the simple temporal heuristic in the math domain to see if previous
results generalized to other Intelligent Tutoring System domains. In support of past results, we
found that the simple location heuristic provided a better goodness of fit to the learning curve
standard, that is, it was better at performing error attribution than the simple temporal heuristic.
One observation is that for tutors where the knowledge components can be determined by the
interface location in which an action appears, using the simple location heuristic is likely to show
better results than the simple temporal heuristic. It is possible that the simple temporal heuristic is
better in situations where the different problem subgoals can be associated with a single location.
However, our prior results with a physics data set indicated that even in such situations the simple
location heuristic may be better. Further research should explore this issue.

Key Words and Phrases: Error attribution methods, Intelligent Tutoring Systems, learning curves, mathematics

1. INTRODUCTION

Increasingly, learning curves have become a standard tool for evaluation of Intelligent
Tutoring Systems (ITS) [Anderson, Bellezza & Boyle, 1993; Corbett, Anderson, &
O’Brien, 1995; Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger,
2005; Mathan & Koedinger, 2005; Mitrovic & Ohlsson, 1990] and measurement of
students’ learning [Anderson, Bellezza & Boyle, 1993; Heathcote, Brown, & Mewhort,
2002]. The slope of learning curves show the rate at which a student learns over time, and
reveals how well the tutor’s cognitive model fits what the student is learning. However,
these learning curves require a method for attributing error to the “knowledge
components” (skills or concepts) in the student model that the student is missing.
Knowledge components, concepts and skills will be used interchangeably in this paper. In
a previous study using data from the Andes Intelligent tutor [VanLehn et al., 2005], four

Authors’ addresses: A.F. Nwaigwe, School of Information Technology and Communication, American
University of Nigeria, Nigeria; E-mail : adaeze.nwaigwe@aun.edu.ng; K.R. Koedinger, Human Computer
Interaction Institute, Carnegie Mellon University, U.S.A.; E-mail : koedinger @cmu.edu

72 Adaeze Nwaigwe and Kenneth Koedinger

alternative heuristics were evaluated - simple location heuristic (LH), simple temporal
heuristic (TH), model-based location heuristic (MLH) and model-based temporal
heuristic (MTH) [Nwaigwe et al., 2007]. When evaluated on the learning curve standard,
the two location heuristics LH and MLH, outperformed the temporal heuristics, TH and
MTH. However, the generality of performance of these heuristics in other ITS subject
domains needs to be tested.

In this study conducted in the mathematics domain, we investigated whether the
previous performance of the LH and TH generalized to other ITS domains. We
specifically asked if the LH was better than the TH at predicting student changes in error
rate over time. We used log data from a Cognitive Tutor on a Scatterplot lesson and
implemented the learning curves standard using the statistical component of Learning
Factors Analysis [Cen, Koedinger & Junker, 2005; Pirolli & Wilson, 1998].

Our intuition is that the LH may be the better choice for error attribution when
knowledge components (KCs) can be determined by the interface location where an
action occurs. To justify this, imagine that a worker has homes, H, and H, in which to
perform tasks A and B respectively. The worker goes to home H, and attempts task A but
fails. The worker abandons the failed task A and goes to home H,, where he/she succeeds
at task B. The assumption is that tasks A and B are associated with different KCs. The
worker later returns to location H,, and this time, is successful at task A. The LH will
more rationally attribute the initial failed attempt at H, to the KC associated with task A
since its rule is to attribute error to the first successfully implemented KC at the initial
error location. The TH will however, wrongfully put blame on the KC associated with
task B since its method of error attribution is to blame the KC associated with the first
correctly implemented task.

Sometimes, TH might be a better choice for making error attribution. We believe this
to be the case when it is necessary to perform a set of tasks in a prescribed sequence. To
elaborate, imagine that homeschooler Bella is required to perform two tasks and in the
given sequence — eat breakfast (EB), and do schoolwork (DS) and in any of two
locations, L1 and L2 on the dining table of the family’s apartment. We again assume that
tasks EB and DS are associated with different KCs. Bella decides that she did not like
what Mom served for breakfast that morning and goes straight to her schoolwork, DS, at
location L1, skipping task EB. However, Bella fails at task DS due to hunger associated
distractions. Later, she abandons task DS and revisits and succeeds at task EB at location
L2. Bella then goes back location to L1 and completes task DS. In attributing blame, TH
will rationally blame the KC associated with task EB. However the LH will wrongfully
blame the KC associated with task, DS. These examples imply that it may be better to
apply heuristics in making error attribution.

Although an immediate purpose for error attribution is to drive learning curve
generation, the assignment of blame problem is more general and affects many aspects of
student modeling.

2. ERROR ATTRIBUTION HEURISTICS

A basic assumption of many cognitive models is that knowledge can be decomposed into
components, that each component is learned independently of the others and that
implementation of a step in the solution of a problem is an attempt to apply one or more
knowledge components (KCs). When correct solution steps are generated, either by an
expert system or a human expert, the step is often annotated with the KCs that must be
applied in order to generate the step. Thus, when a student enters that step, the system
can infer that the student is probably (but not necessarily) applying those KCs.

The Simple Location Heuristic is Better at Predicting Students Changes 73

An ITS system can be designed to anticipate and generate some incorrect steps and
associated goals, however, it is rare for expert systems or expert authors to anticipate and
generate a large number of incorrect steps and corresponding goals. Hence, when the
student enters an incorrect step, it is often not clear what KC(s) should have been applied,
so the system cannot determine which KC(s) the student is weak on. If the system simply
ignores incorrect steps, then it only “sees” successful applications of KCs. It cannot
“see” failures of a KC. It may see lots of incorrect steps, but it cannot determine and
record what KC(s) to blame for each error [VanLehn et al, 2005] and so, learning curves
cannot be generated. This suggests using heuristics.

The tutoring system usually has two clues available: the location of the incorrect step
on the user interface and the subsequent steps entered by the student. For instance, if a
student makes an error on a step at time 1 and at location A, the student will often attempt
to correct it immediately, perhaps with help from the tutor. So if the first correct step, at
time 2 is also at location A, and say, that the step is annotated with KC x, then it is likely
that the incorrect step at time 1 was a failed attempt to apply KC x. This heuristic allows
the system to attribute errors to KCs whenever the system sees a correct step immediately
following the target incorrect step, and both steps are in the same location on the user
interface.

However, it is not clear how to generalize this heuristic. What if the next correct step
is not in the same location? What if there are intervening incorrect steps in different
locations? In previous work using data from the Andes Physics Tutor, four automated
heuristics for making error attribution (LH, TH, MLH, MTH) were proposed and
evaluated guided by whether the heuristic was driven by location or by the temporal order
of events [Nwaigwe et al, 2007].

For every error transaction, LH attributes blame to the KC mapped to a subsequent
correct entry at the widget location where the error occurred [Anderson, Bellezza &
Boyle,1993; Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger, 2005]
while the TH ascribes blame to the KC that labels the first correct entry in time. When
there is no subsequent correct entry with a label of the error location, LH blames the KC
with the first correct entry in time, that is, it implements the behavior of TH. When the
tutor provides a choice of some KC to blame for an error, the MLH goes with the tutor’s
choice otherwise, it simply implements the LH. For an error transaction, MTH also goes
with the domain model’s choice if one exists, otherwise it implements the TH.

In this work, we examine the performance of the LH and TH in the mathematics
domain. Table I shows sample log transaction from the cognitive tutor for the scatterplot
lesson. The table illustrates how the LH and the TH can help resolve the error attribution
ambiguity. Columns in table 1 are described thus: “location” column indicates the place
on the interface (the interface widget) in which the student made an input; “Outcome”
indicates if an input is correct or not, while “Student Model KC” lists the system’s choice
of KC which the student should implement.

In row 1, the student makes an error at the location labeled, “var-Oval-1". The system
however does not indicate the KC the student ought to be practicing. To resolve this
ambiguity, the LH uses the KC that labels a subsequent correct entry in the same location
—see row 5. That is, it chooses “choose variable”. On the other hand, the TH chooses the
KC that labels the first correct entry in time, irrespective of interface location. Its choice
is “label x-axis”. In row #2, the domain model blames the KC “choose variable” for the
student’s error. LH chooses “choose variable” since it is the first correctly implemented
KC at the location “var-Oval-1”. TH blames the KC “label x-axis” in this case.

In the prior study, the cognitive model generated by the LH was found to outperform
that of the TH and also, the tutor’s original model according to the learning curve

74 Adaeze Nwaigwe and Kenneth Koedinger

standard. In other words, the LH was better at making error attributions than the other
two cognitive models. Compared to the TH, we also found that the error attribution
method of the LH was more like that made by human coders. In this work, we conduct
our analysis in the math domain and compare the performance of the LH to that of the
TH based on the learning curve standard. Our goal is to see if the previous performance
of the LH and TH can be generalized to other intelligent tutoring system domains.

Table I. Table illustrating different error attributions made by the 2 methods

. Student ModelKC Error Attributions methods

iid Location |Outcome
KC LH TH
var-Oval-1 |. . .

1 incorrect choose variable label x-axis
2 var-Oval-1 [incorrect |choose variablelchoose variable label x-axis
3 var-1val-1 |correct label x-axis [label x-axis label x-axis
4 var-Oval-1 [incorrect choose variable choose variable
5 var-Oval-1 |correct choose variable|choose variable choose variable

3. LEARNING CURVES

Learning curves plot the performance of students with respect to some measure of their
ability over time [Anderson, Bellezza & Boyle, 1993; Corbett, Anderson, O’Brien, 1995;
Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger, 2005; Mathan &
Koedinger, 2005; Mitrovic & Ohlsson, 1990]. For ITSs, the standard approach is to
measure the proportion of knowledge components in the domain model that have been
“incorrectly” applied by the student. This is also known as the “error rate”. Other
alternatives exist, such as the number of attempts taken to correct a particular type of
error. Time is generally represented as the number of opportunities to practice a KC or
skill. This in turn may be determined in different ways: for instance, it may represent
each new step a student attempts that is relevant to the skill, on the basis that repeated
attempts at the KC are benefiting from the student having been given feedback and as-
needed instruction about that particular skill and hence may improve from one attempt to
the next. If the student is learning the KC or skill being measured, the learning curve will
follow a so-called “power law of practice” [Mathan & Koedinger, 2005]. If such a curve
exists, it presents evidence that the student is learning the skill being measured or
conversely, that the skill represents what the student is learning.

3.1. THE LEARNING CURVES STANDARD
The power law applies to individual skills and does not take into account student effects.
The statistical component of Learning Factors Analysis (LFA) extends the power law to a
logistic regression model which accommodates student effects for a cognitive model
incorporating multiple knowledge components and multiple students [Cen, Koedinger, &
Junker, 2005], see equation 1. The following are the assumptions on which equation 1 is
based:

1. Different students may know more or less initially. An intercept parameter of

this model reflects each student’s initial knowledge.

The Simple Location Heuristic is Better at Predicting Students Changes 75

2. Students learn at the same rate. Thus, slope parameters do not depend on the
student. Slope parameters reflect the learning rate of each KC which the student
model encompasses and are independent of student effect. This assumption
made so as to reduce the number of parameters in equation 1 and is further
justified since equation 1 is focused on refining a cognitive model rather than on
evaluating students’ knowledge growth [Draney, Pirolli & Wilson, 1995].

3. Some KCs are more likely known than others. An intercept parameter for each
KC captures initial difficulty of the skill.

4. Since some KCs are easier to learn than other, the model of equation 1 uses a
slope parameter to reflect this for each skill. Larger values for initial difficulty
reflect tougher skills.

In[p/(1-p)] = X o Xi + ZBY, + Z yYT,. (1)

where p — the probability of success at a step performed by student i that requires
knowledge component j; X; and Y; — the dummy variable vectors for students and
knowledge components respectively; T; — the number of practice opportunities student i
has had on knowledge component j; o; — the coefficient that models student i’s initial
knowledge; B; — the coefficient that reflects the initial difficulty of knowledge component
j where larger values of initial difficulty reflect tougher skills; y; — the coefficient that
reflects the learning rate of knowledge component j, given its practice opportunity.

In this paper, the model of equation 1 is used to apply the learning curve standard.
Bayesian Information Criterion (BIC) [Wasserman, 2004] is used to estimate prediction
risk in the model while loglikelihood is used to measure model fit. Lower BIC scores,
mean a better balance between model fit and complexity.

4. DATA SOURCE

The data used for this research was collected as part of a study conducted in a set of 5
middle-school classrooms at 2 schools in the suburbs of a medium-sized city in the
Northeastern United States. Student ages ranged approximately from 12 to 14 years. The
classrooms studied were taking part in the development of a new 3-year cognitive tutor
curriculum for middle school mathematics [Baker, 2005; Baker., Corbett, Koedinger &
Wagner, 2004]. Data collected was from the study on these classrooms during the course
of a short (2 class periods) cognitive tutor unit on scatterplot generation and
interpretation. Scatterplots depict the relationship between two quantitative variables in a
Cartesian plane, using a point to represent paired values of each variable.

The scatterplot lesson consisted of a set of problems and for each problem, a student
was given a data set to generate a graph. The student then had to choose from a list, the
variables that were appropriate for use in the scatterplot (see figure 1); those that where
quantitative or categorical; and subsequently whether a chosen variable was appropriate
for a bar chart.

Next the student was required to label the X and Y-axis (see figure 2), and to choose
each axis bound and scale. The student was then required to plot points on the graph by
clicking on the desired position on the graph. Finally, the student was required to answer
a set of interpretation questions to reason about the graph’s trend, outliers, monotonicity,
and extrapolation and in comparison with other graphs. In our dataset, students solved a
maximum of six problems and a minimum of two in the scatterplot lesson.

76

Adaeze Nwaigwe and Kenneth Koedinger

LYAT T Tyl
| File Edit Tutor windows Help

(-8

@ Brand ICategoricaI ;I INotDK ForScat‘telpIc;I IDK ForBar Graphs ;I

Exercise (minutes) INumericaI LI IDK Faor Scatterplots d Ia’u’o% O For Bar G‘raphll

Bowels INumericaI LI IDK For Scatterplots ;I I LI

Figure 1 Scatterplot lesson interface for choosing variable type [Baker, 2005]

m Diagram - O]

File Edit Tutor Windows Help

500

8]2 |8 |

200

250

rabihits
200

150

100

50

234

Figure 2 Interface for graph creation in the scatterplot lesson [Baker, 2005]

The Simple Location Heuristic is Better at Predicting Students Changes 77

5. METHODOLOGY

The algorithms for the LH and TH used in this research was implemented in pure java 1.6
and designed to process student log data in MS Excel format. Both algorithms used
sequential search. Log data from the cognitive tutor unit on scatterplot generation and
interpretation served as input to the programs. The output from each program was the
choice of KC codes made by the heuristic being implanted as explained in section 2.

To analyze the cognitive model of each heuristic according to the learning curve
standard, the data output from each program was then fit to equation 1 to derive learning
behavior. The coefficients of equation 1, initial KC difficulty (), initial student difficulty
(o) and KC learning rate (y;) were used to describe learning behavior for each heuristic. If
the intercept of a KC was higher, then, its initial difficulty was lower. Further, if the slope
of each KC was higher, then, the faster students learned that skill. For the model of each
heuristic, BIC score was used to estimate prediction risk while loglikelihood was used to
measure model fit.

6. RESULTS AND DISCUSSION

Table I summarizes the results of the learning curve standard for the student models for
both the LH and TH. The results show that the simple location heuristic, LH (BIC score:
7,510.12) shows better fit to the learning curve standard compared to the simple temporal
heuristic, TH (BIC scores: 7,703.58). This means that the model of the LH is more
reliable and so, a prediction error is more likely to occur if one used the TH model.
Loglikelihood score was also better for the LH (-3,370.37) than for the TH (-3,464.93),
indicating that the LH model was a better fit to the data than the competing TH model.
This shows how the different error attribution methods affect the result.

Table II. Results of the Learning Curve Standard

TH LH
logLikelihood -3,464.93 -3,370.37
BIC 7,703.58 7,510.12
Learning Rate (y;) | Mean (Std) 0.09 (0.09) 0.133 (0.11)
Initial KC | Mean (Std) -1.81 (0.94) 0.08 (1.10)
Difficulty (B;)
Initial Student | Mean (Std) 2.03 (0.61) -0.00 (0.63)
Difficulty (o)
of KCs 17 17
of transactions across entire | 16,291 16,291
scatterplot lesson
of students 52 52

78 Adaeze Nwaigwe and Kenneth Koedinger
Table III. Knowledge Component Details for the two Heuristics
Simple Temporal Heuristic | Simple Location Heuristic
(TH) (LH)

Knowledge Ave | B i Ave | B; i
Component (KC) Opp | (Inmitial (learning | Opp | (Initial (learning

difficulty) | rate) difficulty) | rate)
CHOOSE-VAR-TYPE-
CAT 6.6 -1.449 0.076 6.6 0.048 0.244
MMS-VALUING-
DETERMINE-SET-
MAX 6.9 -0.793 0 6.2 1.275 0
MMS-VALUING-
DETERMINE-SET-
MIN 6.3 -0.361 0.031 6.2 1.587 0.063
QUANTITATIVE-
VALUING-FIRST-BIN | 6.1 -2.642 0.159 5.5 -0.565 0.163
QUANTITATIVE-
VALUING-SECOND-
BIN 5.6 -0.947 0 54 0.879 0.052
MMS-VALUING-
LABELSUSED 6.9 -2.625 0.049 5.8 -0.942 0.219
CHOOSE-VAR-TYPE-
NUM 182 | -1.044 0.038 16.2 | 0.799 0.044
MMS-VALUING-
DETERMINE-SCALE 53.1 | -0.069 0.007 50.2 | 2.364 0
MMS-VALUING-
LABELSUSED-PLUS2 | 5.9 -1.99 0.063 5.8 -0.805 0.187
TEST-SLOPE 3.3 -2.213 0.131 3.3 0.238 0
CHOOSE-OVERALL-
REL 5.0 -3.175 0.257 5.2 -0.865 0.149
EXTRAPOLATE 1.7 -2.093 0 1.5 0.206 0
CHOOSE-OK-BG 11.5 | -1.708 0.198 114] 0.263 0.215
CHOOSE-X-AXIS-
QUANTITATIVE 4.3 -2.572 0.274 3.2 -0.719 0.314
CHOOSE-Y-AXIS-
QUANTITATIVE 3.7 -2.618 0.018 3.2 -1.884 0.276
MMS-VALUING-
DETERMINE-MIN 6.3 -3.053 0.119 5.8 -1.106 0.139
MMS-VALUING-
DETERMINE-RANGE | 6.3 -1.357 0.147 6.1 0.584 0.196

Generally, we observed that, the LH performed better than the TH when the student
failed to successfully complete an attempted step and subsequently attempted and
succeeded at a different step. As shown in table I, the student unsuccessfully attempted a
step at location “var-Oval-1” (trn # 1 & 2). The student subsequently went to location
“var-1val-17, attempted and succeeded at the new step. While the TH incorrectly blamed
“label x-axis” which is the KC associated with the new step at location “var-1val-17, the
LH more rationally blamed “choose variable” which is the KC that should be associated
with the step at location “var-Oval-1". Because the LH uses location for error attribution,
it correctly assigns blame to the KC associated with the error. TH however, wrongfully
blames the first subsequent KC that the student correctly attempts. Of the 16,291

The Simple Location Heuristic is Better at Predicting Students Changes 79

transactions in our dataset, error transactions recorded were 5,733. Of the latter, the LH
and TH differed on 1,583 (36%) transactions with respect to error attribution choices.

We also found that both the LH and the TH had the tendency to yield the same result
when the student succeeded at a step, even after multiple attempts, prior to attempting
and succeeding at a new step. This was the case 64% of the time.

In table III, average practice opportunity, initial KC difficulties and learning rates are
given for KCs and used to describe learning behavior for each heuristic. For example, for
the KC “CHOOSE-VAR-TYPE-CAT?”, the learning rate (y;) for the LH was more than 3
times that of the TH. Judging by KC initial difficulty (B;), “CHOOSE-VAR-TYPE-CAT”
appeared more difficult for the model of the TH (-1.449) than for the model of the LH
(0.244). The average practice opportunity measured for that skill (6.6), was the same for
each heuristic. The latter means that on the average, each student had approximately 7
opportunities to practice the KC “CHOOSE-VAR-TYPE-CAT”.

From table III, for the most part, KC learning rate was higher for the skills in the
cognitive model of the LH compared to that for the TH. The trend for initial KC
difficulty was in the opposite direction as seen for KCs such as “MMS-VALUING-
DETERMINE-SET-MIN”, “QUANTITATIVE-VALUING-SECOND-BIN”, etc.
Generally, KCs in the cognitive model for TH appeared more difficult to students
initially, when compared to similar KCs in the cognitive model of the LH.

From table II, the mean learning rate for the LH was 0.133(+0.11) which evaluated
higher than that of the TH, 0.09(+0.09). The mean initial KC difficulty for the LH and
TH were 0.08(+1.1) and -1.84(+0.94) respectively. The reason for the latter seems to be
due to more errors being attributed to later opportunities in the TH than the LH. These
results thus illustrate the effects of error attribution.

7. CONCLUSION

In this paper, we investigated the generality of performance of two alternative methods
for making error attribution in intelligent tutoring systems - the simple location heuristic
and the simple temporal heuristic. Our study was carried out in the mathematics domain
using data from a cognitive tutor unit on scatterplot generation and interpretation. In
support of previous results obtained in the physics domain, we found that the simple
location heuristic was better at predicting students’ changes in error rate over time
compared to the simple temporal heuristic. This work shows that simpler, easier-to-
implement methods can be effective in the process of making error attribution.

One observation is that for tutors where the KCs can be determined by the interface
location (or widget) in which an action appears it is likely that the LH will show better
results than the TH. This feature is mostly true of the scatterplot tutor. It is possible that
the TH is better in situations where the different problem subgoals can be associated with
a single location. However, our prior results with a physics data set indicated that even in
such situations the LH may be better. Further research should explore this issue.

We also intend to investigate whether the use of the simple location-based heuristic
may improve on-line student modeling and associated future task selection. The
availability of datasets from the Pittsburgh Science of Learning Center’s ‘DataShop’ (see
http://learnlab.org) will facilitate the process of getting appropriate data.

ACKNOWLEDGEMENTS
We would like to thank Hao Cen for his help with the LFA tool.

80 Adaeze Nwaigwe and Kenneth Koedinger

REFERENCES

ANDERSON, J. R., BELLEZZA & BOYLE, C. F., 1993. The Geometry Tutor and Skill
Acquisition. In Anderson, J. R. (Ed.) Rules of the Mind, Chapter 8. Hillsdale, NJ: Erlbaum.

BAKER R. S., 2005. Designing Intelligent Tutors that Adapt to when Students game the system.
Doctoral Thesis. Human Computer Interaction. School of Computer Science. Carnegie Mellon
University.

BAKER, R.S., CORBETT, A.T., KOEDINGER, K. R., WAGNER A. Z., 2004. Off-Task Behavior
in the Cognitive Tutor Classroom: When Students “Game the System”. Proceedings of ACM
CHI: Computer-Human Interaction, pps. 383-390.

CEN, H., KOEDINGER, K. & JUNKER, B., 2005. Automating Cognitive Model Improvement by
A* Search and Logistic Regression. In: Proceedings of AAAI 2005 Educational Data Mining
Workshop.

CORBETT A.T., ANDERSON, J.R., O’'BRIEN A.T., 1995. Student Modelling in the ACT
Programming Tutor. In: Cognitively Diagnostic Assessment. Hillsdale, NJ: Erlbaum.

DRANEY, K.., PIROLLI, P. & WILSON, M. 1995. A Measurement Model for a Complex
Cognitive Skill. In Cognitively Diagnostic Assessment. Erlbaum, Hillsdale, NJ

HEATHCOTE, A., BROWN, S., & MEWHORT, D. J. K., 2002. The Power Law repealed: The
Case for an Exponential Law of Practice. Psychonomic Bulletin & Review, vol. 7, pps. 185-207.

KOEDINGER, K.R. AND MATHAN, S., 2004. Distinguishing qualitatively different kinds of
learning using log files and learning curves. In: ITS 2004 Log Analysis Workshop, Maceio,
Brazil. pps. 39-46.

MARTIN, B., MITROVIC, T., MATHAN, S., & KOEDINGER, K.R., 2005. On Using Learning
Curves to Evaluate ITS. Automatic and Semi-Automatic Skill Coding With a View Towards
Supporting On-Line Assessment. In: Proceedings of the 12th International Conference on
Artificial Intelligence in Education. Amsterdam, IOS Press.

MATHAN S. & KOEDINGER K., 2005. Fostering the Intelligent Novice: Learning From Errors
With Metacognitive Tutoring Educational Psychologist. 40(4), pps. 257-265.

MITROVIC A. OHLSSON 8., 1990. Evaluation of a Constraint-Based Tutor for a Database
Language. International Journal of Artificial Intelligence in Education. vol. 10, pps. 238-256.

NEWELL, A. & ROSENBLOOM, P., 1981. Mechanisms of Skill Acquisition and the Law of
Practice. In: Anderson J., (ed.): Cognitive Skills and their Acquisition, Erlbaum Hillsdale NJ.

NWAIGWE, A., KOEDINGER, K. ET AL., 2007. Evaluating Alternative Methods for Making
Error Attribution in Intelligent Tutoring Systems. In: Proceedings of the 13th International
Conference on Artificial Intelligence and Education. Los Angeles, CA.

PIROLLI P. & WILSON M. A., 1998. Theory of Measurement of Knowledge Content, Access and
Learning, Psychological Review. vol. 105, 1, pps. 58-82.

VANLEHN, K., LYNCH, C., SCHULTZ, K., SHAPIRO, J. A., SHELBY, R. H.,, TAYLOR, L., ET
AL., 2005: The Andes physics tutoring system: Lessons learned. International Journal of
Artificial Intelligence and Education. 15(3), pps.147-204.

WASSERMAN, L., 2004. All of Statistics: A Concise Course in Statistical Inference. Springer.

Items, skills, and transfer models: which really
matters for student modeling?

Y. GONG AND J. E. BECK
Worcester Polytechnic Institute, U.S.A.

Student modeling is broadly used in educational data mining and intelligent tutoring systems for making
scientific discoveries and for guiding instruction. For both of these goals, having high model accuracy is
important, and researchers have incorporated a variety of features into student models. However, since different
techniques use various features, when evaluating those approaches, we could not easily figure out what is key
for a high predictive accuracy: the model or the features. In this paper, to establish such knowledge, we
performed empirical studies varying which features the models considered such as items, skills, and transfer
models. We found that item difficulty is a better predictor than skill difficulty or student proficiencies on the
transfer model. Moreover, we evaluated two versions of the PFA model; the one with item difficulty resulted in
slightly higher predictive accuracy than the one with skill difficulty. In addition, prior work has shown that
considering student overall proficiencies, not just those thought to be important by the transfer model, works
substantially better on ASSISTments data. However, in this study, we failed to find consistency of this
phenomenon on the data collected from the Cognitive Tutor.

Key Words and Phrases: Performance factors analysis, item difficulty, student performance, predictive accuracy

1. INTRODUCTION

Student modeling has been broadly used in educational data mining and applications of
intelligent tutoring systems (ITS) for discovering scientific truth about student knowledge,
performance, behaviors and motivations, with the goal of leading to a better
understanding of students. A wide array of research has been conducted based on student
modeling, such as research related to “Gaming the system” [2, 10], the impacts of student
non-academic strengths on learning [1, 11], and the effect of item order on student
learning [16]. Furthermore, a good student model is also indispensable for a successful
ITS. Given the effectiveness of ITS [9, 15], findings such as one-to-one tutoring is better
than classroom tutoring [3], and that a step-based computer tutor was not outperformed
by human tutors [7], give us a sense that a reason for an ITS’s success is its ability to
provide individualized tutoring (one-to-one tutoring). Such tutoring relies on the support
of an accurate student model in order to understand students.

Our research interest in this paper lies in student modeling. We simply wish to study
what makes a good student model. There is more than one criterion for judging the
goodness of a student model [21]. In this study, we focus on the student model’s
predictive accuracy. Although student models are frequently evaluated, it can be difficult
to know what aspect is responsible for a success or failure. As a result, knowledge as to
what makes an accurate student model is insufficient. Our goal in this study is to use the
same student modeling framework for different evaluations, to construct guidance about
what features (student model components) are important for designing an accurate
student model.

There are many potential features that can inform a student model. In this study,
items, skills and transfer models were chosen for evaluation, as those are the most
commonly used components across different student modeling techniques. In addition, it
is also meaningful to examine complete student models constructed with those features,
as knowledge about whether and how much multiple features can contribute higher
accuracy is also significant. Therefore, we evaluated a series of student models.

1.1. STUDENT MODELING FRAMEWORK

Authors’ addresses: {Y. Gong, J. E. Beck}, Computer Science Department, Worcester Polytechnic Institute,
U.S.A. E-mail: {ygong, josephbeck}@wpi.edu.

82 Yue Gong and Joseph Beck

Performance Factors Analysis (PFA) is a student modeling approach proposed by Pavlik,
et al. in 2009 [19]. It takes the form of logistic regression with student performance as the
dependent variable. We chose PFA as our framework as, relative to Bayesian networks,
logistic regression is more flexible to incorporate more (or different) predictors.

It is particularly important to note that there are two student models, both of which
were named as Performance Factors Analysis. Both models were designed based on the
reconfigurations of Learning Factors Analysis [4] by dropping student variable and
considering a student’s prior correct and incorrect performances. The two models vary in
their independent variables. The model presented in [20] estimates item difficulty (i.e.
one parameter per question); the other [19] estimates skill difficulty (i.e. one parameter
per skill. Note that in the original paper [19], the authors used the term “knowledge
components (KC)” while we use the term “skills”). In this paper, we refer to the first
model as the PFA-item model; the other is represented as the PFA-skill model.

m(i, j € required _ skills,q € questions,s,) = f, + Z s+ P k) (1) PFA-item

Jerequired _ skills

m(i, j € required _ skills,s,) = Z B, +rs,+P,.1.) (2) PFA-skill

Jjerequired _skills

The ms in Equation 1 and 2 are logits (i.e., are transformed by ¢*/(1+¢”) to generate a
probability). They represent the likelihood of student i generating a correct response to an
item. In the equations, s;; and f; ; are two observed variables, representing the numbers of
the prior successful and failed practices done by student i on skill j . The corresponding
two coefficients (); and p;) are estimated to reflect the effects of a prior correct response
and a prior incorrect response of skill j. Rather than considering all of the skills in the
domain, the PFA model focuses on just those skills required to solve the problem.

The PFA-item model estimates a parameter (f,) for each question representing its
difficulty. In the PFA-skill model, as seen in Equation 2, the § parameter has a subscript
of j, indicating that it captures the difficulty of a skill. Also, it is moved to the inside of
the summation part to incorporate multiple skills, i.e., in PFA-skill an item’s difficulty is
the sum of its skills’ difficulties.

1.2. EXPERIMENTS

The data used in this study are a small portion of the algebra-2005-2006 development
data set for the KDD cup competition 2010 from the Cognitive Algebra Tutor. Since the
original data set is very large, to form our working data set, we randomly selected 74
students and their performance records, 94,585 steps completed by the students. We don’t
have access to the transfer model used in this data set. Thus for determining which skills
are required in a question, we directly used the skill labels given in the data. There are a
number of questions that do not specify which skills are required to solve them. For those
questions, we removed them from the data set. Therefore, in the remaining data set, there
are 117 algebra skills, including: Addition/Subtraction, Remove constant, Using simple
numbers, Using small numbers, etc.

In this study, we did 4-fold crossvalidation at the level of students, and tested the
models on held-out students. We chose to hold out at the student level since that results in
a more independent test set. We focused on a student model’s accuracy in predicting
those held-out students’ performances. Predictive accuracy is the measure of how well
the instantiated model fits the test data. We used two metrics to examine the model’s
predictive performance on the test data set: Efron's R* and AUC of ROC curve (Area
under the curve of Receiver Operating Characteristic). Efron's R? is a measure of how

Items, skills, and transfer models: which really matters for student modeling? 83

much error the model makes in predicting each data point, compared to a model that uses
the mean of the those data to predict. A 0 indicates the model does no better than simply
predicting the mean; a 1 indicates prefect prediction. A negative value of Efron’s R?
indicates that the model has more error than a model that just simply guesses the mean
for every prediction. AUC of the ROC curve evaluates the model’s performance on
classifying the target variable which has two categories. In our case, it measures the
model’s ability to differentiate students’ positive and negative responses. AUC of 0.5 is
the baseline, which indicates random prediction.

In the result section, we report the comparative results by providing the R* and AUC
measurements across all four folds. To test the differences of the means, we also
performed paired two-tailed t tests using the results from the crossvalidation with degrees
of freedom of N-1, where N is the number of folds (i.e. df=3).

2. STUDENT MODEL COMPONENTS
Many student model components could be important for enabling a student model to
achieve high accuracy in predicting student performance.

Student proficiencies on required skills are widely used in many student modeling
techniques [4, 5, 19, 20]. Since the transfer model is responsible for providing which
skills are required to solve a problem, we refer to “using student proficiencies on required
skills to predict” as “using transfer models to predict”. The transfer model is often treated
as the primary component in student modeling, so is the first component we considered.

Our question was simple: how much variance do transfer models account for?
Specifically, how much can a model’s predictive accuracy benefit from observing a
student’s prior performances on required skills? To answer this question, we designed a
model that solely considers student proficiencies on the transfer model. We accomplished
the model on the basis of the PFA-item model by removing the predictor, item difficulty
(B,), from Equation 1, for the reason that item difficulty is not related to the transfer
model. Therefore, the new model has student performances on a series of question as the
single predictor, so the only variable predicting the possibility of a student’s correct is his
proficiencies on required skills.

Item difficulty (question difficulty) has been less studied in student modeling, but is
used in Item Response Theory (IRT) [22], a generally effective technique for assessing
students [8, 22] such as for computer-based testing [6, 14]. Therefore, it is reasonable to
infer that item difficulty is an important predictor of student performance. Item difficulty
hasn’t been widely used in student modeling until recently when the PFA-item model
was proposed [20], as well being integrated into Knowledge Tracing [5] in order to better
predict student performance [18]. Hence, in student modeling, there were few attempts
for exploring the ability of item difficulty to accurately predict student performance.

Similar to how we test the effect of the transfer model in isolation, in order to test the
effect of item difficulty we modify the PFA-item model by dropping the part
corresponding to student proficiencies (the part inside the X in Equation 1). So the model
only has the parameter f,. Since the model has excluded other features, it can be used to
discover the pure ability of item difficulty to contribute the model’s predictive accuracy.

The last component we are interested to see is skill, rather than item, difficulty. It is
also not commonly used, although Learning Factors Analysis [4] uses skill difficulty in
the model. Since the PFA-skill model was reconfigured based on the LFA model, it
inherits this feature. To examine skill difficulty, we built a model based on the PFA-skill
model (Equation 2) and removed the part corresponding to student proficiencies. Only
the skill difficulty parameter (B;) after the sigma sign is left to capture the effect of the
required skills for the question.

84 Yue Gong and Joseph Beck

2.1. RESULTS
In this section, we examine the predictive power provided by different student model
components, including item difficulty, skill difficulty and student proficiencies on the
skills in the transfer model. Since each of our models only consider a single feature, the
results of testing the model can be attributed to that component.

With respect to modeling item difficulty, we were forced to make a compromise when
designing the models. Due to a characteristic of the Cognitive Tutor data, it is not
sensible to use the question’s identity. In the Cognitive Tutor, a question can have
multiple steps, each of which typically requires different skills. Therefore, in the
Cognitive Tutor, if a question identity occurs multiple times in the student performance
records, we cannot simply assume that they concern the same question. For example, a
record might be the first step of a question, while another record with the same question
identity might be the tenth step of the question. The difficulties of the two steps are
probably not the same as they involve different skills and different aspects of the question.
For modeling skill difficulty, there is no difficulty, but it presents clear problems for
modeling item difficulty. A solution is to build a new question identity combining the
original question identity and the skills required in a step [18]. For instance, if the
original question id is Q1 and the first step of the question requires “Addition”, we can
build a new question id, Q1-Addition; while if the tenth step requires “Using small
numbers”, we have another question id, QI1-UsingSmallNumbers. However, this way
results in a very large number of question identities, over 8000 in our data, and it causes a
severe computational problem for logistic regression and an inability to fit the model
within SPSS, even with increased memory. Therefore, we made a pragmatic decision:
for each step, we represented its difficulty using the summation of the difficulty of the
original question and the difficulties of the required skills in that step. In this way, the
computational cost is greatly reduced and an approximate difficulty for the step can be
estimated. The corresponding equation is shown Equation 3.

The
m(i, j,q € questions,s, f) = f, + Z Bty +p) (3) computationally
Jjerequired _skills ‘ Viable method

Table I shows the comparative results of models, each of which was fit by a single
student model component. First, we found that compared to the other student model
components, the model using item difficulty results in higher predictive accuracy and the
differences in the means are significant. In the comparison of item difficulty vs. skill
difficulty, the t-tests resulted in p=0.02 in R* and p=0.005 in AUC. In the comparison
between the model using item difficulty and the model using transfer models, the t-tests
yielded p=0.006 in R* and p=0.48 in AUC. The p-value in AUC suggests that there is not
enough evidence to show that the two models have different classification abilities for the
student performances, while the predictive error made by the model using item difficulty
is significantly smaller than its counterpart.

Table I Comparative performance on unseen students

Student model component R? AUC
Item difficulty 0.149 0.739
Skill difficulty 0.139 0.720
Student proficiencies on the transfer model 0.132 0.738

The results concerning item difficulty suggest that contrary to the traditional belief
that student proficiencies on the transfer model (required skills) are the most important

Items, skills, and transfer models: which really matters for student modeling? 85

predictor, instead item difficulty is an even more powerful predictor of student
performance. This finding is also consistent with the finding in the study using the data
gathered from ASSISTments [13], suggesting that item difficulty can cover more
variance of student performance is a general phenomenon across different computer
tutors and different populations.

Table I also shows the results of comparing skill difficulty and student proficiencies
on the transfer model. The results of the two metrics do not agree with each other, but
both differences are found to be reliable: p=0.03 in R* and p=0.02 in AUC; therefore, it is
still uncertain about whether skill difficulty or student proficiency is more important for
predicting student performance.

3. STUDENT MODELS

Aside from getting knowledge about how components perform in isolation, it is also
important to understand the predictive accuracy of complete models using multiple
features, such as the full PFA-item model (Equation 1). It makes sense to examine a
complete model as a whole for the following two reasons. First, from a scientific point of
view, it is interesting to find out whether different features account for unique variation in
predicting student behavior, or whether one feature largely subsumes another. Second,
from a practical point of view, knowing whether adding a certain feature is a positive step
for improving the model’s predictive accuracy helps design a compact, yet effective
student model.

3.1. THE TWO VERSIONS OF THE PFA MODEL
We examine the two PFA models, PFA-item and PFA-skill, because direct comparisons
between these two have never been performed.

When the PFA-skill model was presented, the designers of the model, using data from
Cognitive Tutors, performed evaluations against a well-established student model,
Knowledge Tracing, and found that on the student population of Cognitive Tutor, the
PFA-skill model is somewhat superior to KT [19]. On the other hand, our prior work
applied the PFA-item model to another tutor, ASSISTments, and found that the PFA-item
model was markedly superior to KT [12]. Since there have been no studies comparing
PFA-item and PFA-skill at the same time and on the same population, we are unsure
about the reason for this difference of results.

3.2. A VARIANT OF THE PFA MODEL: THE OVERALL PROFICIENCIES
MODEL

We proposed the overall proficiencies model, a variant of the PFA-item model, in prior
work [13]. This model incorporates the idea that student proficiencies on all skills, not
just those the transfer model thinks are required for a particular item, could be important
for better predicting student performance on the item. Prior work found that this model
performed significantly better than the PFA-item model on ASSISTments data [13]. In
this study, we wanted to extend this model to another tutoring environment, Cognitive
Tutor, and another population, students of Cognitive Tutor. Since there are many
differences between the two systems, we aimed to use this study to better understand the
overall proficiencies model.

We had two hypotheses to support the reasonableness of the overall proficiencies
model. The first is that the assumption of using transfer models to predict might not
always hold, as transfer models assume that only student proficiencies on the required
skills have impact on question solving. In other words, student proficiencies on non-
required skills are independent of student performance on the problem. However, it is not
always true for all ITSs, perhaps due to the possibility that there are relationships
between required skills and non-required skills, which are not well captured by the

86 Yue Gong and Joseph Beck

transfer model; or perhaps problems involve a broader range of skills than the subject
matter expert believed and encoded in the transfer model. Second, since in some student
modeling techniques, student ability is viewed as a factor helpful for producing higher
model accuracy [4, 17], we assume that a student’s overall proficiencies can be treated as
a sign to reflect the student’s overall ability. Thus using those is able to provide the
model more information about the student, so as to enable the model to reach higher
predictive accuracy.

The overall proficiencies model is built based on the PFA-item model. We modified
the PFA-item model’s predictors by replacing REQUIRED skills with ALL skills the

subscript on the X). The equation is shown as follows.
The overall

m(i, j € ALL _skills,q € questions, s,) = B, + z (78, +P i) “4) proficiencies
JjeALL _skills model
3.3. RESULTS

In this section, we compare student models which consider a selected set of student
model components. Table II shows the mean performance and per-fold performance for
each model and metric. Note that both PFA-item and PFA-skill both outperform the item
difficulty model in Table I. Since the transfer model is needed to train both of the PFA
models (to get the success and failure counts on each required skill), there is evidence
that transfer models are in fact helpful for student modeling.

Table I Model performance on test data

PFA-item PFA-skill Overall proficiencies
R’ AUC R’ AUC R’ AUC
Fold 1 0.194 0.768 0.181 0.756 0.090 0.694
Fold 2 0.177 0.762 0.179 0.760 0.035 0.709
Fold 3 0.144 0.756 0.142 0.748 -0.178 0.674
Fold 4 0.149 0.746 0.143 0.740 -0.082 0.660
Mean 0.166 0.758 0.161 0.751 -0.034 0.684

The first comparison is between the PFA-item model and the PFA-skill model. We
noticed that both models’ predictive accuracies vary considerably across 4 folds. This
similar trend is shown in both R* and AUC. In the PFA-item model, the R* values vary
from as large as 19.4% to as small as 14.4% (standard deviation of 0.024 across folds).
Prior study has applied the PFA-item model to ASSISTments data, but found less
variation (standard deviation of 0.008 across folds). This finding suggests that across
students, student performances of this data set of Cognitive Tutor have larger variance
than that of ASSISTments, which is possibly because that there were only 18 or 19
students in each fold, and thus potentially making the model’s performance unstable.

Second, between the PFA-item and the PFA-skill models, the means of the two
measurements suggest that the PFA-item model seems to outperform the PFA-skill model,
but the p-value of R? is 0.22, while that of AUC is 0.051. The p value of 0.22 indicates
that when comparing the two models in terms of their abilities to minimize error during
predictions, we were not able to reject the null hypothesis that the two models achieved
different predictive accuracy. In the classification ability, the PFA-item model is
marginally reliably better than the PFA-skill model, suggested by p=0.051 in AUC.

Third, it is worth pointing out that on this data set, the PFA-item model produces
many more parameters than the PFA-skill model. Since we used a compromised
approach to implement the PFA-item model, there are around 950 more parameters (each

Items, skills, and transfer models: which really matters for student modeling? 87

per original question identity). If we implemented the model in its original way, it would
have around 8000+ parameters (each per created question identity). As a consequence of
having additional parameters, the PFA-item model is prone to overfitting. To demonstrate
overfitting, in Table IIT we report the R? on the training data for each fold. For each
model, we compared the R” values on training data with the R values on test data. We
found that compared to the PFA-skill model, the PFA-item model’s performance dropped
considerably. Given that the two models performed closely on the test data, the better
performance on training data of the PFA-item model did not transfer to test data,
suggesting overfitting occurred. However, perhaps with a larger dataset the models’
training- and test-set performances would be more similar.

Table III Model performance (R?) on training data

PFA-item PFA-skill Overall proficiencies
Fold 1 0.229 0.185 0.234
Fold 2 0.284 0.241 0.286
Fold 3 0.231 0.187 0.232
Fold 4 0.237 0.192 0.240
Mean 0.245 0.201 0.248

In this study, we also applied the overall proficiencies model on the Cognitive Tutor
data. Interestingly, the model did best in all four folds on the training data, shown in the
last column of Table III, but performed the worst on the test data, shown in the last two
columns of Table II. Furthermore, the results in Table II have more variability than the
PFA-item and PFA-skill models, indicating that the overall proficiencies model
performed even more unstably on different students. The results suggest that the overall
proficiencies model on the Cognitive Tutor data has serious overfitting problems, and is
not suitable for their student records, at least with amount of data used in this study. More
discussions about the potential reasons are presented in the section of future work.

4. CONTRIBUTIONS
This study performed explorations of student modeling and contributed basic knowledge
to the community.

First, we provided insights in terms of what student model components matter for
building an accurate student model of student performance. Different student model
components have been used in various student modeling techniques [4, 5, 13, 19, 20], yet
thorough inspections of the effectiveness of those components on producing accurate
predictions were missing. As a replication and extension of our prior work [13], this work
considered one more student model component, skill difficulty, and also tested student
model components on another population: students of Cognitive Tutor. Similar to our
previous finding, item difficulty is more accurate for predicting student performance than
student proficiencies on skills related to the problem. The finding is important, especially
given that student proficiencies on related skills are widely used in almost all well-
established student modeling techniques. However, using item difficulty can result in a
painful model fitting process, depending on the number of items in the data set. Take
PFA as example, logistic regression is particularly time-consuming in the presence of a
large number of predictors. Therefore, we suggest that although item difficulty works
better for forming an accurate student model, decisions should be made based on concrete
characteristics of the data, especially given that, for the Cognitive Tutor data, item
difficulty only slightly outperformed skill difficulty.

Second, Performance Factors Analysis refers to two different models. In this paper we
differentiated them as the PFA-item model and the PFA-skill model. The PFA-skill

88 Yue Gong and Joseph Beck

model was evaluated against KT and found to be somewhat better [19]; while the PFA-
item model was compared with KT as well, but shown with substantially better
performance [12]. The direct comparison between the two models has never been
performed, leading to uncertainty about their relative performance. In this study, we
found that on the Cognitive Tutor data, the PFA-skill model is slightly worse than the
PFA-item model, yet with much fewer parameters estimated. The PFA-item model by
contrast, for our data set, estimates a large number of parameters. Even with the restricted
to be computationally tractable method, it still produced 900+ more parameters, which
resulted in a relative 3% improvement. In addition, the PFA-item model is more prone to
overfitting. Our results suggest that the PFA-skill model is a good option for predicting
student performance data similar to the Cognitive Tutor data.

Finally, we proposed a variant of the PFA model, the overall proficiencies model, in
our prior work and showed that the model works substantially better than PFA-item on
ASSISTments data [13]. Therefore, applying the model to data from a different tutor
environment and a different student population helps achieve a deeper understanding of
this new model. We found that the similar trend was not observed on Cognitive Tutor
data, as the overall proficiencies model performed poorly on the test data, indicating that
the model cannot be generalized on those held-out students. The results suggest the
overall proficiencies model does not universally result in a stronger model fit. We have a
number of hypotheses for what characteristics would be, so the detailed conditions that
make the model perform better are still uncertain for us.

5. FUTURE WORK AND CONCLUSIONS
This study creates several unanswered questions that motivate further research work.

To establish the fundamental knowledge with respect to what component matters for a
student model, broader inspections of the components involving different experimental
populations and different tutors are still needed, especially given the uncertainty of
whether skill difficulty and student proficiencies on the transfer model is able to produce
more accurate prediction. In addition, since ASSISTments has several different features
from Cognitive Tutor in its pedagogical policies, transfer models, student population, etc.,
it is meaningful to test the PFA-skill model on the ASSISTments data to see whether it is
comparable to the PFA-item model, or whether the differences between the tutors cause
one model to outperform the other.

We have no clear answers to explain what major differences between the Cognitive
Tutor data and the ASSISTments data cause so different predictive performances of the
overall proficiencies model. As we hypothesized in prior study [13], there were at least
two potential reasons for the success of the model.

First, the transfer model used in ASSISTments might not be specific enough to
explicitly designate all associations between a question and its required skills. Thus,
student proficiencies on non-required skills are not independent of the proficiencies on
required ones. In other words, there might be relationships between required and non-
required skills. Given that the model performed poorly on the Cognitive Tutor data, we
think it is due to the following two conditions of the Algebra Cognitive Tutor.

1. The comprehensiveness and correctness of the transfer model.

In fact, the domain expert of ASSISTments intensively encoded a smaller range of
skills in the transfer model, assumed that the prerequisite skills are required by default,
and thus did not indicate them in the transfer model. Therefore, in ASSISTments, if a
question requires Pythagorean Theorem, it is highly likely that it also requires equation
solving and square root, but the relationships are not captured by the transfer model. The
Cognitive Tutor by contrast, has much more meticulous representation. For example, it

Items, skills, and transfer models: which really matters for student modeling? 89

has skills such as “Remove constant” in equation solving, “Remove coefficient” in
equation solving, “Entering a given”, etc. Those skills are all hidden beneath a single skill
“equation solving” in ASSISTments. Specifically, there are 104 mathematical skills in
ASSISTments, covering five strands of middle school Math: algebra, geometry,
measurement, number sense and data analysis. By contrast, the Cognitive Tutor has 110
skills just for algebra. The comprehensive transfer model of Cognitive Tutor might be a
reason to cause the overall proficiencies model to lose its advantage to deal with
implicitly existing relationships between required and non-required skills. An additional
factor is the degree of knowledge engineering. The Cognitive Tutors’ transfer models
have been refined over years of experiments, while ASSISTments transfer models were
made similarly to most ITS: a subject-matter expert designed them. Although we lack
data, we suspect the Cognitive Tutor’s transfer models are more accurate, and this factor
could certainly impact which student modeling approach works better.

2. The way of tutoring

In ASSISTments, a student enters a single answer to an item, and only has to answer
subsidiary “scaffolding” questions in the event the student answers a main question
incorrectly. In contrast, in the Cognitive Tutor, no scaffolding questions (steps) are
allowed to be skipped. A main question in ASSISTments typically asks higher abstract-
level skills, i.e. ask all detailed skills at once; while its scaffolding questions test more
specific skills. Thus, flexibly accessing to scaffolding questions causes the model to miss
chances to observe student performance associated with fine-grained skills. Consider that
if a student makes a successful practice on a skill, it is likely that the student’s knowledge
on many other skills benefits from it as well, and just simply we don’t have the chance to
observe that. Contrariwise, Cognitive Tutor forces a question to be broken down into
steps, so it is not possible for the model to miss any observations of a student practicing
on any skills; a correct response of a skill probably has little impact on other skills.

Second, since scaffolding questions are not always used, there were fewer
observations of students solving problems that test individual skills in the ASSISTments
tutor [13]. Therefore, the student overall proficiencies provides useful evidence to the
model to enable the model to more accurately predict. For the Cognitive Tutor data used
in this study, due to solving each step being mandatory, there were many more
observations for each skill. In addition, within the Cognitive Tutor there was more
intensive usage by students. Specifically, for fine-grained algebra skills of the Cognitive
Tutor, there were approximately ~100 observations per student per skill; in ASSISTments,
with its 104 coarser-grained skills, there were on average fewer than 10 observations per
student per skill. Therefore, for the Cognitive Tutor data, dense evidence for a student’s
performance on those fine-grained skills might also be a reason for the poor performance
of the overall proficiencies.

In summary, this study explored what matters for a student model in terms of
producing higher accuracy in predicting student performance. Consistent with our prior
finding, for predictive accuracy. item difficulty outperformers transfer models, the most
widely used student model components, as well as skill difficulty. The comparisons
between the PFA-item and the PFA-skill models brought up an insight that the PFA-skill
model is slightly worse than the PFA-item model, but has fewer parameters, a smaller
problem of overfitting, and is much more computationally tractable. We extended the
overall proficiencies model to the data collected from Cognitive Tutor and found it
performed worse than the PFA-item model, suggesting that the overall proficiencies
model works well only under certain conditions of an ITS, an area that needs additional
exploration.

90 Yue Gong and Joseph Beck
ACKNOWLEDGEMENTS
For the full list of over a dozen funders please
see http://www.webcitation.org/5xp605SMwY.
REFERENCES

[1] ARROYO, L., and WOOLF, B. 2005. Inferring Learning and Attitudes from a Bayesian Network of Log File
Data. Proceedings of the 12th International Conference on Artificial Intelligence in Education. pp.33-40.

[2] Baker, R.S., Corbett, A.T. and Koedinger, K.R. (2004) Detecting Student Misuse of Intelligent Tutoring
Systems. Proceedings of the 7th International Conference on Intelligent Tutoring Systems, 531-540.

[3] Bloom, B.S.: The 2 sigma problem: The search for methods of group instruction as effective as one-to-one
tutoring. Educational Researcher 13, 4-16 (1984)

[4] Cen, H., Koedinger, K. and Junker, B.: Learning Factors Analysis - A General Method for Cognitive Model
Evaluation and Improvement. Proceedings of the 8th International Conference on Intelligent Tutoring
Systems. pp. 164-175. (2006)

[5] Corbett, A. & Anderson, J. (1995) Knowledge tracing: Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction. 4: pp. 253-278.

[6] www.ets.org

[7] Evens, M., Michael, J.: One-on-one Tutoring By Humans and Machines. Erlbaum, Mahwah (2006)

[8] Feng, M., Heffernan, N.T., & Koedinger, K.R. (2009). Addressing the assessment challenge in an Intelligent
Tutoring System that tutors as it assesses. The Journal of User Modeling and User-Adapted Interaction. Vol
19: p243-266.

[9] Feng, M., Heffernan, N. & Beck, J.(2009) Using Learning Decomposition to Analyze Instructional
Effectiveness in the ASSISTment System. Proceedings of the 2009 Artificial Intelligence in Education
Conference. 10S Press. pp. 523-530.

[10] Gong, Y., Beck, J., Heffernan, N. T.& Forbes-Summers, E. (2010)The impact of gaming (?) on learning at
the fine-grained level. In Aleven, V., Kay, J & Mostow, J. (Eds) Proceedings of the 10th International
Conference on Intelligent Tutoring Systems (ITS2010) Part 1. Springer. Pages 194-203.

[11] Gong, Y., Rai, D. Beck, J. E. & Heffernan, N. T. (2009) Does Self-Discipline impact students’ knowledge
and learning? In Barnes, Desmarais, Romero & Ventura (Eds) Proc. of the 2ndInternational Conference on
Educational Data Mining. Pp. 61-70. ISBN: 978-84-613-2308-1.

[12] Gong, Y, Beck, J. E., Heffernan, N. T. (2010) How to Construct More Accurate Student
Models: Comparing and Optimizing Knowledge Tracing and Performance Factors Analysis. International
Journal of Artificial Intelligence in Education. Accepted, 2010.

[13] Gong, Y., Beck,J. E. (Accepted) Looking beyond transfer models: finding other sources of power for
student models,. Accepted to the 19th International Conference on User Modeling, Adaptation and
Personalization. Girona, Spain.

[14] www.grockit.com

[15] Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school
in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

[16] Pardos, Z.A., Heffernan, N.T. (2009). Determining the Significance of Item Order In Randomized Problem
Sets. In Barnes, Desmarais, Romero & Ventura (Eds) Proc. of the 2nd International Conference on
Educational Data Mining. pp. 111-120. ISBN: 978-84-613-2308-1

[17] Pardos, Z. A., Heffernan, N. T. Modeling Individualization in a Bayesian Networks Implementation of
Knowledge Tracing. The 18th Proceedings of the International Conference on User Modeling, Adaptation
and Personalization. (2010)

[18] Pardos, Z. A., Heffernan, N. T. (Accepted) KT-IDEM: Introducing Item Difficulty to the Knowledge
Tracing Model. Accepted to the 19th International Conference on User Modeling, Adaptation and
Personalization. Girona, Spain.

[19] Pavlik, P. 1., Cen, H. & Koedinger, K. (2009) Performance Factors Analysis - A New Alternative to
Knowledge. Proceedings of the 14th International Conference on Artificial Intelligence in Education,
Brighton, UK, pp. 531-538.

[20] Pavlik, P. I., Cen, H., Koedinger, K. : Learning Factors Transfer Analysis: Using Learning Curve Analysis
to Automatically Generate Domain Models. Proceedings of the 2rd International Conference on Educational
Data Mining. pp.121-130. (2009)

[21] Rai, D, Gong, Y, Beck, J. E. : Using Dirichlet priors to improve model parameter plausibility. Proceedings
of the 2nd International Conference on Educational Data Mining, Cordoba, Spain, pp141-148.2009

[22] van der Linden, & W. J., & Hambleton, R. K. (eds.) (1997). Handbook of modern item response theory.
New York, NY: Springer Verlag.

Avoiding Problem Selection Thrashing with
Conjunctive Knowledge Tracing

K. R. KOEDINGER, P. I. PAVLIK JR., J. STAMPER,
Carnegie Mellon University, United States

T. NIXON, AnD S. RITTER
Carnegie Learning Inc., United States

One function of a student model in tutoring systems is to select future tasks that will best meet student needs. If
the inference procedure that updates the model is inaccurate, the system may select non-optimal tasks for
enhancing students’ learning. Poor selection may arise when the model assumes multiple knowledge
components are required for a single correct student behavior. When the student makes an error, a deliberately
simple model update procedure uniformly reduces the probability of all components even though just one may
be to blame. Until now, we have had no evidence that this simple approach has any bad consequences for
students. We present such evidence. We observed problem selection thrashing in analysis of log data from a
tutor designed to adaptively fade (or reintroduce) instructional scaffolding based on student performance. We
describe a conjunctive knowledge tracing approach, based on techniques from Bayesian networks and
psychometrics, and show how it may alleviate thrashing. By applying this approach to the log data, we show
that a third (441 of 1370) of the problems students were assigned may have been unnecessary.

Key Words and Phrases: Knowledge tracing, tutor log data analysis, Bayesian inference, blame assignment

1. INTRODUCTION

While educational data mining is often applied to discover patterns of students learning in
data collected from instructional software, educational data mining can also be useful for
identifying weaknesses in the tutoring systems that generated the data. This work
presents an example of such identification revealed from analysis of the data and
provides a detailed remedy based on Bayesian inference.

Student modeling depends on an accurate estimate of student knowledge to make
effective instructional decisions. Making accurate inferences about what students know is
challenging in situations where multiple knowledge components (skills, concepts, etc.)
must be brought to bear, but where there is only one observation of student performance.
If the student performs correctly, the credit assignment is straightforward. All the
components get credit, because we have positive evidence that the student knows all the
required components. However, if the student performs incorrectly, it is not necessarily
appropriate to blame all the components. Any one or more of the components could be at
fault. Determining which ones to blame is not straightforward. The Bayesian network
[Millan et al. 2001] and psychometrics [Junker and Sijtsma 2001] literatures indicate how
probability theory can be applied to address this problem. In this paper, we show how
these ideas can be combined with Bayesian Knowledge Tracing [Corbett and Anderson
1995] to produce a “conjunctive knowledge tracing” approach.

Consider a simple example to illustrate the blame assignment problem. Imagine a
tutor for teaching children to evaluate simple arithmetic expressions like “3*4+5”. The
student model could have knowledge components for each mathematical operator:
addition, subtraction, multiplication, and division. The problem “3*4+5” requires both
multiplication and addition (we say “problem” here, but this argument applies more
generally to any “step” in a problem solution that is performed as a separate observable
action). If a student gets this problem step correct, we have evidence that they know both

Authors’ addresses: K. R. Koedinger, Human Computer Interaction Institute, Carnegie Mellon U., Pittsburgh,
PA,. Email: koedinger@cmu.edu; P. Pavlik Jr, HCII, CMU, Email: ppavlik@andrew.cmu.edu; J. Stamper, HCII,
CMU, Email: jstamper@cs.cmu.edu; T. Nixon, Carnegie Learning Inc., Pittsburgh, Email:
tnixon@carnegielearning.com; S. Ritter, Carnegie Learning Inc. Email: sritter@carnegielearning.com.

92 Kenneth Koedinger et al.

the multiplication and addition components. If the student is incorrect, it could be that the
student does not know multiplication and does not know addition, but it is also possible
that the student knows addition but not multiplication or even multiplication but not
addition. Consider the case where we have evidence from previous problems that the
student is near mastery on addition, but has been struggling with multiplication. For
example, the student has been successful on most problem steps that involve addition
alone, like “14+3”, but has struggled on problems that involve multiplication alone, like
“4*8”. In such a case, if a student makes an error on “3*4+5”, it is less likely to be a
failure of addition and more likely a failure of multiplication. That is, the student is less
likely to have been wrong because of not knowing addition and more likely to have been
wrong because of not knowing multiplication.

In such a case, it does not seem appropriate to reduce the probability that the student
knows addition as much as we would reduce the probability that the student knows
multiplication. Nevertheless, equal blame assignment is simpler and was implemented as
part of the original development kit for Cognitive Tutors [Corbett and Anderson 1995]
and is currently used in practice in the widely distributed Carnegie Learning Cognitive
Tutors [Ritter et al. 2007]. We pursue the problem of assigning blame in proportion to
how likely it is that a knowledge component caused the error. Bayesian analysis provides
a principled solution [cf. Millan et al. 2001, Junker and Sijtsma 2001].

We want a solution that not only works for two knowledge components (KCs) in
combination, but one that generalizes to multiple KCs. For instance, in a harder problem
step like 8-3*6, the student model might have two more KCs like “following order of
operations” and “dealing with negative numbers”. In this case, we want to distribute the
blame appropriately across all four KCs depending on prior estimates of the KC
difficulties. KCs with a higher prior probability of being known should receive less blame
than KCs with lower probability. Pardos, Heffernan and Ruiz discuss this multiple-KC
problem [Pardos et al. 2008]. Their proposed solution is to use additional diagnostic
follow-up questions to determine the incorrect KC, and ignore the initial incorrect
response to the question as a whole. Similarly, Cognitive Tutor interfaces are typically
engineered so that correctness data on multiple individual steps in a problem solution
strategy are available [Corbett and Anderson 1995]. However, in both approaches, the
fine-grained diagnostic questions or steps (call them “scaffolds”) still sometimes have
multiple KCs associated with them. Perhaps more importantly, in situations when this
scaffolding is faded and a full question is given, neither approach provides an integrated
diagnosis of the knowledge needed both for the relevant steps and for composing the
steps together [Heffernan and Koedinger 1997]. A more elegant solution would be useful.

2. REVIEW OF KNOWLEDGE TRACING

Knowledge tracing is the student model update procedure used in Cognitive Tutors
[Corbett and Anderson 1992]. For each knowledge component (KC), there is a two state
hidden Markov model wherein there is a probability that the student is initially in either
the known state (we use K; to represent this probability for “knowing” KC; or Know-
KC;) or the unknown state (1-K;). There are three other parameters per KC: a slip
probability (S) that a student will be incorrect even though they know the KC, a guess
probability (G) that a student will be correct even though they do not know the KC, and a
learning transition probability (T) that the student will learn at a particular tutoring
opportunity and thus transition from the unknown to the known state. Because the
challenge of the multiple-KC problem is in blame assignment, we only review here how
the probability the student knows a KC is updated after an error observation (see Reye
[1998] for a complete set of equations for knowledge tracing and related alternatives).

Avoiding Problem Selection Thrashing with Conjunctive Knowledge Tracing 93

P(Know-KC, |Eror) = P(ErrorlKnow-KC;) x P(Know-KC;) | P(Errop)
- s x K, / K *S+(1—K)*(1—G) (1)

The simplistic generalization of Equation 1 to the case where multiple KCs are
involved on an incorrect step is to update each KC in the same way, that is, all required
components are fully and equally blamed.

Table 1. Example Consequences of Alternative Knowledge Tracing (KT) Approaches
Knowledge Estimates
KCs Required Standard KT Conjunctive KT
Step Add Mult Correct Add Mult Add Mult
0.960 0300 0.960 0.300

3*4+5 1 1 0 0.700 0.270 0.955 0.297
6+3 1 0 1 0.938 0.270 0.993 0.297
7+4 1 0 1 0.990 0.270 0.999 0.297
4*7+3 1 1 0 0.893 0.267 0.999 0.287

Table I illustrates the results of standard knowledge tracing (see Standard KT
columns) for a situation like the one described above. This simplified example is intended
to clarify the process and consequences of the simplistic rule for blame, but, as we
describe below, this example has the essential character of actual student data collected
by an intelligent tutor in school use. The example assumes the student has mastered the
knowledge component Add (K; = .96) but not Multiply (K, = .3). The probabilities of
slipping, guessing, and learning parameters are set at 0.05, 0.2, and 0.25, respectively, for
both KCs in this example. When a student makes an error on a problem step involving
both Add and Multiply, like “3*4+5”, the estimates of knowing Add and Multiply are
updated as follows. The estimate for Add (K,) is updated according the formula above
(.05%.96 / [.96*.05 + (1-.96)*(1-.2)]) to be 0.6. Knowledge tracing has a Markov property
such that KCs have a probability of transitioning from the unknown state to the known
state, that is, of being learned at each opportunity to learn. The transition probability in
this example is 0.25 and when we apply it (.6 + (1-.6)*.25) we get a new value for K, =
0.7. The analogous computations yield a new value for the Multiply, K, = 0.27.

The key point is that the Add KC drops significantly, to 0.70 — exactly as much as if
the student had made an error on a problem step involving addition only (like 5+7). A
sensible response of an intelligent tutor to this updated student model is to help the
student get Add back up to mastery (a .95 threshold is used in Cognitive Tutors) by
giving the student further practice (and as-needed instruction) on a problem involving
Add (e.g., “6+3”). In fact, in this scenario, a student would have to get two problems
involving Add right before getting back to mastery — see the 6+3 and 7+4 rows in Table
I. The first raises the estimate to .938, still below a .95 mastery threshold, and the second
to .990. If the student subsequently gets another problem with both KCs (e.g., “4*7+3”)
wrong, the estimate for Add would again drop back below mastery. Another problem
involving Add would then be selected. This would be wasting student time and energy if,
in fact, they got the combined problem (“3*4+5) wrong because of not knowing
Multiply. In fact, the tutor and student might continue to thrash with the tutor repeatedly
giving unneeded easy problems after the student errs on a harder problem.

Gong, Beck, & Heffernan [Gong et al. 2010] mentioned limitations of the knowledge-
tracing algorithm when a problem or step is coded with multiple knowledge components.
They were not addressing the issue, like we are, of on-line updates of the student model
estimates of the probability a component has been learned. Others [Millan et al. 2001,

94 Kenneth Koedinger et al.

Junker and Sijtsma 2001] have presented relevant applicatoins of Bayesian inference to
address conjunctive combinations of skills and we build on that work.

3. CONJUNCTIVE KNOWLEDGE TRACING FOR FAIR BLAME ASSIGNMENT
The algorithm we present modifies knowledge tracing by changing the equations that
deal with updating the student model after a student error (see Eq 1). The equations for
updating after correct student responses are kept the same.

We present the case for two KCs first and generalize below to the case where multiple
KCs are needed. Both the P(Error|[Know-KC;) and P(Error) equations need to be
modified. We use K, and K, to indicate the probabilities that KC; and KC, are known, S,
and S, for their slip parameters, and G; and G, for their guess parameters. We start with
P(Error), because it is simpler. An observed error can result from an unobserved error
either in the execution of KC; or in the execution of KC,. An error in the execution of a
KC occurs either when the KC is known but the student slips (e.g., K;*S;) or when the
KC is unknown and the student does not guess correctly (e.g., (1-Ky)*(1-Gy)). This
formulation is shown in Equation 2.

P(Emor) = KiS:+(1 — Ki)(1 — Gy) + K55 + (1 — Ko)(1 — Go)-
[K S +(1 = K)(1 = GIIKeS2 + (1 = Ko)(1 = Go)] 2)

We can find P(Error/Know-KC,) by plugging K;=1 into the Equation 2 above and the
result is shown in Equation 3.

P(EmorKnow-KC,) = S, + KeSs+(1— K)(1 — Go)- [S1]1KeS2 + (1 — Ka)(1 — Gy)]
=S + (1 — S$)[KeSs + (1 — Ko)(1 — Gy)] 3)

An alternative formulation of Equation 2 that is easier to compute and easier to
generalize to many KCs is shown in Equation 4.
P(Enor) = 1 — P(Correct)
= 1 -[K(1= S)+(1 = K)GIK(= $5) + (1 — K) Gl)

Equation 4 computes the probability of error as one minus the probability of correct
performance. To get a step correct requires that both KC, and KC, are executed correctly,
which can be computed as the product of the probabilities of executing each KC correctly
(this approach assumes KC execution is independent). Correct execution of a KC occurs
either when the KC is known and the student does not slip (e.g., K{(1-S;)) or when the
KC is unknown and the student guesses correctly (e.g., (1-K;)Gy).

The combined update formula (Equation 5) gets applied for each KC, as was done in
the example above. Applying this approach to the example above, we get the values
shown in the “Conjunctive KC” columns in Table I. After the student made an error on

“3*4+5”, the estimate for Add (K;) was updated according to the formulas above to 0.94.
P(Know-KC, |Error)

= P(Enor|Know-KC;) * P(Know-KC;) / P(Enon)
= Eq.3 * P(Know-KC;) / Eq4 (5)
= (.05+(1—=.05)[.3%.05+(1 —.3)(1 —.2)]) = .96 / 1-[.96(1 — .05)+(1 —.96).2][.3(1 — .05)+(1 — .3).2]

Applying the learning (or transition) probability (.94 + (1-.94)*.25) yields a new value for
Ky = 0.955. The analogous steps yield a new value for the Multiply, K, = 0.297. Unlike
Standard Knowledge Tracing, the estimate for Add, at 0.955, stays above the mastery
threshold of .95 and thus the tutor would not assign a potentially unnecessary addition
problem. The potential is thus reduced for unproductive cycling back and forth or
thrashing between hard and easy problems that may occur with standard knowledge
tracing (as illustrated in Table I).

The key insight for blame assignment with two KCs is that the probability of being
incorrect given that KC, is known is no longer just the probability of slipping on KC;.

Avoiding Problem Selection Thrashing with Conjunctive Knowledge Tracing 95

There is also a chance that the student made an error in executing KC,. To generalize to
multiple KCs, we need the P(Error|Know-KC;) formula to account for the possibility that
an error can result from failure to execute on any of the other needed KCs.

First, Equation 6 shows the general equation for P(Error) when we use the I-
P(Correct) formulation (as anticipated in Equation 4) and compute P(Correct) as the
product of executing all of the N KCs correctly:

P(Enor) 1 - P(Correci)
= 1 - TINIK(= S)+(1 - K)G] ©)

Now, for the general equation of P(Error|[Know-KC;) we need to a way to compute the
disjunction (logical or) of executing incorrectly all of the required KCs besides KC;.
Because conjunctions are simpler to compute than disjunctions, we use the
transformation in Equation 7 to formulate Equation 8.

P(A orB orQC) not (not P(A) and not P(B) and not P(C))
1- [1 = P(A)[1 = P(B)I[1 — P(C)] 7

Equation 8 replaces the term in Equation 3 for incorrect execution of K, with the
disjunction of incorrect execution of all the required KCs but KC;. Thus, note the use of
“excluding KC;” in Equation 8. And note, as per Equation 7, the use “I1-” both outside
and inside the product ().

P(E rmror| Know-KC))
= Sj+ (1= 5)) % (1 = [iexcs exctuding k11 — [Ki(1 = Si) + (1 = K) G]]]) ®)

Finally, Equation 9 is the Conjunctive Knowledge Tracing alternative to blame
assignment in Standard Knowledge Tracing (Equation 1) and it completes the
generalization from two KCs (Equation 5) to any number of KCs.

P(Know-KC; |Enron)
P(Eror|Know-KC,) + P(Know-KC;) |/ P(Enon 9)
Eq8 * K, / Eq6

4. CONJUNCTIVE KNOWLEDGE TRACING ON REAL DATA
In the introduction, we illustrated the possibility of a thrashing problem that can result
from unfair blame assignment whereby a student is repeatedly assigned a hard problem
(which they get wrong) and then unnecessary easy problems (which they tend to get
right). We turn to a demonstration of this thrashing problem in real student use of a tutor.
We then describe how use of Conjunctive Knowledge Tracing can alleviate this problem.
The data come from 120 students working on a geometry area unit of the Bridge to
Algebra Cognitive Tutor and, in particular, from an experiment to test a new KC model
produced through a human-machine discovery method [Stamper and Koedinger 2011].
This implementation of the tutor used standard knowledge tracing, but we did make a
change to the problem selection algorithm designed to create a better learning experience.
The original problem selection tries to find problems that have the most opportunities for
the student to address their least-mastered KCs (along with other factors, like minimizing
the number of mastered KCs and encouraging variety). In the usual situation where there
is only one KC per problem step this has been a reasonable approach. However, when
there are multiple KCs per step, this current "maximize unmastered" algorithm criteria for
problem selection will prefer problems that involve more unmastered KCs per step
(harder problems) over problems that have fewer unmastered KCs per step (easier
problems). In order to create a gentle slope in the learning trajectory, we modified the
original problem selection algorithm to select problems that have as few unmastered KCs
(but at least 1) as possible. Thus, students are more likely to be given easier (but not
mastered) problems first and then, once these appear to be mastered, more complex

96 Kenneth Koedinger et al.

problems are selected. If, in turn, evidence from poor performance on complex problems
suggests weaknesses in specific component KCs, easier problems will be selected again
to bolster student mastery before returning to hard problems. The intention, then, is to
adjust difficulty (fading or reintroducing scaffolding) to optimally adapt to student needs.
This change revealed the thrashing problem and a practical weakness of standard
knowledge tracing when multiple KCs are required on a step. The goals of the change in
problem selection were to adaptively fade and “unfade” (reintroduce) scaffolding based
on student performance. Fading occurs in transition from “scaffolded” problems, which
tend to have 1 KCs per step, to “unscaffolded” problems, which tend to have key steps
with multiple KCs. It is adaptive in that the transition occurs after students have
demonstrated mastery of the KCs in the scaffolded problems. Scaffolding may be
reintroduced based on evidence of too much failure on unscaffolded problems.

4.1. Results: Problem selection thrashing from poor blame assignment

Similar to the arithmetic example above, we modified a geometry area unit of the Bridge
to Algebra Cognitive Tutor to include a mix of harder problem types in which some steps
require many KCs (e.g., setting and executing subgoals to find a square area, circle area,
and the difference) and easier problem types in which steps require just one or a few KCs
(e.g., subtracting two areas). Four types of problems culminated with the student finding
the area of an irregular shape (e.g., the left-over area when a circle is cut from a square)
from the regular shapes that make it up. To aid understanding of the example of real
student performance shown in Table II, we describe these problem types. The easiest
problem type, called an “area scaffold problem” and displayed as Easy in Table 11, gives
the areas of the component shapes to focus students’ attention on how to combine them to
find the irregular shape rather than on finding component areas themselves. The student
need only recognize the need for area composition (the Comp KC in Table II) and
perform the addition or subtraction (AddAreas and SubtrAreas KCs in Table II). The
slightly less easy “table scaffold” problems (displayed as Easy’ in Table II) require the
student to find the regular areas on their own, but explicitly prompt (or scaffold) the
student to do so with a labeled column in a table interface widget where the areas are to
be entered. While these problems require area computations (see the Area KC in Table
II), those computations are separate steps in the interface and so the Area KC is not
involved in the “composition” step to compute the irregular area that is displayed in
Table II. In the harder “no scaffold” problems, students are asked to enter only the final
irregular area (requiring up to four KCs in a single step) without any interface support to
first find the component areas.

Turning to the student performance data, we found that the new problem selection
algorithm described above worked well in that the easiest problem type (area scaffold)
tended to be selected before the somewhat less easy problem type (table scaffold) and
these before the hardest problem types (problem scaffold and no scaffold). However, we
were surprised at how many of the easier problems students were given. On closer
inspection we found the kind of cycling between easy and hard we illustrated above.

Table II provides an example from one of the students. The results are displayed
starting after the student has been successful on two Easy problems and failed on a Hard
problem. Before describing this example in more detail, first note how the student keeps
getting assigned many Easy problems (and succeeds at them). These problems were
assigned based on standard knowledge tracing (SKT), but, if conjunctive knowledge
tracing (CKT) had been used, the five problems in the bolded row numbers (5, 8, 10, 12,
and 14) would not have been assigned. In these rows, all of the CKT estimates are above
0.95 whereas some of the SKT estimates are not (see the bolded numbers). SKT assigns

Avoiding Problem Selection Thrashing with Conjunctive Knowledge Tracing 97

these Easy problems because when errors are made on Hard problems, it attributes too
much blame to easy KCs (SubtrAreas & AddAreas) that should be primarily attributed to
hard KCs (SubGoal).

Table II. Problem selection thrashing from poor blame assignment in real student data.

Standard KT Estimates Conjunctive KT Estimates

Row Prob Corr [Comp Subtr Add Area Sub [Comp Subtr Add Area Sub

Type Areas Areas Goal Areas Areas Goal
1 098 100 062 062 049|098 1.00 086 086 0.70
2 Easy' 0 [098 1.00 098 1.00
3 Easy' 1 |089 098 094 0.99
4 Easy 1 098 0.62 0.99 0.86
5 Easy 1 [1.00 0.91 1.00 0.97
6 Hard 0 [1.00 1.00 100 0.4911.00 1.00 1.00 0.70
7 Had 0 [1.00 098 100 0.38(1.00 1.00 1.00 0.68
8 Easy 1 |[099 087 1.00 1.00
9 Had O 0.97 098 0.35 1.00 1.00 0.67
10 Easy 1 |1.00 0.86 1.00 1.00
11 Easy' 0 |1.00 0.98 1.00 0.99
12 Easy 1 |1.00 0.90 1.00 0.98
13 Hard O 0.97 100 0.34 1.00 1.00 0.58
14 Easy 1 [1.00 0.85 1.00 1.00
15 Hard 1 0.97 097 0.34 1.00 1.00 0.51
16 Hard 1 0.99 099 0.79 1.00 1.00 0.88

Going through Table II in more detail, row 1 shows the KC estimates for SKT and
CKT just before this sequence begins. Row 2 shows that an Easy problem was selected
next. The estimates of only the KCs that are required for the composition step in that
problem are shown. Even though the required KCs are above the 0.95 mastery threshold
(at 0.98 and 0.997 respectively), the selection of an Easy problem is appropriate because
there are other Area steps (not shown) in this problem (indicated as Easy’, rather than just
Easy) that are not above mastery (at 0.62). The student gets this composition step wrong
(indicated by 0 in the Correct column). The updates for the relevant KCs can be seen in
row 3 for both SKT (now 0.89 and 0.98) and CKT (now 0.94 and 0.99). Another Easy
problem is selected (row 3), which is appropriate according to both models as the
Compose KC is below .95 in both (.89 and .94). The student gets it right.

Now two easy problems are selected (rows 4 and 5) where area addition (AddAreas)
is needed instead of area subtraction (SubtrAreas). The SKT estimate of AddAreas is
below mastery for both problems, but goes above mastery before the second problem for
the CKT estimate (see the bolded .97 vs. .91 in row 5). If problem selection had been
driven by CKT, this problem would not have been selected and, arguably, the students’
time would not have been wasted practicing mastered skills. (Note that the difference in
the AddAreas estimates in Row 1 is caused by the difference in blame attribution on the
one Hard problem the student saw before the data shown in Table II.) Rows 6-8 more
clearly illustrate this difference in blame attribution. The student gets two consecutive
Hard problems wrong and the SKT estimate of SubtrAreas drops to 0.87. However, it is
likely that the student’s difficulty is not with SubtrAreas, but with the SubGoal KC
(knowing to find the areas of an irregular shape by finding the areas of the regular shapes

98 Kenneth Koedinger et al.

that make it up). Indeed, the CKT model puts most of the blame for these errors on
SubGoal and little blame on SubtrAreas (which does drop slightly from .998 to .997).

4.2. Results: Fair blame assignment saves instructional time

To demonstrate that the example above is not idiosyncratic to the one student, we
repeated the analysis illustrated above for all 120 students. We focused on the data from
the first curriculum section where some steps are coded with multiple KCs (this is section
3 in Geometry Area unit). We used CKT to produce new KC estimates on each problem
solved by each student as illustrated in Table II. We then identified the problems where
all KCs involved were above the 0.95 mastery level according to the CKT estimates —
like the 5 bolded problems in Table II. Of the 1370 problems, 441 or about 1/3 involved
only mastered KCs according to CKT! If the problem selection had been driven by CKT,
these problems would not have been given to students. These problems are likely to be
unnecessary and are taking student time away from learning more difficult skills. (While
the problem selection algorithm is designed to avoid giving mastered problems, 15 of the
1370 problems selected using SKT were mastered — still far below 441.)

Some of the 120 students, those with more prior knowledge, finished this section in as
few as four problems (by getting all steps correct). Many others struggled and, like the
student shown in Table II, got stuck in this thrashing between too many easier problems
they tended to be able to solve and too few harder problems that exercised the
composition (or subgoaling) skills they needed to acquire. The student in Table II is
typical of these struggling students and, according to conjunctive knowledge tracing, five
of the sixteen problems this student was given were unnecessary. For 33 of the struggling
students, the tutor ran out of relevant problems and moved them on to the next section
even though some KCs had not been mastered.

Current cognitive tutors have many steps coded with multiple KCs, for instance, in the
algebra tutor some steps are coded with broad arithmetic skill categories (e.g., large vs.
small numbers, rationals vs. whole numbers) in addition to the target algebraic skill.
However, multiple KC coding occurs less often than it should. Doing so has often been
avoided through the use of highly scaffolded interfaces, which have the downside of not
assessing students in the unscaffolded context. Further, many steps that are currently
coded with a single KC may be better modeled with mutiple KCs [cf. Yudelson, Pavlik,
and Koedinger, 2011].

5. DISCUSSION & CONCLUSIONS

We have presented an illustration of the problem of assigning blame when multiple
knowledge components are required for an action and the student performs it incorrectly.
A simple approach, currently used in practice, is to blame all components equally even
though it may be just one (or some subset) that the student has not yet mastered. Until
now, there has appeared to be little consequence to this simple approach. However, when
we modified the problem selection algorithm to facilitate fading and unfading of
problems with scaffolding, we found a negative consequence in the form of thrashing in
problem selection. In the data from the Geometry Cognitive Tutor we found that real
students were being assigned too many easy problems and not enough hard ones. Based
on prior Bayesian student modeling work [Junker and Sijtsma 2001; Reye 1998;
VanLehn et al. 1998], we adapted the standard knowledge tracing algorithm to create
Conjunctive Knowledge Tracing (CKT), which provides a practical solution to fair blame
assignment. CKT has the potential to make much better use of students’ time in curricula
that provide students with an adaptive learning trajectory from simple problems isolating
key components of knowledge to difficult problems where multiple skills or concepts are
required to produce a single response.

Avoiding Problem Selection Thrashing with Conjunctive Knowledge Tracing 99

Alternative solutions to the blame assignment problem have been proposed [Conati,
Gertner and Vanlehn 2002; Pardos and Heffernan to appear; Reye 1998; VanLehn, Niu,
Siler and Gertner 1998]. One simpler approach is to only blame the “hardest” KC, that is,
the one with the lowest current probability. There are two potential limitations of this
approach. First, if KCs are truly conjunctive and independent, such an approach will
overly penalize the hardest KC and under penalize the others. We can see the difference
in penalty in the KC values displayed in Row 1 of Table II (these values results from a
failure on a hard problem just before this excerpt begins). Blaming only the hardest KC,
which is SubGoal in this case, would yield a value of 0.49 (same as SKT would produce
for this KC) whereas CKT yields a value of 0.70 (shown under Subgoal in the
Conjunctive KT section). Thus, this blame-the-hardest approach could result in
inappropriately requiring students to practice too many (harder) problems requiring the
over-penalized KC and too few (easier) problems requiring the under-penalized KCs. A
second limitation of the blame-the-hardest approach is that it does not facilitate the
possibility of “unfading”, that is, of returning to scaffolded problems in the case that
repeated failure on unscaffolded problems suggests (even with the softer penalty that
CKT produces) the need to revisit easier problems.

Another simpler approach is to concatenate multiple KCs into a single combined KC.
This approach has the downside that the student model has no information about
knowledge overlap in related tasks and thus cannot be used in problem selection for the
kind of gradual fading of scaffolding (going to harder problems when the student is
ready) or reintroduction of scaffolding (going back to easy problems if needed) that is
possible with CKT.

A more complex approach to the multiple-KC problem is to use a complete Bayesian
network for the student model [e.g., Conati et al. 2002]. One immediate point of contrast
with CKT is in the high effort required to engineer a student model as a Bayesian
network. CKT can be relatively simply added to an existing model-tracing or constraint-
based tutor as a plug-in, replacing the existing Knowledge Tracer if present. On the other
hand, a full Bayesian network can represent dependencies between KCS and is not
restricted to modeling KC learning only in terms of students direct experiences with those
KCs. A Bayes net gives a modeler more freedom to hypothesize more complex
interrelationships, like the learning of one KC enhancing another. Such freedom,
however, may come at the loss of parsimony relative to the more constrained CKT
approach whereby a set of KCs and a few direct computations on the KC parameter
estimates may well represent all task difficulty and learning transfer relationships.

CKT is one solution within the broader space of Bayesian networks and Markov
models for student modeling. As already mentioned, past work [Junker and Sijtsma 2001;
Millan, Agosta and Pérez de la Cruz 2001] has articulated the multiplicative combination
of noisy components. We have adapted this approach into the standard knowledge tracing
by maintaining the Markov transition probability, but replacing the blame assignment
with this multiplicative combination. Others have also incorporated the independence
assumption and thus the multiplicative combination of components, but have put the
noise (guess and/or slip parameters) at the level of the conjunction (sometimes called a
“noisy-AND”) rather than at the level of the components [Conati et al. 2002]. In the
psychometrics literature [Junker and Sijtsma 2001], the difference in whether the noise
parameters are at the component level or the conjunction level is characterized by the
contrast between the DINA (deterministic inputs noisy AND) and NIDA (noisy inputs
deterministic AND) models. CKT is an extension of NIDA (adding the transition
probability), with a slip and guess parameter for each conjunct in the AND. While the
CKT and NIDA models have more parameters per AND relation than DINA, they can
have fewer parameters in an overall student model in the case that there more AND

100 Kenneth Koedinger et al.

relations than components. For instance, there are four (2n-n-1) possible AND
relationships of three (n) components. Whether or not these theoretical differences make
any practical difference will require future empirical comparison.

Whether and when CKT provides a more or less effective user model than more
complex formulations such as Bayes nets will have to await future research.
Nevertheless, an important contribution of this paper is the empirical evidence that
comparing such alternatives is worth it. The problem selection thrashing we observed
indicates that fair blame assignment can be a real problem and better solutions may have
significant impact on student users of tutoring systems. The need for such a solution
comes about in situations where we want a tutoring system to make dynamic and
adaptive decisions about the fading of scaffolding or the “unfading” or reintroduction of
scaffolding. Such capability would seem to be an important feature of a truly adaptive
tutoring system and one that can be driven by educational data mining.

ACKNOWLEDGEMENTS

Thanks for support from the Pittsburgh Science of Learning Center (NSF-SBE #0354420;
see learnlab.org), assistance from Carnegie Learning Inc. (carnegielearning.com) and the
DataShop team, and support from the U.S. Department of Education (IES-NCSER
#R305B070487) and Ronald Zdrojkowski.

REFERENCES

CONATI C., GERTNER, A. AND VANLEHN, K. 2002. Using Bayesian networks to manage uncertainty in
student modeling. User Modeling and User-Adapted Interaction 12, 371-417.

CORBETT, A.T. AND ANDERSON, J.R. 1992. Student modeling and mastery learning in a computer-based
programming tutor. In Intelligent Tutoring Systems: Second International Conference on Intelligent
Tutoring Systems, C. FRASSON, G. GAUTHIER AND G. MCCALLA Eds. Springer-Verlag, New York,
413-420.

CORBETT, A.T. AND ANDERSON, J.R. 1995. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction 4, 253-278.

GONG, Y., BECK, J. AND HEFFERNAN, N. 2010. Comparing Knowledge Tracing and Performance Factor
Analysis by Using Multiple Model Fitting Procedures. In Intelligent Tutoring SystemsConference Name,
V. ALEVEN, J. KAY AND J. MOSTOW Eds. Springer Berlin / Heidelberg, 35-44.

HEFFERNAN, N. AND KOEDINGER, K. 1997. The composition effect in symbolizing: The role of symbol
production vs. text comprehension. In Proceedings of the Nineteenth Annual Conference of the Cognitive
Science Society, P. LANGLEY AND M.G. SHAFTO Eds. Lawrence Erlbaum Associates, 307-312.

JUNKER, B.W. AND SIJTSMA, K. 2001. Nonparametric Item Response Theory in Action: An Overview of
the Special Issue. Applied Psychological Measurement 25,211-220.

MILLAN, E., AGOSTA, JM. AND PEREZ DE LA CRUZ, J.L. 2001. Bayesian student modeling and the
problem of parameter specification. British Journal of Educational Technology 32, 171-181.

PARDOS, Z.A. AND HEFFERNAN, N. to appear. Using HMMs and bagged decision trees to leverage rich
features of user and skill from an intelligent tutoring system dataset. Journal of Machine Learning
Research - Special Issue on the 2010 KDD Cup Competition.

PARDOS, Z.A., HEFFERNAN, N.T. AND RUIZ, C. 2008. Effective Skill Assessment Using Expectation
Maximization in a Multi Network Temporal Bayesian Network. In Proceedings of the The Young
Researchers Track at the 9th International Conference on Intelligent Tutoring Systems.

REYE, J. 1998. Two-Phase Updating of Student Models Based on Dynamic Belief Networks. In Intelligent
Tutoring Systems, B. GOETTL, H. HALFF, C. REDFIELD AND V. SHUTE Eds. Springer Berlin/
Heidelberg, 274-283.

RITTER, S., ANDERSON, J.R., KOEDINGER, K.R. AND CORBETT, A. 2007. Cognitive Tutor: Applied
research in mathematics education. Psychonomic Bulletin & Review 14, 249-255.

STAMPER, J. AND KOEDINGER, K.R. 2011. Human-machine student model discovery and improvement
using DataShop. In Proceedings of the 15th International Conference on Al in Education.

VANLEHN, K., NIU, Z., SILER, S. AND GERTNER, A. 1998. Student Modeling from Conventional Test
Data: A Bayesian Approach without Priors. In Intelligent Tutoring SystemsConference Name, B.
GOETTL, H. HALFF, C. REDFIELD AND V. SHUTE Eds. Springer Berlin / Heidelberg, 434-443.

YUDELSON, M.V., PAVLIK JR., P. . AND KOEDINGER, K.R. 2011. Towards Better Understanding of
Transfer in Cognitive Models of Practice. In Proceedings of the Fourth International Conference on
Educational Data Mining.

Less Is More: Improving the Speed and Prediction
Power of Knowledge Tracing by Using Less Data

BAHADOR NOORAEI

ZACHARY A. PARDOS

NEIL T. HEFFERNAN

RYAN S.J.D. BAKER

Worcester Polytechnic Institute, USA

Knowledge Tracing is perhaps the most widely used student model in the field of educational data mining. In
this paper we report on the effects of using only a subset of data in training the Bayesian Network that
represents this student model. The standard practice is to use all of the students’ data for a given skill to fit the
model. We analyze two datasets; one from the Algebra Cognitive tutor and the other from the Genetics
Cognitive tutor. We found that in both datasets, the difference in accuracy between using all the students' data
versus only the most recent 15 data points of each student was not significantly different. Using only 15
responses however, resulted in an EM training time which was 15 times faster than using all data. This result
suggests that the Knowledge Tracing model needs only a small range of data in order to learn reliable
parameters. The implications of this result is a substantial savings in model training time that allows for more
complex models to be fit or individualized models to be trained online.

Keywords and Phrases: Knowledge Tracing, Expectation Maximization, Prediction, Cognitive Tutor, Data
filtering

1. INTRODUCTION

Knowledge Tracing (KT) [Corbett & Anderson 1995] is perhaps the most widely used
student model in the field of educational data mining and has been used in many
cognitive tutors [Koedinger, Anderson, Hadley & Mark 1997]. The standard practice is to
use all of the students’ data for a given skill to fit the model; and a model trained for each
skill in the system.

In [Ritter, Harris, Nixon, Dickison, Murray & Towle 2009] it is discussed that reducing
the parameter space of KT by means of clustering gives us models of student
performance that are as good as the standard approach that gives us a different fit for each
skill. So instead of 9600 parameters for the 2400 skills in the dataset, each fit differently,
they settle on a set of 92 parameters, without changing the behavior of the system. In a
similar vein, we aim to reduce the Knowledge Tracing training time by reducing the
training data while retaining predictive performance.

In this paper we explore another question: how sensitive is the KT model to the amount
of data used in its training. We train the model with different limits imposed on the
maximum length of interaction instance sequences that is allowed for each student, and
see their effect on prediction power of the system. To our knowledge this work is the first

Authors’ addresses: Bahador Nooraei B., Zachary A. Pardos, Neil T. Heffernan. Department of Computer
Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 USA
Emails: bahador@wpi.edu, zpardos@wpi.edu, nth@wpi.edu

102 Bahador Nooraei B. et al.

to explore using less data to do better when training a student model. As it is later shown,
limiting the amount of data can reduce the training time of KT model using Expectation
Maximization (EM) substantially. We analyze two datasets; one from the Algebra
Cognitive tutor and the other from the Genetics Cognitive tutor.

1.1 KNOWLEDGE TRACING
Corbett & Anderson’s Bayesian Knowledge Tracing model is one of the most popular

methods for estimating students’ knowledge. It underlies the Cognitive Mastery Learning
algorithm used in Cognitive Tutors for Algebra, Geometry, Genetics, and other domains
[Koedinger & Corbett 2006].
The canonical Bayesian Knowledge Tracing (BKT) model assumes a two-state learning
model: for each skill/knowledge component the student is either in the learned state or the
unlearned state. At each opportunity to apply that skill, regardless of their performance,
the student may make the transition from the unlearned to the learned state with learning
probability P(T). The probability of a student going from the learned state to the
unlearned state (i.e. forgetting a skill) is fixed at zero. A student who knows a skill can
either give a correct performance, or slip and give an incorrect answer with
probability P(S). Similarly, a student who does not know the skill may guess the correct
response with probability P(G). The model has another parameter, P(L,), which is the
probability of a student knowing the skill from the start. After each opportunity to apply
the rule, the system updates its estimate of student’s knowledge state, P(L,,), using the
evidence from the current action’s correctness and the probability of learning:

P(Ly—1) * (1 = P(S))
P(Lp-1) * (1= P(9)) + (1 = P(Lp-1)) * (P(G))

P(L,_,|Correct,) =

P(Ly-1) * P(S)
P(Ly-1) * P(S) + (1 = P(Ly-1)) * (1 = P(G))

P(L,,_;|Incorrect,) =

P(Lyp|Action,,) = P(L,_1|Action,) + ((1 — P(L,_4|Action,)) * P(T))

The four parameters of BKT, (P(Ly), P(T),P(S), and P(G), are learned from existing
data, historically using curve-fitting [7], but more recently using expectation
maximization (EM). For EM the parameters were unbounded and initial parameters were
set to a P(G) of 0.14, P(S)of 0.09, P(Ly)of 0.50, and P(T) of 0.14. These initial values
were the average parameter values across all skills in prior modeling work conducted on
a different algebra tutor [Pardos, Heffernan, Ruiz and Beck, 2008].

2. DATASETS

2.1 KDD DATASET (BRIDGE TO ALGEBRA)
This dataset comes from the Carnegie Learning Bridge to Algebra Tutor, which is an

Intelligent Tutoring System (ITS) used by many students over the course of the 2007-
2008 school year. This was the dataset that was one of the KDD 2010’s “development”
datasets [Pardos & Heffernan, In Press].

This dataset contains 1323 unit-skills (from now on, we call each unit-skill in this dataset
simply a skill), and 1,817,476 data points (student actions). In order to demonstrate the
effects of using less data, we limited our experiment only to those skills that have a

Less is More: Improving the Speed and Prediction Power of Knowledge Tracing 103

median of student response sequence of 40 or more. So we ended up with 33 skills with
663,491 data points (36% of all data points in the original dataset).
In this paper we refer to this dataset as KDD dataset.

2.2 GENETICS 2009 DATASET
This data was taken from a Cognitive Tutor for Genetics [Corbett, et al. 2010]. The

dataset contains the results of in-tutor performance data of 76 students on 9 different
skills, with data from a total of 11,581 student actions.

Six of the skills included in this dataset have average interaction sequence lengths of
around 10. The 3 remaining skills have 20, 30, and 41 as average length of interaction
sequence. But these 3 larger skills cover 60% of data points in the dataset.

For the students in this dataset, we also have the results of a problem solving post-test,
covering some of the skills that were exercised in the tutor. Having this data, we could
correlate student knowledge estimates of different configurations with the post-test data,
as it is discussed in section 4.3.

3. METHODOLOGY

In our work, we group the dataset based on skills and fit a separate set of KT parameters
for each skill. So an instance of interaction with the tutor in the dataset is a specific user’s
performance record when encountered with problems that exercise a specific skill. Here’s
where the idea using less data comes into the picture: should we use the full length of
data in each instance, or should we limit the length of the data we feed into the EM? In
order to explore the effects of imposing this limitation on the prediction-ability of KT
model, we ran our experiments with different limitations on the number of data points
used: from using all the data in each interaction sequence to using only the most recent 5
items.

For example, suppose we have two student with interaction instance sequences of
A =0110011101111 and B = 1010110 for a skill in the dataset (0 here denotes an
incorrect response (wrong answer or request for help), and 1 denotes a correct response).
Now if we limit the interaction sequence length to 5, the following two sequences are
presented to the EM as interaction instance data related to the skill: Ls(4) = 01111 and
L;(B) = 10110. But if the limit is set at 10, we will have the following sequences:
L0(A) = 0011101111 and L;,(B) = 1010110. Notice that in the second case, whole
sequence of B is used (length = 7).

For KDD dataset we tried fitting parameters with these interaction sequence length limits:
5,10, 15, 20, 25, 35, 40, 75, 100, 150, 200, 400, and no-limit. The maximum interaction
sequence in this dataset was 679, but as it is shown in the results section, not so many
instances of interactions with that length are present in the dataset.

For Genetics dataset, the range of limits tried for this study is shorter because this dataset
is considerably smaller and the lengthiest interaction sequence contains 88 data points.
The limits we’ve tried for this dataset are: 5, 10, 15, 20, 25, 30, 40, 50, 60, and no-limit.

3.1 TRAINING AND TESTING OF THE KNOWLEDGE TRACING MODELS
For both datasets, we used trained KT models with different levels of student interaction

data cut-off. Then all those models are used to predict student actions with cross-
validation. For this prediction (or trace) phase, we used two different version of the

104 Bahador Nooraei B. et al.

model: one that even limits the input to the trained model when it demands a prediction
from it, and one that feeds the whole available history of student performance to the
model, regardless of the limitation imposed at training stage.

Then we calculated the Root Mean Square Errors (RMSEs) at the student level and
averaged them to get the number that is reported here. This way we can be sure that the
reported accuracy is not biased towards students who have more those points for that
skill. It also enables us to calculate a measure of statistical significance for the results.

We use Kevin Murphy’s Bayes Net Toolbox for Matlab' for this experiment. 5-fold
cross-validation was used for the Genetics dataset and a 2-fold for KDD to evaluate KT
prediction performance. We used 2-fold cross-validation for KDD dataset solely to
reduce the total amount of time needed to run all the experiments on that large dataset.
The folds were created by randomly assigning students (and their associated responses) to
folds. In each run of the cross-validation, one fold served as the test set and the other
folds served as a training set.

4. RESULTS

4.1 KDD DATASET RESULTS
Root Mean Square Errors (RMSE) of cross-validated prediction of in-tutor performance

of students are shown in figure 1, as the red trend line, and table 1. The x-axis in the
graph (figure 1) shows the number of data points across all skills included in the EM
training. As it is evident in the graph, increasing the amount of the data in training does
not contribute to the model’s accuracy, past a certain point (around a max of 75 responses
per student). The prediction difference between five and 75 data points per student is not
significant; however, the increase in runtime is substantial, shown by the blue line.

70,000 ‘ 0.305
60000 +— —————— i
marginal significance (p = 0.09) r 03
50,000 — 1
! —8—Total EM
= 40,000 0205 Training Time
¢ g
,-E ! | & —e—RMSE
30,000 i 0.29
20,000 |
- 0285
10,000
oL : : : ‘ 0.28
0 200 400 600 800

Data Points Used in Training (Thousands)
Figure 1. KDD In-Tutor Prediction Results

Figure 1 also shows the time it takes for EM to fit parameters for different amounts of
data. It shows the potential exponential time complexity of the BN toolbox EM
algorithm. We speculate that the change from linear to exponential time increase may
have been attributed to the dataset exceeding the machine’s 8 GIG memory capacity and
disk swapping occurring.

"http://code.google.com/p/bnt/

Less is More: Improving the Speed and Prediction Power of Knowledge Tracing 105

Table I KDD In-Tutor Prediction Results (sorted by RMSE)

Sequence Limit data points RMSE

75 397,921 0.288648
100 467,471 0.288871
150 554,999 0.288948
200 598,774 0.288977
400 653,664 0.289098
No limit 663,491 0.289123
40 257,395 0.289811
35 230,149 0.290057
20 138,571 0.290328
15 105,442 0.290411
25 170,511 0.290428
10 71,276 0.290854
5 36,066 0.295847

When we put a maximum sequence limit of 10 on the training data, the trained model
only became 0.6% less accurate than the fully trained one. The best accuracy was
achieved by training with a limit of 75 on the each student’s sequence length (represented
60% of all data points). Note that this was more accurate than using all the data yet it
takes one-fifth of the time required to run the full training.

As mentioned in section 2, the KT model is a Bayesian Network with four parameters. So
all differences in prediction ability of models, or lack thereof, is a consequence of the
four parameters that is fit by EM. Figure 2 shows a graph of these four parameters as they
are fit by using different amounts of data. The parameter values are an average of the
parameter values in the 33 different KT skill models. The most dramatic change occurs in
the prior parameter, which decreases monotonically. One explanation for the decrease in
prior with longer sequences is that the longer the sequence, the more likely the data is
produced by a student who is off task. Since students stop answering questions of a given
skill when they master it, the students still answering questions after 75 opportunities are
likely low achieving students with a low prior.

1 -

4
L 4
3

o o o
~ (=] w
a

[=]
=]
|

w
=
[
> &
E
g _.»‘/ "}_——.':'—---—-"""‘a..__ N
B 05 1—= e e —d—prior
EO: : H’\/t\“__._‘__.\._._- ==learn
L
=
=03 —dr—guess
L sli

0.2 x

01

o .
0 100 200 300 400 500 600 700

Thousands

Data Points Used In Training

Figure 2 Avereage learned parameters with varrying amounts of data

106 Bahador Nooraei B. et al.

The slip rate, however, was extremely stable; remaining around 0.08 for almost any
amount of data. One interesting implication of this, at least when fitting models to
Cognitive Tutor data, is that KT could be reduced to a three parameter model by learning
the slip with very little data and then fixing that parameter to the value learned while the
other three parameters are trained on more data.

4.2 GENETICS DATASET RESULTS
In the case of the genetics dataset, we are dealing with much less data than the KDD

(Bridge to Algebra) dataset. Figure 3 shows that error does decrease steadily with more
data, however, the decrease is very small and none of the errors are statistically
significant. However, while the RMSE axis is zoomed to a scale that demonstrates the
small change in error (the errors fall between 0.31 and 0.32 RMSE), the time axis (on the
left) ranges between 10 minutes with 5 data point cut-off and 100 minutes with full data.
This is a 10x training time increase to achieve no significant increase in prediction.

5000 - r 0325
4500 -
4000 - -
| b 032
3500 - .
|
~ 3000 -
z (seq. limit = 5) w —E—Total EM
g 2500 0315 € Training
¥ 2000 -+ : = Thne
(no limit) —e—RMSE
1500 +— 2
+ 031
1000 .
500
0 - : : . . ' } 0305
0 2000 4000 6000 8000 10000 12000 14000

Data Points Used In Training

Figure 3 Genetics In-Tutor Prediction Results

In other words, limiting response sequence lengths to 5 (denoted by the first notch in the
trend lines), which results in using only 29% of data points available, does not affect the
prediction ability of the model at all. The best accuracy for in-tutor prediction is attained
when using a sequence limit of 40, which includes 95% of data points; this is an increase

in average RMSE of 0.00393 or 1% as shown in Table II.
Table II Genetics In-Tutor Prediction Errors (sorted by RMSE)

Sequence Length Limit Number of Data Points RMSE
Included
40 10959 0.31198
50 11336 0.31203
60 11506 0.31206
30 10322 0.31223
No Limit 11581 0.31228
25 9734 0.31230
20 8898 0.31263
15 7875 0.31287
10 6156 0.31462
5 3386 0.31621

Less is More: Improving the Speed and Prediction Power of Knowledge Tracing 107

Figure 4 shows the average KT learned parameters for the Genetics dataset. A similar
trend can be observed here as in the Cognitive Tutor dataset. The prior drops with more
data and the slip remains nearly constant throughout. Unlike the Cognitive tutor, the
guess rate decreases and the learn rate increases with more data. More investigation is
necessary to explain these trends.

09 T

0.8 -

o
-

o
@

o
n

=—#=—prior

=f=|aarn

o
s

= puESssS

o
w

—lip

Learned ParameterValues

o
(5]

o
i

S O PR e
s

(=]

o 2000 4000 6000 8000 10000 12000 14000
Data Points Used In Training

Figure 4 Average of Learned Parameters for Genetics Dataset

4.3 PREDICTING POST-TEST RESULTS FOR GENETICS DATASET
In predicting the post-test, we account for the number of times each skill will be utilized

on the test. Of the nine skills in the dataset, one is not exercised on the test, and is
eliminated from the model predicting the post-test. Of the remaining seven skills, four are
exercised once, two are exercised twice and one is exercised three times, in each of the
two posttest problems. These first two skills are each counted twice and the latter skill
three times in our attempts to predict the post-test. We use Pearson’s correlation as the
goodness metric since the model estimates and the post-test scores are both numerical.
Correlation between each model and the post-test is given in table III.

The best correlation happens when we use a sequence limit of 20 in training (77% of
data). The fact that using less data gives us better predictions for the Genetics Tutor
students post-test was mentioned in a recent work focusing on ensemble methods by the
same authors [Baker, Pardos, Gowda, Nooraei, Heffernan In Press].

In all our experiments at predicting post-test we tried limiting the data in the tracing step
as well: when using the trained model to predict student performance (we call this action
tracing) we limited the amount past information we feed to the Bayesian Network. In
other words, the same limit was imposed in tracing phase too. The results were no
different from the normal full trace, so we eliminated any mention of them in this paper.
But here, when predicting post-test results related to genetics dataset, we see an
interesting phenomenon that a trace limited to only 5 most recent student data, yields a
much better prediction of post-test results (table III and figure 5).

eknutov
Rectangle

eknutov
Rectangle

eknutov
Rectangle

108 Bahador Nooraei B. et al.

0.65
< (limited trace)
E 0.6
E 0.5 1
'E 05
2 S {full trace) —+— Limited Trace
JEI 0.45 4 8 Full Trace
3 o4
035 4 . v Y
0 2000 4000 6000 8000 10000 12000 14000
Data Points Included in Training
Figure 5 Genetics post-test correlation
Table III Genetics Post-Test Prediction Correlations
Sequence Length Limit Data Points | Correlation with Post-test
5 (limited trace) 3386 0.61356
20 8898 0.55217
10 6156 0.54004
25 9734 0.53303
30 10322 0.52965
40 10959 0.52793
60 11506 0.52766
50 11336 0.52762
No limit 11581 0.52758
15 7875 0.52207
5 (normal trace) 3386 0.4761

5. CONCLUSION AND FUTURE WORKS

There are many practical reasons why one might be interested in decreasing the time it
takes to fit/refit a model. In previous research [Pardos & Heffernan In Press], when we
wanted to work with different variations of KT, long EM training runs were a huge
impediment to rapid research cycles, so it motivated us to explore more in this area. In
this paper we showed that fitting KT using EM with only a small subset of data gives us a
model practically the same as a model fit with the whole available data. We also show
that using only the most recent 5 data points to trace on provided the best correlation to
post-test. This suggests that student’s past history can be severely discounted when
predicting their future performance. Tractability of individualized student models have
been limited in part by the resources and time required to fit models. With our result that
a good fit model can be achieved with very few data points, individualized models
trained on the client can now be considered.

Our findings were largely unexpected; using 10% of the data in the case of the KDD
dataset and 29% of the data in the case of the Genetics dataset lead to the same predictive
power as using all the data. Given these results, ITS administrators can more wisely train
their models, knowing the potential low benefit and high cost of using a student’s entire
response sequence to train their models. Researchers interested in predicting post-test
measures from tutor data should also benefit from this finding that severely discounting
the past can not only save model training time but also produce improve prediction

results.

Less is More: Improving the Speed and Prediction Power of Knowledge Tracing 109

ACKNOWLEDGMENT

This research was supported by the National Science foundation via grant “Graduates in
K-12 Education” (GK-12) Fellowship, award number DGE0742503 and the Department
of Education IES Math center for Mathematics and Cognition grant. We would like to
thank the Pittsburg Science of Learning Center for the Cognitive Tutor KDD dataset and
Sujith Gowda for Genetics dataset preparation help. We would also like to thank Joseph
Beck for his advice early on in the research.

We also acknowledge the many additional funders of ASSISTments Platform found here:
http://www.webcitation.org/5ym157Y fr

REFERENCES

BAKER, R.S.J.D., PARDOS, Z.A., GOWDA, S.M., NOORAEI, B.B., HEFFERNAN, N.T. 2011 (in press.) Ensembling
Predictions of Student Knowledge within Intelligent Tutoring Systems. To appear in Proceedings of the 19"
International Conference on User Modeling, Adaptation, and Personalization.

CORBETT, A.T., ANDERSON, J.R. 1995. Knowledge Tracing: Modeling the Acquisition of Procedural

Knowledge. User Modeling and User-Adapted Interaction, 4, 253-278.

CORBETT, A., KAUFFMAN, L., MACLAREN, B., WAGNER, A., JONES, E. 2010. A Cognitive Tutor for Genetics
Problem Solving: Learning Gains and Student Modeling. Journal of Educational Computing Research, 42,
219-239.

KOEDINGER, K. R., ANDERSON, J. R., HADLEY, W. H., & MARK, M. A. 1997. Intelligent tutoring goes to school
in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

KOEDINGER, K. R., CORBETT, A. T. 2006. Cognitive tutors: Technology bringing learning science to the
classroom. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 61-78). New York:
Cambridge University Press.

PARDOS, Z.A., HEFFERNAN, N. T. 2001 (in press.) Using HMMs and bagged decision trees to leverage rich
features of user and skill from an intelligent tutoring system dataset. To appear in the Journal of Machine
Learning Research W & CP, In Press

PARDOS, Z. A., HEFFERNAN, N. T., Ruiz, C. & BECK, J.E. 2008. Effective Skill Assessment Using Expectation
Maximization in a Multi Network Temporal Bayesian Network. The Young Researchers Track at the 20th
International Conference on Intelligent Tutoring Systems. Montreal, Canada.

RITTER, S., HARRIS, T.K., NIXON, T., DICKISON, D., MURRAY, R.C., AND TOWLE, B. 2009. Reducing the
Knowledge Tracing Space. In Proceedings of EDM 2009, 151-160.

Analysing frequent sequential patterns of
collaborative learning activity around an
interactive tabletop

R. MARTINEZ, K. YACEF, J. KAY,
School of Information Technologies, University of Sydney, Australia
A. AL-QARAGHULI,

School of Computing Science, Newcastle University, UK and
Faculty of Information Science and Technology, UKM, Malaysia

AND
A. KHARRUFA

School of Computing Science, Newcastle University, UK

Electronic traces of activity have the potential to be an invaluable source to understand the strategies followed
by groups of learners working collaboratively around a tabletop. However, in tabletop and other co-located
learning settings, high amounts of unconstrained actions can be performed by different students simultaneously.
This paper introduces a data mining approach that exploits the log traces of a problem-solving tabletop
application to extract patterns of activity in order to shed light on the strategies followed by groups of learners.
The objective of the data mining task is to discover which frequent sequences of actions differentiate high
achieving from low achieving groups. An important challenge is to interpret the raw log traces, taking the user
identification into account, and pre-process this data to make it suitable for mining and discovering meaningful
patterns of interaction. We explore two methods for mining sequential patterns. We compare these two methods
by evaluating the information that they each discover about the strategies followed by the high and low
achieving groups. Our key contributions include the design of an approach to find frequent sequential patterns
from multiuser co-located settings, the evaluation of the two methods, and the analysis of the results obtained
from the sequential pattern mining.

Keywords and Phrases: Collaborative Learning, Sequence Mining, Hierarchical Clustering, Interactive
Tabletops

1. INTRODUCTION

Recently, the need to explore, share and manipulate tangible data, in situ, has brought
forth the development of new user interfaces offering large display areas and multiple
input capabilities. These groupware interfaces are becoming available for educational
purposes in the form of whiteboards, multi-display settings and horizontal tabletops.
Interactive tabletops offer the potential for new ways to support collaborative learning
activities by enabling face to face interactions between students and, at the same time,
providing a great opportunity to investigate groups’ learning processes by capturing their
physical actions. This paper reports our work in the context of Digital Mysteries
[Kharrufa et al. 2010], a tabletop collaborative learning tool for the development of
students’ problem-solving skills. When using this tool, students have to examine the
information they are provided with and formulate an answer to a posed question (the
mystery). The students’ cognitive processes become evident through their physical

Authors’ addresses: R. Martinez, J. Kay, K. Yacef, School of Information Technologies, The University of
Sydney, Australia. E-mail: {roberto,judy.kalina}@it.usyd.edu.au; A. Al-Qaraghuli, Faculty of Information
Science and Technology, UKM, Malaysia. E-mail: aalqaraghuli@gmail.com. A. Kharrufa, School of Computing
Science, Newcastle University, UK. E-mail: ahmed@diwan.com.

112 Roberto Martinez Maldonado et al.

manipulation of the information on the tabletop to solve the mystery and thus observable
for researchers [Leat and Nichols 2000]. However, when a class of typical size (20 to 30
students) is divided into several small groups working in parallel, it is very difficult for
facilitators to keep track of the learning processes followed by all the groups and they
usually end up just looking at the final results. This is a problem as it means that the
higher level strategies followed by groups are lost. The work described in this paper
addresses this problem by mining and analysing frequent sequences of activity and
highlighting key differences between high and low achieving groups.

The use of Data Mining techniques in collaborative learning environments has proven
successful in getting insights on the interactions within groups that lead to high-quality
results in terms of collaboration [Anaya and Boticario 2011; D'Mello et. al. 2011],
conflict resolution [Prata et al. 2009], teamwork [Perera et. al. 2009)] and correctness of
the task [Talavera and Gaudioso 2004]. However, most of these efforts have focused on
studying collaboration supported by online learning systems (e.g. chat, forums, wikis,
networked ITS’s) rather than tackling the context of supporting small groups
collaborating around shared devices, for which there is much less research [Jeong and
Hmelo-Silver 2010]. In this paper we focus on the latter. We report our work on the
analysis of groups’ interactions with the resources at the tabletop and the exploration of
two different approaches to consider the raw physical touch actions. We detail these on a
technical level and then discuss the patterns resulting from each of them.

This paper is organised as follows. Next section describes other studies that have
applied machine learning techniques to analyse groups’ interactions. Section 3 introduces
the tabletop system and dataset. Section 4 explains the data mining methods. We
conclude with reflections and future work in sections 5 and 6.

2. RELATED WORK

A number of research projects have studied the collaborative learning processes applying
artificial intelligence techniques; however, they have focused mostly on assisting groups
in online learning activities. Talavera and Gaudioso [2004] applied clustering in e-
learning data to build student profiles based on the interactions with the user interface
performed by the students. Anaya and Boticario [2011] acutely described a method to
classify learners according to their level of collaboration using clustering and decision
trees. Prata et.al. [2009] presented an automated detector of the nature of the utterances
written at a math online system in terms of collaboration focusing on the identification of
conflict between peers.

Additionally, several researchers have specifically addressed the analysis of
collaboration using sequential pattern extraction. Perera et. al. [2009] modelled key
aspects of teamwork on groups working with an online project management system. They
clustered groups and learners according to quantitative indicators of activity and also
proposed the use of alphabets to represent sequential patterns of interactions that can
distinguish strong from weak groups. Other techniques have also been used to mine
sequential patterns from collaborative data including Hidden Markov Models [Soller and
Lesgold 2007], Social Network Analysis [Casillas and Daradoumis 2009] and Process
Mining [Reimann et al. 2009].

In terms of co-located collaboration, Martinez et. al. [2011a] proposed a method to
discern the extent of collaboration in groups of learners solving an optimisation problem
in a multi-display face-to-face setting. The authors also applied a set of techniques to
derive a user model of collaboration from a co-located multi-display setting. This also
proved give information about the extent of communication and collaboration of students

Analysing frequent sequential patterns of collaborative learning activity 113

at the tabletop [Martinez et. al. 2011b]. The work reported in this paper is the first effort
we are aware of that has made use of data mining techniques to analyse and discover
patterns of interaction from data generated by a multi-user tabletop educational
application.

3. THE TABLETOP TASK: DIGITAL MYSTERIES
Digital Mysteries is a collaborative learning tool for the development and assessment of
students’ higher level thinking skills [Kharrufa et al. 2010]. The task provided to the
students is to solve a mystery with an open question in any subject such as mathematics,
history, or physics. Students are given the question and a number of data slips which may
hold direct clues for solving the mystery, background information, or even red-herrings.
They are asked to analyse these to formulate their answer to the question. Among the
main design concepts behind the original paper-based mysteries tool [Leat and Nichols
2000] is that the students’ cognitive processes become evident through their physical
manipulation of these data slips to solve the mystery.

Digital Mysteries divides the task of solving a mystery into three stages and provides
a set of externalisation tools at each of these. i) For the first “information gathering”
stage, users are provided with 20-26 data slips. Initially, these slips are displayed in a
minimised pictorial form to save space at the tabletop. Consequently, users have to
expand them to read the contained clues (see Figure 1, right). ii) For the second
“grouping” stage, students are provided with a tool for creating “named” groups of slips
and they are asked to categorise the slips into meaningful groups. Students usually create
groups in support of or against a particular claim, or groups containing information
related to a particular person, topic, or event. Students move to the next stage after
putting all the slips into a minimum of four named groups. iii) For the third and last
“sequencing and webbing” stage, students are asked to use a sticky tape tool to build a
branched structure that reflects cause-and-effect relations and time sequences embodying
the students’ answer to the question. After completing this stage, students are asked to
write down their answer.

. P
N - Ty 5
4 Ecy o

¥y F?
ALy . -
Fig. 1. Left: Three children solving a Digital Mystery. Right: Participants reading a clue

Digital Mysteries was implemented using a prototype of the multi-pen horizontal
Promethean Activboard'. Using a pen-based tabletop makes it possible to identify the
author of each action. In this way, Digital Mysteries captures a rich set of interaction
data throughout the mystery solution process that includes user identification or
authorship as we will refer to in the rest of this paper.

! Promethean Interactive Whiteboards: http://www.prometheanworld.com/

114 Roberto Martinez Maldonado et al.

Participants and data collection. Every action on the tabletop was logged and all
sessions were video recorded. The study involved 18 participants, forming 6 groups of 3
participants each (see Figure 1, left). Some of the groups solved more than one mystery,
generating a total of 12 logged sessions. Participants were elementary school students
aged between 11 and 14 years. Each group was asked to find the answer to a mystery.
They had to read and understand the clues, cluster them into meaningful groups, discuss
which clues were related with each other and formalise a response to the mystery. Triads
performed between 970 and 2017 actions per session, for a total of 17130 logged actions.

Data exploration. The raw data was coded as a series of Events, where Event= {Time,
Author, Action, Object}. The possible actions that can be performed on the data slips are:
moving (M), enlarging to maximum size (E), resizing to medium size (N), shrinking (S),
Rotating (M), making unions with other data slips (U), add data slip to a group (G) and
remove a data slip from a group (R). Out of the 12 sessions, 5 were coded as low
achieving groups of students, 5 as high achieving groups and 2 as average groups. The
level of achievement was coded considering: the quality of the discussions, the degree of
logic thinking and the soundness of the justification for the solution of the mystery. A full
report of this analysis can be found in [Kharrufa 2010]. We focus from now on the 10
groups that clearly showed evidence of low orhigh achievement.

4. MINING AND CLUSTERING SEQUENTIAL PATTERNS

From a Data Mining perspective, the dataset collected from our co-located setting poses
challenges to general data mining techniques. A first challenge is that there is a diversity
of spontaneous actions that can be performed when using a tabletop as opposed to online
systems, such as wikis or forums, in which learners have more time to think their actions.
As a result, our data might contain more non-relevant human-computer interaction
events. The second challenge is the especial importance of the authorship of the low level
events performed on Digital Mysteries. To address these issues we have set out to attend
two research questions: 1) what are the key insights that can be gained from raw and
compact logged actions? (e.g. consider N similar actions as a group of actions rather than
N individual actions), and ii) what information can be obtained by including authorship
information in the post-processing stage of data mining?

The data mining task we set out to solve is to discover sequences of interactions
between group members and the data slips at the tabletop that were more frequent in
high-achieving groups than in low-achieving ones, and vice-versa. Two important
attributes of our data are the sequential order and, as mentioned above, the authorship.
One technique that provides insights on the timing of the events is sequential pattern
mining. A sequential pattern is a consecutive or non-consecutive ordered sub-set of a
sequence of events [Jiang and Hamilton 2003]. However, as noted by Perera et.al. [2009],
a frequent pattern of two actions X-Y might not be meaningful if many other events or
large gaps of inactivity occur between such actions. We focused on the comsecutive
ordered sub-set of events that can potentially form a pattern. We will refer to these as
frequent sub-sequence sequential patterns. Our algorithm seeks consecutive and also
repeated patterns within the dataset of sequences. A generic flow diagram of our system
is shown in Figure 2 (left).

Raw dataset. Our original raw data consists of the events performed at the tabletop,
along with the authorship information of each of these events. We present a sample
excerpt from a group session log in Figure 2 (right). In Digital Mysteries each resource
(data slip) provided to solve the mystery is present at the tabletop from the beginning to
the end of the session. We took advantage of this to explore how learners interact with

Analysing frequent sequential patterns of collaborative learning activity 115

the resources at the tabletop. We first broke down each group’s long and unique sequence
of events into sub-sequences of actions per data-slip. Then, to preserve meaningfulness in
the patterns, we broke down these data slips’ sub-sequences when a gap of inactivity
longer to 120 seconds was detected.

We describe the above with a short scenario: the group decide to read a data-slip D
and performs actions to enlarge it (move and enlarge actions), they read the data slip,
close it and re-arrange it (more moves and shrink actions); if after this sequence there is a
“group action” for the same data slip, but 5 minutes later, we can assume that the “group
action” is not directly related with the previous actions. We chose a gap of 120 seconds
as a maximum threshold beyond which the set of actions are considered as unrelated.
This time frame was chosen based on the observations made on the videos of the sessions
and the log files. In summary, the raw dataset we started with as input of step 1 is a
dataset of 1618 sequences generated by breaking down the actions of each session in this
order: by stage, resource (data slip) and long inactivity gap. The length of each sequence
obtained was between 4 and 40 elements. In this dataset of sequences, each sequence is
related with the session, stage and resource it comes from. Each element within each
sequence contains information on timing, authorship and action type.

Raw | o (1-Pre-) 2_Pattern Time Author Action Object
dataset e processing mining 00:10 Mario M DataSlip01
7 \ J 00:12 Mario E DataSlip01
Events 1 00:46 Mario S DataSlip01
e ™ e 00:47 Alice M DataSlip02
Analysis 4-Post- y 3-Clustering 00:50 Alice M DataSlipOl
J_ processing - patterns 00:51 Bob E DataSlip02
_ J _ 00:53 Mario M DataSlip02

Clusters of patterns
Fig. 2. Left: Steps of our data mining approach. Right: Excerpt from the application logs of activity.

Step 1. We explored two pre-processing approaches: the first method consists in
going straight into the sequential mining (hence a void step 1). The second method
consists in compact similar contiguous actions before applying the sequence mining.
Both methods are described in detail in the next section. The output of the first step for
both cases is a pre-processed dataset of sequences.

Step 2. The sequence mining step is generic for both approaches. As mentioned
before, our aim is to look for frequent ordered patterns within the action sequences. With
the purpose of exploiting not just the frequency but also the redundancy of the patterns
we are searching for, we chose an algorithm to extract the frequent sub-sequences from
sequences using n-grams [Masataki and Sgisaka 1996]. Ann-gramis a subsequence
of n items from a given sequence. We set the minimum support threshold to consider a
pattern as frequent if this was present in at least one quarter of the total number of data
slips. We also set the maximum error in 1 to allow the matching of patterns with sub-
sequences if there was an edit distance of 0 (perfect match) or 1 (one different action in
the sub-sequence) between them. The output of this step is a list of frequent sequential
patterns that meet the minimum given support.

Step 3. The purpose of step 3 is to cluster the patterns found in step 2. Indeed,
without further treatment, patterns obtained from step 2 offer limited information to
differentiate groups of learners. There can also be many similar patterns. As a result, it is
tedious to analyse each pattern distribution across the groups. The patterns were clustered
based on their edit distance. The edit distance between two patterns was defined as the

116 Roberto Martinez Maldonado et al.

minimum number of changes needed to convert one pattern of actions into the other, with
the allowed operations: insertion, deletion, or substitution of a single action. We used a
hierarchical agglomerative clustering technique [Witten and Frank 1999] whose input is a
matrix that contains all the edit distances between each pair of patterns. We chose this
technique as it has proven successful in mining human-computer interaction data [Fern et
al. 2010]. The end result can be visually represented by a dendrogram, showing different
levels in which patterns are clustered. These visual representations served to supervise
the cluster formation and decide which level of clustering was considered as acceptable.

Step 4. Post-processing and analysis. In the post-processing stage we included the
authorship information, by considering the number of students who were involved with
the patterns. We also examined the benefits of each method employed at step 1, i.e. the
use of raw versus compacted data.

We now describe in detail the specifications of each approach and the results of the
data mining outcomes in collaborative learning terms.

4.1. Method 1: Authorship in the post processing
The first method consists in exploring the information that can be obtained by mining the
Human-Computer Interaction logs of physical actions without reducing the events.

Pre-processing and sequence mining for method 1. The input data for the sequence
mining consisted of a list of sequential raw sequences of events (e.g. {M-E-M-M-S-M-N-
G-S-M-R} where M=move, E=enlarge to maximum size, N=resize to normal size, G=add
to group, S= shrink and R=remove from group). The output was a list of frequent
patterns. Only sequences of at least 4 actions were considered. The final result included
259 frequent patterns found of length varying from 4 to 10 actions.

Post-processing and clustering for method 1. Based on direct observations made on
the video recorded sessions and the sequential patterns found, we obtained that many
patterns had a similar meaning, although the order or quantity of actions they contained
were somewhat different. For example, the sequential patterns S1={M-E-M-M-S} and
S2={M-M-M-E-S-M-M} (where M=move, E=enlarge, S=shrink) are both related with
the same strategy: read a data-slip, close it and re-arrange it immediately afterwards
(presumably to keep the interface organised and tidy). These observations led us to use
clustering to group similar patterns. In this part of the process, the input for the
hierarchical clustering algorithm was a similarity matrix of 259 x 259 that contained the
edit distances of all pairs of sequences. The algorithm produced a dendogram of 4
hierarchies as output. The clusters obtained were supervised to inspect the extent in
which the groups were similar. After analysing the dendogram, the second highest level
was selected to form eight meaningful clusters. This is the only part of the approach in
which the results were manually supervised.

Results of method 1. We examined the results of the clustering by looking at the
trends observed between patterns and groups of learners that presented a prominent level
of achievement. We found that some sessions (high or low achievers) showed behaviour
associated with certain clustered patters. Therefore, we used unpaired student tests (p <=
0.05) to statistically analyse whether there were significant differences between such
sessions. Table I summarises the clusters found using this approach and the results of
such analysis.

The first two clusters are related with the strategies that learners followed to gather
information from the data slips. Cluster 1 contained sequences related with the strategy of
reading the slips by enlarging the object and then, after a reasonable time, closing them to
keep the interface tidy. Some of these groups positioned the slips in a certain region of

Analysing frequent sequential patterns of collaborative learning activity 117

the table to indicate they had already read them. On the other hand, Cluster 2 contained
sequences of actions in which groups maximised the data slips without closing them. The
observations on the videos indicated that some of the groups which followed this
behaviour skipped the reading of some slips. We found that high achievers favoured the
strategy of reading, minimising and arranging immediately (cluster 1 mean = 124.75,
cluster 2 mean = 61.25). On the contrary, low achievers used both strategies for the
information gathering, performing more actions contained in Cluster 2 in which they did
not close the slips immediately after reading (cluster 1 mean = 104.40, cluster 2 mean =
114.80). This simple change in the strategy for collecting information suggests that
reading without re-arranging increases clutter, making the task more difficult to be
controlled by the group. Indeed, cluster 3, which contains patterns related with making
space actions (moving and shrinking), showed a strong link with low achieving groups
(t=2.47, p= 0.039). As a result, low achievers spent much more time than the high
achievers arranging the elements at the table.

Clusters 6, 7 and 8 contain “union” actions in which learners established links
between the data slips they considered to be tightly related. Cluster 6 includes sensible
amount of union actions (at most two unions) performed along with arrangement actions.
Cluster 7 presented a moderate amount of union actions and cluster 8 presented patterns
with an enormous amount of union actions. Low achieving groups favoured clusters 7
and 8 (t=2.97, p=0.018 and t=3.98, p=0.0041 respectively). Based on this trend, low
achievers created too many unions related to a specific data slip in short periods of time.
On the contrary, high achieving groups favoured patterns with modest quantity of unions
(t=2.81, p=0.023). Clusters 4 and 5 included patterns related with ungroup and group
actions. In this case we obtained some differences among sessions. Low achievers made
more “corrections” on categorising data slips than high achievers.

Table 1. Results for clusters of patterns found by mining the raw events.

Cluster Example sequence Favoured Groups Participants
1- Read and arrange {M-M-E-M-S-M} Slightly more in high achievers Both groups 1-2 authors
2- Read slip {M-E-M-M} Slightly more in low achievers Both groups 1-2 authors
3- Arrangement {M-M-S-M-M} Substantially more in low achievers Low achievers 2-3 authors
4- Ungroup {M-R-M-G} Slightly more in low achievers Both groups 1-2 authors
5- Group {M-N-M-G-M-S} Both groups Both groups 1-2 authors
6- Few unions {M-M-U-M-M} Substantially more in high achievers Low achievers 2-3 authors
7- Moderate unions {M-U-M-U-M-U} Substantially more in low achievers Low achievers 2-3 authors
8- Too many unions {U-U-U-M-U-U-U} Substantially more in low achievers Low achievers 2-3 authors

In regards to authorship, we analysed the way in which participants collectively
interacted with the resources in terms of number of authors involved with the data slip in
each pattern. For clusters 3, 6, 7 and 8 we obtained a strong statistical difference in the
number of participants working together with the same data slip. Low achieving groups
presented more sequences in which the three authors performed actions sequentially
compared with high achieving groups (p<0.05 in all cases). For the rest of the clusters
there were no significant differences in the number of authors involved with the patterns.
For the clusters related with the strategies for gathering information (clusters 1 and 2) and
grouping data-slips (clusters 4 and 5) the sequences were performed mostly by one
author, and in some cases, by two authors in both high and low achieving groups (see
Table I, column Participants).

What we learnt from these findings is that having many hands on the same object at
the same time does not imply improved work. In fact, the sequences in which the low
achievers have the three participants involved are mostly focused on non-cognitively
demanding tasks, such as arranging the elements on the tabletop (cluster 3). In the case of

118 Roberto Martinez Maldonado et al.

the “union actions” clusters (7 and 8) even when the activity is a cognitively demanding
task, we learnt from the analysis described above and from observing the videos that
lower achieving groups created a larger number of unions on particular slips that were not
necessarily meaningful. Grounding on these results and the video analysis we obtained
that the high level groups worked more collaboratively and participants were keener to
interact on one data slip at a time, even if they worked in parallel with different objects.
We also explored the possible significant differences between the patterns and the
stages in which they appear. As expected, clusters related to gathering information
(clusters 1 and 2) are mainly related with stage 1, cluster 3 (re-arrangement) with all the
stages, Clusters 4 and 5 with stage 2 (grouping and ungrouping actions) and the clusters
related with union actions are evidently related with the third stage (sequencing and
webbing). Thus, no further special consideration was put on the staging information.

4.2. Method 2: Authorship in the post processing and generalisation in the pre-
processing

The second approach consists of generalising (compacting). Then, we looked at the

similarities of this method outcomes with method 1 results.

Pre-processing and sequence mining for method 2. The dataset of sequences was
compressed. The aim of the compression was to see how much information will be lost or
gained if we generalised the user interface actions that can be attributed to user slips. A
simple alphabet was applied which follows a single rule: the sequential actions of the
same type (such as the action M in {M-M-M-E-M} or S in {S-U-U-U}) were compacted
adding the quantifier for regular expressions + ({M+-E-M} and {S-U+}). The minimum
length of the patterns was set to 3 actions, or 2 actions if at least one of the actions
contained the quantifier +. In this case the minimum support was also set to one quarter
of the data slips. The final result included 261 frequent patterns found of size between 3
and 5 actions each.

Post-processing for method 2. The 261 patterns were clustered following the same
process used in method 1. We obtained a dendogram with 5 levels. The first issue found
in this method was that patterns were more difficult to cluster accurately as they
contained less contextual information (fewer items). The solution was to choose a lower
clustering level and manually merge the smaller clusters which contained similar actions.
Seven meaningful clusters resulted from the clustering supervision and also 2 extra very
small clusters that could not be considered into any other cluster.

Results of method 2. Even though some details in the sequences were lost, we found
similar observable tendencies in the presence of patterns of high and low achieving
sessions (see table II). This approach provided a deeper difference between the ways the
higher and lower achieving groups gather information to solve the problem. For example
we found a stronger difference in the strategy of reading without minimising the data
slips performed mostly by the low achieving groups (Cluster 2, t = 2.69, p=0.0272). We
also found a significant difference with respect to the strategy “read — close and arrange
data slips” favouring the high achieving groups (Cluster 1, t=3.05, p=0.0158). Results
also confirmed that low achieving groups performed a huge amount of unions between
data slips in short periods of time (Cluster 7, t = 3.05, p=0.0158).

For the authoring information, the results from method 1 were also confirmed. The
cluster that contains sequences with high amounts of union actions performed by 2 and 3
users at the same time were present mostly in the low achieving groups (t=2.714,
p=0.0265). Some information is lost though; there were no significant differences

Analysing frequent sequential patterns of collaborative learning activity 119

between groups in any other aspect. In general, this approach confirmed the insights
obtained applying method 1 but the quality of the results decreased in some cases.
Table II. Results for clusters of patterns found mining compacted events.

Cluster Example sequence Favoured Groups Participants
1- Read and arrange {M+-N-S-M+} Substantially more in high achievers Both groups 1-2 authors
2- Read slip {M-E-M+} Substantially more in low achievers Both groups 1-2 authors
3- Arrangement {M+-S-M+} Slightly more in low achievers Both groups 1-2 authors
4- Ungroup {M-R-M+} Both groups Both groups 1-2 authors
5- Group {M+-G-S} Both groups Low achievers 2-3 authors
6- Few unions {M+-U-M-U} Slightly more in high achievers Low achievers 2-3 authors
7- Many unions {M-U+-M-U+-M} Substantially more in low achievers Low achievers 2-3 authors

5. DISCUSSION

The design of our approach was motivated by the goal of exploiting the large amounts of
data generated from learners’ interactions with the interactive tabletop. Our approach
shows promise to follow up research on supporting collaborative learning through the use
of tabletops and machine learning techniques. Our data mining approach consisted of
mining both the raw human computer interactions and the compact logged actions,
clustering similar frequent patterns based on edit distance and analyse the proportion of
these clusters among group sessions. Both methods we explored produced similar results
therefore the compacting method provides very interesting insights even when some
details are lost. However, this loss of information impacted negatively on the clustering
step, thus this method is unsuitable for being used for automatic support.

Method 1 also requires some human supervision to code the level of achievement of
groups. Further research needs to be done on the ways to automatically extract indicators
of collaboration. In regards to the educational value of the results, the video analyses
confirmed the presence of serial patterns of interaction in the trials. Group members of
high achieving groups tried to interact and externalise their thinking. They tended to read
all the slips to get clues about the mystery and parallel interactions were clearly observed
along with engagement in conversations. The results of our approach do not tell the
whole story but are good indicators of desired and undesired patterns of behaviour related
with strategies that are followed by groups.

The goal of this line of research is to offer adapted support to groups in the form of
direct feedback to students or to their facilitator. The insights obtained in the work
reported in this paper are the first steps towards such adapted support that machine
learning techniques can offer to the use of tabletop devices. We addressed two questions
posed at the beginning of this paper, regarding (i) the key insights that can be acquired
from mining raw or compact logged actions and (ii) the information offered by the
authorship element of the data logs.

We observed that the results obtained with both methods reflected similar patterns
of behaviour, such as the strategies followed by the groups to gather information, arrange
resources and the creation of links between data slips. Some elements of the interactions
came up by compacting the redundant actions in method 2 (gathering information
strategies), but in other elements some information was lost. The most important issue
with the compacting method is that more empirical interpretation was needed after the
clustering step whilst method 1 offered better clusters. In general, the raw HCI actions
offer an adequate degree of detail to obtain meaningful results when studying the
interactions by resource. In regards to the question related with authorship, results
indicated that low achieving groups tended to work sequentially with the same objects.
We confirmed from the video analysis that high achieving groups tended to discuss their
thoughts and work in parallel with different objects.

120 Roberto Martinez Maldonado et al.

6. CONCLUSION AND FUTURE DIRECTIONS

This paper presented an outline of distinctive techniques to extract elements of
collaborative interaction at the tabletop. These techniques reveal the importance of the
design of specific data mining methods for exploiting traces of collaboration from co-
located situations. Our work grounds upon educational data mining research on online
collaborative learning and we have proposed a methodology that can be used as a starting
point to guide future research on the identification of patterns from educational tabletop
settings. An important goal of our work is to mirror useful information about groups to
help facilitators and the students themselves to reflect on and improve their learning
activity. There are still a number of open questions that we want to address. The next step
in this line of research will be the exploration of other ways to analyse sequential actions
considering parallel work, looking at the high level problem-solving processes, designing
alphabets to include authorship in earlier stages of the data mining.

REFERENCES

ANAYA, A.R. AND BOTICARIO, J.G. 2011. Application of machine learning techniques to analyse student
interactions and improve the collaboration process. Expert Systems with Applications 38, 1171-1181.

CASILLAS, L. AND DARADOUMIS, T. 2009. Knowledge extraction and representation of collaborative activity
through ontology based and Social Network Analysis technologies. Bl and Data Mining 4, 141-158.

D'MELLO, S., OLNEY, A. AND PERSON, N. 2011. Mining Collaborative Patterns in Tutorial Dialogues. JEDM
- Journal of Educational Data Mining 2, 1-37.

FERN, X., KOMIREDDY, C., GRIGOREANU, V. AND BURNETT, M. 2010. Mining problem-solving
strategies from HCI data. ACM Trans. Comput.-Hum. Interact. 17,1-22.

JEONG, H. AND HMELO-SILVER, C.E. 2010. An Overview of CSCL Methodologies. In Proceedings of the 9th
International Conference of the Learning Sciences, Chicago, USA2010, 920-921.

JIANG, L. AND HAMILTON, H. 2003. Methods for Mining Frequent Sequential Patterns. In Advances in
Artificial Intelligence, Y. XIANG AND B. CHAIB-DRAA Eds. Springer Berlin / Heidelberg, 992-992.
KHARRUFA, A.S. 2010. Digital tabletops and collaborative learning. PhD thesis. School of Computing Science,
Newcastle University, Newcastle Upon Tyne.

KHARRUFA, A., LEAT, D. AND OLIVIER, P. 2010. Digital mysteries: designing for learning at the tabletop. In
Interactive Tabletops and Surfaces ACM, 197-206.

LEAT, D. AND NICHOLS, A. 2000. Brains on the Table: Diagnostic and formative assessment through
observation. Assessment in Education: Principles, Policy & Practice 7,103 - 121.

MARTINEZ, R., WALLACE, J., KAY, J. AND YACEF, K. 2011a. Modelling and identifying collaborative
situations in a collocated multi-display groupware setting. In Proceedings of the International Conference on
Artificial Intelligence in Education 2011.

MARTINEZ, R., KAY, J., WALLACE, J. AND YACEF, K. 2011b. Modelling symmetry of activity as an
indicator of collocated group collaboration. In Proceedings of the International Conference on User Modeling,
Adaptation and Personalization.

MASATAKI, H. AND SGISAKA, Y. 1996. Variable-order N-gram generation by word-class splitting and
consecutive word grouping. In Proceedings of the Conference on Acoustics, Speech, and Signal Processing,
19961996 1EEE Computer Society, 1256487, 188-191.

PERERA, D., KAY, J., KOPRINSKA, I., YACEF, K. AND ZAIANE, O. 2009. Clustering and Sequential Pattern
Mining of Online Collaborative Learning Data. IEEE Tran. on Knowledge and Data Engineering 21, 759-772.
PRATA, D., BAKER, R., COSTA, E., ROSE, C., CUI, Y. AND DE CARVALHO, A. 2009. Detecting and
Understanding the Impact of Cognitive and Interpersonal Conflict in Computer Supported Collaborative Learning
Environments. In 2nd International Conference On Educational Data Mining, 131-140.

REIMANN, P., FREREJEAN, J. AND THOMPSON, K. 2009. Using process mining to identify models of group
decision making in chat data. In Proceedings of the international conference on Computer Supported
Collaborative Learning 2009 International Society of the Learning Sciences, 98-107.

SOLLER, A. AND LESGOLD, A. 2007. Modeling the process of collaborative learning. The Role of Technology
in CSCL, 63-86.

TALAVERA, L. AND GAUDIOSO, E. 2004. Mining Student Data to Characterize Similar Behavior Groups in
Unstructured Collaboration Spaces. In Proceedings of the European Conf. Artificial Intelligence 2004.

WITTEN, ILH. AND FRANK, E. 1999. Data mining: Practical machine learning tools and techniques with Java
implementations. Morgan Kaufmann, San Francisco.

Acquiring Item Difficulty Estimates: a Collaborative Effort of Data
and Judgment

K. WAUTERS

Katholieke Universiteit Leuven, Belgium

P. DESMET

Katholieke Universiteit Leuven, Belgium
AND

W. VAN DEN NOORTGATE

Katholieke Universiteit Leuven, Belgium

The evolution from static to dynamic electronic learning environments has stimulated the research on adaptive item sequencing. A prerequisite for
adaptive item sequencing, in which the difficulty of the item is constantly matched to the knowledge level of the learner is to have items with a
known difficulty level. The difficulty level can be estimated by means of the item response theory (IRT), as often done prior to computerized
adaptive testing. However, the requirement of this calibration method is not easily met in many practical learning situations, for instance, due to the
cost of prior calibration and due to continuous generation of new learning items. The aim of this paper is to search for alternative estimation
methods and to review the accuracy of these methods as compared to IRT-based calibration. Using real data, six estimation methods are compared
with IRT-based calibration: proportion correct, learner feedback, expert rating, paired comparison (learner), paired comparison (expert) and the Elo
rating system. Results indicate that proportion correct has the strongest relation with IRT-based difficulty estimates, followed by learner feedback,
the Elo rating system, expert rating and finally paired comparison.

Key Words and Phrases: IRT, proportion correct, learner feedback, expert rating, paired comparison, graded response model and Elo rating

1. INTRODUCTION

Most e-learning environments are static, in the sense that they provide for each learner the same information in the
same structure using the same interface. One of the recent tendencies is that they become dynamic or adaptive. An
adaptive learning environment creates a personalized learning opportunity by incorporating one or more adaptation
techniques to meet the learners’ needs and preferences (Brusilovsky 1999). One of those adaptation techniques is
adaptive curriculum/item sequencing, in which the sequencing of the learning material is adapted to learner-, item-,
and/or context characteristics (Wauters, Desmet & Van den Noortgate 2010). Hence, adaptive item sequencing can be
established by matching the difficulty of the item to the proficiency level of the learner. Recently, the interest in
adaptive item sequencing has grown, as it is found that excessively difficult items can frustrate learners, while
excessively easy items can cause learners to lack any sense of challenge (e.g. Pérez-Marin, Alfonseca & Rodriguez
2006, Leung & Li 2007). Learners prefer learning environments where the item selection procedure is adapted to their
proficiency, a feature which is already present to a certain extent in computerized adaptive tests (CATS; Wainer
2000).

A prerequisite for adaptive item sequencing is to have items with a known difficulty level. Therefore, an initial
development of an item bank with items of which the difficulty level is known is needed. This item bank should be
large enough to include at any time an item with a difficulty level within the optimal range that has not yet been
presented to the learner. In CAT, the item response theory (IRT; Van der Linden & Hambleton 1997) is often used to

Authors’ addresses: K. Wauters, ITEC/IBBT, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Kortrijk,
Belgium. E-mail: kelly.wauters@kuleuven-kortrijk.be; P. Desmet, ITEC/IBBT, Faculty of Arts, Katholieke Universiteit Leuven, Kortrijk,
Belgium. E-mail: pietdesmet@kuleuven-kortrijk.be; W. Van den Noortgate, ITEC/IBBT, Faculty of Psychology and Educational
Sciences, Katholieke Universiteit Leuven, Kortrijk, Belgium. E-mail: wim.vandennoortgate@kuleuven-kortrijk.be

122 Kelly Wauters, Piet Desmet and Wim Van Den Noortgate

generate such a calibrated item bank. IRT is a psychometric approach that emphasizes the fact that the probability of a
discrete outcome, such as the correctness of a response to an item, is function of qualities of the item and qualities of
the person. Various IRT models exist, differing in degree of complexity, with the simplest IRT model stating that a
person’s response to an item depends on the person’s proficiency level and the item’s difficulty level. More complex
IRT models include additional parameters, such as an item discrimination parameter and a guessing parameter.
Obtaining a calibrated item bank with reliable item difficulty estimates by means of IRT requires administering the
items to a large sample of persons in a non-adaptive manner. The sample size recommended in the literature varies
between 50 and 1000 persons (e.g. Kim 2006, Linacre 1994, Tsutakawa & Johnson 1990). Because IRT has been a
prevalent CAT approach for decades, it seems logical to apply IRT for adaptive item sequencing in learning
environments that consist of simple items. However, the difference in data gathering procedure of learning and testing
environments has implications for IRT application in learning environments. In many learning environments, the
learners are free to select the item they want to make. This combined with the possibly vast amount of items provided
within the learning environment leads to the finding that many exercises are only made by few learners (Wauters et al.
2010). Even though IRT can deal with structural incomplete datasets (Eggen 1993), the structure and huge amount of
missing values found in the tracking and logging data of learning environments can easily lead to non-converging
estimations of the IRT model parameters. In addition to this, the maximum likelihood estimation procedure
implemented in IRT has the disadvantage of being computationally demanding.

Due to these impediments that go together with IRT based calibration, we are compelled to search for alternative
estimation methods to estimate the difficulty level of items. Some researchers have brought up alternative estimation
methods. However, the accuracy of some solutions were not compared to IRT based calibration and the various
methods were not compared in a single setting. The purpose of this study is to review the accuracy of some alternative
estimation methods as compared to IRT-based calibration in a single setting.

2. EXPERIMENT

2.1 Related Work

2.1.1 Iltem Response Theory. To estimate the item difficulty, the IRT model with a single item parameter
proposed by Rasch (Van der Linden & Hambleton 1997) is used. The Rasch model models the probability of
answering an item correctly as a logistic function of the difference between the person’s proficiency level (0) and the
item difficulty level (B), called the item characteristic function:

exp (6, — B)
1+exp (6, — B)
The IRT-based estimation of the difficulty level will be estimated on the basis of the learners’ data obtained in this

study. In addition to that, IRT-based calibration conducted on preliminary examinee data by Selor, the selection
agency of the Belgian government, serves as true difficulty parameter values.

2.1.2 Proportion Correct. A simple approach to estimate the difficulty level of items is to calculate the
proportion of correct answers by dividing the number of learners who have answered the item correctly by the number
of learners who have answered the item. To obtain the item difficulty parameter, the proportion correct scores has to
be converted as follows:

.
ﬁi = log n; :)
N;
where f; denotes the item difficulty level of item i, n; represents the number of learners who have answered item i
correctly, and A, represents the number of learners who have answered item i.

The advantage of this approach is that the item difficulty can be calculated online due to the easy formula which
does not require many computational resources. Furthermore, the item difficulty can be updated after each
administration. The lower the proportion of students who have answered the item correctly, the more difficult the item
is. Johns, Mahadevan and Woolf (2006) have compared the item difficulty level obtained by IRT estimation with the
percentage of students who have answered the item incorrectly, and found a high correlation (r=0.68).

2.1.3 Learner Feedback. Some researchers have applied learner’s feedback in order to provide adaptive
sequencing of courseware in e-learning environments (e.g. Chen, Lee & Chen 2005, Chen, Liu & Chang 2006, Chen
& Duh 2008). After a learner has studied a particular course material, he is asked to answer two simple questions:
“Do you understand the content of the recommended course material?” and “How do you think about the difficulty of
the course materials?”. After a learner has given feedback on a 5-point Likert scale, scores are aggregated with those

Acquiring Item Difficulty Estimates: a Collaborative Effort of Data and Judgment 123

of other learners who previously answered this question by taking the average of the scores. The new difficulty level
of the course material is based on a weighted linear combination of the course difficulty as defined by course experts
and the course difficulty determined from collaborative feedback of the learners. The difficulty parameters slowly
approach a steady value as the number of learners increases.

In this study the procedure of Chen et al. (2005) for adjusting the difficulties of the items is slightly altered. The
course difficulty as defined by course experts is not taken into account. Instead, the difficulty estimates are solely
based on the collaborative feedback of the learners. After an item is presented, the learner is asked a feedback
question “How difficult did you find the presented item?”. The learner answers on a 5-point Likert scale (Likert,
1932), ranging from -2 (“very easy”) over -1 (“easy”), 0 (“moderate”), 1 (“difficult”) to 2 (“very difficult”). The item
difficulty based on learner feedback is then given by the arithmetic mean of the scores.

2.1.4 Paired Comparison. Another method, already used in CAT, to estimate the difficulty level of new items is

paired comparison (Ozaki & Toyoda 2006, 2009). In order to prevent content leaking, experts are asked to assess the
difficulty of items through one-to-one comparison or one-to-many comparison. In this method, items for which the
difficulty parameter has to be estimated, are compared with multiple items, of which the item difficulty parameter is
known. The underlying thought that prompts this item difficulty estimation approach is Thurstone’s paired
comparison model. While Thurstone (1994) modelled the preference judgment for object i over object j, Ozaki and
Toyoda (2006, 2009) modelled the difficulty judgment of item i over item ;.
In this study a similar procedure of the one employed by Ozaki and Toyoda (2009) is adopted to estimate the
difficulty level by means of paired comparison. After an item is presented, the learner has to judge where the
presented item should be located in a series of 11 items ordered by difficulty level from easy to difficult. This means
that the raters have to make a one-to-many comparison with 11 items of which the item difficulty parameter is known.
The probability that item 7 is more difficult than item 1, according to N raters is expressed as:

Pi(B) = 1+ exp[=1(B; — b)]’

Where f; is the difficulty of item i judged by the raters, b, is the difficulty parameter of item 1 as estimated by the
preliminary IRT analysis, conducted by Selor.

In this study 11 items are presented simultaneously and the raters have to select one out of 12 categories: i<l,
1<i<2,..., 10<i<11, 11<i. Because the 11 items are ordered according to their difficulty level from easy to difficult,
the idea of the graded response model (Samejima, 1969) can be adopted to extract the boundary response function of
each category as:

Pici(B) =1—Pi(B)
Picico(Bi) = PL(B) — P2(B)

Pro<i<11(Bi) = Pro(Bi) — P11 (Bi)

Pii<i(B) = P (B))

The final estimation of f; is obtained by maximizing the log likelihood, while fixing bys, i.e. the difficulty parameters
ofiitem 1 to 11 as estimated by the preliminary IRT analysis.

2.1.5 Expert Rating. Another approach to obtain item parameter estimates is allowing subject domain experts to
estimate the value of the difficulty parameter (Yao 1991, Linacre 2000, Fernandez 2003, Lu, Li, Liu, Yang, Tan & He
2007). There is some evidence in the measurement literature that test specialists are capable of estimating item
difficulties with reasonable accuracy (e.g., Chalifour & Powers 1989), although other studies found contradictory
results (Hambleton, Bastari & Xing 1998). As indicated by Impara and Plake (1998), a distinction has to be made
between the ability of experts to rank order items accurately with reference to the difficulty level, and the ability of
experts to estimate the proportion of persons who will answer the items correctly. Experts seem to be capable
conducting the former task, but have difficulties conducting the latter where they have to be able to conceptualize the
reference group and predict how well such persons will perform on each item.

Hence, two methods for obtaining expert ratings were included in this study: a paired comparison method and an
evaluation on a proportion correct metric. The formula’s to obtain the item difficulty parameter estimates based on
these two methods are described in the subsections “Paired Comparison” and “Proportion Correct” respectively.

2.1.6 Elo Rating. The Elo Rating approach (Brinkhuis & Maris 2010) for estimating the item difficulty level is
an educational implementation of the Elo Rating system used for rating chess performances and sports (Elo 1978). In
sport, for example, two players compete with each other, resulting in a win, a loss or a draw. These data are known as
paired comparison data, for which the Elo rating system is developed. In the educational field, a person is seen as a
player and an item is seen as its opponent. The Elo Rating formula expresses the new rating after an event as a

124 Kelly Wauters, Piet Desmet and Wim Van Den Noortgate

function of the pre-event rating, a weight given to the new observation and the difference between the actual score on
the new observation and the expected score on the new observation. Brinkhuis and Maris (2010) estimated the
expected score on the new observation by means of the Rasch model. The formula implies that when the difference
between the expected score and the observed score is high, the change in both the person’s knowledge level and the
item difficulty level will be high. Because the estimation of the difficulty level becomes more stable when more
persons have answered an item, the weight given to new observations decreases when the rating of items is based on
many observations. The same is true for the rating of the persons. When the rating of the person’s knowledge level is
based on a large amount of answered items, the weight given to new observations decreases.

In this study, the Elo Rating system implemented by Brinkhuis and Maris (2010) was used to estimate the item
difficulty level. This Elo Rating system enables continuous measurement, since the rating is updated after every
event. The formula for updating the item difficulty level, and on the same time the person’s knowledge level, is given
by:

Bn=Bo+ W —Y),
where S, is the new item difficulty rating after the item is answered by a person, S, is the pre-event rating, W is the
weight given to the new observation, Y is the actual observation (score 1 for incorrect, O for correct), and Y, is the
expected observation which is estimated on the basis of the Rasch model. Hence, the formula for updating the item
difficulty level after a correct response becomes:

exp (6o — Bo)
1+ exp (6p — Bo)V
where 6, is the estimated person’s knowledge level before that person has answered this specific item. In this study,
the weight has been set to 0.4. Preliminary analysis have shown that a weight of 0.4 results in good estimates as it is

not too large, resulting in too much fluctuation, and it is not too small, resulting in an nearly invariant difficulty
estimate.

Bn=PBo+W|0—

Next to the comparison of the different alternative estimation methods with IRT-based calibration, we are
interested whether the alternative estimation methods that are based on the binary response data of the learners, i.e. 1
for a correct response and 0 for an incorrect response, are sample dependent. If the correlation between these methods
and the true difficulty parameter values are lower than the correlation between these methods and the difficulty
parameter values obtained on the basis of IRT-calibration with the data gathered in this study, then these alternative
methods are somewhat sample dependent. Furthermore, on the basis of the study of Impara and Plake (1998) it is
hypothesized that the correlation between the true difficulty parameter values and the ones obtained by means of
expert rating will be lower than the correlation between the true difficulty parameter values and the ones obtained by
means of paired comparison conducted by the experts.

2.2 Method

2.2.1 Participants. Students from ten educational programs in the Flemish part of Belgium (1% and 2™ Bachelor
Linguistics and Literature — K.U.Leuven; 1%, 2" and 3th Bachelor Teacher-Training for primary education — Katho
Tielt; 1*" and 2™ Bachelor Teacher-Training for secondary education — Katho Reno; 1% and 2™ Bachelor of Applied
Linguistics — HUB and Lessius; and 1¥ Bachelor Educational Science — K.U.Leuven) were contacted to participate in
the experiment. Three hundred eighteen students decided to participate. Sixteen teachers French from the above
mentioned educational programs were contacted as experts. Thirteen experts decided to participate.

2.2.1 Material and Procedure. The study took approximately half an hour. The learning material consisted of
items on French verb conjugation, supposedly measuring one single skill. The instructions, consisting of information
on the login procedure for the learning environment and on the proceedings of the experimental study were sent to the
participants by email. Once logged into the learning environment, the procedure for students was different from the
procedure for experts.

Students were given an informed consent. Next, they completed the pretest used as an example. This pretest
consisted of one item with three subquestions. First, the student had to fill in the correct French verb conjugation.
Second, the student was asked: “How difficult did you find the previous item?”” and the student has to answer on a 5
point Likert scale, ranging from -2 (“Very easy”) to 2 (“Very difficult”). Finally, the student was asked to judge
where the presented item should be located in the given series of 11 items ordered by difficulty level from easy to
difficult. After the pretest sample, students completed the actual test, which consisted of 25 items each with three
subquestions.

Acquiring Item Difficulty Estimates: a Collaborative Effort of Data and Judgment 125

Experts completed the pretest used as an example. This pretest consisted of one item with three subquestions.
First, the expert had to fill in the correct French verb conjugation. Second, the expert was asked: “What is, according
to you, the percentage of students that will answer this item correctly after completing secondary education?”. Finally,
the expert was asked to judge where the presented item should be located in the presented series of 11 items ordered
by difficulty level from easy to difficult. After the pretest sample, experts completed the actual test, which consisted
of 25 items each with three subquestions.

2.3 Results

The inter-rater agreement for the classification of the item difficulty was calculated by means of the intraclass
correlation coefficient (ICC; Shrout & Fleiss 1979). Shrout and Fleiss (1979) report the magnitude for interpreting
ICC values where ICC<0.40 = ”poor”, 0.40<ICC<0.59 = “fair”, 0.60<ICC<0.74 = “good”, and ICC>0.74 =
“excellent”. The inter-rater agreement for the classification of the item difficulty by students was fair (ICC[3,1]=0.42
for learner feedback; ICC[3,1]=0.43 for paired comparison). The inter-rater agreement for the classification of the
item difficulty by experts was good (ICC[3,1]=0.68 for expert rating and for paired comparison). The inter-rater
agreement for the classification of the item difficulty for paired comparison by experts and learners combined was fair
(ICC[3,1]=0.44). The inter-rater agreement, when considering the mean of the paired comparison feedback given by
learners and the mean of the paired comparison feedback given by experts, was excellent (ICC[3,1]=0.88).

The criterion used to evaluate the efficacy of the item difficulty estimation methods was the Pearson correlation
between the estimated item parameter and its corresponding true parameter. The true difficulty parameter value for
each item was estimated in advance by Selor, using examinee data for conducting the IRT analysis. Additionally the
Pearson correlation was measured between the estimated item parameter and its corresponding IRT difficulty
parameter value based on calibration with the data gathered in this study. The Pearson correlation between the
estimated item difficulty parameter and the true item difficulty parameter is a measure for the strength of their linear
relationship.

Detailed correlation results for the item difficulty estimates are shown in table .

Table I. Pearson correlation matrix of the item difficulty estimates for the different estimation methods.

Item Difficulty Estimation Method
Item . .
Difficulty Paired Paired
s IRT- Proportio | Learner Expert | Comparis | Comparis Elo
Estimation True B R .
Study n Correct | Feedback | Rating on on Rating
Method
(Learner) | (Expert)
True p 1.00
IRT-Study .90 1.00
Proportion | 4 1.00 1.00
Correct
Learner 0.88 0.88 0.88 1.00
Feedback ’ ’ ’ ’
Expert 0.80 0.80 0.80 0.95 1.00
Rating
Paired
Comparison 0.62 0.50 0.50 0.58 0.55 1.00
(learner)
Paired
Comparison 0.56 0.44 0.44 0.53 0.51 0.98 1.00
(Expert)
Elo Rating 0.85 0.92 0.92 0.81 0.73 0.45 0.39 1.00

126 Kelly Wauters, Piet Desmet and Wim Van Den Noortgate

The results of the Pearson correlation between the estimated item difficulty parameter and the true item difficulty
parameter indicates that proportion correct has the strongest relation (7(23)=0.90, p<0.01), followed by learner
feedback ((23)=0.88, p<0.01), Elo rating (#(23)=0.85, p<0.01), expert rating (»(23)=0.80, p<0.01), paired comparison
based on learners’ feedback (7(23)=0.62, p<0.01) and paired comparison based on expert data (7(23)=0.56, p<0.01).
The Pearson correlation between the estimated item difficulty parameter and the difficulty parameter estimated by
means of IRT with the data of the 318 students in this study shows similar results. The correlation with proportion
correct is the highest (#(23)=1.00, p<0.01), followed by Elo rating (7(23)=0.922, p<0.01), learner feedback
(r(23)=0.88, p<0.01), expert rating ((23)=0.80, p<0.01), paired comparison based on learners’ feedback (7(23)=0.50,
p<0.05) and finally paired comparison based on expert data (#(23)=0.44, p<0.05).

The difference between the correlation coefficient of proportion correct with the true difficulty parameter value
and the correlation coefficient of proportion correct with the difficulty parameter value estimated by means of IRT
with the data of this study is significant (1(22)=-19.18, p<0.05). The difference between the correlation of the Elo
rating system with the true difficulty parameter value and the correlation of the Elo rating system with the difficulty
parameter value estimated by means of IRT with the data of this study is also significant (t(22)=-2.09, p<0.05). The
correlation coefficient of proportion correct with the IRT calibration based on the study data differs significantly from
the correlation coefficient of the Elo rating system with the IRT calibration based on the study data (t(22)=20.7485,
p<0.05). The significance disappears when proportion correct and the Elo rating system are compared with the true
difficulty parameter value ((22)=1.46, p=0.16).

There is no significant difference between the correlation of the true item difficulty parameter values with the ones
obtained by means of expert rating, and the correlation of the true item difficulty parameter values with the ones
obtained by means of paired comparison based on expert ratings (t(22)=1.89, p=0.07). The difference between the
correlation coefficient of learner feedback with the true difficulty parameter value and the correlation coefficient of
expert rating with the true difficulty parameter value is significant (t(22)=2.71, p<0.05). However, the difference
between the correlation coefficient of paired comparison based on learner feedback with the true difficulty parameter
value and the correlation coefficient of paired comparison based on expert rating with the true difficulty parameter
value is not significant (t(22)=1.85, p=0.08).

3. DISCUSSION

As the tracking and logging data of many learning environments fail to contain the required amount and structure of
data needed for IRT estimation, this article searches for appropriate alternative methods to estimate the difficulty level
of items. Based on the response data and the judgment data of a sample of learners and experts, the difficulty level of
twenty five items was estimated by means of six estimation methods: (1) IRT calibration based on the study data, (2)
proportion correct, (3) learner feedback, (4) expert rating, (5) paired comparison (based on learners’ judgment and
based on experts’ judgment), and (6) the Elo rating system.

The findings indicate that proportion correct has the strongest relation with the true difficulty parameter values,
followed by learner feedback, the Elo rating system, expert rating and paired comparison. Furthermore, proportion
correct also has the strongest relation with the difficulty estimates obtained with IRT calibration on the study data,
followed by the Elo rating system, learner feedback, expert rating and paired comparison. Considering the alternative
estimation methods that are based on the binary response of the learners (correct vs. incorrect response to an item), it
is shown that IRT calibration, proportion correct and the Elo rating system do not differ. The high correlation found
between IRT calibration (both true difficulty parameter and IRT calibration on the study data) and proportion correct
is not surprising as the total score is a sufficient statistic for the Rasch model. Furthermore, it is clear that proportion
correct and the Elo rating system are sample dependent as they correlate higher with the IRT calibration on the study
data than with the true difficulty parameter values.

Results contradict the postulation of Impara and Plake (1998) that experts perform better in estimating the
difficulty by rank ordering the items than by estimating the proportion of persons who will answer the items correctly.
Furthermore, findings indicate that learners perform better on judging the difficulty of items than experts. However,
this difference disappears when learners and experts need to rank order the items according to their difficulty level. It
needs to be considered that the estimation by means of learner feedback is based on a larger sample than the
estimation by means of expert rating, which could explain the difference between learner feedback accuracy and
expert rating accuracy. The finding that the correlation of paired comparison with the true difficulty parameter is
moderate could be due to the small sample size, resulting in some outlier estimations. The paired comparison data are
analyzed by means of the graded response model, which is a more complex IRT model than the Rasch model, and
hence may need a larger sample size to obtain reliable item difficulty estimates.

Acquiring Item Difficulty Estimates: a Collaborative Effort of Data and Judgment 127

Even though this study indicates that the difficulty of items can be estimated on the basis of alternative estimation
methods, it should be considered that the size of the item set that was used to compare the alternative estimation
methods was rather small. We recognize that a total number of twenty five items is limited, but considering raters
fatigue, we were compelled to keep the item set rather small. Furthermore, we made sure that the twenty five items
covered a broad range of difficulty.

Future research will focus on the sample size requirement for reliable difficulty estimates. The different alternative
estimation methods will be compared for different sample sizes. If results would indicate that alternative estimation
methods provide reasonable accurate difficulty level estimates, these estimation methods could be used to provide
adaptive curriculum sequencing. Those alternative estimation methods could also be used to make IRT estimation
more efficient by using the estimates as prior in a Bayesian estimation method. A limitation of this study, which
should be tackled in future research, is the fact that even though some of the alternative item difficulty estimation
methods seem to be a viable alternative for IRT-based calibration in this study, no generalization can yet be made to
other domains and to items requiring more than one skill.

REFERENCES

BRINKHUIS, M.J.S., AND MARIS, G. 2010. Adaptive Estimation: How to Hit a Moving Target. Report No.2010-1, Measurement and
Research Department, Cito, Arhnem.

BRuUsILOVSKY, P. 1999. Adaptive and Intelligent Technologies for Web-Based Education. Kiinstliche Intelligenz, 4, 19-25.

CHALIFOUR, C.L., AND POWERS, D.E. 1989. The Relationship of Content Characteristics of GRE Analytical Reasoning ltems to Their
Difficulties and Discriminations. Journal of Educational Measurement, 26, 120-132.

CHEN, C.M., LEE, H.M., AND CHEN, Y.H. 2005. Personalized e-Learning System Using Item Response Theory, Computers & Education,
44, 237-255.

CHEN, C.M,, Liu, C.Y., AND CHANG, M.H. 2006. Personalized Curriculum Sequencing Utilizing Modified Iltem Response Theory for
Web-Based Instruction. Expert Systems with Applications, 30, 378-396.

CHEN, C.M., AND DUH, L.J. 2008. Personalized Web-Based Tutoring System Based on Fuzzy Item Response Theory. Expert Systems
with Applications, 34, 2298-2315.

EGGEN, T.J.H.M. 1993. ltemresponstheorie en onvolledige gegevens. In Eggen, T.J.H.M., Sanders, P.F. (Eds) Psychometrie in de
Praktijk, Cito, Arhnem.

ELO, A.E. 1978. The rating of chess players, past and present, B.T. Batsford Ltd., London.

FERNADEZ, G. 2003. Cognitive Scaffolding for a Web-Based Adaptive Learning Environment. Advances in Web-Based Learning - lcw!
2003, Proceedings, 2783, 12-20.

HAMBLETON, R.K., BASTARI, AND XING, D. 1998. Estimating Iltem Statistics. Report No.298, Laboratory of Psychometric and Evaluative
Research, School of Education, University of Massachusetts.

IMPARA, J.C., AND PLAKE, B.S. 1998. Teachers’ Ability to Estimate item Difficulty: a Test of the Assumptions in the Angoff Standard
Setting Method. Journal of Educational Measurement, 35(1), 69-81.

JOHNS, J., MAHADEVAN, S., AND WOOLF, B. 2006. Estimating Student Proficiency Using an Item Response Theory Model. Intelligent
Tutoring Systems, Lecture Notes in Computer Science, 4053, 473-480.

Kim, S. 2006. A Comparative Study of IRT Fixed Parameter Calibration Methods. Journal of Educational Measurement, 43, 355-381.

LEUNG, E.W.C, AND LI, Q. 2007. An Experimental Study of a Personalized Learning Environment Through Open-Source Software
Tools. IEEE Transaction on Education, 50, 331-337.

LIKERT, R. 1932. A Technique for the Measurement of Attitudes. Archives of Psychology, 22, 1-55.

LINACRE, J.M. 1994. Sample Size and Item Calibrations Stability. Rasch Measurement Transaction, 7(4), 328.

LINACRE, J.M. 2000. Computer-Adaptive Testing: A Methodology whose Time has Come. In Chae S., Kang U., Jeon E., Linacre J.M.
(Eds) Development of Computerized Middle School Achievement Test, Komesa Press, Seoul.

Lu, F., LI, X,, Liu, Q.T., YANG, Z.K., TAN, G.X.,AND HE, T.T. 2007. Research on Personalized e-Learning System Using Fuzzy Set
Based Clustering Algorithm. Computational Science - ICCS 2007, Part 3, Proceedings, 4489, 587-590.

OzAKI, K., AND TOYODA, H. 2006. Paired Comparison IRT Model by 3-Value Judgment: Estimation of Iltem Parameters Prior to the
Administration of the Test. Behaviormetrika, 33, 131-147.

OzAKI, K., AND TOYODA, H. 2009. Item Difficulty Parameter Estimation Using the Idea of the Graded Response Model and
Computerized Adaptive Testing. Japanese Psychological Research, 51, 1-12.

PEREZ-MARIN, D., ALFONSECA, E., AND RODRIGUEZ, P. 2006. On the Dynamic Adaptation of Computer Assisted Assessment of Free-
Text Answers. Adaptive Hypermedia and Adaptive Web-Based Systems, Proceedings, 4018, 374-377.

SAMEJIMA, F. 1969. Estimation of Latent Trait Ability Using a Response Pattern of Graded Scores. Psychometrika Monograph, 17.

SHROUT, P.E., AND FLEISS, J.L. 1979. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychological Bulletin, 86, 420-428.

THURSTONE, L.L. 1994. A Law of Comparative Judgment. Psychological Review, 101(2), 266-270.

TSUTAKAWA, R.K., AND JOHNSON, J.C. 1990. The Effect of Uncertainty of Item Parameter Estimation on Ability Estimates.
Psychometrika, 55, 371-390.

VAN DER LINDEN, W.J., AND HAMBLETON, R.K. 1997. Handbook of Modern Item Response Theory, Springer, New York.

WAINER, H. 2000. Computerized Adaptive Testing: a Primer, Erlbaum, London.

WAUTERS, K., DESMET, P., AND VAN DEN NOORTGATE, W. 2010. Adaptive Item-Based Learning Environments Based on the Item
Response Theory: Possibilities and Challenges. Journal of Computer Assisted Learning, 26(6), 549-562.

YAO, T. 1991. CAT with a Poorly Calibrated ltem Bank. Rasch Measurement Transactions, 5, 141.

Spectral Clustering in Educational Data Mining

SHUBHENDU TRIVEDI, ZACHARY A. PARDOS,
GABOR N. SARKOZY, NEIL T. HEFFERNAN
Worcester Polytechnic Institute, United States

Spectral Clustering is a graph theoretic technique for metric modification such that it gives a much more global
notion of similarity between data points as compared to other clustering methods such as k-means. It thus
represents data in such a way that it is easier to find meaningful clusters on this new representation. It is
especially useful in complex datasets where traditional clustering methods would fail to find groupings. In
previous work we have shown the utility of using k-means clustering for exploiting structure in the data to
affect a significant improvement in prediction accuracy on educational datasets. In this work we show that by
using Spectral Clustering we are able to further improve the student performance prediction. We evaluate an
educational data mining prediction task: predicting student state test scores from features derived from a tutor
and also present some preliminary results on some other EDM tasks using spectral clustering.

Categories and Subject descriptors: I 2.7 [Artificial Intelligence]

Key Words and Phrases: Educational Data Mining, Intelligent Tutoring Systems, Bootstrap Aggregating,
Clustering, Spectral Clustering, Ensemble Learning, Mixture of Experts

1. INTRODUCTION

The highly inter-disciplinary field of Educational Data Mining (EDM) has resulted from
a fusion of many different areas, some of which include Machine Learning, Cognitive
Science and Psychometrics. The main task in EDM is to construct computational models
and tools to mine data that originated in an educational setting. With rapidly increasing
data repositories from different educational contexts (paper tests, e-learning, Intelligent
Tutoring Systems etc.), good practices in EDM can potentially answer important research
questions about student learning. This goal of EDM is proving instrumental in combining
the knowledge derived from the data to combine with theories from cognitive psychology
to formulate the best learning settings and methodologies.

Within data mining, clustering is perhaps one of the most important tools for both
exploratory and confirmatory analysis. It is a technique to discern meaningful patterns in
unlabeled data by grouping together data points that are “similar”. In EDM, clustering
has been used in a variety of contexts: Ritter et al. In an already influential work
essentially used the implicit information compression (albeit lossy) handed by clustering
to reduce the Knowledge Tracing parameter space [Ritter 09] without compromising the
performance of the system. Dominguez et al. used clustering as a tool to generate
individualized hints for students [Dominguez 10]. In another interesting work, Shih et al.
employed clustering for unsupervised discovery of student learning tactics [Shih 10].
Clustering has also been used for curriculum planning [Maull 10], for estimating skill set
profiles [Nugent 10] amongst numerous other tasks. However, interestingly most of these
works employ k-means clustering, expectation maximization based clustering or
subspace clustering. This paper aims to introduce to the field of EDM the utility handed
by spectral clustering over other clustering algorithms, which is also an easy to
implement algorithm with numerous toolboxes available as well [Chen 10].

Authors’ addresses: S. Trivedi, e-mail: shubhendu_trivedi@ieee.org ; Z. A. Pardos, e-mail: zpardos@cs.wpi.edu
G. N. Sarkézy, e-mail: gsarkozy@cs.wpi.edu, N. T. Heffernan, e-mail: nth@cs.wpi.edu., Department of
Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA — 01609. United States.

130 Shubhendu Trivedi et al.

To understand the weakness of methods such as k-means, a useful way of looking at
clustering is the following: Consider a set of K distributions, D = {D1, Dy ... Dk} such
that each of these distributions has an associated weight, the collection of which is given

by {w1,ws ... wk} such thatZ w; = 1. Suppose a dataset is generated by sampling

these K distributions, such that a point in this dataset might be picked from distribution
D; with probability w;. The objective of clustering methods is to identify these K
distributions given a dataset. Methods such as k-means and Expectation Maximization
(EM) are based on estimating explicit models of the data. While k-means finds the
clusters by assuming that the set of distributions D that generated the data was a set of
spherical Gaussians, EM algorithms in general learn a mixture of Gaussians with
arbitrary shapes. More formally, k-means finds the clusters by minimizing the distortion
function:

‘ 2

Tew) = Y2 — o 1
i=1 ()

Where /i is the cluster centroid to which a point = has been assigned. In spite of the
great popularity of the k-means algorithm very few theoretical guarantees on its
performance are known [Dasgupta 99]. In practice however, k-means performs well on
data that at least approximately follows its assumption of being generated by a mixture of
well-separated spherical Gaussians [Chaudhuri 09]. This, coupled with its simplicity
makes it a handy tool for a data-miner. However, k-means performs poorly when these
assumptions of data generation are not met, which is usually the case in real world
datasets. Fig. 1 illustrates this problem by a toy synthetic dataset.

m 120
o B 100 L
n'ﬁf“_‘
%,
- A, &0
o "
5 .
B, A
b “ln]
e
0 PO &
. u
3 h@fs‘? L @
. o] o, Iy
4 . .
o L o Fi |
B oser® »
.)
10 o b odal ™ 0
A5 L Il Il L L] 20 L 1 L L n L a
5 ET) - [] 5 10 15 | [20 40 60 a0 100 120

Fig 1: Results of using k-means on synthetic datasets. k-means is unable to identify clusters when the data is
distributed in concentric groups (left), while it clearly finds the clusters in well separated and tight spherical
Gaussians (right). The clusters identified are indicated by different colors. Both sets have 600 points.

Spectral Clustering makes no such assumptions for data generation. It instead finds
groupings by analyzing the top eigenvectors of the affinity matrix and hence usually
returns better results.

The rest of the paper is organized as follows: The next section discusses Spectral
Clustering, giving a tutorial overview of the same. Section 3 uses the spectral clustering
method to improve the prediction of post-test scores employing student features from an
Intelligent tutor using a bootstrap aggregating method developed by the authors [Trivedi,
Pardos 11] [Trivedi, Pardos 11]. Section 4 is a discussion of results and future work.

2. SPECTRAL CLUSTERING

One of the most important developments in Machine Learning in the past decade has
been the use of spectral methods in clustering. They have created a new wave of
excitement to understand the problem of clustering and the notion of similarity between
points better and formulate it precisely. One major reason for this excitement is that

Spectral Clustering in Educational Data Mining 131

spectral clustering is based on solid graph theoretic principles. Given its strengths, it
would be highly beneficial to the EDM community if it is used more widely in the same.
The broad idea of clustering is essentially to group points that are “similar” in one
cluster and points that are “dissimilar” into different clusters. The notion of similarity that
is employed in k-means is the Euclidean distance between data points and the cluster
centroids to which they are assigned to (which get updated in each iteration). In a sense,
the idea of similarity used in k-means restricts what could be known about the geometry
of the data. In k-means we work with the data directly, in spectral clustering however, we
work with a representation of the data that gives a more global (and hence better)
encoding of the similarities between points. This “similarity” in spectral clustering is
represented in the form of a graph called the similarity graph, represented by G = (V. E)
where V' is the set of vertices and £ is the set of edges. The idea is that points in the
dataset can be represented by a graph with each data point as a vertex of the graph G and
the edges connecting them encoding a notion of similarity w;; > 0 between them. Two
points are connected in the graph if the similarity or weight between them is either non-
zero or above some threshold. The clustering problem can then be re-stated using
information from the similarity graph as: We want to find partitions of this graph such
that weights between points in the same group are high and those between points in
different groups are low. Before talking how we cluster using this representation, we
introduce some notation and discuss how the graph G is used to represent the dataset.
Given the similarity graph G of n data points {1, 2:5 . . . 2, }, there are essentially two
things about it that tell us something about the global structure of the data:
1. The degree of a vertex (a data-point in our case): The degree of a vertex tells us
the sum of weights of all the edges that originate from a vertex i to all other

vertices j. It is given by:
n
di = Z Wiy
j=1

This definition is somewhat non-standard but more general. The standard
definition for degree of a vertex is only defined for w;; = {0,1}, and thus is
only the count of vertices a given vertices is connected to. Given this definition,
the degree matrix of the similarity graph is the diagonal matrix 77 with the
degrees ¢/; on the diagonal.

dy

(,12
D =

dy,
Intuitively the degree matrix of a graph tells us how many points each point is
connected to (we could connect all points, or choose to connect k-nearest
neighbors of each point) and by “how much” (hence the summation of the
weights).

2. The weighted similarity matrix or the affinity matrix of the similarity graph, I
on the other hand is a representation of similarity between all the points. Each
element in the affinity matrix is given by w;;, which is the weight or edge
between two points ¢ and j. A common way of representing the weight is:

| 2
w,;j = erp (‘ Ti — &y) (2)
T 207

132 Shubhendu Trivedi et al.

Notice that w;; is simply the exponentiated Euclidean distance between two
points (points in R™) scaled by a parameter called the scaling or weighing
parameter o. This parameter is to be tuned and varying it changes the weight
between points. A point to note is that if all the points are connected then all
such that ¢ # j will be non-zero values. If points are connected to only their k-
nearest neighbors and not every other point, then most of the matrix W will be
populated by zeros.

The matrices IT" and IJ tell us something about the global structure of the data, but we

don’t work with them directly. We instead work with the graph Laplacian matrix given

by
L=D-W

The above is the un-normalized version of the Laplacian. There are two normalized
versions that are represented as:

Lsym — D—1/2VVD—1/2

Lyw =D 'W
The first is called the symmetric Laplacian while the second is called the random-walk
Laplacian. The Laplacian in a way combines both the degree and the affinity matrix and
also has some mathematically interesting properties (such as being positive semi-definite)
that make it easier to work with [Mohar 91]. Since the Laplacian is a representation of the
similarity between the data-points, we can now work with it to find groups in the data.
Given the above background, clusters in a dataset can be found by the following method
[Ng01]:

1. For the dataset having # data points, construct the similarity graph G. The
similarity graph can be constructed in two ways: by connecting each data point
to the other 7 — 1 data points or by connecting each data point to its k-nearest
neighbors. A rough estimate of a good value of the number of nearest neighbors
is log(n). The similarity between the points is given by equation 2. This will
give the matrix IT".

2. Given the similarity graph, construct the degree matrix D.

Using D and W find L.

4. Let K be the number of clusters to be found. Compute the first A eigenvectors
of L ;ym. Sort the eigenvectors according to their eigenvalues.

5. If ug,uz...ui are the top eigenvectors of Ly, then construct a matrix U such
that U = {uy, 13 ... ug }. Normalize rows of matrix { to be of unit length.

6. Treat the rows in the normalized matrix U as points in a /X dimensional space
and use k-means to cluster these.

7. 1If ci,e2...cx are the K clusters, Then assign a point in the original dataset s;

to cluster cx if and only if the i'"* row of the normalized U is assigned to cluster

Cw
It is noteworthy that we don’t cluster the original dataset directly. We first transform it to
find its top A eigenvectors. These being the most important eigenvectors of L, encode
the maximum information about it. At the same time, this reduces the dimensionality
which without throwing away much information which makes the task of clustering much
easier. To illustrate the power given by this change of representation, we demonstrate it
on a toy dataset (Fig. 2). A detailed tutorial that explains various spectral clustering

[98)

Spectral Clustering in Educational Data Mining 133

algorithms and some point of views on why it works is by Luxburg [Luxburg 07]. In the

next section we discuss a specific application of spectral clustering in EDM.
15

10 L 80 FBBE g
57" 8,
o %,
57 D0 Um
$ %
& %
0 % &
£ :
Q% af
5) o8
Q%o @O
- oo
10 N

A5 L L L L L |

Fig 2: Result of using spectral clustering on a synthetic dataset. This synthetic set has 600 points. The colors
indicate the clusters found by spectral clustering. Such groups cannot be found by k-means clustering.

3. IMPROVING PREDICTION ON STUDENT PERFORMANCE IN POST TESTS
Bayesian Knowledge Tracing [Corbett 95] has long been used to model student
knowledge in an intelligent tutoring system (ITS). This knowledge estimate is used to
calibrate the amount of training a student gets to ensure skill mastery. One of the goals of
such modeling is to ensure that students perform well on actual post tests. In fact it is
reasonable to say that perhaps one of the most important measures of success of an ITS is
how well performance on it transfers to actual post tests.

Traditionally, performance on a post-test is predicted by using practice tests. The
percentage of questions answered correctly on these practice tests give a crude estimate
of how well a student would perform on the actual post test. Improving this estimate
would be highly beneficial to both students and educators. For the improvement of such
assessment, dynamic assessment [Grigerenko 98] has been advocated as an effective
method. The big idea of dynamic assessment is that assessment is based on the amount of
help students require to get questions correct and it enables the tutor to assess as it assists.
This is a major advantage as it not only not only allows students to learn while being
assessed, but can also predict student performance on post-tests better. Traditional
testing, in which only the percentage of questions is considered is called static
assessment. The notion of dynamic assessment makes intuitive sense as it gives a finer
grained estimate of a student’s knowledge. If a student gets a question wrong, it might
not imply that the student has no knowledge pertaining to the question. The level of
knowledge that the student has might be estimated by measuring the amount of help that
the student required to get the question correct. Given the interactive nature of ITS, they
are the ideal test bed for measuring the utility of dynamic assessment.

Feng et al. [Feng 09] reported the result that data from an ITS could better predict
state test scores (MCAS or Massachusetts State Test Scores in their experiment) if it only
considered the extra measures collected in dynamic assessment as compared to the static
assessment condition. The paper had a weakness that time was never held constant. Feng
& Heffernan went one step ahead and controlled for time in following work [Feng 10].
They reported better predictions on the MCAS state test scores by the dynamic condition,
but not a statistically reliable difference. This work effectively showed that dynamic
assessment led to better predictions on the post test. This prediction was done by fitting a
linear regression model on the dynamic assessment features and making predictions on
the MCAS test scores. They concluded that while Dynamic Assessment gave good
assessment of students, the MCAS predictions made using those features were only

134 Shubhendu Trivedi et al.

marginally statistically significant as compared to the static condition. Trivedi et
al[Trivedi 11] investigated further if the dynamic assessment data could be better
utilized to increase prediction accuracy over the static condition (and hence establish the
superiority of dynamic assessment). They used a newly introduced method [Trivedi 11]
that clusters students using the k-means algorithm and uses multiple cluster models and
then ensembles the predictions made by each cluster model to achieve a reliable
improvement. Here we show that by using spectral clustering we further improve the
prediction on the MCAS post-test based on the dynamic features. The improvement
obtained by using spectral clustering is not only significant over the static condition, but
also over results obtained using k-means after K = 3 (p-value < 0.03 on a paired t-test).

3.1 Data and Methodology
The data used for this study was the same as used by Feng et al.[Feng 10] and Trivedi et
al. [Trivedi 11]. The data is from the 2004-05 school year and was collected using the
ASSISTments tutor in two schools in Massachusetts. ASSISTments [Razzaq 05] is an
ITS developed at Worcester Polytechnic Institute, MA, USA. The data is for 628 students
and the features included the various dynamic features [Feng 10]. These features were: 1)
Student’s percent correct on main problems 2) Number of problems done 3) Percent
correct on the help questions 4) Average time spent per item 5) Average number of
attempts per item 6) Average number of hints per item. The first feature was a static
feature and was used to make predictions on the static condition, while the others were
used to make predictions in the dynamic condition. The prediction made was for the
MCAS test scores that was available for the same students in the following year. A 5 fold
cross validation was done.

The methodology used for making the prediction is a new bootstrap aggregation
ensemble method [Trivedi, Pardos 11]. The procedure is summarized as follows:

1. Cluster the training data into X clusters.

2. For each cluster train a separate linear regression model using the points from

that cluster as the training set.
3. Each such trained predictor (such as Linear Regression) represents a model of
the cluster and is hence appropriately called a cluster model.
This is represented in figure 3 below:

e
#

. &
I~. ‘¢ J Training Data

T = ’ e A
i ﬁn- WGk Yy R Vo Y .* Y '
N 't B .

- - i - - - -

[nkeg | [unheg || uinReg | [unhes | [Lnmeg | [wnkez |
Clustar Cluster || Cluster Cluster Clustar Cluster
Maodel Model Maodel Model Model Maodel

W

| Prediction Maodael (PM,) |

Fig 3: The first step in the methodology for using clustering to bootstrap and making a prediction on the
training set. The scale of clustering can be varied to generate a number of predictions that can then be
aggregated.

Spectral Clustering in Educational Data Mining 135

This collection of cluster models that make a prediction on the entire test set is called
a prediction model (PMg , the subscript denotes the number of clusters in each Prediction
Model). Making a prediction for a test point would involve: Locating the cluster to which
the point belongs, and then using the model trained for that cluster to make the prediction
for it. However, by using the number of clusters as a free parameter we generate a set of
K prediction models (PM,, PM; ... PMg), such that each has a different number of
cluster models. And thus, we can obtain K different predictions on the test set. These
predictions are then averaged to obtain a single strong prediction.

This method can be thought of like an adaptive mixture of local experts [Jacobs,
Hinton 91] that uses clustering to bootstrap. But unlike in other bagging methods, which
select a random subset to bootstrap, this method has a specific expert for each cluster of
the data. By varying the granularity of the clustering we are able to obtain a mixture of
experts on the data at different levels each of which gives a prediction on the test set
which are then averaged to get one prediction.

3.2 Results Using Spectral Clustering

The results of clustering the data using both kmeans and spectral clustering are
represented in figure 4 below. Since the data is high dimensional and the actual partitions
cannot be pictured, this visualization is done by doing a multi-dimensional scaling on the
dataset to three dimensions with each cluster identified by a different color. This
visualization is for K =5.

/
/
\

/
/
o

\

\

\

136 Shubhendu Trivedi et al.

Fig 4: The images on the left column are for k-means and those on the right are for spectral clustering. The top
row represents the plot of the ASSISTment data scaled down by multi-dimensional scaling to three dimensions
and the clusters identified by both k-means and spectral clustering. The rows below are simply different planar
views of the plot in row 1.

The spectral clustering ensemble results are not only significant over the static condition
(K =1 in figure 6) but also are significant for the kmeans generated ensemble beyond K

=3 with p <0.03 in each case on a paired t-test.

9.2 ‘ ‘
- PM-Spectral
————— PM-kmeans
911 Spectral Ensembled -
kmeans Ensembled ‘,."'

Mean Absolute Error

8.5 I I I I I
1 2 3 4 5 6 7

Fig 5: The plots of the 5 fold cross validated errors by the various prediction models and ensembles (from 1 to
K = 7) for both kmeans and spectral clustering. The K ensemble prediction is the average of predictions
returned by prediction models from 1 to K.

4. CONCLUSION, DISCUSSION AND FUTURE WORK

The methodology described in the paper was employed on some other EDM tasks as
well, such as making an in-tutor prediction on the KDD Cup 2010 dataset and on the
Performance Factor Analysis (PFA) task [Gong 10]. Preliminary results (summarized for
PFA below) have indicated an improvement in the prediction accuracies.

Table 1: Preliminary work on Performance Factor Analysis

Spectral K=1 K=2 K=3 K=4 K=5
Ensemble

AUC 0.5861 0.6153 0.6252 0.6291 0.6307

Spectral Clustering in Educational Data Mining 137

The results indicate an improvement over the base condition as more prediction
models are averaged. But this result is not cross-validated and is a work in progress. Also,
given the prohibitive size of the dataset, spectral clustering was not used for all the rows
in the training set, but a random subset of them was used. This was done to save time,
however this is the reason the detailed results are not reported in this work. Also, more
work needs to be done to use spectral clustering methods more efficiently for massive
datasets such as the KDD cup dataset.

A deeper way of looking at clustering is essentially as a scheme for lossy data
compression. Improvement in prediction accuracy using spectral clustering over k-means
indicates that spectral clustering is a better information compression method than k-
means and hence tells something deeper about the structure of the data that k-means
misses. This would mean an interesting application to reduce the knowledge tracing
space like by Ritter et al [Ritter 2009] and see how it compares with performance
returned by k-means clustering.

The objective of this work was to introduce to the domain of EDM the great utility of
using spectral clustering. We used spectral clustering to enhance the performance of a
new ensemble method proposed in an earlier work by the authors. While the objective
was to introduce the use of spectral clustering, a very significant result of the work is
proving the efficacy of Dynamic Assessment as compared to static assessment. These
results show that an ITS that can assess as it assists offers a significant advantage to
students and teachers. This is important because it can not only save time that is wasted
on assessment for instruction, but it can also be a better predictor of their performance in
post-tests.

The results for the task of predicting the post test scores have been very encouraging;
however there are some areas that need further work and could improve prediction
accuracy further. One such area of possible improvement is allowing for fuzzy clustering.
To make a prediction, the cluster closest to a test a point was identified and then the
expert for that cluster was used to make a prediction on it. In many real world examples,
membership of a data point to a particular cluster is a tricky question to answer. A more
realistic view is to allow for fuzzy clustering. That is, given a test point, we determine its
probability of occurring in each of the clusters. Then, we can obtain predictions by the
cluster model /expert for each of the clusters and obtain one prediction for one test point
that is a weighted average of the predictions returned by each cluster model (earlier a
prediction was made on the test point by only one cluster model), with the weights being
the probability that the point lies in that cluster. While fuzzy counterparts to the k-means
algorithm such as fuzzy c-means are well known, the idea of doing fuzzy spectral
clustering is something to be explored. Clearly, spectral clustering uses k-means at a
lower dimensional representation of the laplacian and fuzzy c-means can be used at this
level. However, the effectiveness of doing the same is not known.

Another possible area of improvement is using methods to merge clusters that are
sparsely populated [Cheng 06]. By this method we could improve both the quality of
clustering (if the task is purely unsupervised) and prediction accuracy (if the task like in
the application discussed is a prediction task).

In this work we combine predictions by averaging them. Clearly this is a sub-optimal
choice. Ideally, we would want to pick those predictions (made by prediction models)
which are good in prediction and have less correlation with each other (are diverse).
Since the method used to make the post-test predictions was an ensemble method, it can
be used to combine the predictions themselves. Preliminary work utilizing this idea of
using clustering to boot-strap the predictions returned by various prediction models has
shown promise.

138 Shubhendu Trivedi et al.

ACKNOWLEDGEMENTS

We are grateful to the following funders for supporting this research:
http://www.webcitation.org/5ym157Yfr. We would also like to thank the Pittsburgh
Science of Learning Centre for the Cognitive Tutor KDD dataset. Comments about this
work by Dr Carolina Ruiz, Dr Sergio Alvarez and Dr Alexandru Niculescu-Mizil were
especially helpful and are appreciated.

REFERENCES

CHAUDHURI., K., DASGUPTA S., VATTANI, A., 2009, Learning Mixture of Gaussians using the k-means
Algorithm, In CoRR vol.abs/0912.0086, http://arxiv.org/abs/0912.0086, 2009

CHEN., W. Y., SONG, Y., BAL, H., LIN, C. J, CHANG, E. Y., 2010, (ACCEPTED) Parallel Spectral Clustering in
Distributed Systems, In /EEE Transactions on Pattern Analysis and Machine Intelligence, 2010.

CHENG D., KANNAN, R., VEMPALA, S., WANG, G., 2006, A Divide and Merge Methodology for Clustering. In
The Journal of the ACM, Vol V, 2006

CORBETT A. T, ANDERSON, J. R., 1995, Knowledge Tracing: Modeling the Acquisition of Procedural
Knowledge. In User Modeling and User Adapted Interaction 4, pp. 253-278,1995

DASGUPTA S., 1999, Learning Mixture of Gaussians, In The 40" Annual IEEE symposium on Foundations of
Computer Science. 349-358.

DOMINGUEZ., A. K., YACEF, K., CURRAN, J. R., 2010, Data Mining for Individualized Hints in eLearning, In
Proceedings of the Third International Conference on Educational Data Mining, 2010, 91-100.

FENG., M., HEFFERNAN, N. T, KOEDINGER, K. R., 2009, Addressing the assessment challenge in an online
system that tutors as it assesses. User Modeling and User-Adapted Interaction: The Journal of
Personalization Research. 19(3). 2009.

FENG., M., HEFFERNAN, N. T, 2010, Can We Get Better Assessment From A Tutoring System Compared to
Traditional Paper Testing? Can We Have Our Cake (better assessment) and Eat it too (student learning
during the test). Proceedings of the 3" International Conference on Educational Data Mining, 41-50.

GONG., Y., BECK, J. E, HEFFERNAN. N. T., 2010, (Accepted). How to Construct More Accurate Student
Models: Comparing and Optimizing Knowledge Tracing and Performance Factor Analysis. In International
Journal of Artificial Intelligence in Education. Accepted, 2010.

GRIGERENKO., E. L, STEINBERG, R. J, 1998, Dynamic Testing. In Psychological Bulletin 124 pp. 75-111, 1998.

JAacoBs., R. A, JORDON, M. I, NOWLAN. S. J., HINTON. G.E., 1991, Adaptive Mixture of Local Experts. In
Neural Computation, Vol 3. No 1,79-87, 1991.

LUXBURG U., 2007, A Tutorial on Spectral Clustering, In Statistics and Computing, Kluwer Academic
Publishers, Hingham, MA, USA. Vol 17. Issue 4, 2007.

MAULL. K. E., SALVIDAR. M. G., SUMNER. T., 2010, Online Curriculum Planning Behavior of Teachers, In
Proceedings of the Third International Conference on Educational Data Mining, 2010, 121-130.

MOHAR. B., The Laplacian Spectrum of Graphs, In Graph Theory, Combinatorics and Applications, 871-898,
1991.

NG. A. Y, JORDON. M. I, WAISS. Y., 2001, On Spectral Clustering: Analysis and an Algorithm. In Advances in
Neural Information Processing Systems 14, 2001.

NUGENT. R., DEAN. N., AYERS. E., 2010, Skill-Set Profile Clustering: The Empty K-Means Algorithm with
Automatic Specification of Starting Cluster Centers. In Proceedings of the Third International Conference
on Educational Data Mining, 2010, 151-160.

RAZZAQ. L., FENG M., NUZZ0-JONES. G., HEFFERNAN. N. T., KOEDINGER. K. R., JUNKER. B., RITTER S., KNIGHT
A., ANISZCzYK. C., CHOKSEY. S., LIVAK. T., MERCADO. E., TURNER. T. E., UPALEKAR.R., WALONOSKI.
J.A., MACASEK M. A., AND RASMUSSEN. K. P., 2005, The Assistment Project: Blending Assessment and
Assisting. In C. K. Looi, G. McCalla, B. Bredeweg, & J. Breuker (Eds). Proceedings of the 12"
International Conference on Artificial Intelligence in Education, Amesterdam. 1SO Press, pp 555-562.

RITTER. S., HARRIS. T. K., NIXON. T., DICKISON. D., MURRAY. R.C., TOWLE. B., 2009, Reducing the
Knowledge Tracing Space, In Proceedings of the Second International Conference on Educational Data
Mining, 2009, 151-160.

SHIH. B., KOEDINGER. K. R., SCHEINES. R., 2010, Unsupervised Discovery of Student Learning Tactics, In
Proceedings of the Third International Conference on Educational Data Mining, 2010, 201-210.

TRIVEDL S., PARDOS. Z. A., HEFFERNAN. N. T, 2011, (submitted) The Utility of Clustering in Prediction Tasks,
In The Seventh ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2011.

TRIVEDL S., PARDOS. Z. A., HEFFERNAN. N. T, 2011, (accepted) Clustering Students to Generate an Ensemble to
Improve Standard Test Score Predictions, In The Fifteenth International Conference on Artificial
Intelligence in Education, 2011.

Does Time Matter? Modeling the Effect of Time in
Bayesian Knowledge Tracing

YUMENG QIU, YINGMEI Ql, HANYUAN LU, ZACHARY A.
PARDOS, NEIL T. HEFFERNAN

Worcester Polytechnic Institute, USA

Intelligent tutoring systems that utilize Bayesian Knowledge Tracing (KT) have the ability to predict student
performance well. However, models currently in use do not consider that a student performing on ITS may not
be finishing their work in the same day. We looked at KT’s predictions on student responses where a day or
more had elapsed since the previous response and found that KT consistently over predicted these data points in
particular. We made two hypotheses to explain the over prediction behavior: 1) the student forgot since the last
time on the tutor and 2) the student made a mistake (or slipped) on that first question of the day. We developed
two models; KT-Forget and KT-Slip, modifications on Knowledge Tracing, to represent these two hypotheses.
We evaluated and compared the performance of the KT-slip, KT-Forget and regular KT model by calculating
prediction residuals and Area Under Curve (AUC) on a Cognitive Tutor and ASSISTments dataset. The results
showed that a significant improvement was obtained on the overall prediction by our KT-Forget model,
suggesting that forgetting is the more likely cognitive explanation for the data and that there is a place for
modeling forgetting, something that has not common practice in student modeling.

Key Words and Phrases: Bayesian Network, Knowledge Tracing, Intelligent Tutoring Systems, Data Mining,
Model Evaluation

1. INTRODUCTION

The knowledge tracing model [Corbett & Anderson 1995] has been widely used to model
student knowledge and learning over time. It assumes that each skill has two knowledge
parameters, prior and learn; and two performance parameters, slip and guess. The learn
parameter represents the probability that a student will transition between the unlearned
and the learned state after each question. The s/ip parameter is the probability that a
student who understands a skill can make a careless mistake and the guess parameter is
the probability a student may answer correctly in spite of not knowing the skill. There is
also a forget parameter; however, in standard knowledge tracing this is fixed at 0, which
means that there is no forgetting happen in this model.

When using the standard Knowledge Tracing (KT) model, it is assumed that the
students’ probability of making the transition from the unlearned to the learned state is
constant opportunities (or questions). Many researchers have proposed extensions to
Bayesian Knowledge Tracing [Conati, Abigail, Gertner, VanLehn and Druzdzel 1997],
however none have tried to incorporate how much time has elapsed between
opportunities into the model. They all assume that student performance a minute later is
the same as the next day. Nonetheless, ever since Ebbinghaus inaugurated the scientific
study of memory [Ebbinghaus 1913], researchers have examined the manner in which
memory performance declines with time or intervening events [Pavlik & Anderson 2005].

In the real world coming into class on a new day may result in a student forgetting the
material or a higher probability of them slipping. By taking this real world fact into
consideration, in this paper we look into how KT performs on each new day’s responses.
We define a new day’s response as a response that occurred on a later calendar date than
the student’s previous response to a question of the same skill. We found that KT’s new
day error is far higher than same day error. A residual analysis showed that KT was

Authors’ addresses: Department of Computer Science, Worcester Polytechnic Institute, USA. E-mail:
ymqiu@wpi.edu, Yingmei.qi@wpi.edu, hylu_cs@wpi.edu,zpardos@wpi.edu, nth@wpi.edu

140 Yumeng Qiu et al.

largely over predicting student performance on each new day response, the residual
analysis is shown in Table I.

Based on the residual result (Table I), we made two hypotheses to explain this
phenomenon; 1) that students may forget between days and 2) that students may slip
when answering the first question on a new day. The slip hypothesis only affects the
model’s prediction of new day events while the forget hypothesis could affect prediction
of subsequent responses since it hypothesizes a change in the latent of knowledge. We
developed two new models based on Knowledge Tracing: a KT-Forget Model and a KT-
Slip Model, where a new day variable is taken into account to affect either students’
knowledge or performance. To implement this, we introduced a new split-parameter KT
model, which allowed us to, for instance, learn a different forget parameter for new day
opportunities than for same day but learn only a single learn rate parameter for each.

Table I. Knowledge Tracing residual analysis

Problem Set | Residual Same Day | Residual New Day
1 0.039803 -0.363268
2 -0.026765 -0.110578
3 0.088299 -0.076079
4 -0.014643 -0.117302
5 -0.003538 -0.062383
6 0.018866 -0.160024
7 0.009965 -0.109267
8 -0.049156 -0.169034
9 0.023225 0.032221
10 -0.029405 -0.010356
11 0.013791 -0.275969
12 0.082811 -0.054692
Average 0.012771 -0.123060

The structure of the paper is as follows: in section 2 we present the model designs that
incorporate the time concept. The evaluations of the proposed models are the focus of
section 3 and summarized in section 4. To conclude, we identify and discuss open areas
of research for future work in section 5.

2. TIME MODEL DESIGN

When using the Knowledge Tracing model, it is assumed that the student’s probability of
making the transition from the unlearned to the learned state is not changing across

opportunities, while in the real world there might be a time elapse since students’ last

opportunity on tutor. This fact assumes that there is a great possibility that a student’s

forgetting rate is not zero. The standard KT model assumes no probability of forgetting.

Prior work has modeled forgetting between sessions in a lab but did not allow within-day

learning to occur [Pardos, Heffernan, Ruiz and Beck 2008]. Alternatively, poor

performance on a new day may also suggest that students may not actually be “forgetting”
but instead, they might just be “slipping.” We used Bayesian networks [Reye 2004] and

Expectation Maximization [Dempster, Laird and Rubin 1977] to detect whether time had

any influence on the forget parameter and the s/ip parameter of the KT model. The model

with the better predictive accuracy will indicate the better cognitive explanation of the

data.

Does Time Matter? Modeling the Effect of Time with Bayesian Knowledge Tracing 141

2.1 Split-KT Model Design

In order to determine the validity of this method, we represent the above two hypothesis
in the Bayesian Knowledge Tracing model by introducing a novel modification to the
model that allows us to fit a same day and new day parameter for one parameter in a
Conditional Probability Table (CPT) while keeping the other parameter in the CPT
constant. In Knowledge tracing; /earn and forget share a CPT and guess and s/ip share a
CPT. As shown below, the difference between split-KT and the original-KT is the ability
to separate the forget, learn, guess, and slip parameters individually. The equivalence
between these two KT models was confirmed empirically by learning parameters for each
model from a shared dataset, without new day data, and confirming that the learned
parameters and predictions were the same. We also compared the computational run time
of the Split-KT and Regular-KT. We tested on one of the dataset from ASSISTment
which contained 527 data points and calculated the EM parameter learning time of the
two models. It took approximately 70 seconds for the Regular-KT to learn the parameters
and 102 seconds for Split-KT, which equates to a penalty of about 50% to run the Split-
KT model. Both models resulted in the same learned parameters.

The individualization of the four parameters were achieved by adding a forget node
and a learn node to the knowledge node, as well as adding a guess node and slip node to
the question node. Therefore, the knowledge nodes and question nodes are conditioned
upon the four new nodes. The CPT for knowledge node is given in Table II. The CPT for
the question node is also of this form, the only difference is changing the learn and forget
parameters to guess and slip parameters and changing the previous and current
knowledge to previous and current student performance. The question and knowledge
CPTs are fixed and essentially serve as logic gates. The guess, slip, learn and forget node
CPTs contain the continuous probabilities that are familiar to the standard KT model.
Take the first row as an example, knowing that the students do not have previous
knowledge of the skill (Knowledge previous=F), and they neither learn nor forget
(learn=F, forget=F), then we can infer the probability that students have the current
knowledge is 0 (P(Knowledge current=T) = 0).

Table II. The CPT for Knowledge node

Learn | Forget | Knowledge previous | P(Knowledge current=T)
F F F 0
T F F 1
F T F 0
T T F 1
F F T 1
T F T 1
F T T 0
T T T 0

This model can easily let us set individualized learn rates, forget rates, guess rates and
slip rates. By this way we are able to fix the learn parameter and guess parameter in order
to investigate how new day instances would affect the forget and s/ip parameters.

2.2 The KT-Forget

In this section we focus on one of the hypothesis: how would the new day instance affect
the forget parameter. We think that it is highly possible that students could be forgetting
the previously learned knowledge when there are several days interval between the
practices on the ITS.

The model we used to test our hypotheses is a new model built based on the Split-KT

142 Yumeng Qiu et al.

model discussed in the previous section. By adding a time node to the Split-KT model we
are able to easily specify which parameters of the model should be affected by a new day.
The new day node is fixed with a prior probability of 0.2, which is the overall proportion
of the new day instances in the dataset. The topology of the KT-Forget model is shown in
Fig. 1. The forget node is only conditioned on the added new time node, so there is only
one new parameter ‘forget n” introduced in this KT-Forget model and represents the
forget rate on a new day. We use “forget s” to denote the forget rate on a same day,
which we set to be 0 just as the forget parameter in the original Knowledge Tracing
model implying that there is no forgetting between opportunities in the same day.

Table III. CPT of the forget node

New Day | P(Forget=T)

F 0
T forget n

The CPT for the forget node in this model is shown in Table III. This table says that
when a new day response occurs, New Day=T, the probability that student forget
knowledge is forget n, P(Forget=T[New Day=T) and is 0, otherwise.

2.3 KT-Slip model

An alternate hypothesis is that while students might be performing on the ITS across
several days, they are not forgetting the previously learned material. Rather, the students
are just making a mistake on the first question of the day (rustiness effect) after which
they no longer slip at a higher than usual rate. So the low accuracy on first attempt on a
new day might not be captured in the forget parameter, it could be that they just slipped
and answered wrong. This explanation makes it quite necessary for us to look into the
slip parameter.

The KT-Slip model is similar to the KT-Forget model and can be represented simply
by connecting the time node to the slip node instead of connecting to the forget node as in
the Forget model. The Slip model allows us to model the different slip rates of the new
days and the same days. The Slip model is shown above in Fig. 1 in the bottom box.

Table IV. CPT of the slip node

New Day | P(slip=T)

F slip_s
T slip n

Since the slip node is only conditioned on the added new time node, there is also one new
parameter s/ip_n introduced in this KT-slip model, which represents the slip rate on a
new day, and the original s/ip parameter is denoted as s/ip_s here, which is shown in
Table IV. This table says that when a new day response occurs, New Day=T, the
probability of slipping is slip_n, P(slip=TNew Day=T) and is slip s, otherwise

Does Time Matter? Modeling the Effect of Time with Bayesian Knowledge Tracing 143

2.4 Topology of the models

The Split-KT model’s topology is shown together with KT-Slip and KT-Forget in Fig. 1.
Boxes in the figure denote the portions of the figure that are used in each model. While
all models are shown in this figure so the relationship between them can be seen. When
the models are run, they are run separately as a separate topology and not one big model.

The Models
Node Representation
K: Knowledge node L: Learn node
Q: Question node G: Guess node
F: forget node S: Slip node
T: Time node

Regular-KT Model I

Split-KT Model Parameters

P(Ly): Probability of initial Knowledge

P(F): Probability of forget F F
P(L): Probability of learn

P(G): Probability of guess

P(S): Probability of slip

Forget Model Parameters K W K
P(Ly): Probability of initial Knowledge

P(Fs): Probability of forget on same day

P(F,): Probability of forget on new day

P(L): Probability of learn

P(G): Probability of guess

P(S): Probability of slip

P(T): Probability of new day instance

Slip Model Parameters
P(Lo): Probability of initial Knowledge S S S
P(F): Probability of forget

P(L): Probability of learn
P(G): Probability of guess

P(F): Probability of slip on same day
P(F,): Probability of slip on new day @ T

P(T): Probability of new day instance

Fig. 1. The topology of the models — Split-KT, KT-Forget, KT-Slip

3 MODEL PERFORMANCE EVALUATIONS

To evaluate the performance of the KT-Forget and the KT-Slip models, we used a
Cognitive Tutor dataset and ASSISTments dataset to test the real world utility of these
models by comparing their predictive performance with a standard KT model. For each
problem set, which represents a certain skill we trained regular KT, KT-Forget and KT-
Slip models to make predictions on all the question responses of each student. Then the
Residuals and AUC is calculated for predictions and actual responses on same day events,
new day events as well as overall events to analyze the three models’ performance.
Residual is the mean of the actual performance subtracted by the predicted performance.
AUC is a robust accuracy measure where a score of 0.50 represents a model that is only
as good as chance and 1.0 represents a perfectly predicting model.

The analysis method consisted of two steps: run Expectation Maximization to fit the
parameters on the training set for each model, and apply the trained parameters to the test
sets to predict the student performance of each question.

3.1 Datasets for Prediction

One of the datasets comes from the Cognitive Tutor System called Bridge to Algebra and
is from the 2006-2007 school year. This was one of the smaller, development datasets
made public as part of the 2010 Knowledge Discover and Data mining competition
[Pardos & Heffernan, In Press]. In this tutor, students answer algebra problems from their

144 Yumeng Qiu et al.

math curriculum which is split into sections. The problems consist of many steps that the
students must answer to go to the next problem. A student no longer needs to answer
steps of a given skill when the Cognitive Tutor’s Knowledge Tracing model believes the
student knows the skill with probability 0.95 or greater. When a student has mastered all
the skills in their current section they are allowed to move on to the next. The time for
students using this system is determined by teachers. Twelve skills were chosen at
random from this dataset for analysis (excluding skills such as “press enter”” which do not
represent math skills). There was an average of 122 student per skill in this dataset.

Another dataset is collected from ASSISTments Platform’s Skill Builder problem sets.
The ASSISTments Platform is an educational research platform better known for its e-
learning [Feng, Heffernan, Mani and Heffernan, 2006] that provides web based math
tutoring to 8th-10th grade students. Unlike the Cognitive Tutor System, students are
forced to leave the tutor after 10 questions have been finished in one day and will come
back to the tutor in a new day. If a student answers three questions correct in a row, they
are “graduated” from the problem set. The help the tutorial provided is consist of a series
of questions that break a problem in to sub steps. A student can also request a hint, but
requesting a hint will mark the student as getting the step wrong in the system. Only
answers to the original questions are considered. The largest twelve Skill Builder datasets
were selected from the ASSISTments Platform. There was an average of 1,200 students
per problem set in this dataset. The highest student count problem sets were selected here
because new day events are far sparser in ASSISTments skill problem sets than the
Cognitive Tutor skill problem sets.

The twelve datasets from each tutor were randomly divided into two equal parts by
student, one part was used as the training set, the other as the testing set.

3.2 Prediction Procedure

Parameters were learned for each skill problem set individually. The parameters were
unbounded and initial parameters were set to a Guess of 0.14, Slip of 0.09, Prior of 0.50
and Learn of 0.14, these initial values were the average parameter values across all skills
in prior modeling work conducted on the ASSISTments tutor [Pardos, Heffernan, Ruiz
and Beck, 2008]. Since both tutors, ASSISTments and Cognitive tutor, cover similar
domains (algebra) and the initial parameter values are within plausible parameter ranges;
we use the above parameters for both datasets.

For parameter learning, the new day observation (0 or 1) was presented as evidence in
addition to the student responses. After training, the time and actual response values were
given to the model as evidence for our new models to do the prediction (for regular KT,
only actual responses were given as evidence) one student at a time. In order to predict
every response of each student in the test set, the student data for prediction was
presented to the network in the following fashion: for predicting the first question, no
evidence was entered; for the second question, the new day information for that question
and the actual response of first question were entered as evidence; for the third question,
the first two new day information and responses information were entered as evidence.
Apply this procedure until the prediction of the last question. This predicting process is
shown in Fig. 2. By applying this prediction process, the probability of student answering
each question correctly was computed and saved.

Does Time Matter? Modeling the Effect of Time with Bayesian Knowledge Tracing

145

Predict 1%t question

Dotted Outline Node = the question to be predict

Predict 2" question

Predict 3 question

Fig. 2. The process of entering evidence data.

Shaded Node = the evidence for the prediction

The results summary of all three models across problem sets as well as the results of
pairwise t-test is shown in Table VII.

3.3 Prediction Result Analysis
The prediction performance of the three models were calculated in terms of Residuals
and AUC values between predictions and actual responses on same day events, new day
events as well as overall events of the whole problem set. The model with higher AUC
values for a problem set was deemed to be the more accurate predictor of that problem set.
In addition, a two-tailed paired t-test was calculated between KT and KT-Forget and KT
and KT-Slip. We first applied this to the datasets collected from Cognitive Tutor. The
specific results of each problem sets are shown below for regular KT (Table V) and KT-

Forget (Table VI).

Table V. Residual and AUC results on Regular KT (Cognitive Tutor)

Regular KT Residuals AUC
Problem Set | Overall | Same Day | New Day | Overall | Same Day | New Day
1 -0.0263 0.0398 -0.3633 0.5952 0.6570 0.4972
2 -0.0390 -0.0268 -0.1106 0.7588 0.7434 0.8669
3 0.0623 0.0883 -0.0761 0.6496 0.6914 0.5656
4 -0.0272 -0.0146 -0.1173 0.7023 0.7324 0.6126
5 -0.0125 -0.0035 -0.0624 0.5822 0.5654 0.6728
6 0.0092 0.0189 -0.1600 0.7892 0.8171 0.6290
7 -0.0063 0.0100 -0.1093 0.6374 0.6446 0.6236
8 -0.0664 -0.0492 -0.1690 0.6936 0.7210 0.6003
9 0.0251 0.0232 0.0322 0.5384 0.5218 0.6278
10 -0.0267 -0.0294 -0.0104 0.6456 0.6204 0.7892
11 -0.0422 0.0138 -0.2760 0.4922 0.5176 0.5055
12 0.0483 0.0828 -0.0547 0.6149 0.6558 0.5129
Average -0.0085 0.0128 -0.1231 0.6416 0.6573 0.6253

146 Yumeng Qiu et al.

Table VI. Residual and AUC results on KT-Forget (Cognitive Tutor)

KT-forget Residuals AUC
Problem Set | Overall | Same Day | New Day | Overall | Same Day | New Day
1 -0.0121 0.0208 -0.1802 0.7765 0.7771 0.5238
2 -0.0103 -0.0037 -0.0484 | 0.7373 0.7183 0.8588
3 0.0755 0.0855 0.0223 0.7368 0.7497 0.5528
4 -0.0364 -0.0292 -0.0876 | 0.7262 0.7433 0.5938
5 -0.0045 -0.0022 -0.0174 | 0.6681 0.6080 0.7712
6 0.0095 0.0115 -0.0270 | 0.8331 0.8370 0.6399
7 0.0020 0.0116 -0.0587 0.6834 0.6857 0.6012
8 -0.0549 -0.0435 -0.1230 | 0.7209 0.7407 0.5805
9 0.0257 0.0165 0.0608 0.6070 0.6301 0.6768
10 -0.0162 -0.0246 0.0331 0.6115 0.6024 0.7746
11 -0.0414 -0.0118 -0.1645 0.6751 0.6376 0.6067
12 0.0445 0.0699 -0.0312 0.6278 0.6525 0.5133
Average -0.0016 0.0084 -0.0518 0.7003 0.6985 0.6411

Table VII. Summary and T-test on Regular KT, KT-Forget and KT-Slip (Cognitive Tutor)

Residuals (across problem sets) AUC (across problem sets)
Model Overall | Same Day | New Day | Overall | Same Day | New Day
1. Regular KT | -0.0085 0.0128 -0.1231 0.6416 0.6573 0.6253
2. KT-forget -0.0016 0.0084 -0.0518 | 0.7003 0.6985 0.6411
3. KT-slip -0.0047 -0.0048 0.0017 0.6110 0.5917 0.5175
t-test (1,2) 0.0352 0.2697 0.0004 0.0129 0.0178 0.2445
t-test (1,3) 0.5149 0.0154 0.0017 0.1690 0.0017 0.0033

From the above results, generally, we can see that the new KT-Forget model performed
better on both the residuals and AUC compared to the regular KT model. Inversely, the
KT-Slip model performed worse than we expected. The specific evaluation of the two
new models is shown in Table VII and Table VIII .

For the KT-Forget model, improved results were obtained both on residuals and AUC.
Especially for the AUC, although KT-forget did not get significant improvement on new
day events in terms of AUC (p value is 0.5175); however, it got significant improvement
on same day events prediction and overall prediction (p value is 0.0178 and 0.0129),
which means the performance of KT-Forget model is more accurate on predicting of
Cognitive Tutor data compared to the regular KT model. Moreover, the better prediction
performance also supported our hypothesis that students probably forget knowledge when
it comes to a new day.

For the KT-Slip model, the results of overall data’s AUC were worse but not

Does Time Matter? Modeling the Effect of Time with Bayesian Knowledge Tracing 147

significantly compared to regular KT. However, both same day and new day AUC were
significantly worse, which overthrew our assumption that students may slip when it
comes to a new day.

Similarly, we applied our models to the ASSISTments datasets. The results of
residuals and AUC across all problem sets are as below:

Table VIII. T-test on Regular KT, KT-forget and KT-slip (ASSISTments)

Residuals (across problem sets) AUC (across problem sets)

Model Overall | Same Day | New Day | Overall | Same Day | New Day
1. Regular KT | 0.0019 -0.0019 0.0241 0.6719 0.6704 0.6364
2. KT-forget -0.0036 -0.0129 0.0488 0.6678 0.6672 0.6366

3. KT-slip -0.0105 -0.0240 0.0628 0.6486 0.6520 0.5981
t-test (1,2) 0.1449 0.0099 0.0001 0.1640 0.0885 0.9603
t-test (1,3) 0.0133 0.0003 0.0057 0.0085 0.0353 0.0057

From Table VIII, we can observe that the new models, both KT-Forget and KT-Slip lost
to the regular KT model, especially on the AUC. We looked into the reason why our new
models perform much worse and found that the way the data was collected lead to this
result. As we mentioned in the previous section, students are forced to leave the tutor
after a certain number of questions have been finished in one day and will come back to
the tutor in a new day. Thus, we observed that the datasets collected from ASSISTments
have much fewer new day events (average 1 per student) and is not as amenable to a time
analysis as the Cognitive Tutor data which has many new days per student and students
experience the new day more naturally. Therefore, the results obtained from Cognitive
Tutor are more practical for this analysis.

4 CONTRIBUTIONS
This paper makes two contributions. First, we show assumptions made in Knowledge
Tracing model, that student don’t forget, is false. While this might not be terribly
surprising, we identify a particular situation in which the standard KT model has
systematic errors in predicting student performance, which is on new day responses.
Secondly, we present a model to account for this phenomenon which does a reliably
better job of fitting student data in some datasets. This is significant as KT has proved
itself to be a very effective model, difficult to improve upon. It is also noteworthy that
KT is easily interpretable and it is beneficial to be able to have a clean model that fits
easily into the Bayesian framework and inherits this interpretability. Our contribution is
that researchers should pay attention to “time” and we have demonstrated a method that
takes this into account and improves modeling performance.

5 DISCUSSIONS AND FUTURE WORK

In this work we attempt to model the time factor to better predict students’ learning
performance in intelligent tutoring systems. Due to our experiment results that new KT-
forget model worked very well on Cognitive Tutor datasets while failed on ASSISTments
Tutor datasets, we need to further investigate into the real reasons which caused this.
Thus, we would like to know when using KT-forget model is not beneficial.

In this paper we only made two assumptions that the parameters “forget” and “slip”
will be affected by time factor. We have not yet looked into the performance of other
parameters that might be affected by time, for example: students may have a fresh mind
and learn more on a new day, which means a new parameter “learn new day” should be
modeled. Also, it is possible that “time” should connect to these two parameters at once.

148 Yumeng Qiu et al.

It is also possible that the model can be improved by taking into account how many days
have elapsed since last opportunity, . We will keep on delving into these possibilities to
see whether further improvement incorporating time can be obtained. If this is achieved
in future, we can build an ensemble model [Caruana, Niculescu-Mizil, Crew and Ksikes
2004] that combines regular KT’s results on same day with the new model’s results on
new day.

Our work only focuses on whether students answer the questions in one day or in a
new day, we do not pay attention to the intervals between same day and a new day.
Pavlik and Anderson’s [Pavlik & Anderson 2005] study showed that longer intervals
should have a greater impact more on students’ performance while shorter intervals may
have very little effect on actual responses. These topics deserve further investigation to
figure out how to leverage the valuable time information and build better user models.

ACKNOWLEDGEMENTS
This research was supported by the National Science foundation via grant “Graduates in
K-12 Education” (GK-12) Fellowship, award number DGE0742503 and Neil Heffernan’s
CAREER grant. We would like to thank the organizers of the 2010 KDD Cup at the
Pittsburg Science of Learning Center for the Cognitive Tutor datasets and Matthew
Dailey for his data preparation assistance.

We also acknowledge the many additional funders of ASSISTments Platform found
here: http://www.webcitation.org/5Sym157Y fr

REFERENCES

Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models.
Proceedings of the 21st International Conference on Machine Learning, (2004)

Conati, C., Abigail S. Gertner, VanLehn, K., Druzdzel, M..: On-Line Student Modeling for Coached Problem
Solving Using Bayesian Networks (1997)

Corbett, A.T. and Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge, pp.
253-278. User Modeling and User-Adapted Interaction 4, (1995)

Corbett, A.T.: Cognitive computer tutors: Solving the two-sigma problem, pp 137-147. User Modeling:
Proceedings of the Eighth International Conference, Sonthofen, Germany, UM (2001)

Dempster, A.P., Laird, N.M., Rubin, D.B.: "Maximum Likelihood from Incomplete Data via the EM

Algorithm". Journal of the Royal Statistical Society. Series B (Methodological) 39 (1): 1-38 (1977)

Ebbinghaus, H. Memory: A Contribution to Experimental Psychology, translated in English, (1913)

Feng, M., Heffernan, N. T., Mani, M., & Heffernan, C.: Using Mixed-Effects Modeling to Compare Different
Grain-Sized Skill Models. In Beck, J., Aimeur, E., & Barnes, T. (Eds). Educational Data Mining: Papers
from the AAAI Workshop. Menlo Park, CA: AAAI Press. pp. 57-66. Technical Report WS-06-05. ISBN
978-1-57735-287-7 (2006)

Pardos, Z. A., Heffernan, N. T., Ruiz, C. & Beck, J.E.: Effective Skill Assessment Using Expectation
Maximization in a Multi Network Temporal Bayesian Network. The Young Researchers Track at the 20th
International Conference on Intelligent Tutoring Systems. Montreal, Canada, (2008)

Pardos, Z.A., Heffernan, N. T.: Using HMMs and bagged decision trees to leverage rich features of user and
skill from an intelligent tutoring system dataset. To appear in Journal of Machine Learning Research W &
CP, (In Press)

Pavlik, P. Jr., Anderson,J. R.: Practice and Forgetting Effects on Vocabulary Memory: An Activation-Based
Model of the Spacing Effect, pp. 559-586. Cognitive Science 29 (2005)

Reye, J.: Student modeling based on belief networks. International Journal of Artificial Intelligence in
Education 14, 1-33. (2004)

Learning Classifiers from a
Relational Database of Tutor Logs

JACK MOSTOW, JOSE GONZALEZ-BRENES, BAO HONG TAN
Carnegie Mellon University, United States

A bottleneck in mining tutor data is mapping heterogeneous event streams to feature vectors with which to train
and test classifiers. To bypass the labor-intensive process of feature engineering, AutoCord learns classifiers
directly from a relational database of events logged by a tutor. It searches through a space of classifiers
represented as database queries, using a small set of heuristic operators. We show how AutoCord learns a
classifier to predict whether a child will finish reading a story in Project LISTEN’s Reading Tutor. We
compare it to a previously reported classifier that uses hand-engineered features. AutoCord has the potential to
learn classifiers with less effort and greater accuracy.

1. INTRODUCTION

Intelligent tutors’ interactions with students consist of streams of tutorial events. Mining
such data typically involves translating it into tables of feature vectors amenable to
statistical analysis and classifier learning [Mostow and Beck, 2006]. The process of
devising suitable features for this purpose is called feature engineering. Designing good
features can require considerable knowledge of the domain, familiarity with the tutor, and
effort. For example, manual feature engineering for a previous classification task
[Gonzélez-Brenes and Mostow, 2010] took approximately two months.

This paper presents AutoCord (Automatic Classifier Of Relational Data), an
implemented system that bypasses the labor-intensive process of feature engineering by
training classifiers directly on a relational database of events logged by a tutor. We
illustrate AutoCord on data logged by Project LISTEN’s Reading Tutor, which listens to
children read stories aloud, responds with spoken and graphical feedback [Mostow and
Aist, 1999], and helps them learn to read [see, e.g., Mostow et al., 2003]. To illustrate
AutoCord, we train a classifier to perform a previously published task [Gonzalez-Brenes
and Mostow, 2010]: predict whether a child who is reading a story will finish it.

The rest of the paper is organized as follows. Section 2 describes how we represent
event patterns. Section 3 explains how AutoCord discovers classifiers. Section 4
evaluates AutoCord. Section 5 relates AutoCord to prior work. Section 6 concludes.

2. REPRESENTATION OF EVENTS, CONTEXTS, AND PATTERNS

We now summarize how we log, display, generalize, and constrain Reading Tutor events.

2.1 The structure of data logged by the Reading Tutor

The events logged by the Reading Tutor vary in grain size. As Figure 1 illustrates,
logged events range all the way from an entire run of the program, to a student session, to
reading a story, to encountering a sentence, to producing an utterance, down to individual
spoken words and mouse clicks. Figure 1 shows a screenshot of the Session Browser

Authors’ addresses: J. Mostow, RI-NSH 4103, 5000 Forbes Avenue, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213-3890, United States; email: mostow(@cs.cmu.edu; J. Gonzalez-Brenes; email:
joseg@cs.cmu.edu; B.H. Tan; email: btan@andrew.cmu.edu. This work was supported in part by the Institute of
Education Sciences, U.S. Department of Education, through Grant R305A080628 to Carnegie Mellon University.
The opinions expressed are those of the authors and do not necessarily represent the views of the Institute or the
U.S. Department of Education. We thank the educators, students, and LISTENers who generated our data.

150 Jack Mostow, José Gonzalez-Brenes and Bao Hong Tan

[Mostow et al., 2010], which displays logged Reading Tutor data in human-readable,
interactively expandable form.

) listen_2007_2008 Table: listen_2007_2008.story_encounter

- | Student fGMS-6-1992-04-21 [] Activity_Set ="
[E38 5 minute(s) long: Session [J?—[Jg—ll 15:03:00 . 7] Bookmark ="
EXER Y47 second(s) later, 4 minute(s) long: student picked Level D story:

®37 second(s) later, 7 second(s) long: Tutor displayed happened [7] Delayed_activity ="
- 4 no audio: 2 second(s) later, 1 second(s) long: --

: B "o audio: 2 second(s) later, 1 second(s) long: HAPPEMED
-- | 20 second(s) later, 5 second(s) long: Tutor displayed do
- || 56 second(s) later, 7 second(s) long: Tutor displayed Even the

[Delayed_Activity_Time = T™ULL'
[End_Time ='09/11/2007 03:08:20 PM'

[Exit_Through = 'user_reaches_end_of_activity’
Figure 1: Session Browser’s partially expanded event tree (left); partial record for
the highlighted story_encounter event (right).

Figure 1 displays a story encounter in the temporal hierarchy of the session in which
it occurred. Each line summarizes the database record for an event. The highlighted
story encounter “...student picked Level D story...” is represented as a row in the
story_encounter table, with the field names and values listed on the right side of Figure 1.
For example, the Exit through field is a label that shows how the story encounter ended,
and its value user reaches end of activity indicates that the student finished the story, so
the story encounter is a positive example of story completion. All other values indicate
different outcomes, such as clicking Back or Goodbye, timing out, or crashing.

The fields User ID, Machine Name, Start time, and Sms are common to all types of
events, including story encounters and sentence encounters. As their names suggest, they
respectively identify the student and computer involved in the event, and when it started,
with the milliseconds portion in its own field. Events with non-zero durations also have
corresponding End_time and Ems fields.

Here the user has partially expanded the tree of events by clicking on some “+” icons.
The structure of the tree indicates parental and fraternal temporal relations among events.
A child event is defined as starting during its parent event; siblings share the same parent.
The indentation level of each event reflects these relations. For instance, the highlighted
story encounter is a child of the session summarized on the preceding line, and is
therefore indented further. The story encounter’s children are the sentence encounters
shown below it, displayed at the same indentation level because they are siblings.

2.2 Inferring a pattern from a set of related events

In Figure 1, the user has selected the highlighted events by clicking on them with the
CTRL key down. Given such a constellation of related events, the Session Browser’s
AutoJoin operator [Mostow and Tan, 2010] generalizes it into a pattern of which it is an
instance. To infer a pattern from a single instance, AutoJoin heuristically assumes that
repetition of a constant unlikely to recur by coincidence, such as a user ID, is a
requirement of the pattern. AutoJoin represents the inferred pattern as a MySQL query
[MySQL, 2004] that can retrieve instances of the pattern. An example of such a query is:

SELECT * FROM
utterance u,
story_encounter st,
sentence_encounter se

WHERE
(st.Machine_Name = se.Machine_Name) AND
(st.Start_Time = se.Story_Encounter_Start_Time) AND
(st.User_ID =se.User_ID) AND

(st.Start_Time = se.Start_Time) AND Ensure it is the first
sentence encounter.

Identify sentence
encounter as part of
the story encounter.

Learning classifiers from a relational database of tutor logs 151

st.Machine_Name = u.Machine_Name) AND
st.User_ID = u.User_ID) AND

E Identify utterance as
(se.sms = u.Sentence_Encounter_sms) AND

(

(

part of the sentence

. . encounter.
st.Start_Time = u.Sentence_Encounter_Start_Time) AND

se.End_Time = u.End_Time) }Ensure it iSfﬂLe last
utterance ot the

sentence encounter.

2.3 Operationality criteria for learned queries

Given a target concept such as “stories the student will finish reading,” AutoCord
searches for queries that maximize the number of positive instances retrieved and
minimize the number of negative instances. In addition, the query must satisfy
operationality criteria [Mostow, 1983] that constrain the information used in the query.
These constraints vary in form and purpose.

One type of operationality constraint limits the query to information available at the
point in time where the classifier will be used. For instance, a story encounter’s
End Time field tells us when the encounter ends, but obviously the Reading Tutor can
only log this information once the encounter actually ends, so the trained classifier cannot
use it to help predict whether a child will finish a story. Similarly, we use the
Exit_through field of a story encounter to label it as a positive or negative example of
story completion, but the trained classifier cannot use it to make predictions, since that
information is only available once the encounter ends. As Yogi Berra famously said,
“It’s hard to make predictions, especially about the future.” More subtly, if we want to
use the trained classifier a specified time interval after a story encounter starts, we should
train and test it on data representative of what will be available then. To simulate such
data, we restrict the training and test sets to story encounters lasting at least this long, and
we exclude events logged after this amount of time elapsed since the story encounter
started. We implement these constraints by adding the following two clauses to a query:
... AND (UNIX_TIMESTAMP(st.End_Time) — UNIX_TIMESTAMP(st.Start_Time) >= [limit])

AND (se.Start_Time <= DATE_ADD(st.Start_Time, INTERVAL [limit] SECOND))
Here, [limit] is the time limit in seconds, say 10. Then the training and test sets include
only story encounters that lasted at least 10 seconds, and the training and test procedures
can only consider events that occurred within these story encounters’ first 10 seconds.

Operationality criteria may also restrict what sort of classifier is useful to learn. For
instance, to apply to future data, we may not want the trained classifier to be specific to
any particular student or computer. We enforce this constraint by excluding user IDs and
machine names from the query. Similarly, if we want the classifier to predict story
completion based solely on the student’s observed behavior rather than traits such as age
or gender, we exclude those fields from the query.

Finally, operationality criteria may pertain to the protocol for training and testing the
classifier. Even if we preclude the trained classifier from mentioning specific students, it
may still implicitly exploit information about them, improving classification performance
on the training set — and inflating performance on a test set that includes the same
students. To ensure that the training and test sets have no students in common, the
queries that generate them include mutually exclusive constraints on the user id, e.g.:

(st.User_ID <="'mDS8-8-1998-09-22") /* Use training set */
or
(st.User_ID > 'mDS8-8-1998-09-22') /* Use test set */

Although these clauses mention a specific user ID, despite the constraint against doing
so, we do not consider them part of the learned classifier itself, just a way to split the data

152 Jack Mostow, José Gonzalez-Brenes and Bao Hong Tan

into training and test sets. We could use a more complex constraint to implement a more
sophisticated split, e.g. to stratify by gender, encoded by the first letter of the user ID.

3. APPROACH

We formulate AutoCord as a heuristic search through a space of classifiers represented as
database queries. Section 3.1 outlines the overall search algorithm. Section 3.2 describes
the search operators.

3.1 Search Algorithm

AutoCord searches through a space of classifiers by hill climbing on their accuracy. In
the pseudo-code below, step 1 starts with a query to retrieve the entire training or test set.

Pseudo-code for AutoCord(initial query)
1. Q < initial query
S €& empty set; Ky € 0
R € table of results (examples) retrieved by executing query Q
For each operator Op:
Q€ Op(Q. R)
R’ € table of results retrieved by Q’
K € Score(R”)
Add tuple (Q’, K)to S
End For
9. Pick (Quigh, Khign) from S that maximizes Ky;gp,
10, If Kpign < Kpest + epsilon, return Qp;gpn
11. Q < thgh; Kbest < MaX(Kbesta Khigh)
12. Go to step 3.

XN WD

For the task of predicting story completion, we start with this initial query:

SELECT * FROM story_encounter st
WHERE (st.User_ID <= 'mDS8-8-1998-09-22') /* Use training set */
AND (UNIX_TIMESTAMP(st.End_Time) — UNIX_TIMESTAMP(st.Start_Time) >= [limit])

Other classification problems would require a different initial query.

Steps 3 through 13 specify an iterative process. Step 3 retrieves a table of results R
from the database by executing the current query Q. Next, the loop starting at step 4
applies each of AutoCord’s operators. Based on the result set R, each operator adds one
or more constraints to the input query Q to generate a new query Q’. Step 6 executes the
new query Q’ to get a new table of results R’. Step 7 scores classification accuracy as the
number of positive examples in R minus the number of negative examples. Step 8 records
query Q’ and its score K. Step 9 chooses the highest-scoring query so far for the next
iteration of the iterative step. The higher this score, the larger the number of positive
examples the query retrieves, and the smaller the number of negative examples. Recall
that the Exit through field provides the label for a retrieved example. We score queries
by the difference of these numbers rather than their ratio in order to reward recall as well
as precision. Unless the query enlarges this difference by more than epsilon (currently 2),
step 10 stops and returns it. Otherwise search continues from the best query found so far.

The query can be applied as a classifier when a child is reading a story. Events that
occurred up to the point in time the query is applied form a partial event tree which could
be used to check against the constraints specified in the query. If all of the constraints are
satisfied, then the label for the current story will be positive; otherwise, the label will be
negative. To train a query representative of negative examples, we can re-interpret the

Learning classifiers from a relational database of tutor logs 153

value of the Exit through field of the story encounters in the training set. When we
consider story completion as being positive, we interpret a value of
user reaches end of activity as a positive label, and all other values as negative labels.
If we now consider quitting as being positive instead, we could interpret the value
user_reaches end of activity as a negative label. In this way, we could train queries
representative of quitting. It is possible for the same example to have multiple labels if it
is checked against more than one classifier, each of which represents a different category.
An evaluation metric for accuracy would need to penalize such cases appropriately.

Next, we describe AutoCord’s operators. To illustrate them, we do a walkthrough of
the search algorithm, starting from the following initial query:

SELECT * FROM story_encounter st /* st is alias for story_encounter */
WHERE (st.User_ID <="'mDS8-8-1998-09-22') /* Use training set */

3.2 Contrast Operator

The Contrast operator adds a single constraint that best distinguishes positive from
negative examples. It generates this constraint based on a split in the distribution of
values for a field. For example, if all positive examples have values below 5 for a
particular field, and if all negative examples have values above 5 for that field, then the
split value 5 perfectly separates positive from negative examples. To find the field that
can provide the best split, AutoCord calculates the frequencies of values for each column
of the results table retrieved by the initial query. It computes two sets of frequencies —
one for positive examples and another for negative examples. To illustrate, consider the
following results table:

Row # New Word Count | Initiative Student Level
1 4 Student A
2 6 Student C
3 7 Student C

Figure 2: An example of a table of results retrieved

All the fields come from the story encounter table, and each row represents a story
encounter. The rest of the fields are omitted for brevity. Assume the first two rows are
positive examples, while the third is a negative example. The calculated frequencies are:

New Word Count | Initiative Student Level
Positive | 4: once, 6: once Student: twice | A: once, C: once
Negative | 7: once Student: once | C: once

In this case, the Contrast operator finds that the best split occurs in the
New Word Count field, with a split value of 6. Thus it adds the new constraint
New Word Count <= ‘6’ since only the positive examples satisfy this constraint.
However, in general, when it is not possible to find a perfect split, the operator will
choose one that separates as many positive examples as possible from the negative

examples. The Contrast operator considers the mathematical relations =, !=, <, <=, >,
and >=.
3.3 Extend Operator

The Extend operator essentially captures the relational structure of positive examples. To
do so, it first picks a random positive example (which is a row) from the results table.
Recall that a row in the results table represents a collection of events. Next it randomly

154 Jack Mostow, José Gonzalez-Brenes and Bao Hong Tan

picks an event in the chosen row. For that event, it will then either pick a random child,
sibling, or parent event. With the existing events in the input query and the newly picked
event, the Extend operator then applies AutoJoin and adds the resulting constraints to the
input query.

We illustrate the Extend operator on the initial query shown at the end of Section 3.1.
This query only represents story encounters, so it retrieves a table of results where each
row represents a single story encounter. Suppose the Extend operator randomly picks one
such story encounter and then one of its children, namely a sentence encounter.
Applying AutoJoin to these two events might yield this query:

SELECT * FROM story_encounter st, sentence_encounter se
WHERE
(st.User_ID <="'mDS8-8-1998-09-22') /* Use training set */
AND (st.Machine_Name = se.Machine_Name) /* Added by Extend operator */
AND (st.User_ID =se.User_ID)
AND (st.Start_Time = se.Story_Encounter_Start_Time)

AutoJoin adds the last three constraints because both events have the same values for the
fields Machine Name, User ID, and Start Time.

3.4 Aggregate Operator

The Aggregate operator generates additional pseudo-fields for the Contrast operator to
work on. The pseudo-fields of an event refer to the aggregated fields of the event’s
children. We shall illustrate the idea of pseudo-fields using the figure below.

| listen_2007_2008
[| Student fBKS-7-1991-10-14
- L Sminute(s) long: Session 2007-09-13 16:18:20
) 6 second(s) later, 5minute(s) long: tutor picked Level C story: Sandy and the Pine Tree, by Katherin
i 3 minute(s) later, 3 second(s) long: Tutor displayed On good days, Becky figured it out fast.

H -

-, no audio: 766 ms later, 2 second(s) long: ON GOOD DAYS BECKY FIGURED — OUT FAST
ifimmediately, 5 second(s) long: Tutor displayed Soon Sandy and his people were learning guite we
30 second(s) later, 5 second(s) long: Tutor displayed He pawed the soft dirt with his front legs u

Figure 3: The highlighted sentence_encounter events of the story_encounter event.

Figure 3 highlights the three children of the story encounter event “6 second(s) later, 5
minute(s) long: tutor ...”. These children are sentence encounter events. As its name
suggests, the Aggregate operator aggregates the values of each sentence encounter field
over these children and adds them as pseudo-fields of the story encounter event to
provide additional information about 1it. For instance, the aggregated field
AVG(se.Word Count), where “se” refers to each sentence encounter, represents the
average word count of the sentences in a story encounter, reflecting its reading level.

For efficiency reasons, AutoCord precomputes the aggregated fields for all events in
the training set before the search starts and stores them in a separate temporary table for
each parent-child relation and specified time limit. The following example query
calculates the table for the story encounter/sentence encounter relation:

CREATE TEMPORARY TABLE “story_encounter-sentence_encounter_agg" AS

SELECT st.*, AVG(se.Word_Count) AS _AVG_Word_Count,

[other aggregated fields...]

FROM

story_encounter st,
sentence_encounter se
WHERE st.Machine_Name = se.Machine_Name

Learning classifiers from a relational database of tutor logs 155

AND st.User_ID =se.User_ID

AND st.Start_Time = se.Story_Encounter_Start_Time

AND se.Start_Time <= DATE_ADD(st.Start_Time, INTERVAL [limit] SECOND)

AND UNIX_TIMESTAMP(st.End_Time) - UNIX_TIMESTAMP(st.Start_Time) >= [limit]

GROUP BY st.Machine_Name, st.User_ID, st.Start_Time, st.sms

Recall that the last two constraints impose the time limit operationality criterion. Also
note that the GROUP BY clause is necessary for the aggregation to work correctly.
Currently, AutoCord supports only the MIN, MAX, AVG, SUM, COUNT, and STDDEV
aggregator functions, and only on numeric-valued fields, except for COUNT, which
simply counts the number of rows it aggregates over. It applies each aggregator function
to every field of the child event, as indicated by [other aggregated fields...].

Using an aggregated field in a constraint requires a join to the temporary table, e.g.:

... FROM
story_encounter st,
‘story_encounter-sentence_encounter_agg’ ‘st-sentence_encounter_agg’
WHERE (st.User_ID <="'mDS8-8-1998-09-22') /* Use training set */
AND (UNIX_TIMESTAMP (st.End_Time) — UNIX_TIMESTAMP(st.Start_Time) >= [limit])
AND (st.Machine_Name = ‘st-sentence_encounter_agg'.Machine_Name)
AND (st.User_ID = ‘st-sentence_encounter_agg .User_ID)
AND (st.Start_Time = ‘st-sentence_encounter_agg .Start_Time)
AND (st.sms = ‘st-sentence_encounter_agg'.sms)
AND ('st-sentence_encounter_agg'.” STDDEV_Word_Count™ >='0.4")

The last constraint, added by the Contrast operator, selects story encounters whose
sentence lengths vary enough to have standard deviation of at least 0.4. Such variation
might make stories more interesting, or simply reflect harder stories read by better
readers likelier to complete them.

4. EVALUATION

Section 2.3 discussed how to restrict the amount of information the search algorithm can
look at for each story encounter in the labeled training set. In this way, the algorithm can
only learn from events available from the start of the story encounter up to the specified
time limit. In other words, the algorithm cannot “peek into the future” of a story
encounter. Imposing a time limit also provides a means to test the classifier’s ability to
predict the outcome of a story encounter at various points in time before the story ends.

80
60
40
30
20

10

o

SR ARESIARLIIIARIS I ARSI IR IIRS
b (i i 57 T 5 HAALGA

We modified the search algorithm slightly to restricting the information available.
More specifically, we modified the Extend operator so that whenever it adds a new event
to the current query, the new event start time starts before the specified time limit. We
similarly constrained the Aggregate operator to include only such child events too. We
ran the modified search algorithm for various time limits ranging from 10 to 590 seconds

156 Jack Mostow, José Gonzalez-Brenes and Bao Hong Tan

in increments of 20 seconds, which corresponds roughly to the average duration of a
sentence encounter. After each run, we got a query suitable for the specified time limit.
The graph above shows the percentage of story encounters in the test set (shown on the y-
axis) that lasted at least a certain number of seconds (shown on the x-axis).

We executed the queries generated by the algorithm, one by one, and for each one,
calculated its accuracy and precision. It is not meaningful to compare the values of these
two metrics, but to save space we plot them both on the y-axis of the same graph below
against the time limit in seconds on the x-axis. We include majority class accuracy as a
baseline for comparison. The majority classifier always outputs the label assigned to the
majority of the story encounters in the training set, so its accuracy for a specified time
limit is simply the percentage of story encounters with that label in the test set for that
limit. We circle the points where the difference in classification accuracy between the
trained query and majority class is statistically significant at p < .05. To account
conservatively for statistical dependencies among data points from the same student, we
test whether this difference exceeds zero by more than a 95% confidence interval defined
as twice the weighted standard error of the per-student difference, weighting by the
number of data points per student.

Completed Stories as Positive Examples

0.83

08 4

075 1 T
? —2 significant

0.7

0.65 -

Accuracy,/Precision

== AutoCord Accuracy
= AutoCord Precision

== Majority Classifier Accuracy

10 50 90 130 170 210 250 290 330 270 410 450 490 530 570 Limit(secs)

For comparison, we trained two types of queries, one with completed stories as
positive examples and the other with uncompleted stories as positive examples. The
graph below shows the corresponding accuracy and precision when uncompleted stories
are treated as positive examples. Accuracy is similar, but precision is less consistent.

Uncompleted Stories as Positive Examples

(.85
== futoCord Accuracy

0.8 - == AutoCord Precision

—h— Majority Classifier Accuracy

0.75 -
07 4 > significant
0.65

06

Accuracy/Precision

10 50 90 130 170 210 250 290 330 270 410 450 490 530 570 Limit{secs;

Gonzalez-Brenes and Mostow [2010] applied £1-regularized logistic regression to the
same classification task, but their results are not directly comparable because they framed

Learning classifiers from a relational database of tutor logs 157

it differently. They expressed their time limit as a number of sentence encounters before
a story encounter ended, rather than as a number of seconds after it started.

5. RELATION TO PRIOR WORK

Mining relational data sits at the intersection of Machine Learning with classical
Artificial Intelligence methods that rely on formal logic, an area called Inductive Logic
Programming (ILP). Notable examples of ILP algorithms that learn from data expressed
as relations using formal logic representations include FOIL [Quinlan, 1990] and Progol
[Muggleton, 1995]. Like FOIL, AutoCord inputs positive and negative examples in
relational format, and hill-climbs to distinguish between classes. FOIL uses negation and
conjunction operators and outputs Horn clauses, whereas AutoCord uses the logical
conjunction AND to combine all constraints. It uses negation only to negate the equality
relation in the Contrast operator, not for an entire constraint. Also, AutoCord assumes
that relations describe events, works on SQL queries directly, and outputs SQL queries.

ILP methods can sometimes achieve high classification accuracy [Cohen, 1995], but
are sensitive to noise [Brunk and Pazzani, 1991], and fail to scale to real-life database
systems with many relations [Yin et al., 2006]. In contrast, AutoCord’s direct use of
SQL queries enables it to operate directly on large event databases thanks to efficient
retrieval from suitably indexed tables of events.

Provost and Kolluri [1999] reviewed literature on how to scale ILP approaches. They
suggested that integrating data mining with relational databases might take advantage of
the storage efficiencies of relational representations and indices. We believe AutoCord is
the first ILP system to learn a classifier from databases by operating directly in SQL.

Other approaches to scale relational learning include CrossMine [Yin et al., 2006],
which reduces the number of relations by using a “virtual join” in which the tuple IDs of
the target relation are attached to the tuples of a non-target relation. CrossMine employs
selective sampling to achieve high efficiency on databases with complex schemas. In
contrast, AutoCord operates on all training data available to eliminate sampling bias.

A more recent perspective on ILP, Relational Mining, focuses on modeling relational
dependencies. For example, it has been used to classify and cluster hypertexts, taking
advantage of their relational links between instances [Slattery and Craven, 1998].
AutoCord’s Extend operator also exploits relational links between events.

Modeling the database without an explicit feature vector contrasts with work that uses
feature induction. For example, a feature vector can be expanded using conjunction
operators to improve accuracy [McCallum, 2003]. Alternatively, Popescul and Ungar
[Popescul, 2004] proposed modifying SQL queries systematically, which is similar to
what AutoCord does, but their method involved generating cluster IDs that can be used as
features in logistic regression.

6. CONCLUSION
This paper proposes, implements, and tests an automated process for training classifiers
on relational data logged by an intelligent tutor. Unlike many machine learning
techniques, it does not require defining a feature vector first. Future work includes:
Evaluating on more tasks: So far we have applied AutoCord only to predicting story
completion. We need to evaluate it on other classification tasks, such as characterizing
children’s behavior according to whether they or the Reading Tutor picked the story
[Gonzalez-Brenes and Mostow, 2010], or what events tend to precede a software crash.
Adding more operators: For example, event duration is useful for predicting story
completion [Gonzalez-Brenes and Mostow, 2010], but is not an explicit database field.
To address this limitation, a Derive operator would compute simple combinations of
existing fields, e.g., end_time — start_time, to use as additional fields.

158 Jack Mostow, José Gonzalez-Brenes and Bao Hong Tan

Combining queries: Due to the Extend operator’s nondeterministic nature, different
runs of AutoCord can generate different queries, varying in the information they use and
the classification accuracy they achieve. Picking the best one or combining them into an
ensemble of classifiers could improve accuracy.

Operationality criteria: AutoCord enforces specific operationality criteria ad hoc by
adding clauses to the query or by excluding particular fields or constants from it. Future
work might invent a general way to express operationality criteria in machine-
understandable form and translate them into enforcement mechanisms automatically.

Generalizing to other tutors: AutoCord relies on the schema of the Reading Tutor
database for reasons of efficiency and expedience rather than due to intrinsic limitations.
Moreover, although its implementation uses MySQL, its method should apply to any
relational database system. Generalizing AutoCord to apply to similarly structured data
from other tutors would multiply its potential impact.

REFERENCES

BRUNK, C.A. and PAZZANI, M.J. 1991. An investigation of noise-tolerant relational concept learning
algorithms. In Proceedings of the Eighth International Workshop on Machine Learning, Evanston,
IL, 1991, 389-393.

COHEN, W. 1995. Learning to classify English text with ILP methods. Advances in inductive logic
programming, 124—143.

GONZALEZ-BRENES, J.P. and MOSTOW, J. 2010. Predicting Task Completion from Rich but Scarce Data.
In Proceedings of the 3rd International Conference on Educational Data Mining, Pittsburgh, PA,
June 11-13, 2010, R.S.J.D. BAKER, A. MERCERON and P.I.J. PAVLIK, Eds., 291-292.

MOSTOW, D.J. 1983. Machine transformation of advice into a heuristic search procedure. In Machine
Learning, R.S. MICHALSKI, J.G. CARBONELL and T.M. MITCHELL, Eds. Tioga, Palo Alto,
CA, 367-403.

MOSTOW, J. and AIST, G. 1999. Giving help and praise in a reading tutor with imperfect listening -- because
automated speech recognition means never being able to say you're certain. CALICO Journal 16(3),
407-424.

MOSTOW, J., AIST, G., BURKHEAD, P., CORBETT, A., CUNEO, A., EITELMAN, S., HUANG, C.,
JUNKER, B., SKLAR, M.B. and TOBIN, B. 2003. Evaluation of an automated Reading Tutor that
listens: Comparison to human tutoring and classroom instruction. Journal of Educational
Computing Research 29(1), 61-117.

MOSTOW, J. and BECK, J.E. 2006. Some useful tactics to modify, map, and mine data from intelligent tutors.
Natural Language Engineering (Special Issue on Educational Applications) 12(2), 195-208.

MOSTOW, J., BECK, J.E., CUNEO, A., GOUVEA, E., HEINER, C. and JUAREZ, O. 2010. Lessons from
Project LISTEN's Session Browser. In Handbook of Educational Data Mining, C. ROMERO, S.
VENTURA, S.R. VIOLA, M. PECHENIZKIY and R.S.J.D. BAKER, Eds. CRC Press,Taylor &
Francis Group, New York, 389-416.

MOSTOW, J. and TAN, B.H.L. 2010. AutoJoin: Generalizing an Example into an EDM query. In Proceedings
of the 3rd International Conference on Educational Data Mining, Pittsburgh, PA, June 11-13, 2010,
R.S.J.D. BAKER, A. MERCERON and P.IJ. PAVLIK, Eds., 307-308.

MUGGLETON, S. 1995. Inverse entailment and progol. New Generation Computing 13(3), 245-286.

MYSQL 2004. Online MySQL Documentation at http://dev.mysqgl.com/doc/mysql.

PROVOST, F. and KOLLURI V. 1999. A Survey of Methods for Scaling Up Inductive Algorithms. Data
Mining and Knowledge Discovery 3(2), 131-169.

QUINLAN, J.R. 1990. Learning logical definitions from relations. Machine Learning 5(3), 239-266.

SLATTERY, S. and CRAVEN, M. 1998. Combining statistical and relational methods for learning in hypertext
domains. Inductive Logic Programming, 38-52.

YIN, X., HAN, J., YANG, J. and YU, P. 2006. CrossMine: Efficient Classification Across Multiple Database
Relations. In Constraint-Based Mining and Inductive Databases. Lecture Notes in Computer
Science, J.-F. BOULICAUT, L. DE RAEDT and H. MANNILA, Eds. Springer Berlin / Heidelberg,
172-195.

A Framework for Capturing Distinguishing User
Interaction Behaviours in Novel Interfaces

S. KARDAN, C. CONATI
University of British Columbia, Canada

As novel forms of educational software continue to be created, it is often difficult to understand a priori which
ensemble of interaction behaviours is conducive to learning. In this paper, we describe a user modeling
framework that relies on interaction logs to identify different types of learners, as well as their characteristic
interaction behaviours and how these behaviours relate to learning. This information is then used to classify
new learners, with the long term goal of providing adaptive interaction support when behaviours detrimental to
learning are detected. In previous research, we described a proof-of-concept version of this user modeling
approach, based on unsupervised clustering and class association rules. In this paper, we describe and evaluate
an improved version, implemented in a comprehensive user-modeling framework that streamlines the
application of the various phases of the modeling process.

Key Words and Phrases: Student Modeling, Clustering, Associative Rule Mining

1. INTRODUCTION

Advances in HCI continuously aid the creation of novel interfaces to support education
and training. Because of the novelty of these interfaces, it can be difficult to judge a priori
which ensemble of user interaction behaviours are conducive to learning. Our long-term
goal is to devise automatic techniques to analyze logs of the interactions with a novel
application and identify classes of user types, their identifying behaviours and how these
behaviours relate to learning. In addition, we want to use this information to create a user
model, i.e., to automatically identify the behaviours of new users, and enable the
application to provide adaptive support during interaction if the behaviours are associated
with suboptimal task performance.

In previous work, we described a proof-of-concept user modeling approach that uses
unsupervised clustering and class association rules to identify relevant user
types/behaviours from an existing dataset, and relies on these to classify new users. In
this paper, we refine that proof-of-concept into a comprehensive user-modeling
framework that streamlines the phases necessary to generate a user classifier from an
initial dataset of raw interaction logs. In [1] the initial approach was evaluated on an
environment to support learning of Al algorithms via the exploration of interactive
simulations. Here, we evaluate the new user modeling framework on the same
environment but on a larger dataset (65 students vs. 24), thus providing more convincing
evidence on the approach effectiveness.

After discussing related work, we illustrate the general user modeling approach,
including improvements from previous versions. Next, we discuss an empirical
evaluation of the framework and conclude with a discussion of future work.

2. RELATED WORK

Association rules have been widely used for off-line analysis of learners’ interaction
patterns with educational software. e.g., to discover (i) error patterns that can help
improve the teaching of SQL [14]; (ii) similarities among exercises for algebra problem
solving in terms of solution difficulty [6]; (iii) usage patterns relevant for revising a web
based educational system spanning a complete university course [7].

Authors’ addresses: S. Kardan and C. Conati, Department of Computer Science, University of British Columbia,
2366 Main Mall, Vancouver, BC, V6T1Z4, Canada. E-mails: skardan@cs.ubc.ca, conati(@cs.ubc.ca

160 Samad Kardan and Cristina Conati

Most work on using association rules for on-line adaptation has been done within
research on recommender systems. In [4], for instance, association rule mining is used to
match the user type with appropriate products. The main difference with our work is that
in [4] there is no on-line classification. Users are “labelled” based on clusters built off-
line and the labels are used to guide recommendations when these users utilize the
system. In contrast, we perform online classification of new users, with the goal of
eventually providing real-time adaptation. Similarly, associative classification is used in
[20] to classify user requirements and generate personalized item recommendation in an
e-commerce application. The main difference with our work is that the approach in [20]
needs labelled data, while ours can work with unlabelled datasets.

The work by Romero et al ([16]) is the most similar to the research described here, in
that the authors aim to use clustering and sequential pattern mining to recognize how
students navigate through a web-based learning environment, classify them and use some
teacher tuned rules for recommending further navigation links accordingly. The
evaluation of this work focused on analyzing the quality of the rules generated by
different algorithms, but no results have yet been presented on the classification accuracy
of the proposed approach.

3. GENERAL USER MODELING FRAMEWORK

Behavior Discovery

User
Actions

Logs

Data
Extraction

Clustering |

Associative
Rules
Mining

Online
Classifier

- New User’s
‘ Actions

Feature

Vector
Calculation

User Classification

Online
Classifier

User’s
Behavior
Pattern

Figure 1: general User Modeling Approach.

Our user modeling approach consists of major phases: Behaviour Discovery (Figure 1A)
and User Classification (Figure 1B). In Behaviour Discovery, raw unlabeled data from
interaction logs is preprocessed into feature vectors representing individual users in terms
of their interface usage. These vectors are the input to an unsupervised clustering
algorithm that groups them according to their similarity. The resulting clusters represent
users who interact similarly with the interface. These clusters are then analyzed to (i)
identify if/how they relate to learning and then (i) isolate in each cluster those behaviours
that are responsible for this performance. In [3] we introduced the use of Class
Association Rules [18] to identify the interaction behaviour characteristics of each
cluster.

Understanding the effectiveness of a user’s interaction behaviours is useful in itself for
revealing to developers how the application can be improved e.g. [10]. However, we also
want to use these behaviours to guide automated adaptive support during interaction.
Thus, the clusters and behaviours identified in the Behaviour Discovery phase are used to
build an on-line classifier user model. In the User Classification phase (Figure 1B), this
classifier is used to assess the performance of a new user based on her interaction
behaviours. This assessment will eventually guide adaptive interventions that encourage
effective interaction behaviours and prevent detrimental ones.

A Framework for Capturing Distinguishing User Interaction Behaviors in Novel Interfaces 161

To test this approach, we generated a proof-of-concept version based on off-the shelf
components and simplistic parameter settings. Following the encouraging results we
obtained with this initial version [1], we have refined all framework components and
implemented them in a Python-based unifying framework that streamlines the application
of the various phases of the user modeling process. In the next few sections, we describe
the most salient improvements we have made to the framework.

3.1 DATA EXTRACTION

The first step in behaviour discovery phase is to create a set of data-points from user
interaction logs. Currently, our data-points are vectors of features consisting of statistical
measures that summarize the user’s actions in the interfaces (e.g. action frequencies; time
interval between actions). Another approach is to create data-points from sequence
mining. This approach is useful when actions order is important to identify relevant
behaviours, and has been successfully applied when there are few high-level types of
actions (e.g. a successful attempt on the first step of a problem, asking for hints, etc.) e.g.
in [12,17]. These conditions do not apply to the test-bed educational environments we
have used so far (described later), i.e. interactive simulations with many fine-grained
interface actions that can be done in any order, which makes looking for recurring
sequences in user actions computationally expensive without much added value.

3.2 USER CLUSTERING

In the initial version of our user-modeling approach, for clustering we used a standard
implementation of the k-means algorithm [5] available in the Weka data mining package
[9]. To refine the clustering step, we first experimented with other clustering algorithms
available in Weka, including Hierarchical Clustering and Expectation Maximization [5].
None of these alternatives, however, substantially outperformed k-means. We thus
decided to retain k-means as the clustering algorithm for our approach, but devised a
method to ensure faster convergence to a good set of clusters.

One of the issues when using the k-
means is setting good initial centroids,
so that the algorithm can quickly
converge to a stable set of clusters with
small inter-cluster error. The
implementation available in Weka

tended to converge slowly on the dataset
§RE382888¢58588 | we used as a test-bed for this research
ierations (described in a later section). We thus
—— Random Seeding === GAK-means experimented with Genetic Algorithms

49
48
47 4
46
45

Error

a8
43

42

41 —

Figure 2 - Convergence of GA K-means compared ~ (GA) to initialize the centroids in k-

to Random Seeding (K=2) means, based on an approach suggested

in [11]. This approach relies on using “chromosomes” to mold initial cluster centroids as

needed. These chromosomes represent different initial values for each feature and of the

initial centroids. Through mutation and crossover, in each iteration, new initial centroids

are generated and the ones with lower corresponding inter-cluster error for the resultant
clusters are retained for next iteration.

In our user modeling tasks, we have 21 continuous features, so the method proposed in
[11] is inefficient because it requires chromosomes with too many extra bits to discretize
the features without major loss of information. We thus changed the approach in [11] as
follows. We generate a random population of 100 initial chromosomes, each used to
generate a set of centroids that initialize a different run of k-means. We then select the
half of the chromosomes that led to clusters with the lowest inter-cluster error and use

162 Samad Kardan and Cristina Conati

these to generate the next generation using crossover (i.e. selecting two chromosomes and
choosing the upper half bits of one chromosome and the lower half of the other
chromosome to form a new one) and mutation (i.e. selecting a chromosome and
randomly changing one of its bits). We repeat the process until there is no improvement
for a certain number of generations or we reach the maximum number of iteration limit.
Our experimental results show that, although this approach does not guarantee finding the
global minimum for the inter-cluster error, it converges faster than the standard random
seeding method. Figure 2 for instance, compares the performances of GA k-means and
the k-means from Weka on the dataset that is the test-bed for this research (averaged over
30 different runs). GA k-means converges after 100 iterations, while the standard seeding
method does not reach that same error level even after 1500 iterations (here, iterations are
the number of times that basic k-means is used for both cases).

3.3 ASSOCIATION RULE MINING TO DESCRIBE USER BEHAVIOURS

In our user modeling framework, association rule mining is used to identify the
interaction behaviours that characterize each of the clusters found in the clustering phase.
We use the Hotspot algorithm [9] to perform association rule mining on our clusters.
Hotspot inspects the training data and generates the association rules corresponding to a
class label (a specific cluster, in our case) in the form of a tree. For instance, two sample
generic rules derived from the same tree branching could be as follows:

If Action A frequency = High -> Cluster X | If Action A frequency = High and
Action B frequency = Low = Cluster X

The algorithm has three parameters that influence the type and number of rules
generated: the minimum level of support requested for a rule to be considered relevant
(where support for rule X = Y is defined as the percentage of data points satisfying both
X and Y in the dataset); the tree branching factor, influencing how many new rules can
be generated from an existing one by adding a new condition; the minimum improvement
in confidence needed for creating a new tree branch (where confidence for rule X 2 Y is
the probability that Y occurs when X does). Essentially, the goal is to find a few rules
that characterize as many elements in the cluster as possible and provide an easily
understandable explanation of users’ behaviours for each cluster.

Improvements on Rule Mining: rule generation. In the original version of the
approach [1], we kept the Hotspot’s default values for minimum improvement (0.01) and
branching factor (2), and experimented with level of support within each cluster as a
criterion to filter out rules [13]. In the new framework, we added a functionality to
experiment with a variety of parameter settings. We also modified the criterion for
filtering out rules so that, when there is a set of rules derived from the same tree
branching, rules closer to the root and with low confidence are discarded. The rationale
behind this choice is that rules with low confidence include interaction behaviours that
are not representative of a specific cluster (i.e., these behaviours are observed in more
than one cluster), and thus they tend to weaken the classification ability of the rule set as
a whole (more detail on this point is provided in the section on user classification).

Improvements on Rule Mining: features discretization: Class association rules mining
algorithms generally work with both discrete and continuous values. The attributes that
describe the user interaction behaviours in our user modeling tasks are continuous, but
they need to be discretized, otherwise they would produce a large number of very fine-
grained rules, unsuitable for classification. Choosing the appropriate number of bins for
feature discretization involves a trade-off between information loss (having too few bins)

A Framework for Capturing Distinguishing User Interaction Behaviors in Novel Interfaces 163

and generating overly specific rules too detailed to capture meaningful patterns (having
too many bins). While in [3] we chose a simple binary discretization, here we
experimented with higher number of bins and empirically set the maximum number of
bins to 7. In online user classification, as explained in the next section, the number of
user actions observed is limited and it is possible that the feature values calculated for a
user fall in different adjacent bins overtime, higher number of bins makes the classifier
more tolerant to these fluctuations (i.e. a minor change in a feature value does not trigger
a changing the label assigned to the user).

3.4 USER CLASSIFICATION
In the user classification phase, as new users interact with the system they are classified
in real-time into one of the clusters generated by the behaviour discovery phase, based on
which association rules match their behaviours. The use of association rules to construct a
classifier is called Associative Classification Mining or Associative Classification [18].
Algorithms for Associative Classification usually, generate a complete set of class
association rules (CARs) from training data, and then prune this initial set to obtain a
subset of rules that constitute the classifier. When a new unknown object (a user in our
case) is presented to the classifier, it is compared to a number of CARs and its class is
predicted based on a measure that summarizes how well the user matches the CARs for
each class. In the first version of our approach, the classification measure was simply the
number of CARs satisfied for each cluster. This means that all rules were considered
equally important for classification, failing to account for the fact that some rules with
limited class support (i.e., applicable to fewer members of the class compared to others)
should be considered with caution when deciding the class label of a user. In the current
version, we improved the classification measure based on an approach that assigns a
value to each rule, and calculates class membership scores based on the values of the
satisfied rules that apply to a class (e.g. [19]). We used a variant of this approach where,
instead of calculating membership scores based only on the satisfied rules, all of the
CARs that represent a cluster are used. The rationale behind this choice is that, in our
user modeling task the rules that do not apply to the new instance are also important for
determining the final label. For instance, it is important to penalize the score of a class ¢
when a major rule (which applies to most of the ¢’s members) is not satisfied by a new
instance, even if a less distinctive rule for ¢ applies to it. Accordingly, the membership
function we adopted returns a score S, for a given class 4 as follows:

(1) S, = Yz Test(r;) X W 1 if rjis satisfied
W, 0 otherwise
Where r;’s are the m rules selected as representative for class 4, W, is the corresponding
rule weight (based on a measure explained below), and Test(r;) is the function that tests
the applicability of a rule to a given instance. We tried different measures from the
literature to define W, [8] (including confidence, support, conviction and leverage) and

found confidence to be the measure that generates the best classification accuracy.

4. FRAMEWORK IMPLEMENTATION

We implemented the user modeling framework as a toolset of modules that automate
most of the process of going from interaction logs to generating the rule-based classifier
and the adaptation rules. Most modules are implemented in Python, with some external
calls to Weka through a command line interface (please note that the used functionalities
from Weka are standard algorithms such as association rule mining, and can be replaced
by any other standard tool or implemented internally and are transparent to the final user
of the framework).

L Test(r;) = {

164 Samad Kardan and Cristina Conati

First, the preprocessing module reads the time stamped action logs and calculates the
feature vectors. Next, the GA k-means clustering module generates the clusters and
assigns labels to each user. The discretization module finds the optimal number of bins
and discretizes the feature vectors (this module uses Weka to run the rule-based
classifiers for finding the best number of bins). The discretized dataset is passed, along
with the generated clusters, to the rule generation module for association rule mining
and rule pruning. This module uses the Hotspot algorithm from Weka and, for each
cluster, looks for the optimal settings from a set of predefined values for each of the three
Hotspot parameters (i.e. minimum support, confidence improvement threshold and
branching factor). The last module (classifier) parses the generated rules and builds a
classifier that gets a new feature vector and returns the computed label. We implemented
a classifier evaluation module that uses LOOCV and all the aforementioned modules to
evaluate the classifier on available datasets, as follows.

For each fold of the LOOCYV, a sub-module of classifier evaluation feeds the test
user’s data into the classifier trained on the reduced dataset, by incrementally updating
the feature vector representing the interaction behaviours of this user. Predictions are then
made for the incoming vector as described earlier. A second sub-module computes the
accuracy of the classifier by checking (after each action in the user’s log) whether the test
user is correctly classified into its original cluster.

5. EVALUATION

We validated the current user-modeling framework on the Alspace CSP applet, the same
interactive system we used to test previous versions. However, a larger dataset was
generated for testing, which is described after illustrating the CSP applet.

5.1 THE AISPACE CSP APPLET

The Constraint Satisfaction Problem (CSP) Applet is part of a collection of interactive
visualizations for learning common Artificial Intelligence algorithms, called Alspace [2].
Algorithm dynamics are demonstrated on graphs by using color and highlighting, and
state changes are reinforced through textual messages (see Figure 3 for an example).

File Edit View CSPOptions Help

Jil | % @

Fine Step Step | Auto Are-Consistency Reset

Create Sole |

Arc (E. E=B) is inconsistent

= Split The Domain...

Select values ta keep (inthe domain of E):

Y | vl1 Tz s [Ca

[POMAIN-SPLITTING HISTORY:

| setectiiar | setect Rondom |
l OK I Cancel
Figure 3 - CSP applet with example CSP problem

Win {1}
Bin {2}

A CSP consists of a set of variables, their domains and a set of constraints on legal
variable-value assignments. The goal is to find an assignment that satisfies all constraints.
The CSP applet illustrates the Arc Consistency 3 (AC-3) algorithm for solving CSPs
represented as networks of variable nodes and constraint arcs. AC-3 iteratively makes

A Framework for Capturing Distinguishing User Interaction Behaviors in Novel Interfaces 165

individual arcs consistent by removing domain values inconsistent with a given constraint

until all arcs have been considered and the network is consistent. Then, if there is still a

variable with more than one value, a procedure called domain splitting is applied to that

variable to split the CSP into disjoint cases so that AC-3 can recursively solve each case.

The CSP applet provides mechanisms for interactive execution of the AC-3 algorithm,

accessible through the toolbar shown at the top of Figure 3 or through direct manipulation

of graph elements. Here we provide a brief description of these mechanisms necessary to

understand the results of applying our student modeling approach to this environment:

e Fine Stepping. Cycles through three detailed algorithm steps: selecting an arc, testing it
for consistency, and removing variable domain values when necessary.

e Direct Arc Clicking. Allows the user to decide which arc to test, and then performs
three Fine Steps on that arc to make it consistent.

e Auto Arc Consistency (Auto AC). Automatically Fine Steps through the network.

e Stop. Stops Auto AC.

e Domain Splitting (DS). Allows the user to select a variable domain to split, and specify
a sub-network for further application of AC-3.

e Backtracking. Recovers the alternative sub-network set aside by DS.

o Resetting. Resets the CSP network to its initial state.

In the following sections, we describe the performance of our user-modeling framework
to create a classifier user model for the CSP applet. This model will eventually be used to
provide adaptive interventions for students who do not learn well while using this
environment. We evaluated our framework along several dimensions.

5.2 DATA COLLECTION

Data for our evaluation was collected via user studies based on the experimental protocol
for the CSP applet described in [1]. University students, who were familiar with basic
graph theory but had not taken an Al course, were introduced to the AC3 algorithm and
then took a pretest on the topic. Next, each participant used the applet on two CSP
problems and wrote a posttest. The resulting dataset includes action logs for 65 users
(compared to 24 users in [3]), totalling 13,078 actions over 62,752 seconds of interaction.
From these logs, we calculated: (i) usage frequency of each interface action (i) mean and
standard deviation of latency between actions. Average latency is an indicator of the time
spent reflecting after an action and planning for the next one, while standard deviation of
latency tells if the user was consistent or selective in amount of pausing after each action.
Since we have 7 interface actions the calculated feature vectors are 21-dimentional.

5.3 RESULTS: RELATION OF CLUSTERS TO LEARNING

First, we want to see if/how the discovered clusters relate to user learning. From the study
test scores we computed the proportional learning gains for each student (in percentage),
and then analyzed the clusters detected for K=2 (we used C-index as described in [15] to
determine the optimal number of clusters for the data), to see if there is any significant
difference with regard to learning gains. An independent samples t-test revealed a
significant difference in the learning gain between the two clusters (p = .03 <.05), with a
medium effect size (Cohen d = .47). We refer to these clusters as High (n = 18, M = 61.32,
SD = 27.38) and Low (n = 47, M = 39.28, SD = 62.06) Learners (HL and LL). There is no
significant difference between the average pretest scores of LL and HL (p = .19),
indicating that behaviour patterns of the HL group have an impact on their learning.

5.4 RESULTS: USEFULNESS OF ASSOCIATION RULES FOR ADAPTATION
We also want to verify whether the rules generated by the framework can be used to
define adaptive interventions. Table I shows a subset of the representative rules for the

166 Samad Kardan and Cristina Conati

HL and LL clusters in our experiment, where we report the preconditions for each rule
but leave out the consequence. The table also shows, for each rule, its level of confidence
(conf), and support within its cluster (class cov). These rules were generated by
discretizing the feature vectors in our dataset into seven mutually exclusive ranges (bins),
as explained earlier.

Direct Arc Click frequency appears in Rulel for the HL cluster, with value in the
highest bin, while it appears in Rule 3 for LL with the lowest value, indicating that LL
members use Direct Arc Click much less than HL members. The high class coverage of
Rulel for HL (100%) indicates that high frequency of Arc Click pertains to all high
learners, and thus it would be beneficial to trigger this behaviour for students who
otherwise would not engage in it. Low values of Direct Arc Click Pause average and
standard deviation in Rulel and Rule2 for LL suggest that, even when they do select arcs
proactively, LL students consistently spend little time thinking about this action’s
outcome. Finally, the high level of confidence of Rulel for HL (100 %) indicates that,
this rule will have high impact in classifying new users as per equation (1).

The above observations suggest, for instance, the following adaptation rules for the

CSP applet. “IF user is classified as a LL and is using Direct Arc
Click very infrequently Then give a hint to prompt this action”;,
“IF user 1is classified as a LL and pauses very briefly after a
Direct Arc Click Then intervene to slow down the student”

Table I. The representative rules for HL and LL clusters

Rules for HL cluster :
Rulel: Direct Arc Click frequency = Highest (Conf =100%, Class Cov = 100%)

Rule5: Domain Split frequency = Highest and Auto AC frequency = Lowest and Fine Step
Pause Avg = Highest (Conf = 50%, Class Cov = 50%)
L Rule8: Domain Split frequency = Highest and Auto AC frequency = Lowest and Fine Step
Pause Avg = Highest and Reset frequency = Lowest (Conf = 65%, Class Cov = 76.47%)

Rules for LL cluster:
Rulel: Direct Arc Click Pause Avg = Lowest (Conf=100%, Class Cov = 100%)
Rule2: Direct Arc Click Pause STD =Lowest (Conf = 95.83%, Class Cov = 95.8%)
Rule3: Direct Arc Click frequency = Lowest (Conf = 93.48%, Class Cov=93.5%)
L Rule4: Direct Arc Click frequency = Lowest and Direct Arc Click Pause Avg = Lowest
(Conf=100%, Class Cov=100%)

" Conf= Confidence; Avg= Average; Class Cov= Class Coverage, STD = Standard Deviation

As another example, consider Rule8 for the HL cluster. This rule indicates that HL
members (i) use Auto AC action sparsely. Recall that this action quickly runs AC3 to
completion, and thus is not very useful for learning how the algorithm works; (ii) perform
Domain Split (the most advanced step in the algorithm) frequently (iii) spend the highest
average time thinking about each Fine Step they take. This is an ensemble of effective
behaviours that should be encouraged in an adaptive version of the CSP applet. Taken
individually, these behaviours don’t show a statistically significant difference between
LL and HL and thus would not be identified as relevant by a pair wise analysis of
features (as performed, for instance, in [1]).

In summary, this section illustrates that the rules generated by our framework are
informative and can be used for generating real-time adaptive interventions. These
interventions, however, are appropriate only if the classifier user model can recognize
which users need them. Thus, the next section discusses classifier’s performance.

5.5 RESULTS: PERFORMANCE ON USER CLASSIFICATION
We used LOOCV, as explained earlier, to evaluate the accuracy of our rule-based

A Framework for Capturing Distinguishing User Interaction Behaviors in Novel Interfaces 167

classifier and compare it against: (i) a baseline that always predicts the most likely label
(LL in our dataset); (ii) the best achieving classifier among various complex classifiers
available in Weka, i.e., the Random Subspace meta-classifier using C4.5 as the base
classifier; (iii) the classifier obtained with the earlier version of the framework [1] (old
rule-based classifier in Figure 4). Note that all these four classifiers use the categories
learned via the unsupervised process described in sections 3.1 though 3.4. We also want
to compare our approach against a fully supervised approach that starts from categories
defined based on the available learning gains. For this, we calculated the median of the
learning gains and labelled the students above the median as high learners and others as
low learners. We then trained and tested a C4.5 classifier with these new labels.

Figure 4 shows the overtime average accuracy of these five classifiers, both in terms of
percentage of correct classifications for the individual clusters (LL and HL), and overall.
The new rule-based classifier has the highest overall accuracy, and the differences with
the other classifiers are statistically significant (p < .001), with a large effect size (d > 3).
For each cluster, the accuracy of new classifier is comparable with the best competitor,

but no other classifier achieves the same accuracy in both clusters.
100

Q0
20
70
60 O Old Rule-based

= Baseline
50

B Random Subspace

Accuracy %

40
m Supervised
au | New Rule-based

20
10

g
|
D L I
: :

LL HL Over All

[s]

Figure 4 - The overtime average accuracy of different classifiers compared to the new rule-based classifier

Figure 5, shows accuracy of the new classifier as a function of the percentage of observed
actions, both overall and for the individual clusters.

100
a0
80
70
60 ’
50 ’
40 - = == == HL Cluster
30 =4 Overall
20 4
10

0

LL Cluster

Accuracy %

------- Base Line

1 10 19 28 37 46 55 64 73 82 91 100
% of Observed Actions

Figure 5 — Accuracy of the new rule-based classifier as a function of the percentage of observed actions

For comparison, we include the overall accuracy of the baseline, which is the best
performing classifier after ours. The new rule based classifier reaches a relatively high
accuracy in early stages of the interaction which is very important when the goal is to
provide adaptive interventions to improve the user experience with the educational
software. The overall accuracy of the new classifier becomes consistently higher than all
the other classifiers before observing 20% of user actions, and accuracy on each cluster
goes above 80% after seeing about 50% of the actions, while the baseline consistently
misclassifies high learners throughout.

168 Samad Kardan and Cristina Conati

6. CONCLUSION AND FUTURE WORK

In this paper, we describe a user modeling framework that uses unsupervised clustering
and Class Associating Mining to discover and recognizes relevant interaction patterns
during student interaction with educational software. The framework improves a previous
proof-of-concept approach by adding functionalities for more efficient clustering and
more principled selection of some of the required parameters. An empirical evaluation of
the framework provides evidence that it can both cluster users into meaningful groups, as
well as classifying new users accurately. More importantly, the framework generates
rules that provide a fine grained description of common behaviours for users in different
clusters. These rules appear to be suitable to guide adaptive interventions targeted at
improving interaction effectiveness. The next step of this work will be to add these
adaptive interventions to the educational software we have been using as a test-bed for
this research, an interactive simulation to help students understand an algorithm for
constraint satisfaction. We also plan to use the framework for generating classifier user
models for other educational software developed in our lab, including interactive
simulations for other Al algorithms and an educational game for mathematical skills.

REFERENCES

1. AMERSHI, S. AND CONATI, C. 2009. Combining Unsupervised and Supervised Machine Learning to Build
User Models for Exploratory Learning Environments. J. of Educational Data Mining 1, 1, 2.

2. AMERSH]I, S., CARENINIL, G., CONATI, C., MACKWORTH, A. AND POOLE, D. 2008. Pedagogy and Usability in
Interactive Algorithm Visualizations - Designing and Evaluating Clspace. Interact Comput. 20, 1, 64-96.

3. BERNARDINI, A., AND CONATI, C. 2010. Discovering and Recognizing Student Interaction Patterns in
Exploratory Learning Environments. Proc. ITS2010, Springer, 125-134.

4. CHANGCHIEN, S.W., AND Lu, T. 2001. Mining association rules procedure to support on-line
recommendation by customers and products fragmentation. Expert Systems with Applications 20, 325-335

5. DUDA, R. O., HART, P. E., AND STORK, D., G. 2001. Pattern Classification. New York: Wiley- Interscience.

6. FREYBERGER, J., HEFFERNAN, N., AND RUIZ, C. 2004. Using association rules to guide a search for best
fitting transfer models of student learning. Workshop on analyzing student-tutor interactions logs to
improve educational outcomes at ITS conference, 1-4.

7. GARCiA, E., ROMERO, C., VENTURA, S., AND CASTRO, C. D. 2009. An architecture for making
recommendations to courseware authors using association rule mining and collaborative filtering. UMUAI
19, 99-132.

8. GENG, L., AND HAMILTON, H. J. 2006. Interestingness measures for data mining: A survey. ACM Comput.
Surv. 38, 3, 9.

9. HALL, M., EIBE, F., HOLMES, G., PFAHRINGER, B., REUTEMANN, P., WITTEN, L.H. 2009. The WEKA data
mining software: an update. SIGKDD Explor. 11(1), 10-18.

10. HUNT, E., AND MADHYASTHA, T. 2005. Data Mining Patterns of Thought. In Proc. the AAAI Workshop on
Educational Data Mining.

11. Kmm, K. AND AHN, H. 2008. A recommender system using GA k-means clustering in an online shopping
market. Expert Syst. Appl. 34, 2, 1200-1209.

12. KOCK, M., PARAMYTHIS, A. 2011. Activity sequence modelling and dynamic clustering for personalized e-
learning. User Model User-Adap Inter 21:51-97.

13. Liu, B., HSU, W., AND MA, Y. 1999. Mining association rules with multiple minimum supports. In Proc.
KDD '99. ACM, 337-341

14. MERCERON A., AND YACEF K. 2003. A web-based tutoring tool with mining facilities to Improve Teaching
and Learning, AIED 2003, 201-208.

15. MILLIGAN G. W., AND COOPER, M. C. 1985. An examination of procedures for determining the number of
clusters in a data set, Psychometrika , 50, 2, 159-179.

16. ROMERO, C., VENTURA, S., ZAFRA, A., AND DE BRA, P. 2009. Applying Web usage mining for
personalizing hyperlinks in Web-based adaptive educational systems. Comput. Educ. 53, 3, 828-840.

17. SHANABROOK, D. H., COOPER, D. G., WOOLF, B. P., ARROYO, L. 2010. Identifying High-Level Student
Behaviour Using Sequence-based Motif Discovery. In Proceedings of EDM'2010.191-200.

18. THABTAH, F. 2007. A review of associative classification mining. Knowl. Eng. Rev. 22, 1, 37-65.

19. YIN, X., AND HAN, J. 2003. CPAR: Classification based on predictive association rules. In Proc. of the
Third SIAM International Conference on Data Mining, SIAM, 208-217.

20. ZHANGA, Y., AND JIAO, J. 2007. An associative classification-based recommendation system for
personalization in B2C e-commerce applications, Expert Syst. Appl. 33, 2, 357-367.

How to Classify Tutorial Dialogue?
Comparing Feature Vectors vs. Sequences

JOSE P. GONZALEZ-BRENES, WEISI DUAN, AND JACK MOSTOW
Language Technologies Institute, Carnegie Mellon University, USA

A key issue in using machine learning to classify tutorial dialogues is how to represent time-varying data.
Standard classifiers take as input a feature vector and output its predicted label. It is possible to formulate
tutorial dialogue classification problems in this way. However, a feature vector representation requires mapping
a dialogue onto a fixed number of features, and does not innately exploit its sequential nature. In contrast, this
paper explores a recent method that classifies sequences, using a technique new to the Educational Data Mining
community — Hidden Conditional Random Fields [Quattoni et al., 2007]. We illustrate its application to a data
set from Project LISTEN's Reading Tutor, and compare it to three baselines using the same data, cross-
validation splits, and feature set. Our technique produces state-of-the-art classification accuracy in predicting
reading task completion. We consider the contributions of this paper to be (i) introducing HCRFs to the EDM
community, (ii) formulating tutorial dialogue classification as a sequence classification problem, and (iii)
evaluating and comparing dialogue classification.

Key Words and Phrases: Project LISTEN, Feature Vectors, Sequence Classification, Reading Task Completion

1. INTRODUCTION

Researchers in education have long distinguished a student trait, a characteristic that is
relatively constant, from a student state, a characteristic that changes thorough time
[Reigeluth, 1983]. In this paper, we discuss how to train a classifier to represent time-
varying characteristics of student states.

We illustrate our discussion with an example. Suppose we are classifying computer-
student dialogues using the single feature “turn duration”. Figure 1 shows the duration of
each of the turns in a dialogue (9s, 8s, 5s, 7s, and 6s respectively). Conventional
classifiers, like logistic regression or decision trees, rely on a fixed-size feature vector as
an input; hence, we have to decide a priori how many features we are going to include.
But, how to map into a fixed-size feature vector a dialogue that may vary in number of
turns? One approach is to extract features from a window, either from the beginning or
the end of the dialogue [Gonzdlez-Brenes and Mostow, 2011]. There are (at least) two
alternative approaches: (i) averaging the value of the features in the window — in our
example, it would be a single feature with value 6.0; or (ii) having a feature for every turn
— in our example, three features with values 5, 7 and 6. Once we transform dialogues into
feature vectors, we can train conventional classifiers on them.

=lo[o]ala]nl-)

window
Figure 1: Dialogue described by a single feature

Mapping dialogues into feature vectors does not innately capture or exploit the
sequential nature of dialogue. Furthermore, it is not clear how appropriate the window
strategy is, since short windows may exclude important information, whereas long
windows may have too many missing values. In this paper, we consider the alternative
approach of classifying over the entire dialogue using sequences, by applying Hidden
Markov Models, and we introduce a recent technique, Hidden Conditional Random Field
(HCRF) [Quattoni et al., 2007].

Authors’ addresses: J.P. Gonzalez-Brenes, e-mail: joseg@cs.cmu.edu; W. Duan, e-mail: wduan@cs.cmu.edu; J.
Mostow, e-mail mostow(@cs.cmu.edu. , Project LISTEN, RI-NSH 4103, 5000 Forbes Avenue, Carnegie Mellon
University, Pittsburgh, PA 15213-3890, USA.

170 José Gonzalez-Brenes, Jack Mostow and Weisi Duan

The rest of this paper is organized as follows. Section 2 discusses relation to prior work.
Section 3 describes the different feature vector and sequence classifiers we consider to
classify dialogues. Section 4 presents empirical results on a classification task to predict
whether a student will complete a reading task. Section 5 concludes.

2. RELATION TO PRIOR WORK

Previous work on representations of data in language technologies has relied on feature
vectors using bag of word representations, n-grams, or their projections into latent space
[Wallach, 2006]. Alternatively, kernels have allowed richer representations. For
example, for text classification, the String Kernel [Lodhi et al., 2002], represents
documents in a feature space of all of the substrings of length k. A similar feature vector
representation would involve a prohibitive amount of computation, since the size of the
feature vector space grows exponentially with £. Sequence Kernels have been used for
speaker verification to map the audio signal sequence into a single feature vector using
polynomial expansions [Louradour et al., 2006]. We are unaware of alternative
classification approaches for dialogue other than using feature vectors.

Classification of sequences can be categorized in three different ways [Xing et al.,
2010]: feature vector based classification, model based classification, and distance based
classification. In the rest of this section, we discuss previous approaches to dialogue
classification in these categories.

2.1 Feature Vector Based Dialogue Classification

As discussed earlier, sequences can be mapped into fixed-size feature vectors. As far as
we know, all of the previous approaches in classification of tutorial dialogue have
ignored the sequential nature of dialogue, constraining dialogue into a fixed-size
representation. For example, predicting dialogue completion has been studied
extensively in the literature, relying on a feature vector representation [Gonzalez-Brenes
et al., 2009; Gonzalez-Brenes and Mostow, 2010; Gonzalez-Brenes and Mostow, 2011;
Hajdinjak and Mihelic, 2006; Moéller et al., 2008; Moller et al., 2007; Walker et al., 2001].

2.2 Model Based Dialogue Classification

Model based classification models sequences directly, for example using Hidden Markov
Models (HMMs). In this paper, we advocate for model based approaches over using
feature vectors.

HMMs have been used extensively in language technologies, for example in topic
segmentation [Eisenstein et al., 2008]. In the dialogue community, to our knowledge,
HMMs have been used only to segment dialogue [Stolcke et al., 2000], but not to classify
it as we do here. A growing body of work has investigated how to use policy learning to
improve tutorial effectiveness [Ai et al., 2007; Beck, 2004; Beck and Woolf, 2000; Boyer
et al., 2010; Chi et al., 2008; Chi et al., 2010]. Policy learning often relies on Markov
Decision Processes (MPDs) [Singh et al., 1999] to learn a strategy that maximizes the
expected value of a specified reward function. MDPs are very similar to HMMs in that
the input is a sequence. However, learning a strategy for what to do at each point in a
dialogue is a different problem than learning a classifier. Although speech is traditionally
modeled as a sequence of phonemes [Gunawardana et al., 2005], we believe we are the
first to model dialogues without using feature vectors. We do not know of any previous
use of HCRFs in the Educational Data Mining community.

2.3 Distance Based Classification

Distance-based methods for sequence analysis rely on a distance function to measure the
similarity between two sequences. Dialogue System Difference Finder [Gonzalez-Brenes

How to Classify Tutorial Dialogue? Comparing Feature Vectors vs. Sequences 171

et al., 2009] defines a distance function between dialogues described by feature vectors.
We are unaware of distance functions between dialogues that model dialogues as
sequences.

3. DIALOGUE CLASSIFICATION

In this section, we discuss the classification algorithms we considered to model tutorial
dialogue behavior using either feature vectors or sequences. For feature vector
classification we considered Maximum Entropy Classification [Berger et al., 1996] and
Random Forest [Breiman, 2004]. We used Maximum Entropy Classification, often called
Logistic Regression, as a baseline because of its recent success in classifying tutorial
dialogue [Gonzalez-Brenes and Mostow, 2011]. Random Forest, often called Ensemble
of Decision Trees, has provided good empirical results in the EDM community, having
being used in the winning submission of the Educational Data Mining Challenge at
SIGKDD 2010.

Alternatively, for classifying sequences, we use the popular Hidden Markov Model
(HMM) approach [Rabiner, 1989]. We also introduce to the EDM community a recent
technique called Hidden Conditional Random Fields (HCRFs), which have been applied
to other domains [Gunawardana et al., 2005; Sy Bor, 2006]; for details of their
implementation, see [Quattoni et al., 2007].

Maximum Entropy, and HCRF can be formulated under an approach called risk
minimization [Obozinski et al., 2007], where the parameters are estimated by maximizing
the fit to the training data while penalizing model complexity (number of features).
Better fit to the training data favors classification accuracy in the training set, but risks
over-fitting the model to the data. Conversely, low model complexity sacrifices
classification accuracy on the training set in hopes of generalizing better to unseen data.
Both Maximum Entropy and HCRF are log-linear and discriminative — they model the
differences between class labels without inferring generative models of the training data.
However, they differ in the way they calculate the fit to the training data: HCRFs use a
latent variable (a hidden state) to model input sequences, while logistic regression uses
feature vectors. To penalize complexity, they both rely on regularization penalties. The
two most popular regularization penalties are the L; norm and the L, norm of the feature
vector [Ng, 2004]. The L; norm selects fewer features than the L, norm, and hence it is
used when interpretability of the model is desired, or when the number of features
exceeds the number of data points. Conversely, when the number of features is small
compared to the training data, the L, norm offers better predictive power [Zou and Hastie,
2005]. The trade-off between fit to the training data and model complexity is controlled
by a so-called regularization hyper-parameter, often optimized during cross-validation
using a held-out set of development data.

Random Forest is an ensemble of decision trees. To avoid over-fitting, each tree is
grown using only a random subset of the features and a random subset of the training data.
The training procedure grows each tree greedily, selecting the best decision split at each
node, and stopping when each leaf has five data points, with no pruning. During testing,
Random Forest returns the