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ABSTRACT

When modeling student learning, tutors that use the Knowl-
edge Tracing framework often assume that all students have
the same set of model parameters. We find that when fitting
parameters to individual students, there is significant varia-
tion among the individual’s parameters. We examine if this
variation is important in terms of instructional decisions by
computing the difference in the expected number of prac-
tice opportunities required if mastery is assessed using an
individual student’s own estimated model parameters, com-
pared to the population model. In the dataset considered,
we find that a significant portion of students are expected to
perform twice as many practice opportunities if the student
is modeled using a population-based model, compared to the
number needed if the student’s own model parameters were
used. We also find an additional significant portion of stu-
dents will be likely to receive less practice opportunities than
needed, implying that such students will be advanced too
early. Though further work on additional datasets is needed
to explore this issue in more depth, our results suggest that
considering individual variation in student parameters may
have important implications for the instructional decisions
made in intelligent tutoring systems that use a Knowledge
Tracing model.

1. INTRODUCTION
Both intelligent tutoring systems and live classroom instruc-
tion often assume that student learning can be adequately
represented using a single model and associated set of model
parameters. For example, in this paper we will focus on
Knowledge Tracing [8], a popular method for estimating stu-
dent mastery of skills that has been used in effective cogni-
tive tutor systems [9]. Knowledge tracing is parameterized
by 4 variables that are typically assumed to be the same for
all students. Note that these population-level models still
allow us to represent variation in our estimates of student
performance: if two students respond differently to a set
of practice opportunities, the model will have different esti-
mates of future student performance for the two cases.

There have been some prior work on KT student models that
represent differences in the student’s initial knowledge [10].
In addition, several logistic regression-based student mod-
els, including Additive Factor Models [5] and Instructional
Factors Analysis [7], include a single constant that is in-

dividually fit per student. Including this student parame-
ter has been shown to lead to models that better fit the
data, and have improved prediction accuracy. However, in
all these cases, the parameters related to the progress of stu-
dent learning and student observations, are fitted to the en-
tire population. Therefore the underlying dynamical process
of student learning, and the way in which that is translated
to student performance, is assumed to be identical across
students.

There’s evidence to suggest this assumption is too strong.
Standard high schools commonly offer multiple versions of
the same class, such as a remedial version, normal version,
and honors version. This approach is taken, at least in part,
because it is believed both that students may have differ-
ent learning speeds or prior backgrounds for a subject, and
that those differences mean that the students will be best
taught in different ways. In other words, instruction will
vary not just according to our current estimate of student
performance, but also how we anticipate that performance
changes over time.

Here we examine the variation among individual student’s
parameters, and quantify the impact of this variation on
pedagogical strategies. To start we consider this in the
context of mastery learning, using the Knowledge Tracing
framework to estimate and monitor student skill mastery.
We already know from Cen et al. [6] that tuning the KT
parameters can lead to a significant impact on reducing the
amount of necessary practice opportunities; however, this
work still uses a single set of KT parameters for all students.
Corbett and Andersen [8] did try fitting individual param-
eters, and found this improved the predictive power of the
model, as well as some evidence that this might improve stu-
dent performance; however, the authors used curve-fitting to
find the parameter values1 and the authors did not examine
the difference in practice opportunities needed if a popula-
tion model was used instead of an individual model.

In this paper we fit Knowledge Tracing model parameters
to each individual, on a dataset from the ASSISTment sys-
tem [10]. We examine the distribution of the resulting pa-
rameters, and compare them to computing a single set of KT
model parameters for all students. In our second contribu-
tion, we compute the difference in expected number of prac-
tice opportunities required if mastery is assessed using an
individual student’s own estimated model parameters, com-
pared to the population model. We find that about 40% of

1Evidence [2] suggests that EM, which we use in this paper,
finds a better parameter fit than curve fitting.
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our student sample falls into one of two cases: students who
will be forced to do many more practice opportunities than
necessary, and students who are considered to have mastered
the material when in reality they likely need additional prac-
tice opportunities. This implies that observed variation in
student modeling parameters has an important and signifi-
cant effect on instructional decisions, and that considering
individual variation in the model parameters could lead to
more effective teaching. We will outline several future ideas
for how this could be accomplished in the conclusion of this
paper.

2. BACKGROUND
A popular approach is to model a student’s knowledge as a
latent variable, which changes in response to practice oppor-
tunities. The system gets information about this underlying
state through the student’s responses to practice opportuni-
ties. This model is a Hidden Markov model, and estimating
the student’s current hidden state can be done by perform-
ing Bayesian filtering. A special case of this approach is
known as Knowledge Tracing [8], which assumes the student
has 1 binary hidden state per skill (the student has either
mastered or not mastered the skill) and binary observations,
corresponding to whether the student gets a question about
a skill correct or incorrect. There are 4 model parameters
per skill in the Knowledge Tracing framework: p(L0) is the
initial probability the student has already mastered the skill;
p(T ) is the probability of the student transitioning from not
having mastered the skill to having mastered it after a prac-
tice opportunity; p(S) is the probability the student gives a
wrong answer even though she has mastered the skill; and
p(G) is the probability the student gives the correct answer
even though she has not mastered the skill. After the stu-
dent is given a practice opportunity, and gets the problem
correct or incorrect, the model updates the probability of
the student’s underlying mastery state. Though in Knowl-
edge Tracing the standard approach is to first update the
estimate of the student’s mastery given their observed re-
sponse, and then update their mastery as to whether they
have learned, in this paper we instead adopt the alternate
convention (often used in other Bayesian models) of first
updating the probability the student has mastered the ma-
terial given they received a new practice opportunity, and
then updating that estimate given the observed student re-
sponse. This yields the following equations for computing
p(Lt+1), the probability the student has mastered the skill
at time step t + 1, as a function of the probability the stu-
dent has mastered the skill at the prior time step p(Lt), the
observed student response, and the 4 parameters:

p(Lt+1|c) =

(1− p(S))(p(Lt) + p(T )(1− p(Lt)))

(1−p(S))(p(Lt)+p(T )(1−p(Lt)))+p(G)(1−p(T ))(1−p(Lt))
(1)

p(Lt+1|w) =

p(S)(p(Lt) + p(T )(1− p(Lt)))

p(S)(p(Lt)+p(T )(1−p(Lt)))+(1−p(G))(1−p(T ))(1−p(Lt))
(2)

The basic model assumes that the student never forgets a
skill, so once it is mastered, it stays mastered.

Often Knowledge Tracing is paired with mastery learning.
Here the goal is for the student to master the desired skill
(or set of skills). As the student’s mastery level is hidden, a

typical approach is to continue to provide practice opportu-
nities to the student until, based on the student’s responses,
the probability that the student has mastered the skill p(Lt)
exceeds some prespecified threshold, such as 95%.

3. METHODS
Our interest is in characterizing the distribution of model
parameters associated with individual students, and exam-
ining how this impacts the amount of practice opportunities
needed for a student to reach mastery, versus using param-
eters fit to the population.

3.1 Parameter Fitting
We fit a KT model for each individual student, where the
model consists of the 4 parameters specified in the prior
section, 〈p(L0), p(T ), p(S), p(G)〉. The input data for each
student consists of a trajectory of practice opportunities for
a particular skill, where the j-th entry contains whether the
student got this opportunity correct or incorrect. We would
like to compute the model parameters that maximize the
likelihood of the observed data. If at each j we knew if the
student had mastered or not mastered the skill, then com-
puting the best parameters would simply involve counting.
For example, to estimate the probability of slipping p(S) we
would simply count up the number of instances where the
student had mastered the skill but got the problem wrong,
divided by the number of times the student had mastered the
skill. However, we don’t know if the student has mastered
the skill or not. Therefore we use Expectation Maximiza-
tion to find parameters that locally maximize the likelihood
of the observed data.

Expectation maximization (EM) is an iterative algorithm
where each iteration consists of two stages. In the first stage
we fix the current estimates of the parameters and use these
parameters to estimate the probability the student has mas-
tered or not mastered (p̂(Lt) and 1− p̂(Lt)) the skill at each
of the time steps in the trajectory. These estimates can be
efficiently computed using the forward-backward algorithm,
whose computational complexity is linear in the trajectory
length and quadratic in the number of hidden states: here
there are only 2 possible states, mastered or unmastered.

In the second stage, new parameter estimates are computed
given these estimated probabilities of mastery. The new
p(S) parameter is computed by taking all instances where
the student got the problem wrong, and summing the prob-
ability that the student had really mastered the skill in all
those instances, divided by the probability of the student
having mastered the skill on all time steps:

p̂(S) =

∑
j
δj(w)p̂(Lj)
∑

j
p̂(Lj)

,

where δj(wrong) is 1 if the j-th student response was wrong,
and 0 otherwise. A new estimate of p(G) is computed as

p̂(G) =

∑
j
δj(c)(1− p̂(Lj))

∑
j
(1− p̂(Lj))

,

where in the numerator we sum over all instances where
the student got the answer correct. Updating the parame-
ter estimate of p(T ) involves the probability of the student
transitioning from not having the skill mastered to having
mastered the skill. p(L0) is estimated from p̂(L0).
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Algorithm 1 ExpOppNeed

Input: ptsg = 〈p(T ), p(S), p(G)〉, p(Lj), d, ppath, ǫ
Output: EO

if ppath < ǫ then

return EO = 0;
else

if p(Lj) ≥ d then

return EO = 0 {reached mastery}
else

p(c|p(Lj)) (Eqn. 3) {prob get correct}
p(Lj+1|c) (Eqn. 1) {prob mastery if get correct}
ppath,c = ppath ∗ p(c|p(Lj))
{Compute further opp. need if get problem correct}
EOc=ExpOppNeed(ptsg, p(Lj+1|c), d, ppath,c, ǫ)
p(w|p(Lj)) (Eqn. 4) {prob get wrong}
p(Lj+1|w) (Eqn. 2) {prob mastery if get wrong}
ppath,w = ppath ∗ p(w|p(Lj))
{Compute further opp. need if get problem wrong}
EOw=ExpOppNeed(ptsg, p(Lj+1|w), d, ppath,w, ǫ)
return EO = 1+p(c|p(Lj))∗EOc+p(w|p(Lj))∗EOw

end if

end if

Then the whole process repeats, using the updated param-
eter estimates to compute new estimates of the underlying
probability of mastery. These iterations continue until the
process converges to a fixed point, which is guaranteed to
occur.

There are several limitations to using EM that are relevant
for our purposes. First, EM is only guaranteed to converge
to a local optima of the likelihood function. Second, the pa-
rameters found may not be semantically plausible. This can
occur for the p(S) and p(G) parameters. We expect p(S) to
be < 0.5 since if it is larger, it means that it is more likely
for a student to get a problem wrong than right when she
has mastered the given skill. Similarly, we expect p(G) to be
< 0.5, since a student is more likely to get a problem wrong
than right if she has not mastered the associated skill.

Given these concerns, we performed a discretized search over
the p(G) and p(S) parameters, as well as a discretized search
over the initial probability of mastery p(L0). We included
this parameter as we initially had some results where the
p(L0) was fit by EM to be 0 or 1 and we suspect it is probable
that students should lie inside these extremes. We ran EM to
compute the best p(T ) for each tuple of 〈p(L0), p(G), p(S)〉
parameters, and selected the model parameter tuple with
the highest likelihood.

In addition, we also fit model parameters by aggregating
all student data together, and fitting a single population
model. In the rest of the paper we will use pi to denote the
parameters fit for the i-th student, and ppop to denote the
parameters fit for the whole population of students.

3.2 Expected Time to Mastery
Given the estimated student learning model parameters, we
next compute the expected number of practice opportuni-
ties it will take for student i to reach mastery. We take
the standard approach of using a threshold d to define mas-
tery: when p(Lt) ≥ d, the student is defined to have reached
mastery. Consider a given student i, with her associated pa-

Algorithm 2 ExpOppNeedPop

Input: p
tsg
i = 〈pi(T ), pi(S), pi(G)〉, pi(Lj),d,ppath, ǫ,

ptsgpop = 〈ppop(T ), ppop(S), ppop(G)〉, ppop(Lj),
Output: EO

if ppath < ǫ then

return EO = 0;
else

if ppop(Lj) ≥ d then

return EO = 0 {reached mastery under pop model}
else

p(c|pi(Lj)) (Eqn. 3) {prob student i gets correct}
{Prob. mastery if get correct}
ppop(Lj+1|c) (Eqn. 1) {under population model}
pi(Lj+1|c) (Eqn. 1) {under student i’s model}
ppath,c = ppath ∗ p(c|pi(Lj))
{Compute further opp. need if get problem correct}
EOc=ExpOppNeedPop(ptsgi , pi(Lj+1|c), d, ppath,c, ǫ,
ptsgpop,ppop(Lj+1|c))
p(w|p(Lj)) (Eqn. 4) {prob student i gets wrong}
{Prob. mastery if get wrong}
ppop(Lj+1|w) (Eqn. 2) {under population model}
pi(Lj+1|w) (Eqn. 2) {under student i’s model}
ppath,w = ppath ∗ p(w|p(Lj))
{Compute further opp. need if get problem wrong}
EOw=ExpOppNeedPop(ptsgi , pi(Lj+1|c), d, ppath,c,
ǫ, ptsgpop, ppop(Lj+1|c))
return EO = 1+p(c|pi(Lj))∗EOc+p(w|pi(Lj))∗EOw

end if

end if

rameters 〈pi(L0), pi(T ), pi(S), pi(G)〉. First, let pi(Lt|obs1:t)
be the probability of student i having mastered the skill af-
ter having t practice opportunities, and having made the
responses 〈obs1, obs2, . . . obst〉 to each respective practice op-
portunity (where obsj = correct, wrong). Note this expres-
sion can be calculated by sequentially applying either Equa-
tion 1 or Equation 2, depending on whether the student got
that practice opportunity correct or incorrect.

A second important pair of quantities is the probability of
observing a particular student response (correct or incor-
rect) at time t to an opportunity, given the current proba-
bility of mastery pi(Lt). These are:

p(c|pi(Lt)) = p(G)(1− pi(Lt)) + (1− p(S))pi(Lt) (3)

p(w|pi(Lt)) = (1− p(G))(1− pi(Lt)) + p(S)pi(Lt).(4)

Using Equations 1,2,3 and 4, we can compute the expected
number of practice opportunities for a student to reach mas-
tery using a recursive algorithm. Intuitively, the expected
number of additional practice opportunities needed depends
on the current probability that the student has mastered the
material, pi(Lt). If pi(Lt) ≥ d then no more practice oppor-
tunities are needed. Otherwise at least one more practice
opportunity is needed. Depending on whether the student
gets that opportunity correct or incorrect, then pi(Lt+1) will
get updated accordingly, and then we can compute the ex-
pected number of additional opportunities needed from the
resulting probability of mastery. But we don’t know in ad-
vance whether the student will get the next question correct
or not, so we take the expectation over these two possi-
bilities. More precisely, let EOi(pi(Lt)) be the expected
number of further practice opportunities needed given the
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current probability of mastery. Then if pi(Lt) ≥ d,

EOi(pi(Lt)) = 0, (5)

otherwise,

EOi(pi(Lt)) = 1 + p(c|pi(Lt))EOi(pi(Lt+1|c))

+ p(w|pi(Lt))EOi(pi(Lt+1|w)). (6)

The full algorithm, ExpOppNeed, is displayed in Algorithm 1.
The algorithm is called using the student’s initial probabil-
ity of mastery, pi(L0). Calculating the expected number of
practice opportunities needed for individual i is done using
Equations 5 and 6. The algorithm also maintains a vari-
able ppath that represents the probability of the path of ob-
servations, given the student’s initial probability of mastery
pi(L0). When ppath falls below a threshold ǫ, we also set the
expected number of future practice opportunities needed to
0. This is an approximation, but is necessary since in some
models the student will never reach a sufficient probability
of mastery if she gets all practice opportunities incorrect.
Since in the real world such a student would not do an infi-
nite number of problems, and to prevent infinite recursion,
we terminate when ppath < ǫ.

3.3 Population vs Individual
As mentioned previously, often intelligent tutoring systems
operate with a fixed set of parameters for all students, which
we denote the population model ppop. We are interested
in what impact this assumption means for individual stu-
dents whose learning parameters may not match the aggre-
gate population model parameters. More specifically, we
are interested in the expected needed number of practice
opportunities if the probability used to assess mastery is
calculated using the population parameters instead of the
student’s own parameters. Note that we cannot simply ap-
ply Algorithm 1 using the population parameters. Doing so
would calculate the expected number of practice opportuni-
ties needed if we assess mastery using the probability given
by the population model, and if correct and wrong obser-
vations are generated according to a student who has the
same parameters as the population model. In contrast, we
are interested in the case when a real student (with different
parameters than the population model) is responding cor-
rectly or incorrectly to practice opportunities, but that the
system is monitoring the student’s progress using a different
set of model parameters. This is likely to occur in tutors
that use population models.

To estimate the expected needed number of practice oppor-
tunities in this situation, we need to estimate the probabil-
ity of a correct or wrong answer being generated according
to student i’s model parameters pi, but assess if the stu-
dent has reached a sufficient probability of mastery using
the population parameters ppop. This means that during
our calculations we need to maintain two separate estimates
of the probability of mastery for the student, ppop(Lt|obs1:t)
and pi(Lt|obs1:t), which respectively represent the probabil-
ity under the population model parameters, given the ob-
served sequence of correct and incorrect answers, and the
probability under student i’s own parameters.

Let EO
pop
i (ppop(Lt), pi(Lt)) represent the expected number

of additional practice opportunities need to reach mastery,
given the current estimate of the probability of mastery un-
der the population model is ppop(Lt), and under the indi-

vidual model is pi(Lt). EO
pop
i is computed in Algorithm 2,

which is a modification of Algorithm 1.

4. EXPERIMENTS
We used a dataset of student responses to 42 problem sets
in the ASSISTment system [10]. Each set corresponded to
1 skill, and the number of problems given per skill ranged
from 4-13. We first compute individual student parame-
ters. Since the number of data samples was fairly limited
per skill, we computed a set of parameters for all skills an
individual did problems on. Though this is an approxima-
tion, in existing tutoring systems with good learning out-
comes, multiple skills are often modeled as having the same
parameters. We will consider this and other assumptions
made further in the discussion section. We selected the
subset of 265 students who did problems on 10 or more
skills. For this subset, the mean number of skills per stu-
dent was 12.79 (range=[10,22]), yielding an average of 69.57
(range=[45,132]) total problem tries per student. We fit
learning parameters 〈p(L0), p(T ), p(S), P (G)〉 to each indi-
vidual, and to the aggregated dataset across all individuals.

When fitting the model parameters, we restricted p(S) to
lie in [0.05, 0.1] and p(G) to lie in [0.05, 0.3], trying values
incremented by 0.05: these bounds have been used in prior
work [1]. p(L0) was restricted to lie in [0.1, 0.9], and val-
ues were tried at increments of 0.1. p(T ) was fit using EM,
as described previously. We ran EM for each individual (or
the aggregated dataset) with 10 different initializations, and
chose the one with the highest log likelihood. The compu-
tational time needed for EM to converge (for a single indi-
vidual’s data) was approximately 0.6s.

Following the standard procedure in Knowledge Tracing [8],
we set the mastery threshold d to 0.95. We set the expected
number of future practice opportunities from p(Lt|obs1:t) to
0 if the sequence of observations obs1:t had a probability of
less than ǫ = 10−7. We later discuss the effect of ǫ.

5. RESULTS
We first report the resulting distributions of the estimated
student learning model parameters, computed for each stu-
dent separately. Histograms of these distributions are dis-
played for the four learning parameters in Figures 1(a),
1(b), 1(c), and 1(d). For the slip p(S) and guess p(G)
parameters, the distribution is fairly peaked. The majority
of individuals have p(S) and p(G) parameters that are close
to the parameters for the full population. However, for both
the initial probability of mastery, p(L0), and the probability
of mastering a skill after not having understood it, p(T ),
there is a large spread of values. In each figure we have also
included the parameter estimated if the data from all 265
individuals is aggregated, and a single set of model param-
eters is estimated. It is clear that for both p(L0) and p(T ),
there will be many individuals whose best fit parameters
are quite far from the population parameters. This suggests
that the expected number of practice opportunities needed
for some students may differ if student mastery modeling
is done using the individual student’s own estimated pa-
rameters, compared to if we maintain a probability of the
student’s mastery level using the population parameters.

Indeed, this is what we observe. We start by computing
the expected number of practice opportunities needed for

Proceedings of the 5th International Conference on Educational Data Mining 121



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Initial probability

F
re

q
u

e
n

c
y

(a) p(L0). ppop(L0) = 0.6
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(d) P (G). ppop(G) = 0.3

Figure 1: Histogram of parameters fit for each individual.

an individual, given the model parameters pi estimated for
that individual, EOi(pi(L0)). The probability of the student
reaching mastery is assessed using the student’s parameters
pi. A histogram of the expected number of practice opportu-
nities for an individual to reach mastery as evaluated using
their own parameters is displayed in Figure 2(a). We have
binned the data to illustrate the distribution of the individ-
uals. Over half the individuals are expected to need less
than 5 practice opportunities to reach mastery. However,
there are also a significant number of individuals that are
expected to need a much larger number of practice oppor-
tunities to reach mastery: over 40 students require at least
15 practice opportunities, and over 30 of those require 20 or
more. This graph suggests that there is a significant spread
in the required amount of practice necessary for different
students.

We next examine the expected number of practice opportu-
nities needed for a student i, if we evaluate mastery using the
population parameters, EO

pop
i (ppop(L0), pi(L0)). Note that

this is the situation that occurs in existing tutors that use a
single set of model parameters for all students. Figure 2(b)
displays a histogram of the expected number of practice op-
portunities needed when evaluating mastery using the pop-
ulation parameters. At a rough glance the histogram looks
similar to Figure 2(a), but upon closer examination, the in-
dividuals histogram has its peak at about 2 whereas the
population model has its peak at about 5 expected number
of time steps.

We examine this discrepancy more systematically in Fig-
ures 3(a) and 3(b). There are three possible situations that
could result from estimating the number of practice oppor-
tunities if we evaluate mastery learning using a set of pop-
ulation parameters, on an individual with their own set of
parameters. In the first case a student might have to do more
practice problems than they would if we evaluated mastery
using the student’s own parameters. For example, this might
occur if the probability of mastering an unmastered skill is
higher for individual i than for the group, pi(T ) > ppop(T ).
In the second case an individual will need a very similar
number of practice opportunities, whether we evaluate their
skill mastery using the estimated population parameters, or
the individual’s own parameters. In the third case are stu-
dents who are expected to need more practice opportunities
than that predicted if using the population model.

The first and third situations are the ones of concern. In the
first case, it would mean that some students are having to do
more problems than really needed. Since there is only a fi-
nite amount of time in the school year, this means that these
students would be likely to cover less material than they are
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(a) Using Individual Parameters
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(b) Using Population Parameters

Figure 2: The expected number of practice opportunities to
reach mastery, where the probability of mastery is evaluated
either based on the individual’s estimated model parame-
ters, or the estimated population model parameters.

capable of, due to doing extra unnecessary problems. In ad-
dition, doing more problems than required might contribute
to student boredom and disengagement. In the third case,
a student may be recorded as having mastered a skill before
he has really reached the required threshold probability of
mastery. This means that the student could be advanced to
later skills, some of which might assume knowledge of this
earlier skill, without the student having actually understood
the earlier skill to a satisfactory level.

Therefore our next objective was to ascertain if there was
evidence that either case 1 or case 3 occurred in this dataset.
For each individual i we computed the difference in expected
number of practice opportunities needed using the popula-
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tion model to assess mastery, versus the individual model:

∆(i, pop) = EO
pop
i (ppop(L0), pi(L0))− EOi(pi(L0))). (7)

Figure 3(a) displays a histogram of ∆(i, pop). Note that
higher values mean that the expected number of practice op-
portunities is more under the population parameters, than
if one used the individual’s parameters, aka case 1. Nega-
tive numbers are when the individual is expected to need
more opportunities given their own parameters, compared
to the population parameters, aka case 3. We can see that
there are a number of individuals that fall into either case.
One way for defining students in case 1 is students that are
expected to be given one or more additional practice oppor-
tunities if the population model is used to do assessment
of reaching the threshold probability of mastery, versus the
expected number using the student’s own parameter. Using
this definition 146 students (or 55%) fall into case 1, where
the mean ∆(i, pop) of this group is 2.18. Though important,
this may not sound like a large number. But the importance
of this difference becomes more clear when we consider the
ratio of expected practice opportunities,

r(i, pop) =
EO

pop
i (ppop(L0), pi(L0))

EOi(pi(L0))
. (8)

A histogram of r(i, pop) is displayed in Figure 3(b). This
figure shows that over 50 students in our dataset would be
expected to do twice as many problems if the population
parameters are used to assess mastery learning, compared
to using the individual’s parameters. For example, one stu-
dent’s parameters were pi(L0) = 0.3, pi(T ) = 0.86, pi(S) =
0.1, pi(G) = 0.3. Here ∆i(i, pop) = 2.74 and r(i, pop) =
3.32. For such students, they could potentially be covering
twice or more as much material in the same time if their
own model parameters were known and used to evaluate
mastery. This could have very significant effects on such
students’ learning, and, equally importantly, at least in this
dataset, this effects a significant proportion of the students,
over 20% of the student population in our dataset.

Returning to estimates of ∆(i, pop), Figure 3(a) also reveals
that there are a number of individuals whose ∆(i, pop) < −1,
indicating that we expect such individuals to need at least
one more practice opportunity if we use their own param-
eters to assess mastery, compared to using the population
model parameters. This is case 3, and there are 21 individ-
uals who fall into this category. The average ∆(i, pop) for
this subset is −1.47. An additional interesting quantity in
this case is the expected probability of mastery of individual
i, if mastery is assessed using the population model param-
eters. This quantity is displayed in Figure 3(c) for all stu-
dents whose ∆(i, pop) < 0, aka students that are expected
to need more practice opportunities than they will receive
if the population parameters are used. Though a subset of
these students have an expected probability of mastery that
is fairly close to the desired threshold (0.95), 44 students
(∼17%) have an expected probability of mastery of 0.6 or
less. For example, one student’s estimated parameters were
pi(L0) = 0.1, pi(T ) = 0.028, pi(S) = 0.1, pi(G) = 0.3, and
the expected actual average mastery for this student when
his mastery is assessed using the population parameters, was
only 0.47, far below the 0.95 threshold of mastery desired.
Such individuals are unlikely to have sufficiently understood
the current skill, yet would be considered to have reached
mastery, and moved on to the next skill.

Therefore, in this dataset, there appear to be a substantial
number of students who fall into case 1 or case 3, who would
be likely to have to do more problems than is actually neces-
sary, or who would not have reached the desired probability
of mastery, respectively.

Some readers might be concerned that the reported results
are computed using an algorithm that only approximates
the expected number of needed practice opportunities. This
approximation arises from setting EOi(p(Lt|obs1:t) to 0 if
the probability of the path of observations is less than set
threshold, p(obs1:t) ≤ ǫ = 10−7, which was done from com-
putational reasons. As one exploration, we repeated our
analysis using ǫ = 10−5 and observed very similar results.
More generally, our approximation will typically underes-
timate the difference ∆(i, pop) in the two cases we are in-
terested in. Intuitively this is because whichever parameter
set, either pi or ppop, has the higher learning rate and/or
higher initial probability of mastery, that model will be less
effected by terminating low probability paths, because its
expected number of time steps will be shorter. We tested
this intuition by taking the population parameters (where
p(T ) = 0.086), and creating two alternative models, one
“fast” learner where p(T ) = 0.2, and one “slow” learner
where p(T ) = 0.02. We used different ǫs and evaluated ∆
for these different models:

ǫ 10−5 10−6 10−7 0.5 ∗ 10−7

∆(fast, pop) 2.511 2.844 3.103 3.175
∆(slow, pop) −1.700 −2.374 −3.100 −3.311

Note that the magnitude of the difference is increasing as
ǫ → 0, indicating that by using a ǫ > 0, we are likely to be
underestimating the true difference in expected time steps
between an individual model and when using a population
model. This suggest that we expect our reported results to
be an underestimate of the true significance of the impact of
using population parameters instead of individual parame-
ters when assessing mastery.

6. RELATEDWORK
Student modeling is naturally of key interest to the intelli-
gent tutoring systems and educational data mining commu-
nity. Knowledge Tracing [8] has been explored extensively
in the research community and is also used in effective in-
telligent tutoring systems.

Over the last 5 years there has been significant interest in
methods for fitting the parameters in the Knowledge Trac-
ing model. Beck and Chang [3] pointed out that in some
cases, more than 1 set of KT parameters predict exactly
the same student performance (the probability the student
will get the next answer correct as the number of practice
opportunities increases). This means that the model suf-
fers from an identifiability problem, where there are more
than 1 set of parameters that equally well fit the observed
data. In addition, Beck and Chang discuss the issue that
when model parameters are fit by EM, the resulting model
parameters may be implausible from a seminar perspective,
for example if the probability of guessing the right answer
p(G) is higher than 0.5, then students that have a greater
chance of getting a problem right than wrong when they
haven’t mastered the skill, which seems unlikely. Beck and
Chang addressed the issue of identifiability by using hand
set Dirichlet priors to introduce domain. Baker, Corbett
and Aleven [1] presented a machine learning method to es-
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Figure 3: The expected number of practice opportunities needed when using the population parameters to assess if the student
has reached a threshold of mastery(a), versus the individual’s own parameters(b). (c) shows the expected level of mastery of
students if using the population parameters to assess mastery, for students i that needed more practice, ∆(i, pop) > 0.

timate the probability a student has slipped or guessed as a
way to address both identifiability and plausibility. Rai and
colleagues [11; 12] have since investigated learning Dirichlet
priors from data, or multiple Dirichlets, to improve param-
eter plausibility. Ritter et al. [13] clustered similar skills to-
gether to reduce the number of model parameters required
in order to find better parameters given a fixed set of data.

There has also been a limited amount of work on trying to
individualize the Knowledge Tracing parameters. In their
key paper, Corbett and Andersen [8] investigated individu-
alizing the KT parameters by first learning a set of param-
eters for all students, and then computed weights to adjust
these parameters to individual students. While the resulting
weighted parameters lead to predictions that correlated bet-
ter on student test performance than a nonweighted model,
the weighted model did not generally have a better pre-
dictive accuracy on the student’s test score. In contrast to
weighting, Pardos and Heffernan [10] simply enabled the ini-
tial probability of mastery, p(L0), to vary among individuals
during the initial fitting process. The resulting model pre-
dicted student responses better than a Knowledge Tracing
model where all parameters are identical for all students.
Our work is related to Pardos and Heffernan, except we fit
all 4 KT parameters individually to each student.

There are a number of alternate mathematical models of stu-
dent learning and performance, including Learning Factors
Analysis [5]. A number of these models use a logistic regres-
sion approach to directly modeling the probability a student
will get the next practice opportunity correct, without an
additional representation of the student’s latent skill mas-
tery state. However to our knowledge, unlike the Knowledge
Tracing approach, these models have not been used to help
make decisions about how much additional practice a stu-
dent needs. One simple extension to the idea of thresholding
when the student’s probability of mastery has reached a suf-
ficient level would be to continue providing the student with
practice opportunities until the logistic regression model ex-
ceeds a prefixed threshold of the student getting the next
problem correct.

7. DISCUSSION AND FUTUREWORK
Our results suggest there is a large amount of variation in
student learning parameters in this dataset, and this varia-
tion has important implications for the amount of practice
opportunities that should be given to individual students.

There are a number of ways that the work presented in this
paper could be further improved in the future. Right now
we are combining a brute force discretized grid search over
a subset of the Knowledge Tracing parameters, with per-
forming Expectation Maximization over the remaining pa-
rameters. It would be interesting to explore other methods
for fitting KT parameters to data, such as those previously
proposed [3; 1; 11; 12; 13].

We currently assume all the skill parameters for an individ-
ual student are the same. This was done in order to have a
larger number of data points to use in order to fit the stu-
dent model parameters, and because there is prior precedent
in successful tutors of using the same skill parameters for
multiple skills. However, we suspect that at least for some
skills, the parameters differ. Therefore we have two axes of
potential variation: the individual skills, and the individual
students. One natural concern is that increasing the number
of model parameters (by modeling individual skills or indi-
vidual students) leads to a danger of overfitting, since there
will be less data for each subset of parameters we wish to
estimate. Indeed, prior work by Ritter et al. [13] found that
by clustering skills into groups, and fitting KT parameters
to each cluster (instead of each skill), the resulting clusters
generalized better to new students than fitting data to in-
dividual skills. We plan to perform a related analysis on
seeing if there appear to be different clusters of students,
all of which share similar skill parameters. More generally,
we are interested in developing hierarchical models of skill
parameters, which could fit individual student and individ-
ual skill parameters, but do so in a way that encourages
clustering of both skills and students. Latent Dirichlet Al-
location [4], a method for modeling collections that share
features, such as documents sharing subsets of topics, may
be a relevant approach.

Though our results suggest that individual variation in stu-
dent model parameters can exist, and lead to overpractice
or underpractice if these differences are ignored by using a
population model, we have only analyzed a single dataset.
Further experiments should be performed on other datasets
to see if similar results are obtained.

Assuming these results hold in other cases, to us the most
exciting issue is how to modify automated mastery teaching
to enhance student learning, assuming that individual stu-
dents’ parameters vary. In the current paper we fit individ-
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ual model parameters to the student data after the students
have already completed all practice opportunities. In real
tutoring settings, the student parameters will be unknown.
Therefore, in order to test whether using individual student
parameters benefits students using real classroom studies,
we will need to infer students’ parameters while simultane-
ously monitoring their performance and deciding whether
the student has reached a sufficient threshold probability of
mastery. Corbett and Andersen [8] used a fixed initial set of
exercises as a diagnostic period to learn student parameter
weights. After this mastery learning proceeds using param-
eters that incorporate the student’s individual weights. Of
course, this begs the question of how long a diagnostic pe-
riod is required to fit a good estimate of the individual’s
parameters, while simultaneously being short enough that
the individual may benefit from having individualized pa-
rameters: if we can only fit individual parameters after the
student has reached mastery, this method is unlikely to be
effective. The success of this approach also depends on other
modeling assumptions. For example, if we assume that an
individual has the same set of parameters for all skills, then
one approach is to use the population skill parameters when
the student is learning the first skill, and then take the stu-
dent data from that first skill and fit a set of KT parameters
to that data for the individual. This set could then be used
as the student learns other skills. One could also imagine
taking a Bayesian approach and explicitly modeling the un-
certainty over a student’s learning parameters. This uncer-
tainty could be updated as the student responds to practice
opportunities. One challenge in this setting is that in a
Knowledge Tracing model the student’s true state of mas-
tery is never observed. This poses some interesting technical
challenges when updating a distribution over model param-
eters.

Finally, in this paper we focused on a Knowledge Tracing
model of student learning. KT models have been often used
in mastery tutoring systems. In contrast, we are not aware
of prior work that use logistic regression student learning
models (e.g. [5]) as part of an adaptive instructional strat-
egy that decides when to stop giving the student practice
opportunities. Logistic regression student models often in-
corporate both student-specific and shared population pa-
rameters. Therefore in the future we are interested in in-
corporating logistic regression models into a tutoring strat-
egy, and comparing this with our individualized KT model
mastery-learning approach, in terms of their effect on the
expected amount of practice needed.

8. CONCLUSIONS
In this paper we fit all 4 Knowledge Tracing parameters to
each individual student from a set of tutoring data, and ex-
amined the resulting parameter distributions. The resulting
observed parameter distribution was found to have interest-
ing implications for instruction versus using a single model
for all students. About 20% of students would have to do
approximately double the number of practice problems in
order to reach the threshold of mastery defined using the
population parameters, compared to using the student’s own
parameters to assess probability of mastery. Another ∼17%
of students would be expected to have a probability of mas-
tery of only 60% or less when the population model would
expect the student is at a probability of mastery of 95% or

higher. This suggests that using a single set of population
parameters for all students in a tutoring system may result
in a significant portion of students covering less content than
they are capable of, due to being required to complete re-
dundant practice problems, and equally importantly, may
advance some students to later skills before they are ready.
In the future we will investigate how to learn and incorpo-
rate individualized parameters during the tutoring process.
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