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Abstract 

This paper presents heuristic explanations of factor scores, structure coefficients, and communality 

coefficients.  Common misconceptions regarding these topics are clarified.  In addition, (a) the 

regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor 

scores are reviewed.  Syntax necessary to execute all four methods are provided. 

 Keywords: Anderson-Rubin method, Bartlett method, communality coefficients, factor 

scores, regression method, structure coefficients, Thompson method 
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Factor Scores, Structure Coefficients, and Communality Coefficients 

 An understanding of the terminology and principles underlying factor scores, 

structure coefficients, and communality coefficients is critical to correctly interpreting 

factor analytic results (Wells, 1999).  This paper reviews factor scores, structure 

coefficients, and communality coefficients while clarifying misconceptions regarding 

these concepts.  Misconceptions are common throughout factor analysis in part due to 

multiple terms assigned to the same statistical concepts.  Garbarino (1996) elaborates 

on this problem:  

For example, we call the same systems of weights "equations" in regression, 

"factors" in factor analysis, "functions" or "rules" in discriminant analysis, and 

"functions" in canonical correlational analysis. We call the weights themselves 

"beta" weights in regression, "pattern coefficients" in factor analysis, and 

"standardized function coefficients" in discriminant analysis or canonical 

correlation analysis. The synthetic scores are called "yhat" in regression, 

"factor scores" in factor analysis, "discriminant scores" in discriminant 

analysis, and "canonical function (or variate) scores" in canonical correlation 

analysis. (p. 3)   

  After reviewing foundational concepts, the (a) regression, (b) Bartlett, (c) 

Anderson-Rubin, and (d) Thompson factor score estimation methods are compared. 

Differences in factor scores resulting from principal components or principal axes 

extraction are explored.  All heuristic explanations utilize six variables from the 

Holzinger and Swineford (1939) data set.  Table 1 presents the variables along with 

their respective variable labels.  These variables were selected due to the appearance of 
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two obvious underlying constructs (i.e., two factors – speed and memory).  Finally, factor 

scores are used in heuristic explanations of structure and communality coefficients.     

Table 1 

 

Variable Labels 

 

Variable  Label 

t10 Speeded Addition Test  

t11 Speeded Code Test – Transform Shapes into Alpha with Code 

t12 Speeded Counting of Dots in Shape 

t15 Memory of Target Numbers 

t16 Memory of Target Shapes 

t17 Memory of Object – Number Association Targets 

   

Foundational Concepts 

Matrix of Bivariate Associations 

The matrix of bivariate associations created from measured variable data is the focus of 

factor analysis.  The Pearson product-moment bivariate correlation matrix is the most utilized 

matrix of bivariate associations.  In fact, it is the default bivariate correlation matrix in most 

statistical software packages.  Table 2 presents the Pearson product-moment bivariate correlation 

matrix for the selected variables. 

Table 2 

Pearson Product-Moment Bivariate Correlation Matrix 

Variable t10  t11  t12  t15  t16  t17  

t10  1.000 0.447 0.487 0.109 0.117 0.331 

t11  0.447 1.000 0.398 0.140 0.305 0.344 

t12  0.487 0.398 1.000 0.078 0.146 0.230 

t15  0.109 0.140 0.078 1.000 0.338 0.305 

t16 0.117 0.305 0.146 0.338 1.000 0.259 

t17 0.331 0.344 0.230 0.305 0.259 1.000 
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Factor Scores 

 Understandably, factors and factor scores are often confused.  Factor analysis consolidates 

original measured variables into factors (i.e., latent variables), maximizing original data information 

(Hetzel, 1996; Thompson, 2004).  Factors provide a means “for determining if there are a small 

number of underlying constructs which might account for the main sources of variation in 

such a complex set of correlations ” (i.e., variables may not be measuring different constructs; 

Stevens, 1996, p. 362).  Factors, found in the output file of SPSS, are specific to measured variables 

as seen in Table 3.     

Table 3  

Rotated Factor Matrix for Regression Method using Principal Axes Extraction 

 Factor 

Variable 1 2 

t10 0.744 0.095 

t11 0.584 0.297 

t12 0.634 0.080 

t15 0.037 0.594 

t16 0.140 0.557 

t17 0.354 0.441 

  

 Factor scores, found in the data file of SPSS, can be used in utilized in 

subsequent analyses.  Table 4 presents factor scores derived from the regression method.  

Notice factor scores are specific to individual participants, not measured variables.  In 

regression, the analogous terminology for latent scores is yhat scores (Thompson, 2004). 
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Table 4 

Factor Scores Derived from the Regression Method using Principal Axes Extraction 

 Factor 1 

Reg_PA1 

Factor 2 

REG_PA2 

Participant 1  -0.175 -0.518 

Participant 2 0.392 -0.094 

Participant 3 -1.230 -0.92 

Participant 4 -0.551 -1.114 

Participant 5 -0.085 0.804 

***** ***** ***** 

Participant 297 0.298 -1.313 

Participant 298 0.03 -0.564 

Participant 299 0.773 0.519 

Participant 300 0.323 -0.413 

Participant 301 0.895 1.140 

 

Factor Score Estimation Methods 

Regression Method 

The regression method is the most frequently used of the four methods.  It is available in 

SPSS (syntax found in Appendix A).  First, measured variables are converted into z-scores.  Then, 

the standardized score matrix is multiplied by the inverse of the bivariate correlation matrix and the 

factor matrix (Gorsuch, 1983; Thompson, 2004).  This calculation is expressed as 

 FNxF = ZNxV RVxV
-1

 PVxF    (1)  

Multiplying by the inverse of a matrix removes the influence (i.e., divides out) of the matrix 

(Thompson, 2004).  The influence of the bivariate correlation matrix is taken away because factor 

scores need to be impacted by factor correlations, not variable correlations.   The factor correlation 

matrix already contains some information of variable correlation. 

Bartlett Method 

The Bartlett method is also available in SPSS (syntax in Appendix A).  The intention of the 

Bartlett method is “to minimize the influence of the unique factors consisting of single measured 
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variables not usually extracted in the analysis” (Thompson, 2004, p. 44).   Bartlett’s method 

minimizes the sums of squares of factors across a set of variables using least squares procedures 

(Bartlett, 1937).  These procedures result in a high correlation between factor scores and their 

respective factors (Gorsuch, 1983).  

Anderson-Rubin Method 

 The Anderson-Rubin method (available in SPSS, syntax found in Appendix A) also 

produces factor scores with high correlations with their respective factors.  Unlike the Bartlett 

method, factor scores produced by the Anderson-Rubin method are always perfectly uncorrelated 

(Anderson & Rubin, 1956; Thompson, 2004; Wells, 1999). 

Thompson Method 

The Thompson method can be performed using SPSS with syntax provided in Appendix A.  

Standard point-and-click methods within SPSS are not available for this method.  The Thompson 

method produces standardized (i.e., standard deviations of 1), non-centered (i.e., non-zero means) 

factor scores comparable across factors.  As Thompson (1993) states, “sometimes we wish to 

compare means on factor scores across factors to make some judgment regarding the relative 

importance of given factors” (p. 1129).  Factor scores produced by the regression, Bartlett, and 

Anderson-Rubin methods are not capable of such a comparison (Thompson, 1993).    

There are three steps for calculating factor scores in the Thompson method.  First, variables 

are converted to z-scores.  Second, variable means provided in SPSS descriptive statistics output are 

added to the z-scores.  Third, the factor score coefficient matrix (also provided in SPSS output) is 

applied to the newly standardized, non-centered scores.  The third step is expressed by the following 

formula: 

W = RVxV
-1

 PVxF     (2) 
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Variable mean values and weight values obtained from the factor score coefficient matrix are 

directly entered in the syntax as shown in Appendix A. 

 Table 5 presents a comparison of factor scores derived from the regression method (using 

principal components) to factor scores derived from the Thompson method.  Unlike factor scores 

produced by the regression method, factors scores produced by the Thompson method allow the 

researcher to see an overall higher rating on factor one, speed. 

Table 5 

Factor Scores: Regression and Thompson Methods 

 Regression Thompson 

Participant REG_PC1 REG_PC2 BTscr1 BTscr2 

Participant 1 -0.028 -0.780 92.475 79.976 
Participant 2 0.699 -0.302 93.203 80.453 
Participant 3 -1.516 -1.039 90.985 79.717 
Participant 4 -0.420 -1.531 92.082 79.225 
Participant 5 -0.034 1.081 92.471 81.837 

*****     

Participant 297 0.304 -1.723 92.806 79.034 
Participant 298 -0.038 -0.687 92.464 80.070 
Participant 299 1.078 0.375 93.582 81.131 
Participant 300 0.316 -0.481 92.819 80.275 
Participant 301 1.328 1.318 93.833 82.073 

 

Extraction Methods 

Principal Components Extraction Method 

 Principal components factor extraction always produces identical results for the regression, 

Bartlett, and Anderson-Rubin factor estimation methods. In fact, the comparison made in Table 5 

could have been demonstrated with the Bartlett or Anderson-Rubin methods in place of the 

regression method as these factor estimation methods all yield the same results.  Table 6 presents 

selected factor scores derived from the regression, Bartlett, and Anderson-Rubin methods.   



Running head: Factor Scores, Structure Coefficients, and Communality Coefficients  9 

Table 6 

 

Factor Scores with Principal Component Extraction for Regression, Bartlett, and Anderson-Rubin 

 

 Regression Bartlett Anderson-Rubin 

Participant REG_PC1 REG_PC2 BART_PC1 BART_PC2 AR_PC1 AR_PC2 

Participant 1 -0.028 -0.780 -0.028 -0.780 -0.028 -0.780 

Participant 2 0.699 -0.302 0.699 -0.302 0.699 -0.302 

Participant 3 -1.516 -1.039 -1.516 -1.039 -1.516 -1.039 

Participant 4 -0.420 -1.531 -0.420 -1.531 -0.420 -1.531 

Participant 5 -0.034 1.081 -0.034 1.081 -0.034 1.081 

*****       

Participant 297 0.304 -1.723 0.304 -1.723 0.304 -1.723 

Participant 298 -0.038 -0.687 -0.038 -0.686 -0.038 -0.686 

Participant 299 1.078 0.375 1.078 0.375 1.078 0.375 

Participant 300 0.316 -0.481 0.316 -0.481 0.316 -0.481 

Participant 301 1.328 1.318 1.328 1.318 1.328 1.318 
 

Principal Axes Extraction Method 

 Unlike the principal components method, the principal axes factor extraction method 

produces different factor score values dependent upon the factor extraction method selected.  Table 

7 presents factor scores using principal axes extraction with the regression, Bartlett, and Anderson-

Rubin methods. 

Table 7 

Factor Scores with Principal Axes Extraction for Regression, Bartlett, and Anderson-Rubin 

 

 Regression  Bartlett Anderson-Rubin 

Participant REG_PA1 REG_PA2 BART_PA1 BART_PA2 AR_PA1 AR_PA2 

Participant 1 0-.175 -0.518 -0.103 -0.915 -0.150 -0.686 

Participant 2 0.392 -0.094 0.604 -0.289 0.485 -0.172 

Participant 3 -1.230 -0.924 -1.533 -1.360 -1.378 -1.116 

Participant 4 -0.551 -1.114 -0.477 -1.914 -.533 -1.453 

Participant 5 -0.085 0.804 -0.338 1.512 -0.177 1.098 

*****       

Participant 297 0.298 -1.313 0.798 -2.512 0.493 -1.808 

Participant 298 0.032 -0.564 0.203 -1.051 0.097 -0.766 

Participant 299 0.773 0.519 0.965 0.736 0.860 0.614 

Participant 300 0.323 -0.413 0.597 -0.856 0.440 -0.594 

Participant 301 0.895 1.140 0.993 1.860 0.962 1.450 
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Principal Components vs. Principal Axes 

Factors are uncorrelated upon initial extraction.  Factors remain uncorrelated if they are 

orthogonally rotated or not rotated at all (Wells, 1999).  The current analysis utilized Varimax 

rotation, an orthogonal rotation method; therefore, the two factors remained perfectly 

uncorrelated. 

Uncorrelated factors do not always result in uncorrelated factor scores.  When utilizing an 

orthogonal rotation method, the principal component extraction method has the added benefit of 

producing perfectly uncorrelated factors and perfectly uncorrelated factor scores.  Principal axes 

extraction method only results in uncorrelated factor scores when the Anderson-Rubin method is 

used.  

Factor Structure Coefficients 

Throughout the General Linear Model, bivariate correlations between measured and 

latent variables are called structure coefficients.  Factor structure coefficients, the Pearson r 

correlation between measured variables and latent factor scores, are equal to pattern coefficients 

(i.e., weights) when factors remain uncorrelated (Thompson, 2004).  As noted above, principal 

component analysis always produces uncorrelated factor scores when using an orthogonal 

rotation.  Not surprisingly, Table 8 (the rotated factor matrix, also correctly referred to as the factor 

pattern coefficient matrix) and Table 9 (factor structure coefficients) are equal across variables using 

principal component extraction.  Because the values are equal, the factor structure coefficients are 

more accurately referred to as pattern/structure coefficients.   
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Table 8 

Rotated Factor Matrix for Regression Method using Principal Component Extraction 

 Factor 

Variable 1 2 

t10 0.823 0.058 

t11 0.706 0.824 

t12 0.793 0.006 

t15 -0.026 0.807 

t16 0.117 0.747 

t17 0.420 0.549 

 

 

Table 9 

Factor Structure Coefficients for Regression Method using Principal Component Extraction 

 Factor 

Variable 1 2 

t10 0.823 0.058 

t11 0.706 0.824 

t12 0.793 0.006 

t15 -0.026 0.807 

t16 0.117 0.747 

t17 0.420 0.549 

 

 In contrast, the pattern coefficient values in the factor matrix produced using principal axes 

extraction (see Table 3) does not equal factor structure coefficient values found in Table 10.  

Researchers must analyze both pattern coefficients and structure coefficients in this scenario 

(Thompson, 2004).   
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Table 10 

Factor Structure Coefficient for Regression Method using Principal Axes Extraction 

 Factor 

Variable 1 2 

t10 0.885 0.127 

t11 0.694 0.398 

t12 0.754 0.108 

t15 0.045 0.796 

t16 0.166 0.748 

t17 0.885 0.127 

 

Communality Coefficients 

A communality coefficient (h
2
) is “a statistic in a squared metric indicating how much of 

the variance in a measured variable the factors as a set can reproduce, or conversely, how much of 

the variance of a given measured variable was useful in delineating the factors as a set” (Thompson, 

2004, p. 179).  Communality coefficients are specific to measured variables.  The equation for h
2 

with uncorrelated factors is  

h
2 
= ∑ rs 

2
           (3) 

and is analogous to  

R
2 
= ∑ rs 

2
      (4) 

for uncorrelated factors.  Therefore, h
2
 is the R

2
 effect size for uncorrelated factors.  A different 

formula, which is beyond the scope of this paper, exists for correlated factors (Thompson, 2004).    

Communality coefficients are readily available in the output of SPSS.  The communality 

coefficient for t10 is 0.681.  For heuristic purposes, the communality coefficient will be calculated 

for t10 using Equation 3.  Structure coefficient values (Pearson r values as previously explained) for 

t10 are 0.823 and 0.058 for the first and second factor respectively.  When these values are squared, 

as directed by Equation 3, the resulting values are 0.677 and 0.003.  These squared factor structure 
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coefficients for each variable are summed across factors.  The sum for t10 is 0.680 which only 

varies from the communality coefficient produced by SPSS due to rounding error.  The factors 

reproduced 68% of the variance of the measured variable t10.  The syntax to produce this R
2 
type 

effect size is available in Appendix B. 

Conclusion 

 Correct interpretation of factor analytic results relies on a solid understanding of factor 

scores, structure coefficients, and communality coefficients and related terminology.  Take away 

points from this paper include: 

 Principal components extraction results in identical factor scores for the regression, Bartlett, 

and Anderson-Rubin methods.   

 The Thompson method alone allows for comparison of factors scores across factors for the 

dataset as a whole.   

 Uncorrelated factors may or may not have uncorrelated factor scores.   

 Structure coefficients are bivariate correlation coefficients between the measured variables 

with the factor scores.   

 Communality coefficients (h
2
) can be the R

2 
effect size. 
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Appendix A 

SPSS Syntax for Regression, Bartlett, Anderson-Rubin, and Thompson Methods 

******************************************************************** . 

COMMENT    Holzinger, K.J., & Swineford, F. (1939). A study in factor analysis:. 

COMMENT      The stability of a bi-factor solution (No. 48). Chicago, IL:. 

COMMENT      University of Chicago. (data on pp. 81-91). 

*********************************************************************** . 

 

SET printback=listing tnumbers=both tvars=both . 

DATA LIST 

  FILE='c:\spsswin\HOLZINGR.dta' FIXED RECORDS=2 TABLE 

  /1 id 1-3 sex 4-4 ageyr 6-7 

  agemo 8-9 t1 11-12 t2 14-15 t3 17-18 t4 20-21 t5 23-24 t6 26-27 t7 29-30 t8 

  32-33 t9 35-36 t10 38-40 t11 42-44 t12 46-48 t13 50-52 t14 54-56 t15 58-60 

  t16 62-64 t17 66-67 t18 69-70 t19 72-73 t20 74-76 t21 78-79 /2 t22 11-12 

  t23 14-15 t24 17-18 t25 20-21 t26 23-24 . 

TITLE 'Holzinger & Swineford (1939) Data **Citation in Comment**'. 

execute . 

 

******************************PRINCIPAL AXES****************************** . 

set printback=listing tnumbers=both tvars=both . 

 

****Regression****. 

subtitle '1.  Regression Factor Analysis with PA'. 

execute . 

factor 

  /variables t10 t11 t12 t15 t16 t17  

  /missing listwise 

  /analysis t10 t11 t12 t15 t16 t17 

  /print univariate initial correlation extraction rotation fscore 

  /plot eigen 

  /criteria mineigen(1) iterate(25) 

  /extraction paf 

  /criteria iterate(25) 

  /rotation varimax 

  /save reg(all,REG_PA) 

  /method=CORRELATION. 

 

****Bartlett****. 

subtitle '2. Bartlett Method with PA'. 

execute . 

factor 

   /variables t10 t11 t12 t15 t16 t17 

  /missing listwise 
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  /analysis t10 t11 t12 t15 t16 t17 

  /print univariate initial correlation extraction rotation fscore 

  /plot eigen 

  /criteria mineigen(1) iterate(25) 

  /extraction paf 

  /criteria iterate(25) 

  /rotation varimax 

  /save bart(all, BART_PA) 

  /method=CORRELATION. 

 

****Anderson-Rubin****. 

subtitle '3. Anderson-Rubin Method with PA'.  

execute . 

factor 

  /variables t10 t11 t12 t15 t16 t17 

  /missing listwise 

  /analysis t10 t11 t12 t15 t16 t17 

  /print univariate initial correlation extraction rotation fscore 

  /plot eigen 

  /criteria mineigen(1) iterate(25) 

  /extraction paf 

  /criteria iterate(25) 

  /rotation varimax 

  /save ar(all, AR_PA) 

  /method=CORRELATION. 

 

*************************** PRINCIPAL COMPONENT*************************** 

. 

****Regression*****. 

subtitle '4. Regression Factor Analysis with PC'. 

execute . 

factor 

   /variables t10 t11 t12 t15 t16 t17 

  /missing listwise 

  /analysis t10 t11 t12 t15 t16 t17 

  /print univariate initial correlation extraction rotation fscore 

  /plot eigen 

  /criteria mineigen(1) iterate(25) 

  /extraction pc 

  /criteria iterate(25) 

  /rotation varimax 

  /save reg(all, REG_PC) 

  /method=CORRELATION. 

 

****Bartlett****. 

subtitle '5. Bartlett Method with PC'. 
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execute . 

factor 

   /variables t10 t11 t12 t15 t16 t17 

  /missing listwise 

 /analysis t10 t11 t12 t15 t16 t17 

  /print univariate initial correlation extraction rotation fscore 

  /plot eigen 

  /criteria mineigen(1) iterate(25) 

  /extraction pc 

  /criteria iterate(25) 

  /rotation varimax 

  /save bart(all, BART_PC) 

  /method=CORRELATION. 

 

****Anderson-Rubin****. 

subtitle '6. Anderson-Rubin Method with PC'. 

execute . 

factor 

   /variables t10 t11 t12 t15 t16 t17 

  /missing listwise 

   /analysis t10 t11 t12 t15 t16 t17 

  /print univariate initial correlation extraction rotation fscore 

  /plot eigen 

  /criteria mineigen(1) iterate(25) 

  /extraction pc 

  /criteria iterate(25) 

  /rotation varimax 

  /save ar(all, AR_PC) 

  /method=CORRELATION. 

 

****************************THOMPSON METHOD***************************** 

. 

descriptives variables=t10 t11 t12 t15 t16 t17/save . 

subtitle '7. Thompson Method'. 

****(1) compute z scores**** . 

**** (2) add original measured variable means back onto z scores **** . 

compute ct10 = zt10 + 96.28 . 

compute ct11 = zt11 + 69.16 . 

compute ct12 = zt12 + 110.54 . 

compute ct15 = zt15 + 90.01 . 

compute ct16 = zt16 + 102.52 . 

compute ct17 = zt17 + 8.23 . 

print formats zt10 to ct17 (F7.2) . 

list variables=id zt10 to ct17/cases=10 . 

descriptives variables= zt10 to ct17 . 
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**** (3) apply weight matrix **** . 

compute BTscr1 = (.445 * ct10) + (.337 * ct11) + (.438 * ct12) + (-.168 * ct15) + (-.078 * ct16) 

+ (.128 * ct17) . 

compute BTscr2 = (-.117 * ct10) + (.062 * ct11) + (-.147 * ct12) + (.564 * ct15) + (.495 * ct16) 

+ (.300 * ct17) . 

print formats BTscr1 BTscr2 (F8.3) . 

 

**** Correlations **** . 

correlations 

/variables=Reg_pa1 reg_pa2 

/print=twotail nosig 

/statistics descriptives 

/missing=pairwise. 

CORRELATIONS 

/variables=reg_pc1 reg_pc2 

/print=twotail nosig 

/statistics descriptives 

/missing=pairwise. 
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Appendix B 

SPSS Syntax for Multiple R Squared 

**** Calculate Multiple R Squared type effect size **** . 

regression variables=reg_pc1 to reg_pc2 

t10 t11 t12 t15 t16 t17 / dependent = t10 / 

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2 

t10 t11 t12 t15 t16 t17 / dependent = t11 / 

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2 

t10 t11 t12 t15 t16 t17 / dependent = t12 / 

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2 

t10 t11 t12 t15 t16 t17 / dependent = t15 / 

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2 

t10 t11 t12 t15 t16 t17 / dependent = t16 / 

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2 

t10 t11 t12 t15 t16 t17 / dependent = t17 / 

enter reg_pc1 to reg_pc2. 

 


