Factor Scores, Structure Coefficients, and Communality Coefficients

Fara Goodwyn

Texas A&M University

Abstract

This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four methods are provided.

Keywords: Anderson-Rubin method, Bartlett method, communality coefficients, factor scores, regression method, structure coefficients, Thompson method
Factor Scores, Structure Coefficients, and Communality Coefficients

An understanding of the terminology and principles underlying factor scores, structure coefficients, and communality coefficients is critical to correctly interpreting factor analytic results (Wells, 1999). This paper reviews factor scores, structure coefficients, and communality coefficients while clarifying misconceptions regarding these concepts. Misconceptions are common throughout factor analysis in part due to multiple terms assigned to the same statistical concepts. Garbarino (1996) elaborates on this problem:

For example, we call the same systems of weights "equations" in regression, "factors" in factor analysis, "functions" or "rules" in discriminant analysis, and "functions" in canonical correlational analysis. We call the weights themselves "beta" weights in regression, "pattern coefficients" in factor analysis, and "standardized function coefficients" in discriminant analysis or canonical correlation analysis. The synthetic scores are called "yhat" in regression, "factor scores" in factor analysis, "discriminant scores" in discriminant analysis, and "canonical function (or variate) scores" in canonical correlation analysis. (p. 3)

After reviewing foundational concepts, the (a) regression, (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson factor score estimation methods are compared. Differences in factor scores resulting from principal components or principal axes extraction are explored. All heuristic explanations utilize six variables from the Holzinger and Swineford (1939) data set. Table 1 presents the variables along with their respective variable labels. These variables were selected due to the appearance of
two obvious underlying constructs (i.e., two factors – speed and memory). Finally, factor scores are used in heuristic explanations of structure and communality coefficients.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>t10</td>
<td>Speeded Addition Test</td>
</tr>
<tr>
<td>t11</td>
<td>Speeded Code Test – Transform Shapes into Alpha with Code</td>
</tr>
<tr>
<td>t12</td>
<td>Speeded Counting of Dots in Shape</td>
</tr>
<tr>
<td>t15</td>
<td>Memory of Target Numbers</td>
</tr>
<tr>
<td>t16</td>
<td>Memory of Target Shapes</td>
</tr>
<tr>
<td>t17</td>
<td>Memory of Object – Number Association Targets</td>
</tr>
</tbody>
</table>

Foundational Concepts

Matrix of Bivariate Associations

The matrix of bivariate associations created from measured variable data is the focus of factor analysis. The Pearson product-moment bivariate correlation matrix is the most utilized matrix of bivariate associations. In fact, it is the default bivariate correlation matrix in most statistical software packages. Table 2 presents the Pearson product-moment bivariate correlation matrix for the selected variables.

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>t10</th>
<th>t11</th>
<th>t12</th>
<th>t15</th>
<th>t16</th>
<th>t17</th>
</tr>
</thead>
<tbody>
<tr>
<td>t10</td>
<td>1.00</td>
<td>0.44</td>
<td>0.48</td>
<td>0.10</td>
<td>0.12</td>
<td>0.33</td>
</tr>
<tr>
<td>t11</td>
<td>0.44</td>
<td>1.00</td>
<td>0.39</td>
<td>0.14</td>
<td>0.30</td>
<td>0.34</td>
</tr>
<tr>
<td>t12</td>
<td>0.48</td>
<td>0.39</td>
<td>1.00</td>
<td>0.08</td>
<td>0.15</td>
<td>0.23</td>
</tr>
<tr>
<td>t15</td>
<td>0.10</td>
<td>0.14</td>
<td>0.08</td>
<td>1.00</td>
<td>0.34</td>
<td>0.30</td>
</tr>
<tr>
<td>t16</td>
<td>0.12</td>
<td>0.30</td>
<td>0.15</td>
<td>0.34</td>
<td>1.00</td>
<td>0.26</td>
</tr>
<tr>
<td>t17</td>
<td>0.33</td>
<td>0.34</td>
<td>0.23</td>
<td>0.30</td>
<td>0.26</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Factor Scores

Understandably, factors and factor scores are often confused. Factor analysis consolidates original measured variables into factors (i.e., latent variables), maximizing original data information (Hetzel, 1996; Thompson, 2004). Factors provide a means “for determining if there are a small number of underlying constructs which might account for the main sources of variation in such a complex set of correlations” (i.e., variables may not be measuring different constructs; Stevens, 1996, p. 362). Factors, found in the output file of SPSS, are specific to measured variables as seen in Table 3.

Table 3

Rotated Factor Matrix for Regression Method using Principal Axes Extraction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t10</td>
<td>0.744</td>
<td>0.095</td>
</tr>
<tr>
<td>t11</td>
<td>0.584</td>
<td>0.297</td>
</tr>
<tr>
<td>t12</td>
<td>0.634</td>
<td>0.080</td>
</tr>
<tr>
<td>t15</td>
<td>0.037</td>
<td>0.594</td>
</tr>
<tr>
<td>t16</td>
<td>0.140</td>
<td>0.557</td>
</tr>
<tr>
<td>t17</td>
<td>0.354</td>
<td>0.441</td>
</tr>
</tbody>
</table>

Factor scores, found in the data file of SPSS, can be used in utilized in subsequent analyses. Table 4 presents factor scores derived from the regression method. Notice factor scores are specific to individual participants, not measured variables. In regression, the analogous terminology for latent scores is yhat scores (Thompson, 2004).
Table 4

Factor Scores Derived from the Regression Method using Principal Axes Extraction

<table>
<thead>
<tr>
<th>Participant</th>
<th>Factor 1 Reg_PA1</th>
<th>Factor 2 REG_PA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>-0.175</td>
<td>-0.518</td>
</tr>
<tr>
<td>Participant 2</td>
<td>0.392</td>
<td>-0.094</td>
</tr>
<tr>
<td>Participant 3</td>
<td>-1.230</td>
<td>-0.92</td>
</tr>
<tr>
<td>Participant 4</td>
<td>-0.551</td>
<td>-1.114</td>
</tr>
<tr>
<td>Participant 5</td>
<td>-0.085</td>
<td>0.804</td>
</tr>
<tr>
<td>Participant 297</td>
<td>0.298</td>
<td>-1.313</td>
</tr>
<tr>
<td>Participant 298</td>
<td>0.03</td>
<td>-0.564</td>
</tr>
<tr>
<td>Participant 299</td>
<td>0.773</td>
<td>0.519</td>
</tr>
<tr>
<td>Participant 300</td>
<td>0.323</td>
<td>-0.413</td>
</tr>
<tr>
<td>Participant 301</td>
<td>0.895</td>
<td>1.140</td>
</tr>
</tbody>
</table>

Factor Score Estimation Methods

Regression Method

The regression method is the most frequently used of the four methods. It is available in SPSS (syntax found in Appendix A). First, measured variables are converted into z-scores. Then, the standardized score matrix is multiplied by the inverse of the bivariate correlation matrix and the factor matrix (Gorsuch, 1983; Thompson, 2004). This calculation is expressed as

\[\mathbf{F}_{NxF} = \mathbf{Z}_{NxV} \mathbf{R}_{VxV}^{-1} \mathbf{P}_{VxF} \]

Multiplying by the inverse of a matrix removes the influence (i.e., divides out) of the matrix (Thompson, 2004). The influence of the bivariate correlation matrix is taken away because factor scores need to be impacted by factor correlations, not variable correlations. The factor correlation matrix already contains some information of variable correlation.

Bartlett Method

The Bartlett method is also available in SPSS (syntax in Appendix A). The intention of the Bartlett method is “to minimize the influence of the unique factors consisting of single measured
variables not usually extracted in the analysis” (Thompson, 2004, p. 44). Bartlett’s method minimizes the sums of squares of factors across a set of variables using least squares procedures (Bartlett, 1937). These procedures result in a high correlation between factor scores and their respective factors (Gorsuch, 1983).

Anderson-Rubin Method

The Anderson-Rubin method (available in SPSS, syntax found in Appendix A) also produces factor scores with high correlations with their respective factors. Unlike the Bartlett method, factor scores produced by the Anderson-Rubin method are always perfectly uncorrelated (Anderson & Rubin, 1956; Thompson, 2004; Wells, 1999).

Thompson Method

The Thompson method can be performed using SPSS with syntax provided in Appendix A. Standard point-and-click methods within SPSS are not available for this method. The Thompson method produces standardized (i.e., standard deviations of 1), non-centered (i.e., non-zero means) factor scores comparable across factors. As Thompson (1993) states, “sometimes we wish to compare means on factor scores across factors to make some judgment regarding the relative importance of given factors” (p. 1129). Factor scores produced by the regression, Bartlett, and Anderson-Rubin methods are not capable of such a comparison (Thompson, 1993).

There are three steps for calculating factor scores in the Thompson method. First, variables are converted to z-scores. Second, variable means provided in SPSS descriptive statistics output are added to the z-scores. Third, the factor score coefficient matrix (also provided in SPSS output) is applied to the newly standardized, non-centered scores. The third step is expressed by the following formula:

\[
W = R_{VxV}^{-1} P_{VxF}
\]

(2)
Variable mean values and weight values obtained from the factor score coefficient matrix are directly entered in the syntax as shown in Appendix A.

Table 5 presents a comparison of factor scores derived from the regression method (using principal components) to factor scores derived from the Thompson method. Unlike factor scores produced by the regression method, factors scores produced by the Thompson method allow the researcher to see an overall higher rating on factor one, speed.

Table 5

Factor Scores: Regression and Thompson Methods

<table>
<thead>
<tr>
<th>Participant</th>
<th>REG_PC1</th>
<th>REG_PC2</th>
<th>BTscr1</th>
<th>BTscr2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>-0.028</td>
<td>-0.780</td>
<td>92.475</td>
<td>79.976</td>
</tr>
<tr>
<td>Participant 2</td>
<td>0.699</td>
<td>-0.302</td>
<td>93.203</td>
<td>80.453</td>
</tr>
<tr>
<td>Participant 3</td>
<td>-1.516</td>
<td>-1.039</td>
<td>90.985</td>
<td>79.717</td>
</tr>
<tr>
<td>Participant 4</td>
<td>-0.420</td>
<td>-1.531</td>
<td>92.082</td>
<td>79.225</td>
</tr>
<tr>
<td>Participant 5</td>
<td>-0.034</td>
<td>1.081</td>
<td>92.471</td>
<td>81.837</td>
</tr>
<tr>
<td>Participant 297</td>
<td>0.304</td>
<td>-1.723</td>
<td>92.806</td>
<td>79.034</td>
</tr>
<tr>
<td>Participant 298</td>
<td>-0.038</td>
<td>-0.687</td>
<td>92.464</td>
<td>80.070</td>
</tr>
<tr>
<td>Participant 299</td>
<td>1.078</td>
<td>0.375</td>
<td>93.582</td>
<td>81.131</td>
</tr>
<tr>
<td>Participant 300</td>
<td>0.316</td>
<td>-0.481</td>
<td>92.819</td>
<td>80.275</td>
</tr>
<tr>
<td>Participant 301</td>
<td>1.328</td>
<td>1.318</td>
<td>93.833</td>
<td>82.073</td>
</tr>
</tbody>
</table>

Extraction Methods

Principal Components Extraction Method

Principal components factor extraction always produces identical results for the regression, Bartlett, and Anderson-Rubin factor estimation methods. In fact, the comparison made in Table 5 could have been demonstrated with the Bartlett or Anderson-Rubin methods in place of the regression method as these factor estimation methods all yield the same results. Table 6 presents selected factor scores derived from the regression, Bartlett, and Anderson-Rubin methods.
Table 6

Factor Scores with Principal Component Extraction for Regression, Bartlett, and Anderson-Rubin

<table>
<thead>
<tr>
<th>Participant</th>
<th>Regression</th>
<th>Bartlett</th>
<th>Anderson-Rubin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REG_PC1</td>
<td>REG_PC2</td>
<td>BART_PC1</td>
</tr>
<tr>
<td>Participant 1</td>
<td>-0.028</td>
<td>-0.780</td>
<td>-0.028</td>
</tr>
<tr>
<td>Participant 2</td>
<td>0.699</td>
<td>-0.302</td>
<td>0.699</td>
</tr>
<tr>
<td>Participant 3</td>
<td>-1.516</td>
<td>-1.039</td>
<td>-1.516</td>
</tr>
<tr>
<td>Participant 4</td>
<td>-0.420</td>
<td>-1.531</td>
<td>-0.420</td>
</tr>
<tr>
<td>Participant 5</td>
<td>-0.034</td>
<td>1.081</td>
<td>-0.034</td>
</tr>
<tr>
<td>Participant 297</td>
<td>0.304</td>
<td>-1.723</td>
<td>0.304</td>
</tr>
<tr>
<td>Participant 298</td>
<td>-0.038</td>
<td>-0.687</td>
<td>-0.038</td>
</tr>
<tr>
<td>Participant 299</td>
<td>1.078</td>
<td>0.375</td>
<td>1.078</td>
</tr>
<tr>
<td>Participant 300</td>
<td>0.316</td>
<td>-0.481</td>
<td>0.316</td>
</tr>
<tr>
<td>Participant 301</td>
<td>1.328</td>
<td>1.318</td>
<td>1.328</td>
</tr>
</tbody>
</table>

Principal Axes Extraction Method

Unlike the principal components method, the principal axes factor extraction method produces different factor score values dependent upon the factor extraction method selected. Table 7 presents factor scores using principal axes extraction with the regression, Bartlett, and Anderson-Rubin methods.

Table 7

Factor Scores with Principal Axes Extraction for Regression, Bartlett, and Anderson-Rubin

<table>
<thead>
<tr>
<th>Participant</th>
<th>Regression</th>
<th>Bartlett</th>
<th>Anderson-Rubin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REG_PA1</td>
<td>REG_PA2</td>
<td>BART_PA1</td>
</tr>
<tr>
<td>Participant 1</td>
<td>0.175</td>
<td>-0.518</td>
<td>-0.103</td>
</tr>
<tr>
<td>Participant 2</td>
<td>0.392</td>
<td>-0.094</td>
<td>0.604</td>
</tr>
<tr>
<td>Participant 3</td>
<td>-1.230</td>
<td>-0.924</td>
<td>-1.533</td>
</tr>
<tr>
<td>Participant 4</td>
<td>-0.551</td>
<td>-1.114</td>
<td>-0.477</td>
</tr>
<tr>
<td>Participant 5</td>
<td>-0.085</td>
<td>0.804</td>
<td>-0.338</td>
</tr>
<tr>
<td>Participant 297</td>
<td>0.298</td>
<td>-1.313</td>
<td>0.798</td>
</tr>
<tr>
<td>Participant 298</td>
<td>0.032</td>
<td>-0.564</td>
<td>0.203</td>
</tr>
<tr>
<td>Participant 299</td>
<td>0.773</td>
<td>0.519</td>
<td>0.965</td>
</tr>
<tr>
<td>Participant 300</td>
<td>0.323</td>
<td>-0.413</td>
<td>0.597</td>
</tr>
<tr>
<td>Participant 301</td>
<td>0.895</td>
<td>1.140</td>
<td>0.993</td>
</tr>
</tbody>
</table>
Principal Components vs. Principal Axes

Factors are uncorrelated upon initial extraction. Factors remain uncorrelated if they are orthogonally rotated or not rotated at all (Wells, 1999). The current analysis utilized Varimax rotation, an orthogonal rotation method; therefore, the two factors remained perfectly uncorrelated.

Uncorrelated factors do not always result in uncorrelated factor scores. When utilizing an orthogonal rotation method, the principal component extraction method has the added benefit of producing perfectly uncorrelated factors and perfectly uncorrelated factor scores. Principal axes extraction method only results in uncorrelated factor scores when the Anderson-Rubin method is used.

Factor Structure Coefficients

Throughout the General Linear Model, bivariate correlations between measured and latent variables are called structure coefficients. Factor structure coefficients, the Pearson r correlation between measured variables and latent factor scores, are equal to pattern coefficients (i.e., weights) when factors remain uncorrelated (Thompson, 2004). As noted above, principal component analysis always produces uncorrelated factor scores when using an orthogonal rotation. Not surprisingly, Table 8 (the rotated factor matrix, also correctly referred to as the factor pattern coefficient matrix) and Table 9 (factor structure coefficients) are equal across variables using principal component extraction. Because the values are equal, the factor structure coefficients are more accurately referred to as pattern/structure coefficients.
Table 8

Rotated Factor Matrix for Regression Method using Principal Component Extraction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t10</td>
<td>0.823</td>
<td>0.058</td>
</tr>
<tr>
<td>t11</td>
<td>0.706</td>
<td>0.824</td>
</tr>
<tr>
<td>t12</td>
<td>0.793</td>
<td>0.006</td>
</tr>
<tr>
<td>t15</td>
<td>-0.026</td>
<td>0.807</td>
</tr>
<tr>
<td>t16</td>
<td>0.117</td>
<td>0.747</td>
</tr>
<tr>
<td>t17</td>
<td>0.420</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Table 9

Factor Structure Coefficients for Regression Method using Principal Component Extraction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t10</td>
<td>0.823</td>
<td>0.058</td>
</tr>
<tr>
<td>t11</td>
<td>0.706</td>
<td>0.824</td>
</tr>
<tr>
<td>t12</td>
<td>0.793</td>
<td>0.006</td>
</tr>
<tr>
<td>t15</td>
<td>-0.026</td>
<td>0.807</td>
</tr>
<tr>
<td>t16</td>
<td>0.117</td>
<td>0.747</td>
</tr>
<tr>
<td>t17</td>
<td>0.420</td>
<td>0.549</td>
</tr>
</tbody>
</table>

In contrast, the pattern coefficient values in the factor matrix produced using principal axes extraction (see Table 3) does not equal factor structure coefficient values found in Table 10. Researchers must analyze both pattern coefficients and structure coefficients in this scenario (Thompson, 2004).
Table 10

Factor Structure Coefficient for Regression Method using Principal Axes Extraction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t10</td>
<td>0.885</td>
<td>0.127</td>
</tr>
<tr>
<td>t11</td>
<td>0.694</td>
<td>0.398</td>
</tr>
<tr>
<td>t12</td>
<td>0.754</td>
<td>0.108</td>
</tr>
<tr>
<td>t15</td>
<td>0.045</td>
<td>0.796</td>
</tr>
<tr>
<td>t16</td>
<td>0.166</td>
<td>0.748</td>
</tr>
<tr>
<td>t17</td>
<td>0.885</td>
<td>0.127</td>
</tr>
</tbody>
</table>

Communality Coefficients

A communality coefficient (\(h^2\)) is “a statistic in a squared metric indicating how much of the variance in a measured variable the factors as a set can reproduce, or conversely, how much of the variance of a given measured variable was useful in delineating the factors as a set” (Thompson, 2004, p. 179). Communalities are specific to measured variables. The equation for \(h^2\) with uncorrelated factors is

\[
h^2 = \sum r_s^2
\]

(3)

and is analogous to

\[
R^2 = \sum r_s^2
\]

(4)

for uncorrelated factors. Therefore, \(h^2\) is the \(R^2\) effect size for uncorrelated factors. A different formula, which is beyond the scope of this paper, exists for correlated factors (Thompson, 2004).

Communalities are readily available in the output of SPSS. The communality coefficient for t10 is 0.681. For heuristic purposes, the communality coefficient will be calculated for t10 using Equation 3. Structure coefficient values (Pearson r values as previously explained) for t10 are 0.823 and 0.058 for the first and second factor respectively. When these values are squared, as directed by Equation 3, the resulting values are 0.677 and 0.003. These squared factor structure
coefficients for each variable are summed across factors. The sum for t10 is 0.680 which only varies from the communality coefficient produced by SPSS due to rounding error. The factors reproduced 68% of the variance of the measured variable t10. The syntax to produce this R^2 type effect size is available in Appendix B.

Conclusion

Correct interpretation of factor analytic results relies on a solid understanding of factor scores, structure coefficients, and communality coefficients and related terminology. Take away points from this paper include:

- Principal components extraction results in identical factor scores for the regression, Bartlett, and Anderson-Rubin methods.
- The Thompson method alone allows for comparison of factors scores across factors for the dataset as a whole.
- Uncorrelated factors may or may not have uncorrelated factor scores.
- Structure coefficients are bivariate correlation coefficients between the measured variables with the factor scores.
- Communality coefficients (h^2) can be the R^2 effect size.
References

Appendix A

SPSS Syntax for Regression, Bartlett, Anderson-Rubin, and Thompson Methods

**.
COMMENT Holzinger, K.J., & Swineford, F. (1939). A study in factor analysis:.
COMMENT The stability of a bi-factor solution (No. 48). Chicago, IL:.
COMMENT University of Chicago. (data on pp. 81-91).
**.

SET printback=listing tnumbers=both tvars=both.
DATA LIST
 FILE='c:\spsswin\HOLZINGR.dta' FIXED RECORDS=2 TABLE
 /1 id 1-3 sex 4-4 ageyr 6-7
 agemo 8-9 t1 11-12 t2 14-15 t3 17-18 t4 20-21 t5 23-24 t6 26-27 t7 29-30 t8
 32-33 t9 35-36 t10 38-40 t11 42-44 t12 46-48 t13 50-52 t14 54-56 t15 58-60
 t16 62-64 t17 66-67 t18 69-70 t19 72-73 t20 74-76 t21 78-79 /2 t22 11-12
TITLE 'Holzinger & Swineford (1939) Data **Citation in Comment**'.
execute.

PRINCIPAL AXES***.
set printback=listing tnumbers=both tvars=both.

****Regression****.
subtitle '1. Regression Factor Analysis with PA'.
execute.
factor
 /variables t10 t11 t12 t15 t16 t17
 /missing listwise
 /analysis t10 t11 t12 t15 t16 t17
 /print univariate initial correlation extraction rotation fscore
 /plot eigen
 /criteria mineigen(1) iterate(25)
 /extraction paf
 /criteria iterate(25)
 /rotation varimax
 /save reg(all,REG_PA)
 /method=CORRELATION.

****Bartlett****.
subtitle '2. Bartlett Method with PA'.
execute.
factor
 /variables t10 t11 t12 t15 t16 t17
 /missing listwise
/analysis t10 t11 t12 t15 t16 t17
/print univariate initial correlation extraction rotation fscore
/plot eigen
/criteria mineigen(1) iterate(25)
/extraction paf
/criteria iterate(25)
/rotation varimax
/save bart(all, BART_PA)
/method=CORRELATION.

****Anderson-Rubin****.
subtitle '3. Anderson-Rubin Method with PA'.
execute .
factor
/variables t10 t11 t12 t15 t16 t17
/missing listwise
/analysis t10 t11 t12 t15 t16 t17
/print univariate initial correlation extraction rotation fscore
/plot eigen
/criteria mineigen(1) iterate(25)
/extraction paf
/criteria iterate(25)
/rotation varimax
/save ar(all, AR_PA)
/method=CORRELATION.

*************************** PRINCIPAL COMPONENT**********************

****Regression*****.
subtitle '4. Regression Factor Analysis with PC'.
execute .
factor
/variables t10 t11 t12 t15 t16 t17
/missing listwise
/analysis t10 t11 t12 t15 t16 t17
/print univariate initial correlation extraction rotation fscore
/plot eigen
/criteria mineigen(1) iterate(25)
/extraction pc
/criteria iterate(25)
/rotation varimax
/save reg(all, REG_PC)
/method=CORRELATION.

****Bartlett****.
subtitle '5. Bartlett Method with PC'.
execute.
factor
 /variables t10 t11 t12 t15 t16 t17
 /missing listwise
 /analysis t10 t11 t12 t15 t16 t17
 /print univariate initial correlation extraction rotation fscore
 /plot eigen
 /criteria mineigen(1) iterate(25)
 /extraction pc
 /criteria iterate(25)
 /rotation varimax
 /save bart(all, BART_PC)
 /method=CORRELATION.

****Anderson-Rubin****.
subtitle '6. Anderson-Rubin Method with PC'.
execute.
factor
 /variables t10 t11 t12 t15 t16 t17
 /missing listwise
 /analysis t10 t11 t12 t15 t16 t17
 /print univariate initial correlation extraction rotation fscore
 /plot eigen
 /criteria mineigen(1) iterate(25)
 /extraction pc
 /criteria iterate(25)
 /rotation varimax
 /save ar(all, AR_PC)
 /method=CORRELATION.

***********************THOMPSON METHOD***********************
.
descriptives variables=t10 t11 t12 t15 t16 t17/save.
subtitle '7. Thompson Method'.
****(1) compute z scores****.
***** (2) add original measured variable means back onto z scores ****.
compute ct10 = zt10 + 96.28.
compute ct11 = zt11 + 69.16.
compute ct12 = zt12 + 110.54.
compute ct15 = zt15 + 90.01.
compute ct16 = zt16 + 102.52.
compute ct17 = zt17 + 8.23.
print formats zt10 to ct17 (F7.2).
list variables=id zt10 to ct17/cases=10.
descriptives variables= zt10 to ct17.
**** (3) apply weight matrix ****.
compute BTscr2 = (-.117 * ct10) + (.062 * ct11) + (-.147 * ct12) + (.564 * ct15) + (.495 * ct16) + (.300 * ct17).
print formats BTscr1 BTscr2 (F8.3).

**** Correlations ****.
correlations
/variables=Reg_pa1 reg_pa2
/print=twotail nosig
/statistics descriptives
/missing=pairwise.
CORRELATIONS
/variables=reg_pc1 reg_pc2
/print=twotail nosig
/statistics descriptives
/missing=pairwise.
Appendix B

SPSS Syntax for Multiple R Squared

**** Calculate Multiple R Squared type effect size ****.

regression variables=reg_pc1 to reg_pc2
t10 t11 t12 t15 t16 t17 / dependent = t10 /
enter reg_pc1 to reg_pc2.
regression variables=reg_pc1 to reg_pc2
t10 t11 t12 t15 t16 t17 / dependent = t11 /
enter reg_pc1 to reg_pc2.
regression variables=reg_pc1 to reg_pc2
t10 t11 t12 t15 t16 t17 / dependent = t12 /
enter reg_pc1 to reg_pc2.
regression variables=reg_pc1 to reg_pc2
t10 t11 t12 t15 t16 t17 / dependent = t15 /
enter reg_pc1 to reg_pc2.
regression variables=reg_pc1 to reg_pc2
t10 t11 t12 t15 t16 t17 / dependent = t16 /
enter reg_pc1 to reg_pc2.
regression variables=reg_pc1 to reg_pc2
t10 t11 t12 t15 t16 t17 / dependent = t17 /
enter reg_pc1 to reg_pc2.