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This paper addresses the reform of mathematics education in the Netherlands and the attacks 
that presently take place against this reform. The attacks concentrate on primary education 
and criticize in particular the program for teaching calculation skills with long division as a 
case in point. The paper gives an overview of what Realistic Mathematics Education (RME) 
stands for, and what mathematics education the reform-attackers have in mind. Furthermore, 
attention is paid to possible factors that could have triggered this attack, and what other 
countries may learn from it. 

 
What comes after a reform of mathematics education? It is beginning to look as if the 

answer to that question is: War. In the late nineties of the previous century a so-called 
‗Math war‘ overran the United States, starting as a reaction to the reform-based curriculum 
and teaching approach in California (Becker & Jacob, 2000). Presently, we have a similar 
situation in the Netherlands. The attack concentrates on primary education. The focus of 
the assault is both on what students should learn and on didactical methods. Without any 
evidence from research, the main principles of ‗Realistic Mathematics Education‘ (RME), 
which form the basis of the Dutch reform, are called ‗didactical blunders‘. At the same 
time an argument is made in favour of a form of education that is almost the polar opposite 
of what RME stands for. According to the reform-attackers, mathematics should not be 
taught in context, informal strategies should be avoided because they confuse children, 
progressive schematisation leads to a long, unnecessary detour and the focus should not be 
on understanding; because understanding comes automatically after training. Moreover, it 
is stated shamelessly that children do not need to think. In the mind of the reform-attackers 
the main content to be learned in primary school must consist of written algorithms. 

The development of RME commenced in the late 1960s and is still developing to reach 
further maturity as an instructional theory and in its implementation into educational 
practice. Up to some forty years ago, this development process went on with trial and error, 
but in relative peace. Actually, it was a silent revolution; there was hardly a whisper in the 
media (Treffers, 1991a). There was very little opposition and no pressure from above. For 
example, in all those forty years there has been hardly any government involvement with 
the reform of mathematics education. The Ministry of Education was only involved in a 
facilitating sense. Government subsidy made it possible that an extensive infrastructure 
arose in the Netherlands allowing development, research and training to take place in 
mutual coherence and cooperation with the field of education. Where other educational 
researchers were blamed for the gap between their research and educational practice, we 
were held up as an example of how research should be done; see the report by the 
Education Council of the Netherlands (Onderwijsraad, 2003). Not only was there 
recognition in our own country, but we also inspired developments in many other 
countries. Our work was, and still is, in great demand all over the world, even if only 
perhaps that it gives these countries good hope of being able to attain such high test scores 
as the Dutch. 

Looking back, the peace we had for forty years had everything to do with student 
performance. In 2004 and 2005, the first reports of disappointing results in both national tests 
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and in TIMSS and PISA came in. From that time on, RME was coming under fire. 
Unfortunately, the discussion that was started was anything but academic, but was a veritable 
libel campaign that took place mainly in newspapers and on websites. It happened regularly 
that there were sneering articles in these media about the ruination of Dutch mathematics 
education by the Freudenthal Institute — or more precisely — about the ruination of the 
education in written arithmetic, because that was what the discussion focused on. Dutch 
students could no longer do written calculations. Long division was often used as an 
example. 

What is in the Newspapers in the Netherlands? 
The opponents of RME have as their leader, a professor in mathematics, who used to 

teach at a military academy. He and his supporters argue for mathematics education based 
on bare numbers, where the teacher demonstrates the problems and the students learn by 
imitation. For each operation there is one prescribed procedure, namely that of algorithmic 
addition, subtraction, multiplication and division. Using this algorithmic procedure starts 
already for problems up to 100. There must be a lot of practice, and that practice will 
automatically lead to insight (Van de Craats, 2007). 

Along with this plea for returning to the mathematics education of forty years ago — or 
rather, to the one-sided view that the attackers of RME have of mathematics education in 
the past — a great number of misconceptions and inaccuracies about RME, is put forward 
in the media: 

 If we are to believe the media, students do not get the opportunity to practice in RME. 
This, however, is a flagrant contradiction of RME‘s long tradition in including practice 
(see De Jong, Treffers, & Wijdeveld, 1975; De Moor, 1980; Treffers & De Moor, 1990; 
Van den Heuvel-Panhuizen & Treffers, 1998; Menne, 2001; Van Maanen, 2007). An 
aside here is that in RME this means practising with understanding and coherence, which 
is radically different from the isolated drill that the opponents of RME have in mind. 

 RME is said to have abolished algorithmic calculations. Again this is simply not true. 
See what the main curriculum documents — the so-called ‗Proeve‘ (Treffers & De 
Moor, 1990) and the TAL learning-teaching trajectory for whole number calculation 
(Van den Heuvel-Panhuizen, 2008b) that describes the learning-teaching trajectory for 
whole number calculation in primary school mathematics — say about algorithms. 
Moreover, traditional algorithms are being widely taught (Janssen, Van der Schoot, & 
Hemker, 2005). It should be said though, that the degree to which that is done differs 
for each textbook series. For example, the RME textbook series Wereld in Getallen 
(WIG) contains a total of around 3000 digit-based algorithmic problems, 1200 for 
addition and subtraction, 1000 for multiplication and 750 for division (Levering, 
2009). 
A disturbing misapprehension that is being presented in this context in the media — 
and which clearly evidences a lack of didactical knowledge — is that the so-called 
‗traditional‘, digit-based algorithm and the ‗new‘ method of whole-number-based 
written calculation (more on which later) are being showcased as two opposite end 
goals. The opponents of RME do not realise that the whole-number-based method is 
a transparent and insightful introduction to the digit-based algorithm and clearly 
show their didactical lack of understanding by presenting ridiculous examples of this 
approach in the media. 

 RME supposedly only involves word problems. This is another unfounded assertion. 
One only needs to open an RME textbook to see that it is filled with a large amount of 
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bare number problems. Of course the amounts are different for each textbook, but there 
is not one RME textbook that does not have bare number problems. 
However, there is one more reason that makes this insinuation far from the truth. 
Word problems have always been an object of suspicion within RME (Van den 
Heuvel-Panhuizen, 1996). Of course, linking problems to reality is important. This 
means that within RME students are presented problems which they can imagine and 
with which they have daily life experience, but this does not mean that word 
problems have a central role in RME. The crucial point is that the problems are 
presented in a meaningful and accessible context. Therefore they are often presented 
visually through pictures, models, and diagrams. Word problems with complicated 
ways of explaining a problem are avoided. They cannot be considered typical RME 
problems. However, our opponents do try to represent them as such. 

 RME is said to teach students as many different calculation strategies as possible, 
which confuses students. Neither the first nor the second is true. RME starts teaching 
with following on from what students themselves come up with and do — which has 
natural variation — and from thereon gradually works towards a standard method, 
which is however not a straitjacket. The students must have an understanding of the 
numbers with which they calculate, and if possible use shortened calculation 
methods or smart strategies — which implies an intentional variation in strategy that 
reflects the high level of number understanding that RME wants students to reach. 

 All RME textbooks are of low quality. Another inaccuracy. The outcomes of the 
large-scale studies (performed by Cito, the national institute for assessment in the 
Netherlands) into the effects of the textbooks belie this claim. The RME textbooks 
were among the best textbook series more often than the traditional ones (Janssen, 
Van der Schoot, Hemker, & Verhelst, 1999). Later, Cito (Janssen et al., 2005) 
concluded that the newer textbooks, despite the differences between them, have 
had a small, but positive summative effect on student performances. In other 
words, without these textbook series, performances would likely have been lower. 
More about these studies later. 

 Supposedly, the average Dutch student at the end of primary school is incapable of 
calculating. Based on the latest Grade 4 data from TIMSS (Mullis, Martin, & Foy, 
2008) it is clear that this statement is wholly unfounded. If it were in fact true, it 
would not only be the case for the Netherlands, but for all other Western countries 
that took part in TIMSS. I will return to this point later. 

In addition to these misconceptions and inaccuracies about current Dutch mathematics 
education, the reform attackers regret deeply that a reform occurred and they worry 
themselves sick wondering why Dutch mathematics education was reformed. Utterances 
like these bear painful witness to a lack of any knowledge about the problems that existed 
in mathematics education forty years ago both in the Netherlands and internationally. 

How RME Started and What It Stands For 
Although the very beginning of RME can be placed at the end of the 60s, the name 

‗Realistic‘ was only used at the end of the 70s (Treffers, 1991a). The very beginning of the 
reform movement was the start, in 1968, of the Wiskobas project (meaning ‗mathematics 
in primary school‘) initiated by Wijdeveld and Goffree, and joined not longer after by 
Treffers. It was these three who in fact built the foundation for RME. In 1971, when the 
IOWO Institute, with Freudenthal as its director, was established for the Wiskobas project 
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and a similar project for secondary education, the movement received a new impulse to 
reform mathematics education. 

In the 1960 the Netherlands wanted to abandon the then prevalent mechanistic approach to 
mathematics education. Characteristic of this approach is its focus on calculations with bare 
numbers, and the little attention that it pays to applications; which is certainly true for the 
beginning of the learning process. Mathematics is taught in an atomised way. Students learn 
procedures in a step-by-step way in which the teacher demonstrates how to solve a problem. 

Conversely, mathematics education in England had an empiricist slant in those days. 
Typical of this type of education was that students were let free to discover much by 
themselves and were stimulated to carry out investigations. This method deviated greatly 
from the, at that time existing, structuralist approach derived from the ideas from Bourbaki 
group about mathematics as a discipline, and which in the US led to the so-called New Math 
movement. This is a method of teaching mathematics which focuses on abstract concepts 
such as set theory, functions and bases other than ten. 

In its search for an alternative for the mechanistic approach, the Netherlands pursued 
neither the empiricist nor the structuralistic approach. In particular through Freudenthal‘s 
opposition to the structuralistic ‗New Math‘ movement that washed over the Netherlands, 
there was an opportunity to go in another direction and end up at the RME approach. 

To understand this way of teaching mathematics and recognise how it differs from other 
approaches to mathematics education which were manifest in the early days of RME, 
Treffers‘ (1978, 1987) distinction in horizontal and vertical mathematisation is very helpful. 
Horizontal mathematisation involves going from the world of real-life into the world of 
mathematics. This means that mathematical tools are used to organise and model, and solve 
problems situated in a real-life situations. Vertical mathematisation means moving within the 
world of mathematics. It refers to the process of reorganisation within the mathematical 
system resulting in shortcuts by making use of connections between concepts and strategies. 

Treffers‘ (1987) scheme included in Table 1 shows how the four different approaches 
to mathematics education diverge. 

Table 1 
Types of Mathematisation in Mathematics Education (from Treffers, 1987, p. 251) 

Approach to mathematics education Mathematisation 
Horizontal Vertical 

Realistic + + 
Structuralistic – + 
Empiricist + – 
Mechanistic – – 

Connected to this ‗two-way mathematisation‘, RME can also be explained by a number 
of principles (Van den Heuvel-Panhuizen, 2001)1: 

 The activity principle refers to the interpretation of mathematics as a human 
activity (Freudenthal, 1971, 1973). In RME, students are treated as active 
participants in the learning process. Transferring ready-made mathematics directly 
to students is an ‗anti-didactic inversion‘ (Freudenthal, 1973) which does not work. 

                                                      
1 This list of principles is an adapted version of the five tenets of the RME instruction theory distinguished by 
Treffers (1987): ―phenomenological exploration by means of contexts‖, ―bridging by vertical instruments‖, 
―pupils‘ own constructions and productions‖, ―interactive instruction‖ and ―intertwining of learning strands‖. 
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 The reality principle emphasises that RME is aimed at having students be capable 
of applying mathematics. However, this application of mathematical knowledge is 
not only considered as something that is situated at the end of a learning process, 
but also at the beginning. Rather than commencing with certain abstractions or 
definitions to be applied later, one must start with rich contexts that require 
mathematical organisation or, in other words, contexts that can be mathematised 
(Freudenthal, 1979, 1968). 

 The level principle underlines that learning mathematics means that students pass 
various levels of understanding: from the ability to invent informal context-related 
solutions, to the creation of various levels of shortcuts and schematisations, to the 
acquisition of insight into how concepts and strategies are related. Models serve as 
an important device for bridging the gap between informal, context-related 
mathematics and the more formal mathematics. In order to fulfil this bridging 
function, models have to shift from a ‗model of‘ a particular situation to a ‗model 
for‘ all kinds of other, but equivalent, situations (Streefland, 1985, 1993, 1996; see 
also Van den Heuvel-Panhuizen, 2003). For teaching calculations the level 
principle is reflected in the didactical method of progressive schematisation 
(Treffers, 1982a, 1982b). I will return to this point later. 

 The intertwinement principle means that mathematical domains such as number, 
geometry, measurement, and data handling are not considered as isolated 
curriculum chapters but as heavily integrated. Students are offered rich problems in 
which they can use various mathematical tools and knowledge. This principle also 
applies to topics within domains. For example, within the domain of number this 
means that number sense, mental arithmetic, estimation and algorithms are taught 
in close connection to each other. 

 The interactivity principle of RME signifies that the learning of mathematics is not 
only a personal activity but also a social activity. Therefore, RME is in favour of 
‗whole-class teaching‘. Education should offer students opportunities to share their 
strategies and inventions with other students. In this way they can get ideas for 
improving their strategies. Moreover, reflection is evoked, which enables them to 
reach a higher level of understanding. 

 The guidance principle means that students are provided with a ‗guided‘ 
opportunity to ‗re-invent‘ mathematics (Freudenthal, 1991). This implies that, in 
RME, teachers should have a pro-active role in students‘ learning and that 
educational programs should contain scenarios which have the potential to work as 
a lever to reach shifts in students‘ understanding. To realise this, the teaching and 
the programmes should be based on a coherent long-term teaching-learning 
trajectory. 

Although it certainly is not the case that nowadays every class is taught according to 
the principles of RME or that every textbook which advertises itself as RME is designed 
according to the RME principles, it is clearly true that since the beginning of the 
development of RME, the nature of textbook series has changed dramatically. In the 1980s, 
the market share of mechanistic textbooks was 95% and that of RME ones 5%. In 1987 the 
market share of RME textbooks was around 15%. In 1992 this had increased to almost 
40%, and 75% in 1997. In 2004 RME textbooks were in use in 100% of cases (sources: 
Treffers, 1991a; Janssen et al., 2005; Janssen et al., 1999). 

In the following I will illustrate this development by zooming in on long division. 
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Reform Developments in the 1980s 

Two Examples from the Classroom 
In 1983 Fred Goffree had the idea to study how a mathematics lesson looks on an 

ordinary day in November at an ordinary primary school in the Netherlands. The day in 
question was Tuesday, November 15, 1983. Goffree asked me to join him in this study, 
which led to the publication ‗Zo rekent Nederland‘ [This is how the Netherlands calculate] 
(Van den Heuvel-Panhuizen & Goffree, 1986). 

Every teacher could be part of the study and was free to describe his or her own 
mathematics teaching that day. No one checked whether what had been written down did 
really take place. At first sight, from a sense of reliability, this does not appear to be a 
scientific approach. Of course, teachers could present their teaching in a better light than 
what really took place in their classroom, but what they told about that mathematics lesson, 
does in any case reflect their opinion about it. And this didactical baggage was in fact what 
we were looking for in this study, rather than what happened in practice. It is more than 
likely that the teachers‘ opinions about mathematics teaching and their didactical 
knowledge determined to a high degree the lesson they had decided on for this special day. 

We received 161 lesson descriptions, containing a plethora of subjects, including long 
division. As it happens that day, one Grade 3 class was taught how to do long division (see 
Van den Heuvel-Panhuizen & Goffree, 1986, 66-67). The starting point was: dividing 
twelve into fours. As it was explained by the mechanistic textbook series Naar Aanleg en 
Tempo (Student book 6, Task 32, without year, published by Thieme-Zutphen) you can 
write this down as ‗division‘ or as a ‗division in the form‘ (see Figure 1). 

4 12 3
12

0

12 : 4 = 3 

division division
in the form

4 12 3
12

0

4 12 3
12

0

12 : 4 = 3 

division division
in the form

 

Figure 1. Explanation of long division in mechanistic textbook 

The teacher gave the following explanation: 
Imagine that these two slanting bars are tails. 4 out of 12 goes 3 times. You write down the 3. Then 
you take the final 3 x 4 is 12. Subtracted 0. Remember: subtract. 

Then the teacher dictated a few problems to practice: 20÷5 and 30÷5. These were 
treated on the blackboard afterwards. 

Who had them right? Do you see how it works? A few more problems like that. The last 0 has to be 
under the right number. Do you remember how we call this division? Long division. In the book we 
call that ‗in the form‘. 

And indeed, in this mechanistic approach to learning long division the lay out was all 
that mattered, learning outward details such as ‗what is it called‘, ‗how does it look‘, ‗what 
you must do‘, and ‗what you must say‘. The teacher writes down a division problem and 
the students must turn it into long division. Characteristic of the mechanistic method is that 
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it starts with small numbers and that the larger ones follow along. This structure is called 
‗progressive complication‘ (Treffers, 1982a, 1982b). Another characteristic of this method 
is that a start is made with calculations immediately. 

Continuing with the classroom vignette from 1983, we see that nearly all students were 
able to do the long division problems they were given. The teacher should be pleased. Or 
maybe not? 

The problem with using for instance 12÷4=3 to learn long division is that it is not very 
long, which is why the teacher was reduced to referring to the ‗tails‘. The question is 
whether this will be any help to students when they are stuck: Long division? Oh, yeah, 
with the two tails. And what goes between them? 

Happily there was also a lesson description (see Van den Heuvel-Panhuizen & Goffree, 
1986, p. 68-69) that showed students learning long division with more understanding. In a 
Grade 5 class the students were given a row of long division problems that they had to 
solve in two ways: the whole-number based method that was used as an introduction in 
Grade 4 and the ‗regular‘ digit-based method (see Figure 2). 

―long division as it was 
taught last year in grade 4‖

53 5459 103
53

159
159

0

5459 
5300

159
159

0 

5459 : 53 =

100

3
103

―long division as it is usually 
taught in other schools‖

―long division as it was 
taught last year in grade 4‖

53 5459 103
53

159
159

0

53 5459 103
53

159
159

0

5459 
5300

159
159

0 

5459 : 53 =

100

3
103

5459 
5300

159
159

0 

5459 : 53 =

100

3
103

―long division as it is usually 
taught in other schools‖

 

Figure 2. Combining whole-number-based division and digit-based division 

In this school, which used a programme inspired by Wiskobas, the students had not 
been taught the shortest digit-based long division algorithm in Grade 4 immediately, but 
they started with a whole-number-based procedure of repeated subtraction. This clear and 
to the students natural approach of division, which starts with relatively large numbers 
immediately, gradually shortens the procedure until one arrives at the familiar standard 
algorithm; this is ‗progressive schematisation‘ rather than ‗progressive complication‘ 
(Treffers, 1982a; 1982b). 

Although the whole-number-based long division can be called an icon of RME, it 
certainly was not invented within RME. Before this style of long division was included in 
the RME textbook series, it could already be found for instance in Dutch textbook series of 
the early 1960s that, like RME, had a broad approach to calculation, and did not limit 
themselves to algorithmic digit-based calculation. Outside the Netherlands, the history of 
this whole-number-based calculation and notation method goes back even further. At the 
beginning of the twentieth century this method of calculation with whole numbers rather 
than digits could already be found with the German mathematics didactician Kühnel 
(1925). In the NCTM Yearbook on developing computational skills, Hazekamp (1978) 
even refers to an example of this approach in a mathematics book from 1729. 
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Nowadays as well, whole-number-based written calculation, which is so under attack in 
the Netherlands, is not a procedure that is typical for RME. This stepping stone towards 
shortened long division is used in many places worldwide, such as in England (see 
http://nationalstrategies.standards.dcsf.gov.uk/node/19829; Thompson, 1999, 2008; Anghileri, 
2001), the United States (Kilpatrick, Swafford, & Findell, 2001, p. 211-212) and Hong Kong 
(Leung, Wong, & Pang, 2006). 

Unfortunately not everybody showed as much didactical insight in 1983 (see Van den 
Heuvel-Panhuizen & Goffree, 1986) as the teacher in Grade 5. 

A director of a lower vocational school mentioned that his daughter, who was at a teacher education 
college, had taught him the new method of long division. To the question of whether this method 
was used in his school as well, he answered: ―No, because you cannot use tricks with it. Students 
are immediately unmasked with this method‖ (p. 69). 

This seems upside-down: do not try to let students understand long division, but limit 
yourself to teaching the outward form. The problem with this kind of blind calculation 
procedure is that its success is limited. Despite the large amount of teaching time spent on 
calculation — often more than fifty hours of teaching time for long division (Treffers, De 
Moor, & Feijs, 1989; Wijnstra, 1988) — results were poor. One in three children had 
problems with long division, and over half stumbled on harder division problems with zeros 
in the result (Treffers & De Jong, 1984). American studies at the time also showed the huge 
problems students had with long division. For instance, Bright (1978) showed that in the 
National Longitudinal Study of Mathematical Abilities (NLSMA), that was performed by the 
School Mathematics Study Club at the end of the sixties, only 44% of ten-year old students 
gave a correct answer to a problem like 9792÷32 (result 306) and that the percentage for 
482÷24 (result 20 rest 2) of correct answers was 61. In addition to difficulties with making 
bare number problems, students also had trouble with the aspect of applicability. This 
emerged from, for example, English studies, with Brown (1981) finding that students did not 
know which operations should be used in context problems. 

Inception of a National Reform Plan 
Although Wiskobas had already been active in the 1970s, publishing curriculum 

documents and background studies with examples of reformed mathematics education, at 
the end of the seventies and the start of the eighties mathematics education differed widely 
in both content and didactic approach. For that reason the Dutch Society for the 
Development of Mathematics Education (NVORWO) decided to commission the start of a 
national plan for mathematics education in primary school. Its goal was 

―to achieve a certain homogenisation on content in mathematics education, and to create favourable 
conditions for education, training, support, development and research, and the relationship between 
them‖ (Treffers & De Moor, 1984, p. 5). 

A concept version of this plan was published in 1984 as ‗10 voor de basisvorming 
rekenen/wiskunde‘ (Treffers & De Moor, 1984) and presented to a large group of experts. 

For algorithmic digit-based calculation it was proposed to: 
 have it in a less central position in favour of mental calculation, estimation and 

number sense 
 aim more at applicability, and 
 not immediately teach students the most shortened forms of standard algorithms 

(working with digits), but to start with a notation using whole numbers; for long 
division this meant: starting with repeated subtraction. 
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Of the almost 300 respondents (among them around 70 teacher education teachers, 70 
teacher counsellors and 70 primary school teachers) who were consulted about this concept 
plan for algorithmic calculation, 95% agreed with this proposal (Cadot & Vroegindeweij, 
1986). Although it was also clear from the commentary that not all respondents were 
equally sanguine about the time gain that would result from this new approach, and 
concerns about implementation were expressed, in general there was an almost unanimous 
agreement with the reform of mathematics education as proposed in the concept plan. This 
was the case not just for this group of consulted experts. Another study (Ahlers, 1987) also 
showed that there was a desire to put algorithmic digit-based calculation on a new footing. 
Of teachers in grade 6 only 32% felt that algorithmic calculation was ‗very important‘. 
This percentage was slightly higher for parents, 43% chose this qualification for 
algorithmic calculation, while 56% of parents rated mental calculation as ‗very important‘ 
and 62% indicated that they felt mathematics applied in daily life was ‗very important‘. 

So, at the end of the 1980s the Netherlands was ready for a new direction for algorithmic 
digit-based calculation. It should be said immediately though that this was not the direction 
that had been decided upon in England after the publication of the Cockcroft Report in 1982 
(DES, 1982). Although there was the intention to spend more time on solving problems with 
examples from daily life, unlike England the Netherlands was explicitly not going so far as 
to for example abolish long division (see Treffers & De Moor, 1990). All that NVORWO 
wanted was to get rid of the one-sided focus on algorithmic digit-based calculation, and at 
the same time it chose to have an insightful introduction to the shortest version of the 
algorithms. Alongside, a greater role was assigned to mental calculation, estimation and 
number sense. There were consequences to this new approach. 

Consequences for Mathematics Achievements 
The studies of the National Assessment of Educational Achievement (PPON) used to 

assess mathematics achievements of primary students in the Netherlands once every 
several years, clearly reflected the results of the new approach. As is shown in Figure 3, 
comparing the results in the years 1987, 1992, 1997 and 2004 of students in grade 6 (end 
primary school) ( Janssen et al., 2005) revealed that the performance in the area of number 
sense and estimation have improved greatly. In comparison to the first assessment in 1987 
these two topics show an increase of about 25 percentage points. In addition, mental 
addition and subtraction have also improved by about 10 percentage points. Aside from 
calculating with percentages, which has also improved by about 10 percentage points, 
achievements on ‗relations, fractions and percentages‘ and ‗measurement and geometry‘ 
(not included in Figure 3) have hardly changed between 1987 and 2004. However, Figure 3 
also shows that achievements in written calculation have gone down substantially in the 
period 1987-2004. This is especially the case for multiplication and division. These scores 
have gone down by about 1.25 standard deviation. This means that the percentage of 
correct answers has gone down by about 30 percentage points. For composed written 
calculation the total reduction is 20 percentage points and for written calculation addition 
and subtraction about 15 percentage points. 
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Figure 3. Effect sizes in changes in achievement in the domain of number at end primary school from 1987 to 
2004 (based on Janssen et al., 2005) 

So, according to PPON, written calculation has clearly become less over time. While 
this is the case, we might also say that what we see of the achievements in the domain of 
number in the Netherlands in 2004, does to some degree match the performance profile 
opted for twenty years ago. The reform that was proposed at the time has indeed taken 
place, and from within education without government intervention, something that is at the 
very least remarkable. Just as remarkable is however that the change in students‘ 
performance, especially in the public debate, has been taken as deterioration in 
mathematics achievements. Apparently, written calculation is identified more with 
mathematics than number sense, estimation, mental calculation and applications such as 
calculation with percentages. 

A Critical Evaluation of the Assessment of Written Division 
Although the lower achievement in written calculation can be taken partly as a result of 

the broadly-supported decision to spend less time on this topic, the difference in 
achievement is in fact higher than expected and intended. Before we place the blame for 
this difference on RME, a critical analysis of how these achievement scores have been 
established is called for. 

Three points can be identified that give reason to question the assessment of written 
division (see Van den Heuvel-Panhuizen, Robitzsch, Köller & Treffers, 2009): (a) the 
problems used, (b) the time of measurement, and (c) the test instruction that was given. 
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The Problems Used 
A total of nineteen items was used for assessing the topic ‗Operations: multiplication 

and division‘ in 1997 and 2004. Of these items, only four were included in both 
assessments. These items were used to link the two measuring points. Unfortunately, three 
of these anchor items, two of which are shown in Figure 4, are more suited — especially 
with the improved number sense in 2004 — to mental than to written calculation. 
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Figure 4. Two of the four anchor items for written division 

Of the nineteen items, sixteen were context problem, with four focusing on the ability to 
interpret the remainder, which is not the same as being able to perform the division procedure. 

Moreover, only one of the hardest items with whole numbers, those with a zero in the 
result (for example 64800÷16; see Figure 5), was included in the nineteen test items, 
although precisely for this type of problem the RME approach, applying a whole-number-
based division, is less sensitive to errors than the traditional algorithm. In the latter 
approach you can take 16 out of 8 zero times, and then you must remember to put down a 
zero in the result. The same happens again at the end of the division procedure. 
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Figure 5. A division problem with a zero in the result 

The Time at Which the Assessment Took Place 
Because, in 2004, Cito did a reference study for the Cito Student Monitoring System, 

we do not only know how the students scored on the test items at the end of Grade 6 as 
collected in the PPON study, but we also know their scores halfway this grade (Janssen et 
al., 2005). It turns out that the decrease that has been found between the end of Grade 6 in 
1997 and the end of grade 6 in 2004 is complicated. The downward movement in 
achievement for written calculation turns out to have occurred mostly in the second half of 
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Grade 6 (see Figure 6). There seems to be a turning point mid grade 6, with scores 
decreasing after the students have done the Cito End of Primary Test which is administered 
in the middle of grade 6. 

Regrettably there are no data on the middle of grade 6 in 1997, but we do know the 
scores of the middle and the end of Grade 5 from the Cito Student Monitoring System 
reference study in 2004. These show an increase for the second half of Grade 5. 
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Figure 6. Achievements in written calculation end grade 6 compared to mid grade 6 

Of course the same pattern with the notable decrease in Grade 6 may also have 
occurred in 1997. However, it is also possible that the trend to spend less time on 
mathematics instruction after administering the Cito End of Primary Test has become 
stronger over time. Add to that the fact that after primary school, students mostly switch to 
using a calculator for doing calculations and it is hardly surprising that written calculation 
skills in secondary school are not good. 

The Test Instructions 
The third point allowing questions to be raised about the assessment of written 

calculation and the conclusions based on it, concerns the given test instructions. 
To study the use of strategy by students on the tested items, 140 students who took part 

in the written 2004 PPON test were also interviewed individually (see Van Putten, 2005; 
Hickendorff, Heiser, Van Putten, & Verhelst, 2009). Not only did this additional research 
allow study of the effect of the RME and traditional solution strategies , it also revealed, as 
in shown in Table 2, that there was a significant difference in correct scores between both 
testing formats. In 2004, the correct scores for the released items 736÷32 en 7849÷12 were 
about 30 percentage points higher for individual testing than in the class-administered 
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written test. Compared to items from other topics that were tested in two ways, this is a 
large difference. 

Another remarkable difference in 2004 is, that for the individual test format there was 
not a single student without written notations of the calculations. For the class-
administered written test this was for the two items, respectively 30% and 35%. 

Table 2 
Percentage Strategy Use and Answers Correct in Two Test Formats 

Item 9 
736÷32 (in context) 

1997 2004 

Strategy Paper-and-pencil Paper-and-pencil Individual interview 
Traditional Algorithm 42 19 29 
Realistica 24 33 71 
No Written Working 22 30 0 
Other 12 19 3 
Answer correct 71 52 84 
Item 10 
7849÷12 (in context) 

1997 2004 

Strategy Paper-and-pencil Paper-and-pencil Individual interview 
Traditional Algorithm 41 19 27 
Realistica 22 25 68 
No Written Working 17 35 0 
Other 20 21 5 
Answer correct 44 29 60 
a As defined by Hickendorff et al. (2009) including chunking and partitioning 

Apparently, the instruction for the written test was not strong enough in comparison to 
the individual one to let the students do their calculations on paper in all cases. However, to 
establish whether Dutch students are capable of written calculation, and to make statements 
about changes over time in this ability, one should explicitly ask students to do their 
calculations on paper. Testing whether students can solve mathematical problems is 
something different than testing whether students can perform certain calculation procedures. 

The three questionable points mentioned here (the items used, the time of assessment 
and the given test instructions) show that research into changes in achievement is not easy, 
certainly not if there is educational reform taking place at the same time. A problem like 
736÷32 that would be tackled by using a division procedure on paper in 1997, is more 
likely to evoke mental calculation in 2004 — as a result of the greater emphasis on number 
sense: 736÷32, ... 20 already gives you 640, add 2 times 32, 64, that gets you to 704 and 
add one more 32, that gives you; together 23 times 32. However, if this mental calculation 
strategy turns out to be an overestimation of a student‘s skills, things will go wrong in the 
class-administered written test, while the individual test shows that 84% of students will 
get it right if they use written calculation. 
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What TIMSS Says About the Mathematics Achievements of Dutch students 
The results of the Trends in International Mathematics and Science Study (TIMSS) 2007 

(Mullis et al., 2008) provide the most recent facts on the mathematics achievements of 
Dutch primary school students. Because Dutch Grade 4 students participated in TIMSS in 
1995, as well as in 2003 and 2007, the TIMSS scores show the development of 
mathematics achievements in recent years within an international context, like the PPON 
scores did on a national level. The most important conclusion of TIMSS is that there was a 
significant decrease in the whole period between 1995 and 2007, but that there was no 
significant change at the latter end, between 2003 and 2007. A problem with the first part 
of the conclusion is that in 1995 the Netherlands did not comply with the requirements for 
the sampling procedure. However, the TIMSS researchers did not see this as an obstacle 
for including the 1995 data in their trend analyses. 

Despite the supposed decrease, Dutch fourth graders scored reasonably well for TIMSS in 
2007. The Netherlands are in eighth place for the domain of number — which is what the 
current discussion is about — below four Asiatic participants (Singapore, Hong Kong, Taiwan, 
and Japan) and three participants from Eastern Europe (Kazakhstan, Russian Federation, and 
Latvia) (Mullis et al., 2008). The Netherlands have the highest score of the nine Western 
European countries that took part. Additionally, the Netherlands finished above the other 
Western countries that took part, including the United States, Australia and New Zealand. It 
would be justified to call the Netherlands ‗Best of the West‘. The media, however, see things 
differently. For example, a popular magazine for parents j/m Voor Ouders ‗translated‘ the 
Dutch results as: ―Internationally, our children have poor results in arithmetic.‖ 

The discrepancy between the achieved results and their perception becomes even larger 
if the opportunity to learn is taken into account. For example, in Singapore the test items 
used for the domain of number are covered for 91% by the taught curriculum. In the 
Netherlands, that is the case for only 64% of the items. Compared to the countries with a 
higher score, we have the lowest coverage percentage (although the coverage percentage 
for two countries is unknown) (Mullis et al., 2008). For instance, calculations with 
fractions and decimal numbers are not taught in Grade 4 in the Netherlands, while these 
topics were included in the TIMSS test. 

Another point is the low spread in the mathematics scores of the Dutch students. The 
best Grade 4 students in Singapore may be better than our best Grade 4 students, but our 
weakest students are at around the same level as the weakest students in Singapore (Mullis 
et al., 2008). This low spread was not unique to TIMSS 2007, but emerged from earlier 
TIMSS and PISA studies as well. Even though this is a remarkable result that says 
something essential about our education system, it is given relatively little attention in the 
media and reports. Clearly, we do not want to establish ourselves as ‗equal opportunities 
champion‘ (see Van Streun, 2009), while this is in a sense what we are, and while this also 
matches our thoughts of the mission we have with mathematics education. 

Other data from TIMSS 2007 received equally little attention: 
 diverging from most other countries, girls in the Netherlands do not do as well as boys 
 the Netherlands are at the bottom of the league table for teacher participation in 

professional development 
 the Netherlands has the highest percentage of time spent on working on problems 

individually without a teacher‘s guidance. 

The type of classroom organisation that emerges from this last point, certainly does not 
match the RME model of interactive whole-class teaching. The newspapers and opponents of 
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RME do not mention this, but it is a point of concern to us. The lack of whole-class teaching 
may well match the limited ability of Dutch students to write down their calculations 
systematically, as this is something that is hard to teach a whole class through individual 
instruction. It is not clear why Dutch teachers make so little use of whole-class instruction. It 
may be an effect of the Inspection of Education ‗teaching-to-size‘ policy that they pursued 
since the 1990s (see, e.g., Inspectie van het Onderwijs, 1998). What is remarkable here is 
that England which had the highest increase of all countries in 2007, had decided in favour 
of ‗whole-class teaching‘ in the 1990s — within the framework of the National Numeracy 
Strategy (see Askew, 2002), which was partly inspired by the ideas of RME. 

What is Better, Mechanistic or Realistic Mathematics Education? 

RME Under Attack 
Since 2007 a deluge of reports has flooded the Netherlands, all of them emphasising a 

downward trend in our mathematics achievements and observing that we do badly in 
comparison with other countries. There were only two sources for the findings in these 
reports in primary education: the PPON and TIMSS studies. While neither study is above 
criticism, as I have shown in the previous section, the reports that reference these studies 
do not show the necessary critical attitude. Even worse is the cumulative effect in reporting 
bad results. PPON and TIMSS show that achievements decrease. This result is then 
included in another report, with the effect that subsequent reports will then refer back to 
three, rather than two, sources showing that mathematics achievements of Dutch primary 
school students are falling behind. The next report mentions four sources, and so on. 

A recurring element in the media is that the opponents of RME do know why 
achievements decreased so much. It is the fault of RME. Therefore they argue that RME 
should be dropped and we should return to the mechanistic teaching of before the reform; 
this would mean going back about forty years. In fact two new mechanistic textbook series 
are currently in production, while some RME textbooks series fear loss of market share 
and no longer call themselves RME or state explicitly that they have a balanced approach 
and combine RME characteristics and mechanistic characteristics. 

An Arbitrator to Decide the Argument 
To stop the debate, the Ministry of Education asked the highest academic body in the 

Netherlands, the Royal Netherlands Academy of Arts and Sciences (KNAW) to find out 
which approach to teaching mathematics is better: the RME approach or the traditional 
mechanistic manner of teaching. This latter approach includes those methods in which 
students are taught one standard algorithm per operation, teachers provide direct 
instruction and students learn by solving bare number problems. 

The KNAW Commission was a mixture of both proponents and opponents of RME. To 
find an answer to the question of which teaching method is the best, the Commission did 
not carry out a study by itself, but instead looked at the empirical research conducted in the 
Netherlands in the past twenty years. In addition, a brief and general survey was done of 
studies conducted abroad. The conclusion of the Commission (KNAW, 2009) was that the 

empirical material is not unequivocal and does not permit any general, scientifically-grounded 
statements about the relationship between mathematics instructional approaches and mathematical 
proficiency. The research is limited and does not provide convincing empirical evidence for the claims 
made by either side of the debate about the effectiveness of traditional methods versus RME. (p. 14) 
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This ‗not decided‘ conclusion by the KNAW Commission fits well into the Dutch policy 
that is known as the ‗polder model‘2, which refers to the consensus policy in economics 
based on the tri-partite cooperation between employers‘ organisations, labour unions, and the 
government, aimed at defusing labour conflicts and avoiding strikes. It is a good result for 
the Ministry of Education. The worst is over. Both tabloids and serious newspapers are quiet 
again. But, really, this conclusion is not satisfactory. In fact our reform is back where we 
started. This is how a reform can end. Forty years of work for nothing. RME, based on the 
work of many researchers, developers, mathematics educators and teachers, is being 
compared with the opinion of a small group of opponents who have no development and 
research work to support them, and who only have some slogans going back to the past and 
at best a lean behaviouristic basis. It is difficult to name their approach a didactic of 
mathematics education. Asking which didactic is better, is to compare two unequal quantities 
with the result that the opponents of RME, despite of their low behaviour in the media, have 
been promoted to respected researchers of mathematics education. 

Insufficient Evidence? 
Measured by the current hype of evidence-based educational policy and decision making 

there is insufficient evidence for both the mechanistic approach and RME. On the one hand, 
there is no evidence available in the Netherlands at all for the first approach, simply because 
there has been no research, except for a couple, in some ways flawed studies into the effect 
on weak students of offering one single, fixed strategy. On the other hand, RME does have a 
long history of research — and in addition is supported by the huge body of knowledge 
about reformed approaches to mathematics education gathered by the international research 
community — but this research has not yet delivered the level of evidence that is required 
nowadays. The development and implementation of RME took place at a time when the 
emphasis was not yet on experiments with pretest-posttest designs with randomised control 
and experimental groups. RME was more interested in design experiments. First we had to 
find out what the reformed education should look like, how we could evoke certain learning 
processes in children and how we could raise the children to a higher level of understanding. 
The ideas for didactical approaches that emerged from this were often convincing enough in 
themselves. Everybody could test their didactical value every day in their own educational 
practice. These experiences were enough to implement RME in mathematics classrooms, 
teacher education and in-service courses, educational counselling activities and textbooks. 

Examples of convincing didactical innovations of RME. Look for example at whole-
number-based written division; a calculation procedure that, by the way, was not even a 
Dutch invention (see Hazekamp, 1978) and that was already in use in the Netherlands 
before the time of RME (see Van Gelder, 1959). The only research that was done to 
include this introduction to digit-based algorithmic calculation in RME was the study done 
by Rengerink (1983; see also Treffers & De Jong, 1984). This was a small-scale study with 
an experimental class of 21 students, an experimental programme of about 25 teaching 
hours, and a control class of 23 students following the regular programme. 

Other examples of RME innovations that were introduced worldwide without 
randomised controlled trials are the empty number line and the corresponding stringing 
strategy (Treffers, 1991b; Van den Heuvel-Panhuizen, 2008a), the arithmetic rack with the 
two lines of beads in a 5-5 structure (Treffers, 1991b), the ratio table (Treffers, 1993; 

                                                      
2 Although it must be said that some people wonder whether this is actually typically Dutch (De Bruijn, 2010). 
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Middleton & Van den Heuvel-Panhuizen, 1995), and the percentage bar (Van den Heuvel-
Panhuizen, 2003). 

Convincing large-scale and standardised research. If the success of these didactical 
innovations and the research that contributed to the development of them did not count in the 
eyes of the members of the KNAW Commission, and the worldwide support and 
appreciation that they received were also not important, then the KNAW Commission should 
at the least have taken a closer look at the few studies that were large-scale and standardised. 
These studies did in fact show that the RME textbook series that concretised RME — even if 
not all RME textbook series did so perfectly — did lead to higher achievement scores in 
mathematics in comparison with traditional, mechanistic textbook series. 

For instance, the PPON analyses by Cito over the period 1992-2004 showed that, 
despite the strong decrease in written calculation, the newer mathematics textbooks as a 
whole contributed in a small, but positive way to the mathematics achievements of the 
students (Janssen et al., 2005). This argues in favour of the RME approach. 

In addition, Cito did a comparison at textbook level using the achievement scores 
collected in 1987, 1992, and 1997 (Janssen et al., 1999). This was in fact the last time that it 
was possible to make a large-scale empirical comparison between RME and the mechanistic 
approach, since a part of the textbook market was still controlled by mechanistic textbooks. 
In 1997, RME textbooks had a market share of 75% with mechanistic textbooks at around 
10%. The results of the comparison indicated that the RME textbooks were more often part 
of the best textbook series (with students in grade 6 obtaining the highest achievements in 
mathematics) and that the mechanistic methods were more often among the weakest 
textbook series (with students in Grade 6 obtaining the lowest achievements in mathematics). 
One illustrative point was that the textbook series Wereld in Getallen (WIG) — the oldest 
RME textbook still in use, and additionally seen as a good representative of RME — 
achieved the top place on 19 of the 24 mathematics topics that students were tested on, while 
the mechanistic series Naar Zelfstandig Rekenen (NZR) never achieved a top place in the 
category best textbook series. This method had the highest score in the category weakest 
textbook series on 13 topics. 

Based on the data published by Cito (Janssen et al., 1999) another comparison can be 
made that gives an even better answer to the question of what way of teaching mathematics 
is better: the RME approach or the mechanistic manner of teaching. For this we can take the 
two RME textbooks that were included in the study then and which are still in use, virtually 
unchanged. These textbooks, which to a large degree determine the quality of current 
mathematics education with a combined market share of 70%, are the textbooks Wereld in 
Getallen (WIG) and Pluspunt (PP). If we consider the achievement scores of grade 6 
students with these two RME textbooks obtained for PPON in 1987, 1992, and 1997 against 
the scores of students who used the mechanistic textbook Naar Zelfstandig Rekenen (NZR), 
then it is clear to see that the RME textbooks led to better results than the mechanistic 
textbook. Figure 7 shows that the RME textbooks WIG and PP outperform the mechanistic 
textbook NZR in nearly all topics within the domain of number. 
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Figure 7. Effect sizes for the PP and WIG scores in comparison to the NZR scores 

On basic knowledge and number sense, estimation and insightful use of the calculator 
PP scored 10 to 15 percentage points higher than NZR. On the other number topics the 
scores of PP are 5 to 10 percentage points higher. Only for written calculation is the score 
for PP slightly lower than for NZR. Two of the three topics for written calculation are at 
around the same level for WIG and NZR, though not the hardest topic, composed 
calculation. Here, WIG has a significantly positive textbook effect against NZR — and to 
consider that NZR strongly emphasises written calculation. 

It is, however, not just written calculation where WIG does relatively well. The quality 
dominance of WIG against NZR shows especially in the fact that WIG also has significantly 
better scores than NZR on the other 16 number topics. The differences lie on the whole 
between 10 and 15 percentage points. WIG does especially well for basic knowledge and 
number sense, estimation, insightful use of the calculator and calculations with percentages. 

Unfortunately, the KNAW Commission did not look at these PPON data in detail, but 
lumped together all RME textbooks and all traditional textbooks. This is especially 
detrimental for the traditional textbooks, of which there are two types: textbooks which 
only focus on digit-based algorithms and textbooks which have a broad interpretation of 
calculation. The first type does not include whole-number-based calculation (the insightful 
introduction to the algorithms), or (smart) mental calculation and estimation, while the 
textbooks of the second type do take these into account, and as a result are consistent with 
the RME textbooks with respect to the number domain. The students who worked with the 
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traditional textbooks with a broad interpretation of calculation outperformed the students 
who were taught with the traditional textbooks that only focused on the algorithms 
(Treffers & Van den Heuvel-Panhuizen, 2010). 

One can only guess at why the KNAW Commission did not take an in-depth look at 
the PPON data. At the same time it also remains unclear why this commission did not refer 
to the criticism of the assessment of written calculation that was mentioned earlier. 

Fear of Monoculture 
The most important question is still why the KNAW lent their name to comparing a 

serious reform movement which has a large national and international reputation with the 
opinion of a small group of people who think that we should return to the education of 
forty years ago. One may also question how the KNAW rates our discipline, the didactics 
of mathematics education. The distinguished university professor of mathematical physics 
who is the current chairman of the KNAW wonders in the foreword to the report (KNAW, 
2009) ―what [...] a scholarly gathering such as the Royal Netherlands Academy of Arts and 
Sciences has to do with the didactics of primary mathematics‖ (p. 5). 

Something else that emerges from the foreword of the KNAW report (2009), is that in 
the eyes of the KNAW the battle between RME and mechanistic education could only end 
in a draw. Even the science of biology was quoted to justify the result, by warning that 
monocultures (read RME) are an impoverishment of an ecosystem.3 It may be clear that 
the natural diversity within applications of RME in textbooks and classroom practice, the 
width of mathematising both horizontally and vertically and the interconnectedness of 
conceptual understanding and procedural knowledge that characterise RME, has not been 
recognised and acknowledged by the KNAW. It is therefore an illusion to think that we 
will ever be able to convince the opponents of RME. 

Lessons to be Learned 
Although the attack on educational reform described in this paper takes place in the 

Netherlands, it seems to me that there are lessons to be learned from it for every other 
country that engages in reform of mathematics education. Taking a step back to look at the 
situation in which we — in fact rather unexpectedly4 — find ourselves from a more remote 
perspective, I reach the following conclusions. 

This Math War is Based on Framing and Emotions Rather Than on Facts 
The first conclusion that can be drawn is that, when a reform that has been going on for 

close to forty years, now suddenly calls up a counter movement that wants to recreate the 
traditional mechanistic method of teaching as it existed before the reform, the discussion is 
not about facts but about emotions, and framing techniques (Lakoff, 2004; Kuitenbrouwer, 
2010) are used to convince people. One would not expect that anyone who is focused on 
knowing more about what mathematics children should learn and how this can best be 

                                                      
3 This rejection of a monoculture is also mentioned by the Education Council of the Netherlands 
(Onderwijsraad, 2010), who argue in favour of two research and development institutes in the Netherlands: 
one for RME and one for a traditional approach to mathematics education. 
4 In 2003 the Education Council of the Netherlands (Onderwijsraad, 2003) still held up the Freudenthal 
Institute as an example of how development and dissemination of knowledge about education should take 
place: ―This knowledge community has developed to a high level in three decades, and has many participants 
and contacts, both nationally and internationally‖ (p. 49). 
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taught, will seriously consider throwing all the knowledge that has been gathered in the last 
forty years on the scrapheap. Rationally, this makes no sense. Just imagine that we would 
do something similar in healthcare. The mathematics education debate is ruled by 
emotions, in this case the feeling that everything was better in the old days. It is not for 
nothing that the attack on current mathematics education is coming mainly from a few 
mathematics professors. Their educational career is the proof that everything was better in 
times past. All they forget is to wonder for how many children that was the case. 

Reform vs. Restore Debates in Education are Universal 
The discussion between traditional and reformed education is probably as old as 

education itself. Nussbaum (2002) provides the example of the comedy ‗Clouds‘ from 424 
BC, where the great ancient Greek comic playwright Aristophanes writes about the 
dangers of the new education: 

A young man, eager for the new learning, goes to a ‗Think-Academy‘ near his home, run by that 
strange notorious figure Socrates. A debate is staged for him, contrasting the merits of traditional 
education with those of the new discipline of Socratic argument. The spokesman for the old 
education is a tough old soldier. He favors a highly disciplined patriotic regimen, with lots of 
memorization and not much room for questioning. He loves to recall a time that may never have 
existed – a time when young people obeyed their parents and wanted nothing more than to die for 
their country [...]) (p. 289). 

The Style of Attack Reflects the Political Climate in the Netherlands 
While the style of criticisms against RME in official reports stays within the social 

conventions that can be expected from professionals, the newspapers, including the so-called 
‗quality papers‘ as well as magazines and websites often contain crass and unfounded 
accusations, in which well-regarded scientists are pilloried. This is all ‗normal‘ within the 
current political climate in the Netherlands. In recent years, for a variety of reasons — 
including the emergence of high-profile populist politicians — the tone of the public debate 
has been lowered; especially when the establishment is the target of the debate. The track 
record that the Freudenthal Institute has built since 1970 means that we are now part of that 
establishment, with all the consequences of that position. 

Open Reform Movement Makes a Reform Vulnerable 
In the same way that RME gives students room to work on their own solutions, there is 

also room for teachers, teacher educators, teacher counsellors, researchers and developers 
of mathematics education, and last but not least textbook authors, to include their own 
nuances in the core ideas of RME. There is no state didactics in the Netherlands, and there 
is no unified RME. Implementation accompanied with ownership for all involved in the 

reform is an essential value of RME. We succeeded in achieving that, but at the same time 

it does make us vulnerable. Any mathematics textbook can be qualified as RME by its 

authors, but at the same time the authors are free to include problems and instructional 

sequences which maybe go against RME. Such less successful interpretations of RME are 

grist to the mill of the opponents of RME. Similar situations can occur when enthusiastic 

teachers put their lessons online, and make the mistake of for instance explaining whole-

number-based written calculation using numbers that are much too large, causing children 

to lose track. Opponents of RME use such examples to disqualify RME and argue in 

favour of the traditional, mechanistic approach. 
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These situations are hard to counter without changing the character of the reform. One 

way of regulating the implementation is performing textbook analyses. In such analyses, 

concretisations of RME can be examined and commentary and additions can be provided. 

This approach would allow constant adjustment. We stopped doing these textbook analyses 

at the end of the eighties. It might have been better if we had continued doing them. 

A Reform Requires Professional Development of Teachers 
Without a doubt, the driving forces behind the RME reform have been the textbooks. 

The textbook authors adopted the RME ideas and models of teaching particular topics and 
later on made use of the RME-based Proeve books (e.g., Treffers et al., 1989; Treffers, & 
De Moor, 1990) and TAL learning-teaching trajectories (e.g., Van den Heuvel-Panhuizen, 
2008b). However, another driving force was missing in the Netherlands. Unlike many 
other countries, there is no obligatory in-service training for primary school teachers, nor is 
there a culture of in-service training (Mullis et al., 2008). This means that for the 
development of their knowledge of RME teachers had to depend on textbooks and on 
themselves. This left Dutch teachers with a weak foundation, with as a consequence that, 
although they have adopted RME, they can easily become uncertain about RME when it is 
criticised. They miss a profound and updated knowledge base. Research has shown that in-
service programs for teachers are an essential factor in a change process (see, e.g., Clarke, 
1997); especially teachers‘ beliefs about the teaching and learning of mathematics are 
considered as critical in determining the pace of curriculum reform in mathematics 
education (Handal & Herrington, 2003). 

The Importance of the Inclusion of Parents 
The parents of the children who are now in primary school were in primary school 

themselves in the 1980s, when RME was by no means ubiquitous. It is not unlikely that the 
mathematics education they received was given in a mechanistic way, with the 
consequence that there may be differences with what their children are learning, not just 
for content, but also for solution strategies, ways of notating and teaching methods. 
O‘Toole and de Abreu (2005) who studied the gap between the past experiences of parents 
who went to school in England before the introduction of the National Curriculum and 
current mathematics education practice in their children‘s school, showed that this gap 
should be taken seriously. Many parents use their own past experiences as the main 
resource for understanding their children‘s current school learning. In addition, the parents‘ 
parents also play an important mediating role. This can be painfully observed in the 
Netherlands, in the plea to reintroduce granddad‘s mathematics. Unfortunately, this gap 
between the parents‘ and grandparents‘ mathematics education and that of their children 
has never been a focal point in RME. After seeing in 1987 that the parents agreed to the 
reform, there have been no further attempts to keep them involved. This is an omission. 

Any Reform Will Have to Prove Itself at Some Point 
The long history of RME reform made us almost complacent. As was said in the 

beginning of this paper, we never thought that the development and implementation of 
RME were finished or that we had found the ultimate answer to the best way for children 
to learn mathematics. We were never really satisfied and were always looking for further 
improvements. But we did so in relative peace. After the first twenty years, we no longer 
really considered that we still had to prove that RME was better than the mechanistic 
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approach. It seemed so obvious for everybody. In fact, there only was a discussion with 
remedial educationalists on what mathematics education for special education students 
should look like. Meanwhile, teachers in special education were hard at work introducing 
the empty number line and other didactical innovations of RME. In view of these 
experiences, we considered the confrontation between RME and mechanistic teaching 
methods as a run race. This was a misconception that we have come to regret. When the 
wave of criticism started, we did not have our evidence readily at hand, at least not in the 
form that is currently demanded. 

Take Care That the Assessment of Mathematics Achievement is in Order 
The most vulnerable part of a reform movement is students‘ achievement scores. 

Everything seems to be fine, until scores decrease or are being perceived as less. Reform 
nearly always means opting for other content or other accents in content, resulting in 
different achievement profiles for students. The problem here is that no one will argue with 
the things that improve, but that is not the case for the things that decrease. Even if it has 
been agreed on that one topic is not so important, once the scores start going down, there is 
bound to be protest. Justifying the scores in retrospect does not seem to help. Therefore it 
must be recommended, when making choices, not to discuss only the input, but also, and 
especially the expected changes in the output. This makes them more ‗real‘. 

The experience that changes in achievement profiles can become a breaking point for a 
reform, serves to emphasise the importance of how results are assessed. In the end, what 
matters is not the inspiring learning environment that can be achieved through RME, but the 
test scores. Therefore it is important for reformers to also look at tests. We did not really do 
this in the Netherlands, while we are now being judged on the basis of these test results. 

RME Continues 
I cannot end this paper without reporting a sign of recovery. Our opponents have taken 

the step of entering the market and found a publisher who dared to take the decision to 
publish a new traditional mechanistic textbook series, after the last one disappeared by the 
end of the last century. This publisher has the good practice of letting a panel of teachers 
judge prototypes of new products. The group had been established from proponents of 
restoring the mechanistic approach to mathematics education. However, their commentary 
was significant. No, this kind of textbook series was not what they needed: there should be 
illustrations and they missed the didactics telling them what to do when children do not 
understand; after all, you cannot go on infinitely with demonstrating. 

The next step will certainly be that RME innovations such as the empty number line, the 
corresponding stringing strategy, the arithmetic rack with the two lines of beads in a 5-5 
structure, the percentage bar, and probably even whole-number-based written division as an 
introduction to digit-based algorithmic calculation will show up in this mechanistic textbook 
series. Whether this also will happen with the broad interpretation of calculation, in which 
written calculation, mental calculation and estimation are integrated, remains to be seen. 

What will in any case not appear in this mechanistic textbook series, and others that 
may follow, are problems that stimulate mathematical reasoning. The attackers of the RME 
reform state very explicitly that primary school students need to learn calculation skills and 
do not need to think. In contrast, within RME, getting the children to think mathematically 
is what it is all about. Unfortunately, this key goal is not reflected very strongly in the 
existing RME textbooks for primary school. Although these textbooks contain many RME 
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characteristics, puzzle-like number problems in which children have to think are rare 
(Kolovou, Van den Heuvel-Panhuizen, & Bakker, 2009). In this respect, the RME 
textbooks truly do need improvement: there should be more mathematics in Dutch 
arithmetic education. This is a point we have to work on. The narrow focus on plain 
calculation can really threaten the mathematical competence of Dutch students, but this 
shortcoming in how RME is implemented in textbooks and maybe also in classrooms is 
beyond the view of our attackers. Their concerns are only about students‘ skills in one type 
of calculation, the algorithms. 
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