DESIGN OF INTERVENTIONS
FOR
INSTRUCTIONAL REFORM
IN
SOFTWARE DEVELOPMENT EDUCATION
FOR
COMPETENCY ENHANCEMENT

Thesis submitted in fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

By

Sanjay Goel

Department of Computer Science & Engineering and Information Technology

JAYPEE INSTITUE OF INFORMATION TECHNOLOGY
A-10, SECTOR-62, NOIDA, INDIA

April, 2010

DESIGN OF INTERVENTIONS
FOR
INSTRUCTIONAL REFORM
IN
SOFTWARE DEVELOPMENT EDUCATION
FOR
COMPETENCY ENHANCEMENT

Thesis submitted in fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

By

Sanjay Goel

RIATION ;

iy

Famm koM

Department of Computer Science & Engineering and Information Technology

JAYPEE INSTITUE OF INFORMATION TECHNOLOGY
A-10, SECTOR-62, NOIDA, INDIA

April, 2010

i

Copyright JAYPEE INSTITUE OF INFORMATION TECHNOLOGY, NOIDA
March, 2010
ALL RIGHTS RESERVED

il

DECLARATION BY THE SCHOLAR

I hereby declare that the work reported in the Ph.D. thesis entitled “Design of Interventions
for Instructional Reform in Software Development Education for Competency
Enhancement” submitted at Jaypee Institute of Information Technology, Noida,
India, is an authentic record of my work carried out under the supervision of Prof. J.P.

Gupta and Dr. Mukul K. Sinha. I have not submitted this work elsewhere for any other

degree or diploma.

(Sanjay Goel)
Department of Computer Science & Engineering and Information Technology
Jaypee Institute of Information Technology, Noida, India

April 9™, 2010

v

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “Design of Interventions
for Instructional Reform in Software Development Education for Competency
Enhancement”, submitted by Sanjay Goel at Jaypee Institute of Information

Technology, Noida, India is a bonafide record of his original work carried out under our

supervision. This work has not been submitted elsewhere for any other degree or diploma.

(Prof. J.P. Gupta) (Mukul K. Sinha)
Jaypee Institute of Information Technology Expert Software Consultants Ltd.

April 9", 2010 April 9", 2010

Vi

vii

In revering memory of my grandparents,
Sh.(late) Chiranji Lal Goel, a dedicated teacher, who taught me that work is its own reward, and

Smt.(late) Shanti Devi Goel, who personified simplicity and patience.

viii

TABLE OF CONTENT

DECLARATION BY THE SCHOLAR
SUPERVISOR’S CERTIFICATE
ACKNOWLEDGEMENTS
ABSTRACT

LIST OF FIGURES

LIST OF TABLES

CHAPTER-1

INTRODUCTION

1.1 BASIS FOR THE NEED FOR REFORMS IN COMPUTING
EDUCATION

1.2 EVOLUTION OF SOFTWARE DEVELOPMENT EDUCATION

1.3 RESEARCH APPROACH

1.4 THESIS LAYOUT

CHAPTER-2

IDENTIFICATION OF CORE COMPETENCIES FOR
SOFTWARE ENGINEERS

2.1 STUDY REPORT ON CORE COMPETENCIES FOR ENGINEERS
WITH SPECIFIC REFERENCE TO SOFTWARE ENGINEERING

2.2 NECESSARY COMPETENCIES AS EDUCATIONAL OUTCOMES
FOR SOFTWARE ENGINEERS AS RECOMMENDED BY
ACCREDITATION BOARDS, PROFESSIONAL SOCIETIES’
AND OTHER APPROACHES
2.2.1 IMPACT ON CURRICULUM AND FUTURE DIRECTIONS
2.2.2 INDIAN SCENARIO

23 SOME OTHER CONTEMPORARY RECOMMENDATIONS
ABOUT DESIRED COMPETENCIES OF ENGINEERING
GRADUATES

24 RECOMMENDATIONS OF SOME INTERNATIONAL
PROFESSIONAL SOCIETIES RELATED TO COMPUTING

2.5 SOME CONTEMPORARY RECOMMENDATIONS ON DESIRED
COMPETENCIES OF SOFTWARE DEVELOPERS

2.6 A PERSPECTIVE FROM THE PROFESSIONAL CODES OF
CONDUCT, ETHICS, AND/OR PRACTICE

vii

v

Vi
X1V
XV1
XViil
X1X

28
33

35

35

39

40
41
42
44
47

51

2.7

2.8

2.9

2.10

2.11

CLASSICAL AND CONTEMPORARY RECOMMENDATIONS
ON DESIRED COMPETENCIES OF GRADUATES

A COMPREHENSIVE DISTILLED VIEW ON DESIRED
COMPETENCIES

FURTHER EMPIRICAL INVESTIGATIONS ON REQUIRED
CORE COMPETENCIES FOR ENGINEERING GRADUATES
WITH REFERENCE TO THE INDIAN IT INDUSTRY
CLASSIFYING THE CORE COMPETENCIES FOR
SOFTWARE DEVELOPERS

CHAPTER CONCLUSION

CHAPTER-3

DISTINGUISHING FEATURES OF SOFTWARE
DEVELOPMENT AND REQUISITE TAXONOMY
OF CORE COMPETENCIES

3.1

PROGRAMMING AS AN ART TO SOFTWARE ENGINEERING

3.2 DEBUGGING AS A CORE ACTIVITY IN
SOFTWARE DEVELOPMENT

3.3 PROCESS CENTRIC SYSTEM DEVELOPMENT AND
MAINTENANCE IN SOFTWARE ENGINEERING

34 SOFTWARE AS INTEGRAL PART OF BUSINESS, AND
NEED FOR COMPREHENSION FOR SOFTWARE MAINTENANCE

3.5 ROLE OF EMPATHY AND SOCIAL SENSITIVITY IN
SOFTWARE DEVELOPMENT

3.6 PROJECT SCOPING AND ESTIMATION FOR SOFTWARE
CONTRACT

3.7 LEARNING NEW DOMAIN AND KNOWLEDGE STRUCTURING
IN SOFTWARE DEVELOPMENT

3.8 SOFTWARE DEVELOPMENT PROCESS FOR ILL-DEFINED
PROBLEMS

3.9 EMPIRICAL AND QUALITATIVE APPROACHES IN
SOFTWARE DEVELOPMENT RESEARCH

3.10 SOFTWARE DEVELOPMENT: WHOLE-BRAIN ACTIVITY

3.11 REVISED TAXONOMY OF CORE COMPETENCIES
FOR SOFTWARE DEVELOPERS

CHAPTER- 4

SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF BASIC COMPETENCIES

4.1

SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF TECHNICAL COMPETENCE

viii

53
56

56

58

61

64

65
67

68
68
69
71
71
72
74

75
76

82

83

4.2 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF COMPUTATIONAL THINKING

43 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF DOMAIN COMPETENCE

44 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF COMMUNICATION COMPETENCE

4.5 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF COMPLEX PROBLEM SOLVING
COMPETENCE
4.5.1 EXPERT PROBLEM SOLVERS

4.6 CHAPTER CONCLUSION

CHAPTER-5

SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF COMPETENCY DRIVER-HABITS
OF MIND

5.1: SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF ATTENTION TO DETAILS

5.2: SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF CRITICAL AND REFLECTIVE THINKING

5.3: SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF CREATIVITY AND INNOVATION

5.4: CHAPTER CONCLUSION

CHAPTER-6

SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF COMPETENCY CONDITIONING
ATTITUDES AND PERSPECTIVES

6.1 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF CURIOSITY

6.2 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF DECISION MAKING PERSPECTIVE

6.3 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF SYSTEMS-LEVEL PERSPECTIVE

6.4 SOFTWARE DEVELOPERS’ EDUCATION FOR
DEVELOPMENT OF INTRINSIC MOTIVATION
TO CREATE/IMPROVE ARTIFACTS

6.5 CHAPTER CONCLUSION

iX

91

98

106

112

118
123

125

126
130
138

144

145

146
154
165

175

181

CHAPTER-7

THE PHENOMENON OF ‘LEARNING’ 182

7.1 EMPIRICAL INVESTIGATIONS FOR ASSESSING 182

EFFECTIVENESS OF EDUCATIONAL METHODS

WITH RESPECT TO THE REQUIREMENTS OF

SOFTWARE DEVELOPMENT

7.1.1 EMPIRICAL STUDIES ON EFFECTIVENESS 182
OF TEACHING METHODS AND EDUCATIONAL
EXPERIENCES OF COMPUTING STUDENTS
AND SOFTWARE DEVELOPERS

7.1.2 EMPIRICAL EXAMINATION OF SOFTWARE 187
DEVELOPMENT EDUCATION THROUGH
BLOOM’S TAXONOMY

7.1.3 QUALITATIVE STUDY OF EFFECTIVE LECTURES 191
7.1.3.1 PERCEPTIONS OF COMPUTING STUDENTS 191
AT SENIOR AND JUNIOR LEVELS
7.1.3.2 PERCEPTIONS OF FACULTY MEMBERS 192
IN ENGINEERING INSTITUTES
7.1.4 QUANTITATIVE STUDY OF EFFECTIVE LECTURES 193
7.1.4.1 PERSPECTIVE OF COMPUTING STUDENTS 194
7.2 REFLECTIONS ABOUT THE PHENOMENON OF ‘LEARNING’ 197
7.3 IMPLICATIONS FOR SOFTWARE DEVELOPMENT 199
EDUCATION
7.4 STUDENT ENGAGEMENTS FOR FACILITATING 201
DEEP LEARNING THROUGH HIGHER EDUCATION
7.4.1 CURRICULUM INTEGRATION 202
7.4.2 SOLO TAXONOMY 205
7.4.3 COLLABORATIVE LEARNING 206
7.4.3.1 PAIR PROGRAMMING 209
7.4.4 CROSS-LEVEL PEER MENTORING 211
7.4.4.1 POSSIBILITY OF CROSS-LEVEL 214
PEER MENTORING IN
SOFTWARE DEVELOPMENT EDUCATION
7.5 CHAPTER SUMMARY 215
CHAPTER-8
A FRAMEWORK OF PEDAGOGIC ENGAGEMENTS 216
IN SOFTWARE DEVELOPMENT EDUCATION
8.1 THREE-DIMENSIONAL KNOWLEDGE DOMAIN FOR 218
DESIGNING COMPUTING COURSES
8.2 TWO CORE PRINCIPLES RELATED TO LEARNING 221

8.2.1 COGNITIVE DISSONANCE 221

8.3

8.2.2 COGNITIVE FLEXIBILITY

FOUR-DIMENSIONAL TAXONOMY OF PEDAGOGIC

ENGAGEMENTS IN SOFTWARE DEVELOPMENT EDUCATION

8.3.1 DIMENSION 1- LEVELS OF ACTIVE ENGAGEMENTS
(EXTENSION OF BLOOM’S TAXONOMY)

8.3.2 DIMENSION 2- LEVELS OF INTEGRATIVE
ENGAGEMENTS (EXTENSION OF SOLO TAXONOMY)

8.3.3 DIMENSION 3- LEVELS OF REFLECTIVE ENGAGEMENTS

8.3.4 DIMENSION 4- LEVELS OF COLLABORATIVE
ENGAGEMENTS

8.4 CHAPTER SUMMARY

CHAPTER-9

SOME INTERVENTIONS FOR ENHANCING THE
QUALITY OF SOFTWARE DEVELOPMENT EDUCATION

9.1

9.2

9.3

INCREASING COGNITIVE DISSONANCE THROUGH
A PROBLEM-CENTRIC APPROACH IN
SOFTWARE DEVELOPMENT EDUCATION
9.1.1 INQUIRY TEACHING IN SOFTWARE
DEVELOPMENT EDUCATION
9.1.1.1 SERO MODEL FOR INQUIRY
TEACHING IN SOFTWARE DEVELOPMENT
EDUCATION
9.1.2 PROJECT-INCLUSIVE TEACHING IN
SOFTWARE DEVELOPMENT EDUCATION
9.1.3 CREATING CONDITIONS FOR REFLECTIVE
ENGAGEMENTS IN SOFTWARE DEVELOPMENT
EDUCATION
INCREASING COGNITIVE FLEXIBILITY THROUGH
A MULTIFACETED INTEGRATED APPROACH IN
SOFTWARE DEVELOPMENT EDUCATION
9.2.1 MULTILEVEL INFUSION FOR CONTINUOUS
INTEGRATION IN SOFTWARE DEVELOPMENT
EDUCATION
9.2.2 INTEGRATIVE CAPSTONE COURSES IN SOFTWARE
DEVELOPMENT EDUCATION
9.2.3 GROUP AND COMMUNITY ORIENTED ENGAGEMENTS
IN SOFTWARE DEVELOPMENT EDUCATION
9.2.3.1 COLLABORATIVE PAIR AND
QUADRUPLE PROGRAMMING
9.2.3.2 CROSS-LEVEL PEER MENTORING IN
SOFTWARE DEVELOPMENT EDUCATION
REFLECTIVE WORKSHOP ON PEDAGOGY FOR
ENGINEERING FACULTY

xi

222
223

227
237

240
241

243

245

246

246

247

251

254

256

256

263
265
266
269

275

94

CHAPTER SUMMARY

CHAPTER-10

SUMMARY AND FUTURE SCOPE OF WORK

REFERENCES
APPENDICES
Al SPINE-LIKE SURVEY ON IMPORTANCE OF COMPETENCIES
A2 A COMPREHENSIVE DISTILLED VIEW ON
DESIRED COMPETENCIES
A3 REVISED SURVEY ON REQUIRED COMPETENCIES, 2007
A4 MAPPING OF THIRTY-FIVE COMPETENCIES (APPENDIX A3)
WITH FINAL SET OF TWELVE CORE COMPETENCIES
A5 CATALOGUE OF TECHNICAL AND TECHNICALLY
ORIENTED ACTIVITIES RELATED TO SOFTWARE
DEVELOPMENT
A6 TAXONOMY OF COMMON SOFTWARE BUGS
A7 PROPOSED CURRICULUM FOR MASTERS IN
ARCHAEO-HERITAGE INFORMATICS
A8 SOME SUGGESTIONS FOR BREADTH COURSES
A9 INADEQUATE DEVELOPMENT OF CURIOSITY IN
SOFTWARE DEVELOPMENT EDUCATION
A10 SURVEY: “SOFTWARE DEVELOPERS - (HOW) DID YOUR
COLLEGE HELP YOU IN YOUR DEVELOPMENT?”
A EFFECTIVENESS OF TEACHING METHODS: SURVEY OF
SOFTWARE DEVELOPERS (2009)
Al EFFECTIVENESS OF TEACHING METHODS-II:
EFFECT ON DESIRED COMPETENCIES
B EFFECTIVENESS OF TEACHING METHODS:
SURVEY OF STUDENTS (2009)
All EMPIRICAL EXAMINATION OF SOFTWARE DEVELOPMENT
EDUCATION THROUGH BLOOM’S TAXONOMY
Al12 ANECDOTES OF MOST EFFECTIVE LEARNING
EXPERIENCES/LECTURES
Al3 QUANTITATIVE STUDY OF COMPUTING
STUDENTS’ PERSPECTIVE OF EFFECTIVE LECTURES
Al4 SUMMARY OF SERO STYLE LECTURES IN TWO COURSES
Al5 EVOLUTIONARY STAGES OF STUDENT PROJECTS
Al16 REFLECTIVE ENGAGEMENTS
A17 FEEDBACK FROM THE CROSS-LEVEL MENTORS ON INFUSION

OF SOME PERVASIVE TOPICS IN FOUNDATION COURSES

xii

277

279

283

305
305
310

312
314

316

317
318

319
320

321
321
323
328
331
337
341

344
345
346
348

Al8
Al9
A20

A21
A22

A23

A24

MULTI-LEVEL INFUSION OF SECURITY RELATED ASPECTS
DESCRIPTION OF THE NOTATION FOR CONCEPT MAPPING
SOME PROPOSED INSTRUCTIONAL INTERVENTIONS FOR
INFUSING DEBUGGING IN COMPUTING LABORATORIES
COLLABORATIVE PAIR PROGRAMMING

SAMPLE COLLABORATIVE QUADRUPLE PROGRAMMING
ASSIGNMENTS FOR J2EE

ALUMNI’S FEEDBACK ON LEARNING GAINS THROUGH
CROSS-LEVEL MENTORING

ADVANTAGES OF MENTORING AS IDENTIFIED BY

FINAL YEAR STUDENTS INVOLVED IN CROSS-LEVEL
MENTORING OF JUNIORS, 2009

ANNEXURES

ANI
AN2

AN3
AN4
ANS

ANG6
AN7
ANS
ANO9
ANI10

ANI11

ANI12

IMPORTANT THEORIES ABOUT HUMAN LEARNING,
INTELLIGENCE, AND THINKING

COMPETENCY RECOMMENDATIONS BY ACCREDITATION
BOARDS OF SOME COUNTRIES

SOME MODELS FOR CLASSIFICATION OF COMPETENCIES
METZGER’S OBSERVATIONS ABOUT DEBUGGING
LETHBRIDGE’S STUDY ON MOST IMPORTANT AND
INFLUENTIAL TOPICS IN SOFTWARE DEVELOPMENT
EDUCATION

SOME IMPORTANT MODELS ON PROBLEM SOLVING
SOME THEORIES ON ATTENTION

SOME IMPORTANT PERSPECTIVES ON CURIOSITY

SOME IMPORTANT PERSPECTIVES ON SYSTEM THINKING
SOME IMPORTANT PERSPECTIVES ON INTRINSIC
MOTIVATION

SUCCESSFUL PRACTICES IN INTERNATIONAL ENGINEERING
EDUCATION (SPINE) STUDY

SOME THEORETICAL PERSPECTIVES ABOUT LEARNING
AND TEACHING

LIST OF AUTHOR’S PUBLICATIONS

xiii

354
355
357

359
361

362

365

366
368
372

375
377

378
381
382
383
386

388

390

394

ACKNOWLEDGEMENTS

This work is the result of a long personal journey across a variety of professional experiences:
learning, designing, teaching, and also leading teams. This work has humbled me and has made
me realize the magnitude of my ‘ignorance’ about ‘learning,” and also many intricacies of
software development. During this journey, I have had the good fortune of wonderful and

engaging interactions with experts and scholars of diverse disciplines.

To top the list, I am highly grateful to hundreds of software professionals from all over the world
who have participated in many surveys, polls, and discussions during the course of this research.
I am thankful to all my past, present, and future students, who are my main inspiration for this
work. Some of the past students are my most valued professional consultants, collaborator, and
critiques. I also want to express my gratitude to all my enthusiastic colleagues in the Department
of Computer Science and Engineering at the Jaypee Institute of Information Technology for their
confidence, support, and active collaboration in contextualizing and administering many ideas in

their various courses.

I am most indebted to Dr. Mukul K. Sinha, my mentor for the last twenty years, for innumerable
professional lessons and values that I have learnt from him. His systems thinking approach,
ability to take risks, commitment for excellence, and coaching has been a great source of strength
for sustaining this long and personally enriching inquiry. Only a few blessed people have the

good fortune of receiving such selfless mentoring.

I am highly thankful to Prof. J.P. Gupta for his affection, generosity, and patience. But for his
blessings and whole-hearted support, it was not possible to try out many instructional

interventions that have provided very useful insights for this thesis.

Numerous discussions with Prof. M.N. Faruqui encouraged me to maintain my enthusiasm for
carrying out this research. His critique and wisdom reflected the depth and breadth of his vision,
as well as multifaceted and rich experience in higher education. I am also thankful to Prof. S.K.

Kak for his interest and motivation. He introduced me to the SPINE project that became a very

X1V

important reference for this work. I have also learnt many lessons about curriculum design, and
also critical inquiry, from Prof. S.L. Maskara. Several discussions with Prof. A.B. Bhattacharyya
and Mr. H.S. Dagar were very enriching. Few Indian researchers get the benefit of such
comprehensive editorial support, as was extended by Mr. Dagar. Moral support extended by
Prof. S.K. Khanna, Prof. (Late) Prof. C.S. Jha, and Dr. Y. Medury has been very encouraging in

this journey. I am also highly grateful to the co-authors, reviewers, and editors of all my papers.

It will not be proper if I forget to acknowledge the lessons I learnt about the value of context and
holistic thinking at the Indira Gandhi National Centre for the Arts (IGNCA) during my tenure
there from 1995 to 2002. My way of thinking and perceptions about excellence, diversity,
scholarship, aesthetics, education, and its relationship with human life evolved significantly
during the process of innumerable interactions with Dr. Kapila Vatsyayan, Prof. P.S. Filliozat,
Prof. T.S. Maxwell, Prof. Saskia Kersenboon, Prof. R. Nagaswamy, Prof. Aditya Malik, Dr. V.
Filliozat, Prof. B.N. Saraswati, Prof. Frits Stall, Prof. Anil K. Jain, Prof. Sutcliffe, Prof. Gary
Marchionini, Prof. S.P. Mudur, Prof. Ranade, Pierre Pichard, Prof. John Emigh, and many others

during the course of designing several interactive multimedia learning systems at the IGNCA.

Lastly, and equally importantly, I am highly thankful to my parents, wife, brothers, sister, and
two sons for their care, love, and also tolerance for my carelessness. Not many people get as
much pampering at home as has been extended to me since my childhood. Their generosity to

take care of all my responsibilities at home enables me to focus more on my studies and work.

XV

ABSTRACT

Community and culture significantly influence value orientation, perceived needs, and
motivation as well as provide the ground for creating shared understanding. All disciplines have
their own cultures, and all cultures evolve through cross-cultural exchanges. The computing
community has created and documented a sound body of knowledge of software engineering
(IEEE SWEBOK). It is one of finest examples of multi-cultural synthesis of many disciplines
especially engineering, computer science, and even social sciences. With the very large scale
worldwide endeavor on computing or software engineering education, it is now time to leverage
education and ‘learning’ related research to create and document a theoretically sound body of
knowledge of software developers’ education. Such a body of knowledge should naturally

require us to synthesis the evolving disciplines of software engineering and higher education.

In this thesis, we discuss our study and investigations about the following types of questions:

1. How has software development education evolved, specifically with reference to educational
research?

2. What is meant by competent and professionally oriented computing engineers, especially
with respect to software engineering? What are the essential attributes? What is the relative
importance of these attributes?

3. What is the degree with which the various components of traditional processes of
engineering education succeed in creating opportunities for enhancing these competencies?
What students think about their educational experiences? What students think works well for
them? What processes do professional engineers recommend?

4. What pedagogical practices succeed in developing competencies, and under what
circumstances? What comes in the way of implementing these strategies? What kinds of
lectures are effective for learning in the views of students and faculty? What factors block
students from effective learning? How to overcome these difficulties?

5. What kind of instructional interventions are required? How can the existing education
theories/strategies/methodologies be used to educate competent computing engineers? Do we
need new theories of learning for software development education? If so, what would be

main aspects of such a theory of learning?

XVvi

In this study, the research processes included a wide-ranging survey of published literature in
diverse areas of software development, computer science and IT education, engineering
education, professional and higher education, learning theories, thinking, instruction design, and
human development. The research also included a study of a large number of comments written
by professional software developers about contemporary issues related to software development
processes, required competencies, endorsements, etc., in various professional forums. More than
three hundred professionals of more than sixty organizations from various countries have been
consulted and/or surveyed on various issues. More than one thousand undergraduate computing
students, and more than one hundred faculty members, have also been surveyed on selected

1ssues.

We have proposed a three-tier taxonomy of twelve competencies and a comprehensive unified
framework of pedagogic engagements in software development education. We have also
discussed some instructional interventions developed by us, manifesting some aspects of this
framework. All these interventions were administered in a chosen set of existing computing
courses. Some new courses have also been developed in the process. The development of the
framework of pedagogic engagement, and these interventions for instructional reform of

software development education, has been an intertwined and highly spiral process.

We hope that our proposed framework of pedagogic engagement in software development
education will help the community of software development educators and researchers to create
a variety of interventions that will help in extending the ‘Software Engineering Body of
Knowledge” (SWEBOK) to ‘Software Development Education Body of Knowledge’
(SDEBOK). Designers of educational programs for other professions can also adapt this

framework and methodology.

Xvil

LIST OF FIGURES

Fig 8.1 A schematic view of four-dimensional taxonomy of 225
pedagogic engagements

Fig 9.1 Group exercise during the evolutionary phase of SERO 249
style lecture

Fig A20.1 Debugging tool evaluation matrix 357

xXviii

LIST OF TABLES

CHAPTER-1
Table 1.1 Some important reports on computing curriculum 9
CHAPTER-2
Table 2.1 Most important engineering and general 37

professional competencies, as rated by Indian engineers and
managers working in Indian and multi-national IT companies (2004)

Table 2.2 Comparative analysis of some common competencies 40
distinguished and identified by some accreditation agencies

Table 2.3 Most important competencies as rated by Indian engineers and managers 57
working in Indian and multi-national software companies

(Revised Study 2007)
Table 2.4 The most important competencies for software development work 58
related to software services and product development
Table 2.5 Taxonomy of core competencies for software developers- ver.1 60
CHAPTER-3
Table 3.1 Core competencies for software developers 77
Table 3.2 Three-tier taxonomy of core competencies for software developers 78
CHAPTER-4
Table 4.1 Most important activities that must be included in the main goals 86
for a new software curriculum
Table 4.2 Biglan’s classication of disciplines 102
Table 4.3 Kolb’s learning styles 104
Table 4.4 Perceived importance of communication skills by programmers 109
and systems analysts
Table 4.5 Profiles of the respondents for the two polls about communication 110
competence among software developers
Table 4.6 Summary of responses for these two polls about communication 110
competence
Table 4.7 Competency ladder (Integrating the ladders by Gordon Institute, 119
Dreyfus and Dreyfus, and Denning)
Table 4.8 A Comparison of typical academic and real life problems 121
Table 4.9 Some techniques for solving complex ill-defined problems 122

XiX

CHAPTER-5

Table 5.1
Table 5.2

Table 5.3

CHAPTER-6

Table 6.1

Table 6.2
Table 6.3

Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9

CHAPTER-7
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7
Table 7.8
Table 7.9
Table 7.10
Table 7.11
Table 7.12
CHAPTER-8

Table 8.1
Table 8.2

Some common errors in logical and analytical reasoning

Some key aspects of Schon’s perspectives on ‘design’ as
‘reflective action’

Principles of Theory of Inventive Problem Solving (TRIZ/TIPS)

Re-interpreting Perry’s nine stage model of intellectual development
as nine stage model of curiosity development

Four decision styles proposed by Rowe and Boulgarides
Multifaceted definition of engineering systems thinking by

Frank and Waks, 2001

Levels of systems thinking (derived from Boulding and Sanford)
Shifting the focus for systems thinking (Capra’s criteria)

Systems thinking approaches by Checkland and Jacobs

Senge’s toolbox for cultivating systems thinking

Kohlberg’s six stage model of human development 173
Maslow’s Hierarchy of Human Needs

Importance of teaching methods as rated by Indian engineers

and managers working in Indian and multi-national IT companies
Perceived effectiveness of pedagogical engagements with respect
to enhance of competencies: perceptions of software professionals
Effectiveness of educational experiences for competency
enhancement of computing students

Comparison of Bloom level-specific normalized consolidated ratings
Correlation between different consolidated ratings

Attribute category-wise consolidated ratings by computing students
Correlation matrix between attributes of different lecture formats
based on computing students responses

Selected catalogue of learning engagements for deep learning from
the NSSE study

Harden’s taxonomy of curriculum integration

Salmon’s levels of collaborative e-learning

Dillenbourg’s four conditions for collaborative learning

Software professionals’ reflections about advantages of first
mentoring experience

Three-tier taxonomy of core competencies for software developers
Five-dimensional ladder of professional and human development

XX

132
136

142

151

158
168

169
169
170
172

176

183

185

186

189
189
194
195

202

204
208
209
214

216
218

Table 8.3

A novel three-dimensional taxonomy of knowledge domain for
software developers

Table 8.4 Perceived effectiveness of pedagogical engagements
with respect to enhance of competencies: perceptions of
software professionals
Table 8.5 Levels of active engagements (first of four dimensions of our
taxonomy of pedagogic engagements)
Table 8.6a Some selected models for supporting student engagements at
Analyze level
Table 8.6b Some selected models for supporting student engagements at
Create and Evaluate levels
Table 8.7 Discipline integration sub-levels based on Biglan’s classification
of disciplines
Table 8.8 Levels of integrative engagements (second of four dimensions of
our taxonomy of pedagogic engagements)
Table 8.9 Levels of reflective engagements (third of four dimensions of
taxonomy of pedagogic engagements)
Table 8.10 Levels of collaborative engagements(last of the four dimensions
of taxonomy of pedagogic engagements)
CHAPTER-9
Table 9.1 Benefits of PSP as perceived by Students
Table 9.2 Application of Dillenbourg's principles
Table 9.3 Comparison of pre- and post-workshop consolidated ratings
by faculty
APPENDICES
Table A1.1 Importance of twenty-three core engineering and general
professional competencies, as rated by Indian engineers and
managers working in Indian and multi-national IT companies
Table A1.2 Importance of teaching methods as rated by Indian engineers and
managers working in Indian and multi-national IT companies
Table A3.1 Comparison of competencies examined in SPINE-based and

revised study

XXi

220

224

229

231

234

238

239

241

242

259
266
276

307

309

312

Table A3.2

Table A4.1a

Table A4.1b

Table A9.1
Table A10.1

Table A10.2

(1) part-I

Table A10.2

(1) part-II

Table A10.2
(i1)

Table A10.2
(ii1)
Table A10.3
Table Al11.1
Table A11.2
Table A11.3
Table A11.4
Table A12.1

Table A12.2

Table A12.3

Table A12.4
Table A13.1
Table A13.2
Table A13.3

Table Al16.1
Table A16.2

Importance of thirty-five competencies as rated by Indian engineers
and managers working in Indian and multi-national software companies
(Revised Study 2007)

Mapping of thirty-five competencies with the Final set of twelve core
competencies, part —I

Mapping of thirty-five competencies with the Final set of twelve core
competencies, part-II

A summary of students’ responses on ‘questioning in the class’
Effectiveness of educational experiences for competency enhancement
of software developers

Perceived effectiveness of pedagogical engagements

with respect to enhance of specific competencies — basic competencies:
perceptions of software professionals

Perceived effectiveness of pedagogical engagements

with respect to enhance of specific competencies — basic competencies:
perceptions of software professionals

Perceived effectiveness of pedagogical engagements
with respect to enhance of specific competencies — habits of mind:
perceptions of software professionals

Perceived effectiveness of pedagogical engagements

with respect to enhance of specific competencies — attitudes and values:
perceptions of software professionals

Effectiveness of educational experiences for competency enhancement
of computing students

List of verbs used for assessing engineering education wrt Bloom’s
taxonomy

Ordered lists of activity verbs

Comparison of Bloom level-specific normalized consolidated ratings
Correlation between different consolidated ratings
Anecdotes about the best lectures offering most effective learning
experience, as recalled by senior computing students
Anecdotes about the best lectures offering most effective learning
experience, as recalled by sophomore computing students at the
beginning of their 3rd semester

Anecdotes about the best lectures offering most effective learning
experience,as recalled by faculty members of engineering institutes
from their student life

Anecdotes about the best lectures delivered by the faculty members
of engineering institutes, as recalled by them

Attributes to characterize variety of lecture format in
engineering/software development education

Comparison of computing students’ perception of effectiveness

and usage rate of lecture format attributes
Attribute category-wise consolidated ratings by computing students
Format for reflective report on final year project
Reflective assignments in three final year elective course

xXxii

313

314

315

320
322

324

325

326

327

329
331
334
336
336
337

338

339

340
341
343
343

346
346

Table A16.3

Table A16.4

Table A17.1
Table A17.2
Table A17.3
Table A17.4
Table A17.5
Table A17.6
Table A17.7
Table A17.8
Table A21.1
Table A21.2

Table A23.1

Table A23.2

Two sample assignments in ‘software arteology,” emphasizing
on reflection

Some sample responses to last sub-question (now what?) of
some assignments (Table A16.5)

Mentor feedback on infusion of web technology

Mentor feedback on infusion of multimedia technology
Mentor feedback on infusion of mobile technology

Mentor feedback on infusion of security aspects

Mentor feedback on infusion of systems design aspects
Mentor feedback on infusion of PSP (time logs)

Mentor feedback on infusion of open source

Mentor feedback on infusion of PSP (Bug log)

Sample laboratory assignment for introduction to programming
Comments of students on their experience with collaborative

peer programming

Alumni reflections on the effect of mentoring on mentors’
competencies

Advantages of mentoring as identified by alumni

ANNEXURES

Table AN1.1a A chronological list of some important theories about

human learning, intelligence, and thinking (pre 1990)

Table AN1.1b A chronological list of some important theories about

Table ANI1.1

Table ANG6.1

Table AN9.1
Table AN9.2
Table AN9.3
Table AN9.4
Table AN9.5

human learning, intelligence, and thinking (1990 onwards)
Accreditation Criteria and Weights defined by NBA, India for
Diploma (Dip.), Undergraduate (UG), and Postgraduate (PG)
Engineering Programs

Polya’s recommended cognitive engagement of mathematical
problem solving

Senge’s laws of systems thinking

Characteristics of systems thinkers

Levels of systems thinking expertise (Dennis Meadows)
Boulding’s hierarchy of real world complexity

Schwartz Value Categories

xxiii

347

347

348
348
349
349
350
351
352
353
359
360

363

364

366

367

371

378

383
383
384
385
385

XX1v

CHAPTER 1: INTRODUCTION

Creativity combined with our understanding of nature, material, medium, other humans, and
artifacts has always helped us in devising new processes for performing old tasks, and also
devising new tasks in our personal, social, professional, and organizational lives. New processes
and tasks require the use of existing artifacts in new ways, and also the creation of new artifacts.
Often new processes bring advantages in terms of increased speed, reliability, scale, safety,
comfort, or flexibility and/or savings in effort, energy, material as well as costs. In addition,
humans have also used themselves both as the source of raw energy through physical labor, and
as controllers through psychomotor skills to perform these tasks. Taming of animals, tapping of
natural energy, steam engine, electricity, etc., helped to reduce our role as energy suppliers.
Mankind could focus more on the other two tasks of being the controller and process designers.
With the availability of control systems in the last century, our role as controllers has also
reduced significantly, and more human energy is now available for the creative work of devising
new processes and new tasks. Artisans, engineers, designers, and technologists play a key role in
identifying the opportunities and developing new processes and tasks in diverse domains of
human activities. Strength, malleability, expected life, and various other affordances of the
material and medium influence and constrain our design activities. The digital computer is the
most malleable artifact created so far, and it can be further used as a material and a medium to
rapidly create a large variety of new artifacts in a very flexible way. This power has given an
unprecedented boost to the development of new processes, as well as new tasks in all domains of

human activities.

Engineers and technologists plan, design, develop, test, integrate, deploy, maintain, improve,
reverse engineer, re-engineer, as well as evaluate components, products, applications, systems,
services, standards, processes, and methodologies encompassing various artifacts. Their
disciplines are differentiated with each other on the basis of the artifacts they build and focus on.
In order to identify and create opportunities of devising new processes and ways in various
domains, they need to understand the needs and nuances of those domains as well as humans’
individual as well as social behavior. This is often the most critical and creative task, especially

when the subsequent engineering processes are very rapid and fairly stabilized. US Accreditation

Board for Engineering and Technology (ABET) defines engineering as follows: “Engineering is
the profession in which knowledge of the mathematical and natural sciences gained by study,
experience, and practice is applied with judgment to develop ways to utilize, economically, the

materials and forces of nature for the benefit of mankind.”

Unlike science, engineering and technology are oriented towards conception, design, invention,
development, application, improvement, and production with an emphasis on current and future
needs of society. They require holistic thinking involving integration of many competing
demands, theories, data, and ideas as well as decision making based on incomplete data and
approximate models. The theorizing attempts go beyond the search of causes, and are focused on
new processes and applications. Engineering is not just applied science; it is as much about
process as it is about technical knowledge. An engineer’s task involves conceiving and
designing products, processes, and systems, and to predict their behavior using science.
Scientists create models to understand natural phenomenon with known outcomes, whereas
engineers create models to predict outcomes for systems. The use of heuristics distinguishes
engineering methods from scientific methods. Engineering is further distinguished from
Technology by its focus on more complex problems that involve use of more diverse resources,
more diverse groups of stakeholders with varying needs, wider range of conflicting technical,
engineering and other issues, more abstract thinking, originality, infrequently encountered issues,
and work progress in spite of insufficiency of standards and codes of practice. Technological
work needs mastery of discipline and context specific current knowledge, techniques, skills, and
tools. A higher focus on quality and timeliness are its distinctions. Broadly, the educational
programs of engineering and technology recognize many of these distinguishing aspects of the

discipline and respond in various ways through their curriculum and educational methods.

As per the ACM-IEEE joint report [1], Computing means any goal-oriented activity requiring,
benefiting from, or creating computers. It includes: designing and building hardware and
software systems for any of a wide range of purposes, processing, structuring and managing
various kinds of information, doing scientific studies using computers, making computer
systems behave intelligently, creating and using communications and entertainment media,

finding and gathering information relevant to any particular purpose, etc. Computing engineers

are concerned with four kinds of artifacts: (i) software, (i1) digital ICs and other hardware, (iii)
embedded systems, and (iv) digital content. For the last four decades the demand of software
developers has been increasing at an accelerated rate. Jalote [2] summarizes the growth of Indian
software industry as follows: “It started primarily as a subcontractor for technical manpower. ...
shifted to doing complete parts or phases of projects, usually the later phases of coding and
testing. ... matured to providing complete solutions offshore. ...most leading companies are
operating in the high-end software services business. ... a large number of software companies

matured to CMM level 4 or level 5...”

In the last few years, there has been an exponential growth in engineering education, especially
in India and China. This growth has led to an era where fresh graduates of computer science
related disciplines are easily absorbed in the industry. Indeed, to satisty the growing demand for
software, very large volumes of engineers from other engineering disciplines are also absorbed
as well. All engineering graduates are considered to be ready for a direct fit with the
requirements of the IT industry [3]. The core competencies developed in all engineering
disciplines are considered to be sufficient, and the companies rely more on their own finishing

schools for specialized computer science and IT knowledge.

With the advent of the Internet, it has become possible to outsource software development tasks
to remote sites, making India an attractive destination, both technically as well as financially.

This has resulted in an exponential increase in the demand of software developers in India,

especially in the last decade. It has become a challenging opportunity for Indian academic
institutions to provide an adequate pool of software professionals of desired quality to the rapidly

growing Indian software industry.

To meet this challenge, the Indian academic institutions have been able to expand fast and_satisfy
the industry’s need of software professionals quantitatively. However, the quality of ‘most of”
the professionals they generate is below the desired industry expectation. The software industry
associations, as well as the academic regulatory bodies, have repeatedly shown their concern
emphatically about the sub-standard quality of ‘the majority of” fresh software professionals [4].

Most of the software houses spend around six months to one year in their post-induction, in-

house software development education and training of fresh engineers. It clearly indicates that
there is a significant gap in the technical education that academic institutions impart to their
software graduates, and what technical expertise the industry expects in them. A competence
mismatch exists between academic technical offering and software industry employability. We

elaborate upon this in the second and third chapters.

It is not proper to consider software industry as monolithic group. Even in India, there are
different kinds of companies, those involved in software services, and those involved in new
product development in large or small companies. There are huge differences in the
requirements of these categories. Often, India’s highly dominant software service industry’s
immediate requirements dwarf other requirements, which are more futuristic and even more
compatible with the goals of excellence in higher education. In sections 2.9 and 2.11, we
especially examine the needs different kind of software industry. A NASSCOM-KPMG study
[5] argues that key skills required by the industry are not met by the current educational system.
It quotes the following observations from a World Bank study on science and technology
manpower in India published in 2001: (i) faculty lacks industry rigor, R&D background, and
exposure to tools, (ii) students lack opportunity and encouragement for creative thinking, (iii)
inflexible and rigid curriculum is not exposed to innovation/industry, (iv) teaching is
examination oriented without focus on communication and problem solving skills, (v)
continuous evaluation is often not systematized, and (vi) examinations are often memory based,

and encourage partial studying through ample choice.

Organizations and their clients have limited tolerance for inept performance. Often engineers
engage directly with clients in complex interactions. Educators are expected to teach
competencies that are relevant and enhance an organization's performance [6]. Stephen says,
“Anyone not aware that this is a time of change in higher education is asleep at the helm” [7].
Universities around the world have become increasingly aware of the need to be able to
demonstrate, in a quantifiable manner, the skills and attributes that their graduates are imbued

with during their learning experience [8].

State of Indian Contribution in Computing Research

There are over a million software engineers working in India. Further, there are over two
thousand colleges offering degree level educational programs in computing. The IT industry’s
share in India’s GDP is more than 7%. Seven Indian IT companies have been listed in the top 15
technology outsourcing companies of the world. However, Indian organizations’ contribution to
computing research literature remains very meager. The ACM digital library gives access to
almost 0.3 million papers. Less than 0.7% papers have been contributed by authors having
Indian affiliations. Before 2005, this fraction was only 0.3%. During 2005 to Feb 2010, it
increased to 1.3%, which still is a very small number, given the huge number of software

engineers and colleges offering computing degrees in India.

A focused search (using affiliation option under advanced search) in March 2010 showed that
some of the largest India-based IT companies, i.e., TCS, Infosys, Wipro, HCL, Satyam, Oracle
India, have together so far collectively published less than 100 papers that are indexed on this
digital library. This library does not include a single paper from other very large Indian IT
companies like Tech Mahindra, Patni Computers, and Birlasoft. On the other hand, Microsoft
India and IBM India have published approximately 300 papers, and Microsoft and Google have
contributed 3,885 and 582 papers respectively. This highlights that the mismatch is not just in
terms of immediate specific needs of industry, but also long term goals of professional
excellence. This numbers highlight the gross mismatch between published contributions and the
size of India’s IT industry, and the number of computing professionals in the industry or

academia. In addition to meeting industry’s short term needs, software development education

can also stimulate the overall growth of India-based computing research contributions by

arousing interest among future software developers.

Section 1.1: Basis for the Need for Reforms in Computing Education

This thesis attempts to contribute towards bridging this competence mismatch by providing ideas
for instructional reforms in computing education with special reference to software development.
Unlike other disciplines of engineering, computer scientists have always remained interested in
understanding the phenomenon of ‘learning.” Artificial intelligence and computer based teaching

were the earlier sub-disciplines within computing that required and encouraged computer

scientists to understand various issues associated with ‘learning’. The International Federation
for Information Processing (IFIP) established a technical committee on education in 1963. In its
very early years, The ACM also founded special interest groups SIGCSE (Special Interest Group
on Computer Science Education) and SIGCUE (Special Interest Group on Computer Uses in
Education). More recently, the ACM has started SIGITE (Special Interest Group on Information

Technology Education).

Reforms in engineering education have a long but slow history. Felder [9] remarked, “We teach
primarily mechanics, and not reasoning methods; memorization and routine application, and not
analysis, synthesis and evaluation. We don’t encourage creativity and independence of thought,
and in fact often do our best to discourage them.” Sadly nothing much has changed on the
ground. The community that is responsible for transforming the lifestyle of the world has not yet

transformed its own educational process.

Many engineering faculty have never practiced engineering [10]. The curriculum’s focus on

content is disconnected from engineering practices [11-12]. Felder and Brent [13] reported on
some recent studies that measured the intellectual growth of engineering students during their
studies using Perry’s model of epistemological development [14]. It was observed that the
engineering education failed to elevate a significant number of students to level 5 as per Perry’s
nine-level model, and the average growth after four years of college was only one level, with

most of the change occurring in the last year.

Our exploratory study has shown that the kind of activities that a typical engineering student is
generally engaged in, does not help in enhancing creativity, critical thinking, and innovative
problem solving [11-12] However, the last decade has seen an increasing recognition of the need
for transformation. A certain section of policy makers, universities, accreditation agencies, and
faculty members have made tremendous contributions to bring the much needed transformation.
Many accreditation agencies have even transformed their accreditation criteria in the last few
years. This is expected to drive an unprecedented transformation of instructional programs in
responding institutes. This challenge can only be met by undertaking large scale research in

engineering education.

Recognizing the need to re-engineer the engineering education a recent report ‘Educating the

Engineer of 2020’ [15] suggests that “the engineering education establishment should endorse

research in engineering education as a valued and rewarded activity for engineering faculty as a
means to enhance and personalize the connection to undergraduate students, to understand how

they learn, and to appreciate the pedagogical approaches that excite them.”

One of the founding fathers of modern education, Franklin Bobbitt observed that curriculum
should aim to teach those subjects that are not sufficiently learnt as a result of normal
socialization. In 1920s, he proposed a five step process for curriculum design: analysis of human
experiences in a field, job analysis to identify specific activities, deriving objectives to identify
the abilities required for specific activities, selecting objectives as the basis of students’
activities, and planning in detail. Paulsen and Peseau [16] proposed a framework of Zero Based
Curriculum Review process that starts with first operationalising the curriculum goals as
categories of required professional competencies, and then identifying appropriate knowledge
base learning objectives and also behavioral objectives in terms of professional practices, and

skills with respect to required professional competencies.

Woods et al [17] proposed the following process for engineering faculty: (i) identify the skills
you wish your students to develop and communicate their importance to the students, (ii) use
research, not personal intuition, to identify the target skills, share some of the research with the
students, (iii) make explicit the implicit behavior associated with successful application of the
skills, (iv) provide extensive practice in the application of the skills, using carefully structured
activities, and provide prompt constructive feedback on the students’ efforts, (v) encourage
monitoring, (vi) encourage reflection, (vii) grade the process, not just the product, and (viii) use a

standard assessment and feedback form.

An exploratory informal discussion with large number of faculty members of engineering
institutes with teaching experience ranging from a few months to several decades, and coming
from different departments of engineering, sciences and management, it was found that most

were not aware of any literature in educational research. Hence, by and large engineering

education methods have remained unaffected by such research. In 1982, Professor Richard
Felder [9] presented a revolutionary thought that ‘does engineering education have anything to
do with either one.” The curriculum and educational committees of the ACM, IEEE, AIS,
AITP, LACS, IFIP, etc. have mostly ignored the rich educational literature related to curriculum
design, instruction design, assessment methods, theories of learning, human development,
epistemology, and sustainable development. Only a few of the available theoretical models and
frameworks in these education related areas have been examined, reviewed, and/or used by the

researchers of software development education.

UNESCO has labeled 2005-2015 as the decade of education for sustainable development. In this
decade, bodies like National Science Foundation (NSF), USA and the National Academy of
Engineers (NAE), USA have emphasized the need of systematic research in ‘learning’ to
transform engineering education. In 2006, NAE identified the following research areas for
engineering education [18]:

1. Engineering Epistemologies: Research on what constitutes engineering thinking
and knowledge (technical, social, and ethical aspects) within social contexts now,
and into the future.

2. Engineering Learning Mechanisms: Research on engineering learners’ developing
knowledge and competencies in context.

3. Engineering Learning Systems: Research on the instructional culture, institutional
infrastructure, and epistemology of engineering educators.

4. Engineering Diversity and Inclusiveness: Research on how diverse human talents
contribute solutions to the social and global challenges and relevance of our
profession.

5. Engineering Assessment: Research on, and the development of, assessment
methods, instruments, and metrics to inform engineering education practice and

learning.

Section 1.2: Evolution of Software Development Education

In this section, we discuss the evolution of software engineering education. Table 1.1 gives a list

of some of important reports examined in this discussion.

Table 1.1: Some important reports on computing curriculum

1. ACM curricula committee for CS (1965) 18. ACM/IEEE (UG and PG) (1991)
2. ACM Curricula for CS (UG and PG) (1968) 19. Model Indian curriculum for CSE (UG) (1993)
3. COSINE’ IEEE for CS in EE (1968) 20. IFIP curriculum for CS (UG) (1994)
4. COSINE’ IEEE for CS in EE (UG) (1971) 21. LACS curriculum for CS (UG) (1996)
5. ACM curriculum on IS (UG) (1972) 22. ACM curriculum on IS (UG) (1997)
6. ACM curriculum on IS (PG) (1973) 23. IFIP curriculum for Informatics (UG) (2000)
7. 1IEEE Model Curricula for CSE (UG) (1975) 24. AICTE curriculum for CSE (UG) (2000)
8. IEEE Model Curricula for CSE (UG) (1977) 25. AICTE curriculum for IT (UG) (2000)
9. ACM Health Computing Curriculum (UG and PG) | 26. ACM IEEE curriculum on computing (2001)
(1978) 27. SEI-CMU Software Engineering Body of
10. ACM Curricula for CS (UG) (1978) Knowledge Ver 1.0 (1999)
11. ACM Curricula for CS (PG) (1981) 28. ACM/AIS/AITP curriculum for IS (2002)
12. ACM curriculum on IS (UG and PG) (1982) 29. IEEE SWEBOK (2004)
13. IFIP curriculum for CS (1984) 30. ACM-IEEE curriculum for SE (2004)
14. CMU curriculum for CS (UG) (1985) 31. ACM-IEEE curriculum for CE (2004)
15. LACS Model Curriculum for CS (UG) (1986) 32. ACM- IEEE curriculum for CS (2005)
16. ACM report on Computing as a discipline (UG and | 33. ACM-IEEE curriculum for IT (2005)
PG) (1989) 34. LACS curriculum for CS (UG) (2007)
17. SEI model curriculum for SE (UG) (1990)

Beginning of Computing and Computing Education

Computing in the form of processing: understanding, creation, manipulation, communication,
expression, and rendering of symbols has always been a very important natural activity of human
mind. Though the use of the term computing is not limited to be used in the limited context of
processing of formal mathematical symbols, computer software transcends such boundaries to
support processing of diverse range of symbols. With the invention of computing machines, the
field of computing has advanced beyond one’s imagination. Computing has transformed many
aspects of everyday lives for a vast majority of mankind. The role of computing has been
evolving from enhancing efficiencies through otherwise by-passable support systems to creating
real-time mission critical systems. The initial application domains driving computing till 1960s
were code breaking, engineering calculations, scientific simulation, as well as repetitive data
processing in defense, space, government, insurance, banking, and some other large business
organizations. Some attempts of language translation and information retrieval were also made
even in 1950s. Outgrowing the initial goal of doing repetitive mathematical calculations,

computers have already permeated almost all spheres of human activities even including arts and

sports. The socio-cultural effect of computing and communication technology is much wider,
deeper, and faster than the effect of other technologies. Computing has also been used to expand

our understanding of mind and reasoning.

India’s decimal number system inspired ninth century Persian mathematician Mohammed ibn
Musa al-Khowarizmi to write a book on calculating using this number system. Based on his
name, Algorism slowly started referring to arithmetic operations in this number system. These
algorisms were strictly mechanical procedures to manipulate symbols. They could be carried out
by an ignorant person mechanically following simple rules, with no understanding of the theory
of operation, requiring no cleverness and resulting in a correct answer. The word Algorithm was
introduced by Markov in 1954 [53]. Before the 1920s, the word computer was used for human
clerks that performed computations. In 1936, Turing and Zuse independently proposed their
models of the computing machine that could perform any calculation that can be performed by
humans. In the late 1940s, the use of electronic digital computing machinery based on stored

program architecture became common.

In the late 1950s saw the arrival of high level languages. The Association of computing
Machinery (ACM) was founded by Berkeley in 1947. It started its first journal in 1954.
Mathematical logic and electrical engineering provided the foundation for building modern
computers. The personnel training responsibility was largely taken up by the manufacturers
themselves. Most early programmers were math graduates, many of them were women. In the
1950s, a large numbers of private computer schools emerged to fill the burgeoning demand [19].

The word software was coined by John Tukey, famous statistician, in 1958. The words computer

science, information systems, information technology, system analysis, and system design were

being used even before. Dunn of Boeing [20] defined Information Technology as a body of

related disciplines which lead to methods, techniques, and equipment for establishing and
operating information processing systems. He also provided a simple definition of information
systems as a connective link between five basic management functions of defining objectives,
planning, gathering resources, execution, and control. In 1968, the computer science study group
of NATO Science Committee coined the word software engineering to imply the need to

transform software design and development into an engineering-type discipline.

10

Till 1970’s, computing was often regarded as a subfield of one or more of a mixture of
disciplines of mathematics, operation research, electrical engineering, statistics, industrial
engineering, and management. Many of existing undergraduate programs of these disciplines
were modified to accommodate some of the naturally fitting aspects of computer science.
Mathematics departments taught practice and science of programming and numerical analysis.
The electrical engineering department emphasized on design and construction of electronic
digital computer, and management schools paid more attention of design of information systems.
Initially, masters and later undergraduate degree programs and departments of computer science
were emerging as offshoots of the mathematics departments in colleges of science and arts.
Stanford established its computer science department in 1962, and by the late 1960s many
universities in United States had started computer science departments. Concurrently, the
management schools and others interested in business data processing applications focused on
information systems, and started developing these programs. The engineering schools offered
computer technology and computer science programs, and also computer as an option in various

existing programs.

Early Curriculum Recommendations by ACM

The Association of Computing Machinery (ACM) unified the pioneering efforts of several
universities and stimulated the process through its two independent curriculum committees
established in the mid 1960s. The International Federation for Information Processing (IFIP)
established a technical committee on education, TC-3, in 1963. Simultaneously, Various other
professional agencies like the Computer society of the Institute of Electrical and Electronics
Engineers (IEEE), and Data Processing Management Association (DPMA) made significant

contributions in these efforts.

The first ACM Curriculum Committee on Computer Science (C’S) was formed in 1964. In its
preliminary recommendations [21], the committee posited that computer science is concerned
with information in much the same way as physics is concerned with energy. It mainly identified
careers in Systems programming and application programming for computer science students. It

distinguished computer science from mathematics by highlighting that while mathematician is

11

interested in discovering the syntactic relation between elements based on a set of axioms which
may have no physical reality, the computer scientist is interested in discovering the pragmatic
means by which information can be transformed to model and analyze the information
transformation in the real world. The final report, Curriculum’68, considered development of
programming skills as an important by-product rather than the main purpose of the computer
science programs. It emphasized that computer science programs must provide the student with
the intellectual maturity to stay abreast of their discipline, and also interact with other disciplines
through liberal education. The curriculum recommendation [22] identified three major categories
of computer sciences subject areas. These were information structures and processes,
information processing systems, and methodologies. The first category of information structures
and processes concerned with representations and transformations of information structures, and
theoretical models for such representations and transformations. It included data structures,
programming languages, and models of computation. The second category of information
processing systems included computer organization, translators and interpreters, computer and
operating systems, and special purpose systems. The last division of methodologies focused on
broad areas of applications of computing which have common structures, processes, and
techniques. It incorporated numerical mathematics, data processing, symbol manipulation, text
processing, computer graphics, simulation, information retrieval, artificial intelligence, process
control, and instructional systems. The committee recommended the inclusion of at least two
courses from each of three categories for a masters program in computer science. For the
undergraduate program, the essential computer science courses included introduction to
computing, computers and programming, introduction to discrete structures, numerical calculus,
data structures, programming languages, computer organization, and systems programming.
The committee recommended the inclusion of at least two of the following computer science
courses for indicated specialization: (i) compiler construction for applied systems programming
and data processing application programming, (ii) switching theory for all other than scientific
application programming, (iii) sequential machines for computer organization and design, (iv)
numerical analysis-1 for scientific application programming, and (v) numerical analysis-II for

scientific application programming.

12

Early Engineering Perspectives

Electrical engineering departments identified computers as one of their main components. The
Committee on Computer Science in Electrical Engineering (COSINE Committee), National
Academy of Engineers (NAE), USA published recommendations for infusing computer science
in electrical engineering curriculum. This led to the formation of computer engineering programs
in electrical engineering departments. Developments in computers started to help in developing
new methods of solving engineering problems. The COSINE committee strongly recommended
[23] a total reorientation of electrical engineering curricula from analog and continuous to digital
and discrete. In 1968, the computer science study group of NATO science committee coined the
word software engineering to imply the need to transform software design and development into
an engineering type discipline. This, however, was given legitimate attention as an academic

discipline in the late 1970s.

In 1971, the COSINE committee recommended the start of a new undergraduate program called
computer engineering within electrical engineering departments. This program was conceived as
an engineering program with emphasis on the concepts of design of software, hardware, and
systems. It proposed three specialization options under this program: (1) digital systems
engineering, (2) software systems engineering, and (3) theoretical computer science and
engineering. A juxtaposition of the COSINE subject list with the list suggested in C°S’
Curriculum’68 for computer science shows that, while on one hand, C’S recommendations had
ignored the hardware and design aspects, the COSINE recommendations ignored discrete
structures and data structures. In 1975, IEEE computer society education committee identified
and addressed this dichotomy in their recommendations, and proposed a new undergraduate
program on computer science and engineering integrating courses in hardware systems, software
systems, and theory of computing [24]. These courses were expected to constitute approximately
50% course requirement. The remaining 50% courses were to be in the areas of humanities and
social sciences, physics, chemistry, communication, mathematics, economics, electronics, and
engineering sciences as per Engineers Council for Professional Development (ECPD) guidelines.
Sloan [25] and Engel [26] compared the new evolving recommendations of C’S and model

curriculum of the IEEE Computer society and concluded that the two were virtually same with

13

respect to their recommendations in the area of software engineering and program design. Their

emphasis differed with respect to hardware and logic design on one hand and theory on another.

Early Information Systems Perspective

The Curriculum Committee on Computer Education in Management (C’EM) of ACM published
a position paper in 1971 [27]. Education for improving organizational productivity through
information technology was the main motivation for this and subsequent committees in this area.
This committee felt concerned about the unfavorable attitude of computer science departments
towards applied problems. A few years later, this committee evolved into the ACM Curriculum
Committee in Information Systems (C’IS). In its recommendation report submitted in 1972 and
1973 [28-29], it identified requisite knowledge and abilities of information system graduates and
grouped these into six categories of people, models, systems, computers, organization, and
society. The ACM curriculum committee of computer science did not pay specific attention to
this aspect until 1980s, and depended on general liberal education to provide the necessary

breadth without specifying their specific recommendations.

These two C’EM reports explicitly recognized two categories of information system programs at
masters as well as undergraduate level: (1) technically trained systems designers, and (2)
managerially oriented information analysts. The committee recommended the inclusion of five
major topic areas of computer science, information systems, management, operations research,
and systems design techniques. In 1973, this committee published its recommendations for
undergraduate programs, and strongly argued for starting undergraduate programs in information
systems in the light of very high manpower requirement at programmer and systems analyst
level. It encouraged the computing centers as well as departments of computer science, business,
electrical engineering, and industrial engineering to start undergraduate programs with their
chosen concentration options on technology or organization. The committee also recommended

one-year masters program in information systems for these students.

A few years later, this committee evolved into the ACM curriculum committee in information

systems (C’IS). It is not clear why the committee chose not to explicitly include computer

14

programming as a compulsory course in the technology concentration. This anomaly was

corrected in the 1982 recommendations of CIS.

In later decades, a new trend of domain specific computing programs emerged. This trend
resulted in establishment of many programs like medical or health informatics, geo-informatics,
bio-informatics, chem-informatics, social informatics, and so on. In 1978, the ACM curriculum
committee on health computing published its recommendations [30]. In many of these domain
specific programs, up to 50% of the course content was related to domain specific foundations
and domain specific aspects of informatics. The remaining courses focused on generic
mathematics, statistics, information systems, computer science, and general education. ACM
curriculum committee cautioned against somewhat frivolous proliferation of specialized

programs [31]. However, in current era, specialized programs addressing the needs of specific

domains are becoming important.

The 1981 report of C’IS [32] emphasized that the demand of personnel with technical and
organizational skills is relatively much greater than the demand for solely technical skills or
organizational skills. It expressed its general concern over the ad-hoc basis of instruction of
systems analysis and design. In its 1982 report [33], this committee proposed separate MS and

MBA programs for the two streams of information systems.

As per the 1982 recommendations of C’IS, considering the nature of the professional work of

information system specialists, a strong emphasis (more than 20%) was placed on social sciences

and humanities including economics, psychology, and English. It was argued that such a

background helps in development of many essential attributes of requirement and systems
analysts. The hiring of computing professionals in India has always been highest for information
systems and software engineering related work. However, it is surprising that such undergraduate
engineering programs have not been developed in India. The three year Master of Computer
Application (MCA) programs also have a relatively heavier dominance of computer science and
management related courses, and pay only little attention to these aspects related to the

computing profession. The lack of strong industrial participation in curriculum design,

15

professional inclinations of curriculum designers, and educational politics in India may have

contributed to this phenomenon.

Liberal Arts Perspective

The model curriculum recommended by Liberal Arts Computer Science Consortium (LACS)
attempted to define computing program in terms of their approach towards data structures and
algorithms [34]. It proposed that a computer science program is more interested in the formal
properties of data structures and algorithms, a computer engineering program focuses more on
their realization, and an information systems program is more orientated towards applications.
Even after two decades with many changes in computing arena, in its 2007 model curriculum,
LACS has only slightly modified their original definition of computing programs. The
realization part has now been partitioned into two categories of linguistic and hardware

realization.

The 1986 report and all subsequent reports of LACS, put more emphasis on discrete mathematics
and place it along with first introductory computing course before other mathematics courses. In
addition to two introductory computing courses, the 1986 report proposed four core computing
courses on computer organization, algorithms, theory of computation, and principles of
programming languages. These recommendations were only marginally revised by the
consortium even after ten year [35]. In its 2007 recommendations, software development has

been added to this category.

A typical liberal arts computer science program is more broad-based than specialized programs,

and 1t includes more than 50% non science courses in the area of humanities, social sciences,

etc., [36]. It is unfortunate, that such programs do not exist in India, and software development

education is mainly linked with engineering programs. This possibly has contributed to a nearly

non-existing or marginal inter-disciplinary activity between computer science and these areas. In

the west, it is not uncommon to have a degree in computing and philosophy, computing and art,
and so on. Perhaps, it is time to consider the option of a liberal arts oriented design degree with

specialization in computing in India.

16

Changing Role of Mathematics in Computing Curriculum Recommendations

In the first decade, the computer science curriculum was lesser oriented towards business data
processing needs. Interestingly, discrete structures and three courses in numerical methods were
not considered as part of mathematics courses. Instead they were included as essential computer
science courses. The committee further suggested a minimum of six mathematics courses for
undergraduate programs. The committee proposed essential inclusion of courses in related areas
of mathematics, statistics, electrical engineering, philosophy, linguistics, industrial engineering,
and management. Overspecialization at undergraduate level was discouraged by the committee,
and it also encouraged the deep involvement of computer science faculty in computer
applications. Scientific simulation and engineering calculation oriented applications encouraged

to put a strong emphasis on numerical methods.

The strong emphasis on numerical methods decreased gradually through subsequent

recommendations, and it was eliminated from the core in nearly all subsequent recommendations

of the ACM, IEEE Computer society, as well as other bodies except International Federation of

Information Processing (IFIP). Computing curricula [37] does not specify any minimum

required weight of numerical techniques for any of the five computing discipline — computer
science, computer engineering, information systems, software engineering, or information

technology. It is not recommended even as an elective course for the later three disciplines.

On the other hand, discrete mathematics was increasingly being recognized as more central and

fundamental for computer science than calculus [38-40]. There were proposals to teach discrete

mathematics as the first mathematics course, and the model curriculum for liberal arts degree in
computer science responded favorably [41] [34]. In 2001, 76% faculty members are reported to
have felt that discrete mathematics should be a prerequisite to data structures [42]. However,
many universities and institutions were slow to respond to this change. A survey [43] showed
that even in late 1980s, nearly 30% universities and institutions in USA did not include discrete
mathematics, and nearly 27% maintained numerical algorithms in the core curriculum of

computer science.

17

Possibly because of IFIP influence, for quite some time, numerical techniques continued to be
part of the core curriculum of many computing programs in India for some time. The current
model curriculum recommended by the All India Council for Technical Education, India [44-45]
has not included numerical mathematics as a core course for both the commonly offered
undergraduate computing programs of engineering institutes: (1) computer science and
engineering, (2) information technology. Unfortunately, even discrete mathematics is excluded

from the list of AICTE’s information technology curriculum.

Over the decades, with the advent of faster, cheaper, smaller, reliable, networked, and mobile
hardware, as well as user friendly and multi-layered software, the computer applications have
rapidly expanded much beyond the scope of computational science around numerical techniques,

modeling and simulation, and operation research. Lethbridge [46-48] found that in the list of the

most important twenty-five subject topics of the university curriculum, professional software

engineers did not include a single topic of mathematic. Though computational science is
recognized as an extremely valuable closely related discipline, the recommended core body of
knowledge of computing curricula with specialization in computer science, computer
engineering, software engineering, information systems, or information technology, do not

include these courses any more [49-50].

Further, the ACM-AIS-IEEE joint report [51] has recommended a lowered minimum
requirement for mathematical foundation for programs in software engineering, information
systems, and information technology. ACM-IEEE joint curriculum recommendation on software
engineering [52] has included only one topic of mathematics ‘discrete mathematics’ as part of
the essential core. Recently, differentiating computer science from mathematics, Fant [53]
argues that rather than computational issues, computer science is more concerned with issues

related to creation and actualization of process expressions.

Human and Social Aspects in Computing Curriculum

Till the 1970s, sociological, economic, and educational implications of developments in

computer science were not considered as major responsibility of computer science. The report

18

recommended that computer science faculty should cooperate with concerned departments to
develop courses in these areas, and computer science students should be encouraged to take these
courses. However, computers were been increasing recognized as agents of social change.
Professional bodies started paying more attention to understanding the social impact of

computing.

In 1976, IFIP added a new technical committee, TC-9: Relationship between Computers and
Society. The ACM curriculum committee also responded to this trend, and included computers
and society as a strongly recommended elective in Curriculum’78 [54]. It was also suggested that
such a course should be taught by computer science faculty. The committee recommended that
meaningful computer applications should be cited and reviewed throughout the elementary
material. The committee posited that structured programming along with social, philosophical,
and ethical considerations are of such importance to the development of computer scientists that
they must permeate the instructions at elementary levels. In all subsequent recommendations of
the ACM, IEEE, IFIP, and others this proposal was further strengthened and this course was
often included in the core. Most of the subsequent recommendations provided a more central
position to this area. IFIP [55] recommended computer and society as part of the core for six
variants of computing programs. Computing curricula [37] specifies ‘2’ as the minimum weight
of legal, professional, ethical, and social aspects on a scale of 0-5 for all their five forms of
undergraduate computing discipline. However, some studies [46-48] showed that in spite of
strong recommendations from professional bodies, this area received lesser than required

attention during formal education in the opinion of responding practitioners.

The C’S published a survey of computer science education [56]. This report was a mere catalog
of various reports and papers without any observations or conclusions. It badly failed to critically
review the previous literature or propose future trends. A year later the committee on computer
science published their new recommendations, Curriclum’78. Mathematics requirements were
mostly unchanged, and the report was criticized for being retrogressive in this aspect. The

committee posited that structured programming along with social, philosophical, and ethical

considerations are of such importance to the development of computer scientist that they must

permeate the instructions at elementary levels. The core computer science and mathematics

19

courses constituted less than 50% of course requirement. Additional course requirements were
proposed to be fulfilled through electives and courses in humanities, sciences, engineering, and

social sciences. General liberal arts requirements were expected to give breadth to the program.

The report was criticized for taking a fragmented approach [38].

In 1981, the C’S submitted its recommendations for master’s level program in computer science.

It prescribed that the basic intention of master program is to develop students’ critical and

professional thinking and intuition to enable the graduates to take sound professional decisions

with awareness of ACM code of ethics. Development of written and oral communication skills,

cognizance with pertinent literature in their field of choice, teamwork, and leadership skills were

also included among the prescribed goals. However, the committee did not make any specific

recommendations to ensure that the curriculum meets the stated objectives. It recommended a list
of thirty masters level courses, and classified into following five categories: (i) programming
languages (six courses), (ii) operating systems and computer architecture (seven courses,
including computer communication networks), (ii1) theoretical computer science (four courses),
(iv) data and file structures (four courses), and (v) other topics (nine courses). The C’S failed to
use this opportunity to make a defining and novel contribution towards curriculum design

through these reports of late 1970s and early 1980s. The curriculum committee’s reports of late

70s and early 80s have been later criticized for being reactive rather than proactive [57].

In the last few years, with the emergence of new specialization tracks of human computer
interaction and also entertainment computing, sociology, art, philosophy, and psychology related
courses have become even more important. Some of the recent programs include many courses
from these areas by replacing courses of natural science, management, and electronics [58].
Currently, out of thirteen technical committees of International Federation for Information
Processing (IFIP), four committees directly relate to human aspect of computing: (1) Education
(working since 1963), (2) Relationship between Computer and Society (established in 1976), (3)
Human-Computer Interaction (working since 1989), and the most recent (4) Entertainment
Computing (founded in 2002). These committees seek to promote use of models, theories, and

methods of social science, human sciences, ethics, psychology, culture, education, and aesthetics

20

in both design and evaluation of user orientated computer systems and humanization of system

design process.

The AICTE model curricula for computing disciplines [44-45] have not taken cognizance of

these developments and place the curricula only in the limited context of natural science,

mathematics, physical aspects of engineering, and business. The important and pervasive context

of human culture and society has not even been included in the agenda.

Beqinning of Consolidation

The 1980s was the period of maturation and organized growth of computer science programs in
many countries, including India. United Nations Educational, Scientific and Cultural
Organization (UNESCO) commission IFIP to propose a modular curriculum especially for
developing countries. IFIP submitted its first recommendations in 1984, and revised
recommendations in 1994. The IEEE Computer society and ACM jointly specified criteria for
the computer science curriculum [59-60]. It mandated a broad based computer science core
giving even emphasis on computer theory, algorithms, data structures, programming concepts
and languages, and computer elements and architecture. It insisted on inclusion of social
implications of computing within the core computer science segment of the program.
Mathematics and science were recognized as supporting disciplines, and the criteria sought to
provide breadth through humanities, social sciences, and other disciplines. Advanced computer

science topics were recommended to be addressed through electives.

The ACM task force in cooperation with Computer society of IEEE [61] started to define the
computing discipline and observed that the three paradigms of theory, abstraction, and design are
equally important and fundamental to computing. Computer science mainly deals with theory
and abstraction, whereas computer engineering deals with abstraction and design. The task force

identified two broad area of competency development: (1) discipline oriented thinking, and (2)

tool usage, with the first being the primary goal of curriculum. It felt concerned about the neglect

of laboratory exercises, team projects, and inter-disciplinary studies. The task force identified
three purposes of laboratories in computing courses: (1) demonstrate how principles covered in

lectures apply to design, implementation, and testing of software and hardware, (2) emphasize

21

the use of tools and processes, and (3) introduce experimental methods. Further, the task force
provided a novel curriculum design framework by dividing each of these sub-areas into three
parts of theory, abstraction, and design. The task force identified nine sub-areas of computing. It

observed the need of diversity and well-intentioned experimentation in computing curricula.

The joint ACM/IEEE-CS curriculum task force published its report in 1991. The report [62]
represented a unified set of recommendations from two major societies in a variety of academic
contexts, including liberal arts, sciences, and engineering. This task force chose to exclude
information systems from its agenda, and included all other variants like computer science,
computer engineering, computer science and engineering, informatics and other similar program

under the single title of computing. It emphasized the importance of breadth, laboratories, social,

ethical, and professional issues, theoretical foundations, communications skills, design

experience, and teamwork. It strongly advocated the integration of social and professional

context of computing along with theory, abstraction, and design into the curriculum. The task

force also identified twelve unifying and recurring concepts that are pervasive throughout the

discipline.

In 1990s that accreditation agencies of engineering programs in some countries, mainly USA,
UK, Australia, Canada, Singapore, and Japan, became explicitly concerned about desired
educational outcome. USA’s Accreditation Board for Engineering and Technology (ABET)

played a stimulating role in this movement.

Goldweber et al [57] reviewed the previous curriculum related literature incorporating some
educational literature. They classified the various pedagogical approaches into six different
categories of viewing computing as (i) mathematics, (i) engineering and design, (iii) art, (iv)

science, (v) social science, and (vi) inter-disciplinary. They identified anthropology, applied

psychology., computer science, cultural studies, economics, ergonomics, ethics, history,

linguistics, management, mathematics, philology. philosophy. semiology, sociology. and politics

as relevant disciplines. It criticized the Curriculum’91 for its coverage of social and professional

context as an afterthought. This group considered the development of truly inter-disciplinary

computing curriculum as the next challenge.

22

Software Engineering Perspective

Wassermann and Freeman [63] argued that computer science forms only a small portion of

necessary education of a software engineer, and software engineering differed from other

engineering that have their foundation in natural sciences. This was a novel observation that

deserved more attention. This observation may have encouraged the subsequent committees to
integrate more content about social and human sciences into mainstream computing courses, as
was observed in some of the later recommendations. They considered a software engineer as a
generalist, and drew an interesting analogy with a family physician who must have wide range of
skills in addition to the core knowledge of medicines and diseases. They posited that a software
engineering is an applied computer scientist, and the curriculum content must include problem
solving, design, implementation, management, and communication skills. In addition to writing
and speaking, the recommended communication skills included willingness to listen to others
and sensitivity to the viewpoints and value systems of others. They also recommended the
inclusion of accounting or economics or business administration, psychology, industrial

engineering practices, and history or political science in the software engineering curriculum.

In his much debated talk called “On the cruelty of really teaching computing science,” Dijkastra
emphasized on formalism [64]. He declared software engineering as a self-contradictory doomed
discipline. He called for banning the anthropomorphic metaphor in computer science, and
insisted that programmer must also give formal proofs for the correctness of their programs. He
advised that an introductory programming course should be taught as a formal mathematics

course, and students should not be required to test their programs through implementation.

Certainly, mathematics education helps in developing some type of problem solving skills.
However, by reducing computer science to formal mathematics, one of the founding fathers of
computer science was under-estimating the huge growth of the software industry, and the
important role software was to play in everyday life. In this debate, some supported him and
others like Hamming, Parnas, Karp, Sherlis and Winograd criticized his ‘extremism’ and
reminded that proofs are tedious and fallible, and engineering is not about optimality or

perfection, it is reasonableness in terms of reliability, cost, time, and effort.

23

The serious shortfall of manpower and software crisis provided the necessary enabling
conditions for the fast emergence of the ‘doomed discipline’ of software engineering as applied
computer science that called for an engineering approach. The Software Engineering Institute
(SEI) was founded in 1984 at the Carnegie Mellon University. This institute made significant
contributions to the development of educational programs in software engineering. This was the

start of some specialized programs in software engineering in USA, and also in Europe [65-66a].

In 1990, SEI presented a model curriculum for undergraduate engineering program in software
engineering. As compared to ABET’s accreditation criteria of engineering program, in this

curriculum, the humanities and social sciences requirement was increased by reducing electives

and mathematics and science components. Further, two ABET categories of engineering science

and engineering design were merged into a single category of software engineering sciences and

design. None of basic engineering science course was retained in this curriculum. In many ways,

this curriculum was a reflection of a twelve year old proposal [63].

A new kind of engineering discipline was finally beginning to get its recognition, which claimed

its foundations in the science of artificial constructs, mind, society, and engineering methods

rather than material. This is a phenomenon that has been largely ignored by Indian engineering

educators, even after so many decades. The curriculum recommendations categorized computing

courses into four categories: (1) software analysis, (2) software architectures, (3) computer
systems, and (4) software process. This indicated the signs of the beginning of integrated

curriculum in computing.

In 1999, SEI-CMU published a report to define the discipline of Software Engineering [67]. The
mathematics requirements included mathematical logic and proof systems, discrete mathematical
structures, formal systems, combinatorics, and probability and statistics. Topics in numerical
methods or calculus were not included. This report also included the computing topics of data
structures and algorithms, computer architecture, operating systems, and programming
languages. The software product engineering related areas were identified as software

requirement, design, coding, testing, and operation and maintenance. Software management

24

areas encompassed management of process, risks, quality, configuration, process, and

acquisition.

Based on a long industry-academia consultative process, SWEBOK [68] provided an excellent
document that elaborates upon ten main knowledge areas under the categories of software
requirements, software design, software construction, software testing, maintenance, software
configuration management, software engineering management, software engineering process,
software engineering tools and methods, and software quality. In a very sketchy manner,
SWEBOK also elaborates upon the desirable topics of related disciplines of mathematics,
computer science, computer engineering, management, project management, quality

management, software ergonomics, and systems engineering.

For the first time in its history of nearly forty years, a computing curriculum recommendation
made some reference to some education theories. SWEBOK elaborates upon technical
competencies that software engineers with four years of experience should have. It identifies ten
knowledge areas. Appendix D in their report suggest the desired level of competence as per
Bloom’s taxonomy to classify various knowledge areas with reference to ten knowledge areas of
software requirements, design, construction, testing, maintenance, configuration management,
engineering management, engineering process, tools and methods, and quality. This report is
currently undergoing a revision exercise, and some more knowledge areas like software

engineering economics are being considered for inclusion.

Deficient Educational Perspective Till the End of Last Century

The 1991 report of the ACM/IEEE-CS curriculum task force was seminal as it approached the
issue with broader educational objectives and looked at the curriculum as a unified artifact.
Leaving the former fragmented approach to curriculum design, this committee tried to create a
connected curriculum [69]. However, this as well as all earlier mentioned curriculum
recommendations related to computer science and engineering, appear to have over-sighted or
ignored the simultaneously growing literature in educational research and curriculum design to

theoretically ground their approach and broaden their perspective.

25

In the absence of such a theoretically grounded perspective of ‘education,’ the recommendations
were highly skewed towards content and application with academic and technology orientation
for curriculum design. These recommendations did not pay sufficient attention to other aspects of
education that are better addressed through incorporation of complementary orientations for
curriculum design. These orientations were cognitive process, society centered, and humanistic
approach for curriculum design [70] Scragg et al [71] called for developing insight based

curriculum through insight-building activities. They argued that computer science is a

fundamentally creative endeavor, and expressed concern at the lack of appropriate vocabulary in

computer science curriculum.

Gersting and Young [72] in their paper “Content + Experience = Curriculum” proposed
experiential aspect of computer science curriculum to complement the content part, and argued
that providing and evaluating experiences is a major responsibility of the faculty. However, even
they did not ground their proposal into educational theories. Meanwhile, Carson [73] argued that

it is not its application, but effect on thinking that makes sciences relevant. He suggested that

teaching within the discipline needs to be subordinated to the central task of teaching about the
whole culture. He expressed concern at the substitution of liberal education’s curriculum goals
of humanism and citizenship with economic and political goals. Clarke and Reichgelt [74]
examined the curriculum of sixty universities and colleges and found that most provided only a

list of the courses, and a summary of the objectives.

Indian Approach

Recognizing the growth potential, Government of India sponsored Indian Society for Technical
Education (ISTE) to propose the first model curriculum in this area. The ISTE interacted with
academia, industry, and professional bodies like Computer Society of India (CSI) and Institution
of Electronics and Telecommunication Engineers (IETE) and proposed a curriculum in 1987.
The group over-sighted most of the important international up-to-date recommendations and
manpower requirement projections with respect to computing education, especially with respect
to information systems and software engineering. It nearly failed to foresee the tremendous

growth of offshore and outsourcing software service industry that already existed even in the

26

1970s, started to take off in the mid 1980s, and was growing fast in the late 1980s and the early
1990s.

The model curriculum proposed by this committee and published by Rajaraman [75] did not
make a mention of this growth or any up-to-date study related to manpower requirement. It only
included an outdated report of 1980 on manpower requirement by the Indian Planning
Commission. He did not mention any rational reasons or arguments for this retrogressive
curriculum that did not find it suitable to put even a single computing course in the first year, and
chose to put discrete mathematics in the fourth semester. The committee ignored the already well
recognized developments in database management and software engineering. This paper also did
not relate itself with the large body of educational research literature. Most surprisingly, none of
the ACM or IEEE reports related to curriculum recommendations are included in the reference
list. Instead only one UNESCO-IFIP [55] recommendation was included as a reference.

However, possibly as an afterthought, for comparison purpose, Denning et al [61] was referred.

Rajaraman [75] distinguished the proposed Indian curriculum from the western model [61] as
one with a bias towards electrical engineering. He did not respond well to the real demands and
trends of the local or global industry. The growth of undergraduate computing education was
slow till the early 1990s. Even in 1993, approximately 3000 students were completing their
undergraduate engineering degree in this discipline. However, the growth of Indian education
programs in this area has been phenomenal in the subsequent years, and this number has
multiplied by more than fifty times in the last last fifteen years. Availability of low-cost desktop
computers is the main contributing factor to this growth. It has fuelled the demand for more
software, and hence trained manpower, especially in the software sector. The setting up of
computational facilities in educational institutes became much cheaper. This phenomenon was
largely over-sighted or under-estimated by the curriculum designers. Even today, the curriculum
of many universities has not deviated much from the earlier model curriculum. Rajaraman’s
paper raised the issue of faculty shortage; the issue is much more serious today. Every year, more
than 2,00,000 undergraduate students enter colleges to study computing courses. However, most

of the required knowledge related to information systems and software engineering is picked up

on the job.

27

The model curricula designed by AICTE, India [44-45] for undergraduate engineering programs
in computer science and engineering and information technology totally ignore the integration
and experiential aspects of curriculum design. Most carelessly, the curricula even failed to
project basic working definitions of either of the disciplines. With reference to humanities and
social studies courses, the committee seems to have totally succumbed to the short sighted
economic goals. There is only one language/communication course in the first semester that can
qualify as a non-management humanities course. All other humanities courses have been
replaced by management courses. It seems that to the curricula have been designed without
seriously examining any of the earlier recommendations of any of the educational research
literature or even specific curriculum related recommendations of international professional

bodies, like the ACM, IEEE, or IFIP.

Section 1.3: Research Approach

Community and culture significantly influence value orientation, perceived needs, and
motivation as well as provide the ground for creating shared understanding. All disciplines have
their own cultures, and all cultures evolve through cross-cultural exchanges. The computing
community has created and documented a sound body of knowledge of software engineering
[68]. It is one of finest examples of multi-cultural synthesis of many disciplines especially
engineering, computer science, and even social sciences. In the last decade, the disciplines of
design and aesthetics are also providing very interesting enrichment opportunities for this body
of knowledge. With the very large scale worldwide endeavor on computing or software
engineering education, it is now time to leverage education and ‘learning’ related research to
create and document a theoretically sound body of knowledge of software developers’ education.
Such a body of knowledge should naturally require us to synthesis the evolving disciplines of

software engineering and higher education.

The phenomenon of ‘learning’ has been extensively studied by psychologists, educationists,
sociologists, philosophers, engineering educators, and even computer scientists working in
artificial intelligence and e-learning. Computing educators take very important curricular and

educational decisions without referring the rich theories of curriculum design or education. This

28

oversight is analogous to the misconception that "software engineering = programming” which

just requires knowledge of some programming language.

In late 1980’s, engineering methods had to be combined with the elements of computer science
to create large scale software systems. Similarly, now with the exponential growth of education
in computing disciplines, the scale of the impact of the computing faculty’s decisions is far
reaching. The computing student community is no more limited to highly gifted few any more.
The scale of computing faculty’s educational responsibilities is continuously expanding. Quality
of software development education is an important issue that needs to be urgently addressed.

Hence, there is an urgent need to enrich the culture of software development education with the

help of educational research. For sustaining this unprecedented expanding scale of computing

education, we now need theoretically sound educational frameworks. More so because of severe
shortage of experienced faculty, especially in countries like India where this expansion has been
exponential, resulting in quality difference between the best and worst programs to be even more

than an order of magnitude.

The published research in computing education or software engineering education does not
sufficiently leverage this research in education. In the various curriculum reports of 1960s to
1980s by the ACM as well as IEEE, there is no reference to educational models or theories. Even
in the 1990s, we find few such attempts. In the absence of such references, it is not surprising
that the curriculum committees limited their goal to cataloguing various content areas and
describing and sequencing the required courses, resulting in a fragmented curriculum. They did
not attempt to argue or propose curriculum models for holistic education of computing

professionals.

An attempt of this type may have encouraged the curriculum designers and educators to create an
integrated curriculum, as was happening in some other disciplines. Aning et al [76] have
observed that in general, engineering faculty is not aware of cognitive science research that has
potential to improve engineering pedagogy and mention about recent efforts by NSF to bring

together engineering and education faculty. It is not surprising that the computing curriculum

29

designers not only ignored the pure education research, but also applied educational research

such as science education.

Subsequently, the trend started changing, and some authors at annual computing education
conferences like the ACM SIGCSE, ACM SIGITE, ASEE-IEEE FIE, etc., started examining,
reviewing, and/or using some well established theoretical models and frameworks like Bloom’s
taxonomy and Kolb’s experiential learning. However, the papers presented at IEEE CSEE&T
show a very poor record of leveraging even such highly popular theories. Interestingly, some
learning theories have also been used by the HCI, Information systems, and multimedia
communities for guiding their design objectives and processes. A large number of papers in the
ACM SIGCSE, ACM SIGITE, IEEE CSEE&T, or IEEE Transaction of Education are like
experience reports, and do not make a good attempt to theoretically ground their work in
educational research. However, many other streams of higher education, including engineering

and science education, have leveraged educational research to enrich their research.

A meta-analysis [77] of computer science education research posits that the majority of the work
done in the past has been done by computer scientists reflecting on their own teaching practice.
These authors stress that there is a need for more dedicated researchers in computer science
education. They observe that in more established educational research, like science education
research, the studies carried out are not limited to researchers’ own teaching practices so much
as on other teachers’ practices. Not many such studies have been reported in computer science
and engineering education. The research method developed and used in this research is an

attempt to fill this gap.

The data collection and analysis goals have gone much beyond the boundaries of the courses
taught by the researcher. An attempt has been made to integrate the techniques of qualitative as
well quantitative research methods to take the advantages of both. Research processes included a
wide-ranging survey of published literature in diverse areas of Software development, computer
science and IT education, engineering education, professional and higher education, learning
theories, instruction design, and human development. Research also included study of a large

number of comments written by professional software developers about contemporary issues

30

related to software development processes, required competencies, endorsements, etc., in various
professional forums. More than three hundred professionals of more than sixty organizations
from various countries have been consulted and/or surveyed on various issues. More than one
thousand undergraduate computing students, and more than one hundred faculty members, have

also been surveyed on selected issues.

This dissertation is concerned with understanding and suggesting ways to expand the context of
software development education with the help of existing theories on ‘learning’, epistemology,
human development, education, and instruction by applying analytical, qualitative, and
quantitative methods to investigate the following types of questions:

1. How has software development education evolved, specifically with reference to
educational research?

2. What is meant by competent and professionally oriented computing engineers,
especially with respect to software engineering? What are the essential attributes?
What is the relative importance of these attributes?

3. What is the degree with which the various components of traditional processes of
engineering education succeed in creating opportunities for enhancing these
competencies? What students think about their educational experiences? What
students think works well for them? What processes do professional engineers
recommend?

4. What pedagogical practices succeed in developing competencies, and under what
circumstances? What comes in the way of implementing these strategies? What
kinds of lectures are effective for ‘learning’ in the views of students and faculty?
What factors block students from effective ‘learning’? How to overcome these
difficulties?

5. What kind of instructional interventions are required? How can the existing
education theories/strategies/methodologies be used to educate competent
computing engineers? Do we need new theories of ‘learning’ for software
development education? If so, what would be main aspects of such a theory of

‘learning’?

31

In this thesis, we propose a comprehensive framework of pedagogic engagement in computing

courses for developing multi-dimensional competencies with respect to the requirements of

software development. We have fairly comprehensively examined the published record of major

developments and ideas in the history of evolution of computing curriculum since the 1950s.
Further, we have identified the distinguishing characteristics of software development. We
referred to published literature, and also carried out several exploratory surveys and polls among
software developers to understand the profession from their perspectives. We take a position

that software development is not an extension of any single discipline.

With respect to the needs of this distinguished profession, we have studied and collated the
published recommendations by several accreditation boards, professional bodies, and
researchers. We have also carried out several surveys among working professionals to
understand their perspectives about the required competencies that must be emphasized by the

educational process of software developers.

Based on these studies and surveys, we have identified twelve core competencies for software
developers from various approaches, and organize these in the form of a three-tier taxonomy. We
then elaborate upon the context and meaning of each of the twelve core competencies in the light
of various multi-disciplinary theories and findings, and also our own reflections, empirical

results, and interpretations.

During the course of this study, we have studied a large number of theories of education,
‘learning’, intelligence, human development, curriculum design, and thinking. Tables A’1.1a and
A’1.1b in Annexure ANI list some of these important theories and modes. We have selected
some of these, and used them for designing our generic framework of pedagogic engagements as

well as specific interventions for instructional reform in software development education.

Our proposed framework of pedagogic engagements in software development

education includes (i) core activities of software development, (ii) distinguishing

characteristics of software development profession, (iii) three-tier taxonomy of twelve

core competencies, (iv) five-dimensional ladder of professional and human

32

development, (v) three-dimensional perspective of the knowledge domain of software
development, (vi) two core principles for facilitating deep learning, and (vii) a four-

dimensional taxonomy of pedagogic engagements over (V).

Finally, as exemplar case studies, we also elaborate upon some instructional interventions

designed and administered by us in some chosen set of computing courses. These interventions

are manifestations of some aspects of our proposed framework of pedagogic engagements for

software development education. Some new courses have also been developed in the process.

Investigations related to curricular aspects like specific programming languages, methodologies,
or formalism are not included within the scope of this work. We believe that the proposed
framework is fairly comprehensive, reusable, and robust. It can be used to design many more
interventions in software development education. Designers of educational programs for other

professions can also use this framework and methodology.

Section 1.4: Thesis Layout

The first chapter of the thesis gives an overview of the motivation, objective, background,
research method, and results of the reported work. In addition, we also discuss the evolution of

computing curriculum in the last five decades.

In the second chapter, the required core competencies for software developers are explored with
the help of published recommendations of accreditation agencies, professional societies, and
published research. Fresh survey has also been carried out for this investigation. These
competencies are then consolidated into a three-dimensional taxonomy. More literature is
explored to consolidate the competency requirements of the software services and software

product companies.

The third chapter analyzes the distinguishing features and multidimensional aspects of software
development with a view to further analyze the required competencies. In this process, a large
number of software professionals were consulted on various issues related to software

development and required educational inputs. The three-dimensional taxonomy of competencies

33

proposed in the second chapter is distilled and revised into a three-tier taxonomy of twelve

competencies.

In the fourth to sixth chapters, we discuss the meaning of the identified twelve competencies in
the context of software development work. The basic competencies are discussed in fourth
chapter. The competency driver-habits of mind are elaborated in fifth chapter and competency
conditioning attitudes and perceptions are discussed in sixth chapter. We draw upon multi-
disciplinary published literature and empirical studies in the process. Each of these chapters deals

with a different category of competencies as per our taxonomy.

The seventh chapter gives an overview of various quantitative and qualitative surveys among
computing students, software developers, and faculty of engineering institutes. We conducted
these surveys to empirically investigate the phenomenon of ‘learning’ in computing/engineering
disciplines. In this chapter, we essentially discuss the rationale for student-centric active

learning.

The eighth chapter gives the most significant theoretical contribution in this work. We
consolidate all our earlier findings discussed in the earlier chapters with the results of carefully
chosen classical and contemporary ‘learning’ theories. These theories have been chosen with
respect to their applicability for software development education. We propose a unified
framework of pedagogic engagements in software development education. This framework
focuses on development of required core competencies for software development as consolidated

in the third chapter and discussed in the fourth, fifth, and sixth chapters.

Some aspects of this framework are manifested in some instructional interventions discussed in

the ninth chapter. The tenth chapter provides a summary, and suggests future scope of research.

34

CHAPTER 2: IDENTIFICATION OF CORE COMPETENCIES
FOR SOFTWARE ENGINEERS

Education programs seek to develop certain generic and discipline specific competencies of
students. Educationists, accreditation agencies, professional societies, as well as forums of
industry often engage in discourse about the essential and desired competencies as outcomes of
education programs. Passow [78] has interpreted the competencies to mean the skills, abilities,
knowledge, attitudes, and other characteristics that enable a person to perform skillfully (i.e., to
make sound decisions and take effective action), in complex and uncertain situations such as
professional work, civic engagement, and personal life. Further, she has viewed expertise as the
proficient coordination of multiple competencies that leads to consistently effective performance

in a variety of complex, unique, and uncertain situations.

Section 2.1: Study Report on Core Competencies for Engineers

with Specific Reference to Software Engineering

We first discuss the various studies related to the core competencies required for general

engineering graduates, and come up with the set of general engineering competencies normally

accepted among the researchers [78a]. With this set of competencies as a starting point, we did
an extensive survey among software engineering practitioners, to find out which subset of

engineering competencies are more important for the software engineering graduates.

Bordogna [79] quotes an NSF report (published in 1989) which identified integration, analysis,
innovation and synthesis, and contextual understanding as key capabilities for engineering
students. He also posits that the essence of engineering is the process of integrating different
forms of knowledge to some purpose, and an engineering student must experience the ‘functional
core of engineering’- the excitement of facing an open-ended challenge and creating something
that has never been. He proposes that a 21% century engineer must have the capacity to:
i. design, in order to meet safety, reliability, environmental, cost, operational, and
maintenance objectives,

ii. realize products,

35

iii. create, operate, and sustain complex systems,

iv. understand the physical constructs and the economic, industrial, social, political,
and international context within which engineering is practiced,

v. understand and participate in the process of research, and

vi. gain the intellectual skills needed for lifelong learning.

Dodridge [80] classifies the attributes of engineers into two broad categories of (i) knowledge
and understanding and (ii) skills. Dodridge (2003) as well as Mason [81] refer to a 1998 survey
by the EMTA (Engineering and Marine Training Authority) that identified practical skills,
multiskilling, computer literacy, communication skills, management skills, personal skills, and
problem solving skills as the most important skill deficiencies among engineers. Hoscette [82]
and Erlendsson [83] have identified some workplace defects and leading causes of failures in
engineering. As per their observation, the major concerns are passivity, non-responsiveness,
uncritical thinking, technical incompetence, inept or poor communication skills, poor relations

with the supervisor, inflexibility, poor and lax working habits, and too much independence.

Successful Practices in International Engineering Education (SPINE) is a benchmark study [78a]
focusing on the analysis of successful practices in engineering education in ten leading European
and U.S. universities including MIT, CMU, and ETH, Zurich. The study attempted to measure
the perceived importance and assessment of fifty-one parameters on quality of education,
teaching methods, engineering competencies, general professional skills, and aspects of
reputation of institute through a quantitative analysis. In the SPINE project, 543 professors of
these universities, 1372 engineers and 145 managers of European and US companies were

questioned. A summary of their findings is given at Annexure AN11.

We administered a survey among Indian engineers and managers working in Indian and
multinational IT companies to obtain their perceptions on the importance of forty-nine
parameters of engineering education. For the purpose of our first empirical study [84]
conducted in 2004-06, we added two additional general professional competencies: (i) awareness
of environmental issues, and (ii) sensitivity towards socio-economic aspects for sustainable

technological development.

36

The abovementioned twenty-three competencies were included in this list. Other parameters on
teaching methods, quality of education, and aspects of reputation of institutes were the same as
in the SPINE survey. The results of this survey with reference to the teaching methods are
discussed in Chapter seven. The other two set of surveyed parameters are not included in this
thesis. Respondents were requested to assign numeric ratings to these parameters on a scale of 0
to 10, with 10 being the highest importance in terms of the parameter’s criticality and potential

contribution in preparing students for a successful professional career.

Fifty-four experts working in fifteen companies responded. The responding experts had
industrial experience ranging from 1.5 years to 35 years with an average experience of 7.5 years,
which is inferred to be slightly higher than the industry average, given the average age of
employees in the Indian IT industry is only 27-30 years [5]. The Collection of these responses
was spread over a period of approximately one year from 2003 to 2004. Table 2.1 provides a

brief summary of the survey results about the importance of competencies. More details are

provided in Appendix Al.

Table 2.1: Most important engineering and general professional competencies, as rated by
Indian engineers and managers working in Indian and multi-national IT companies (2004)

No Competency Category
1 Problem solving Pivotal
2 Analysis/Methodological skills Critical
3 Basic engineering proficiency Critical
4 Development know-how Critical
5 Teamwork skills Critical
6 English language skills Critical
7 Presentation skills Critical
8 Practical engineering experience Critical
9 Leadership skills Critical
10 |Communication skills Critical

Problem solving skill was also identified as the most important competency by the responding

engineers in the SPINE project [78a], as well as a University of Arkansas study [85]. Problem

37

solving is the ability to identify and solve problems, when and where they occur. Domelen [86]

quotes Steward (1982), “... all problem solving is based on two types of knowledge: knowledge

of problem-solving strategies, and conceptual knowledge.” Gary [87] argues that curriculum

should provide opportunities for transforming a problem statement into a model, conjecturing
solutions, selecting or developing the appropriate mathematics, examining the analysis, and
continuing to transform the conjecture into a solution. Bruner [88] proposed that preparing
students for solving real-life problems require a different paradigm of education and learning
skills, including self-directed learning, active collaboration, and consideration of multiple
perspectives. Problems of this nature do not have “right” answers, and the knowledge to
understand and resolve them is changing rapidly, thus requiring an ongoing and evolutionary

approach to ‘learning’.

The findings of this study, based on the ratings assigned by Indian engineers and managers
working in the Indian and multinational IT companies, as summarized in Table 2.1, are highly
compatible with the findings of the SPINE project, which examined the requirements for Europe
and the USA in a more general context of the engineering industry. However, importance of
development know-how, practical engineering experience, research know-how, and specialized

engineering proficiency have been rated at a higher level by the respondents of the current study,

as compared to the respondents of the SPINE project. We can explain this difference by
examining the nature of the Indian IT industry. This difference may perhaps be partially
attributed to the fast obsolescence in the IT industry. Further, the Indian IT industry is mainly a
“service industry.” Many companies want to have “industry ready” engineers. Often some
companies mention some specific IT skills like the ability to program in specific computer

languages, and the use of development tools as recruitment criteria for fresh engineers.

Interestingly, the importance of other language skills has been rated very low as compared to the
SPINE rating. As Indian IT companies begin to play a larger role in non-English speaking
countries, this is likely to change marginally. Some companies have already started
recommending potential recruits to acquire skills in languages like Japanese. There are some

noticeable differences with respect to the NASSCOM-KPMG and also Indian Task Force reports

38

[89] that classified spoken English, team-working, initiative/enthusiasm, and motivation/drive as
desirable skills rather than necessary skills.

Two competencies not examined by the SPINE project, and introduced in this study, were
awareness of environmental issues and sensitivity towards socio-economic aspects for
sustainable technological development. The first among these has come out as ‘obligatory’ while

the second has been rated as a desirable competency.
Hence, we find conclude that the identified core competencies for general engineering graduates

were also required by software engineers, but there were major difference in their order of

importance.

Section 2.2: Necessary Competencies as Educational Outcomes for Software

Engineers as Recommended by Accreditation Boards, Professional Societies’

and Other Approaches

Curriculum content is no longer the key as the accreditation agencies in many countries have
transformed their accreditation criteria and standards in terms of core competencies. A major
shift has taken place from input-based criteria to outcome-based approach. NAE in their vision
report for 2020 [15] recommends that engineering schools should vigorously exploit the
flexibility inherent in the outcome-based accreditation approach to experiment with novel
models for baccalaureate education. Subsequently, we carried out an extensive study of the
recommended outcomes by accreditation boards of some countries. We examined the
recommended outcomes by Accreditation Board for Engineering and Technology (ABET)
(United States) [90-92], United Kingdom Standards for Professional Engineering Competence
(UK-SPEC) [93], Institution of Engineers, Singapore (IES) [94], Engineers Australia
Accreditation Board [95], and Japan Accreditation Board for Engineering Education (JABEE)

[96]. These are summarized in Annexure AN1.

There are great similarities in the competency set identified by the accreditation agencies of the
US, UK, Australia, Japan, and Singapore. Nine out of the eleven competencies identified by the
ABET, US continue to reappear with some modifications in the competency list prescribed by

accreditation agencies of all of these countries. However, some agencies have broadened the

39

scope of some of these competencies to be more comprehensive. For example, the JABEE has
broadened ability to work in multi-disciplinary teams into ability and intellectual foundation for
considering issues from a global and multi-lateral viewpoint, and also has put it at the first
position of their list. We considered these competency lists to be ordered on importance as
perceived by respective agency. While there are many similarities in the order proposed by these
agencies, the JABEE has ordered their list differently. It gives highest importance to the ability
and intellectual foundation for considering issues from a global and multi-lateral viewpoint and
understanding of the effects and impact of technology on society and nature, and of engineers’
social responsibilities (engineering ethics). Table 2.2 gives a summarized and composite view
of some of the most commonly distinguished and identified competencies by the ABET, UK-
SPEC, EA, JABEE, and IES. We use these results to further expand and refine our initial set of

competencies (Annexure Al) for further investigations.

Table 2.2: Comparative analysis of some common competencies distinguished and identified by some accreditation

agencies
S.No |Competency Position in the respective list
ABET | UK- | IES | EA | JABEE | Average
EC2000 | SPEC position
1 Ability to apply knowledge 1 2 1 1 3 1.6
2 Design skills 3 2 3 5 5 3.6
3 Problem solving skills 5 -- 4 4 4 4.25
4 Technical competence 11 1 5 3 4 4.8
5 Ability to work in multi-disciplinary teams 4 4 9 6 1 4.8
6 Sensitivity towards ethical and professional 6 5 10 | 9 2 6.4
issues
7 Communication skills 7 4 6 2 6 5
8 Sensitivity towards global, societal, and 8 5 8 7 2 6
environmental issues
9 Readiness for life-long learning 9 5 7 10 7 7.6

Section 2.2.1: Impact on Curriculum and Future Directions

The recommendations of the various accreditation agencies in the US, UK, Singapore, Australia,
and Japan have already affected educational programs, not only in their respective countries, but
also in other countries. Many universities have redefined their program objectives, delivery
mechanism, and assessment systems to incorporate graduate attributes in teaching programs [97-
97a]. For example, as per National Academy of Engineers (NAE) report, Olin College of

Engineering [15] has identified the following characteristics for their graduates:

40

Superb command of engineering fundamentals.

IS

Broad perspective on the role of engineering in society.

e

Creativity to envision new solutions to problems.

&

Entrepreneurial skills to bring these visions to reality.

Macro level reforms are being realized through micro level redesigning of every course with a
focus on fostering specific competencies [8]. Curriculum now gives more emphasis on design,
practice, collaborative learning, humanities, social sciences, and sustainable engineering [98].
Faculty development programs have been organized to help them understand the underlying
pedagogical issues [99]. Learning theories and epistemological frameworks are being used to
shift the focus of teaching, learning, and assessment processes on competency development

[100-100a].

Section 2.2.2: Indian Scenario

One of the nine Indian inventors included in the list of top 100 inventors under 35, Vikram Sheel
Kumar, thinks that the biggest challenge an Indian student faces is finding the space to develop
an independent mind [101]. Some of the senior industry managers in some industrial sectors feel
concerned about the lack of positive attitude, behavioral aspects, ability to cope up with
challenges, sincerity, integrity, ethics, self-analysis, discipline, and independent thinking among

fresh engineering graduates [102]. It is very ironic that while ‘availability of highly skilled

manpower’ has been identified as the most important factor that is driving the increasing

momentum of R&D off-shoring/outsourcing industry in India; ‘quality of higher education’ has

been identified as one of the main inhibitors [103].

The accreditation criteria defined by the National Board of Accreditation (NBA) of the All India
Council of Technical Education (AICTE) [104], has not yet responded to the abovementioned
contemporary models that emphasize carefully identified attributes and competencies based on
national and global needs. One of the major objectives of NBA is to encourage the institutions to
continually strive towards the attainment of excellence. The details of the parameters and their
weights as prescribed by the NBA are given in Annexure Al (Table AN1.1). This clearly shows

the NBA is still silent about the core competencies, and continues to assess undergraduate and

41

postgraduate engineering programs with respect to several inputs rather than focusing and

encouraging the institutes to develop a set of carefully identified competencies.

Section 2.3: Some other Contemporary Recommendations About Desired

Competencies of Engineering Graduates

According to the Engineering Professors Council (EPC), United Kingdom, the key skills for

engineering are communication skills, general IT user abilities, application of numbers, working
with others, problem solving, and improving own learning and performance. It also identified the

following primary competencies for engineers [105]:

Transform existing systems into conceptual models

Transform conceptual models into determinable models.

Use determinable models to obtain system specifications.

Select optimum specifications and create physical models.

Apply the results from physical models to create real target systems.
Critically review real target systems and personal performance.

mo a0 o

The National Academy of Engineers (NAE) suggests that the essence of engineering—the
iterative process of designing, predicting performance, building, and testing—should be taught
from the earliest stages of the curriculum, including the first year [15]. Further, the NAE [106]
has identified the following attributes for engineers of 2020:

High ethical standards and professionalism.
Dynamism, agility, resilience, and flexibility.
Lifelong learners.

a. Strong analytical skills.

b. Practical ingenuity: skill in planning, combining, and adapting.
c. Creativity (invention, innovation, thinking outside the box, art).
d. Communication.

e. Business and management.

f. Leadership.

g.

h.

i.

Rugarcia et al [107] proposed the following categories of necessary skills for engineers:

Independent, interdependent and lifetime learning skills,
Problem solving, critical and creative thinking skills,
Interpersonal and teamwork skills,

Communication skills,

Self-assessment,

Integrative and global thinking skills, and
Change-management skills.

e o o

42

Cabrera et al [108] classified the professional competencies for engineers into three main
categories of group skills, problem solving skills and professional awareness. The group skills
include developing ways to resolve conflict and reach agreement, being aware of the feelings of
members in group, listening to ideas of others with open mind, working on collaborative projects
as member of a team. The problem solving skills encompass ability to do design, solve an
unstructured problem, identify knowledge, resources, and people to solve problem, evaluate
arguments and evidence of competing alternatives, apply an abstract concept or idea to a real
problem, divide problems into manageable components, clearly describe a problem orally,
clearly describe a problem in writing, develop several methods to solve unstructured problems,
identify tasks needed to solve an unstructured problem, visualize what the product of a design
project would look, weigh the pros and cons of possible solutions to a problem. The third
category of professional awareness comprises of an understanding about what engineers do, the

language of design, the non-technical side of engineering, and the process of design.

Passow [78] collated some of the earlier research on competencies and expertise in the context of
engineering education. She cites Stark et al [110] who surveyed faculty members of nearly 400
universities to find the faculty’s perception of adequate emphasis in different professions, and
found that the engineering faculty viewed conceptual competency, as the most important
competency closely followed by integrative competency (melding multiple competences to make
informed judgments), and communication competency. Professional ethics, technical
competence, motivation for continued learning, career marketability, and contextual competence
(examining the context from a variety of view points) further expanded this list. This study
showed that adaptive competence (propensity of modify, alter, or change elements of
professional practice), professional identity, and scholarly concern for improvement were also

viewed as reasonably important by responding faculty members.

She has carried out a meta-analysis of twelve empirical studies that had collectively surveyed
more than ten thousand engineering graduates about the importance rating of competencies. She

has classified the competencies in three groups of top, intermediate, and bottom clusters. The top

cluster includes problem solving, communication, and data analysis. The intermediate cluster

includes ethics, life-long learning, teamwork, engineering tools, design, and math, science, and

43

engineering knowledge. The bottom cluster comprises of contemporary issues, experiments, and

understanding the impact of one’s work.

Further, Passow’s meta-analysis showed that in addition to the competencies identified by
ABET, decision-making, commitment to achieving goals, the ability to integrate theory and
practice effectively in work settings, leadership skills, and project management are also

extremely important competencies. This study also concluded that respondents from computer

science, computer engineering, and software engineering background rated design and

engineering tools at a relatively higher level as compared to other engineering disciplines.

We use these recommendations and results to further expand and refine our initial set of

competencies (Annexure Al) for further investigations.

Section 2.4: Recommendations of Some International Professional Societies

Related to Computing

Recommendations for Computer Science

The Joint Task Force on computing curricula of the IEEE Computer Society and the ACM has
published several reports related to computing curricula. These reports make clear
recommendations on this issue with reference to specific undergraduate programs in computer
science, software engineering, computer engineering, and information technology. The final draft
on computing curricula, 2001, suggested the following broad level characteristics of computer

science graduates [1]:

Systems-level perspective.

Appreciation of the interplay between theory and practice.
Familiarity with common themes.

Significant project experience.

Adaptability.

opo o

This report also suggested the following general skills for computer science graduates:

Communication.
Teamwork.

Numeracy.
Self-management.
Professional development.

opo o

44

Recommendations for Software Engineering

In 2004, the same task force made specific recommendations about undergraduate degree
programs in software engineering [52]. It suggested that graduates of an undergraduate software

engineering program must be able to:

a. show mastery of the software engineering knowledge and skills, and professional issues
necessary to begin practice as a software engineer,

b. work as an individual and as part of a team to develop and deliver quality software
artifacts,

c. reconcile conflicting project objectives, finding acceptable compromises within
limitations of cost, time, knowledge, existing systems, and organizations,

d. design appropriate solutions in one or more application domains using software
engineering approaches that integrate ethical, social, legal, and economic concerns,

e. demonstrate an understanding of and apply current theories, models, and techniques that

provide a basis for problem identification and analysis, software design, development,
implementation, verification, and documentation,

f. demonstrate an understanding and appreciation for the importance of negotiation,
effective work habits, leadership, and good communication with stakeholders in a typical
software development environment, and

g. learn new models, techniques, and technologies as they emerge and appreciate the
necessity of such continuing professional development.

Recommendations for Computer Engineering

In their final report ‘Curriculum guidelines for undergraduate degree programs in computer
engineering’ [111], the task force identified the following characteristics for computer

engineering graduates:

System Level Perspective.

Depth and Breadth (of knowledge).
Design Experience.

Use of Tools.

Professional Practice.
Communication Skills.

o e o

Recommendations for Information Technology

In April 2005, the same task force also proposed a draft computing curricula for information
technology. This report suggested [112] that pervasive themes for IT program outcome should
be user centeredness and advocacy, information assurance and security, the ability to manage
complexity, a deep understanding of information and communication technologies and their
associated tools, adaptability, professionalism, and interpersonal skills. This report also

recommends that an IT graduate must acquire the ability to:

a. use and apply current technical concepts and practices in the core information
technologies,

45

b. analyze, identify, and define the requirements that must be satisfied to address problems
or opportunities faced by organizations or individuals,

c. design effective and usable IT-based solutions and integrate them into the user
environment,

d. assist in the creation of an effective project plan,

e. identify and evaluate current and emerging technologies and assess their applicability to
address the users’ needs,

f. analyze the impact of technology on individuals, organizations and society, including
ethical, legal and policy issues,

g. demonstrate an understanding of best practices and standards and their application,

h. demonstrate independent critical thinking and problem solving skills,

i. collaborate in teams to accomplish a common goal by integrating personal initiative and
group cooperation,

j- communicate effectively and efficiently with clients, users and peers both verbally and
in writing, using appropriate terminology, and

k. recognize the need for continued learning throughout their career.

Recommendations for Information Systems

In 2004, the ACM, Association for Information Systems (AIS), and Association of Information
Technology Professionals (AITP) published a joint report on ‘Model curriculum and guidelines
for undergraduate degree programs in information systems,” and characterized this discipline as
‘Technology-enabled Business Development.” They have divided the representative capabilities

and knowledge expected for Information System graduates into the following categories [113]:

a. Analytical and critical thinking: organizational problem solving, ethics and
professionalism, and creativity.

Business fundamentals.

Interpersonal, communication, and team skills.

d. Technology.

oo

Indian Recommendations
NASSCOM-KPMG [5] and the Government of India Task Force [114] identify written English,

logical reasoning, problem solving and numerical ability, programming skills,
listening/empathy, assertiveness and confidence, integrity, values and discipline, sociability,
dependability, and reliability as necessary skills for IT professionals. These reports identify
spoken English, foreign language, accent understanding, comprehension/creativity,
initiative/enthusiasm, team-working, multitasking and time management, and motivation/drive as
desirable skills.

It may be noted that the recommendation of NASSCOM as well as that of Government of India

Task Force are more influenced by the over emphasized requirements of software service

46

industry, as shown later in Table 2.4. It sadly ignores the requirements of product development

related work in small or large companies.

Hence, we conclude that, not only Indian engineering education accreditation agency, the
AICTE (ref: Section 2.2.2), but also the premier trade body and the chamber of commerce of
Indian IT industry, NASSCOM, and also the task force created by the central government’s
ministry of communication and information technology, have also not yet shown futuristic
directions in this regard. The mammoth growth of IT education in India has and continues to
take place in an eco-system that is conditioned by serious absence of futuristic vision in the apex

institutions.

We use the recommendations discussed in this section to further expand and refine our initial set

of competencies (Annexure Al) for further investigations.

Section 2.5: Some Contemporary Recommendations on Desired

Competencies of Software Developers

The US based Professional Aptitude Council (PAC) conducts a pre-employment aptitude
examination for IT professionals. This has also been recently launched in India [115]. This
examination consists of questions on nine parameters of problem solving, linear logic,
mathematical ability, technical knowledge, applied technical skills, coding skills, creativity, work
style, and personality composite. It identifies attention to detail, interpersonal skills,
adaptability/flexibility, persistence, sense of urgency, and creativity as IT related personality
constructs. Listening, adaptability to new technology, time management, visualize/conceptualize,
multi-tasking, business culture, “be the customer” mentality, constructive criticism,
organizational skills, stress management, idea initiation, and project management are also
highly valued skills in the IT industry [85]. Chang [116] and Erlendsson [117] suggest
additional competencies like knowing how to learn rapidly, ability to advocate and influence

(persuasion), mentoring, decision making, and ability to manage complexity.

Kelley and Caplan [118] carried out a comparative study of star and average performers at Bell

Labs, which showed that taking initiative was ranked as the most important strategy by star

47

performers, while it was least important for average performers. On the other hand, ability to
give good presentations was a core strategy for average performers, while it was peripheral for

the top engineers.

Turley and Bieman [119] studied the competencies of software engineers in a Fortune 500

computing company. They found concern for reliability/quality, focus on user needs, algorithmic

and structured thinking, pride in quality/productivity, emphasis on elegant and simple solutions,
mastery of skills/techniques, help other, innovative, maintenance of *“big picture” view, enjoy
challenges, seek help from other, lack of ego, attention to detail, pro-active nature, team
orientation, reuse, desire to improve things, perseverance, and strength of conviction are more

common competencies of these software engineers.

They further identified that the top 30% software engineers demonstrated significantly higher
levels in competencies like help others, pro-active role with management, strength of

convictions, mastery of skills/techniques, and maintenance of “‘big picture” view.

The exceptional software engineers in this study distinguished themselves in terms of their result

orientation and sense of mission, whereas non-exceptional software engineers distinguished

themselves in terms of higher perseverance and methodological approach.

They also cited and highlighted the following observations made in earlier behavior oriented

software engineering research:

a. The development process was not linear: designers operated simultaneously at various levels
of abstraction and details.

b. Experienced designers took the users view before proceeding to design. ... high-rated
systems analysts were more likely to work for a productive relationship with the users and
specify more requirement than the low-rated analysts. They would reject more hypotheses,
try several strategies, apply heuristics, set more goals, and look for analogies to prior

problems.

48

Armour [120] suggested that software developers need domain specific training, learning to

learn, and structuring mechanism of the representation form.

Connor et al [121] have identified new and specific technical skill, computer literacy and IT
skills, multi-skilling and greater flexibility, the ability to deal with change, an ability to continue
learning, re-skilling, and the greater importance of personal and generic skills as key themes in

their assessment of skill trends.

exXtreme Programming (XP) principles, rules, and practices are based on five core values:
communication, simplicity, feedback, courage, and respect [122]. Shore and Warden have further

claborated upon these values [123]. Communication is aimed at giving the right information to

right people when they can use it to its maximum advantage. Simplicity means to be able to

discard unnecessary things. Feedback is to learn the appropriate lessons at every possible
opportunity. Courage is required to make the right decisions, even when they are difficult, and to
tell the stakeholders when they need to hear it. Respect implies treating oneself and others with

dignity, and to acknowledge expertise and mutual desire for success.

Hazzan and Tomakyo [124] highlight the importance of mental habit of abstraction and the

ability to make transitions between levels of abstraction as an important skill for software

developers. Further, relating software engineering to Schon’s work on reflective thinking and

professions [125], they also posit that mental habit of reflection and the ability to move across

the ladders of reflections are closely associated with software engineering processes. Agile
methods like eXtreme Programming draw their strength from the possibility of continuous

improvement through reflection.

Sodiya et al [126] expanded Goldberg’s Big Five personality factors by adding a sixth factor of
cognitive ability, and collected the personality traits of nearly 500 software engineers working in
different stages of software engineering: requirement engineering, system design, coding,

testing/implementation, and delivery/maintenance in Nigeria.

49

Their findings showed that agreeableness: the tendency to be compassionate and not
antagonistic towards others, was a universal personality trait among high performing software
engineers. This tendency includes being pleasant, tolerant, tactful, helpful, trustworthy,
respectful, sympathetic, and modest. The high performing software engineers further showed
high levels of cognitive ability of abstract thinking, analysis, concentration, and visualization.

The other common personality trait among this group was found to be conscientiousness: the

tendency to be self-disciplined, to be dutiful, achievement and competence oriented, thorough,

consultative, and orderly. Openness to experience: the tendency to enjoy new intellectual

experiences and ideas, imaginative, curious, and broadmindedness was also found to be a
common trait of high-performing software engineers, particularly involved in systems testing and
integration, management of software process, and deliver/maintenance. Extraversion: the
tendency to seek stimulation and enjoy the company of others was not found to be a common
personality trait of high performing software engineers. Neurotocism: the tendency to experience
unpleasant emotions relatively easily was found to be universally low among this high

performing group.

Recommendations for Software Architects

Bass et al [127] have identified that in addition to the knowledge of architectural concepts,
software engineering, design, programming, technologies and platforms, the following general

competencies are important for software architects:

a. Communication _skills: Oral and written communication skills, presentation and
convincing skills, see and address multiple viewpoints, consulting skills, negotiations
skills, understand and express complex topics, listening skills, approachable, and
interviewing skills.

b. Interpersonal skills: Team player, diverse team environment, creative collaboration,
consensus building, balanced participation, diplomatic, mentoring, conflict resolution,
respects for people, committed to others success.

c. Leadership skills: decision making, initiative, innovative, self-motivated and directed,
committed, dedicated, passionate, independent judgment, influential, ambitious,
mentoring, coaching, training.

d. Workload management: work under pressure, time management, priority assessment,
result oriented, estimation, ability to concurrently work well on multiple complex
projects and systems.

e. Skills to excel in corporate environment: passion for quality, art of strategy, work under
supervision and constraints, organizational and work flow skills, process oriented,
entrepreneurial, assertive without being aggressive, open to constructive criticism.

f. Information handling: detail oriented while maintaining overall vision and focus, see the
larger picture, good at working at an abstract level.
g. Personal qualities: credible, accountable, responsible, insightful, visionary, creative,

perseverant, practical, confident, patient, empathetic, work ethics.

50

h. Skills for handling unknown and unexpected: tolerant to ambiguity, risk
taking/management, problem solving, reasoning, analytical skills, adaptable, flexible,
open mindedness, resilient, and compromising.

. Learning: good grasping power, investigative, observation power, adept at using tools.

] Domain knowledge.

k. Knowledge of industry’s best practices and standards.

L Knowledge of business practices.

We use the recommendations discussed in this section to further expand and refine our initial set

of competencies (Annexure Al) for further investigations.

Section 2.6: A Perspective from the Professional Codes of Conduct, Ethics,

and/or Practice

Many professions have established professional societies that continuously help and guide their
members to understand their professions not only in terms of technical advancements, but also
evolving understanding of their profession’s context. Professional codes are often designed to
motivate members of an association to behave in certain ways. Codes of ethics are ‘aspirational,’
because they often serve as mission statements for the profession, and thus can provide vision
and objectives. Codes of conduct are oriented more toward the professional, and the
professional's attitude and behavior. Codes of practice relate to operational activities within a
profession. These codes also help them to face and handle professional dilemmas. Primarily,
these codes are designed and used to inspire, guide, educate, and discipline the members. Codes
‘sensitize’ members of a profession to ethical issues and alert them to ethical aspects they
otherwise might overlook. Codes inform the public about the nature and roles of the profession.
Codes also enhance the profession in the eyes of the public. These codes of conduct, practice,

and ethics are not static, and keep on evolving to respond to new challenges and understanding.

All professional societies related to engineering and computing have defined a code of ethics
and/or professional practice. Professional societies like the ACM and IEEE also insist that the
professional education programs must also educate students with these prescribed codes. The
IEEE-ACM joint computing curricula task force on software engineering [52] takes the position,
“to help insure ethical and professional behavior, software engineering educators have an
obligation to not only make their students familiar with the Code, but to also find ways for

students to engage in discussion and activities that illustrate and illuminate the Code’s eight

51

principles, including common dilemmas facing professional engineers in typical employment
situations.” SWEBOK [68] includes the software ethics under the knowledge area of software

quality.

We have examined the codes of conduct, ethics, and/or practice of following societies:
1. American Council of Engineering Companies, 1980

National Society of Professional Engineers (NSPE), 1993

The Institution of Engineers, Australia

American Association of Engineering Societies, 2000

American Society of Civil Engineers, 1996

American Society of Mechanical Engineers

American Institute of Chemical Engineers, 2003

IEEE (Institute of Electrical and Electronics Engineers), 1990

A A AR B el

ACM (Association of Computing Machinery), 1993
10. Information Processing Society of Japan, 1996

11. ACM-IEEE Code for Software Engineers Ver 5.2, 2002

The ACM-IEEE Code for Software Engineers Ver 5.2 has eight clauses that address issues
related to public, client and employer, product, judgment, management, profession, colleagues,
and self. The codes of all the above mentioned societies including ACM-IEEE Code for
Software Engineers Ver 5.2, have following common features:

1. The first and the most important recommendation in all these codes is that concerned
professional shall fulfill their professional duties by holding paramount the safety, health
and welfare of the public. Several clauses of ACM-IEEE Code for Software Engineers
Ver 5.2 reflect this concern and objective. These are clause number 1 (1.01 to 1.08), 2
(2.07), and 4 (4.01).

2. The second very important commonly address issue in all these codes is the directive
advising their members to undertake technological tasks for others only if qualified by
training or experience, or after full disclosure of pertinent limitations. Several clauses of
the ACM-IEEE Code for Software Engineers Ver 5.2 reflect this concerned and
objective. These are clause number 2(2.01), 3(3.04), 4(4.02), 5(5.04), and 7(7.08).

52

The third uniformly occurring instruction to their members is to act for each employer or
client as faithful agents or trustees. Clause no 2 (2.01 to 2.09) of ACM-IEEE Code for
Software Engineers Ver 5.2 expresses this concern in several ways.

The fourth identical facet in all these codes is an advice to their members to issue public
statements only in an objective and truthful manner. Clause no 1 (1.06) and 6 (6.07) of
ACM-IEEE Code for Software Engineers Ver 5.2 are expressions of this desired virtue.
The fifth regular feature of all these codes is a guidance to avoid improper solicitation of
professional assignments.

The sixth common element of these codes is the suggestion that the members shall
continue to develop relevant skill, knowledge, and expertise throughout their careers and
shall actively assist and encourage those under their direction to do likewise. Clause no 8
(8.01 to 8.06) of ACM-IEEE Code for Software Engineers Ver 5.2 are expressions of this
desired trait of software professionals.

The seventh common aspect of these codes is about promoting an ethical approach
among colleagues. Clause no. 5 (5.01 to 5.12) of ACM-IEEE Code for Software
Engineers Ver 5.2 are expressions of this desired trait of software professionals.

The eighth regular tenet of these codes is guiding the members to continuously strive for

quality, excellence, and adherence to highest professional standards.

We use the spirit of these recommendations to further expand and refine our initial set of

competencies (Annexure Al) for further investigations.

Section 2.7: Classical and Contemporary Recommendations on Desired

Competencies of Graduates

In the above sections, we notice a high emphasis on human and social related competencies that

go much beyond the scope of technical competencies. Hence, in order to get a better insight into

these aspects from the perspective of university education, in this section, we look at the classical

as well as contemporary recommendations about university graduates in general. In the 1850s, a

pioneer philosopher of modern higher education, John Henry Newman, wrote a seminal work

‘The Idea of a University Defined and Illustrated’ [128]. As part of this work, he included a

53

discourse on ‘Knowledge Viewed In Relation To Professional Skill.” In this discourse, he

insisted that

University training aims at raising the intellectual tone of society, at cultivating the public
mind, at purifying the national taste, at supplying true principles to popular enthusiasm and
fixed aims to popular aspiration, at giving enlargement and sobriety to the ideas of the age, at
facilitating the exercise of political power, and refining the intercourse of private life. education
should give the ability to see things as they are, to go right to the point, to disentangle a skein of
thought, to detect what is sophistical, and to discard what is irrelevant ... to fill any post with
credit and to master any subject with facility, to accommodate himself to others ... to throw
himself into their state of mind, how to bring before them his own, how to influence them, how to
come to an understanding with them, how to bear with them, ... to be at home in any society ...
[to have] common ground with every class ... [to know] when to speak and when to be silent ...
to ask a question pertinently ... [to] be able to converse and gain a lesson seasonably ,,, [and to
enjoy] the repose of a mind that lives in itself, while it lives in the world.

Franklin Bobbitt posited that because of unpredictability of future roles, the curriculum should
insist on general education and developing individuals’ intellect rather than just aiming to train
them for specific work. He also insisted that education must aim at developing a respect for
many of the classic authors of “great books.” These thoughts were also resonated in Robbins
Report (1963) [129] that suggested that the purpose of higher education is not simply the
“instruction of skills suitable to play a part in the general division of labour” and “the
advancement of learning,” but also, “to promote the general powers of the mind ... and
transmit ... a common culture and common standards of citizenship.” Martha Nussbaum
[130] posited that the purpose of liberal education is to cultivate humanity (world citizenship),
and she suggested that to achieve this goal, three capacities need to be cultivated. The first
among these is capacity for critical self-examination and critical thinking about one’s own
culture and traditions through logical reasoning: consistency of reasoning, correctness of facts,
and accuracy of judgment. The second capacity is to see oneself as a human being who is
bound to all humans with ties of recognition and concern. The third capacity is for narrative
imagination: the ability to empathize with others and to put oneself in another’s place through

imagination.

The American Association of College and University [131] has declared the following learning

outcomes as essential for all college graduates:

a. Knowledge of human cultures and the physical and natural world by engagement
with big questions, both contemporary and enduring

54

b. Intellectual and practical skills: Inquiry and analysis, critical and creative thinking,
written and oral communication, quantitative literacy, information literacy, teamwork
and problem solving

c. Personal and social responsibility through active involvement with diverse
communities and real-world challenges: civic knowledge and engagement—Iocal and
global, Intercultural knowledge and competence, ethical reasoning and action,
foundations and skills for lifelong learning

d. Integrative learning through the application of knowledge, skills, and responsibilities to
new settings and complex problems

Garcia-Aracil and Van der Velden [132] have proposed their competency classification based on

six categories of organizational, methodological, participative, specialized, generic, and socio-

emotional competencies. The organizational competencies incorporate working under pressure,

accuracy, attention to detail, time management, working independently, and the power of

concentration. The methodological competencies comprise of foreign language proficiency,

computers skills, understanding social, organizational/technical systems, documenting ideas and
information, problem-solving ability, analytical competencies, and learning abilities. The

participative competencies encompass planning, coordinating and organizing, economic

reasoning, negotiating, assertiveness, decisiveness, persistence leadership, as well as taking

responsibilities and decisions. The fourth category of specialized competencies essentially means

knowledge of field specific theories and methods. The fifth category of generic competencies

include broad general knowledge, cross-disciplinary thinking/knowledge, critical thinking,
documenting ideas and information, problem-solving ability, and written as well as oral

communications skills. The final category of socio-emotional competencies incorporate

reflective thinking, assessing one’s own work, economic reasoning, working in a team,
negotiating initiative, assertiveness, decisiveness, persistence, adaptability, leadership, getting
personally involved, taking responsibilities, decisions, loyalty, integrity, tolerance, appreciating

of different point of view.

Their study showed that the best paid jobs required high levels of participative and
methodological competencies, the worst paid jobs emphasized on organizational competencies,
and high specialized knowledge contribute to higher wages in some professions like medical

science, mathematics (including computing), and engineering. They finally concluded that new

emerging work situations require individuals with enhanced levels of participative,

methodological, and socio-emotional competencies.

55

We use the recommendations discussed in this section to further expand and refine our initial set

of competencies (Annexure Al) for further investigations.

Section 2.8: A Comprehensive Distilled View on Desired Competencies

We have consolidated the abovementioned competencies recommended by engineering
accreditation boards, engineering and computing professional agencies (including the code of
ethics), and various thinkers of higher education, engineering education, and computing
education. These recommendations were have been made with reference to graduates,

engineering graduates, and computing graduates. Appendix A2 gives a comprehensive summary

of these competencies in an alphabetical order of competencies. The importance of so many
competencies with reference to software developers education has not been empirically
examined in the earlier ranking studies, e.g., SPINE [78a], Bailey and Stefaniak [85], and our
own [84]

Section 2.9: Further Empirical Investigations on Required Core Competencies

for Engineering Graduates with Reference to the Indian IT Industry

Our earlier SPINE based empirical study (Appendix Al) discussed above had its own
limitations. It mainly suffered from two deficiencies: (i) The examined competencies were
generic in nature that were applicable to all fields of engineering, and these were not grounded in
the specific competency literature related to software development. (ii) The software industry
was considered a homogeneous entity and did not distinguish between the product based small or
large companies and/or large companies mainly involved in offering software services to their

clients.

Hence, in 2007, we took another survey. Based on the findings of our first study and various
published recommendations about the desired recommendations as proposed by accreditation
boards, professional bodies, as well as researchers, we significantly revised and expanded the list
of surveyed competencies from twenty-three to thirty-five. Table A3.1 in Appendix A3 maps the

competencies of the old (Appendix Al, Table Al.1) and the new list.

56

Some important competencies, listed in Appendix A2, were still not distinguished in our
empirical study, conducted in 2007 (Appendix A3). Some of the important competencies of
Appendix A2 that were not examined in 2007 included - curiosity, domain competence,
abstraction, algorithmic thinking, knowledge of physical and natural world and intercultural
knowledge, reflection, self acceptance and self regulation, and workload management.

Seventy-one experts working in thirteen companies with additions like Accenture, Borland
Software, SUN, and TCS responded. The responding experts had industrial experience ranging
from 1 year to 22 years, with an average experience of 5.6 years. The data was analyzed in a
similar manner to our earlier SPINE-based study. For classification of competencies we added
another category at the top to distinguish the topmost recommendation and termed it as

‘Existential.” Table 2.3 provides the summary of the 2007 results.

Table 2.3: Most important competencies as rated by Indian engineers and managers working in Indian and multi-
national software companies (Revised Study 2007) (More details in Table A3.2, Appendix A3)

Z
e

Category
Existential

Competency (SNo as per Appendix A2)
Perseverance, commitment, and hard work (13)
Ability to work in teams (1)

Ability to apply knowledge (2)

Integrity and authenticity (25)

Analytical skills (6)

Accountability and responsibility (25)
Technical competence (31)

Problem solving skills (22 and 23)

Listening skills (1)

Attention to detail (15)

Project planning and management (24)
Quality consciousness and pursuit of excellence (25)
Critical thinking (26)

Readiness for lifelong learning (9)

Design skills (11)

Pivotal

Critical

—_
(==

—_
—_

—_
[\

—
w

—_
~

—
()]

Table 2.4 enumerates the important competencies of Table A3.2 (Appendix A3) that were rated
with higher importance, differently for three different segments of software industry: (i) software
services related work at large companies, (ii) product development related work at large or mid-
size companies, and (ii1) product development related work at small companies. In Section 2.11,

we interpret the implications of these findings.

57

Table 2.4: The most important competencies for software development work related to software services and
product development
Category | Software services Product development work Product development work in small

related work in large
companies

(SNo as per Table
A3.2, Appendix A3)

in large/mid-size companies
(SNo as per Table A3.2,
Appendix A3)

companies
(SNo as per Table A3.2, Appendix
A3)

Existential | Ability to work in Ability to work in teams (2) Perseverance, commitment, and
teams (2) Ability to apply knowledge (3) work (1)
Pivotal Perseverance, commitment, Accountability and responsibility (6)
hard work (1) —
Ability to apply knowledge (3)
Problem solving skills (8)
Research skills (17)
Critical Perseverance, Accountability and Attention to detail (10)
commitment, and responsibility (6)
work (1) Analytical skills (5) Analytical skills (5)
Problem solving skills (8) Integrity and authenticity (4)
Research skills (17) Readiness for lifelong learning (14)
Technical competence (7)
Obligatory| Listening skills (9) Integrity and authenticity (4) Quality consciousness and pursuit

of excellence (12)

Critical thinking (13)

Critical thinking (13)

Design skills (15)

Technical competence (7)

Design skills (15)

Section 2.10: Classifying the Core Competencies for Software Developers

Using Marzano’s Dimensions of Learning for Classifying the Competencies

Dimensions of Learning [138], is a comprehensive model of learning and learning process. It
structures the various aspects of learning along the following dimensions: (1) attitudes and
perceptions, (2) acquire and integrate knowledge, (3) extend and refine knowledge, (4) use
knowledge meaningfully, and (5) productive habits of mind. As per this model, all learning takes
place against the backdrop of learners’ attitudes and perceptions and their use of productive
habits of mind. Dimension 4 subsumes dimension 3, which in turn subsumes dimension 2. This

means that when learners extend and refine knowledge, they continue to acquire knowledge, and

when they use knowledge meaningfully, they are still acquiring and extending knowledge.

58

In 2006, we adapted this model to design a three-dimensional taxonomy of desired
competencies. Dimensions 2, 3, and 4 represent different aspects of learning in three hierarchical
levels. As there are no orthogonal relations among them, in this discourse, they are merged into

one. The new merged dimension can be viewed as having three internal hierarchical sub-levels.

We suggested that, in essence, there are only three dimensions of learning:

a. Dimension 1: Attitudes and Perceptions,
b. Dimension 2: Productive Habits of Mind, and
c. Dimension 3: Acquisition, Integration, Extension, and Meaningful Usage of

Knowledge.

Learners’ attitudes and perceptions about the purpose of learning, as well as roles of teacher,
self, and peers determine their motivation, and very significantly influence depth and

performance of their learning.

Productive habits of mind: critical thinking, creative thinking, and self-regulation facilitate their

learning process.

Acquisition, Integration, Extension, and Meaningful Usage of Knowledge is directly manifested
in the software developers’ work. It includes competencies like technical competency, problem

solving, and communication skills.

The core competencies (for software engineers) studied and identified by us till that time
(starting with the set of competencies for general engineers) were mapped in these three
dimensions of learning. We posited that attitudes and perceptions affect a professional’s ability
to practice. The most important element of education should be to develop required attitudes and
perceptions. Under the conditions of the right attitudes and perceptions, professionals use their
productive habits of mind to acquire and integrate knowledge. Attitudes, perceptions, and
productive habits help them to extend, refine and use knowledge for meaningful tasks. The first

version of our taxonomy was published in 2006 [139]. It is summarized in Table 2.5.

59

Table 2.5: Taxonomy of core competencies for software developers - ver. 1, 2006

Dimension 1 Dimension 2 Dimension 3

Attitudes and perceptions Productive habits of | Meaningful usage, extension, and

(S. No. as per Table A3.2, Appendix A3) mind acquisition of knowledge

(S. No. as per Table | (S. No. as per Table A3.2,
A3.2, Appendix A3) Appendix A3)

1. Perseverance (1) 12. Attention to detail 16. Technical competence (7)

2. Sense of urgency and stress management (29) (10) 17. Ability to apply knowledge (3)

3. Adaptability and ability to multi-task (18) 13. Numerical ability 18. Analytical skills (5)

4. Ability to work in homogeneous, multi- (26) 19. Design skills (15)
disciplinary, multi-locational, and 14. Critical thinking 20. Decision making skills (21)
multicultural teams (2) (13) 21. Problem solving skills (8)

5. “Be the customer” mentality (19) 15. Creativity and idea 22. Communication skills (16)

6. Listening (9) initiation (22) 23. Organizational skills (23)

7. Sensitivity towards global, societal, 24. Project planning and
environmental, moral, ethical and management (11)
professional issues and sustainability (34) 25. Persuasion skills (28)

8. Systems-level perspective (including 26. Experimentation skills (25)
knowledge integration, consideration for 27. Constructive criticism (27)
multilateral viewpoint, and user- 28. Knowledge of contemporary
centeredness) (20) issues (32)

9. Ability to assist others through mentoring 29. Research skills (17)
and philanthropic donations (30) 30. Mentoring skills (24)

10. Entrepreneurship (35) 31. Wealth creation skills (31)

11.Readiness for lifelong learning. (14)

Additional Competencies

Four important competencies of Table A3.2 (Appendix A3), later identified by us, were not
distinguished in this taxonomy. These were — Integrity and authenticity (No 4 in Table A3.2),
Accountability and responsibility (No 6 in Table A3.2), Quality consciousness and pursuit of
excellence (No 12 in Table A3.2), and Cost consciousness (No 33 in Table A3.2).

Some other very important competencies, listed in Appendix A2, were also not distinguished in
this taxonomy. Some of main competencies of Appendix A2 that were not classified in 2006
included - curiosity, domain competence, abstraction, algorithmic thinking, knowledge of
physical and natural world and intercultural knowledge, reflection, self acceptance and self

regulation, and workload management.

In Annexure AN3, we briefly discuss the details of some others models about classification of

competencies. These include Bloom’s taxonomy of educational objectives [133], Anderson and
Krathwohl modification of Bloom’s taxonomy [134], Costa’s model of intellectual functioning

[135], Kennedy’s four perspectives on professional expertise [136], The classification of college

60

graduate’s competencies as proposed by Stark et al [137], Marzano’s revised taxonomy [140],
carlier classifications cited by Garcia-Aracil and Van der Velden [132], and Kelly Coate [141]

schema for curriculum design

In Section 3.11, we will discuss a revised version of our taxonomy of competencies.

Section 2.11: Chapter Conclusion

The overall findings of the revised study, as summarized in Table 2.3 and Appendix A3, gave
new insights into the importance of desired competencies in software industry. The respondents
gave highest importance rating to many newly added competencies that related to attitude and
values rather than skill or knowledge. These include perseverance, commitment, and hard work,
integrity and authenticity, accountability and responsibility, quality consciousness and pursuit of
excellence, “be the customer” mentality, and systems-level perspective. Similarly newly added
generic cognitive skills of attention to detail, critical thinking, decision making skills, and
creativity and idea initiation were also rated very high by our respondents. Very interestingly,
contrary to the popular interpretation of communication ability, listening skill was rated much

higher than the communication, presentation, or persuasion skills.

Further, the findings of the revised study, as summarized in Table 2.4, are especially useful for

curriculum designers and computing faculty.

For the Software Services Industry, the ranked list of top competencies

recommended were: (i) ability to work in team, (ii) abilities related to perseverance,
commitment and hard work, and (iii) listening skills. Interestingly, all these
competencies require development of attitude and perspectives, usually not the

focused goal of the commonly prevailing academic process.

For large and mid-size IT Product Development Industry, the required

pivotal/critical competencies were: (i) ability to work in teams, (ii) ability to apply
knowledge, (iii) abilities related to perseverance, commitment and hard work, (iv)

accountability and responsibility, (v) analytical skills, (vi) problem solving skills,

61

and (vii) research skills. Here again, all these competencies also relate to attitude,
perspectives, and thinking habits, that are usually not focused upon the commonly

prevailing academic process.

For small IT Product Development Industry, the required pivotal/critical

competencies comprise of all that are required for a large product company (with
some minor change in their ranks), along with a few additional critical
competencies: (i) attention to detail, (ii) readiness for lifelong learning, (iii) quality

consciousness and pursuit of excellence.

It clearly indicates the nature of the gap which needs to be filled. These finding create a strong

case for overhauling the software development education system in every aspect. The
educational programs have to be conceptualized very differently from the training programs.

Education has two goals of nurturing as well as training. Webster defines ‘educate’ as “to

2 (13

develop mentally, morally, or aesthetically especially by instruction,” “to provide with
information,” and also “to condition to feel, believe, or act in a desired way.” Hence, the
education, especially higher education, is expected to help in growth of human beings to
advanced levels. Training is concerned with development of ‘skills.” Education on the other
hand, has a wider goal of cultivating ‘valuable competencies’ to develop wise and competent

professionals and citizens.

It is not sufficient to only aim to train technically skillful software engineers. The education

system has to aim to develop competent software development professionals. Consequently,

while development of skill and technical knowledge is certainly important, the development of
attitude, perspective, and thinking ability is even more important. It is also imperative to

understand that these learning outcomes can be achieved mostly through changes in academic

process, and also inclusion of a few additional courses.

Further, the findings of the revised study, as summarized in Table 2.4, give even more interesting
inputs, especially for educators in India, where the software service industry is currently

dominating the software industry. Table 2.4 also shows that the competency needs for the usual

62

work in very large companies, who are currently the largest recruiters from engineering campus,

are very limited. Because of very high visibility and recruitment potential, these companies are

currently in a position of influencing the management of educational institutes. The finding of

Table 2.4 show that if Indian software educators try to orient the goals of their educational

programs for this sector, their students will not be suitable for the other two sectors that are

growing silently. Based on our finding, we take a position that in order to inculcate excellence,

the educational community should create more partnerships and communication channels with

the companies that are involved in product development in large, mid-size or even small sector.

We also need to educate our students that the software industry is not monolithic, and the most

dominant voice is not the most futuristic voice. With increasing pressures on profit margins in

the post-recession period, and fast growing software service industry in many other countries, we
cannot hope to run our software industry solely as a service industry with the current nature of

less challenging low cost work. The most natural allies for educational institutes, that will help

us bring excellence by being more demanding users of our product, 1.e.., students, are small sector

product development companies. There is an increasing trend of start-up companies. The

educational institutes should create partnership and even facilitate their growth. The students also

need to be motivated to aspire to work for such companies, and prepare themselves accordingly.
How to forge such partnerships and communication channels is beyond the scope of this

dissertation.

Further, in the light of several other identified competen