Accelerated Reader™

Program Description

Accelerated Reader™ is a guided reading intervention used to supplement regular reading instruction in K–12 classrooms. Its aim is to improve students’ reading skills through reading practice and quizzes on the books students read. The Accelerated Reader™ program calls for students to select and read a book and then take a computerized quiz based on the book’s content and vocabulary. The computer software then provides teachers with information on the students’ performance on the quiz, which allows teachers to monitor student progress and identify students who may need more reading assistance.

Research

One study of Accelerated Reader™ that falls within the scope of the Adolescent Literacy review protocol meets What Works Clearinghouse (WWC) evidence standards, and one study meets WWC evidence standards with reservations. The two studies included 2,877 students from grade 4 to grade 8 who attended elementary and middle schools in Oregon and Texas. Based on these two studies, the WWC considers the extent of evidence for Accelerated Reader™ on adolescent learners to be small for reading fluency and medium to large for comprehension. No studies that meet WWC evidence standards with or without reservations examined the effectiveness of Accelerated Reader™ on adolescent learners in the alphabetics or general literacy achievement domains.

1. The descriptive information for this program was obtained from a publicly available source: the program’s website (http://www.renlearn.com/ar/, downloaded August 2009). The WWC requests developers to review the program description sections for accuracy from their perspective. Further verification of the accuracy of the descriptive information for this program is beyond the scope of this review. The literature search reflects documents publicly available by July 2009.

2. The studies in this report were reviewed using WWC Evidence Standards, Version 2.0 (see the WWC Procedures and Standards Handbook, Chapter III), as described in protocol Version 2.0.

3. The evidence presented in this report is based on available research. Findings and conclusions may change as new research becomes available.
Effectiveness

Accelerated Reader™ was found to have no discernible effects on reading fluency or comprehension for adolescent learners.

<table>
<thead>
<tr>
<th>Rating of effectiveness</th>
<th>Alphabets</th>
<th>Reading fluency</th>
<th>Comprehension</th>
<th>General literacy achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>No discernible effects</td>
<td>No discernible effects</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>Average: +7 percentile points</td>
<td>Average: +3 percentile points</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>Range: +1 to +13 percentile points</td>
<td>Range: –2 to +10 percentile points</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>

Additional program information

Developer and contact

Developed by Judi and Terry Paul, *Accelerated Reader™* is distributed by Renaissance Learning, Inc. Address: PO Box 8036, Wisconsin Rapids, WI 54495-8036. Email: answers@renlearn.com. Web: http://www.renlearn.com/ar/. Telephone: (800) 338-4204.

Scope of use

The *Accelerated Reader™* software prototype was created in 1984. In 1992, research began to focus on best practices related to *Accelerated Reader™*. These efforts led to the development of the *Accelerated Reader™ Best Classroom Practices* (formerly called *Reading Renaissance*), first introduced to educators in 1996 through professional development seminars. According to the developers, more than 63,000 schools nationwide are using *Accelerated Reader™* and Renaissance Learning’s other reading programs in a wide variety of academic settings.5

Teaching

The recommended use of *Accelerated Reader™* involves a dedicated 30- to 60-minute block of time for reading practice. Depending on the age and skill levels of the students, three activities may occur during a reading block: (1) reading texts to a child, (2) reading texts to a child using a paired-reading technique, or (3) independent reading by the child. As children develop decoding skills, they transition to guided independent reading. Initially, students take a norm-referenced, standardized measure of general reading achievement to determine their independent reading level. Then, students select books within a recommended readability range to read independently. After reading each book, students take a comprehension quiz and earn points based on the number of correct responses, the length of the book, and the readability level of the book. Teachers use data from the quizzes to monitor student progress, adjust students’ reading ranges, or identify students who may need more reading assistance. Teachers use points to set individual student goals for the quantity and quality of student reading practice and to monitor each student’s progress. Accumulation of points is intended to motivate student learning; teachers also may choose to implement a system of rewards, although Renaissance Learning does not recommend or require the use of extrinsic rewards.

4. These numbers show the average and range of student-level improvement indices for all findings across the studies.
5. Since April 2006, two versions of *Accelerated Reader™* have been available: (1) *Accelerated Reader™ Enterprise* and (2) *Accelerated Reader™ Service Subscription*. According to the developer, *Accelerated Reader™ Enterprise* provides access to all of the more than 130,000 quizzes, "enhanced" reporting, a tool for school-to-home communication, and additional technical support (http://doc.renlearn.com/KMNet/R004109416GH6321.pdf, downloaded August 2009). *Accelerated Reader™ Service Subscription* requires customers to purchase individual quizzes.
Research

A total of 318 studies reviewed by the WWC investigated the effects of Accelerated Reader™ on adolescent learners. One study (Bullock, 2005) is a randomized controlled trial that meets WWC evidence standards. One study (Nunnery & Ross, 2007) is a quasi-experimental design that meets WWC evidence standards with reservations. The remaining 316 studies do not meet either WWC evidence standards or eligibility screens.

Meets evidence standards

Bullock (2005) conducted a randomized controlled trial of students enrolled in grades 3–5 of an Oregon elementary school to examine the effects of Accelerated Reader™. Students in each of six classrooms were randomly assigned to either a treatment or a control group. The WWC based its effectiveness ratings on findings from comparisons of 39 students who received Accelerated Reader™ and 43 control group students who received regular reading instruction, across grades 4 and 5. The study reported student outcomes after 10 weeks of program implementation.

Meets evidence standards with reservations

Nunnery and Ross (2007) conducted a quasi-experiment that examined the effects of Accelerated Reader™ on students in grades 5 and 8 in Texas. Students who received Accelerated Reader™ in their schools were compared to students who did not receive Accelerated Reader™ in matched comparison schools. Study schools were matched on school performance, ethnic composition, English proficiency, poverty, and student mobility. The WWC based its effectiveness ratings on findings from two cohorts. Cohort 1 consisted of 912 grade 5 students in the 2000/01 school year: 442 were enrolled in one of nine intervention schools, and 470 were enrolled in one of nine comparison schools. Cohort 2 consisted of 891 grade 5 students in the 2001/02 school year: 437 were enrolled in one of nine intervention schools, and 454 were enrolled in one of nine comparison schools. Cohort 2 also included 482 grade 8 students in two intervention schools and 510 grade 8 students in two comparison schools. The study reported student outcomes after two years of program implementation for the first cohort of students and after three years of implementation for the second cohort of students.

Cost

The school version of Accelerated Reader™ software can be ordered for $4 a student per year with a one-time school fee of $1,599. This package includes Live Chat Support, access to the Renaissance Training Center, and two Getting Started Web Seminars. A package including professional development (AR 7.7 Enterprise Real Time Mentors Package) can be ordered for a one-time school fee of $2,899 and a $4 per student annual fee. This package includes six hours of web seminars, and three staff members have unlimited access to a Renaissance Coach for six months. If professional development is not purchased as part of a package (for example, the Real Time Mentors Package), it is available at an additional cost and can be customized in terms of length and mode of delivery (onsite, telephone/online, regional seminars). The average annual cost of full implementation, which may vary depending on school size and components implemented, ranges from $2,000 to $10,000 per school year.

Additional program information (continued)

6. The descriptive information for this program was obtained through communications with the developer.
7. Appendix A1.1 provides details on how this randomization was carried out.
8. Grade 3 students are excluded from the review because they fall outside the grade range of the Adolescent Literacy topic area; they will be included in the Accelerated Reader™ intervention report for the Beginning Reading topic area.
9. The intervention and comparison groups at grade 8 for cohort 1 were not shown to be equivalent at baseline and, therefore, were excluded from the review.
10. The study also reported student outcomes after one year of program implementation, which is reported in Appendix A4, but these findings were not used for the study ratings.
Extent of evidence
The WWC categorizes the extent of evidence in each domain as small or medium to large (see the WWC Procedures and Standards Handbook, Appendix G). The extent of evidence takes into account the number of studies and the total sample size across the studies that meet WWC evidence standards with or without reservations.\footnote{The extent of evidence categorization was developed to tell readers how much evidence was used to determine the intervention rating, focusing on the number and size of studies. Additional factors associated with a related concept—external validity, such as the students’ demographics and the types of settings in which studies took place—are not taken into account for the categorization. Information about how the extent of evidence rating was determined for Accelerated Reader™ is in Appendix A6.}

The WWC considers the extent of evidence for Accelerated Reader™ to be small for reading fluency and medium to large for comprehension for adolescent learners. No studies that meet WWC evidence standards with or without reservations examined the effectiveness of Accelerated Reader™ in the alphabatics or general literacy achievement domains for adolescent learners.

Findings
The WWC review of interventions for Adolescent Literacy addresses student outcomes in four domains: alphabatics, reading fluency, comprehension, and general literacy achievement. The studies included in this report cover two domains: reading fluency and comprehension. Comprehension includes two constructs: reading comprehension and vocabulary development. The findings below present the authors’ estimates and WWC-calculated estimates of the size and statistical significance of the effects of Accelerated Reader™ on adolescent learners.\footnote{The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Bullock (2005), no corrections for clustering or multiple comparisons were needed. In the case of Nunnery and Ross (2007), a correction for clustering was needed, so the significance levels may differ from those reported in the original study.}

Reading fluency. Bullock (2005) reviewed findings in the reading fluency domain. The author did not find statistically significant effects of Accelerated Reader™ on the Dynamic Indicators of Basic Early Literacy Skills (DIBELS), Oral Reading Fluency subtest across grades 4 and 5. The WWC-calculated average effect size across the two grades was not large enough to be considered substantively important according to WWC criteria (that is, an effect size of at least 0.25).\footnote{The WWC computes an average effect size as a simple average of the effect sizes across all individual findings within the study domain.}

Comprehension. Two studies reviewed findings in the comprehension domain. Bullock (2005) did not find statistically significant effects of Accelerated Reader™ on the Standardized Test for Assessment of Reading (STAR) across grades 4 and 5, or on the 4J Vocabulary test for grade 4. The WWC-calculated average effect size across the two grades was not large enough to be considered substantively important according to WWC criteria (that is, an effect size of at least 0.25). Nunnery and Ross (2007) reported positive and statistically significant effects of the intervention for grade 5 students and did not find statistically significant effects of the intervention for grade 8 students on the reading subtest of the Texas Assessment of Academic Skills (TAAS) test. However, in calculating statistical significance, the authors did not account for clustering within classrooms and used transformed student test scores.\footnote{The authors reported that they transformed student test score data to induce normality on the test score distribution and to stabilize variances across schools and treatment groups.} In WWC calculations, based on untransformed scores that account for clustering, none of these effects were statistically significant, and the calculated average effect size was not large enough to be considered substantively important according to WWC criteria (that is, an effect size of at least 0.25).
Accelerated Reader™ August 2010

Effectiveness (continued)

In summary, the two studies that examined outcomes within the comprehension domain showed indeterminate effects; that is, effects that are neither statistically significant nor large enough to be considered substantively important according to WWC criteria.

Rating of effectiveness
The WWC rates the effects of an intervention in a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative. The rating of effectiveness takes into account four factors: the quality of the research design, the statistical significance of the findings, the size of the difference between participants in the intervention and the comparison conditions, and the consistency in findings across studies (see the WWC Procedures and Standards Handbook, Appendix E).

Improvement index
The WWC computes an improvement index for each individual finding. In addition, within each outcome domain, the WWC computes an average improvement index for each study and an average improvement index across studies (see WWC Procedures and Standards Handbook, Appendix F). The improvement index represents the difference between the percentile rank of the average student in the intervention condition and the percentile rank of the average student in the comparison condition. Unlike the rating of effectiveness, the improvement index is entirely based on the size of the effect, regardless of the statistical significance of the effect, the study design, or the analysis. The improvement index can take on values between –50 and +50, with positive numbers denoting favorable results for the intervention group.

The average improvement index for reading fluency is +7 percentile points (based on one study), with a range of +1 to +13 percentile points across findings. The average improvement index for comprehension is +3 percentile points across two studies, with a range of –2 to +10 percentile points across findings.

Summary
The WWC reviewed 318 studies on Accelerated Reader™ for adolescent learners. One of these studies meets WWC evidence standards, and one study meets WWC evidence standards with reservations; the remaining 316 studies do not meet either WWC evidence standards or eligibility screens. Based on the two studies, the WWC found no discernible effects in reading fluency and comprehension for adolescent learners. The conclusions presented in this report may change as new research emerges.

References
Meets WWC evidence standards

Meets WWC evidence standards with reservations

Additional source:

Studies that fall outside the Adolescent Literacy review protocol or do not meet WWC evidence standards
References (continued)

(pp. 210–227). New York: Guilford Press. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Anderson, A. (2000). Implementation of the Accelerated Reader computerized management program. Unpublished master’s project, University of Wisconsin–La Crosse. The study is ineligible for review because it does not use a comparison group.

Apthorp, H. S., Dean, C. B., Florian, J. E., Lauer, P. A., Reichardt, R., & Snow-Renner, R. (2001). Standards in classroom practice: Research synthesis. Aurora, CO: Mid-Continent Research for Education and Learning. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Arkebaure, C., MacDonald, C., & Palmer, C. (2002). Improving reading achievement through the implementation of a balanced literacy approach. Unpublished master’s research project, Saint Xavier University, Chicago, IL. The study is ineligible for review because it does not use a comparison group.

Barrett, K., & Kreiser, D. (2002). Improving student attitude and achievement in reading through daily reading practice and teacher intervention strategies. Unpublished master’s thesis, Saint Xavier University, Chicago, IL. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Barton, J. O. (2000). A comparison of the effect of basal reading with Accelerated Reader to basal reading without Accelerated Reader on fifth-grade reading comprehension achievement scores (Doctoral dissertation, The University of Mississippi). Dissertation Abstracts International, 61(08A), 78–3105. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

The study is ineligible for review because it does not use a comparison group.

Bielby, L. (2005). Accelerated Reader student reading program: An investigatory study of student reading level growth as affected by the Accelerated Reader reading program. Unpublished field study, Northwest Missouri State University, Maryville. The study is ineligible for review because it does not use a comparison group.

Biggers, D. (2001). The argument against Accelerated Reader. Journal of Adolescent & Adult Literacy, 45(1), 72–75. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Bodeau, A. W. (2001). A study of fifth grade student attitudes toward the Accelerated Reader program in the Osseo, Minnesota school district. Unpublished master’s thesis, St. Cloud State University, MN. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

Bohlander, C. C. (2006). The effects of Accelerated Reader on reading comprehension. Unpublished master’s thesis, Northern State University, Aberdeen, SD. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Bolt, D. (2004). HLM analysis of effect of Reading Renaissance implementation on various reading curricula. Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not use a comparison group.

Bonebrake, J. C. (2001). Accelerated Reader program helps students improve reading skills and reading comprehension. Unpublished research project, Northwest Missouri State University, Maryville. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Bork, R. D. (1999). The effectiveness of the Accelerated Reader program on improving student instructional reading levels as measured by the standardized test for assessment of reading (Doctoral dissertation, Saint Louis University). Dissertation Abstracts International, 60(08A), 99–2854. The study is ineligible for review because it does not use a comparison group.

Bowers, L. K. (2002). The effect of Accelerated Reader on students’ reading levels. Unpublished master’s thesis, Shenandoah University, Winchester, VA. The study is ineligible for review because it does not use a comparison group.

References (continued)

Montgomery. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

Brantley, L. J. (2001). Reading Renaissance teacher intervention strategies for student success: An action research study. Unpublished educational specialist's thesis, Valdosta State University, GA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Briggs, K. L., & Clark, C. (1997). Reading programs for students in the lower elementary grades: What does the research say? Austin, TX: Texas Center for Educational Research. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Brogan, J. A. (2001). The effectiveness of Accelerated Reader on reading achievement and motivation of sixth grade students. Unpublished master’s thesis, University of California–Stanislaus. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Brown, C. A. (2001, November). Using computers in the classroom to promote generative strategies for reading comprehension. Paper presented at the 24th National Convention of the Association for Educational Communications and Technology, Atlanta, GA. The study is ineligible for review because it does not use a comparison group.

Calhoun, V. L. (2007). The effects of a supplemental program on the reading achievement of learning-disabled students (Doctoral dissertation, Capella University). Dissertation Abstracts International, 68(04A), 131–1238. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Callard-Szulgit, R. (2005). Teaching the gifted in an inclusion classroom: Activities that work. Lanham, MD: Scarecrow Education. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Carlson, R. V. (2003). Follow-up study of rural schools implementing CSR programs in the Southwest. Research report. Austin, TX: Southwest Educational Development Laboratory. The study is ineligible for review because it does not use a comparison group.

Cherry, S. R. (2001). An examination of the effects of Accelerated Reader and repeated reading on the reading fluency of third grade students reading below grade level. Unpublished master’s thesis, University of Idaho, Moscow. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.
Christianson, P. (2005). Is Accelerated Reader a viable reading enhancement program for an elementary school? Unpublished alternate plan paper, Minnesota State University–Mankato. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Clegg, C. W. (1997). Accelerated Reader: A study of the effects on reading comprehension and attitudes in the fifth grade. Unpublished master’s thesis, Rowan University, Glassboro, NJ. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Compton, C. L. (2001). Integrating literature discussion groups with sustained silent reading to increase fifth grade reading comprehension. Unpublished master’s thesis, Boise State University, ID. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Conley, D. (1997). Effect of Accelerated Reader program on the reading achievement of third-grade students. Unpublished master’s thesis, University of Tennessee at Martin. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Conrath, R. A. (2007). A comparative study for the effects of a supplemental reading program on eighth-grade students’ reading comprehension growth (Doctoral dissertation, University of South Carolina). Dissertation Abstracts International, 69(01A), 82–86. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Minnesota State University–Mankato. The study is ineligible for review because it does not use a comparison group.

Dinner, L. (2003). *The use of Accelerated Reader software to increase reading motivation in students with disabilities*. Unpublished master’s thesis, University of Kansas, Lawrence. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

DiSalle, K. L. (2005). Using Accelerated Reader within an inclusive reading program. Unpublished master’s thesis, University of Toledo, OH. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Doolittle, C. R. (1992). *A study of the effects and attitudes of fourth grade students using a computer assisted incentive reading program*. Unpublished master’s thesis, University of Dayton, OH. The study is ineligible for review because it does not use a comparison group.

DuVall, K. B. (2002). *Increasing student achievement through the use of a reading strategy Accelerated Reader: An action research project*. Unpublished educational specialist’s thesis, Valdosta State University, GA. The study is ineligible for review because it does not use a comparison group.

Eaton, D. D. (2003). *The effects of Accelerated Reader on reading achievement*. Maryville, MO: Northwest Missouri State University. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Education Commission of the States. (1999). *Accelerated Reader*. Denver, CO: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Evans, A. (2004). *Increased reading levels through the use of Accelerated Reader*. Unpublished master’s thesis, Graceland University, Cedar Rapids, IA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Facemire, N. E. (2000). *The effect of the Accelerated Reader on the reading comprehension of third graders*. Unpublished master’s thesis, Salem-Teikyo University, Salem, WV. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

40 schools in seven Midwest states. Naperville, IL: North Central Regional Educational Laboratory. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Fandrey, A. L. (2004). *The role of Accelerated Reader and great leaps in improving the reading fluency and comprehension of third grade students*. Unpublished master’s thesis, Queens University of Charlotte, NC. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Fisher, A. (2000). *A study to assess the impact of Reading Renaissance in high school*. Unpublished master’s thesis, Boise State University, ID. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Florida Center for Reading Research. (2006). *Review of Accelerated Reader by the Florida Center for Reading Research (FCRR)*. Tallahassee, FL: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Focarile, D. A. (2006). The *Accelerated Reader* program and students’ attitude towards reading (Doctoral dissertation, Baylor University). *Dissertation Abstracts International, 66*(10A), 110–3599. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Franks, J. (2007). *Using Accelerated Reading as a motivator in the classroom*. Unpublished master’s project, University of Tennessee at Chattanooga. The study is ineligible for review because it does not use a comparison group.

Friesen, C. (2004). *Improving reading in grade three students*. Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Ganter, J. (2001). *Capture the power of reading*. DeKalb, IL: Illinois Periodicals Online. The study is ineligible for review because it does not use a comparison group.

Gibson, M. T. (2002). An investigation of the effectiveness of the *Accelerated Reader* program used with middle school at-risk students in a rural school system (Doctoral dissertation, Mississippi State University). *Dissertation Abstracts International, 63*(10A), 117–3479. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Girard, P. A. (2003). *Does the Accelerated Reader program motivate fifth grade students to read beyond the classroom?* Unpublished master’s thesis, Rowan University, Glassboro,
The study is ineligible for review because it does not use a comparison group.

Godmanchester Primary School. (2000). Inspection report: Godmanchester primary school, UK. Huntingdon, Cambridgeshire, UK: Author. The study is ineligible for review because it does not use a comparison group.

Halnan, N. R. (2000). An investigation of the impact of the Accelerated Reader program on standardized test scores. Unpublished master’s thesis, Ottawa University, Phoenix, AZ. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Halsted, S. (1996). Does Accelerated Reader really improve reading scores? Unpublished master’s thesis, Ottawa University, Phoenix, AZ. The study does not meet WWC evidence standards because it does not provide adequate information to determine whether it uses an outcome that is valid or reliable.

Hayes, L. J. (2002). The role of the media specialist in the implementation of Accelerated Reader. Unpublished alternate plan paper, Minnesota State University–Mankato. The study is ineligible for review because it does not use a comparison group.

Holloway, A. (2007). The effects of Accelerated Reader on the attitudes and reading habits of first grade students in a mid-southern state (Doctoral dissertation, Union University). Dissertation Abstracts International, 68(11A), 108–4610. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.
References (continued)

Holman, D., & McLin, A. (2001). Effects of Reading Renaissance training: Faculty reactions to compressed in-service. Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Holman, G. G. (1998). Correlational study to determine the effects of the Accelerated Reader program on the reading comprehension of fourth- and fifth-grade students in Early County, Georgia (Doctoral dissertation, University of Sarasota). Dissertation Abstracts International, 59(03A), 82–771. The study is ineligible for review because it does not use a comparison group.

Holmes, C. T., & Brown, C. L. (2003). A controlled evaluation of a total school improvement process, School Renaissance. Athens, GA: University of Georgia, Department of Educational Administration. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Howell, V. J. (2006). A school without Accelerated Reader and the impact it has on students’ reading scores. Unpublished master’s thesis, College of St. Scholastica, Duluth, MN. The study is ineligible for review because it does not use a comparison group.

Husman, J., & Brem, S. (2005). Findings from a three-year study of Reading Renaissance in a Title I urban elementary school. Tempe, AZ: Arizona State University. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Institute for Academic Excellence. (1997). Critical thinking and literature-based reading. Madison, WI: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Johnson, R., & Howard, C. (2003). The effects of the *Accelerated Reader* program on the reading comprehension of pupils in grades three, four, and five. *The Reading Matrix, 3*(3), 87–96. The study is ineligible for review because it does not use a comparison group.

Kambarian, V. (2001). *The role of reading instruction and the effect of a reading management system on at-risk students.* Unpublished doctoral dissertation, Saint Louis University, MO. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Kellen, C. (1999). *A study of the effect of the Accelerated Reader program on elementary students’ reading behavior.* Unpublished master’s thesis, St. Cloud State University, MN. The study is ineligible for review because it does not use a comparison group.

King, M. A. (2003). *An investigation of the Accelerated Reader program and students’ motivation to read.* Unpublished master’s thesis, Bowling Green State University, OH. The study is ineligible for review because it does not use a comparison group.

Knapik, P. J. (2002). The effect of the *Accelerated Reader* program on student achievement: A comparison study (Doctoral dissertation, University of Southern California). *Dissertation Abstracts International, 64*(06A), 296–2027. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Knox, M. L. (1996). *An experimental study of the effects of the Accelerated Reader program and a teacher directed program on reading comprehension and vocabulary of fourth and fifth grade students* (Doctoral dissertation, University of South Florida). *Dissertation Abstracts International, 57*(10A), 122–4208. The study does not meet WWC evidence standards because it is a randomized controlled trial in which the combination of overall and differential attrition rates exceeds WWC standards for this area, and the subsequent analytic intervention and comparison groups are not shown to be equivalent.

Kohel, P. R. (2003). *Using Accelerated Reader: Its impact on the reading levels and Delaware state testing scores of 10th grade students in Delaware’s Milford High School* (Doctoral dissertation, Wilmington College). *Dissertation Abstracts International, 63*(10A), 106–3507. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Kortz, W. J. (2002). *Measuring the effects of the Accelerated Reader program on the third grade English language learners’ reading achievement in dual language programs.* Unpublished doctoral dissertation, Sam Houston State University, Huntsville, TX. The study is ineligible for review because it does not use a comparison group.

Krashen, S. (2002). *Accelerated Reader: Does it work? If so, why?* *School Libraries in Canada, 22*(2), 24–26. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.
Krashen, S. (2005). Accelerated Reader: Evidence still lacking. Knowledge Quest, 33(3), 48–49. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Krashen, S. D. (2003). The (lack of) experimental evidence supporting the use of Accelerated Reader. Journal of Children’s Literature, 29(2), 9–30. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Krashen, S. D. (2004). The power of reading: Insights from the research (2nd ed.). Westport, CT & Portsmouth, NH: Libraries Unlimited & Heinemann. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Kulik, J. A. (2003). Effects of using instructional technology in elementary and secondary schools: What controlled evaluation studies say: Final report. Arlington, VA: SRI International. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Kunz, J. R. R. (1999). Does the Accelerated Reader program have an impact on the improvement of children’s reading scores in Illinois? (Doctoral dissertation, Saint Louis University). Dissertation Abstracts International, 60(08A), 110–2839. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Kyllo, A. (2004). Does Accelerated Reader have positive and motivational effects on student reading levels and student attitude toward reading? Unpublished action research paper, Winona State University, MN. The study is ineligible for review because it does not use a comparison group.

Lamme, L. L. (2003). A literature perspective on Accelerated Reader. Journal of Children’s Literature, 29(2), 37–45. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Lenko, S. L. (2005). Effects of teacher’s active role in Accelerated Reader with elementary students. Unpublished master’s thesis, Rowan University, Glassboro, NJ. The study is ineligible for review because it does not use a comparison group.

Ligas, M. R. (2002). Evaluation of Broward County Alliance of Quality Schools project. Journal of Education for Students Placed At-Risk, 7(2), 117–139. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—the intervention was combined with another intervention.

Magoteaux, K. J. (2001). Motivation of fourth grade students toward participation in the Accelerated Reader program. Unpublished master’s thesis, University of Dayton, OH. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

Marcelt, D. M. (2001). *Will the use of the Accelerated Reader program improve student reading scores?* Unpublished master’s thesis, Franciscan University of Steubenville, OH. The study is ineligible for review because it does not use a comparison group.

Martinez, S. (2007). *A survey research of reading methods used by New Mexico middle school teachers.* Unpublished doctoral dissertation, Kansas State University, Manhattan. The study is ineligible for review because it does not examine the effectiveness of an intervention.

McCarthy, C. A. (2003). *Is the tail wagging the dog? An analysis of Accelerated Reader and the influence of reading rewards on learning and library media centers.* *School Library Media Activities Monthly, 20*(3), 23. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

McDurmon, A. (2001). *The effects of guided and repeated reading on English language learners.* Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

McGlinn, J. M., & Parrish, A. (2002). *Accelerating ESL students’ reading progress with Accelerated Reader.* *Reading Horizons, 42*(3), 175. The study is ineligible for review because it does not use a comparison group.

McKnight, D. (1992). *Using the Accelerated Reader and other strategies and varied techniques to improve the reading attitudes of fifth-grade students.* Unpublished doctoral dissertation, Nova University, Davie, FL. The study is ineligible for review because it does not use a comparison group.

McMillan, M. K. (1996). *The effect of the Accelerated Reader program on the reading comprehension and the reading motivation of fourth-grade students* (Doctoral dissertation, University of Houston). *Dissertation Abstracts International, 57*(04A), 75–1542. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Melton, C. M., Smothers, B. C., Anderson, E., Fulton, R., Replogle, W. H., & Thomas, L. (2004). *A study of the effects of the Accelerated Reader program on fifth-grade students’ reading achievement growth.* *Reading Improvement, 41*(1), 18–24. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Additional source:

Metz, M. (2001). *Differences in reading levels of kindergarten students who have and have not used the Accelerated Reader program.* Unpublished master’s thesis, Southwest Missouri State University, Springfield. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

master’s thesis, OCLC accession number 52274076. The study is ineligible for review because it does not use a comparison group.

Mid-Continent Research for Education and Learning. (2005). Final report: High-needs schools—what does it take to beat the odds? Aurora, CO: Author. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Additional source:

Mitchell, J. P. (1997). The effects of the Accelerated Reader program on third grade ITBS reading comprehension scores. Unpublished master’s thesis, Mercer University, Macon, GA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Monk, S. R. (2002). The relationship between Accelerated Reader and academic achievement on reading comprehension scores of 8th grade students at a selected middle school. Unpublished master’s thesis, Milligan College, Johnson City, TN. The study is ineligible for review because it does not use a comparison group.

The study is ineligible for review because it does not use a comparison group.

Mulvehill, A. (2005). Student attitudes regarding the Accelerated Reader program. Unpublished educational specialist’s thesis, University of West Georgia, LaGrange. The study is ineligible for review because it does not use a comparison group.

Nelson, D. M. (2006). English language learners (ELLs) previewing literature on digital curriculum to improve reading comprehension and motivation on Accelerated Reader tests. Unpublished master’s thesis, Hamline University, Saint Paul, MN. The study is ineligible for review because it does not use a comparison group.

WWC evidence standards because it is a randomized controlled trial in which the combination of overall and differential attrition rates exceeds WWC standards for this area, and the subsequent analytic intervention and comparison groups are not shown to be equivalent.

Additional source:

Page, P. D. (1999). The perception of teachers regarding the Accelerated Reader program at an upper east Tennessee elementary school. Unpublished master’s thesis, Milligan College, Johnson City, TN. The study is ineligible for review because it does not use a comparison group.

Paul, T. (2003). Guided independent reading: An examination of the reading practice database and the scientific research supporting guided independent reading as implemented in Reading Renaissance. Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not use a comparison group.

Pauley, J. F. (2000). The effect of the Accelerated Reader program on attitude and achievement of third graders. Unpublished master’s thesis, Shenandoah University, Winchester, VA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Pavonetti, L. M., Brimmer, K. M., & Cipielewski, J. F. (2003). Accelerated Reader: What are the lasting effects on the reading habits of middle school students exposed to Accelerated Reader in elementary grades? Journal of Adolescent & Adult Literacy, 46(4), 300. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

Peak, J., & Dewalt, M. W. (1993, February). Effects of the computerized Accelerated Reader program on reading achievement. Paper presented at the annual meeting of the Eastern Educational Research Association, Clearwater Beach, FL. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Peak, J. P., & Dewalt, M. W. (1994). Reading achievement: Effects of computerized reading management and enrichment. ERS Spectrum, 12(1), 31–35. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Persinger, J. M. (2001). What are the characteristics of a successful implementation of Accelerated Reader? Knowledge Quest, 29(5), 30. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Platt, M. (2001). The effectiveness of a computer-assisted reading program on eighth grade SAT-9 reading test scores. Unpublished master’s thesis, California State University–Stanislaus. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Pratt, M. O. (1999). A study of the computerized reading management program, Accelerated Reader, and its effect on reading among primary grade students. Unpublished doctoral dissertation, Nova Southeastern University, Ft. Lauderdale, FL. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Putman, S. M. (2007). Does the accumulation of points really equate to higher motivation to read? College Reading Association Yearbook, 28, 79–94. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1993). National study of literature-based reading: How literature-based reading improves both reading and math ability. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1997). Learning information system effects on reading, language arts, math, science, and social studies. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Additional source:

analytic intervention and comparison groups are not shown to be equivalent.

Renaissance Learning. (1999). *Districtwide Reading Renaissance implementation results in all eight elementary schools in Monroe County scoring an “A” in reading on the Florida Comprehensive Achievement Test*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Georgian elementary school achieves growth in ITBS scores through Reading Renaissance implementation*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Mississippi elementary school documents dramatic gains in reading and library circulation*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Nebraska students achieve two years’ growth in one year*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Reading gains reported at Indiana middle school*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Reading growth nearly triples and library circulation increases through extended Renaissance implementation*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Reading Renaissance attributed to above-average reading growth in a Texas school*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Reading Renaissance helps Tennessee school outgain national and state norms in all subjects*. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Renaissance Learning. (1999). *Reading Renaissance leads to increased test scores*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Renaissance implementation narrows the achievement gap by more than 50 percent*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Test scores improve and discipline problems decrease at Iowa elementary school*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (1999). *Texas school district increases test scores, narrows the gap with Reading Renaissance*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2000). *Accelerated Reader boosts student achievement*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2000). *Alabama elementary school receives governor’s trophy for most improvement after implementing Reading Renaissance*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2000). *Chicago inner-city school raises test scores significantly*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2000). *Longitudinal study shows New York school boosts of Degrees of Reading Power (DRP) reading scores*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

References (continued)
Renaissance Learning. (2000). *Nebraska school achieves more than one year’s reading growth in just one semester.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2000). *North Carolina middle school raises test scores and becomes a “school of distinction.”* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2000). *Number of students meeting or exceeding state standard on Washington Assessment of Student Learning increases.* Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Renaissance Learning. (2000). *Portrait of a benchmark school.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2000). *Student attitudes toward reading improve at an Illinois elementary school.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Renaissance Learning. (2001). *A study of Accelerated Reader model and master schools and performance on the Mississippi curriculum reference test.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Accelerated Reader has positive impact on reading growth in New Zealand boys’ high school.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Alaska elementary school achieves success with Reading Renaissance.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Arkansas school sees schoolwide improvements in reading achievement.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *California school exceeds academic performance index targets for two straight years.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Comprehensive School Reform Demonstration (CSRD) survey: How Renaissance fits the CSRD criteria.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Renaissance Learning. (2001). *First graders at Alabama school make great strides in reading achievement in 8 months.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Georgia primary school reading gains remarkable for 5 consecutive years.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Kansas middle school students improve reading achievement and attitudes toward reading after only nine weeks of Reading Renaissance.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Maine middle school achieves academic success with Renaissance comprehensive school-wide improvement process.* Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Reading percentiles increase by more than 10 percentiles at Nebraska elementary school.*
Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Reading Renaissance and Math Renaissance provide foundation for academic program in New Mexico school*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2001). *Virginia elementary students surpass state averages on standards test*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Accelerated Reader software and best practices key scientifically based research summary*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Accelerating ESL students’ reading progress with Accelerated Reader*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Arizona elementary school demonstrates long-term growth on SAT 9*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Elementary school achieves big gains on Michigan educational assessment program*. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Renaissance Learning. (2002). *Inner-city New York school with 88% poverty rate triples ITBS test performance*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Inner-city school more than doubles passing rates on North Carolina end-of-grade test*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Pennsylvania reading scores nearly double in five years*. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Renaissance Learning. (2002). *Reading ability levels increase in Scottish schools*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Reading proficiency more than doubles on Massachusetts comprehensive assessment system*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Results from a three-year statewide implementation of Reading Renaissance in Idaho*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2002). *Third-graders surpass state scores on Illinois standards achievement test*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2003). *Achievement gap at a Texas elementary school reduced by 88%*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2003). *Sixth-grade ITBS reading scores increase 20 percentage points*. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Renaissance Learning. (2004). *Average ITBS reading scores at a Harlem elementary school rise 5 percentiles per year*. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.
conson Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2004). Average number of students meeting Delaware state standards increases by more than 15 percentage points. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2004). California school shows growth on API four years in a row. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2004). Percentage of students scoring at or above grade level on Minnesota comprehensive assessment increases 43.5 points. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2004). An increase in Delaware Student Testing Program (DSTP) reading scores and improved student attitudes about reading accredited to Reading Renaissance. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2005). Florida school improves from a C to an A on the Florida A+ Accountability Plan. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Renaissance Learning. (2005). Iowa school boosts ITBS reading and math scores. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2005). Texas junior high school makes extensive gains on the TAKS. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2005). Washington school dramatically improves reading and math state test scores. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2006). Accelerated Reader contributes to Ontario school’s reading success. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2006). Iowa elementary school pairs best practices with student motivation and sees significant gains in ITBS scores. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2006). Kentucky school district makes great strides in reading with AR. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Renaissance Learning. (2006). Library circulation increases with Accelerated Reader: An analysis of 3 journal articles, 1 dissertation, and 20 case studies. Wisconsin Rapids, WI: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Renaissance Learning. (2006). Ontario secondary school excels in reading. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2006). Reading and math state test scores climb at rural Texas school. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2006). Special report: Facts and myths about the reading gap and how to close it. Wisconsin Rapids, WI: Author. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Renaissance Learning. (2007). Reading more and monitoring progress spell success for Texas elementary school. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.
Renaissance Learning. (2007). Test scores on the rise and library growth skyrocketing at Indiana elementary school. Wisconsin Rapids, WI: Author. The study is ineligible for review because it does not use a comparison group.

Renaissance Learning. (2008). A comparative analysis of TCAP reading-language arts scores between students who used Accelerated Reader and students who used sustained silent reading. Wisconsin Rapids, WI: Author. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Richard, G. I. (1999). Effects of Accelerated Reader on attitude and comprehension. Unpublished master's thesis, Bowling Green State University, OH. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Rogers, L. S. (2000). The perceived impact of the Accelerated Reader program in an elementary school (Doctoral dissertation, Georgia Southern University). Dissertation Abstracts International, 60(12A), 118–4307. The study is ineligible for review because it does not use a comparison group.

Rosa-Brown, D. (2003). The effect of Accelerated Reader on student achievement and attitude in a second grade classroom. Unpublished master’s thesis, William Paterson University, Wayne, NJ. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Rosenheck, D., Caldwell, D., Calkins, J., & Perez, D. A. (1996). Accelerated Reader impact on feelings about reading and library use: A survey of fifth grade students in Lee County, Florida, to determine how a computerized reading management program affects attitudes toward reading and the media center and frequency of library use. Unpublished survey research project, University of South Florida, St. Petersburg. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

Rudd, P., & Wade, P. (2006). Evaluation of Renaissance Learning mathematics and reading programs in UK specialist and feeder schools. Slough, Berkshire, UK: National Foundation for Education Research. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Rykken, J. M. (2005). The pros and cons of Accelerated Reader. Unpublished alternate plan paper, Minnesota State University–Mankato. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.
Sadusky, L., & Brem, S. (2002). The integration of Renaissance programs into an urban Title I elementary school, and its effect on school-wide improvement. Tempe, AZ: Arizona State University. The study is ineligible for review because it does not use a comparison group.

Samuels, S. J., & Wu, Y. (2004). How the amount of time spent on independent reading affects reading achievement: A response to the National Reading Panel. Minneapolis, MN: University of Minnesota. The study is ineligible for review because it does not use a comparison group.

Samuels, S. J., Lewis, M., Wu, Y. C., Reininger, J., & Murphy, A. (2004). Accelerated Reader vs. non-Accelerated Reader: How students using the Accelerated Reader outperformed the control condition in a tightly controlled experimental study. Minneapolis, MN: University of Minnesota. The study does not meet WWC evidence standards because it is a randomized controlled trial in which the combination of overall and differential attrition rates exceeds WWC standards for this area, and the subsequent analytic intervention and comparison groups are not shown to be equivalent.

Additional source:

School Renaissance Institute. (1999). Idaho statewide implementation of Reading Renaissance: Summary of first year’s results. Madison, WI: Author. The study is ineligible for review because it does not use a comparison group.

Additional source:

School Renaissance Institute. (1999). The librarians’ Reading Renaissance survey. Madison, WI: Author. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

School Renaissance Institute. (1999). The teachers’ Reading Renaissance survey. Madison, WI: Author. The study is ineligible for review because it does not use a comparison group.

Schroeder, K. (2003). The effects of the Accelerated Reader program on sixth grade reading comprehension levels. Unpublished master’s thesis, California State University–San Marcos. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Scott, L. S. (1999). The Accelerated Reader program, reading achievement, and attitudes of students with learning disabilities. Unpublished master’s thesis, Georgia State University, Atlanta. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Shanahan, C. (2005). Adolescent literacy intervention programs: Chart and program review guide. Naperville, IL: Learning Point Associates/North Central Regional Educational Laboratory. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.
Siegert, J. (2002). *Reading achievement of American Indian and white students using Accelerated Reader: Correlations with gender, word count, classroom practice, and library circulation*. Unpublished master’s thesis, St. Cloud State University, MN. The study is ineligible for review because it does not use a comparison group.

Simmons, E. W. (2001). *The impact of computer technology on communication among home, school, and community regarding Reading Renaissance: An action research study*. Unpublished master’s thesis, Valdosta State University, GA. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Sims, S. P. (2002). The effects of the *Accelerated Reader* program and sustained silent reading on reading attitudes and reading achievement of eighth-grade students (Doctoral dissertation, Georgia State University). *Dissertation Abstracts International*, 63(06A), 134–2119. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Smith, I. (2005). Can *Accelerated Reader* and cooperative learning enhance the reading achievement of level 1 high school students on the Florida Comprehensive Assessment Test? (Doctoral dissertation, Nova Southeastern University). *Dissertation Abstracts International*, 67(04A), 50–1274. The study is ineligible for review because it does not use a comparison group.

Spradley, T. G. (1998). *The Accelerated Reader program and ITBS normal curve equivalents for reading, mathematics, and language of sixth-grade students*. Unpublished doctoral dissertation, University of Southern Mississippi, Hattiesburg. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Spurgeon, J. (1996). *Accelerated Reader hand in hand with C.T.B.S. test scores*. Unpublished master’s thesis, Linfield College, McMinnville, OR. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Steele, C. T. (2003). *The effectiveness of the Accelerated Reader program on the reading level of second-grade students as measured by the student test for assessment of reading*. Unpublished doctoral dissertation, Mississippi State University, Starkville. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Steigemeier, L. (1999). *Language integrated technology project final evaluation report: A technology literacy challenge fund grant project in cooperation with the office of the superintendent of public instruction*. Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not use a comparison group.

Stevens, K. F. (2006). *The effectiveness of Accelerated Reader on fifth-grade students*. Unpublished master’s thesis, California State University–Stanislaus. The study does not meet WWC evidence standards because it uses a quasi-experimental design in which the analytic intervention and comparison groups are not shown to be equivalent.

Terry, A. (2007). Reading in the fast lane: An evaluative study on the effectiveness of Accelerated Reader in a fourth-grade literacy program. Unpublished master’s thesis, California State University–Fresno. The study is ineligible for review because it does not use a comparison group.

Thompson, A. H. (2007). The perceptions of teachers and students on the effectiveness of Accelerated Reader as a motivational tool. Unpublished doctoral dissertation, Alabama A&M University, Huntsville. The study is ineligible for review because it does not use a comparison group.

Topping, K. J. (1999, November). Formative assessment of reading comprehension by computer: Advantages and disadvantages of the Accelerated Reader software. Reading Online. Retrieved from www.readingonline.org. The study is ineligible for review because it is not a primary analysis of the effectiveness of an intervention, such as a meta-analysis or research literature review.

Topping, K. J. (2006). Accelerated Reader in specialist schools. Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not use a comparison group.

Topping, K. J., & Sanders, W. L. (2000). Teacher effectiveness and computer assessment of reading: Relating value-added and learning information system data. School Effectiveness and School Improvement, 11(3), 305–337. The study is ineligible for review because it does not use a comparison group.

Additional source:

Torgesen, J. K., & King, R. (2000). FCRR Technical Report #3: Improving the effectiveness of reading instruction in one elementary school: A description of the process. Tallahassee, FL: Florida Center for Reading Research. The study is ineligible for review because it does not use a comparison group.

Toro, A. (2001). A comparison of reading achievement in second grade students using the Accelerated Reading program and independent reading. Unpublished master’s thesis, Johnson Bible College, Knoxville, TN. The study is ineligible for review because it does not use a comparison group.

Townsend, K. (2007). Accelerated Reader: Optimal conditions for reading achievement using a computer information system. Dissertation Abstracts International, 68(6-A), 2327. The study is ineligible for review because it does not use a comparison group.
References (continued)

Trumble, J. F. (2003). Improving reading levels, using Accelerated Reader as a supplemental reading program. Unpublished master’s thesis, Chapman University, Orange, CA. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Turner, T. (1993). Improving reading comprehension achievement of sixth, seventh, and eighth grade underachievers. Unpublished doctoral dissertation, Nova University, Ft. Lauderdale, FL. The study is ineligible for review because it does not use a comparison group.

VanderZee, D., Swanson, S., Rue, T., & Paul, T. (1996). Impact of the Accelerated Reader technology-based literacy program on overall academic achievement and school attendance. Madison, WI: Institute for Academic Excellence. The study is ineligible for review because it does not include an outcome within a domain specified in the protocol.

Vantuyl, V. (2002). The most effective use of Accelerated Reader for upper elementary students (Master’s thesis, Central Missouri State University). Masters Abstracts International, 40(06), 32–1332. The study is ineligible for review because it does not use a comparison group.

Vega, C. (1999). A research conducted to study the effect of Accelerated Reader designed to help increase reading levels in a third-grade class of at-risk students (Doctoral dissertation, University of Sarasota). Dissertation Abstracts International, 60(11A), 49–3913. The study is ineligible for review because it does not use a comparison group.

Vetcher, J. (2000). South Bay Union School District’s informational report on Accelerated Reader. Imperial Beach, CA: South Bay Union School District. The study is ineligible for review because it does not use a comparison group.

Additional source:

Vollands, S. R., Topping, K. J., & Evans, H. M. (1996). Experimental evaluation of computer assisted self-assessment of reading comprehension: Effects on reading achievement and attitude. Dundee, Scotland, UK: Dundee University, Centre for Paired Learning. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Vollands, S. R., Topping, K. J., & Evans, R. M. (1999). Computerized self-assessment of reading comprehension with the Accelerated Reader: Action research. Reading & Writing Quarterly: Overcoming Learning Difficulties, 15(3), 197–211. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Walasek, M. (2005). A study of the Accelerated Reader program on third grade students’ motivation to read. Unpublished master’s thesis, Carthage College, Kenosha, WI. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.

Walberg, H. (2001). Final evaluation of the reading initiative: Report to the J. A. & Kathryn Albertson Foundation Board of Directors. Wisconsin Rapids, WI: Renaissance Learning. The study is ineligible for review because it does not use a comparison group.

Willcutt, J. (2004). *Effect of modeled and oral repeated reading on English language learners’ reading performance*. Unpublished master’s thesis, University of Minnesota, MN. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample includes less than 50% general education students.

Williams, C. H. (2008). *Effect of independent reading on fourth graders’ vocabulary, fluency, and comprehension*. Unpublished doctoral dissertation, Auburn University, AL. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Wrieden, K. J. (2000). *Motivating students with Accelerated Reader*. Unpublished master’s thesis, University of Northern Iowa, Cedar Falls. The study is ineligible for review because it does not examine the effectiveness of an intervention.

Yee, V. N. (2007). *An evaluation of the impact of a standards-based intervention on the academic achievement of English language learners* (Doctoral dissertation, University of Southern California). *Dissertation Abstracts International, 68*(04A), 108–1317. The study does not meet WWC evidence standards because the measures of effectiveness cannot be attributed solely to the intervention—there was only one unit assigned to one or both conditions.

Zombo, B. (2003). *The Accelerated Reader program compared to sustained silent reading on third graders’ SOL reading scores*. Unpublished master’s thesis, Shenandoah University, Winchester, VA. The study is ineligible for review because it does not use a sample aligned with the protocol—the sample is not within the specified age or grade range.
Appendix A1.1 Study characteristics: Bullock, 2005

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>The study examined students in grades 3 to 5. For this review, the WWC analysis focused on fourth and fifth graders, as specified in the Adolescent Literacy review protocol. Ninety-one percent of the students in the study school were white, and 61% qualified for free or reduced-price lunch. The fourth-grade sample included 45 students from two classrooms, and the fifth-grade sample included 37 students from two classrooms. Within each classroom, students were rank ordered by baseline reading fluency scores and were divided into two groups based on whether their rank was an odd or even number. A coin flip decided the assignment of each group to intervention or control status. There was no attrition of students or classrooms between pretest and posttest.</td>
</tr>
<tr>
<td>Setting</td>
<td>The study took place in one elementary school near Eugene in western Oregon.</td>
</tr>
<tr>
<td>Intervention</td>
<td>Students in the intervention group participated in the Accelerated Reader™ program over a 10-week period. These students were provided with a minimum of 90 minutes per week of independent reading time during class and were required to visit the library and check out a minimum of one book a week. Books had to be drawn from the subset of library books for which Accelerated Reader™ quizzes were available. When they finished a book, students completed a brief, computerized, multiple-choice quiz on the book’s content and received points based on the level of the book read and the number of questions answered correctly. During the weekly library visit, intervention teachers and the library specialist verified that intervention students had access to appropriate Accelerated Reader™ books.</td>
</tr>
<tr>
<td>Comparison</td>
<td>The control condition relied on the business-as-usual reading program throughout the 10 week study, without the addition of Accelerated Reader™. As was the case for the intervention group, students in the control group were provided with a minimum of 90 minutes per week of independent reading time during class and 30 minutes per week of library time. Control students were asked to keep track of the books they read.</td>
</tr>
<tr>
<td>Primary outcomes and measurement</td>
<td>For both the pre- and posttest, students took the Dynamic Indicators of Basic Early Literacy Skills (DIBELS) Oral Reading Fluency subtest; the Standardized Test and Assessment in Reading (STAR); and the 4J Vocabulary assessment. For a more detailed description of these outcome measures, see Appendices A2.1–A2.2.</td>
</tr>
<tr>
<td>Staff/teacher training</td>
<td>The author does not describe the training provided to study teachers.</td>
</tr>
</tbody>
</table>

1. Grade 3 students are excluded from the review because they fall outside the grade range of the Adolescent Literacy topic area; they will be included in the Accelerated Reader™ intervention report for the Beginning Reading topic area.

2. The author of the study describes the design as quasi-experimental. However, because the groups were assigned randomly to the treatment and control conditions, the WWC classified the study as a randomized controlled trial.

3. Only results for fourth-grade students were available on the 4J Vocabulary assessment due to errors in data collection for grades 3 and 5.
Appendix A1.2 Study characteristics: Nunnery & Ross, 2007

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>The intervention group consisted of 11 schools that implemented Accelerated Reader™. Two steps were used to identify comparison schools. The first step was taken to narrow the pool of potential comparison schools. In this step, the researchers used data from the Academic Excellence Indicator System (AEIS), which identifies—for each school in Texas (including the 11 treatment schools in this study)—40 demographically similar schools based on the percentage of African-American students, Hispanic students, white students, economically disadvantaged students, limited English proficient students, and student mobility. In the second step, from the group of 40 potential comparison schools identified for each treatment school, the most similar school not using Accelerated Reader™ was selected according to the schools’ base-year accountability rating (low performing, acceptable, recognized, exemplary) and base-year percentage of economically disadvantaged students. One of the selected comparison schools declined to participate, and another two did not have appropriate grade-level scores for use in the study. These three comparison schools were replaced from the pool of similar schools. The analytic sample consisted of students in grades 5 and 8 who had three consecutive years of data between school years 1998/99 and 2001/02 (cohort 1 students had data from the 1998/99 through 2000/01 school years, and cohort 2 students had data from the 1999/2000 through 2001/02 school years). The cohort 1 grade 5 analysis sample included 442 intervention students from nine schools who received Accelerated Reader™ in the 1999/2000 and 2000/01 school years and 470 nonparticipants from nine matched elementary schools. The cohort 2 grade 5 analysis sample consisted of 437 students from nine schools who received Accelerated Reader™ in the 1999/2000, 2000/01, and 2001/02 school years and 454 nonparticipants from nine matched elementary schools. The cohort 2 grade 8 analysis sample consisted of 482 students in two schools who received Accelerated Reader™ in the 1999/2000, 2000/01, and 2001/02 school years and 510 nonparticipants from two matched middle/junior high schools. Outcomes were measured at the end of the second year of intervention implementation for cohort 1 and at the end of the third year of intervention implementation for cohort 2.</td>
</tr>
<tr>
<td>Setting</td>
<td>The study took place in 18 elementary and 4 middle/junior high schools from nine districts in Texas. All 11 intervention schools were located in a suburban school district.</td>
</tr>
<tr>
<td>Intervention</td>
<td>According to study authors, Accelerated Reader™ was the primary reading curriculum in intervention schools. The study did not provide details on how the intervention was implemented.</td>
</tr>
<tr>
<td>Comparison</td>
<td>The comparison schools did not implement Accelerated Reader™ during the school years under study. No information is available on the reading curricula used in these schools.</td>
</tr>
<tr>
<td>Primary outcomes and measurement</td>
<td>For both pre-² and posttests, the authors used the Texas Assessment of Academic Skills (TAAS), Reading subtest. For a more detailed description of this outcome measure, see Appendix A2.2.</td>
</tr>
<tr>
<td>Staff/teacher training</td>
<td>No information on staff or teacher training was provided in the study.</td>
</tr>
</tbody>
</table>

1. Cohort 1 also included grade 8 students. However, for this group of students, the intervention and comparison groups were not shown to be equivalent at baseline. Therefore, cohort 1 grade 8 students were excluded from the review.

2. Although the baseline period was the 1998/99 school year, the authors used reading test score data from the 1999/2000 school year as a covariate for cohort 2 students. Grade 5 students in cohort 2 were in second grade during the 1998/99 school year, and second grade scores were not available to the authors; therefore, third grade reading test score data from the 1999/2000 school year were used as a covariate. The authors did not report the reason that 1999/2000 reading test score data were used as a covariate for grade 8 cohort 2 students. Because the authors used reading test score data from the 1999/2000 school year as a covariate for cohort 2 students, the pretest data for this cohort may reflect some effect of the first year of program implementation.
Appendix A2.1 Outcome measures for the reading fluency domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Indicators of Basic Early Literacy Skills (DIBELS) Oral Reading Fluency subtest</td>
<td>The DIBELS Oral Reading Fluency measure is a standardized test of reading accuracy and speed, based on the number of words read correctly in one minute from connected text. Hesitations of more than three seconds, omitted words, and word substitutions are counted as errors, whereas prompt self-corrections are regarded as accurate (as cited in Bullock, 2005).</td>
</tr>
</tbody>
</table>

Appendix A2.2 Outcome measures for the comprehension domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary development construct</td>
<td>4J Vocabulary is a curriculum-based assessment(^1) which consists of 90 vocabulary words selected from a list of words in World Book. Each of the words has three possible synonym answer choices: (1) the correct response, (2) one near-response, and (3) one far-response. Items were field tested and normed with oral reading fluency measures. This measure was administered at the beginning and end of the 10-week study (as cited in Bullock, 2005).</td>
</tr>
</tbody>
</table>

| Reading comprehension construct | This is an individually administered, nationally normed, computer-adaptive cloze assessment of a K–12 student’s level of reading achievement that takes about 10 minutes to complete. Developed by Renaissance Learning, the developer of *Accelerated Reader™*, STAR measures a student’s reading ability and reading level for diagnosis and progress monitoring. The test includes exercises such as selecting a word from the list to best complete a given sentence. The test is standardized, and scale scores exhibit moderate to strong correlation to other standardized reading tests (as cited in Bullock, 2005). |

| Texas Assessment of Academic Skills (TAAS), Reading subtest | The TAAS was the state-administered benchmark test in Texas for grades 3 to 8 and 10 until replaced by the Texas Assessment of Knowledge and Skills in 2003. Reading test objectives are consistent across grades and include mastery in identifying word meaning, supporting ideas, summarization, relationships and outcomes, inferences and generalizations, point of view, propaganda, and fact and opinion. The reading test consists of approximately 50 multiple-choice questions about passages of various length and style (as cited in Nunnery & Ross, 2007, http://ritter.tea.state.tx.us/student.assessment/resources/guides/tli.html, http://www.education.com/reference/article/Ref_Explanation_TASS, and http://ritter.tea.state.tx.us/student.assessment/resources/guides/interpretive/2009_interpretive_Guide_TAAS.pdf). |

Appendix A3.1 Summary of study findings included in the rating for the reading fluency domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Study sample</th>
<th>Sample size (students)</th>
<th>Mean outcome (standard deviation)</th>
<th>Mean difference(^3) (Accelerated Reader(^TM) – comparison)</th>
<th>Effect size(^4)</th>
<th>Statistical significance(^5) (at (\alpha = 0.05))</th>
<th>Improvement index(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIBELS Oral Reading Fluency(^8)</td>
<td>Grade 4</td>
<td>45</td>
<td>Accelerated Reader(^TM) group: 132.70 (42.20)</td>
<td>13.40</td>
<td>0.32</td>
<td>ns</td>
<td>+13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison group: 119.30 (39.20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIBELS Oral Reading Fluency(^8)</td>
<td>Grade 5</td>
<td>37</td>
<td>Accelerated Reader(^TM) group: 135.60 (50.50)</td>
<td>1.00</td>
<td>0.02</td>
<td>ns</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparison group: 134.60 (39.30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain average for reading fluency(^9)</td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td></td>
<td>na</td>
<td>+7</td>
</tr>
</tbody>
</table>

\(^1\) This appendix reports findings considered for the effectiveness rating and the average improvement indices for the reading fluency domain.

\(^2\) The standard deviation across all students in each group shows how dispersed the participants’ outcomes are: a smaller standard deviation on a given measure would indicate that participants had more similar outcomes.

\(^3\) Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.

\(^4\) For an explanation of the effect size calculation, see WWC Procedures and Standards Handbook, Appendix B.

\(^5\) Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.

\(^6\) The improvement index represents the difference between the percentile rank of the average student in the intervention condition and that of the average student in the comparison condition. The improvement index can take on values between –50 and +50, with positive numbers denoting favorable results for the intervention group.

\(^7\) The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Bullock (2005), no corrections for clustering or multiple comparisons were needed.

\(^8\) The intervention and comparison group means are posttest scores reported by the authors in the article.

\(^9\) This row provides the study average, which in this instance is also the domain average. The WWC-computed domain average effect size is a simple average rounded to two decimal places. The domain improvement index is calculated from the average effect size.
Appendix A3.2 Summary of study findings included in the rating for the comprehension domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Study sample</th>
<th>Sample size (clusters/students)</th>
<th>Accelerated Reader™ group</th>
<th>Comparison group</th>
<th>Mean difference(^2) (Accelerated Reader™ – comparison)</th>
<th>Effect size(^4)</th>
<th>Statistical significance(^5) (at (\alpha = 0.05))</th>
<th>Improvement index(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullock, 2005(^7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAR, Reading(^8)</td>
<td>Grade 4</td>
<td>45</td>
<td></td>
<td></td>
<td>−1.60</td>
<td>−0.01</td>
<td>ns</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Grade 5</td>
<td>37</td>
<td></td>
<td></td>
<td>53.60</td>
<td>0.25</td>
<td>ns</td>
<td>+10</td>
</tr>
<tr>
<td>4J Vocabulary(^8)</td>
<td>Grade 4</td>
<td>42</td>
<td></td>
<td></td>
<td>−0.60</td>
<td>−0.04</td>
<td>ns</td>
<td>−2</td>
</tr>
<tr>
<td>Average for comprehension (Bullock, 2005)(^9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
<td>na</td>
<td>+4</td>
</tr>
<tr>
<td>Nunnery and Ross, 2007(^7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAAS, Reading(^10)</td>
<td>Grade 5, cohort 1</td>
<td>18/912</td>
<td>88.44 (18.11)</td>
<td>89.45 (18.11)</td>
<td>−1.01</td>
<td>−0.06</td>
<td>ns</td>
<td>−2</td>
</tr>
<tr>
<td></td>
<td>Grade 5, cohort 2</td>
<td>18/891</td>
<td>91.53 (15.64)</td>
<td>90.64 (15.64)</td>
<td>0.89</td>
<td>0.06</td>
<td>ns</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>Grade 8, cohort 2</td>
<td>4/992</td>
<td>90.67 (16.38)</td>
<td>88.56 (16.38)</td>
<td>2.11</td>
<td>0.13</td>
<td>ns</td>
<td>+5</td>
</tr>
<tr>
<td>Average for comprehension (Nunnery & Ross, 2007)(^9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>na</td>
<td>+2</td>
</tr>
<tr>
<td>Domain average for comprehension across all studies(^9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>na</td>
<td>+3</td>
</tr>
</tbody>
</table>

\(\text{ns} = \text{not statistically significant}\)

\(\text{na} = \text{not applicable}\)

STAR = Standardized Test and Assessment in Reading

TAAS = Texas Assessment of Academic Skills

1. This appendix reports findings considered for the effectiveness rating and the average improvement indices for the comprehension domain. End of first year of intervention findings from Nunnery and Ross (2007) are not included in these ratings but are reported in Appendix A4.

2. The standard deviation across all students in each group shows how dispersed the participants’ outcomes are: a smaller standard deviation on a given measure would indicate that participants had more similar outcomes. For Nunnery and Ross (2007), the pooled standard deviation across two conditions is reported for each group.

3. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.

4. For an explanation of the effect size calculation, see WWC Procedures and Standards Handbook, Appendix B.

5. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.

6. The improvement index represents the difference between the percentile rank of the average student in the intervention condition and that of the average student in the comparison condition. The improvement index can take on values between −50 and +50, with positive numbers denoting favorable results for the intervention group.
7. The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Bullock (2005), no corrections for clustering or multiple comparisons were needed. In the case of Nunnery and Ross (2007), a correction for clustering was needed, so the significance levels may differ from those reported in the original study.

8. The intervention and comparison group means are posttest scores reported by the authors in the article.

9. The WWC-computed average effect sizes for each study and for the domain across studies are simple averages rounded to two decimal places. To prevent double counting within grade, the grade 4 effect in Bullock (2005) was calculated as a simple average of two effect sizes (for STAR Reading and 4J Vocabulary). The average effect size for the study was then calculated as a simple average of the grade 4 effect and grade 5 effect. The average improvement indices are calculated from the average effect sizes.

10. The intervention and comparison group means are calculated from author-reported untransformed scores by aggregating data across schools. The intervention group means are the comparison group means plus the difference in mean gains between the intervention and comparison groups. Because the authors used transformed scores to induce normality of the student test score distribution, the significance levels may differ from those reported in the original study.
Appendix A4 Summary of end of first year of intervention findings for the comprehension domain

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Study sample</th>
<th>Sample size (clusters/students)</th>
<th>Accelerated Reader™ group</th>
<th>Comparison group</th>
<th>Mean difference³ (Accelerated Reader™ – comparison)</th>
<th>Effect size⁴</th>
<th>Statistical significance⁵ (at α = 0.05)</th>
<th>Improvement index⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAAS, Reading⁸</td>
<td>Grade 4, cohort 1</td>
<td>18/912</td>
<td>87.27 (17.83)</td>
<td>87.64 (17.83)</td>
<td>−0.37</td>
<td>−0.02</td>
<td>ns</td>
<td>−1</td>
</tr>
<tr>
<td>TAAS, Reading⁸</td>
<td>Grade 4, cohort 2</td>
<td>18/891</td>
<td>89.01 (16.02)</td>
<td>87.77 (16.02)</td>
<td>1.24</td>
<td>0.08</td>
<td>ns</td>
<td>+3</td>
</tr>
<tr>
<td>TAAS, Reading⁸</td>
<td>Grade 7, cohort 2</td>
<td>4/992</td>
<td>88.38 (18.54)</td>
<td>87.27 (18.54)</td>
<td>1.11</td>
<td>0.06</td>
<td>ns</td>
<td>+2</td>
</tr>
</tbody>
</table>

ns = not statistically significant

TAAS = Texas Assessment of Academic Skills

1. This appendix presents findings from the end of the first year of intervention implementation for measures that fall in the comprehension domain. Findings from the end of the second and third year of intervention implementation were used for rating purposes and are presented in Appendix A3.2.

2. The standard deviation across all students in each group shows how dispersed the participants’ outcomes are: a smaller standard deviation on a given measure would indicate that participants had more similar outcomes. For Nunnery and Ross (2007), the pooled standard deviation across two conditions is reported for each group.

3. Positive differences and effect sizes favor the intervention group; negative differences and effect sizes favor the comparison group.

4. For an explanation of the effect size calculation, see WWC Procedures and Standards Handbook, Appendix B.

5. Statistical significance is the probability that the difference between groups is a result of chance rather than a real difference between the groups.

6. The improvement index represents the difference between the percentile rank of the average student in the intervention condition and that of the average student in the comparison condition. The improvement index can take on values between −50 and +50, with positive numbers denoting results favorable to the intervention group.

7. The level of statistical significance was reported by the study authors or, when necessary, calculated by the WWC to correct for clustering within classrooms or schools and for multiple comparisons. For the formulas the WWC used to calculate the statistical significance, see WWC Procedures and Standards Handbook, Appendix C for clustering and WWC Procedures and Standards Handbook, Appendix D for multiple comparisons. In the case of Nunnery and Ross (2007), a correction for clustering was needed, so the significance levels may differ from those reported in the original study.

8. The intervention and comparison group means are calculated from author-reported untransformed scores by aggregating data across schools. The intervention group means are the comparison group means plus the difference in mean gains between the intervention and comparison groups. Because the authors used transformed scores to induce normality of the student test score distribution, the significance levels may differ from those reported in the original study.
Appendix A5.1 Accelerated Reader™ rating for the reading fluency domain

The WWC rates an intervention’s effects for a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative.¹ For the outcome domain of reading fluency, the WWC rated Accelerated Reader™ as having no discernible effects for adolescent learners.

<table>
<thead>
<tr>
<th>Rating received</th>
</tr>
</thead>
<tbody>
<tr>
<td>No discernible effects: No affirmative evidence of effects.</td>
</tr>
<tr>
<td>• Criterion 1: No studies showing a statistically significant or substantively important effect, either positive or negative.</td>
</tr>
<tr>
<td>Met. No studies showed statistically significant or substantively important effects, either positive or negative.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other ratings considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive effects: Strong evidence of a positive effect with no overriding contrary evidence.</td>
</tr>
<tr>
<td>• Criterion 1: Two or more studies showing statistically significant positive effects, at least one of which met WWC evidence standards for a strong design.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant or substantively important positive effects.</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>• Criterion 2: No studies showing statistically significant or substantively important negative effects.</td>
</tr>
<tr>
<td>Met. No studies showed statistically significant or substantively important negative effects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentially positive effects: Evidence of a positive effect with no overriding contrary evidence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Criterion 1: At least one study showing a statistically significant or substantively important positive effect.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant or substantively important positive effects.</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>• Criterion 2: No studies showing a statistically significant or substantively important negative effect and fewer or the same number of studies showing indeterminate effects than showing statistically significant or substantively important positive effects.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant or substantively important negative effects. One study showed indeterminate effects, and no studies showed statistically significant or substantively important positive effects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixed effects: Evidence of inconsistent effects as demonstrated through either of the following criteria.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Criterion 1: At least one study showing a statistically significant or substantively important positive effect, and at least one study showing a statistically significant or substantively important negative effect, but no more such studies than the number showing a statistically significant or substantively important positive effect.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant or substantively important effects, either positive or negative.</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>• Criterion 2: At least one study showing a statistically significant or substantively important effect, and more studies showing an indeterminate effect than showing a statistically significant or substantively important effect.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant or substantively important effects, and one study showed indeterminate effects.</td>
</tr>
</tbody>
</table>

(continued)
Appendix A5.1 Accelerated Reader™ rating for the reading fluency domain (continued)

<table>
<thead>
<tr>
<th>Potential negative effects: Evidence of a negative effect with no overriding contrary evidence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Criterion 1: One study showing a statistically significant or substantively important negative effect and no studies showing a statistically significant or substantively important positive effect.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant or substantively important effects, either positive or negative.</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>• Criterion 2: Two or more studies showing statistically significant or substantively important negative effects, at least one study showing a statistically significant or substantively important positive effect, and more studies showing statistically significant or substantively important negative effects than showing statistically significant or substantively important positive effects.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant or substantively important effects, either positive or negative.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative effects: Strong evidence of a negative effect with no overriding contrary evidence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Criterion 1: Two or more studies showing statistically significant negative effects, at least one of which met WWC evidence standards for a strong design.</td>
</tr>
<tr>
<td>Not met. No studies showed statistically significant negative effects.</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>• Criterion 2: No studies showing statistically significant or substantively important positive effects.</td>
</tr>
<tr>
<td>Met. No studies showed statistically significant or substantively important positive effects.</td>
</tr>
</tbody>
</table>

1. For rating purposes, the WWC considers the statistical significance of individual outcomes and the domain-level effect. The WWC also considers the size of the domain-level effect for ratings of potentially positive or potentially negative effects. For a complete description, see the WWC Procedures and Standards Handbook, Appendix E.
Appendix A5.2 Accelerated Reader™ rating for the comprehension domain

The WWC rates an intervention’s effects for a given outcome domain as positive, potentially positive, mixed, no discernible effects, potentially negative, or negative. For the outcome domain of comprehension, the WWC rated Accelerated Reader™ as having no discernible effects for adolescent learners.

Rating received

No discernible effects: No affirmative evidence of effects.
- **Criterion 1:** No studies showing a statistically significant or substantively important effect, either positive or negative.
 - **Met.** None of the studies showed statistically significant or substantively important effects, either positive or negative.

Other ratings considered

Positive effects: Strong evidence of a positive effect with no overriding contrary evidence.
- **Criterion 1:** Two or more studies showing statistically significant positive effects, at least one of which met WWC evidence standards for a strong design.
 - **Not met.** No studies showed statistically significant positive effects.

AND
- **Criterion 2:** No studies showing statistically significant or substantively important negative effects.
 - **Met.** No studies showed statistically significant or substantively important negative effects.

Potentially positive effects: Evidence of a positive effect with no overriding contrary evidence.
- **Criterion 1:** At least one study showing a statistically significant or substantively important positive effect.
 - **Not met.** No studies showed statistically significant or substantively important positive effects.

AND
- **Criterion 2:** No studies showing a statistically significant or substantively important negative effect and fewer or the same number of studies showing indeterminate effects than showing statistically significant or substantively important positive effects.
 - **Not met.** No studies showed statistically significant or substantively important negative effects, and two studies showed indeterminate effects, while no studies showed statistically significant or substantively important positive effects.

Mixed effects: Evidence of inconsistent effects as demonstrated through either of the following criteria.
- **Criterion 1:** At least one study showing a statistically significant or substantively important positive effect, and at least one study showing a statistically significant or substantively important negative effect, but no more such studies than the number showing a statistically significant or substantively important positive effect.
 - **Not met.** No studies showed statistically significant or substantively important effects, either positive or negative.

OR
- **Criterion 2:** At least one study showing a statistically significant or substantively important effect, and more studies showing an indeterminate effect than showing a statistically significant or substantively important effect.
 - **Not met.** No studies showed statistically significant or substantively important effects, and two studies showed indeterminate effects.

(continued)
Appendix A5.2 Accelerated Reader™ rating for the comprehension domain (continued)

Potentially negative effects: Evidence of a negative effect with no overriding contrary evidence.

- Criterion 1: One study showing a statistically significant or substantively important negative effect and no studies showing a statistically significant or substantively important positive effect.

 Not met. No studies showed statistically significant or substantively important effects, either positive or negative.

OR

- Criterion 2: Two or more studies showing statistically significant or substantively important negative effects, at least one study showing a statistically significant or substantively important positive effect, and more studies showing statistically significant or substantively important negative effects than showing statistically significant or substantively important positive effects.

 Not met. No studies showed statistically significant or substantively important effects, either positive or negative.

Negative effects: Strong evidence of a negative effect with no overriding contrary evidence.

- Criterion 1: Two or more studies showing statistically significant negative effects, at least one of which met WWC evidence standards for a strong design.

 Not met. No studies showed statistically significant negative effects.

AND

- Criterion 2: No studies showing statistically significant or substantively important positive effects.

 Met. No studies showed statistically significant or substantively important positive effects.

1. For rating purposes, the WWC considers the statistical significance of individual outcomes and the domain-level effect. The WWC also considers the size of the domain-level effect for ratings of potentially positive or potentially negative effects. For a complete description, see the WWC Procedures and Standards Handbook, Appendix E.
Appendix A6 Extent of evidence by domain

<table>
<thead>
<tr>
<th>Outcome domain</th>
<th>Number of studies</th>
<th>Schools</th>
<th>Students</th>
<th>Extent of evidence¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabets</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Reading fluency</td>
<td>1</td>
<td>1</td>
<td>82</td>
<td>Small</td>
</tr>
<tr>
<td>Comprehension</td>
<td>2</td>
<td>23</td>
<td>2,877</td>
<td>Medium to large</td>
</tr>
<tr>
<td>General literacy achievement</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

na = not applicable/not studied

1. A rating of “medium to large” requires at least two studies and two schools across studies in one domain and a total sample size across studies of at least 350 students or 14 classrooms. Otherwise, the rating is “small.” For more details on the extent of evidence categorization, see the WWC Procedures and Standards Handbook, Appendix G.