Reliability Realized! Year Two of Clinical Practice Candidates Applying Action Research

David W. Moffett
Yunfang (Molly) Zhou
Barbara K. Reid
Brewton-Parker College

Abstract

The Investigators studied effects of Candidates’ 10 day unit plans of instruction through prescribed action research projects, across academic years 2007-2008 and 2008-2009. Results of the spring term ’07-’08 Action Research projects informed the Unit in such a way that modifications were possible and made across programs. This resulted in further refinement of the “Unit Assessment 5” Effect on Student Learning Action Research project conducted by both student teachers and certification only interns in academic year 2008-2009. In the first term of the study reliability across rater and interraters was not realized. However, in term one of year two reliability was realized. Then, although reliability was realized in term two of year two, new issues arose and perennial issues continued. Discussion includes changes that likely led to reaching satisfactory reliability levels across rater and interrater, along with information regarding new, and ongoing, challenges faced by the Unit in continuously ensuring reliability.
Reliability Realized! Year Two of Clinical Practice Candidates Applying Action Research

The education unit has eight assessments that drive its assessment system. Assessment five is known as “Student Teacher Effect on Student Learning.” In 2007 the Education Division faculty invested the summer in reviewing and revising unit assessments. The former assessment system was not resulting in data that could be analyzed to inform the Unit.

Over the course of six months a new assessment five emerged. After considerable deliberation and research on best practices in measuring student teacher effect on student learning, the first generation of the current model was applied to the unit’s clinical practices in the spring term of 2008. Reliability was not realized across the rater and interraters at the end of the first term of incorporating the new assessment five design.

Additional changes were made prior to the second term of use (Fall Term, 2008-2009) and reliability was realized across Rater and Interraters. The third term of use (Spring Term 2008-2009) saw new faculty as interraters and this most likely affected reliability to a degree. Along with new faculty effects on reliability, the definitions for levels of scoring came into question as possibly having a negative impact on reliability.

Literature Review

How can we best measure candidate’s effects on student learning and what effects do student teachers have on student learning? First, there must be an adequate data collection system. Also, what is the assurance that student teachers will alter practices based on the data they glean? Will data derived alter instruction provided by the candidates? How will we know? Finally, how can we cause this data to occur naturally so it is not merely an add-on to the already overwhelmed candidate and overworked cooperating and education faculty? The sheer number of candidates going through teacher education programs can add to the maelstrom when trying to
determine effect on learners. Determining the effect of student teachers on student learning can be very problematic (Williams & Balach, 2007).

The best answer to how one can determine student teacher effect on student learning seems to be prescribed implementation of Action Research in the classroom by the student teacher. Action Research provides candidates with tools of systematic inquiry and beginning investigation skills, while providing the needed measuring stick to determine effect on student learning (Emery, Jumper, & Bruce, 2007). Such research has not been apparent at the undergraduate level in most teacher education programs. It has been traditionally housed in graduate programs, often as the capstone, but it does have a place in candidate clinical practice. Candidates formulate hypotheses in regards to their effect on student learning as student teachers and then test them by implementing unit guided Action Research in their clinical practice classroom(s).

In establishing an Action Research project for all student teachers we must be able to articulate to faculty and students what it is and what it is not (Ross-Fisher, 2008). Without proper clarity the undertaking of such an endeavor can easily go off the proverbial tracks. Action Research is not experimental and it is often messy and uncertain (Goodnough, 2008). It is the responsibility of the education unit to ensure that the research projects don’t become too messy or uncertain.

Again, what candidates incidentally learn from performing Action Research can cause them to feel as though they have a greater understanding of the big picture of what it means to be a professional educator. It offers candidates a professional identity they often don’t possess without engaging in such research, and it cultivates professional relationships and development (Warren, Doorn, & Green, 2008).
Candidates engaged in student teaching have a view of day to day classroom operations like few researchers can possess. Life in the teaching trenches offers candidates the opportunity to develop unique strategies for meeting individual student needs. However, teachers have been historically reluctant to engage in research (Nonis, 2008). As education faculty it is our responsibility and duty to instill in our candidates the expertise and initiative to be action researchers. Candidates should come to feel a sense of duty to research their classroom often and guide them with the data received.

Student teachers should engage in Action Research since they can experience success in it, which will lead to subsequent research attempts beyond their clinical experience. Student teachers who struggle with the daily realities of the clinical experience are the ones who probably need to internalize the results of Action Research most. However, they will be the ones who will most likely have the greatest difficulty implementing the research and deciphering the results that can ultimately improve their teaching (Monroe, Gali, Swope, & Perreira, 2007). This is only one of several conundrums we face in trying to adequately equip and prepare candidates to be proficient educators.

Once student teachers collect and analyze the data garnered from Action Research where do they go from there? After all, how long do teacher effects persist anyway? In one study teacher effects on student learning are defined as, “teacher specific residuals adjusted for student and treatment effects” (Konstantopoulos, 2007). Considering all of the variables that affect student learning, what is the effect size of teacher effect on student learning? Per the study, teacher effect is cumulative and the effects are evident beyond the current candidate/student experience. It would appear as though longitudinal studies guided by state departments of education would be appropriate to best capture teacher effect on student learning, if this is the
case. In other words candidates may well not see the total effect on student learning through
their Action Research snapshot view of student learning. Still, our candidates should conduct
Action Research and not speculate beyond the collected data, other than to recommend that their
effect on students be studied across subsequent student years in school to capture total effect
size.

Teachers as researchers can at least partially address the need for interventions intended
to improve student performance in the classroom. Intervention can result from analyzing data
collected by classroom teachers in their research. This value added self-assessment has the
potential for resulting in teachers selecting professional development in areas they determine to
be in need of improvement. Such intervention has promise for translating into continued, positive
effects on student learning for several years, especially in students’ early grades (McCaffrey,
Lockwood, Mariano, & Sedodji, 2005).

Historically, there have been calls for studies on teacher effect on student learning.
Effect on student learning includes the amount of student time on-task and this is correlated with
effect on student learning and candidate characteristics (Fox, 1978). Candidate characteristics do
indeed affect student learning. Empowering candidates to analyze their effect on student learning
through Action Research can encourage reflective practice and incite personal, positive changes
in pedagogy and practice.

Term One of the Study

The study began in the spring term of the 2007-2008 academic year. Twenty-four student
teachers were assigned the task of completing prescribed Action Research projects in their
assigned classroom(s). The primary study investigator met with the student teachers at the
beginning of the term to review the multiple-step research process that was to be implemented.
The steps included drafting a 10-day unit plan of instruction, developing and administering a pretest reflective of the content of the unit plan early in the term, analyzing the results of the pretest and revising the draft unit plan as needed, teaching of the 10-day unit plan, and administering a unit grand assessment with the pretest embedded therein.

One of the secondary investigators, who served as director of student teaching, oversaw candidate Action Research progress across the term. Some non-Action Research assignments were due across the semester as well and were listed in the calendar. However, everything pertaining to the Action Research project was due at the end of the term. Instructions for the Action Research project were embedded within the unit’s 10 outcomes and were somewhat obscure. Basically the new “Unit Assessment Five” was plugged into existing assignments and this did not provide enough needed clarity for the candidates. Also, the clinical practice director was new to the concept of Action Research so she could not provide needed clarity for the candidates.

At the end of the term the director of student teaching printed the twenty-four Action Research projects from the electronic learning management system used in student teaching. The director and other education faculty members, serving as interraters, had devised a 10-part evaluation instrument. Each of the 10-parts of the evaluation tool had a possible value of three points. The total possible points that could be awarded to an Action Research project were 30.

The director of student teaching scored all twenty-four candidate projects. Then, interraters were randomly assigned to score the projects, blind to the director of student teaching scores. In cases where the scores across the director and interraters possessed a difference of 10 percent or more, a second interrater blind to both the director’s score and the first interrater’s
score, evaluated and scored the project. Second interraters were randomly assigned to score projects just as initial interraters were randomly assigned.

Twenty-four student teachers participated in the assessment five Action Research project in its inaugural term, spring 2007-2008. Twenty-four action research projects were rated by the director of student teaching. Then, the projects were randomly assigned to other education division faculty interraters. Ten projects were interrated for a second time randomly by five of the faculty Interraters who had not previously evaluated the particular projects. These ten projects were interrated for a second time because the difference between the director of student teacher’s score and first Interrater score was greater than ten percent of possible project points. All five second round Interraters participated in the first round of interrating, but the projects scored in round two were not scored by them in the first round. The total and mean of all the participants of the study by the rater were 317 and 13.31 respectively. The total and mean of all participants after the first round interrating were 315 and 13.13. The total and mean after the second round interrating for all participants were 276 and 11.50. As indicated by the data from the second round of interrating, eight of ten action research projects continued to possess a score difference greater than ten percent. This difference can be explained in several ways but it was most likely the result of more training being needed, for both the Rater and the Interraters, in scoring the projects. Between the second scores and the first, four of the ten score differences were larger than in the first round. The total difference between the director of student teaching and the first interraters was -2, while the total difference between the director and the second interraters was -41. The total difference between round one Interrater scores and the second round of Interrater scores was -39. An alpha cronbach reliability test revealed the alpha coefficient for the student teaching director and the first Interrater was .40 and .53 for the
director and the second Interrater. The same test was applied to the first Interrater and second Interrater and the alpha coefficient was found to be .74. There was reliability across Interraters but not between the Rater and the Interraters.

**Term One Results**

<table>
<thead>
<tr>
<th>Scores</th>
<th>Rater/Interrater n</th>
<th>n</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Rater</td>
<td>1</td>
<td>24</td>
<td>13.21</td>
<td>4.37</td>
</tr>
<tr>
<td>by First Interrater</td>
<td>6</td>
<td>24</td>
<td>13.13</td>
<td>4.05</td>
</tr>
<tr>
<td>by Second Interrater</td>
<td>5</td>
<td>8</td>
<td>7.40</td>
<td>3.14</td>
</tr>
</tbody>
</table>

*Note. N = 24.*

**Table 2**

*The Analysis of Variance (ANOVA) by Rater, First Interrater, and Second Interrater*

<table>
<thead>
<tr>
<th>Variable</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater * First Interrater</td>
<td>23</td>
<td>376.23</td>
<td>24.29</td>
<td>1.52</td>
<td>.23</td>
<td>.40</td>
</tr>
<tr>
<td>Rater* Second Interrater</td>
<td>7</td>
<td>67.88</td>
<td>0.11</td>
<td>0.01</td>
<td>.93</td>
<td>-.06</td>
</tr>
<tr>
<td>First Interrater*Second Interrater</td>
<td>23</td>
<td>492.00</td>
<td>176.05</td>
<td>12.23</td>
<td>.00</td>
<td>.74</td>
</tr>
</tbody>
</table>

*Note. N = 24.*

In the first term of use of the new Assessment Five Action Research project results were somewhat confounding on at least two levels. Overall quality of the Action Research projects was poor with the mean below fifty percent of points possible. Perhaps this could be attributed to it being the initial attempt of implementing such a project in student teaching. Or, it could be that the assignments and expectations were not as clear as they needed to be. Or, the fact that the entire project did not have to be submitted until the end of the term may have had something to do with the low performance since candidates did not have the opportunity to refine particular pieces of the project along the way and there was no consequence for submitting low quality product. Whatever the case or reason, the projects for the most part did not meet unit expectations (see Tables 1 and 2).
A second area of concern was the lack of reliability across scores given by the director of student teaching and the Interraters. The alpha cronbach reliability needed was not evident across director scores and those of the Interraters. It could be speculated that the director was privy to subjective information regarding particular candidates and factored that knowledge into the scoring of the projects, while the Interraters had no knowledge of information beyond the projects themselves. In other words the director’s scores may have included data that the Interraters could not see or know when they scored the projects. To further defend this hypothesis, the reliability scores across Interraters was at an acceptable rate to ensure reliability, while the difference between Rater and Interrater scores was not acceptable for reliability.

Conversely, the mean scores across director and first Interraters were amazingly similar. On a thirty point scale the mean difference was less than .10. Still, the standard deviations were four or higher. This dissonance between the mean scores and standard deviations caused the investigators to greatly appreciate having more than one way of seeing the data. Had the investigators only evaluated differences between mean scores they would not have discovered the considerable differences within test scores between the director and Interrater scores.

In summary, the Action Research projects generated by the candidates in the first term of the study were not satisfactory. Secondly, there was no reliability across director and Interrater scores thereby negating the assurance needed that the projects were scored in satisfactory and meaningful ways. Therefore, the data derived were not sufficient to inform the unit other than to cause it to revise the student teacher Action Research projects in substantial ways. Much needed to be done to improve the clarity of expectations for the projects and the reliable scoring of them.
Term Two of the Study

In Fall Term 2008-2009 much was done to attempt to secure better projects and more reliable scoring. A report outline became evident in the electronic learning management system that houses the instructions for the Action Research projects. Also, a grading rubric was developed and shared with the candidates. It was very specific as to what must be included and it articulated the desired organizational method of the project. The primary investigator checked for candidate understanding in more meaningful ways when presenting the Action Research project to them at the beginning of the term in the initial student teaching seminar. The director who oversaw the projects possessed a clearer understanding of the concept of Action Research and was able to provide greater clarity regarding project expectations to the candidates in the second term attempt.

Additionally, each step of the Action Research project was turned in along the way and those were evaluated by the student teaching director. If the director found any portion of the project submitted to be unsatisfactory the candidate had to revise and resubmit that particular portion before proceeding.

Additional scoring training for the director and the Interraters was also implemented, to attempt to reach acceptable levels of reliability. All scorers came to know that they only score what is visible to all of those who are doing the scoring. This reduced some of the discrepancies evident in the first term of the project scoring.

The investigators were hopeful that the additional clarity provided to the candidates, Rater, and Interraters would result in acceptable reliability levels. Prior to the second term of use the student teaching director reflected on term one results. She concluded that it was obvious that there needed to be changes. In her reflections she commented that there was a wide fluctuation
between Rater and Interrater scores and that the method of research design was too broad among candidates. Their test administration procedures, data collection, data analysis, and data interpretation were too reflective of a shotgun approach to completing the Action Research projects.

It became apparent the steps involved in the prescribed Action Research project were a better format for the candidates’ electronic portfolio design. So, instead of plugging in the elements of the research into what already existed the director elected to have the steps in the research drive the clinical practice experience. Specific due dates for parts of the research became evident. As discussed previously in the first term everything was due at the end of the term so there was no time available for carefully evaluating the projects. With the new due dates along the way added, the director had time to carefully evaluate each prescribed step in the research across the term.

A more defined set of directions and procedures became apparent for candidates in the second term of the study. Greater clarity became evident in the areas of directions, procedures, and a rubric for grading. The rubric, timelines, and due dates across the term were shared with candidates at the beginning of the term. A single organizational template for the final report was also introduced.

**Term Two Results**

<table>
<thead>
<tr>
<th>Scorer</th>
<th>Rater/Interrater n</th>
<th>M</th>
<th>SD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater</td>
<td>1</td>
<td>26.00</td>
<td>4.12</td>
<td>286</td>
</tr>
<tr>
<td>Interrater</td>
<td>5</td>
<td>22.86</td>
<td>4.82</td>
<td>251.1</td>
</tr>
</tbody>
</table>

*Note. N = 11.*
Table 4

**The Analysis of Variance (ANOVA) Statistics by the Rater and Interrater**

<table>
<thead>
<tr>
<th>Variable</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>r</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater*Interrater</td>
<td>10</td>
<td>170</td>
<td>76.23</td>
<td>7.32*</td>
<td>0.02</td>
<td>0.67</td>
<td>0.80</td>
</tr>
</tbody>
</table>

*Note. N = 11.*

* F significant at .05 level.

Table 5

**The t-Test Results of the Scores by Rater and Interrater**

<table>
<thead>
<tr>
<th>Variable</th>
<th>df</th>
<th>M</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater</td>
<td>10</td>
<td>26.00</td>
<td>4.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrater</td>
<td>10</td>
<td>22.86</td>
<td>4.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rater*Interrater</td>
<td>20.91*</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. N = 11.*

* t is significant at .05 level.

Term two results saw reliability realized across the Rater and the Interraters. The standard deviation continued to be approximately 4.00, as was the first term deviation. Interestingly, there was a greater range of mean scores across Rater and Interraters when compared with term one results (see Tables 3, 4, and 5).

Term Three of the Study

Although reliability was realized, more reflection was needed after the second term in the spirit of continuous improvement. Areas that were addressed prior to the third term of the study included more Rater and Interrater training on scoring the projects and more detail regarding the notebook arrangement containing the elements of the prescribed action research project. During this time there were faculty changes within the education division. Two new faculty members joined the division replacing two faculty who had been interraters in at least one term of the study. Training was provided by the director of student teaching and Spring Term 2008-2009 projects were distributed to the Interraters in the August, 2009 division meeting. The same procedures were used to randomly assign candidate projects to the Interraters. Interestingly, there
Reliability Realized 14

was still reliability realized across Rater and Interraters but the results revealed a drop of .07
from the second term to the third.

Term Three Results

Table 6

<table>
<thead>
<tr>
<th>Scores</th>
<th>Rater/Interrater n</th>
<th>n</th>
<th>M</th>
<th>SD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>by Rater</td>
<td>1</td>
<td>18</td>
<td>22.89</td>
<td>6.35</td>
<td>412</td>
</tr>
<tr>
<td>by First Interrater</td>
<td>6</td>
<td>18</td>
<td>22.11</td>
<td>5.89</td>
<td>398</td>
</tr>
<tr>
<td>by Second Interrater</td>
<td>6</td>
<td>9</td>
<td>20.33</td>
<td>6.36</td>
<td>183</td>
</tr>
</tbody>
</table>

Note. N = 18.

Table 7

<table>
<thead>
<tr>
<th>Variable</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>α</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater* First Interrater</td>
<td>17</td>
<td>589.78</td>
<td>195.57</td>
<td>7.94*</td>
<td>.01</td>
<td>.73</td>
<td>.58</td>
</tr>
<tr>
<td>Rater* Second Interrater</td>
<td>8</td>
<td>324.00</td>
<td>177.59</td>
<td>8.50*</td>
<td>.02</td>
<td>.85</td>
<td>.74</td>
</tr>
<tr>
<td>First Interrater* Second Interrater</td>
<td>17</td>
<td>589.78</td>
<td>323.84</td>
<td>19.48*</td>
<td>.00</td>
<td>.85</td>
<td>.74</td>
</tr>
</tbody>
</table>

Note. N = 18.

* F is significant at .05 level.

It appeared as though the drop in reliability from term two to three was due to change in
faculty and also because of misunderstandings regarding the definitions of the grading scale used
to assess the projects. At least one faculty member beyond the new faculty used the proficient
level as the target in assessing the projects since the overall goal of the Unit assessment system is
to graduate proficient teacher educators. It is interesting to note the difference between Rater and
Interrater scores and Rater and Second Interrater scores. The Rater/Interrater reliability was .73,
while the Rater/Second Interrater was .85. Interraters and Second Interraters were from the same
pool of faculty so this infers that there are still scoring issues among some Interraters. The Unit’s
goal is to cause candidates to reach proficient levels across assessments used in the system.

However, the exemplary level as described in the scoring evaluation of the Action Research
projects is actually reflective of proficient attributes. This may well be why the Rater’s scores are consistently higher than the Interraters’ scores (see Tables 6 and 7).

One could argue that as long as reliability is realized there is little need to continue to reflect on how to improve it. In fact such discussions have taken place among division faculty regarding this topic. On the other hand the drop in reliability from term two to three is such that the Unit is only .04 away from not realizing reliability across Rater and Interraters. In order for there to be merit in the results of the candidates’ projects there must be reliability so the Unit must continue to continuously improve the Action Research evaluation process to ensure reliability.

Summary

The Investigators studied issues with reliability across Raters and Interraters in their scoring of Student Teacher and Intern Assessment 5 Action Research Projects. In the first term of the study the new project was incorporated into what already existed in the clinical practice program. The director of the program had little knowledge of Action Research. Candidates submitted their entire project at the end of the term without formative and diagnostic feedback along the way. There was a range in quality of student work and reliability was not realized across the Rater and the Interraters.

Prior to the second term of Action Research being used in clinical practice the format for the project became the format for the experience and the director of the experience became better versed in the concept of Action Research. A rubric was developed and faculty Interraters were further trained in scoring the projects. Reliability was realized in term two of the study.

Before the third term of the study and use of Action Research in clinical practice the director further refined the delivery of the information to candidates and new faculty were hired.
in the Unit. Although reliability was realized in the third term, the results were lower than in the second term. The combination of new faculty evaluating the projects and misunderstandings regarding levels of scoring were likely the culprits resulting in the lower reliability scores.

The Investigators continue to be in agreement with the notion that preservice teachers can engage in Action Research and be successful (Monroe, Gali, Swope, & Perreira, 2007). They also believe that exemplary projects should become available for candidate review, along with continued work in the area of providing greater clarity regarding expectations (Murray, Grande DiCamillo, Henry, & Henry, 2008).

Further research will now shift to the actual purpose of the prescribed Action Research projects. The purpose of the projects is to determine student and class wide gains or losses as a result of the candidates’ 10-day unit plan of instruction while student teaching or in an internship. While the Investigators will continue to closely watch reliability rates they will expend energies in analyzing and reporting on aggregated and disaggregated student gains and losses in future papers regarding this topic.
References


