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Abstract 

The equating process links scores from different editions of the same test. For testing programs 

that build nearly parallel forms to the same explicit content and statistical specifications and 

administer forms under the same conditions, the linkings between the forms are expected to be 

equatings. Score equity assessment (SEA) provides a useful tool to check form equatability. We 

suggest use of SEA as a quality control tool to evaluate how well a test assembly process works 

over several administrations. The examination of multiple forms should provide a proper 

assessment of the fairness of the test assembly process. We illustrate how to include SEA into 

statistical and psychometric practice with data from several administrations of the SAT®-Math. 

Key words: SAT, test assembly, score equity assessment, equating, linking  
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1. Overview 

Dorans (2004b) introduced and placed score equity assessment (SEA) within a fairness 

context that included differential prediction analysis (DPA) and differential item functioning 

(DIF). The notion of subpopulation invariance is central to all three analyses. Fairness in the 

SEA, DIF, and DPA contexts is defined in terms of the invariance of a relationship across 

important subpopulations. DPA examines whether a test (alone or in conjunction with other 

information) predicts an external criterion in much the same way across different subpopulations. 

DIF examines how performance on the item varies across different subpopulations; lack of DIF 

means the relationship is the same across subpopulations. SEA examines whether the linking 

relationship in the total population holds up across different subpopulations. In all three cases, 

assessment of fairness involves checking for invariant relationships across subpopulations.   

DIF, SEA, and DPA can be fit into a 2-by-2 framework for fairness procedures by 

crossing item/test with internal/external validity. DIF examines the internal validity of a test at 

the item level, SEA examines internal validity at the test level, and DPA evaluates the external 

validity of a test at the test level. All three aspects of fairness should be addressed. Some testing 

programs routinely address DIF, but not SEA nor DPA. SEA, like differential prediction, 

addresses issues that are most germane to the major product of the assessment process, test 

scores. Unlike differential prediction, SEA does not require the collection of additional data on 

external criteria. This paper examines how SEA might be incorporated into operational testing 

programs, and be used as a stand-alone fairness procedure or as a complement to existing DIF 

procedures.  

In section 2 of this paper, we summarize how fairness has been assessed over the past 

several decades beginning with differential prediction and moving onto DIF and then finish the 

review with SEA. We describe the SEA indexes in section 3. In section 4, we describe the nature 

of SAT equating. In section 5, we conduct the subgroup equatings, apply the indexes to 

operational SAT data, and report our results. Finally we address questions such as required 

sample sizes, why certain groups are or are not studied under different data collection designs, 

and what should be done if SEA uncovers subpopulation sensitivity.  

2. A Brief Review of Fairness Assessment 

Fairness concerns have been with us for centuries. In the context of standardized tests, 

fairness has been a major policy issue for the last five decades. During the late 1960s, the 
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discussion about fair assessment was heated. Testing results had indicated for decades that 

noticeable disparities existed in average performance between different groups (e.g., White and 

Black students). In the 1960s, the tests were accused of measuring the wrong things. A common 

expectation was that if the tests measured the correct things then differences between subgroups 

would be smaller. Tests also were criticized because they were used inappropriately, a criticism 

that has continued through the remainder of the 20th century to the present.  

In this section, we review fairness procedures that have been developed over the past 

decades. While some reference is made to events external to ETS, the focus is on ETS, which has 

been viewed as a leader in fairness assessment at the item level for the past 20 years. First we 

consider differential prediction and differential validity, procedures that examine how 

consistently tests scores predict criteria, performance on a job or in the classroom, across 

different subgroups. Then we spend time on the item level assessments, the quantitative 

differential item functioning, and the qualitative test fairness review process. Finally, we 

examine score equity assessment, the focus of this study, and review some of its uses over the 

past few years. 

2.1 Fair Test Use as a Lack of Differential Prediction 

The 1970s witnessed the beginning of a series of differential validity and differential 

prediction studies. The Supreme Court decision Griggs v. Duke Power Co. in 1971 included the 

terms business necessity and adverse impact, both of which affected employment testing. 

Adverse impact is a substantially different rate of selection in hiring, promotion, transfer, 

training, or other employment-related decisions for any race, sex, or ethnic group. Business 

necessity can be used by an employer as a defense when the employer has a criterion for 

selection that appears to be neutral but that excludes members of one sex, race, national origin, 

or religious group at a substantially higher rate than members of other groups. The employer 

must prove that its selection requirement having the adverse impact is job related and consistent 

with business necessity. In other words, in addition to appearing race/ethnic/gender neutral, the 

selection instrument had to have demonstrated validity for its use. Ideally, this validity would be 

the same for all subpopulations. 

Young (2001) reviewed studies from as far back as 1974 that examined either differential 

validity (a difference in test/criterion correlations between, for example, males and females) or 

differential prediction (a difference in predicted grades for say males and females). Differential 
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prediction analyses (DPA) are preferred to differential validity studies because differences in 

predictor or criterion variability can produce differential validity even when the prediction model 

is fair (Linn, 1975). Differential prediction analyses examines whether the same prediction 

models hold across different groups.  

Petersen and Novick (1976) in the lead article in a special issue dedicated to fair selection 

compared several models for assessing fair selection, including the regression model (Cleary, 

1968), the constant ratio model (Thorndike, 1971), the conditional probability model (Cole, 

1973), and the constant probability model (Linn, 1973). They demonstrated that the regression, 

or Cleary, model, which is a differential prediction model, was a preferred model from a logical 

perspective in that it was consistent with its converse (i.e., fair selection of applicants was 

consistent with fair rejection of applicants). In essence, the Cleary model examines whether the 

regression of the criterion onto the predictor space is invariant across subpopulations.  

Differential prediction as a group sensitive function. Grades in college are influenced by 

the student as well as by different teachers who teach different courses at different schools across 

different universities. Fair prediction or selection requires invariance of prediction equations 

across groups, 

( | , 1) ( | , 2) .... ( | , )R Y G R Y G R Y G g= = = = = =X X X , (1) 

where R is the symbol for the function used to predict Y, the criterion score, from X, the 

predictor. G is a variable indicating subgroup membership.  

Fair prediction is difficult to achieve, as demonstrated by Young (2001), who cited ample 

evidence of the underprediction of female grades from high school grades and test scores that 

occurred when the total group prediction equation was used in place of the female group 

equation. Is this evidence of unfairness in the predictor or in the criterion? Or is it simply 

evidence that the use of test scores to predict grades in college is sensitive to the gender of the 

examinees? Whenever the equality above fails to hold across groups, then invariance is violated 

and the regression is sensitive to group.  

For fair prediction to hold, the prediction model must be the appropriate model. 

Otherwise misspecification of the model can give the appearance of statistical bias. The 

prediction model is appropriate if X contains all the predictors needed to predict Y and the 

functional form used to combine the predictors is the correct one. For example, grades in college 
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are often predicted from high school grades and test scores, and in some cases, other variables. If 

high school grades or test scores are dropped as predictors, it is highly unlikely that the 

regression of college grades onto the remaining predictors will be invariant. In addition to 

identification of the proper predictors and functional form, the reliability of the criterion itself 

plays a role. As Linn and Werts (1971) demonstrated in a brief classic on test fairness, replacing 

a reliable criterion with a less reliable version can result in a lack of invariance of prediction 

equations in a setting where invariance existed when it came to predicting the more reliable 

criterion. Linn (1976) in his discussion of the Petersen and Novick analyses noted that the quest 

to achieve fair prediction is hampered by the fact that the criterion in many studies may itself be 

unfairly measured. 

Even when the correct equation is correctly specified in the full population and the 

criterion is measured well, invariance may not hold in subpopulations because of selection 

effects. Linn (1983) described this effect when he talked about predictive bias as an artifact of 

selection procedures. Linn used a simple case to illustrate his point. He posited that a single 

predictor X and linear model were needed to predict Y in the full population P. Samples drawn 

from P depend on a selection variable U that might depend on X in a linear way. Errors in the 

prediction of Y from X and U from X were also linearly related. Linn then showed that the 

sample R (Y|X, G) equaled the population R (Y|X) if the correlation between X and U were zero, 

or if errors in prediction of Y|X and U|X were uncorrelated. In other words, the slope of the 

relationship for predicting U from X must be zero or Y and U must be independent given X. 

Achieving subpopulation invariance of regressions is difficult because of selection 

effects, misspecification errors, and criterion issues. Any attempt to assess whether a prediction 

equation is invariant across subpopulations such as males and females must keep these 

confounding influences in mind. 

Finally to complicate validity assessment even more, there are as many external criteria 

as there are uses of a score. Each use implies a criterion against which the test’s effectiveness can 

be assessed. Predictive validation is an unending and endless yet necessary task. Differential 

prediction studies are even more difficult to complete effectively because, as noted previously, 

there are so many threats to the subpopulation invariance of regression equations. 
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2.2 Differential Item Functioning (DIF) 

Testing companies have at best indirect influence over how test scores are used. They can 

advise users, but they can’t prevent the user from using the scores incorrectly. On occasions 

misuse has been severe enough that companies have refused to sell tests to certain clients. Test 

companies do, however, have control over the test construction process. To meet societal 

demands for fair assessments, the companies have looked inward and focused on the basic 

building blocks of the test, the items. 

In the 1970s, the item content review process at ETS was enhanced by the use of written 

guidelines about minorities and women. The reviews were voluntary and undocumented, 

however. In 1980, the reviews became mandatory, standardized, and documented with the 

publication of the ETS Test Sensitivity Review Process: Guidelines and Procedures (ETS, 1992). 

The reviews became the responsibility of all ETS test developers rather than being limited to 

minority staff. Rigorous training in performing sensitivity reviews and strict adherence to the 

documented guidelines for writing fair items were required of all test developers.  

During the 1980s, the focus in the profession shifted to DIF studies. Although interest in 

item bias studies began in the 1960s (Angoff, 1993), it was not until the 1980s that interest in fair 

assessment at the item level became widespread. During the 1980s, the measurement profession 

engaged in the development of a wide array of item level models. DIF procedures developed as 

part of that shift in attention.  

Moving the focus of attention from prediction of external criteria to prediction of item 

score, which is what DIF is about, represented a major change from a domain where so many 

factors could spoil the validity effort to a domain where analyses could be conducted in a 

relatively simple way. While factors such as multidimensionality can complicate a DIF analysis, 

they are negligible compared to the many influences that can undermine a test fairness study. In 

a DIF analysis, the item is evaluated against something designed to measure a particular 

construct and something that the test producer controls, namely a test score.  

Differential item functioning (DIF) as a group sensitive function. Differential item 

functioning asks whether an item is measuring what it purports to measure in much the same way 

across important subpopulations given the same abilities. For most DIF methods, null DIF can be 

expressed as 
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( | , 1) ( | , 2) .... ( | , )X X XΕ = = Ε = = = ΕY G Y G Y G , (2) 

where Y is the item score, X is the matching variable, typically total score for observed score DIF 

methods, and E denotes the expectation operator. 

Lack of DIF, like lack of differential prediction or the presence of test fairness, requires 

invariant regressions. In this case, the regression of item scores onto the matching variable needs 

to be invariant. DIF procedures differ with respect to whether the matching variable is explicitly 

an observed score (Dorans & Holland, 1993) or a latent variable (Thissen, Steinberg, & Wainer, 

1993). They also differ with respect to whether the regression is parametric (Swaminathan & 

Rogers, 1990) or not (Shealy & Stout, 1993) and to how differences from null DIF are measured 

(i.e., deltas for the Holland & Thayer [1988] adaptation of the Mantel-Haenszel odds-ratio to 

DIF versus differences in expected values for standardization [Dorans & Kulick, 1986]). As 

mentioned in different chapters of the DIF booked edited by Holland and Wainer (1993) there 

are several pitfalls associated with doing a DIF analysis.  

One fair criticism of DIF is that it is difficult to figure out why DIF occurs. With the 

exception of work completed by Schmitt and her associates (Dorans, Schmitt, & Curley, 1988; 

Schmitt & Dorans, 1991; Schmitt, Holland & Dorans, 1993) in which hypotheses gleaned from 

observational data led to experimental evaluations of the hypotheses, most DIF hypotheses are 

explanations based on a post-hoc study of items that have been selected for DIF evaluation, not 

predictions that are evaluated empirically.  

Another criticism about DIF is that items are unreliable measures of the construct of 

interest. An item, by itself, can be used to support a variety of hypotheses about DIF. 

Performance on an item is susceptible to many influences that have little to do with the purpose 

of the item. In addition, an item on a reliable test is not likely to have much impact on total test 

performance. There is more to the test than the item.  

Another fair criticism is that DIF-freeness is not a prerequisite for fair prediction. Score 

equity is, however, such a prerequisite. Score equity examines the total score. 

2.3 Score Equity Assessment (SEA) 

Score equity assessment (SEA) focuses on whether or not scores on different forms that 

are supposed to be used interchangeably are in fact interchangeable across different 

subpopulations. SEA uses subpopulation invariance of linking functions across important 
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subpopulations to assess the degree of interchangeability of scores. Since 2000, invariance of 

linking functions has been studied with the Advanced Placement Program® (AP®), Law School 

Admissions Test (LSAT), and SAT®, and more recently with state accountability tests.  

Subpopulation invariance of equating functions. Test score equating is a statistical 

process that produces scores considered comparable enough across test forms to be used 

interchangeably. There are five requirements that are often regarded as basic to all of test 

equating (Dorans & Holland, 2000). One of the most basic requirements of score equating is that 

equating functions, to the extent possible, should be subpopulation invariant (Dorans & Holland, 

2000; Holland & Dorans, 2006). That is, they should not be strongly influenced by the 

subpopulation of examinees on which they are computed. The same construct and equal 

reliability requirements are prerequisites for subpopulation invariance. One way to demonstrate 

that two tests are not equatable is to show that the equating functions used to link their scores are 

not invariant across different subpopulations of examinees. Lack of invariance in a linking 

function indicates that the differential difficulty of the two tests is not consistent across different 

groups. The invariance can hold if the relative difficulty changes as a function of score level in 

the same way across subpopulations. If, however, the relative difficulty of the two tests interacts 

with group membership or there is an interaction among score level, difficulty and group, then 

invariance does not hold.   

Note that subpopulation invariance is a matter of degree. No acceptable equating function 

can ever be completely subpopulation invariant, even in the best of circumstances. Instead, in the 

situations where equating is usually performed, subpopulation invariance implies that the 

dependence of the equating function on the subpopulation used to compute it is small enough to 

be ignored. 

SEA focuses on whether or not test scores in different forms that are supposed to be used 

interchangeably are in fact interchangeable across different subpopulations. It uses the 

subpopulation invariance of linking functions across important subgroups (e.g., gender groups 

and other groups, sample sizes permitting) to assess the degree of score exchangeability. 

Compared to DIF analyses, SEA analysis is both less demanding and more relevant to reported 

scores. DIF analysis assesses whether the function relating item score to total score is invariant 

across subpopulations. One drawback of DIF analysis is that it tells little about the effects of DIF 

on reported scores. Another drawback with DIF is that it focuses on the item and ignores the 
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reported score, which is used to make inferences about the examinee. In contrast, SEA focuses 

on invariance at the reported score level.  

Differential prediction analysis is complicated by the many factors associated with a lack 

of control over the criterion. The quest for answers about differential prediction is endless. In 

contrast, SEA answers a more tractable question: For what subpopulations is this score 

interchangeable with scores from other tests built by the same process or with scores from tests 

meant to measure the same construct? 

Previous applications of SEA methodology. Dorans and Holland (2000) included several 

examples of linkings that are invariant (e.g., SAT Math to SAT Math and SAT Verbal to SAT 

Verbal, and SAT Math to ACT Math) as well as ones that are not (e.g., Verbal to Math, and 

linkings between non-Math ACT subscores and SAT Verbal). Equatability indexes are used to 

quantify the degree to which linkings are subpopulation invariant.  

Kolen (2004), in the special issue of Journal of Education Measurement on population 

invariance (Dorans, 2004a), traced the concept of population invariance in equating and linking 

from the 1950s to the early 2000s. Since 2000, several evaluations of population invariance have 

been performed. Yang (2004) examined whether the multiple choice to composite linking 

functions of AP exams remain invariant over subgroups by region. The study focused on two 

questions: (a) how invariant are cut-scores across regions and (b) whether the small sample size 

for some regional groups presents particular problems for assessing linking invariance. In 

addition to using the subpopulation invariance indexes to evaluate linking functions, the author 

also evaluated the invariance of the composite score thresholds for determining final AP grades. 

Dorans (2004b) used the population sensitivity of linking functions to assess score equity for two 

AP exams. Yin, Brennan, and Kolen (2004) looked closely at the issue of invariance of 

concordance results across subgroups, using concordances between ACT scores and scores on 

the Iowa Tests of Educational Development. Linear, parallel-linear, and equipercentile methods 

were used to conduct concordances for males, females, and the combined group. Gender 

invariance was evaluated both graphically and using group invariance statistics for each linking 

method. The different linkage methods were evaluated with respect to group invariance. 

Dorans, Liu, and Hammonds (2008) used population sensitivity indexes with SAT data to 

evaluate how consistent linear equating results were across males and females. M. Liu and 

Holland (2008) examined the population invariance of parallel-linear linkings across different 
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subpopulations of the Law School Admission Test. von Davier and Wilson (2008) examined the 

population invariance of IRT equating for an AP exam. Yang and Gao (2008) looked at 

invariance of linking computer-administered College-Level Examination Programs (CLEP®) 

data across gender groups. Yi, Harris, and Gao (2008) examined the invariance of IRT equating 

across different subpopulations of a science achievement test.  

SEA has also been used as a tool to evaluate score interchangeability when a test is 

revised. Liu, Cahn, and Dorans (2006) and Liu and Walker (2007) used SEA tools to examine 

the invariance of linkages across the old and new versions of the SAT using data from a major 

field trail conducted in 2003. This check was followed by SEA analyses conducted on 

operational data (Dorans, Cahn, Jiang, and Liu, 2006; Dorans, Liu, Cahn, & Jiang, 2006; Jiang, 

Liu, Cahn, & Dorans, 2006; Liu, Jiang, Dorans, & Cahn, 2006).  

All these examples, as well as others such as Dorans, Holland, Thayer, and Tateneni 

(2003), are illustrations of SEA in which the fairness of a test score exchange process is assessed 

by the degree to which the linkage between scores is invariant across subpopulations. In some of 

these illustrations, such as one form of SAT Math with another form of SAT Math, the 

expectation of score interchangeability was very high since alternate forms of this test are 

designed to be parallel in both content and difficulty. There are cases, however, where invariance 

was expected but did not hold. Cook, Eignor, and Taft (1988), for example, found that the 

linking function between two biology exams depended on whether the equating was with 

students in a December administration, where most of the examinees were seniors who had not 

taken a biology course in a while, versus a June administration, where most of the examinees had 

just completed a biology course. This case, which has become an exemplar of lack of invariance, 

is discussed in detail by Cook (2007) and Petersen (2007). Invariance cannot be presumed to 

occur simply because tests are built to the same blueprint. The nature of the population can be 

critical, especially when diverse populations are involved. 

Testing programs that link alternative versions of an exam often spend much time 

assessing fairness at the item level and presume that it holds at the test level. Granted, individual 

items contribute to the total test score. Test fairness, however, is being evaluated indirectly at the 

item level; SEA evaluates it directly. For most testing programs, SEA should confirm the 

fairness of the assembly process. For the few programs with SEA problems, knowledge of the 

problem is an essential first step to bring the program in compliance with professional standards. 
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3. Score Equity Assessment (SEA) Analyses Indexes 

3.1 Subgroup Equatings 

Each equating between a new form and an old form of a test has two components: a raw-

to-raw equating function and a raw-to-scale scaling function. A raw-to-raw equating function 

(( ) / )e X Y V→ is a transformation of raw scores on test X, to the scale of raw scores on test Y 

through the anchor test V (if applicable; otherwise V will be out of the equation). The second step 

is to convert the equated raw score of X to the reporting scale of Y, through a scaling function 

( )s Y that maps the raw scores of Y to the scale. The first step of raw-to-raw equating function 

and the second step of raw-to-scale scaling function are composed to convert the raw scores of X 

onto the reporting scale of Y (Holland & Dorans, 2006).   

( ( | ))= →s s e X Y V . (3) 

The subpopulation invariance usually refers to the raw-to-raw equating function. However, 

the reported or the scaled scores are the final scores that test users get, and most readers are 

familiar with and can easily interpret scaled score values (e.g., the College Board 200-to-800 

scale). Hence, we examine the subpopulation invariance in the scaled score units, which is the 

concatenated result of the raw-to-raw equating and the raw-to-scale scaling functions. 

Equating is usually conducted in the total group to produce a total group equating 

function. Then a total group scaling function is derived to place raw scores onto the score 

reporting scale. In a SEA analysis, equating and scaling functions are also produced for each 

subpopulation of interest. For example, one might use male and female examinees, and where 

sample sizes are sufficiently large, Asian-American, Black, Hispanic, and White examinees. 

Ideally, equating holds when the conversion functions are the same across these subpopulations. 

We use the SAT with its 200-to-800 score reporting scale to make the illustrations concrete. For 

the SAT, these conversions take raw scores on a new form to unrounded scaled scores on the 

200-to-800 scale. 

3.2 Difference Plots of Conversions 

The difference plot, subgroup conversion minus total group conversion, is the most direct 

means of assessing population invariance. At each score point level, the subgroup conversion is 

compared to the total-group conversion.  
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There has been disagreement about which conversions should be compared. Dorans and 

Holland (2000) suggested examining the subpopulation linking functions versus the total 

population linking function, while Brennan (2007) argued that the differences of linking 

functions should be conducted between pair of subpopulations (e.g., males versus females). In 

this study, we use the total population linking function as the baseline to compare to in that it is 

the total population linking function that is used operationally. From a practical perspective, the 

decision reduces to a choice between the total population equating function and male equating 

function for male examinees, and a choice between the total population equating function and 

female equating function for female examinees. While of theoretical interest, it is unlikely that 

one will use male-equating function with female examinees or female-equating function with 

male examinees.  

3.3 Equatability Indexes  

Dorans and Holland (2000) and Dorans et al. (2003) suggested using the standardized 

root mean square difference (RMSD) to quantify the differences between the subpopulation 

linking functions and the total-population linking functions at a given score value. They also 

suggested using the root expected mean square difference (REMSD) to summarize overall 

differences between the linking functions. These formulas are adapted to comparisons of raw-to-

scale functions. 

Root mean square difference (RMSD). Let the total population P be composed of a set of 

subpopulation gP . The two tests to be linked are denoted by X (new form) and Y (old form). At 

each NF raw score level x, the RMSD is defined as 

2

( ) ( ) ( )x g Pg P
g

RMSD w s x s x⎡ ⎤= −⎣ ⎦∑ , (4) 

where ( )s x represents the composed raw-to-raw equating function and the raw-to-scale scaling 

function that transformed raw scores of X to the reporting score scale of Y, and g
g

N
w

N
=  denotes 

the relative proportion of examinees from total population P that are in gP so that g
g

w∑ = 1. In 



 12

the present study, the linkings convert the raw scores into scaled scores on the familiar College 

Board 200 to 800 scale.  
Root expected mean square difference (REMSD). To obtain a single number summarizing 

the values of RMSD(x), Dorans and Holland (2000) introduced a summary measure by averaging 

over the distribution of X in P: the REMSD. The analogue for raw-to-scale scaling functions is  

{ }2 2
( ) ( ) ( ) ( )P g Pg P g P Pg P

g g
REMSD E w s x s x w E s x s x

⎧ ⎫
⎡ ⎤ ⎡ ⎤= − = −⎨ ⎬⎣ ⎦ ⎣ ⎦

⎩ ⎭
∑ ∑ , (5) 

where EP{}⋅ denotes averaging over this distribution, which in this case is the distribution of 

raw scores on X in population P.  

Root expected square difference (RESD). We also computed the root expected square 

difference (RESD) statistic, which is 

2

( ) ( ) ( )g gx Pg P
x

RESD f s x s x⎡ ⎤= −⎣ ⎦∑ , (6) 

to evaluate how close the gth subpopulation’s raw-to-scale function ( Pgs ) is to the full population 

raw-to-scale scaling function. ( )gRESD  weights by the relative frequency of new form raw 

scores,
gxf , in the subpopulation gP , and x is the index for score level.  

Let’s briefly summarize the indexes discussed above. ( )xRMSD provides an average 

across groups at each score level. There is only one ( )xRMSD across different partitions of P. In 

contrast, ( )gRESD  provides an average across score levels for each group. There is an ( )gRESD for 

each subgroup. The REMSD is the average of ( )xRMSD  across score levels. 

Difference that matters (DTM). To evaluate the relative magnitude of a difference in 

score conversions, Dorans and Feigenbaum (1994) proposed the notion of score differences that 

matter (DTM), in the context of SAT linking. On the SAT scales, scores are reported in 10-point 

units (200, 210, 220 . . . 780, 790, 800). For example, at a raw score of 53, the corresponding 

unrounded scaled scores might be 784.3 from the total-group conversion and 785.1 from the 

White group-only conversion. Due to the vagaries of rounding, the rounded reported scores 
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would be 780 based on the total-group conversion and 790 based on the White group-only 

conversion when ideally the rounded reported scores should be identical. The DTM, in contrast, 

treats these two conversions at this raw score point (53) as being equivalent. Dorans et al. (2003) 

adapted the above indexes, used in SAT practice, to other tests and considered DTM to be half of 

a score unit for unrounded scores. In the present study, the DTM was therefore defined as 5, 

which is half of the SAT score unit. Note this difference is best thought of as an indifference 

threshold. Any differences less than the DTM are considered not big enough to warrant any 

concern since they are smaller than the smallest difference that might actually matter. 

Percentage of scores exceeding differences that matter (DTM). In addition to using 

RMSD and RESMD, we made use of the percentage of raw scores for which the total and 

subpopulation raw-to-scale score conversions differed by more than 5 points and of the 

percentage of examinees for whom these conversions created scaled scores that differed by more 

than 5 points. The calculation of the two percentage indexes was 

max min

1 | ( ) ( ) |

%
1

%

x Pg P

x
x

g x
x

D if S x S x DTM

D
FS

X X

Examinee f D

= − >=

=
− +

=

∑

∑

, (7) 

where the notations have their usual meanings. These two indexes provided straightforward 

insights into lack of invariance as a percentage of score range and a percentage of test-takers. 

Averages and differences in averages. In addition to these indexes, we also compute 

average scores that were obtained from use of the total group conversion versus average scores 

that would have been obtained from use of the subgroup conversion, as well as the difference in 

these average scores. The label mean diff is used in the tables to indicate the average difference 

that would have been obtained had the subgroup conversion been used instead of the total-group 

conversion. 

Spread measures. Deviations based on the total and subgroup conversions were 

computed as percentages of scores above 700 and below 300, where the two scores were usually 
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regarded as indicators of how many test-takers were located in the top region and the bottom 

region of the scale. 

4. Score Equity Assessment (SEA) Analysis  

Using SAT Math Data From Year 2005 and 2006 

For the purposes of this illustration of how SEA could be implemented operationally, we 

use data from SAT forms placed on scale in 2005 and 2006. Most of these forms were placed on 

scale via a nonequivalent groups with anchor test (NEAT) design in which each new form of the 

test is equated to multiple old forms via external anchors. Other forms were equated through an 

equivalent groups (EG) design.  

Table 1 contains the list of all NEAT design equatings for the SAT Math in 2006. As can 

be seen in Table 1, a new SAT form goes back to multiple old forms in the case of a typical SAT 

equating that uses the NEAT design. The raw-to-raw equating and the raw-to-scale scaling 

functions can be concatenated as following: 

( (( ) | )))gj i jgijk gijk ks s e X Y V= → . (8) 

where i, j and k are indices for the new form, old form, and the anchor test V. For the case of a 

typical total-group equating, for example, the subscript i takes on one value only, the subscript g 

takes on one value only (total group), and the subscripts j and k take on three or four values for 

each pair of old form and anchor test in the braiding plan. An average across the multiple old 

form/anchor test pairs defines the operational conversion, 

4

1gi j gijkj k
s w s

= =
=∑ ,  (9) 

where jw is the weight assigned to the jth/kth old form/anchor test pair.  

A total of 21 linkings is depicted for total group. In addition, linkings are also conducted 

for males and females, so there are 63 links in total. Table 1 also contains samples sizes for total 

group, males and females. 

The purpose of conducting SEA analyses is to detect meaningful violations of score 

equity. Examination of standard errors in data from previous studies (Dorans, Cahn, et al., 2006; 

Dorans, Liu, et al., 2006; Jiang et al., 2006; Liu, Jiang, et al., 2006) led the authors to conclude  
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Table 1 

Math Nonequivalent Groups With Anchor Test (NEAT) Linkings and the Sample Sizes in 2006 

Linkage Total Female Male 
 NF OF NF OF NF OF 

ANF1 → AOF1 11,764 7,011 6,328 3,806 5,366 3,205 
ANF1 → AOF2 10,690 9,984 5,829 5,361 4,803 4,623 
ANF1 → AOF3 11,764 10,211 6,328 5,577 5,366 4,634 
ANF2 → AOF1 8,919 6,453 4,705 3,608 4,154 2,845 
ANF2 → AOF2 9,795 9,135 5,244 4,934 4,494 4,201 
ANF2 → AOF3 8,919 9,456 4,705 5,257 4,154 4,199 
ANF3 → AOF1 10,736 7,011 5,922 3,806 4,755 3,205 
ANF3 → AOF2 9,709 9,984 5,354 5,361 4,307 4,623 
ANF3 → AOF3 10,736 10,211 5,922 5,577 4,755 4,634 
ANF4 → AOF1 11,327 15,744 6,347 8,928 4,942 6,755 
ANF4 → AOF2 13,751 6,453 7,811 3,608 5,895 2,845 
ANF4 → AOF3 12,552 9,135 7,018 4,934 5,494 4,201 
ANF4 → AOF4 13,751 9,456 7,811 5,257 5,895 4,199 
ANF5 → AOF1 7,030 9,880 3,891 5,395 3,076 4,378 
ANF5 → AOF2 5,399 6,453 2,933 3,608 2,413 2,845 
ANF5 → AOF3 6,060 9,984 3,419 5,361 2,612 4,623 
ANF5 → AOF5 5,399 9,456 2,933 5,257 2,413 4,199 
ANF6 → AOF1 5,287 8,425 2,903 4,522 2,346 3,821 
ANF6 → AOF2 6,855 6,453 3,734 3,608 3,068 2,845 
ANF6 → AOF3 5,867 9,135 3,147 4,934 2,681 4,201 
ANF6 → AOF6 6,855 9,456 3,734 5,257 3,068 4,199 

Note. A = anchor test design, NF = new form, OF = old form. 

that SEA analyses with the NEAT data should be limited to male and female examinees. That is 

because the sample sizes for Asian, Black, and Latino examinees are typically too small to 

produce stable results. The instability of the results would be more likely to shed heat not light 

on the issue. The massive amount of processing would not be worth the effort given the expected 

sampling instability. 

In addition to the NEAT design equating, the SAT also uses the equivalent groups (EG) 

equating design on a limited basis (note that Vk will be out of Equation 8). The EG design is 



 16

superior to the NEAT design because the differences in performance are due to differences in 

tests, not tests and groups. In the SAT case, the EG design also has large enough samples that 

produce stable results for Asian American, Black, Hispanic, White, and Others groups of 

examinees as well as for male and female examinees. With the EG design, two forms are equated 

directly to each other after having been taken by two groups that are presumed to be equivalent 

as a result of a sampling plan that attempts to achieve stratified random samples. In 2006 this 

design was used four times. In 2005, it was also used 4 times. The 2006 data were supplemented 

with the 2005 data, so that we could perform more racial/ethnic SEA analysis. 

The equivalent group links for total group and gender groups are shown in Table 2, and 

the links for ethnic groups are shown in Table 3. Sample sizes are included as well.   

In sum, for the six forms equated in 2006 via the NEAT design, a total of 63 equatings (21 

equatings × 3 groups) were examined. For the four forms equated in 2006 and the four forms 

equated in 2005 via the EG design, a total of 64 equatings (8 equatings × 8 groups) were conducted. 

5. Results 

The results are presented in the following manner: First, we showed the mean difference 

(mean diff) and RESD figures for all ethnic groups across all EG equatings, identified the best 

and the worst cases, and examined those two cases in details. Second, a set of similar analyses 

were conducted for gender groups across all the EG equatings. Third, a set of similar analyses 

were conducted for gender groups across all the NEAT equatings.  

The appendix contains a complete set of detailed data displays for all equatings, including 

those discussed in the text, for documentation purposes and for the convenience of the reader 

who wishes to examine the results on a case-by-case basis. 

5.1 Ethnic/Racial Results for the Equivalent Groups (EG) Linkings 

Figure 1 depicts RESD values plotted against mean difference values for each of the eight 

equivalent groups equatings for each of the five ethnic/racial subgroups. Each panel of the figure 

presents the White group paired with one of the other four groups (Asian American, Black, 

Latino, or Other). Note that all RESD and mean difference values were based on comparing a 

specific subgroup conversion to the total-group conversion. The White group was included in all 

of the panels for comparison purposes. 
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Table 2 

Math Equivalent Groups (EG) Linkings and the Sample Sizes in 2005 and 2006: Gender Groups 

Linkage Total Female Male 
 NF OF NF OF NF OF

ENF1 → EOF1 92,181 188,949 49,591 101,460 42,590 87,489
ENF2 → EOF1 92,094 188,949 49,342 101,460 42,752 87,489 
ENF3 → EOF2 94,774 194,643 52,501 107,059 42,273 87,584 
ENF4 → EOF2 94,538 194,643 52,036 107,059 42,502 87,584 
ENF5 → EOF3 154,278 158,846 83,166 85,354 70,212 72,555 
ENF6 → EOF4 193,605 198,094 106,945 109,250 85,509 87,701 
ENF7 → EOF5 122,503 126,239 67,244 69,222 54,321 55,999 
ENF8 → EOF6 119,962 123,483 63,811 66,140 55,217 56,435 

Note. E = equivalent groups design, NF = new form, OF = old form. 

Table 3 

Math Equivalent Groups (EG) Linkings and the Sample Sizes in 2005 and 2006: Ethnic Groups 

Linkage White Other Latino Black Asian American 
 NF OF NF OF NF OF NF OF NF OF 

ENF1 → EOF1 59,174 121,414 11,208 22,935 7,623 15,302 6,953 14,386 7,223 14,912 
ENF2 → EOF1 59,145 121,414 11,177 22,935 7,599 15,302 6,953 14,386 7,220 14,912 
ENF3 → EOF2 57,083 116,892 11,250 23,264 8,931 18,382 8,491 17,263 9,019 18,842 
ENF4 → EOF2 56,734 116,892 11,200 23,264 8,921 18,382 8,435 17,263 9,248 18,842 
ENF5 → EOF3 93,547 95,880 17,922 18,241 13,804 14,422 13,317 14,048 15,688 16,255 
ENF6 → EOF4 116,131 118,419 20,680 21,436 20,521 21,179 18,103 18,575 18,170 18,485 
ENF7 → EOF5 64,290 66,479 15,113 15,510 15,390 15,895 15,936 16,233 11,774 12,122 
ENF8 → EOF6 58,313 60,122 12,912 13,221 16,991 17,454 17,881 18,488 13,865 14,198 

Note. E = equivalent groups design, NF = new form, OF = old form. 
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Figure 1. Math ethnic/racial root expected square difference (RESD) and mean differences (mean diff) for equivalent groups 

(EG) linkings. 



 19

Figure 1 clearly shows that the Asian American group exhibited the largest degree of 

group dependence, with some of the mean difference and RESD values either approaching or 

exceeding 5 (in absolute values). The group dependence shown from the Black group was also 

nonnegligible, with a couple of mean difference and RESD values close to 5. For White, Other, 

and Latino groups, most of the mean difference values were packed within a half-circle with a 

radius of 2. Most of the RESD values were a little larger than the mean difference values but still 

within a half-circle with a radius of 3. These small values of the mean difference and RESD 

indicate that subpopulation invariance pretty much holds for these three groups. 

The direction of the mean difference is mixed for the White and the Latino groups. For 

example, half of the time the White examinees would have obtained a lower mean if the White-

only conversion had been used instead of the Total group conversion; the other half of the time 

the white test-takers would have gotten a higher mean if a White-only conversion had been used, 

with mean difference alternating across the Y axis. The mean difference for the Black and the 

Asian American groups indicates a clearer tendency that the Black group would have obtained a 

lower mean if the Black-only conversion had been used more than half of the time. The negative 

mean differences suggest that relative to the total-group, the Black group found the new forms 

easier than the total group. The Asian American group, on the other hand, would have gotten a 

higher mean more than half of the time if the Asian American–only conversion had been used 

instead of the total-group conversion, implying that the Asian American group found the new 

form harder than the total group.  

Among all the forms, we identified Form ENF1 as the worst case in that it exhibited the 

largest subgroup divergences from the total group. Form ENF5 was identified as the best case in 

that the subgroup divergence was the smallest. 

Worst case for ethnic groups: ENF1 to EOF1. Form ENF1 was linked to Form EOF1 

through an EG design. The unsmoothed equipercentile linking was conducted for each of the 

following groups: Total, White, Other, Latino, Black, and Asian American.  

Figure 2 contains the graphical summaries of the differences between a subgroup-specific 

linking and the total-group–specific linking. The difference plots in Panel A suggest that the 

Black-only conversion differed from the total-group conversion by approximately 5 points across 

the majority of the scale (between 400 and 700). The Asian American–only conversion fell 

outside of the ±5 band at the lower end of the scale (below 400), and the Latino-only conversion 
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was lingering around the +5 line starting from the middle part of the scale. The White-only and 

the Other-only conversions were similar to the total-group conversion over the entire score 

range. The RMSD curve in Panel B fell below the DTM line except below scaled score 250. The 

REMSD line of approximately 2 was below the DTM line as well. 

Table 4 summarizes the differences between each subgroup conversion and the total 

group conversion. Table 4 contains means and standard deviations as well as percentage of score 

above 700 and below 300 for the total group and subgroup conversions. Table 4 also contains the 

mean difference. In addition, it presents the RESD statistics, the percentage of raw scores for 

which the total and subgroup conversion differences exceed the DTM of 5, and the percentage of 

examinees affected by score differences that exceed 5 in absolute value. 

In general, the White group would have obtained a slightly lower mean with the White-

only conversion, whereas the Other group would have had a slightly higher mean with the Other-

only conversion. The Latino and Asian American groups would have obtained a moderately 

higher mean with the Latino-only conversion and with the Asian American-only conversion, 

respectively. The Black group, on the other hand, would have had a much lower mean with the 

Black-only conversion. In terms of the magnitudes of the differences, the Black group showed 

the largest difference, with a mean difference of -4.3 and a RESD value of 4.8, both of which 

were close to the DTM threshold. The percentage of formula scores for which scaled scores 

between the total group conversion and Black-only conversion differed by more than 5 points 

was close to 40%, nearly half of the raw score points. The percentage of the examinees whose 

reported scores would have differed by more than 5 points was about 50%. In other words, half 

of the examinees would have had different reported scores if the Black-only conversion had been 

used. The percentage indexes associated with the Latino and the Asian American groups were 

not negligible, either. A different scaled score would have been reported at about 20% of the 

score levels if the Latino-only conversion or the Asian American-only conversion had been used. 

Approximately 14% of the Latino test-takers would have obtained a different scaled score if the 

Latino-only conversion had been placed. 

Best case for Math: ENF5 to EOF3. In this particular linkage, the new Form ENF5 was 

linked to the Form EOF3 through an EG design. The linking used was the unsmoothed 

equipercentile linking for the Total group and each of the subgroups. 
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Figure 2. ENF1 Math root mean square difference (RMSD) and root expected mean square 

difference (REMSD): Ethnicity. 

Note. W-T = White-total, B-T = Black-total, L-T = Latino-total, A-T = Asian American-total, O-

T = other-total, DTM = difference that matters. 
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Table 4 

ENF1 Math Ethnic Groups Results for the Equivalent Groups (EG) Equatings 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD % FS 
|DIFF| >= 5

% examinees 
|DIFF| >= 5 

92,181 T TGL 530.1 110.2 1.8% 7.3%     

59,174 W TGL 544.7 101.3 0.6% 7.5%     

  SGL 544.5 100.8 0.9% 7.5% -0.2 0.7   0.0%   0.0% 

11,208 O TGL 521.1 120.3 3.4% 8.3%     

  SGL 521.4 120.9 3.4% 8.3% 0.3 1.2   0.0%   0.0% 

7,623 L TGL 476.5 102.1 3.4% 2.2%     

  SGL 479.1 103.8 3.4% 2.2% 2.6 3.4 21.2% 14.4% 

6,953 B TGL 440.7 102.6 8.0% 0.9%     

  SGL 436.4 101.3 8.0% 0.6% -4.3 4.8 37.9% 49.7% 

7,223 A TGL 566.8 116.1 1.1% 15.5%     

  SGL 568.9 115.2 1.1% 15.5% 2.1 3.0 19.7%   4.8% 

Note. T = total, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean difference, RESD = root 

expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score. 
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Figure 3 presents the differences between the subgroup-specific conversions and the total 

group conversion. The differences fell within the DTM band for each subgroup across the 

majority of the scale, except at the low end where the White-Total comparison had slightly larger 

difference than -5 and Asian American-Total had slightly larger difference than 5. The RMSD 

curve, shown in Panel B, was below the DTM curve across most of the score range except at the 

low end of the scale, where very few test-takers were located. The REMSD line was well below 

DTM line, with a value less than 2. 

Table 5 summarizes the differences in linking results between each comparison. The data 

reveal that the White and Other groups would have had a slightly higher mean with the White-

only conversion and with the Other-only conversion, respectively. On the other hand, the Latino 

and Asian American groups would have obtained a slightly lower mean with the Latino-only 

conversion and with the Asian American-only conversion, respectively. The Black group would 

have had a moderately higher mean with the Black-only conversion. The RESD values were 

smaller than 1 for the White group, smaller than 2 for the Latino group, and smaller than 3 for 

the Other, Black and Asian American groups. The two percentage indexes were also small for all 

the groups with one exception: The percentage of raw scores for which the scaled scores between 

the subgroup conversion and the Total-group conversion differed by more than 5 points was 

12.1% for the Asian American group. 

Overall, the SEA analyses across the worst case and the best case suggest that subgroup 

linking invariance did not seem to hold for the Asian American and Black groups on math. The 

conversions for the Latino group showed a smaller degree of subgroup sensitivity than those for the 

Asian American and Black groups. The White group, which is the largest component of the total 

group, and the Other group subgroup linkings were relatively close to the Total-group linkings.  

5.2 Gender Results for the Equivalent Groups (EG) Linkings 

Figure 4 depicts RESD values plotted against mean difference values for each of the eight 

EG equatings and for each of the six NEAT equatings. The filled diamonds and squares represent 

female and male EG linking results, respectively. All RESD values and all mean difference values 

for the EG equatings were less than 3; most were under 2. This indicates that population invariance 

had been obtained on Math across all the EG equatings for both gender groups. The filled 

diamonds and squares were evenly distributed above and below zero across male and female 

examinees, meaning female/male examinees sometimes found the new forms easier/harder and 
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sometimes found the new forms harder/easier. On the basis of mean difference and RESD, we 

selected ENF1 as the worst case and ENF6 as the best case.  
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Figure 3. ENF5 Math root mean square difference (RMSD) and root expected mean square 

difference (REMSD): Ethnicity. 

Note. W-T = White-total, B-T = Black-total, L-T = Latino-total, A-T = Asian American-total, O-

T = other-total, DTM = difference that matters. 
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Table 5 

ENF5 Math Ethnic Groups Results for the Equivalent Groups (EG) Equatings 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD
 

% FS 
|DIFF| >= 5 

% examinees 
|DIFF| >= 5 

154,278 T TGL 532.3 112.6 2.0% 6.8%     
93,547 W TGL 547.9 100.1 0.7% 6.3%     

  SGL 548.1 100.3 0.7% 6.3% 0.2 0.9 6.1% 0.5% 
17,922 O TGL 518.8 120.1 3.7% 6.7%     

  SGL 519.1 122.1 4.7% 6.7% 0.3 2.5 7.6% 4.9% 
13,804 L TGL 478.2 104.7 3.9% 2.0%     

  SGL 477.8 104.1 3.9% 2.0% -0.4 1.4 1.5% 0.2% 
13,317 B TGL 426.2 98.7 9.1% 0.6%     

  SGL 428.5 98.1 9.1% 0.6% 2.3 2.6 6.1% 3.2% 
15,688 A TGL 592.3 114.5 0.7% 19.8%     

  SGL 591.6 112.9 0.7% 19.8% -0.7 2.4 12.1% 3.8% 

Note. T = total, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean difference, RESD = root 

expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Figure 4. Math gender root expected square difference (RESD) and mean difference (mean 

diff) for equivalent group (EG) linkings and nonequivalent groups with anchor test 

(NEAT) linkings.  

Note. F = female, M = male. 

Worst case for gender groups: ENF1 to EOF1. Form ENF1 was equated to Form EOF1 

as indicated in Table 2. The chosen linking function was the equipercentile linking based on 

unpresmoothed data.  

Figure 5 has two panels containing graphical summaries of the differences and 

similarities between subgroup-specific conversions and the Total group conversion. Panel A 

contains difference plots for the linking based on male-only and female-only conversions relative 

to the operational Total group conversion. With the exception of perhaps one score in the mid-

700s and a few scores in the mid-200s, the dashed curve falls between the DTM bands, 

indicating little practical difference between the Total group and the female group conversion. 
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The solid curve falls between the DTM bands except at in the area below 300, indicating little 

practical difference between the Total group and the male group conversion. Panel B contains 

the equatability indexes, RMSD and REMSD. The solid curve is the RMSD as a function of 

score level and is less than the DTM of 5 throughout most of the score range. It approaches 5 in 

the mid-700s, and it exceeds the DTM just under a score of 300. The dashed horizontal line is the 

REMSD value, while the solid horizontal line is the DTM of 5. The REMSD, which is the square 

root of the average squared difference between an examinee’s scores based on the Total group 

versus subgroup conversions, is close to 2. Even in this worst case, the subgroup conversion 

works in much the same way as the Total group conversions.  

Further support for the inference that the Total group and subgroup conversions are 

working in a similar fashion can be found in Table 6. The results for males indicate that they 

would have received essentially the same mean, 548.1, if the male-only conversion had been 

used in place of the total conversion, which produced a mean of 548.0. For females, the 

conversion based on female-only would have produced a female average score of 514.6 instead 

of the mean of 514.7 based on the Total group conversion. 

In addition to the mean difference, Table 6 contains the RESD statistics for males and 

females. Both of these statistics, 2.0 for males and 1.8 for females, are below the DTM of 5, 

indicating once again that the differences associated with using the operational versus gender 

specific conversions are small. 

The numbers on the far right of Table 6 summarize the percentage indexes from a 

practical perspective. Of the formula scores, 9.1% had differences between the male-only and 

Total group conversions that exceeded 5 in magnitude; these occurred in the low score region. 

The comparable number for females was 6.1%, mostly in the lowest score region. The 

percentage of examinees that would have had scores affected by these differences was 2.0% for 

males and 1.2% for females.  

In sum, the SEA analysis on the Math score for Form ENF1 indicates that population 

invariance holds reasonably well for males and females. 

Best case for Math gender groups: ENF6 to EOF4. Form ENF6 was equated back to 

Form EOF4, as indicated in Table 2. The chosen linking function was the equipercentile linking 

based on unpresmoothed data.  
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Figure 5. ENF1 Math root mean square difference (RMSD) and root expected mean square 

difference (REMSD): Gender. 

Note. M-T = male-total, F-T = female-total, DTM = difference that matters. 
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Table 6 

ENF1 Math Gender Groups Results for the Equivalent Groups (EG) Equatings 

N Group Linking Mean SD % <3 00 % > 700 Mean 
diff 

RESD % FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5

92,181 T TGL 530.1 110.2 1.8% 7.3%     
49,591 F TGL 514.7 104.7 1.9% 4.5%     

  SGL 514.6 106.5 2.6% 4.5% -0.2 1.8 6.1% 1.2% 
42,590 M TGL 548.0 113.7 1.7% 10.6%     

  SGL 548.1 111.7 1.7% 8.7% 0.1 2.0 9.1% 2.0% 

Note: T = total, F = female, M = male, mean diff = mean difference, RESD = root expected 

square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score. 

Figure 6 has two panels containing graphical summaries of the differences and similarities 

between the subgroup-specific conversions and the Total group conversion and is similar in format 

to Figure 5. Both the dashed curve and the solid curve hug the no difference line in the upper 

panel. Panel B contains the equatability indexes, RMSD and REMSD. The solid curve is the 

RMSD as a function of score level, the dashed horizontal line is the REMSD value, and the solid 

horizontal line is the DTM of 5. Both these curves are very close to zero. Clearly, the subgroup 

conversion works in much the same way as the Total group conversions for Form ENF6. 

Further support for the inference that the total group and subgroup conversions are 

working in a similar fashion can be found in Table 7, which has the same format as Table 6. The 

results for males indicate that they would have received essentially the same mean, 540.7, if the 

male-only conversion had been used in place of the total conversion, which produced a mean of 

540.9. For females, the conversion based on female-only produced a female average score of 

507.4 instead of the mean of 507.5 based on the Total-group conversion.  

In addition to the mean differences, which are close to 0, Table 7 contains the RESD 

statistics for males and females. Both of these statistics, 0.4 for males and 0.3 for females, are 

close to zero, indicating once again that the differences associated with using the operational 

versus gender specific conversions are extremely small. Also as can be seen from Table 7, for 

both male and female examinees, 0.0% of the formula scores had differences between the 

gender-specific and Total-group conversions that exceeded 5 in magnitude.  

In sum, the SEA analysis on the Math score for Form ENF6 indicates that population 

invariance was essentially achieved. 
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Figure 6. ENF6 Math root mean square difference (RMSD) and root expected mean square 

difference (REMSD): Gender. 

Note. M-T = male-total, F-T = female-total, DTM = difference that matters. 
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Table 7 

ENF6 Math Gender Groups Results for the Equivalent Groups (EG) Equatings 

N Group LinkingMean SD % < 300 % > 700 Mean 
diff 

RESD % FS 
|DIFF|>=5 

% examinees 
|DIFF|>=5 

193,605 T TGL 521.9 107.6 2.0% 4.9%     
106,945 F TGL 507.5 103.8 2.2% 3.3%     

  SGL 507.4 104.0 2.2% 3.3% 0.0 0.3 0.0% 0.0% 
85,509 M TGL 540.9 109.2 1.7% 6.9%     

  SGL 540.7 108.8 1.7% 6.9% -0.1 0.4 0.0% 0.0% 

Note: T = total, F = female, M = male, mean diff = mean difference, RESD = root expected 

square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.  

5.3 Gender Results for the Nonequivalent Groups With Anchor Test (NEAT) Linkings  

Figure 4 shows that as a set the NEAT equatings are very similar to the EG equatings in 

terms of being invariant. The hollow diamonds and squares, which represent NEAT linking for 

females and males, are mixed with the EG results. Again, the mean difference for females and 

males is evenly distributed above and below zero. Among the NEAT equatings, Form ANF1 has 

probably the best results, while Form ANF6 may have the worst.  

Worst case for Math gender groups: ANF6. Form ANF6 was equated back to test Forms 

AOF1, AOF2, AOF3, and AOF6 through unique external anchor tests. The last row in Table 2 

contains this set of linkings and the sample sizes. Each link was evaluated, and a conversion was 

selected. Operationally, the final equating decision for ANF6 involved a weighted average of the 

four equating functions. For the female and male subgroup linkings, the linking method used was 

identical to that used for the total group. In addition, the weight function used to average the four 

links was the same in both the subgroup and the total-group linkings. 

Figure 7 has two panels containing graphical summaries of the differences and 

similarities for the average scaling functions and is identical in format to the figures seen with 

the EG design. With the exception of scores below 300, the dashed curve falls between the DTM 

bands. The solid curve falls between the DTM for scores above 350. Panel B contains the 

equatability indexes, RMSD and REMSD. The solid curve is the RMSD as a function of score 
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level. It is less than the DTM of 5 for most scores above 350. The dashed horizontal line is the 

REMSD value, while the solid horizontal line is the DTM of 5. The REMSD is near 2.  

Table 8 summarizes the differences between each subgroup conversion and the Total 

group conversion. The results for male examinees indicate that they would have received a mean 

of 508.3 if the male-only conversion had been used in place of the total conversion, which 

produced a mean of 507.3. For females, the female-only conversion produced a female average 

score of 475.9 instead of the mean of 477.0 based on the Total group conversion.  

In addition to mean differences of about +/-1 point, Table 8 contains the RESD statistics 

for males and females. Both of these statistics, 2.2 for male examinees and 2.0 for female 

examinees, are below the DTM of 5, indicating that the differences associated with using the 

operational versus gender specific conversions are small. 

The percentage indexes show that 10.6% of the formula scores had differences between 

the male-only and the total-group conversions that exceeded 5 in magnitude; these occurred 

mostly below 350. The same percentage was obtained for female examinees, mostly in the lower 

score region. The percentage of examinees that would have had been affected by these 

differences was 5.6% for male examinees and 3.8% for female examinees.   

In sum, the SEA analysis on the Math score for Form ANF6 indicates that population 

invariance holds reasonably well for males and females but not as well as it did for the equatings 

based on the EG design. 

Best case for gender groups: ANF1. Form ANF1 was equated to test Forms AOF1, 

AOF2, and AOF3 through unique external anchor tests. The top row in Table 1 contains the three 

ANF1 linkings and the sample sizes. Each link was evaluated, and a conversion was selected. 

Operationally, the final equating decision for ANF1 involved a weighted average of the three 

equating functions. For the female and male subgroup linkings, the linking method used for a 

link was identical to that used for the Total group. In addition the weight function use to average 

the three links was the same in both subgroup linkings and the Total group linking. 

Figure 8 includes two panels containing graphical summaries of the differences and 

similarities for the average scaling functions. The dashed curve (female) is very close to the no 

difference line, while the solid curve (male) is also close except at the very bottom of the scale. 

Panel B contains the equatability indexes, RMSD and REMSD. The solid RMSD curve and the  
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Figure 7. ANF6 Math root mean square difference (RMSD) and root expected mean square 

difference (REMSD): Gender. 

Note. M-T = male-total, F-T = female-total, DTM = difference that matters. 
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Table 8 

ANF6 Math (Average) Gender Groups Results for the Nonequivalent Groups With Anchor 

Test (NEAT) Equatings  

N Group Linking Mean SD % < 
300 

% > 700 Mean 
diff 

RESD % FS 
|DIFF| >= 5 

% examinees
|DIFF| >= 5

123,483 T TGL 490.5 108.8 3.0% 3.9%     
66,140 F TGL 477.0 103.9 3.3% 2.6%     

  SGL 475.9 104.9 4.5% 2.6% -1.1 2.0 10.6% 3.8% 
56,435 M TGL 507.3 112.0 2.6% 5.5%     

  SGL 508.3 110.9 2.6% 4.2% 1.0 2.2 10.6% 5.6% 

Note: T = total, F = female, M = male, mean diff = mean difference, RESD = root expected 

square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   

dashed horizontal REMSD line tend to be less than 2, between 250 and 800. Clearly, the Total 

group conversion works in much the same way as the subgroup conversions for Form ANF1.  

Further support for the inference that the Total group and subgroup conversions are 

working in similar fashion can be found in Table 9, which has the same format as Table 8. The 

results for males indicate that they would have received essentially the same mean, 549.5, if the 

male-only conversion had been used in place of the total conversion, which produced a mean of 

549.0. For females, the conversion based on female-only produced a female average score of 

519.1 instead of the mean of 519.7 based on Total group conversion. 

In addition to the mean differences, which are +/-.5, Table 9 contains the RESD statistics 

for males and females. Both of these statistics, 2.0 for males and 1.4 for females, are small, 

indicating that the differences associated with using the operational versus gender specific 

conversions are small. 

The percentage indexes reveal that 0.0% of the formula scores had differences between 

the female-only and total group conversions that exceeded 5 in magnitude; for males 3% of the 

scores differ, but only .4% of the examinees would have had been affected, all at the low end.  

In sum, the SEA analysis on the Math score for Form ANF1 indicates that population 

invariance was essentially achieved. 
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Figure 8. ANF1 Math root mean square difference (RMSD) and root expected mean square 

difference (REMSD):Gender. 

Note. M-T = male-total, F-T = female-total, DTM = difference that matters. 
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Table 9 

ANF1 Math (Average) Gender Groups Results for the Nonequivalent Groups With Anchor 

Test (NEAT) Equatings  

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD 
 

% FS 
|DIFF| >= 5 

% examinees
|DIFF| >= 5

158,846 T TGL 532.5 112.4 2.4% 7.5%     
85,354 F TGL 519.7 108.3 2.5% 5.3%     

  SGL 519.1 107.7 2.5% 5.3% -0.5 1.4 0.0% 0.0% 
72,555 M TGL 549.0 114.4 2.1% 10.3%     

  SGL 549.5 115.4 2.1% 10.3% 0.5 2.0 3.0% 0.4% 

Note: T = total, F = female, M = male, mean diff = mean difference, RESD = root expected 

square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   

6. Summary 

This study investigated how to implement SEA as a routine operational practice for the 

SAT. We used SAT forms that were administered in 2005 and 2006. SEA was conducted on the 

Total group, the gender groups, and the ethnic groups on the forms that were placed on scale 

through the EG linking design. For the forms that were placed on scale through nonequivalent 

groups anchor test design linking, SEA was conducted on the Total group and gender groups. 

The results were mixed. For the ethnic groups, the Black group and the Asian American 

group exhibited different degrees of subgroup linking sensitivity, ranging from negligible 

differences from the Total group linking, to a noticeable degree of subgroup linking dependence, 

and then to a substantial degree of subgroup linking deviation from the Total group. The results 

for the White and other groups, in contrast, were relatively stable, as was the case for the Latino 

group in all but one linking. In general, the subgroup linkages exhibited negligible subgroup 

sensitivity for these three groups.  

As mentioned above, we observed a direction switch of subgroup linkage on the Black 

group and on the Asian American group. In the spring 2005 administrations, the Asian American 

group would have obtained a higher mean if the Asian American-only conversion had been used, 

implying that the Asian American group found the forms harder than the Total group. The 

direction of the mean differences went in the opposite direction in 2006, when the Asian 

American group would have received a lower mean (with one exception in December 2006 
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administration) if the Asian American-only conversion had been used, suggesting that the Asian 

American group now found the forms easier than the Total group. The Black group, on the other 

hand, exhibited an opposite pattern from the Asian American group: The group would have had a 

lower mean with the Black-only conversion in 2005, but would have received a higher mean in 

2006 with the Black-only conversion (except December 2006 administration). Has the construct 

evolved for these two groups of test-takers? Or was it due to sampling variability? These 

questions are worth further consideration. 

The results for the gender groups showed that population invariance was achieved across 

the gender groups for all forms regardless of data collection design. The degree of the subgroup 

linking sensitivity was negligible. 

7. Discussion 

The equating process links scores from different editions of the same test. For testing 

programs that build nearly parallel forms to the same explicit content and statistical 

specifications and administer forms under the same conditions, the linkings between the forms 

are expected to be equatings.  

SEA analysis focuses directly on the statistical end product of the test development and 

scoring process—the score to be reported, and examines whether or not scores that are supposed 

to be used interchangeably are in fact interchangeable. The relationship among equating, SEA 

and subpopulation invariance can be illustrated as follows: equating ensures score comparability 

and interchangeability. SEA provides a useful tool to check score equatability. For a linking to 

be an equating, the assumption of subpopulation invariance must be met. Checking SEA via 

subpopulation invariance of equating functions could serve as a quality control check to ensure 

that well developed test assemblies remain within acceptable tolerance levels with respect to 

equatability (Deming, 1982, 1986). 

How should SEA analyses be incorporated into statistical and psychometric practice? For 

example, when should an SEA analysis be conducted and on what groups? SEA analysis is 

performed on test level data and cannot be performed at the pretest stage. We advise against 

performing SEA prior to score reporting with the intent of ascertaining whether to use subgroup-

specific equatings. First, the sample sizes are often small at this stage. Even a test like the SAT, 

which uses the NEAT design to place forms on scale, only has adequate sample sizes for males 

and females. Second, accommodating SEA checks is often impractical because of time 
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considerations. Finally, aberrant results might be expected to occur with a single test form in any 

testing program. It is far more important to focus on systemic problems rather than idiosyncratic 

results.  

The authors suggest conducting SEA across a number of administrations and forms, such 

as at the end of one testing year, or at the end of a cohort year, or after some other suitable 

interval. The examination of multiple forms should provide a better assessment of the fairness of 

the test assembly process. Unusual results will be more clearly seen as unusual in the context of 

SEA analyses across multiple forms.   

The number of subgroups that can be studied will depend on circumstances such as test 

volume and how the data are collected. We expect that most testing programs should be able to 

examine whether linkings are invariant across gender.  

Another related issue is sample size. SEA procedures should be performed on sample 

sizes that are adequate enough to detect meaningful effect sizes. Implementation of this principle 

requires an effect size, such as the minimal DTM and standard errors of equating or the standard 

errors of the difference of equating. The standard error formulae can guide us in determining 

which samples sizes are too small to support meaningful SEA analyses. For large samples, the 

effect size will be easier to interpret. 

If it turns out linking results are not invariant, and the differences are consistent and large 

enough to have a practical impact on scores, then due diligence suggests that the test assembly, 

test administration, and statistical analysis processes should be scrutinized for possible causes. 
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Appendix 

Table A1 

ENF1 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD
 

% FS 
|DIFF| >= 5 

% examinees 
|DIFF| >= 5 

92,181 T TGL 530.1 110.2 1.8% 7.3%     
49,591 F TGL 514.7 104.7 1.9% 4.5%     

  SGL 514.6 106.5 2.6% 4.5% -0.2 1.8 6.1% 1.2% 
42,590 M TGL 548.0 113.7 1.7% 10.6%     

  SGL 548.1 111.7 1.7% 8.7% 0.1 2.0 9.1% 2.0% 
59,174 W TGL 544.7 101.3 0.6% 7.5%     

  SGL 544.5 100.8 0.9% 7.5% -0.2 0.7 0.0% 0.0% 
11,208 O TGL 521.1 120.3 3.4% 8.3%     

  SGL 521.4 120.9 3.4% 8.3% 0.3 1.2 0.0% 0.0% 
7,623 L TGL 476.5 102.1 3.4% 2.2%     

  SGL 479.1 103.8 3.4% 2.2% 2.6 3.4 21.2% 14.4% 
6,953 B TGL 440.7 102.6 8.0% 0.9%     

  SGL 436.4 101.3 8.0% 0.6% -4.3 4.8 37.9% 49.7% 
7,223 A TGL 566.8 116.1 1.1% 15.5%     

  SGL 568.9 115.2 1.1% 15.5% 2.1 3.0 19.7% 4.8% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A2 

ENF2 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD
 

% FS 
|DIFF| >= 5 

% examinees 
|DIFF| >= 5 

92,094 T TGL 530.1 110.2 2.0% 6.6%     
49,342 F TGL 514.0 105.1 2.2% 4.0%     

  SGL 514.6 106.5 2.2% 4.0% 0.6 1.6 0.0% 0.0% 
42,752 M TGL 548.7 113.0 1.8% 9.6%     

  SGL 548.1 111.7 1.8% 9.6% -0.6 1.6 1.5% 0.2% 
59,145 W TGL 545.1 101.1 0.7% 6.9%     

  SGL 544.5 100.8 0.7% 6.9% -0.6 0.9 0.0% 0.0% 
11,177 O TGL 520.9 120.2 3.7% 7.5%     

  SGL 521.4 120.9 3.7% 7.5% 0.6 1.2 3.0% 0.7% 
7,599 L TGL 477.8 105.2 4.2% 2.1%     

  SGL 479.1 103.8 4.2% 2.1% 1.2 2.3 7.6% 2.6% 
6,953 B TGL 438.5 100.9 8.6% 0.7%     

  SGL 436.4 101.3 8.6% 0.7% -2.0 2.9 9.1% 3.3% 
7,220 A TGL 564.5 114.5 1.0% 13.6%     

  SGL 568.9 115.2 1.0% 13.6% 4.4 4.7 27.3% 39.2% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A3 

ENF3 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD 
 

% FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5 

94,774 T TGL 519.6 107.4 2.3% 4.6%     
52,501 F TGL 506.2 103.1 2.5% 2.9%     

  SGL 506.6 103.9 2.5% 2.9% 0.4 1.0 0.0% 0.0% 
42,273 M TGL 536.3 110.3 2.1% 6.6%     

  SGL 535.5 109.5 2.1% 6.6% -0.8 1.3 0.0% 0.0% 
57,083 W TGL 535.0 97.8 1.0% 4.4%     

  SGL 534.6 97.4 1.0% 4.4% -0.5 0.7 1.5% 0.1% 
11,250 O TGL 504.2 116.3 4.5% 4.6%     

  SGL 504.9 115.3 3.5% 4.6% 0.7 1.7 1.5% 1.0% 
8,931 L TGL 474.9 100.6 4.1% 1.5%     

  SGL 473.6 99.6 4.1% 1.5% -1.4 1.9 4.5% 0.9% 
8,491 B TGL 436.6 96.4 8.2% 0.5%     

  SGL 436.1 97.5 8.2% 0.5% -0.4 1.6 1.5% 0.0% 
9,019 A TGL 563.7 113.0 1.1% 12.4%     

  SGL 566.5 114.8 1.1% 14.7% 2.7 3.7 16.7% 9.1% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A4 

ENF4 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD % FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5 

94,538 T TGL 519.6 107.4 2.3% 5.3%     
52,036 F TGL 504.8 102.4 2.5% 3.2%     

  SGL 506.6 103.9 2.5% 3.2% 1.8 2.4 1.5% 0.2% 
42,502 M TGL 537.7 110.5 2.0% 7.7%     

  SGL 535.5 109.5 2.0% 6.3% -2.2 2.6 0.0% 0.0% 
56,734 W TGL 535.2 98.0 0.9% 5.3%     

  SGL 534.5 97.4 0.9% 4.1% -0.7 1.0 3.0% 0.5% 
11,200 O TGL 502.8 116.1 4.6% 5.0%     

  SGL 504.9 115.3 3.3% 5.0% 2.1 2.7 12.1% 10.8% 
8,921 L TGL 471.8 100.0 4.2% 1.3%     

  SGL 473.6 99.6 4.2% 1.3% 1.8 2.4 6.1% 0.8% 
8,435 B TGL 439.5 95.6 7.5% 0.4%     

  SGL 436.1 97.5 7.5% 0.7% -3.4 4.6 36.4% 48.0% 
9,248 A TGL 563.3 113.6 1.2% 13.7%     

  SGL 566.5 114.8 1.2% 13.7% 3.3 3.8 10.6% 15.9% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A5 

ENF5 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD
 

% FS 
|DIFF| >= 5 

% examinees 
|DIFF| >= 5 

154,278 T TGL 532.3 112.6 2.0% 6.8%     
83,166 F TGL 517.4 108.5 2.3% 4.6%     

  SGL 519.4 108.5 2.3% 4.6% 2.0 2.1 0.0% 0.0% 
70,212 M TGL 551.2 114.0 1.6% 9.6%     

  SGL 548.8 114.7 2.2% 9.6% -2.4 2.6 3.0% 0.5% 
93,547 W TGL 547.9 100.1 0.7% 6.3%     

  SGL 548.1 100.3 0.7% 6.3% 0.2 0.9 6.1% 0.5% 
17,922 O TGL 518.8 120.1 3.7% 6.7%     

  SGL 519.1 122.1 4.7% 6.7% 0.3 2.5 7.6% 4.9% 
13,804 L TGL 478.2 104.7 3.9% 2.0%     

  SGL 477.8 104.1 3.9% 2.0% -0.4 1.4 1.5% 0.2% 
13,317 B TGL 426.2 98.7 9.1% 0.6%     

  SGL 428.5 98.1 9.1% 0.6% 2.3 2.6 6.1% 3.2% 
15,688 A TGL 592.3 114.5 0.7% 19.8%     

  SGL 591.6 112.9 0.7% 19.8% -0.7 2.4 12.1% 3.8% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A6 

ENF6 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD
 

% FS 
|DIFF| >= 5 

% examinees 
|DIFF| >= 5 

193,605 T TGL 521.9 107.6 2.0% 4.9%     
106,945 F TGL 507.5 103.8 2.2% 3.3%     

  SGL 507.4 104.0 2.2% 3.3% 0.0 0.3 0.0% 0.0% 
85,509 M TGL 540.9 109.2 1.7% 6.9%     

  SGL 540.7 108.8 1.7% 6.9% -0.1 0.4 0.0% 0.0% 
116,131 W TGL 537.9 98.4 0.8% 4.9%     

  SGL 539.1 98.1 0.8% 6.3% 1.2 1.3 1.5% 0.1% 
20,680 O TGL 510.9 113.9 3.3% 4.6%     

  SGL 511.1 113.7 3.3% 4.6% 0.2 0.3 0.0% 0.0% 
20,521 L TGL 474.6 101.4 4.0% 1.5%     

  SGL 472.6 102.5 4.0% 1.5% -2.0 2.4 9.1% 5.2% 
18,103 B TGL 439.3 94.9 7.2% 0.4%     

  SGL 439.9 96.4 7.2% 0.7% 0.6 1.7 9.1% 0.6% 
18,170 A TGL 567.7 114.1 1.0% 13.2%     

  SGL 562.0 113.2 1.3% 13.2% -5.7 6.1 40.9% 38.2% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A7 

ENF7 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD
 

% FS 
|DIFF| >= 5 

% examinees 
|DIFF| >= 5 

122,503 T TGL 504.1 108.2 3.1% 3.8%     
67,244 F TGL 488.7 104.3 3.6% 2.4%     

  SGL 488.0 103.6 3.6% 2.4% -0.7 1.1 3.0% 0.8% 
54,321 M TGL 524.3 109.3 2.3% 5.5%     

  SGL 525.1 109.8 2.3% 5.5% 0.8 1.1 0.0% 0.0% 
64,290 W TGL 526.6 95.5 0.9% 3.6%     

  SGL 526.6 97.2 0.9% 3.6% 0.0 1.8 12.1% 1.8% 
15,113 O TGL 486.5 115.4 5.7% 3.5%     

  SGL 485.0 115.4 5.7% 3.5% -1.5 2.0 3.0% 1.5% 
15,390 L TGL 459.6 97.8 5.4% 0.9%     

  SGL 458.5 96.9 5.4% 0.9% -1.1 2.0 6.1% 2.3% 
15,936 B TGL 429.7 93.4 8.5% 0.4%     

  SGL 432.7 93.2 8.5% 0.5% 3.0 3.6 13.6% 3.7% 
11,774 A TGL 562.4 118.0 1.4% 13.8%     

    SGL 560.0 114.7 1.0% 13.8% -2.4 4.8 40.9% 45.0% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A8 

ENF8 Math 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD
 

% FS 
|DIFF| >= 5 

% examinees 
|DIFF| >= 5 

119,962 T TGL 490.1 109.0 3.6% 3.4%     
63,811 F TGL 476.8 104.8 4.0% 2.3%     

  SGL 476.5 104.0 4.0% 2.3% -0.2 0.9 0.0% 0.0% 
55,217 M TGL 506.6 111.3 2.9% 4.7%     

  SGL 507.0 112.2 2.9% 4.7% 0.3 1.1 0.0% 0.0% 
58,313 W TGL 511.8 96.5 1.1% 2.9%     

  SGL 511.9 97.0 1.1% 2.9% 0.1 0.7 0.0% 0.0% 
12,912 O TGL 473.9 112.6 5.7% 3.0%     

  SGL 474.4 112.3 5.7% 3.0% 0.5 1.4 4.5% 1.4% 
16,991 L TGL 447.1 95.5 6.1% 0.7%     

  SGL 448.0 94.9 6.1% 0.9% 0.9 1.8 9.1% 1.7% 
17,881 B TGL 417.5 88.6 9.4% 0.2%     

  SGL 416.1 88.3 9.4% 0.2% -1.4 1.7 15.2% 3.0% 
13,865 A TGL 559.9 120.1 1.4% 13.1%     

  SGL 560.3 118.9 1.4% 13.1% 0.4 2.2 9.1% 5.2% 

Note. T = total, F = female, M = male, W = White, O = other, L = Latino, B = Black, A = Asian American, mean diff = mean 

difference, RESD = root expected square difference, TGL = total-group linking, SGL = subgroup linking, FS = formula score.   
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Table A9 

ANF11 Math (Average) 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD % FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5 

158,846 T TGL 532.5 112.4 2.4% 7.5%     
85,354 F TGL 519.7 108.3 2.5% 5.3%     

  SGL 519.1 107.7 2.5% 5.3% -0.5 1.4 0.0% 0.0% 
72,555 M TGL 549.0 114.4 2.1% 10.3%     

  SGL 549.5 115.4 2.1% 10.3% 0.5 2.0 3.0% 0.4% 

Note. T = total, F = female, M = male, mean diff = mean difference, RESD = root expected square difference, TGL = total-group 

linking, SGL = subgroup linking, FS = formula score. 

Table A10 

ANF2 Math (Average) 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD % FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5 

179,539 T TGL 513.2 105.4 2.1% 4.3%     
94,872 F TGL 496.8 100.7 2.4% 2.6%     

  SGL 497.7 100.7 2.4% 2.6% 0.9 1.5 6.1% 1.2% 
83,493 M TGL 533.0 106.8 1.7% 6.4%     

  SGL 532.0 107.3 2.3% 6.4% -1.0 1.9 7.6% 1.5% 

Note. T = total, F = female, M = male, mean diff = mean difference, RESD = root expected square difference, TGL = total-group 

linking, SGL = subgroup linking, FS = formula score.  
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Table A11 

ANF3 Math (Average) 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD 
 

% FS 
|DIFF| >= 5

% examinees 
|DIFF| >= 5 

198,094 T TGL 521.0 106.3 2.2% 5.5%     
109,250 F TGL 506.6 102.9 2.7% 3.7%     

  SGL 507.1 102.0 1.9% 3.7% 0.5 1.5 4.5% 0.9% 
87,701 M TGL 539.9 107.3 1.6% 7.8%     

  SGL 539.2 108.7 1.6% 7.8% -0.7 2.3 16.7% 7.1% 

Note. T = total, F = female, M = male, mean diff = mean difference, RESD = root expected square difference, TGL = total-group 

linking, SGL = subgroup linking, FS = formula score.   

Table A12 

ANF4 Math (Average) 

N Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD 
  

% FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5 

502,848 T TGL 528.3 105.6 1.9% 5.3%     
284,027 F TGL 513.8 101.9 2.2% 3.5%     

  SGL 512.8 101.0 1.5% 3.5% -1.1 1.7 6.1% 1.8% 
217,094 M TGL 548.0 107.1 1.5% 7.6%     

  SGL 549.5 107.8 1.1% 7.6% 1.5 2.1 7.6% 4.7% 

Note. T = total, F = female, M = male, mean diff = mean difference, RESD = root expected square difference, TGL = total-group 

linking, SGL = subgroup linking, FS = formula score.   
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Table A13 

ANF5 Math (Average) 

N  Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD % FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5 

126,239  T TGL 504.5 108.2 3.7% 4.3%     
69,222  F TGL 488.4 103.6 4.4% 2.7%     

   SGL 490.0 103.8 3.1% 2.7% 1.6 2.0 4.5% 1.0% 
55,999  M TGL 525.5 109.9 2.8% 6.4%     

   SGL 523.6 109.9 2.8% 5.1% -1.9 2.4 6.1% 1.7% 

Note. T = total, F = female, M = male, mean diff = mean difference, RESD = root expected square difference, TGL = total-group 

linking, SGL = subgroup linking, FS = formula score. 

Table A14 

ANF6 Math 

N  Group Linking Mean SD % < 300 % > 700 Mean 
diff 

RESD 
 

% FS 
|DIFF| >= 5

% examinees
|DIFF| >= 5 

123,483  T TGL 490.5 108.8 3.0% 3.9%     
66,140  F TGL 477.0 103.9 3.3% 2.6%     

   SGL 475.9 104.9 4.5% 2.6% -1.1 2.0 10.6% 3.8% 
56,435  M TGL 507.3 112.0 2.6% 5.5%     

   SGL 508.3 110.9 2.6% 4.2% 1.0 2.2 10.6% 5.6% 

Note. T = total, F = female, M = male, mean diff = mean difference, RESD = root expected square difference, TGL = total-group 

linking, SGL = subgroup linking, FS = formula score.  
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Figure A1. ENF1 Math: Gender and ethnicity. 
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Figure A2. ENF2 Math: Gender and ethnicity. 
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Figure A3. ENF3 Math: Gender and ethnicity. 
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Figure A4. ENF4 Math: Gender and ethnicity. 
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Figure A5. ENF5 Math: Gender and ethnicity. 
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Figure A6. ENF6 Math: Gender and ethnicity. 
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Figure A7. ENF7 Math: Gender and ethnicity. 
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Figure A8. ENF8 Math: Gender and ethnicity. 
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Figure A9. ANF1 Math. 
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Figure A10. ANF2 Math. 
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Figure A11. ANF3 Math. 
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Figure A12. ANF4 Math. 
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Figure A13. ANF5 Math. 



 68

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

200 300 400 500 600 700 800

Total Conversion Scaled Score

Sc
al

ed
 S

co
re

 D
iff

er
en

ce

M-T F-T

 
Panel A 

 

0

5

10

15

20

25

30

200 300 400 500 600 700 800

Total Conversion Scaled Score

RM
SD

RMSD REMSD DTM

 
Panel B 

Figure A14. ANF6 Math. 




