Experimental Design and Some Threats to Experimental Validity: A Primer

Susan Skidmore
Texas A&M University

Abstract

Experimental designs are distinguished as the best method to respond to questions involving causality. The purpose of the present paper is to explicate the logic of experimental design and why it is so vital to questions that demand causal conclusions. In addition, types of internal and external validity threats are discussed. To emphasize the current interest in experimental designs, Evidence-Based Practices (EBP) in medicine, psychology and education are highlighted. Finally, cautionary statements regarding experimental designs are elucidated with examples from the literature.
The No Child Left Behind Act (NCLB) demands “scientifically based research” as the basis for awarding many grants in education (2001). Specifically, the 107th Congress (2001) delineated scientifically-based research as that which “is evaluated using experimental or quasi-experimental designs”. Recognizing the increased interest and demand for scientifically-based research in education policy and practice, the National Research Council released the publication, Scientific Research in Education (Shavelson & Towne, 2002) a year after the implementation of NCLB. Almost $5 billion have been channeled to programs that provide scientifically-based evidence of effective instruction, such as the Reading First Program (U. S. Department of Education, 2007). With multiple methods available to education researchers, why does the U. S. government show partiality to one particular method? The purpose of the present paper is to explicate the logic of experimental design and why it is so vital to questions that demand causal conclusions. In addition, types of internal and external validity threats are discussed. To emphasize the current interest in experimental designs, Evidence-Based Practices (EBP) in medicine, psychology and education are highlighted. Finally, cautionary statements regarding experimental designs are elucidated with examples from the literature.

Experimental Design

An experiment is “that portion of research in which variables are manipulated and their effects upon other variables observed” (Campbell & Stanley, 1963, p. 171). Or stated another way, experiments are concerned with an independent variable (IV) that causes or predicts the outcome of the
dependent variable (DV). Ideally, all other variables are eliminated, controlled or distributed in such a way that a conclusion that the IV caused the DV is validly justified.

![Diagram of an experiment]

Figure 1. Diagram of an experiment.

In Figure 1 above you can see that there are two groups. One group receives some sort of manipulation that is thought (theoretically or from previous research) to have an impact on the DV. This is known as the experimental group because participants in this group receive some type of treatment that is presumed to impact the DV. The other group, which does not receive a treatment or instead receives some type of alternative treatment, provides the result of what would have happened without experimental intervention (manipulation of the IV).

So how do you determine whether participants will be in the control group or the experimental group? The answer to this question is one of the characteristics that underlie the strength of true experimental designs. True experiments must have three essential characteristics: random assignment to
groups, an intervention given to at least one group and an alternate or no intervention for at least one other group, and a comparison of group performances on some post-intervention measurement (Gall, Gall, & Borg, 2005).

Participants in a true experimental design are randomly allocated to either the control group or the experimental group. A caution is necessary here. Random assignment is not equivalent to random sampling. Random sampling determines who will be in the study, while random assignment determines in which groups participants will be. Random assignment makes “samples randomly similar to each other, whereas random sampling makes a sample similar to a population” (Shadish, Cook, & Campbell, 2002, p. 248, emphasis in original). Nonetheless, random assignment is extremely important. By randomly assigning participants (or groups of participants) to either the experimental or control group, each participant (or groups of participants) is as likely to be assigned to one group as to the other (Gall et al., 2005). In other words, by giving each participant an equal probability of being a member of each group, random assignment equates the groups on all other factors, except for the intervention that is being implemented, thereby ensuring that the experiment will produce “unbiased estimates of the average treatment effect” (Rosenbaum, 1995, p. 37). To be clear, the term “unbiased estimates” describes the fact that any observed effect differences between the study results and the “true” population are due to chance (Shadish et al., 2002).
This equality of groups assertion is based on the construction of infinite number of random assignments of participants (or groups of participants) to treatment groups in the study and not to the single random assignment in the particular study (Shadish et al., 2002). Thankfully, researchers do not have to conduct an infinite number of random assignments in an infinite number of studies for this assumption to hold. The equality of groups' assumption is supported in studies with large sample sizes, but not in studies with very small sample sizes. This is true due to the law of large numbers. As Boger (2005) explained, "If larger and larger samples are successively drawn from a population and a running average calculated after each sample has been drawn, the sequence of averages will converge to the mean, μ, of the population" (p. 175). If the reader is interested in exploring this concept further, the reader is directed to George Boger’s article that details how to create a spreadsheet simulation of the law of large numbers. In addition, a medical example of this is found in *Observational Studies* (Rosenbaum, 1995, pp. 13-15).

To consider the case of small sample size, let us suppose that I have a sample of 10 graduate students that I am going to randomly assign to one of two treatment groups. The experimental group will have regularly scheduled graduate advisor meetings to monitor students’ educational progress. The control group will not have regularly scheduled graduate advisor meetings. Just to see what happens, I choose to do several iterations of this random assignment process. Of course, I discover that the identity of the members in the groups across iterations is wildly different.
Recognizing that most people are outliers on at least some variables (Thompson, 2006), there may be some observed differences that are due simply to the variable characteristics of the members of the treatment groups. For example, let’s say that six of the ten graduate students are chronic procrastinators, and might benefit greatly from regular scheduled visits with a graduate advisor, while four of the ten graduate students are intrinsically motivated and tend to experience increased anxiety with frequent graduate advisor inquiries. If the random assignment process distributes these six procrastinator graduate students equally among the two groups, a bias due to this characteristic will not evidence itself in the results. If instead, due to chance all four intrinsically motivated students end up in the experimental group, the results of the study may not be the same had the groups been more evenly distributed. Ridiculously small sample sizes, therefore would result in more pronounced differences between the groups that are not due to treatment effects, but instead are due to the variable characteristics of the members in the groups.

If instead I have a sample of 10,000 graduate students that that I am going to randomly assign to one of two treatment groups, the law of large numbers works for me. As explained by Thompson et al. (2005), “The beauty of true experiments is that the law of large numbers creates preintervention group equivalencies on all variables, even variables that we do not realize are essential to control” (p. 183). While there is still not identical membership across treatment groups, and I still expect that the observed differences between the control group and the experimental group are going to be due to any possible treatment effects
and to the error associated with the random assignment process, the expectation of equality of groups is nevertheless reasonably approximated. In other words, I expect the ratio of procrastinators to intrinsically motivated students to be approximately the same across the two treatment groups. In fact, I expect proportions of variables I am not even aware of to be the same, on average, across treatment groups!

The larger sample size has greatly decreased the error due to chance associated with the random assignment process. As you can see in Figure 2, even if both of the sample studies produce identical treatment effects, the results are not equally valid. The majority of the effect observed in the small sample size study is actually due to error associated with the random assignment process and not a result of the treatment. This effect due to error is greatly reduced in the large sample size study.

![Figure 2. Observed treatment effects in two studies with different sample sizes.](image)

The white area represents the amount of the observed effect due to the error associated with the random assignment process. The grey area represents the “true” treatment effect.

Three Experimental Designs

When well-conducted, a randomized experiment is considered the “gold standard” in causal research (Campbell, 1957; Campbell & Stanley, 1963;
Sackett, Strauss, Richardson, Rosenberg, & Haynes, 2000; Thompson, 2006). In fact, “No other type of quantitative research (descriptive, correlational, or causal-comparative) is as powerful in demonstrating the existence of cause-and-effect relationships among variables as experimental research” (Gall et al., 2005, p. 249). There are three designs that meet the characteristics of true experimental designs, first described by Campbell (1957) and revisited in several research design texts. While other designs have the potential to produce causal effects (see Odom et al., 2005; Rosenbaum, 1995; Thompson et al., 2005) only the three classic true experimental designs are discussed in the present paper. For a more extensive description of other experimental designs, the reader is directed to research design works such as Campbell (1957); Campbell and Stanley (1963); Creswell (2003); Gall et al. (2005); Shadish et al. (2002); and Thompson (2006).

The first true experimental design is known as the Pretest-Posttest Control-Group Design. This research design meets the characteristics of a true experiment because participants are randomly assigned (denoted by an R) to either the experimental or control group. There is an intervention or treatment (denoted by an X) given to one group, the experimental group, and no intervention (or alternate intervention) given to the other group, the control group. Finally, there is some form of post-intervention measurement (denoted by an O). This is also known as a posttest, because this measurement occurs after the intervention. In addition, in this particular design, there is also a pretest, denoted by an O prior to the intervention. The pretest allows the researcher to test for
equality of groups on the variable of interest prior to the intervention. These
designs are “read” left to right to correspond to the passage of time (i.e., what
happens first, second).

Experimental Group R O X O
Control Group R O O O

The second true experiment is the Posttest-Only Control Group Design.
This design varies from the first in that it controls for possible confounding effects
of a pretest because it does not use a pre-intervention measurement. All three
characteristics of a true experimental design are present as in the previous
design: random assignment, intervention implemented with experimental group
only, and post-intervention measurement.

Experimental Group R X O
Control Group R O O

The third and final design is the Solomon Four-Group Design. This design
is the strongest of the three. It not only corrects for the possible confounding
effects of a pretest, but allows you to compare these results, to an experimental
and control group that did receive a pretest. The major drawback to this design
compared to the others is the obvious increase in sample size needed to meet
the needs of four treatment groups as opposed to two treatment groups.

Experimental Group (with pre-test) R O X O
Control Group (with pre-test) R O O O
Experimental Group (without pre-test) R X O
Control Group (without pre-test) R O O

In addition to detailing these designs in their seminal work, Campbell and
Stanley (1963) firmly established their explicit commitment to experiments “as
the only means for settling disputes regarding educational practice, as the only way of verifying educational improvements, and as the only way of establishing a cumulative tradition in which improvements can be introduced without the danger of a faddish discard of old wisdom in favor of inferior novelties” (Campbell & Stanley, 1963, p. 172).

Validity Threats

Even when these designs are used, there are differences in how rigidly they are followed as well as to what extent the researcher addresses the multiple threats to validity (see Figure 3 below). Threats to validity are important not only to research designer but also to consumers of research. An informed consumer of research wants to rule out all competing hypothesis and be firmly convinced that the evidence supports the claim that the IV caused the DV. To merit this conclusion, an evaluation of the study is necessary to determine whether threats to experimental validity were recognized and mitigated.

Figure 3. Example of a research experiment and the questions you should ask yourself about internal and external validity. Adapted from (Sani & Todman, 2006).
Internal Validity

Creswell defines internal validity threats as those “experimental procedures, treatments, or experiences of the participants that threaten the researchers’ ability to draw correct inferences from the data in an experiment” (2003, p. 171). In their classic text, Campbell and Stanley (1963) identified eight threats to internal validity. In a more recent text, Shadish, Cook and Campbell (2002) addressed nine threats to validity which are described below. For an extensive list of threats to internal and external validity, the reader is directed to Onwuegbuzie’s work that cogently expresses the need to evaluate “all quantitative research studies” (2000, p. 7), not just experimental design studies, for threats to internal and external validity.

1. Ambiguous temporal precedence: uncertainty about which occurred first (IV or DV) which would lead to questions about which variable is the cause and which is the effect.

2. Selection bias: a systematic bias resulting in non-random selection of participants to groups. By definition random assignment prevents selection bias, if and only if the law of large numbers can be invoked.

3. History: an event that may occur between measurements that is not part of the intervention that could impact the posttest measurement. For example, let us return to the ten fictional graduate students described previously in the study. Let’s say they were all living in the same dorm and the fire alarm kept going off the night before they were to take the motivation/ procrastination measurement instrument. Due to lack of sleep, participants may perform differently on the
motivation/procrastination scale than they would have had they gotten enough sleep.

4. Maturation: an observed change that is naturally occurring (such as aging, fatigue, hair length, number of graduate hours completed) that may be confused with the intervention effects but is really a function of the passage of time.

5. Statistical regression: the phenomenon that occurs when participant selection is based on extreme scores whereby the scores become less extreme, which may appear to be the intervention effect. If in our study of graduate students we purposively select students based on pretest scores of extreme procrastination, the extreme procrastinator graduate students will on the posttest not be as extreme in their procrastination tendencies.

Regression toward the mean was first documented by Sir Francis Galton in the late 1800s. Galton (1886) measured the heights of fathers and sons at a World Exposition. Galton found that very tall fathers tended to have sons who were not quite as tall, and that very short fathers tended to have sons who were not quite as short. Clearly, this phenomenon is not a function of the exercise of will (i.e., fathers did not say to their wives, “Let’s make a shorter son” or “Let’s make a taller son”!)

6. Experimental mortality or attrition: a concern about a differential loss of participants, or of different types of participants from the experimental or control group that may produce an effect that appears to be due to the intervention. For example, if half of the students in the experimental group drop out of the study, but none of the control group members drop, we would likely question the results.
Were those students that left somehow different from the ones that remained? If so, would that difference have produced differential results than the ones we observed with the remaining participants?

7. Testing: the concern that a testing event will impact scores of a subsequent testing event. For example, if we give the graduate students the procrastination/motivation scale prior to any graduate advisor meetings (the intervention), and then after the intervention we give them the procrastination/motivation scale again, we may observe difference in the pre- and posttest that are due partly to familiarity with the test or the influence of the testing itself.

8. Instrumentation: the change in either the measurement instrument itself or the manner in which the instrument is implemented or scored that may cause changes that appear to be due to the intervention, or the failure to detect changes that actually did occur. For example, if between the first and second time that the procrastination/motivation test is given, the developers of the exam decide to remove ten of the questions, we do not know if the exclusion of those questions is responsible for differential scores or if the differences are due to treatment effects.

9. Additive and interactive effect of threats to internal validity: the concern that the impact of the threats may be additive or that presence of one threat may impact another. A selection-history additive effect occurs when nonequivalent groups are selected. For example, groups may be selected from two different locations, such as, rural and urban areas. The participants in the groups are nonequivalent by selection and they also have unique local histories. The
resulting net bias is dependent on both the direction and magnitude of each individual bias and how the biases combine. Selection-maturation, and selection-instrumentation are other versions of this type of effect.

External Validity

External validity threats are threats of “incorrect inferences from the sample data to other persons, other settings, and past or future situations” (Creswell, 2003, p. 171). Researchers must always remember the context from which their sample comes from, and take caution not to overgeneralize beyond that.

Campbell and Stanley (1963) included four threats to external validity. Shadish (2002) listed five external validity threats, as detailed below.

1. Interaction of the causal relationship with participants: an effect with certain kinds of participants that may not be present (or present to the same extent) with other kinds of participants. For example, reduction of salt intake in hypertensive patients is more beneficial to certain populations than others (American Heart Association Nutrition Committee, 2006).

2. Interaction of the causal relationship over treatment variations: the permanence of the causal relationship is dependent on fidelity to the specific treatment, thus possibly producing differential effects when treatments are varied. If a particular instructional intervention includes 5 components, the causal relationship may not hold if only 2 or 3 of the components are utilized.

3. Interaction of the causal relationships with outcomes: an effect that is present with one type of outcome measurement that may not be present (or present to
the same extent) if other outcome measurements were used. For example, if a person scores highest on a test for physical strength they may not necessarily score highest on a flexibility test.

4. Interactions of the causal relationship with settings: an effect that is present in a particular setting may not be present (or present to the same extent) in a different setting. For example, a particular after school character development program involving community project work may not work equally well in rural versus urban areas.

5. Context-dependent mediation: an explanatory mediator of a causal relationship in one context may not have the same impact in another context. For example, a study might find that a reduction in federal funding has no impact on student achievement because schools were able to turn to education foundation grants to provide them with additional resources. In another school district where schools did not have access to education foundation resources, the same causal mechanism may not be available.

In addition to internal and external validity threats, there are other threats that we need to be aware of in the design and evaluation of studies. Interested readers may refer to such texts as Experimental and Quasi-Experimental Designs (Shadish et al., 2002) or Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Creswell, 2003) for information about statistical conclusion validity and construct validity concerns.
EBP in Medicine, Psychology and Education

While the origins of EBP may date back to the origin of scientific reasoning, the Evidence-Based Medicine Working Group (EBMWG) brought the discussion of EBP to the forefront of medicine (1992). In 1996, Evidence-Based Medicine (EBM) was defined as “the conscientious, explicit, and judicious use of current best evidence in making decisions about the care of individual patients. The practice of evidence based medicine means integrating individual clinical expertise with the best available external clinical evidence from systematic research” (Sackett, Rosenberg, Gray, Haynes, & Richardson, 1996, p. 71). While EBP has many supporters in medicine, EBP has caused some concerns among practitioners. Researchers have addressed concerns regarding the perception of EBM as a top down approach that results in ivory tower researchers dictating how practitioners should practice (Sackett et al., 1996) or similarly that evidence from randomized controlled trials may be valued more highly than practitioner expertise (Kübler, 2000).

Yet, it is difficult to deny that there is great support for EBP considering the number of periodicals that have emerged since the years after EBMWG convened. A keyword search for “evidence-based” returns 100 serials on WorldCAT. A keyword search for “evidence-based” returns 96 serials in Ulrich’s Periodical Directory. At least 32 active periodicals, either in print form, electronic form, or both contain “evidence-based” within the title of the periodical. At least 26 of these periodicals are available electronically. See Table 1.
From the titles you can see that the majority of these periodicals are from a health-related field. It is important to note that while EBP do not only include randomized, experimental trials, the purpose of the table is to demonstrate the popularity of EBP that began in the mid 1990s and continues today.

Table 1

<table>
<thead>
<tr>
<th>Start Year</th>
<th>Title of Periodical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>Bandolier: Evidence-Based Healthcare</td>
</tr>
<tr>
<td>1995</td>
<td>Evidence-Based Medicine</td>
</tr>
<tr>
<td>1996</td>
<td>Focus on Alternative and Complementary Therapies: An Evidence-Based Approach</td>
</tr>
<tr>
<td>1997</td>
<td>Evidence-Based Cardiovascular Medicine</td>
</tr>
<tr>
<td>1997</td>
<td>Evidence-Based Medicine in Practice</td>
</tr>
<tr>
<td>1997 (1998)</td>
<td>Evidence-Based Mental Health</td>
</tr>
<tr>
<td>1997 (1998)</td>
<td>Evidence-Based Nursing</td>
</tr>
<tr>
<td>1997</td>
<td>Evidence-Based Obstetrics and Gynecology</td>
</tr>
<tr>
<td>1998</td>
<td>EBN Online</td>
</tr>
<tr>
<td>1998</td>
<td>Evidence-Based Dentistry</td>
</tr>
<tr>
<td>1998</td>
<td>Evidence-Based Practice</td>
</tr>
<tr>
<td>1998</td>
<td>Evidence-Based Practice: Patient Oriented Evidence That Matters</td>
</tr>
<tr>
<td>1999</td>
<td>Evidence-Based Dental Practice</td>
</tr>
</tbody>
</table>
Table 1 (continued).

<table>
<thead>
<tr>
<th>Start Year</th>
<th>Title of Periodical</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Evidence-Based Gastroenterology</td>
</tr>
<tr>
<td>2000</td>
<td>Evidence-Based Oncology</td>
</tr>
<tr>
<td>2000</td>
<td>Trauma Reports: Evidence-Based Medicine for the ED</td>
</tr>
<tr>
<td>2001</td>
<td>Journal of Evidence-Based Dental Practice</td>
</tr>
<tr>
<td>2003</td>
<td>Evidence-Based Integrative Medicine</td>
</tr>
<tr>
<td>2003</td>
<td>Evidence-Based Midwifery</td>
</tr>
<tr>
<td>2003</td>
<td>Evidence-Based Preventive Medicine</td>
</tr>
<tr>
<td>2003</td>
<td>Evidence-Based Surgery</td>
</tr>
<tr>
<td>2004</td>
<td>Evidence-Based Complementary and Alternative Medicine: eCAM</td>
</tr>
<tr>
<td>2004</td>
<td>Journal of Evidence-Based Social Work</td>
</tr>
<tr>
<td>2004</td>
<td>Worldviews on Evidence-Based Nursing</td>
</tr>
<tr>
<td>2005</td>
<td>Advances in Psychotherapy: Evidence-Based Practice</td>
</tr>
<tr>
<td>2005</td>
<td>Evidence-Based Ophthalmology</td>
</tr>
<tr>
<td>2005</td>
<td>Journal of Evidence-Based Practices for Schools</td>
</tr>
<tr>
<td>2006</td>
<td>Evidence-Based Child Health</td>
</tr>
<tr>
<td>2006</td>
<td>Evidence-Based Library and Information Practice</td>
</tr>
<tr>
<td>2007</td>
<td>Evidence-Based Communication Assessment and Intervention</td>
</tr>
</tbody>
</table>

Periodicals available electronically are shown in bold. Parenthetical dates indicate different start year date in WorldCAT.
The popularity of EBP is evident in psychology as well. The American Psychological Association's Presidential Task Force on Evidence-Based Practice specifically defined Evidence-Based Practice in Psychology (EBPP) as "the integration of the best available research with clinical expertise in the context of patient characteristics, culture, and preferences" (2006, p. 273). In addition to advocating evidence-based practices, this task force also established the two necessary components for evaluation of psychological interventions: treatment efficacy and clinical utility. Treatment efficacy specifically addresses questions such as how well a particular treatment works. This type of question lends itself to experimental investigation to draw valid causal conclusions about the effect of a particular intervention (or lack thereof) on a particular disorder (American Psychological Association, 2002). Chambless and Hollon (1998), in their review of psychological treatment literature, provide a description of variables of interest when evaluating treatment efficacy in research studies. The Task Force acknowledged that while there are other methods that may lead to causal conclusions "randomized controlled experiments represent a more stringent way to evaluate treatment efficacy because they are the most effective way to rule out threats to internal validity in a single experiment" (American Psychological Association, 2002, p. 1054).

The appeals for evidence continue also in the field of education. Grover J. (Russ) Whitehurst, who directs the Education Department's Institute of Education Sciences, defined Evidence-Based Education (EBE) as "the integration of professional wisdom with the best available empirical evidence in making
decisions about how to deliver instruction” (in Towne, 2005, p. 41). Whitehurst (2002b) explained that without empirical evidence education is at the mercy of the latest educational craze. In addition, asserted that cumulative knowledge cannot be generated without empirical evidence. To assist education practitioners in the identification of EBP, a practical guide has been provided (see Coalition for Evidence-Based Policy, 2003).

Table 2

Definitions of EBP in medicine, psychology and education

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence-based medicine (EBM)</td>
<td>“the conscientious, explicit, and judicious use of current best evidence in making decisions about the care of individual patients. The practice of evidence based medicine means integrating individual clinical expertise with the best available external clinical evidence from systematic research” (Sackett et al., p. 71).</td>
</tr>
<tr>
<td>Evidence-based practices in psychology (EBPP)</td>
<td>“the integration of the best available research with clinical expertise in the context of patient characteristics, culture, and preferences” (American Psychological Association, 2006, p. 273).</td>
</tr>
<tr>
<td>Evidence-based education (EBE)</td>
<td>“the integration of professional wisdom with the best available empirical evidence in making decisions about how to deliver instruction” (Whitehurst, 2002b, Slide 3).</td>
</tr>
</tbody>
</table>

Medicine, psychology, and education all have seemed to have jumped on the evidence wagon. Their definitions share the common themes of integration of
expertise with the best available evidence (see Table 2 above). We cannot ignore this need to balance practitioner expertise with empirical evidence whether in the field of medicine, psychology or education. As Kübler (2000) cautions:

Unquestionably evidence based medicine is the gold standard for modern medicine. The results, however, should be applied in patient care with careful reflection. Otherwise evidence based medicine may acquire the same status for the doctor as a lamp post for a drunk: it gives more support than enlightenment. (p. 135)

Frequency of Experiments in Different Disciplines

One final caution is offered. It is imperative that consumers and producers of research critically evaluate research. In addition to threats to validity, we must keep in mind that experiments are conducted by people. People are fallible. We are prone to make mistakes, both consciously and unconsciously. An example of this is a graph that appears to be from the same data, yet describes different results. What is critical about these graphs is that depending on which one you look at, education ranks third, fourth, or first in cumulative total number of reports of trials identified from the Campbell Collaboration Social, Psychological, Educational and Criminological Trials Register (C2-SPECTR) (Petrosino, Boruch, Rounding, McDonald, & Chalmers, 2000).

One graph depicts education behind criminology and psychology, but ahead of social policy (Boruch, Moya, & Snyder, 2002, p. 63). The authors describe the graph as follows:
Figure 3-4 shows the increase in the number of articles on randomized and possibly randomized experiments that have appeared in about 100 peer-reviewed journals and in other places since 1950. The figure is based on the Campbell Collaboration Social, Psychological, Educational, and Criminological Trials Registry (C2-SPECTR) that is being developed in a continuing effort to identify all RFTs. (p. 62).

The authors correctly cite Petrosino et al. (2000) as the source of the graph.

In another graph, which cites Boruch et al. (2002), education is now in last place behind criminology, psychology and social policy respectively (Whitehurst, 2002b). The following description was offered in Whitehurst’s (2002b) presentation:

This chart indicates the total number of articles about randomized field trials in other areas of social science research (criminology, social policy and psychology) has steadily grown over the last 40 years; however, the number related to education research has trailed behind. (Table Description, Slide 22)

In a very similar presentation by Whitehurst (2002a), a more extensive description of the same graph is provided:

While the total number of articles about randomized field trials in other areas of social science research has steadily grown, the number in education research has trailed behind. The graph on this slide measures the growth of randomized field trials from 1950 to the present in the areas of criminology, social policy, psychology, and education. It shows that the
most rapid growth has been in criminology, followed by comparable rates of growth in social policy and psychology, with education having the least amount of growth. Source for the graph: Robert Boruch, Dorothy de Moya, and Brooke Snyder, 2001. (slide 21)

The correct year for the citation is actually 2002.

Finally, in still another version of the graph, education is leading the pack followed by psychology, social and criminology (Petrosino, Boruch, Soydan, Duggan, & Sanchez-Meca, 2001). The following description is offered:

To facilitate the work of reviewers, the Campbell Collaboration Social, Psychological, Educational and Criminological Trials Register (C2-SPECTR) is in development. As Figure 2 shows, preliminary work toward C2-SPECTR has already identified more than 10000 citations to randomized or possibly randomized trials. (p. 28)

Petrosino et al. (2001) cite Petrosino et al. (2000), the same reference cited in Boruch et al. (2002). The only difference is that incorrect page numbers are given here. Instead of correctly identifying the pages as 206-219, Petrosino et al. (2001) identify pages 293-307.

Aside from the citations errors, one would hope that clarity about the results of the graph would be found in the original citation. Is education fourth, third or first in cumulative number of reports of randomized trials? The original citation, Petrosino et al. (2000) does match the results of the graph in Petrosino et al. (2001), but not the results of the graphs in Whitehurst (2002b) or Boruch et al. (2002). The original source offers the following description for the chart:
C2-SPECTR thus currently contains a total of 10,449 records. Figure 1 shows cumulative totals of reports of trials published between 1950 and 1998, subdivided on the basis of the ‘high level’ codes which were assigned to indicate the sphere(s) of intervention. (p. 211)

See Figure 4 for a visual explanation.

![Diagram of citation errors. Deviations from original source are shown in bold.](image)

Examining the graphs, it is easy to see how these changes could have been made inadvertently. Nonetheless, one has to consider the impact that these errors may have had. Whitehurst’s presentation was disseminated in “a series of four regional meetings as part of its work to ensure the effective implementation of the *No Child Left Behind* (NCLB) Act” (U. S. Department of Education, 2002). In addition, the *Web of Science* shows that this presentation was cited at least 6
times, *Evidence Matters* (Mosteller & Boruch, 2002) was cited at least 35 times, and the original source (Petrosino et al., 2000) was cited 12 times with the correct page number and 6 times with the incorrect page number which is given in Petrosino et al. (2001).

Whitehurst's (2002b) presentation was described in a report by WestEd titled *Scientific Research and Evidence-Based Practice* (Hood, 2003). Hood gives the following description of the graph in Whitehurst's presentation:

22. Education Lags Behind

Chart Description: This chart indicates the total number of articles about randomized field trials in other areas of social science research (criminology, social policy and psychology) has steadily grown over the last 40 years; however, the number related to education research has trailed behind. [By approximately 1996, the cumulative number of articles about definite and possible randomized field trials in criminology is approaching 6,000; the numbers in social policy and psychology exceed 2,000; while the number for education is less than 1,000.] (p.22)

In addition, Whitehurst's presentation is identified as one of the Editor's Picks under *Proven Methods: Doing What Works* within the NCLB page on the U.S. Department of Education's Website (see http://www.ed.gov/nclb/methods/whatworks/edpicks.jhtml). Colorado's Department of Education has apparently incorporated Whitehurst's graph into their *Fast Facts: Evidence-Based Practice* (2005). Perhaps because of Whitehurst's position as the Director of the Institute of Education Sciences, or
perhaps because of the wide dissemination of this presentation, citations alone are not enough to measure the impact that his presentation has had.

Errors in scholarly reports are not new. Thompson (1988, 1994) examined methodological mistakes in dissertations. Doctoral students and the prevalence of documentation errors are discussed in a recent article where the authors give several sources that address documentation errors in the literature such as “citation errors (for example, non-compliance to the prescribed editorial style), reference omissions, reference falsification, inconsistent references, inaccurate quotations, misspelled names, incorrect page numbers, and even fraudulent research” (Waytowich, Onwuegbuzie, & Jiao, 2006, p. 196). Mistakes will always be present; it is up to the research community, and informed consumers to make wise decisions regarding the worth of studies. There is no substitute for good judgment.

Summary

While true experiments do have the potential to provide the best possible causal evidence, it is imperative to keep in mind the threats that may undermine confidence in the findings, from internal and external validity threats, to simple human errors. In the wise words of Sackett and colleagues, the purpose of this type of research is to inform, but not to replace individual practitioner's knowledge (Sackett et al., 1996). This implies judgment on the part of the reader.
References

