Mission

The Consortium on Chicago School Research aims to conduct research of high technical quality that can inform and assess policy and practice in the Chicago Public Schools. By broadly engaging local leadership in our work, and presenting our findings to diverse audiences, we seek to expand communication between researchers, policy makers, and practitioners. The Consortium encourages the use of research in policy action, but does not argue for particular policies or programs. Rather, we believe that good policy is most likely to result from a genuine competition of ideas informed by the best evidence that can be obtained.

Founded in 1990, the Consortium is located at the University of Chicago.
This is the sixth in a series of research data briefs designed to provide new data on a particular issue. As the name suggests, this is a short report focusing on a single topic. Because data briefs are not comprehensive studies, we limit our discussion on findings to summarizing the key results.

This data brief reflects the interpretations of the authors. Although the Consortium’s Steering Committee provided technical advice and reviewed an earlier version, no formal endorsements by these individuals, their organizations, or the full Consortium should be assumed.

About Consortium Surveys
The Consortium on Chicago School Research has been surveying Chicago Public Schools teachers, students, and principals on a regular basis since the early 1990’s. Beginning in 1997, these surveys have been conducted every two years in the late winter or spring. About half of the survey items measure the Essential Supports for Student Learning, a set of organizational characteristics that are evident in improving schools. These include school leadership, parent and community partnerships, student-centered learning climate, professional community and workplace, and quality instruction. Results from the survey are reported back to schools to assist them in planning and evaluating their programs. A second half of the survey contains special topic questions. Recently, these have included questions about relationships with external partners, the use of educational technology in schools, teachers’ instructional practices in literacy, and on the 2003 survey, perceptions about the Grow Network.

Responses to the 2003 Surveys
This year, a total of 9,538 elementary school teachers in 384 schools completed the Consortium survey. The analysis reported in this study is restricted to 2,700 teachers in grades four through eight in 345 schools. The Grow questions appeared in a section of the survey taken by a random half of the respondents. In addition, 282 principals completed surveys that also asked a bank of questions about Grow.

Our preliminary analyses indicate that participating schools are fully representative of the school system in terms of racial composition, achievement level, and percentage low income. Details about these analyses will be included in a forthcoming survey technical manual.

Acknowledgments
The authors would like to thank their colleagues at the Consortium for developing and maintaining the databases making this analysis possible. Special thanks to Holly Hart for help with the survey data, to Al Bennett, Elaine Allensworth, Tony Bryk, and Penny Sebring for their suggestions and feedback on this report. Steering Committee member G. Alfred Hess also provided thoughtful comments.
During the 2001-02 school year, Chicago Public Schools officials contracted with the Grow Network™ to provide supplemental reporting of student test results to parents, teachers, and school administrators. Under terms of its contract with CPS, the Grow Network provides a variety of resources, including individualized, printed score reports for parents; classroom-level reports for teachers; and school building reports for principals. The Grow Network seeks to “transform assessment results into instructional tools for teachers, principals, and parents” by reporting students’ specific strengths and weaknesses as measured by standardized tests (primarily the Iowa Tests of Basic Skills) and offering a variety of suggestions and strategies to parents and teachers for addressing weaknesses and building on strengths. The Grow Reports replaced the classroom-level “skills analysis” printout that CPS produced for many years.

In addition to the print component of the Grow Reports, there are several web-based resources. These include an electronic version of the student scores found on the teacher reports. Because it is an interactive format, teachers can group students by particular skill sets and then regroup students according to other criteria. There are also instructional resources for teachers, including materials for teaching to specific skills, as well as additional assessments to judge student progress on those skills. School administrators have access to these classroom data for monitoring purposes. Parents may also enter the Grow Network website where they can find suggested reading lists and other tools for assisting their children.

CPS engaged the Grow Network as part of its efforts to improve data access and develop greater capacity for “data-driven decision making” in schools. In theory, when educators have detailed information about students’ achievement patterns, they can use this information to plan specific, individualized instructional interventions. Administrators and teachers need data that suggest where interventions are required, for example, in what subject areas or grade levels and for which students or classrooms—and in the best cases, data that suggest what those interventions should be. The additional assessments can help educators determine whether their intervention strategies have been successful, thus providing a feedback loop for continuous progress.
Teacher Reports

Because of the widespread interest in the Grow Network in Chicago (sparked both by its innovative nature and its cost—$2,000,000 annually), and because of our own interest in data use as a school improvement tool, the Consortium added five new questions about Grow use in Chicago Public Schools to its 2003 teacher and principal surveys.

CPS teachers’ responses to these five questions are shown below. Overall, teachers felt moderately positive about their experiences with the Grow Network during its first year of implementation. About 60 percent indicated that they had used the Grow Web account to see results for their students. Fifty-four percent found that the Grow Class Profile helped them to plan instruction; 52 percent reported that the Grow Report was a priority at their school; 52 percent believed that the Grow Parent Report was useful for communicating with parents; and 50 percent indicated that they used their Grow Account for obtaining additional resources, such as assessments or materials. These data suggest that a majority of teachers in grades four through eight used the Grow resources, and that slightly more than half of respondents found the various components of Grow to be beneficial.

These citywide responses help provide a general view of how teachers embraced Grow in year one, but a more fine-tuned analysis is called for to help understand how Grow varies across the city and what factors influence its use. In order to facilitate this analysis, we used the Rasch method to create a single measure from the five Grow survey items. These items cohere nicely to create a highly reliable measure that we call *Teacher Use of and Belief in Grow*. Our analytic goal is to determine what factors are related to variability in *Teacher Use of and Belief in Grow* across Chicago’s elementary schools.

![Teacher Use of and Belief in Grow](image-url)

Percent of Teachers

- Strongly agree
- Agree
- Disagree
- Strongly disagree
Variability in Grow Use

For each school, we calculated the average score among teachers on *Teacher Use of and Belief in Grow*. On the city map, we have displayed the schools that scored in the top quarter and in the bottom quarter on this measure. For the most part, there are high and low responses all across the city, but there is also a distinct pattern. There are many more high Grow users on the Far South Side of the city, the mid-South Side near the lakefront, and the Far West Side. These are predominantly African-American areas. There is lower Grow use on the North Side in white, racially integrated, and Latino areas. Our statistical analyses confirm this eyeball inspection and show consistently greater Grow use in predominantly African-American schools.

We are interested in the factors that cause the variability noted on the maps—what are the individual characteristics of teachers themselves and the characteristics of their schools that are related to differential Grow use? We used hierarchical linear modeling (HLM) techniques to conduct these analyses. By placing teachers within their schools, HLM can estimate how much teacher differences and school differences contribute to the variation in *Teacher Use and Belief in Grow*.

In the first set of analyses, we looked only at demographic characteristics of the responding teachers and their schools. At the school level, Grow use is higher in predominantly African-American schools, as suggested by the maps. Also Grow use is slightly greater in higher-achieving schools (especially those with few white students). At the individual teacher level we find that white teachers are less likely to report Grow use than both African-American and Latino teachers; more experienced teachers use Grow more than less experienced teachers; and finally, teachers who have fewer students with significant reading
problems use Grow more often. See page 7 for the full statistical model and results.

We went on to explore further teachers’ experiences and school conditions that seemed to influence the adoption of Grow. Understanding these mechanisms might suggest strategies to CPS for encouraging more widespread or more intensive use of Grow.

Our analyses were guided by a framework created in a previous Consortium report on the availability and use of educational technology in CPS. In that study, we developed and tested a theory of essential supports for the use of educational technology. We found that teacher assignment and subsequent student use of technology in school was highly influenced by a number of factors above and beyond the simple availability of hardware and software in schools. Several factors stood out as being important. Chief among these were the professional development opportunities in technology for teachers and the professional community within the school supporting technology use. In other words, teachers who had the opportunity to learn how to use technology, had supportive peers to work with, discussed and shared what they’ve learned, and tried out new approaches together, ended up being greater users of technology and assigned more technology applications to their students.

There were two other important factors that we also found to drive technology use among teachers and their students. First, technology was used more in schools where there were staff members or outside consultants (for example, a technology coordinator or specialist) to support the technology infrastructure. Even more important was prin-

Professional Development in Technology

Teacher Grow Use Varies by their Professional Development Experiences with Technology

![Graph showing Teacher Grow Use](image)

The following items compose this measure.

Please indicate to what extent you agree with the following statements (strongly disagree to strongly agree).

- I am aware of professional development that could enhance my ability to use computing technology in classroom instruction.
- I have taken professional development that enhances my ability to use computing technology in classroom instruction.
- The professional development available to me is relevant to how I believe computers should be used in the classroom.
- Please indicate to what extent, if any, each of the following are barriers to your use of school computers or the Internet for instruction.
- Lack of release time to learn/practice/plan ways to use computers or the Internet.
- Lack of appropriate professional development on how to integrate computing technology into curriculum.

Teachers’ Own Use of Technology

Teacher Grow Use Varies by their use of Technology in Other Educational Realms

![Graph showing Teacher Use of Technology](image)

The following items compose this measure.

For each activity below, please indicate how often you use computers or the Internet to complete the activity (never to daily or almost daily).

- Create instructional materials (i.e., handouts, tests, etc.)
- Gather information for planning lessons.
- Access model lesson plans.
- Access research and best practices for teaching.
- Create multimedia presentations for the classroom.
principal leadership for technology use. In schools where principals made technology a priority, where they sought out and provided new resources, and where they encouraged new practices involving technology, teachers and their students used technology more frequently. This was certainly not a surprising finding given how important principal leadership is to innovation and school improvement in general.

Our 2003 surveys asked several of the same questions that were used in the technology study described above. We are also able to relate these questions to Teacher Use of and Belief in Grow. Our findings about Grow use tend to be very similar to what we found earlier about more general use of technology among teachers.

We find that teachers’ Grow use is strongly influenced by three important factors: Professional Development in Technology, Teachers’ Own Use of Technology, and Principal Support for Grow. When teachers receive professional development in technology, they are more likely to use technology in their classrooms. Because teachers who are more familiar with technology are more likely to use and understand Grow, professional development in technology influences teachers’ Grow use. It is not at all surprising that teachers who use computers or the Internet for other, similar purposes would also use Grow more extensively. These teachers have gained some comfort level and experience and presumably have found some benefit to their technology use. This would predispose them favorably to using Grow. The bar graphs on the previous page show how teachers’ professional development experiences support that technology use and their other uses of technology influence their Grow use. Clearly, there are large differences in Teacher Use and Belief in Grow based on these two factors. A third influential factor, discussed below, is Principal Support for Grow.

Principal Support for Grow

Compared to teachers, CPS elementary principals are overwhelmingly positive about Grow. Nearly all principals reported having discussed with their teachers how Grow materials can help instruction in their schools; a similar preponderance had strongly encouraged teachers to use online Grow materials could help improve instruction in our school. I strongly encourage teachers to use online Grow resources. I used the Grow Network to see results for our students. The Grow Parent Report was a useful tool for communicating with parents. The Grow Reports were a priority at my school this year.

![Principal Support for Grow Bar Graph](image-url)
Does the Grow Network Lead to Higher Student Achievement?

This question will be on many people’s minds in the coming years if CPS continues to make relatively large financial investments in this technology. Answering the question will require sophisticated research technologies, including careful, on-site case studies of how Grow is used and how it influences parent and teacher behaviors. The first year of implementation is too early to address the question, but it will be asked frequently in the coming years.
Results of HLM Analysis of Teachers Use of Grow

Table of Teacher-Level Effects

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T statistic</th>
<th>df</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional development in technology</td>
<td>0.36</td>
<td>0.05</td>
<td>6.69</td>
<td>1404</td>
<td><0.000</td>
</tr>
<tr>
<td>Teacher use of technology</td>
<td>0.44</td>
<td>0.06</td>
<td>7.40</td>
<td>1404</td>
<td><0.000</td>
</tr>
<tr>
<td>White teacher(^1)</td>
<td>-0.91</td>
<td>0.31</td>
<td>-2.91</td>
<td>1404</td>
<td>0.004</td>
</tr>
<tr>
<td>Latino teacher(^1)</td>
<td>-0.18</td>
<td>0.45</td>
<td>-0.40</td>
<td>1404</td>
<td>0.690</td>
</tr>
<tr>
<td>Asian or native American teacher(^1)</td>
<td>-0.17</td>
<td>0.47</td>
<td>-0.35</td>
<td>1404</td>
<td>0.723</td>
</tr>
<tr>
<td>Masters degree(^2)</td>
<td>0.00</td>
<td>0.28</td>
<td>0.01</td>
<td>1404</td>
<td>0.992</td>
</tr>
<tr>
<td>Masters degree +15 or more hours(^2)</td>
<td>-0.38</td>
<td>0.28</td>
<td>-1.37</td>
<td>1404</td>
<td>0.172</td>
</tr>
<tr>
<td>Doctoral degree(^2)</td>
<td>1.68</td>
<td>1.12</td>
<td>1.50</td>
<td>1404</td>
<td>0.135</td>
</tr>
<tr>
<td>Years as a teacher</td>
<td>0.06</td>
<td>0.02</td>
<td>3.24</td>
<td>1404</td>
<td>0.002</td>
</tr>
<tr>
<td>Years as a teacher unknown</td>
<td>-0.19</td>
<td>0.74</td>
<td>-0.26</td>
<td>1404</td>
<td>0.799</td>
</tr>
<tr>
<td>Percent of students in bilingual program</td>
<td>-0.01</td>
<td>0.01</td>
<td>-1.53</td>
<td>1404</td>
<td>0.125</td>
</tr>
<tr>
<td>Percent of students with reading difficulties</td>
<td>-0.01</td>
<td>0.00</td>
<td>-2.05</td>
<td>1404</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Table of School-Level Effects

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T statistic</th>
<th>df</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.22</td>
<td>0.14</td>
<td>1.59</td>
<td>216</td>
<td>0.113</td>
</tr>
<tr>
<td>Principal use of Grow</td>
<td>0.19</td>
<td>0.05</td>
<td>3.99</td>
<td>216</td>
<td><0.000</td>
</tr>
<tr>
<td>Percent mobile students</td>
<td>0.03</td>
<td>0.01</td>
<td>1.73</td>
<td>216</td>
<td>0.085</td>
</tr>
<tr>
<td>Average achievement</td>
<td>0.05</td>
<td>0.02</td>
<td>2.07</td>
<td>216</td>
<td>0.039</td>
</tr>
<tr>
<td>Concentration of poverty</td>
<td>0.09</td>
<td>0.20</td>
<td>0.44</td>
<td>216</td>
<td>0.662</td>
</tr>
<tr>
<td>Crime in neighborhood of school</td>
<td>-0.38</td>
<td>0.20</td>
<td>-1.92</td>
<td>216</td>
<td>0.055</td>
</tr>
<tr>
<td>Predominantly Latino school(^3)</td>
<td>-0.61</td>
<td>0.46</td>
<td>-1.34</td>
<td>216</td>
<td>0.182</td>
</tr>
<tr>
<td>Racially mixed school(^3)</td>
<td>-0.19</td>
<td>0.62</td>
<td>-0.30</td>
<td>216</td>
<td>0.761</td>
</tr>
<tr>
<td>Predominantly minority school(^3)</td>
<td>0.16</td>
<td>0.52</td>
<td>0.31</td>
<td>216</td>
<td>0.760</td>
</tr>
<tr>
<td>Integrated school</td>
<td>-1.45</td>
<td>0.63</td>
<td>-2.31</td>
<td>216</td>
<td>0.022</td>
</tr>
</tbody>
</table>

These tables contain the final three-level HLM results. Level one contains a measurement model weighting the outcome variable (Teacher Use and Belief in Grow) by its standard error. Level two includes teacher characteristics and Level three includes school characteristics.

We ran other variations of this model without the Principal Use of Grow measure in order to take advantage of the larger sample of schools and teachers where we did not have principal survey data. The results are consistent across models and samples.

The final model includes all of the teacher and school-level demographic control variables, plus the significant explanatory predictor variables.

\(^1\) African-American teachers is the omitted category.

\(^2\) Bachelor’s degree is the omitted category.

\(^3\) Predominantly African-American school is the omitted category.
1 See Board Report 02-0626-PR26, available at http://www.cps.k12.il.us/AboutCPS/Board/Board_Actions/FY01-02/June_2002_Board_Action/02-0626-PR26.pdf
2 See http://www.grownetwork.com/ for more information.
3 See http://www.ncrel.org/toolbelt/
4 In the long run we would like to analyze actual teacher-use data, rather than only self-report data. We were able to obtain, from CPS, the percentage of teachers who had logged onto the Grow accounts by instructional areas. Though positively correlated with the survey responses, “the percentage logging onto Grow” seems too imprecise to be of much value here.
5 Both teacher experience and the number of students with significant reading problems were measured by survey responses.
7 The Chicago Public Education Fund made a grant to the Grow Network to provide intensive professional development around Grow use in 12 elementary schools. We found Teacher Use of and Belief in Grow to be relatively high in these schools, placing them, on average, in the top quartile of Grow use schools.
This is the sixth in a series of research data briefs designed to provide new data on a particular issue. As the name suggests, this is a short report focusing on a single topic. Because data briefs are not comprehensive studies, we limit our discussion on findings to summarizing the key results.

This data brief reflects the interpretations of the authors. Although the Consortium’s Steering Committee provided technical advice and reviewed an earlier version, no formal endorsements by these individuals, their organizations, or the full Consortium should be assumed.

About Consortium Surveys
The Consortium on Chicago School Research has been surveying Chicago Public Schools teachers, students, and principals on a regular basis since the early 1990’s. Beginning in 1997, these surveys have been conducted every two years in the late winter or spring. About half of the survey items measure the Essential Supports for Student Learning, a set of organizational characteristics that are evident in improving schools. These include school leadership, parent and community partnerships, student-centered learning climate, professional community and workplace, and quality instruction. Results from the survey are reported back to schools to assist them in planning and evaluating their programs. A second half of the survey contains special topic questions. Recently, these have included questions about relationships with external partners, the use of educational technology in schools, teachers’ instructional practices in literacy, and on the 2003 survey, perceptions about the Grow Network.

Responses to the 2003 Surveys
This year, a total of 9,538 elementary school teachers in 384 schools completed the Consortium survey. The analysis reported in this study is restricted to 2,700 teachers in grades four through eight in 345 schools. The Grow questions appeared in a section of the survey taken by a random half of the respondents. In addition, 282 principals completed surveys that also asked a bank of questions about Grow.

Our preliminary analyses indicate that participating schools are fully representative of the school system in terms of racial composition, achievement level, and percentage low income. Details about these analyses will be included in a forthcoming survey technical manual.

Acknowledgments
The authors would like to thank their colleagues at the Consortium for developing and maintaining the databases making this analysis possible. Special thanks to Holly Hart for help with the survey data, to Al Bennett, Elaine Allensworth, Tony Bryk, and Penny Sebring for their suggestions and feedback on this report. Steering Committee member G. Alfred Hess also provided thoughtful comments.
Mission
The Consortium on Chicago School Research aims to conduct research of high technical quality that can inform and assess policy and practice in the Chicago Public Schools. By broadly engaging local leadership in our work, and presenting our findings to diverse audiences, we seek to expand communication between researchers, policy makers, and practitioners. The Consortium encourages the use of research in policy action, but does not argue for particular policies or programs. Rather, we believe that good policy is most likely to result from a genuine competition of ideas informed by the best evidence that can be obtained.

Founded in 1990, the Consortium is located at the University of Chicago.