In this activity, students work with specified materials to create aqueduct components to transport two liters of water across a short distance in the classroom. The goal is to build an aqueduct that will supply Aqueductis, a Roman city, with clean water for private homes, public baths, and glorious fountains. By introducing various ideas and themes from the social studies curriculum on Ancient Rome and an additional modeling project, it can be modified into an interdisciplinary activity. This activity requires a 200-minute time period over four days for completion. (Author/SOE)
Activity: Do as the Romans: Construct an Aqueduct!

GRADE LEVELS: 6-8

SUMMARY:
Aqueducts are one of the wonders of the Roman Empire. These graceful structures are not only majestic, but are engineering marvels that survive to this day. In this activity, students work with specified materials to create aqueduct components that will transport 2 liters of water across a short distance in their classroom. The goal is to build an aqueduct that will supply Aqueductis, a Roman city, with clean water for private homes, public baths, and glorious fountains. By introducing various ideas and themes from the Social Studies curriculum on Ancient Rome and by an additional modeling project this could become a favorite interdisciplinary activity for middle schoolers.

LEVEL OF DIFFICULTY [1 = Least Difficult: 5 = Most Difficult]

4 difficult

TIME REQUIRED
Varies. Could take up to four 50-minute classes (including introductory lesson about Rome, demonstrations, project, and post-discussion/presentation).

COST
$15-$20. Use of old paint buckets, soda bottles, and scrap wood keeps cost down.

STANDARDS:
5.1 Describe and explain parts of a structure (e.g. foundation, flooring, decking, wall, roofing systems)
6.1 Identify and compare examples of transportation systems and devices that operate on each of the following: land, air, sea, and space.
6.2 Given a transportation problem, explain a possible solution using the universal systems model.
6.3 Identify and describe three subsystems of a transportation vehicle (structural, propulsion, and control)

WHAT WILL THE STUDENTS LEARN?

History of the Roman Empire
Building techniques that were used by the Romans.
Creative design methods.

BACKGROUND INFORMATION:

An aqueduct is a pipeline specifically built to transport water.
A chorobate is a surveying instrument that was used by engineers when building an aqueduct. It is used to determine the profile of the land in order to determine where the water needs to flow to reach the city.
Different elements can be built along an aqueduct such as a covered trench, tunnel, pressurized pipe, wall, or arcade.

RESOURCES:
www.inforoma.it/aqueduct.htm - good background information on aqueducts
www.crystalinks.com/romeaqueducts.html - some pictures and information on how aqueducts are used
www.culture.fr/culture/arcnat/vienne/en/aqueduc.htm - provides a wide range of information on aqueducts

MATERIALS:
Thin plastic drop cloth
Empty 2-liter soda bottle and cap
Bucket

Copyright © 2001
All Rights Reserved
Duct tape
Clear vinyl tubing (3/8" outside diameter)
Cardboard
2-3 tables
Chair
Blocks or books
2 liters water
Scissors
Electric drill or screwdriver

PREPARATION:
Assemble materials
Copy worksheets
Drill 3/8" holes in the tops of 2-liter soda bottle caps for the tubing to fit into.
Set up the "course" that the water will be transported through. Such as from a
table to a bucket on the floor 5 feet away, with an obstacle of books between
them.

DIRECTIONS:
1. Set the mood by telling the students that they are Chief Water Engineer of the
Roman Empire and that their job is to build an aqueduct that will supply the
Roman city of Aqueductis with clean water to private homes, public baths, and
glorious fountains. If they succeed, the citizens of Aqueductis will drink clean
water and bathe happily. If they fail, there's no telling what the citizens will do.
The best design will be one that uses minimal materials and delivers water
continuously with no spills and little leftover water.
2. Assign the "Roman Aqueduct Manual" as homework reading.
3. Log on to the NOVA website, allowing each student to play "Construct a
Roman Aqueduct" in the classroom.
(www.pbs.org/wgbh/nova/lostempires/roman/aqueduct.html)
4. Describe the challenge to the students and hand out materials.
5. Students must deliver the water from the bottle at point A to the "city" at point C. Neither the sheet plastic or the tubing is self-supporting, therefore the aqueduct must go through the point B, the bottom of the "valley" (the floor).

6. The water flow should go through the plastic tubing from the soda bottle to the bucket on the floor, with lost water represented by unsupported tubing. Water is precious, so any that escapes the system represents a mistake in engineering, construction, or operation.

7. After completion of the challenge, modifications may be made to the course to make it a little harder. For example, a line of blocks can be added across the table perpendicular to the flow as a hurdle or low hill that the water must be delivered over.

INVESTIGATING QUESTIONS:

How did the Roman Empire manage to supply its urban citizens with water?
What techniques can be used if mountains and valleys exist between the water source and the city?
How is today's water system similar or different from that of the Romans?

REFERENCES:

From (http://www.pbs.org/wgbh/nova/lostempires/roman/aqueduct.html), the NOVA website "Secrets of Lost Empires," a special five-part NOVA series aired during February 2000, by Dennis Gaffney.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Beginning</th>
<th>Developing</th>
<th>Proficient</th>
<th>Advanced</th>
<th>Weight (X factor)</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTING OF KNOWLEDGE AND CONCEPTS</td>
<td>Does not understand the key concepts of how an aqueduct works.</td>
<td>Understands some of the key concepts of how an aqueduct works.</td>
<td>Able to explain the design of an aqueduct given a drawing showing the landscape between a water source and a city.</td>
<td>Able to make improvements to the design of an aqueduct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN AND CONSTRUCTION OF AN AQUEDUCT</td>
<td>Structure is not very strong. Design does not work.</td>
<td>Structure is not very strong. Design is reasonable.</td>
<td>Structure is stable. Design is good.</td>
<td>Designs and constructs aqueduct with minimal materials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATION OF AQUEDUCT</td>
<td>Aqueduct does not work.</td>
<td>Aqueduct works with very little spillage.</td>
<td>Aqueduct works with no spillage.</td>
<td>Aqueduct works with no spillage. Works with optimal speed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total:

Teacher Comments:
Aqueducts are one of the wonders of the Roman Empire. These graceful structures are not only majestic, but are engineering marvels that survive to this day. In “Construct an Aqueduct,” you are hired as Chief Water Engineer by the Roman Emperor.

Your job: to build an aqueduct that will supply the Roman city of Aqueductis with clean water to private homes, public baths and glorious fountains. Succeed, and citizens of Aqueductis will drink clean water and bathe happily. Fail, and there’s no telling what your countrymen will do.

Mapping the Flow
A water engineer should use a surveying instrument called a chorobates to project a gently sloping line that connects the water source to the city. This way, engineers can figure out where the water needs to flow below ground in tunnels, on the surface in covered trenches or in pressurized pipes, or above ground on walls or arcades.

Every stage of the aqueduct has to be carefully planned to ensure that the water, pulled by gravity, makes its way gradually downhill to the city.

Parts of an Aqueduct
Here are the different elements a Chief Water Engineer can choose to build at any point along an aqueduct:

- Covered Trench
- Tunnel
- Pressurized Pipe
- Wall
- Arcade

Covered Trench
Roughly four of every five miles of Rome's aqueducts run underground, many in covered trenches. Trenches are used when the aqueduct follows the contours of the land. They are quick and easy to build for they require neither the construction of arches nor the burrowing of tunnels.

Romans built underground to hide and protect water from enemies. Even after the Empire expanded, they created a safe buffer around aqueducts, and built underground trenches and tunnels because they protected from the stresses of wind and erosion while underground. Covered trenches and tunnels are also less disruptive to life on the surface than are walls and arcades, which divide neighborhoods and farmers’ fields.
Tunnel
Sometimes, aqueduct engineers should carve a tunnel through a mountain rather than build a trench around one. When not too deep, shafts are dug down vertically from above to intersect with the proposed path of the tunnel.

By using shafts, more than one crew can work on a tunnel at a time. The shaft also serves another purpose: Once the tunnel is finished, slaves can crawl down stone steps to clean the tunnel. They can fill buckets with silt or chipped-out calcium deposits left behind from hard water and then haul the buckets out.

Pressurized pipe (inverted siphon)
When faced with a deep valley, Roman engineers should use pressurized pipes that are inverted siphons. Roman water engineers build these rather than arcades because tall arcades are too unstable when built too tall.

With siphons, water travels down one side of the valley in watertight pipes. Water pressure forces water up the other side. Water exits the pipes at nearly the same height as it entered. The pipes are usually built of lead, which is costly, but the material can handle strong water pressure.

Wall
When aqueduct engineers have to cross shallow depressions in the landscape, they should build the aqueduct on a wall. Simple to construct, walls are easier to build than arcades, although walls can impede the natural flow of water and people.

When engineers need to raise the aqueduct's channel more than approximately five feet above the ground, they should resort to arcades, which allow people and water to move freely beneath them.

Arcade
In a valley, water engineers should use arcades rather than aqueduct trenches. Arcades, of course, are the bridges built with a series of arches, and one of the grandest monuments of the Empire.

When the aqueduct must flow higher than about five feet, Roman engineers should use an arcade rather than a wall. The arched arcades require less material than walls and don't interfere with the passage of water or people through the environment.
Scenario #1 Aqueductis Is Thirsty!

Aqueductis

Plain

Valley

Spring

C

350'

300'

30'

470'

300'
Scenario #2 Water Delivery to Seaport City of Oceanus
Scenario #3 Hills of Rome

Spring

Rome

280'

320'

100'

180'

100'

Copyright © 2001
All Rights Reserved
Scenario #4 Giganticus Water Supply.

(this problem cannot be solved using only the elements introduced.)
Activity Evaluation Form

Activity Name: ______________________________________

Grade Level the Activity was implemented at: ________

Was this Activity effective at this grade level (if so, why, and if not, why not)?

What were the Activity's strong points?

What were its weak points?

Was the suggested Time Required sufficient (if not, which aspects of the Activity took shorter or longer than expected)?

Was the supposed Cost accurate (if not, what were some factors that contributed to either lower or higher costs)?

Do you think that the Activity sufficiently represented the listed MA Framework Standards (if not, do you have suggestions that might improve the Activity's relevance)?

Was the suggested Preparation sufficient in raising the students' initial familiarity with the Activity's topic (if not, do you have suggestions of steps that might be added here)?

If there were any attached Rubrics or Worksheets, were they effective (if not, do you have suggestions for their improvement)?
Title: PreK-12 Engineering Activities

1) Touch and Discover, Grades PreK-2

2) Invent a Backscratcher from Everyday Materials, Grades PreK-2

3) Compare Human-Made Objects with Natural Objects, Grades PreK-5
 http://www.prek-12engineering.org/data/d34/HumanvsNatural.pdf

4) Do Different Colors Absorb Heat Better?, Grades PreK-2
 http://www.prek-12engineering.org/data/d37/Absorbheat.pdf

5) Which Roof is Tops?, Grades PreK-2
 http://www.prek-12engineering.org/data/d44/RoofTops.pdf

6) Make Your Own Recycled Paper, Grades PreK-2

7) Build an Approximate Scale Model of an Object Using LEGOs, Grades 3-5

8) Design Weather Instruments using Lego Sensors, Grades 3-5

9) Space Shelter, Grades 3-5

10) Build a Bird House, Grades 3-5

11) Ball Bounce Experiment, Grades 3-5
 http://www.prek-12engineering.org/data/d6/BallBounce.pdf

12) Make an Alarm!, Grades 3-5

13) Design Packing to Safely Mail Raw Spaghetti, Grades 3-5
 http://www.prek-12engineering.org/data/d17/MailSpaghetti.pdf

14) Disassemble a Click Pen, Grades 3-5
 http://www.prek-12engineering.org/data/d33/clickPen.pdf
15) Construct And Test Roofs for Different Climates, Grades 3-5
 http://www.prek-12engineering.org/data/d35/ClimateRoof.pdf

16) Compare Fabric Materials, Grades 3-5

17) A House is a House for Me, Grades 3-5
 http://www.prek-12engineering.org/data/d52/House.pdf

18) Water Filtration, Grades 3-5

19) What is the Best Insulator: Air, Styrofoam, Foil, or Cotton?, Grades 3-5
 http://www.prek-12engineering.org/data/d54/BestInsulator.pdf

20) Design a Recycling Game!, Grades 3-5

21) Tower Investigation and the Egg, Grades 6-8

22) Wimpy Radar Antenna!, Grades 6-8

23) Portable Sundial, Grades 6-8
 http://www.prek-12engineering.org/data/d30/PortableSundial.pdf

24) An Introduction to Loads Acting on Structures, Grades 6-8

25) Design Your Own Rube Goldberg Machine, Grades 6-8

26) Building Tetrahedral Kites, Grades 6-8
 http://www.prek-12engineering.org/data/d38/tetrikites.pdf

27) Do as the Romans: Construct an Aqueduct!, Grades 6-8

28) Build an Earthquake City!!, Grades 6-8
 http://www.prek-12engineering.org/data/d40/EarthquakeCity.pdf

29) Design a Parachute, Grades 6-8
 http://www.prek-12engineering.org/data/d41/Parachute.pdf

30) The Squeeze is On, Grades 6-8

31) Stop The Stretching, Grades 6-8

32) Speaker Project, Grades 9-10
 http://www.prek-12engineering.org/data/d13/Speaker.pdf
I. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document. If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign in the indicated space following.

- Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g. electronic) and paper copy.
- Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only.
- Check here for Level 2B release, permitting reproduction and dissemination in ERIC archival collection microfiche only.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: [Signature]

Printed Name/Position/Title: Margaret Newell, Associate Provost for Research

Organization/Address: Tufts University
136 Harrison Avenue, Suite 75K-401
Boston, MA 02111

Telephone: 617-636-6550
Fax: 617-636-2917
E-mail Address: peter.wong@tufts.edu

Date: 8/15/2003
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:
Address:
Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:
Address:

V. WHERE TO SEND THIS FORM:

Send this form to:

ERIC Clearinghouse for Science, Mathematics, and Environmental Education Acquisitions
1929 Kenny Road
Columbus, OH 43210-1080

Telephone: (614) 292-6717
Toll Free: (800) 276-0462
FAX: (614) 292-0263
e-mail: ericse@osu.edu
WWW: http://www.ericse.org

EFF-088 (Rev: 9/97)