Rube Goldberg is famous for his very complex machines that accomplish everyday tasks. In this activity, students design and build a Rube Goldberg machine that will accomplish a simple task in no less than 10 steps. This activity requires a 120-360 minute time period for completion.

(Author/SOE)
Activity: Design Your Own Rube Goldberg Machine

GRADE LEVELS: 6-8

SUMMARY:
Rube Goldberg is famous for his very complex machines that accomplish everyday tasks. Students will design and build a Rube Goldberg machine which will accomplish a simple task in no less than ten steps.

LEVEL OF DIFFICULTY [1 = Least Difficult: 5 = Most Difficult]
4-difficult

TIME REQUIRED
120 – 360 minutes (2-8 class periods)

COST
variable

STANDARDS:
2.2 Demonstrate methods of representing solutions to a design problem, e.g., sketches, orthographic projections, multiview drawings.
2.3 Describe and explain the purpose of a given prototype.
2.4 Identify appropriate materials, tools, and machines needed to construct a prototype of a given engineering design.
2.5 Explain how such design features as size, shape, weight, function and cost limitations (i.e., ergonomics) would affect the construction of a given prototype.
2.6 Identify the five elements of a universal systems model: goal, inputs, processes, outputs, and feedback.
1.1 Given a design task, identify appropriate materials (e.g., wood, paper, plastic, aggregates, ceramics, metals, solvents, adhesives) based on specific properties and characteristics (i.e., weight, strength, hardness and flexibility).
1.2 Identify and explain appropriate measuring tools, hand tools, and power tools used to hold, lift, carry, fasten, and separate, and explain their safe and proper use.

1.3 Identify and explain the safe and proper use of measuring tools, hand tools, and machines (e.g., band saw, drill press, sanders, hammer, screwdriver, pliers, tape measure, screws, nails, and other mechanical fasteners) needed to construct a prototype of an engineering design.

WHAT WILL THE STUDENTS LEARN?

- Practical representation of simple machines (prototype)
- Engineering design process
- Safe usage of tools
- Five elements of a technology system – goal, inputs, processes, outputs and feedback

BACKGROUND INFORMATION:

- Schematic: showing the basic form or layout of something
- Students should already have had an introduction to simple machines: lever, pulley, wheel and axle, wedge, inclined plane, etc.
- Students should already be trained to use any tools they will need. Screwdrivers, saws, drills hammers and other necessary tools.
- For 55 years Goldberg's award-winning cartoons satirized machines and gadgets which he saw as excessive. His cartoons combined simple machines and common household items to create complex, wacky, and diabolically logical machines that accomplished mundane and trivial tasks. His inventions became so widely known that Webster's Dictionary added "rube goldberg" to its listing, defining it as "accomplishing by extremely complex, roundabout means what seemingly could be done simply."
- His "inventions," drawn for our pleasure, can actually work. By inventing excessively complex ways to accomplish simple tasks, he entertained us and poked fun at the gadgets designed to make our lives easier. In his words, the machines were a "symbol of man's capacity for exerting maximum effort to achieve minimal results." He believed that most people preferred doing things the hard way instead of using simpler, more direct paths to accomplish goals.
The resulting inventions are collections of bits and pieces, parts of now useless machines, scraped together to achieve an innovative, imaginative, yet somehow logical contraption to conquer the job at hand.

-Taken from www.rubegoldberg.com

RECOMMENDED RESOURCES:
www.rubegoldberg.com
The New Way Things Work by David Macaulay

MATERIALS:
Examples of simple and complex machines (pulleys, ramps, bicycle etc.)
Illustrations of Rube Goldberg machines
Wood, metals, plastics and composites.
Foam board or extruded foam insulation make good bases as they are light, sturdy, and easy to attach things to.
Coat hangers, cardboard, screws, wire, string, tape and lots of other miscellaneous construction materials.
Screwdrivers, saws, drills hammers and other necessary tools.
Poster paper, markers, crayons, pencils, rulers, etc
Collection of discarded “raw materials” for student prototypes
Students will also need to provide materials from home, which may be returned at the end of the project.

PREPARATION:
Choose time frame for completion of machine
Gather materials and/or have students gather materials in advance.

DIRECTIONS:
As a class:
1. Review simple machines

www.prek-12engineering.org
Copyright © 2001
All Rights Reserved
2. Brainstorm on the incorporation of simple machines into more complex machines
3. Brainstorm simple tasks that would lend themselves to the project
4. Look at illustrations of Rube Goldberg machines
5. Discuss any safety concerns that the students need to be aware of regarding the supplies available to them.
6. Explain requirements and expectations for the rubric.
7. Divide students into groups.
8. Students will identify a basic task and design a machine to accomplish that task in no less than 10 steps.
9. Students will produce a schematic design labeling each part and its function and each step needed to accomplish the task.
10. Students will build a working prototype of their design using tools and machinery.
11. Students will make a presentation of their prototype which will include a demonstration and explanation of the process.

INVESTIGATING QUESTIONS:

How can we build a device that will incorporate the recognized standard simple machines and will accomplish a basic task in no less than 10 steps?
How can we represent the process used to complete this design from goal to feedback?
Does the prototype accomplish the basic task in no less than 10 steps?
How does the prototype work to accomplish this task in no less than 10 steps?
Does or could this prototype have a practical application?
What changes would we make to the prototype based on our experiences – successes and failures – during the design process?
How do we use tools to shape, cut, and/or fabricate elements of the design?
REFERENCES:

Rube Goldberg is the ® and © of Rube Goldberg, Inc.

Students can enter designs in the annual Rube Goldberg Machine
Contest. For current information, contact Rube Goldberg Inc at
www.rubegoldberg.com or (212) 371 3760.
Rubric for Performance Assessment

<table>
<thead>
<tr>
<th>Activity Title: Rube Goldberg Machine Design</th>
<th>Grade Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Weight (X factor)</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design is crude, barely recognizable. Labels are sparse and machine drawn does not accomplish task or has very few steps.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels are incomplete, or unclear, machine does not have enough steps.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels explain each part of the machine and its function and each step needed to accomplish the task. Machine uses 10 steps. Drawing clearly matches prototype.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine parts explained clearly and in detail. Machine has more steps than necessary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION AND DEMONSTRATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine is badly built, will not work. Tools are used unsafely or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine does not have enough steps.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine is sturdy, has 10 steps. Tools are used properly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine is sturdy and has more than 10 steps, is cleverly designed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESENTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student cannot explain the function of the machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student gives some explanation of machine function, but it is not clear.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student explains function of each step, and it is clear how the machine works. Presentation is organized.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student explains function of each step, simple machines involved, how they are used to make a complex machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total: | | | | | | |

Teacher Comments:
Sketch your design for a Rube Goldberg machine and label its parts.

What is the ultimate goal for your machine?

What simple machines did you incorporate?

Did you use 10 steps?

List and describe the steps
Activity Evaluation Form

Activity Name: ____________________________

Grade Level the Activity was implemented at: ________

Was this Activity effective at this grade level (if so, why, and if not, why not)?

What were the Activity’s strong points?

What were its weak points?

Was the suggested Time Required sufficient (if not, which aspects of the Activity took shorter or longer than expected)?

Was the supposed Cost accurate (if not, what were some factors that contributed to either lower or higher costs)?

Do you think that the Activity sufficiently represented the listed MA Framework Standards (if not, do you have suggestions that might improve the Activity’s relevance)?

Was the suggested Preparation sufficient in raising the students’ initial familiarity with the Activity’s topic (if not, do you have suggestions of steps that might be added here)?

If there were any attached Rubrics or Worksheets, were they effective (if not, do you have suggestions for their improvement)?

Please return to: CEEO
105 Anderson Hall
Tufts University
Medford, MA 02155
I. DOCUMENT IDENTIFICATION:

Title: PreK-12 Engineering Activities

1) **Touch and Discover, Grades PreK-2**
 http://www.prek-12engineering.org/data/d2/Touchdiscover.pdf

2) **Invent a Backscratcher from Everyday Materials, Grades PreK-2**

3) **Compare Human-Made Objects with Natural Objects, Grades PreK-5**
 http://www.prek-12engineering.org/data/d34/HumanvsNatural.pdf

4) **Do Different Colors Absorb Heat Better?, Grades PreK-2**
 http://www.prek-12engineering.org/data/d37/Absorbheat.pdf

5) **Which Roof is Tops?, Grades PreK-2**
 http://www.prek-12engineering.org/data/d44/RoofTops.pdf

6) **Make Your Own Recycled Paper, Grades PreK-2**

7) **Build an Approximate Scale Model of an Object Using LEGO®s, Grades 3-5**

8) **Design Weather Instruments using Lego Sensors, Grades 3-5**

9) **Space Shelter, Grades 3-5**

10) **Build a Bird House, Grades 3-5**

11) **Ball Bounce Experiment, Grades 3-5**
 http://www.prek-12engineering.org/data/d6/BallBounce.pdf

12) **Make an Alarm!, Grades 3-5**

13) **Design Packing to Safely Mail Raw Spaghetti, Grades 3-5**
 http://www.prek-12engineering.org/data/d17/MailSpaghetti.pdf

14) **Disassemble a Click Pen, Grades 3-5**
 http://www.prek-12engineering.org/data/d33/clickPen.pdf
15) Construct And Test Roofs for Different Climates, Grades 3-5

16) Compare Fabric Materials, Grades 3-5

17) A House is a House for Me, Grades 3-5
http://www.prek-12engineering.org/data/d52/House.pdf

18) Water Filtration, Grades 3-5

19) What is the Best Insulator: Air, Styrofoam, Foil, or Cotton?, Grades 3-5
http://www.prek-12engineering.org/data/d54/BestInsulator.pdf

20) Design a Recycling Game!, Grades 3-5

21) Tower Investigation and the Egg, Grades 6-8

22) Wimpy Radar Antenna!, Grades 6-8

23) Portable Sundial, Grades 6-8
http://www.prek-12engineering.org/data/d30/PortableSundial.pdf

24) An Introduction To Loads Acting on Structures, Grades 6-8

25) Design Your Own Rube Goldberg Machine, Grades 6-8

26) Building Tetrahedral Kites, Grades 6-8
http://www.prek-12engineering.org/data/d38/tetrahedral.pdf

27) Do as the Romans: Construct an Aqueduct!, Grades 6-8

28) Build an Earthquake City!!, Grades 6-8
http://www.prek-12engineering.org/data/d40/EarthquakeCity.pdf

29) Design a Parachute, Grades 6-8
http://www.prek-12engineering.org/data/d41/Parachute.pdf

30) The Squeeze is On, Grades 6-8

31) Stop The Stretching, Grades 6-8

32) Speaker Project; Grades 9-10
http://www.prek-12engineering.org/data/d13/Speaker.pdf
II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign in the indicated space following.

☐ Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g. electronic) and paper copy.

☐ Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only.

☐ Check here for Level 2B release, permitting reproduction and dissemination in ERIC archival collection microfiche only.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche, or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: [Signature]

Printed Name/Position/Title: Margaret Newell, Associate Provost for Research

Organization/Address: Tufts University
136 Harrison Avenue, Suite 75K-401
Boston, MA 02111

Telephone: 617-636-6550
Fax: 617-636-2917
E-mail Address: peter.wong@tufts.edu

Date: 8/15/2003
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:
Address:
Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:
Address:

V. WHERE TO SEND THIS FORM:

Send this form to:

ERIC Clearinghouse for Science, Mathematics, and Environmental Education Acquisitions
1929 Kenny Road
Columbus, OH 43210-1080

Telephone: (614) 292-6717
Toll Free: (800) 276-0462
FAX: (614) 292-0263
e-mail: ericse@osu.edu
WWW: http://www.ericse.org

EFF-088 (Rev. 9/97)