A House is a House for Me. Grades 3-5.

Tufts Univ., Medford, MA.

2001-00-00

8p.; Produced by the Office for Technology and Industry Collaboration. For other activities in series, see SE 068 011-041.

Guides – Classroom – Teacher (052)

*Building Design; *Climate; Creative Activities; Critical Thinking; Daily Living Skills; Elementary Education; Engineering; *Environmental Influences; *Experiential Learning; Hands on Science; Science Instruction; Science Process Skills; Student Motivation

This activity provides arenas in which students can brainstorm and discuss the different types of materials used to build houses in various climates. Small models of houses are built and tested against different climates. This activity requires a 75-minute time period for completion. (Author/SOE)
Activity: A House is a House for Me

GRADE LEVELS: 3-5

SUMMARY:
Students brainstorm and discuss the different types of materials used to build houses in various climates. Small models of houses are built and tested against different climates.

LEVEL OF DIFFICULTY [1 = Least Difficult: 5 = Most Difficult]
4-Difficult

TIME REQUIRED
45 minutes for building and 30 minutes for testing

COST
$1.50 - $2.00 per student

STANDARDS:
1.1 Identify materials used to accomplish a design task based on a specific property (i.e., weight, strength, hardness and flexibility).
2.1 Identify a problem that reflects the need for shelter, storage, or convenience.
2.3 Identify relevant design features (i.e., size, shape, weight) for building a prototype of a solution to a given problem.

WHAT WILL THE STUDENTS LEARN?
The impact climates have on the building of structures
Details about several types of climates
Basic structural design

www.prek-12engineering.org
Copyright © 2001
All Rights Reserved

BEST COPY AVAILABLE
Basic experimental skills

BACKGROUND INFORMATION:

VOCABULARY:
CLIMATE: a region with specified weather conditions; the average weather conditions of a particular place or region over a period of years
ADOBE: a brick or building material made of a sun-dried mixture of earth and straw
IGLOO: an Eskimo house usually made of wood, sod, or stone when permanent or of blocks of snow or ice in the form of a dome when built for temporary use
PAGODA: a Far Eastern tower of several stories erected as a temple or memorial
TEPEE: a cone-shaped tent usually of skins used as a home by some Native Americans
LODGE: a house set apart for residence in a special season
WIGWAMS: a hut of the Native Americans of the Great Lakes region and eastward that usually has an arched frame of poles covered with bark, rush mats, or hides
HUT: a small and often temporary dwelling or shelter
TREEHOUSE: a structure (as a playhouse) built among the branches of a tree

People in different parts of the world have different materials that they can use to build their homes and other structures. When building a home, they have to think of how to use these materials to build a house that will work well for where and how they live. In the southwestern part of the United States, where there is a lot of clay and little wood, people build houses from adobe, a mixture of clay, straw, and water. Adobe houses have very thick walls which keep the houses cool in the hot dry desert weather. Adobe houses would not be good in places where it rains a lot because too much water makes adobe crumble. The weather in certain tropical islands in the Pacific ocean is hot, but wet. People who live there make their homes from materials that are easy to find such as palm leaves, woven grasses, and bamboo. Sometimes they build the houses on stilts to keep them off
the wet ground and to let the breezes move under the house, helping to keep it cool. Most Eskimos in Alaska and Canada built their houses out of sod or snow. These dome-shaped houses are called igloos. The dome shape of the igloo made it very strong and able to withstand powerful winter storms. Some Native Americans used to build dome-shaped houses made of poles, leaves, and tree bark. These houses were called wigwams. Native American tribes that moved a lot often built cone-shaped tepees out of buffalo skins or bark. Tepees could be easily built and taken apart quickly. Some Native Americans lived in more permanent structures called lodges made from logs and sod. When early American settlers came to New England, they found the ground covered with large stones. They used these stones to build stone houses and fences that you still see in New England today. The northwest part of the United States and Canada have plenty of forests, so most of the houses in these areas are made of wood. In China, where there are few forests, there are hardly any wooden houses. The Chinese people use tile, concrete, and stone to build beautiful pagodas and other buildings. In parts of Africa, where tall grasses grow, people weave the stems of dried grass together to make thatch huts. In Tibet, some people even make their houses out of wool! They shear the wool from ox-like animals called yaks. The wool walls keep the houses warm through the cold winter months.

Most houses in the United States today are built of wood, brick, stone, concrete, aluminum, or even glass.

Resources:

http://www2.worldbook.com/students/around_climate_index.asp - Description of climates
http://www.geography4kids.com/files/climate_climate.html - Description of climates
http://www.cotf.edu/ete/modules/msese/earthsysflr/biomes.html - Description of biomes and climates
http://folk.uio.no/kjetikj/fjellet/igloo.html - Picture of igloo
http://www.photovault.com/Link/Cities/Southwest/Teepee.html - Pictures of tepees

*A good activity to coincide with this activity is "Construct and Test Roofs for Different Climates"

MATERIALS:

Hay or long grass
Clay
Popsicle Sticks
Sugar Cubes
LEGOs
Small Stones
Flour (snow)
Fan (wind)
Water (rain)
Hairdryer (heat)

PREPARATION:

Materials need to be gathered
Read Mary Ann Hoberman's "A House is a House for Me"

DIRECTIONS:

PRESENT THE CHALLENGE:

1. Have the class think about why people need houses, what materials are needed to build a house, and what the various parts of a house include.
2. Pair students, have them choose an environment where they want their house built. Have the students figure out what type of a climate their house would need to handle being in that environment. Instruct them to design and sketch a house to withstand that climate.
3. Allow each group to present their concept to the rest of the class. Have the class comment and make suggestions on each other's ideas.

BUILD:
4. Have the groups build their designs with the materials available.

TEST:
5. Test the houses against the elements that would be appropriate for the climate they build their house to withstand.
6. Compare each of the groups' houses and discuss what materials are needed in different climates.

INVESTIGATING QUESTIONS:
- What different kinds of homes are you familiar with?
- Why are houses around the world made of different materials?
- Why do people and animals need shelter?
- What types of materials are used to build houses?
- What materials are best for certain climates? Why?
- What would happen if the wrong materials were used for a given climate?
- What does climate mean? What is a type of climate?
- Which house withstood the elements best? Why?

REFERENCES:

*Adapted with permission from The Best of Wonderscience, Copyright 1997, American Chemical Society Published by Wadsworth Publishing, Inc.. If you enjoyed this activity check out www.chemistry.org/wondernet, Your Science Place in Cyberspace, for free elementary physical science activities.
Rubric for Performance Assessment

Activity Title: A House is a House for Me

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Beginning</th>
<th>Developing</th>
<th>Proficient</th>
<th>Advanced</th>
<th>Weight (X factor)</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN AND CONSTRUCTION</td>
<td>Design and construction are incomplete.</td>
<td>House shows evidence of hasty construction.</td>
<td>House shows evidence of careful craftsmanship and appropriate use of materials and tools.</td>
<td>House shows evidence of very careful craftsmanship and the design is well thought out for the climate given.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE OF HOUSE</td>
<td>Does not withstand given climate.</td>
<td>Able to withstand slight climate conditions.</td>
<td>Able to withstand the climate conditions.</td>
<td>Design creatively protects house from weather conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMONSTRATES UNDERSTANDING</td>
<td>Does not use terms correctly, is unable to answer questions about climate and/or house design.</td>
<td>Can answer questions about climate and/or house design.</td>
<td>Can answer questions about climate and how the conditions dictate various house designs. Uses the terms correctly.</td>
<td>Can answer questions about climate and house designs. Uses terms correctly and offers suggestions for houses in area.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total:

Teacher Comments:
Activity Evaluation Form

Activity Name: ____________________________

Grade Level the Activity was implemented at: ________

Was this Activity effective at this grade level (if so, why, and if not, why not)?

What were the Activity’s strong points?

What were its weak points?

Was the suggested Time Required sufficient (if not, which aspects of the Activity took shorter or longer than expected)?

Was the supposed Cost accurate (if not, what were some factors that contributed to either lower or higher costs)?

Do you think that the Activity sufficiently represented the listed MA Framework Standards (if not, do you have suggestions that might improve the Activity’s relevance)?

Was the suggested Preparation sufficient in raising the students' initial familiarity with the Activity’s topic (if not, do you have suggestions of steps that might be added here)?

If there were any attached Rubrics or Worksheets, were they effective (if not, do you have suggestions for their improvement)?

Please return to: CEEO
105 Anderson Hall
Tufts University
Medford, MA 02155
I. DOCUMENT IDENTIFICATION:

Title: PreK-12 Engineering Activities

1) Touch and Discover, Grades PreK-2

2) Invent a Backscratcher from Everyday Materials, Grades PreK-2

3) Compare Human-Made Objects with Natural Objects, Grades PreK-5
 http://www.prek-12engineering.org/data/d34/HumanvsNatural.pdf

4) Do Different Colors Absorb Heat Better?, Grades PreK-2
 http://www.prek-12engineering.org/data/d37/Absorbheat.pdf

5) Which Roof is Tops?, Grades PreK-2
 http://www.prek-12engineering.org/data/d44/RoofTop.pdf

6) Make Your Own Recycled Paper, Grades PreK-2

7) Build an Approximate Scale Model of an Object Using LEGOos, Grades 3-5

8) Design Weather Instruments using Lego Sensors, Grades 3-5

9) Space Shelter, Grades 3-5

10) Build a Bird House, Grades 3-5

11) Ball Bounce Experiment, Grades 3-5
 http://www.prek-12engineering.org/data/d6/BallBounce.pdf

12) Make an Alarm!, Grades 3-5

13) Design Packing to Safely Mail Raw Spaghetti, Grades 3-5
 http://www.prek-12engineering.org/data/d17/MailSpaghetti.pdf

14) Disassemble a Click Pen, Grades 3-5
 http://www.prek-12engineering.org/data/d33/clickPen.pdf
15) Construct And Test Roofs for Different Climates, Grades 3-5
 http://www.prek-12engineering.org/data/d35/ClimateRoof.pdf

16) Compare Fabric Materials, Grades 3-5

17) A House is a House for Me, Grades 3-5
 http://www.prek-12engineering.org/data/d52/House.pdf

18) Water Filtration, Grades 3-5

19) What is the Best Insulator: Air, Styrofoam, Foil, or Cotton?, Grades 3-5
 http://www.prek-12engineering.org/data/d54/BestInsulator.pdf

20) Design a Recycling Game!, Grades 3-5

21) Tower Investigation and the Egg, Grades 6-8

22) Wimpy Radar Antenna!, Grades 6-8

23) Portable Sundial, Grades 6-8
 http://www.prek-12engineering.org/data/d30/PortableSundial.pdf

24) An Introduction To Loads Acting on Structures, Grades 6-8

25) Design Your Own Rube Goldberg Machine, Grades 6-8

26) Building Tetrahedral Kites, Grades 6-8

27) Do as the Romans: Construct an Aqueduct!, Grades 6-8

28) Build an Earthquake City!!, Grades 6-8
 http://www.prek-12engineering.org/data/d40/EarthquakeCity.pdf

29) Design a Parachute, Grades 6-8
 http://www.prek-12engineering.org/data/d41/Parachute.pdf

30) The Squeeze is On, Grades 6-8

31) Stop The Stretching, Grades 6-8

32) Speaker Project; Grades 9-10
 http://www.prek-12engineering.org/data/d13/Parachute.pdf
II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign in the indicated space following.

- Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g. electronic) and paper copy.
- Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only.
- Check here for Level 2B release, permitting reproduction and dissemination in ERIC archival collection microfiche only.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche, or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: [Signature]

Printed Name/Position/Title: Margaret Newell, Associate Provost for Research

Organization/Address: Tufts University
136 Harrison Avenue, Suite 75K-401
Boston, MA 02111

Telephone: 617-636-6550
Fax: 617-636-3917
E-mail Address: peter.wong@tufts.edu

Date: 8/15/2003
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:
Address:
Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:
Address:

V. WHERE TO SEND THIS FORM:

Send this form to:
ERIC Clearinghouse for Science, Mathematics, and Environmental Education
Acquisitions
1929 Kenny Road
Columbus, OH 43210-1080

Telephone: (614) 292-6717
Toll Free: (800) 276-0462
FAX: (614) 292-0263
e-mail: ericse@osu.edu
WWW: http://www.ericse.org

EFF-088 (Rev. 9/97)