We have established an environment for German-Japanese school education projects using real time interactive audio-visual distance learning between remote classrooms. In periods of 8-12 weeks, two classes are dealing with the same subject matter, exchanging materials and results via e-mail and Internet. At 3 or 4 occasions the classes met on screens interacting in explaining programs handled and solutions found. Participants were elementary school children speaking their native languages, translated by interpreters on the topics of symmetries in rectangles and stripes. It has been done with lower secondary students speaking English on topics related to discovering, proving, and applying Pythagoras Theorem. Another project was dealing with students and the geometry of the globe. (Author)
Distance Learning Between German and Japanese School Classes
Based on a Real Time Video Conference Environment.

Klaus-D. Graf
Freie Universitaet Berlin Takustr.
Berlin, Germany

ABSTRACT:
We have established an environment for German-Japanese school education projects using real time interactive audio-visual distance learning between remote classrooms. In periods of 8-12 weeks, two classes are dealing with the same subject matter, exchanging materials and results via e-mail and Internet. At 3 or 4 occasions the classes met on screens interacting in explaining problems handled and solutions found. Participants were elementary school children speaking their native languages, translated by interpreters on the topics of symmetries in rectangles and stripes. It has been done with lower secondary students speaking English on topics related to discovering, proving, and applying Pythagoras Theorem. Another project was dealing with sundials and the geometry of the globe.

Background in society and education for the project:

There were two rather different observations about new objectives of education at the beginning of work on our joint project: In Japan, Yokochi was concerned with the growing demand for an improvement of the quality of mathematics education, naming intentions like originality, creativity, comprehensive uses, mathematical scholarship, etc. In this context appreciation and exploitation of different cultural characteristics as well as interdisciplinary components (mathematics and arts) played highly influential roles.

In Germany, reflecting activities for more general intentions like interdisciplinary and intercultural context within subject matter education, Graf had pointed out that decision makers in education agree that modern societies rely increasingly on larger numbers of individuals with high-level knowledge and skills at their disposal (Graf 1995, referring to Ruiz, 1993). This means, in addition to elementary cultural techniques such as reading, writing and calculating, school has to teach other skills such as analysing, abstracting and modelling. Conceptual and communication skills are also required, in the fields of production and service, e.g. More, an increasing range of jobs depends on individuals who know about their responsibilities in a wide context, and many of these people must be able to work in multi-disciplinary teams.

When exchanging these observations, we agreed that in Japan and in Germany as well as in other countries there are challenges to societies by universal problems such as the world economy or environment. These problems are of extreme complexity and require immense international interaction. Any success is dependent on mutual understanding and acknowledgement of different traditions and attitudes related with problems like mass production, environmental protection, political and social structures. Readiness and goodwill have to be developed in young people growing into these societies, so more attention has to be given to interdisciplinary and intercultural intentions in education. There are avenues in many subjects in school to pursue intentions such as the ones discussed above and every school subject could...
contribute. In particular, information and communication technologies form a rich source for contributing to such mutual understanding, linked with subjects like mathematics or social science e.g., carrying the high-level knowledge and skills mentioned above.

Basic structure of the learning and teaching experiments

Several distance learning experiments of Yokochi's research group, including pairs of classes from distant provinces in Japan had shown that mathematics education as well as science and art education could profit considerably from these activities. This encouraged us to plan practical work growing out of the very general considerations extended above. In a series of distance learning experiments between school classes in Japan and Germany, it could be demonstrated that these activities form an excellent platform to promote intentions like the ones mentioned above in school education. Each experiment consisted of different activities of two partner school classes and their teachers, together with researchers in didactics at universities, extending over six to twelve weeks. The activities started with preparation of a project by researchers and teachers, contacts running via mutual visits in Germany and Japan or via email, Internet homepages or air mail. After this, teachers in the two countries started working with their classes concurrently on the same topic, mostly taken from mathematics, social science (environmental problems) or arts.

Besides learning about the topic in different ways the students, in more or less co-operation with their teachers, started to prepare demonstrations for their peers about their findings and results. These were executed in several video-conferences, integrated in the total activity of 6 – 12 weeks. Material was also forwarded by email or fax or put in the respective homepages in the Internet. Some conferences consisted in the teaching of the teachers about the mathematical background of some products generated (tiles with patterns e.g.), sometimes groups of students did the teaching (see (5): methods).

Besides concentration on special subject matter – which was essential in our design of the learning units – there were passages in the activities, per email or in the video conferences, where the students tried to find out more personal information about each other concerning pets, grading systems, views on the other countries or people, including the students themselves.

Findings for general and subject matter education through the project:

First let us mention that our experiments did not only effect the learning and understanding of the students. At the same time, the researchers from teacher education as well as the teachers active in the preparation, execution and evaluation of the distance learning experiments profited a lot. They had to reflect deeply on the educational theories they were relying on, so that they could be understood by their partners in the other country. Very much feedback had to be given to make sure that the others' intentions had been understood. It became clear that understanding went far beyond the language problems. Still, using English to explain activities based on German or Japanese language was a problem in itself. The teachers had extra work to invest since they had to explain their project in their environment, i.e. to colleagues, school administrators and parents. They experienced that both sides were very ambitious to "perform" good presentations and they had to control these tendencies for the sake of allowing genuine learning processes.
Before we give detailed descriptions of students, contents, methods, media and other
topics determining our learning units, we want to list some general findings.

(d) The students’ interest in each project was great and holding on for the whole
period of the learning units, and after

c) The students were planning with great zeal how to explain their results to the
pupils in the other country

(f) They were very interested in learning and understanding what they were told by
the other students and how those solved their problems

(g) They picked up their ideas and adapted them when doing their own work

(h) They developed a very general interest in the other classes environment and
country, also in individual peers

(i) They discussed the project with other students and teachers from their schools,
and with their parents and families

(j) In the sessions they were extremely attentive and ready to perform

(k) They were competing in a friendly way; when they put questions they reinforced
good answers by cheering.

(l) Without any problems in using the new technology they put direct questions to
their peers in the other countries, forgetting about the distance

(m) They patiently waited for translations or – when English was the joint language of
communication – for repetitions of statements and questions

We also had positive findings about special intentions and goals related to the subject
matter chosen. In most cases it was geometry. Learning progress in some specific
matter was always the main intention of the experiments. We took great care that
neither just general intentions like discussed above dominated the activities nor mere
use of technology.

Especially for mathematics education we had put up a list with aims for the
reorganization of this subject:

(n) Initiating mathematical originality and creativity of students

(o) Learning comprehensive uses of mathematics with other subjects through solving
real problems

(p) Improving the mathematical scholarship of students

(q) Appreciating and acknowledgement of the mathematical cultural characteristics of
each district or country in problem solving

(r) Cultural exchanges related to science and technique between students of two
classes

(s) Interaction with peers from different regions in mathematical problem solving.

Interviews with the students as well as their behavior and performance have
shown that many elements of these purposes were attained through the intercultural
learning units of our experiments. This confirms with the results reported by Yokochi
and his project group about internal Japanese distance learning activities. Students
took up contents as well as methods from their partners and used them when solving
problems or creating art objects, e.g.

Age levels and contents of the experiments:

The following partnerships and learning units between German and Japanese classes
have been realized so far:

(d) Peter-Witte-Primary-School in Berlin and Primary School attached to Yamanashi
University in Kofu. The students came from grades 5 and 6, there were 20 in Berlin
and 40 in Japan. Their subject matter was stripe patterns and rectangular patterns,
seen under aspects of mathematics and arts. There were four video conferences of one hour each included, two dominated by students presentations and discussions, two by teaching of the teachers to remote classes. Two German teachers performed team-teaching for some periods.

(e) Hildegard-Wegscheider-Secondary-School in Berlin and Irihirose High School in Niigata. The students came from grade 10 in Berlin and grades 8 and 9 in Japan. Subject matter was the Theorem of Pythagoras. Groups of German students explained proofs on different levels: experimental work, visualization by graphics and logical proofing based on constructions at the blackboard. This took about one hour.

(f) Hildegard-Wegscheider-Secondary-School in Berlin and Secondary School attached to Yamagata University in Yamagata. The students came from grade 10 in Berlin and grade 9 in Japan. The subject matter was the sun-dial and its mathematical background from the geometry of the globe. Like in b) this time groups of Japanese students taught the German students using models and logical explanations at the blackboard. They put excellent questions to the German students and they showed great excitement on good answers.

(g) An experiment at university level was performed between a research lab of Mitsubishi Electric and Freie Universitaet Berlin. German Students from Mathematics, Computer Science and Physics were instructed by researcher Dr. Toshio Ito about computer simulation when designing kites, including video simulation using PC. The conference was interactive so that students could put questions.

Three more projects were dealing with presentations of Tokyo and of Berlin in Japanese language, with 'cleaning of the classroom' by students and with 'saving energy in school'.

Teaching and learning methods at the experiments, including language problems and solutions.

Different methods were applied and experienced. In the Primary School experiment both sides followed a rather conservative mode of teachers on both sides controlling the performance of the classes, putting most of the questions etc. The pupils were given opportunities to present their works by prepared statements. Students and teachers spoke in their mothers' languages, they were translated consecutively by interpreters in both classrooms.

The Pythagoras experiment was characterized by independent teaching of German groups of students to the other side. They had explored the topic in the Internet and evaluated the results together with their teacher. The effect of learning was considerable on both sides, since there was a high motivation to good teaching and understanding. This experiment was also characterized by both classes speaking English. This caused many misunderstandings and repetitions. Using figures and visualizations was a relief in this situation.

The sun-dial experiment was also conducted in English with the Japanese students doing most of the teaching in small groups. This was an outstanding event in a Japanese classroom.

We conclude this section with a general remark about the role of teachers in our special learning setting, which could have some relevance in general. We started our experiments with teachers organizing most of the planning and the execution of work in the classes. The students' roles were mostly to demonstrate what they had learned. Elder students then took over some of the teaching; this was still organized or "filtered" by the teachers. With growing experience, the students' demand grew to
erase the filters totally, including the activities of preparing to teach and so to replace their own learning by preparing to teach. This, of course, causes a gain in active learning, but at the same time a loss in efficient learning.

School environment and media.

Experiments as described can only be performed in a very friendly environment. It certainly became clear from the descriptions above that many questions about the "how" and "why" of such experiments will arise. To accept the answers, decision makers in education, responsible for the schools, teachers, parents, and sponsors have to be very far-sighted and open-minded.

Students and teachers will have to invest very much time for such projects, and they have to be very patient. Intercultural understanding and co-operation is very rewarding – but it is hard work at the same time. Language is one problem; different thinking and planning styles are others.

Cost for equipment is considerable and so is the telecommunication. The minimal equipment is a PC, a beamer plus a standard teleconferencing unit (about 2,000 $US). If PC and beamer are not available, a total of $US 10,000 will do. Communication needs 2 ISDN lines carrying 64 kilobytes per second each. Considering the development in telephone cost, a price of one dollar per minute can be expected, even between continents.

The equipment that we used in Germany and Japan was sponsored by Mitsubishi Electric. The company had expanded the structure of a teleconferencing system considerably to meet the demands from two school classes “conferring” (Koizumi and others, 1999). So the systems used a 42-inch monitor in the German classroom (about 20 people) or a LC-projector on an 80-inch screen in a Japanese classroom (about 40 people).

There was a panorama camera and a motorized camera zooming and following individual persons or groups in each room. Video recorders recorded incoming and outgoing picture and sound for later evaluation. A camera projector (stand camera) was used to transport any pictures and graphics to the remote monitors. Besides controlling the system, the PC could be used to create and transport computer screen images. For good sound transport a complicated system of ceiling microphones was installed. Besides a basic readiness to use such equipment for distance learning as indicated above the system demands technical and didactical or methodological knowledge about the best use from teachers and students. This implies in-service teacher training and better pre-service teacher education.

Conclusions and visions.

Neither the cost of the equipment and communication nor the extra amount of work related to the new media for distance learning should discourage us from integrating these media into the teaching and learning processes. This situation is comparable to the days when PCs first entered some schools and appeared un-payable and unusable for education.

Teleconferencing systems or what will be developed from them will be a standard medium in schools within several years. They will not only be used for communication with peers, which we consider a very fruitful application, but also for communication with any point on the globe and anybody on the globe who can
contribute to the demands of students to get information in an interactive way. Teachers will have to become advisers and supervisors for this learning by exploring. They have to prevent students from wasting too much time by unqualified exploring.

Distance learning originated from the problem of physical distance in time and/or space between a class and a teacher, or, more general, between learners and knowledge bases including intelligence to interact – real or artificial. The more this intelligence and its means to interact (through multimedia) grow, the less the physical distance will matter. Instead, cultural distance as we used it in our experiments will become important for the learning process between learners and an intelligent source of knowledge. This distance can cause the learners to get more provoked to learn from a distant source, be it a group of peers or a knowledge base, to learn more through competing, or just through imitation and variation.

Putting individuals into school classes for learning may have economical reasons. But – each student coming from a different environment (the "culture of a family", e.g.) – it also means to initiate some kind of distance learning. This idea can be forwarded to the family of man.

References:

