This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching nuclear chemistry. In this book, the fundamental concepts of nuclear science and the applications of nuclear energy are discussed. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Basic Properties of Matter"; (2) "The Makeup of Our Solar System"; (3) "Nucleosynthesis and Stellar Evolution"; (4) "Radioactive Decay"; (5) "The Search for New Elements"; (6) "Uses of Radiation"; and (7) "Nuclear Power". (KHR)
PUPILS to whom this textbook is issued must not write on any page or mark any part of it in any way, consumable textbooks excepted.

1. Teachers should see that the pupil's name is clearly written in ink in the spaces above in every book issued.
2. The following terms should be used in recording the condition of the book: New; Good; Fair; Poor; Bad.

<table>
<thead>
<tr>
<th>ISSUED TO</th>
<th>Year Used</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ISSUED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RETURNED</td>
</tr>
</tbody>
</table>

IAC MODULAR CHEMISTRY PROGRAM

REATIONS AND REASON:
An Introductory Chemistry Module

DIVERSITY AND PERIODICITY:
An Inorganic Chemistry Module

FORM AND FUNCTION:
An Organic Chemistry Module

MOLECULES IN LIVING SYSTEMS:
A Biochemistry Module

THE HEART OF MATTER:
A Nuclear Chemistry Module

THE DELICATE BALANCE:
An Energy and the Environment Chemistry Module

COMMUNITIES OF MOLECULES:
A Physical Chemistry Module

IAC PROJECT TEAM

Directors of IAC:
Marjorie Gardner, 1971–73, 1976–79
Henry Heikkinen, 1973–76, 1979–

Revision Coordinator:
Alan DeGennaro

MODULE AUTHORS

Gordon Atkinson, Henry Heikkinen
James Huheey
Bruce Jarvis, Paul Mazzocchi
David Martin, Joseph Sampugna
Vic Viola
Glen Gordon, William Keifer
Howard DeVoe

Teacher's Guides
(available for each module)

Teacher's Guide Coordinators:
Robert Hearle, Amado Sandoval
Something funny happened to Vic Viola on the way from Abilene to Lawrence, Kansas. He wanted to be the “fastest pen” from Abilene to hit any school of journalism west of the Mississippi. Instead, Vic became the “fastest gun” with a cyclotron. His deadly aim with protons and alpha particles has won him a well-deserved reputation among his peers.

Some of his current research interests are studies of the origin of the elements lithium, beryllium, and boron in nature and their relation to theories of the expanding Universe. In addition he investigates nuclear reactions initiated by very heavy nuclei, such as krypton and xenon.

Busy as Vic is—playing with the Maryland cyclotron, teaching a class, writing a research report or a high-school chemistry module—he still finds time to jog a few miles every day. If you have any questions for Vic, your best bet may be an ambush as he rounds the dogleg on the seventh hole of the Maryland golf course.

Robert Hearle came to the University of Maryland in 1970 after working as a research chemist. While at Maryland he taught in the Chemistry and Education Departments, assisted in supervising student teachers in science, and was part of the IAC development team. Bob is now teaching in the Prince George’s County, Maryland, school system. His special fields of interest include analytical and organic chemistry and computer-assisted instruction, including the development of a computer-managed independent study program.
Contents

INTRODUCING THE HEART OF MATTER

<table>
<thead>
<tr>
<th>Special Features in the Student Module</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing the Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Evaluating Student Performance</td>
<td>4</td>
</tr>
<tr>
<td>Module Concepts</td>
<td>4</td>
</tr>
<tr>
<td>Module Objectives</td>
<td>6</td>
</tr>
</tbody>
</table>

TEACHING THE HEART OF MATTER

<table>
<thead>
<tr>
<th>BASIC PROPERTIES OF MATTER</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1 Elements: A Question of Beginning</td>
<td>12</td>
</tr>
<tr>
<td>N-2 From the Smallest to the Largest</td>
<td>12</td>
</tr>
<tr>
<td>N-3 Fundamental Particles: Building Blocks</td>
<td>12</td>
</tr>
<tr>
<td>N-4 Heads/Tails and Half-life/Miniexperiment</td>
<td>14</td>
</tr>
<tr>
<td>N-5 The Basic Forces: Nature's Glue</td>
<td>15</td>
</tr>
<tr>
<td>N-6 Conservation Laws: The Ground Rules</td>
<td>16</td>
</tr>
<tr>
<td>N-7 Interactions: Getting It Together</td>
<td>17</td>
</tr>
<tr>
<td>N-8 Accelerating Particles</td>
<td>18</td>
</tr>
<tr>
<td>N-9 Radiation Detection/Experiment</td>
<td>18</td>
</tr>
</tbody>
</table>

THE MAKEUP OF OUR SOLAR SYSTEM

<table>
<thead>
<tr>
<th>N-10 Identifying the Nuclides</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-11 Nuclear Stability</td>
<td>23</td>
</tr>
<tr>
<td>N-12 Transmutation of Elements</td>
<td>24</td>
</tr>
<tr>
<td>N-13 The Chemistry of Radioactive Nuclides/Experiment</td>
<td>24</td>
</tr>
<tr>
<td>N-14 The Elements in Our Solar System</td>
<td>28</td>
</tr>
</tbody>
</table>

NUCLEOSYNTHESIS AND STELLAR EVOLUTION

<table>
<thead>
<tr>
<th>N-15 The "Big Bang" Theory</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-16 Stars from Big Bang Dust</td>
<td>31</td>
</tr>
<tr>
<td>N-17 H-Burning: Main Sequence Stars</td>
<td>31</td>
</tr>
<tr>
<td>N-18 Helium Burning: Red Giants</td>
<td>32</td>
</tr>
<tr>
<td>N-19 Explosive Nucleosynthesis</td>
<td>33</td>
</tr>
<tr>
<td>N-20 Heavy Elements: Zap, the r-Process</td>
<td>34</td>
</tr>
<tr>
<td>N-21 Detecting the Remnants</td>
<td>35</td>
</tr>
<tr>
<td>N-22 Radioautography: Catching the Rays/Miniexperiment</td>
<td>35</td>
</tr>
<tr>
<td>N-23 Heavy Elements via the s-Process</td>
<td>36</td>
</tr>
</tbody>
</table>

RADIOACTIVE DECAY

| N-24 From Stable to Radioactive | 40 |
| N-25 Rate of Decay: The Way It Goes | 40 |
Introducing The Heart of Matter

In developing this nuclear module, we have tried to fulfill two basic objectives. The first is to present the fundamental concepts of nuclear science—nomenclature, radioactive decay, nuclear reactions—and the applications of nuclear energy. The second objective is to familiarize students with current theories of stellar evolution and nucleosynthesis. By fulfilling these two objectives we are able to treat nucleosynthesis as a story line for the presentation of nuclear phenomena. This approach lends greater continuity to the teaching of nuclear science and does not significantly increase the complexity of the quantitative material introduced to the student. For the many high-school students who do not have access to the apparatus required for a nuclear chemistry program, this approach provides a coherent program that can be implemented without any laboratory work.

Our experience with teaching the subject matter has demonstrated that the average high-school student can successfully master the material at the level presented here. It is expected that The Heart of Matter will be taught toward the end of the IAC year and program, perhaps being utilized in advanced high-school courses. With advanced students it may be necessary to provide a more quantitative base: for example, complete presentation of the laws of radioactive decay. Although it is possible to direct interested students toward theory-oriented material, the preference is to direct them toward general topics.

You will note that radioactive decay is discussed rather late in the module. Because of the need to deal with this subject in earlier sections, preliminary discussions are given in sections N-3 Fundamental Particles: Building Blocks, N-4 Heads/Tails and Half-life, and N-12 Transmutation of Elements. To provide students with an adequate background for the intervening discussions, you should emphasize the subject of half-lives in these sections.

Because stellar nucleosynthesis serves as the basic story line, you need not feel handicapped if your high-school laboratory lacks the equipment required for a nuclear chemistry program. The Heart of Matter: A Nuclear Chemistry Module outlines a basic program in nuclear chemistry that can be taught independently of laboratory work, although the laboratory program increases the effectiveness of the module. All that is needed to carry out many of the experiments is a MINIGENERATOR and a detector (see Teaching The Heart of Matter). The basic laboratory sequence outlined in the student module can be replaced or supplemented by other activities if the basic MINIGENERATOR package is not available to you. Supplementary student readings, films, and class tours of nuclear-particle accelerators or nuclear power reactors are among the options you may wish to include in your classroom program.

The term MINIGENERATOR is a registered trademark of Redco Science Inc.

Special Features in the Student Module

Metric System Le Système International (SI) is used throughout the IAC program. As you work with this module, you may wish to review some points of the metric system as presented in Reactions and Reason: An Introductory Chemistry Module (see section A-8 and Appendix II). There is a metric-units chart in the appendix of The Heart of Matter student module that students can easily refer to.
Time Machine A feature we call the Time Machine appears in the IAC modules in order to show chemistry in a broader context. For some students this may provide a handle on particular aspects of chemistry by establishing the social-cultural-political framework in which significant progress has been made in chemistry. Students may enjoy suggesting other events in chemistry around which to create Time Machines of their own.

Cartoons A popular feature of the IAC program is the use of chemistry cartoons. These cartoons give students a chance to remember specific points of chemistry in another important way—through humor. Suggest that your students create other chemistry cartoons for their classmates to enjoy.

Safety Laboratory safety is a special concern in any chemistry course. In addition to including safety discussions and guidelines in the appendix of each student module and teacher's guide, experiments have been developed in a way designed to eliminate potentially dangerous chemicals and procedures. Moreover, each experiment that might present a hazard—such as fumes, corrosive chemicals, or the use of a flame—has been marked with a safety symbol to alert students and teachers to use added, reasonable caution. Caution statements, in bold type, also appear in experiments to specifically instruct the student on the care required.

Selected Readings Articles and books that tie in with the topics discussed in the IAC program have been listed in the appendix of the student module as well as in the teacher's guide. Encourage your students to use this section. In addition, students should be made aware of the importance of keeping up-to-date with current literature in the ever-changing field of nuclear chemistry. You may wish to suggest other material that you have found interesting and enjoyable.

Illustrations and Photographs The module is extensively illustrated to provide relevant and stimulating visual material to enable students to relate chemistry to everyday life, as well as to provide material for provocative discussion. In using some of these illustrations, it is not the intention of IAC to endorse any particular product or brand, but only to relate chemistry to life outside the classroom. As you proceed through each section, encourage students to collect, display, and discuss photos and illustrations that provoke further discussion.

Problems A number of problems have been interspersed throughout the student module, in addition to the questions that are naturally built into the narratives and the laboratory experiments. You will find some of these problems in specifically marked sections in the student module. These problems can be used in a variety of ways as you see fit. They are not planned as tests; remember, the IAC program is designed so that mastery of the content and skills can be achieved through the repeated reinforcement of ideas and procedures encountered by students as they progress through the various modules. (Also see Evaluating Student Performance for additional information on evaluation and evaluation items for this module.)

Managing the Laboratory

In the teacher's guide, hints and suggestions are given for managing each experiment in the laboratory. Share as many of these hints as possible with your students to allow them to participate fully in successful laboratory management. Make sure that you rotate assignments so that each student has a chance to experience this type of participation.
Preparations and Supplies Student aides can be helpful in preparing solutions, labeling and filling bottles, cleaning glassware, and testing experiments. Each experiment has been classroom tested, but you should try each experiment to determine any revisions necessary to meet the needs of your situation or that of your students.

Cleaning Up Involve your students in putting away equipment, washing glassware, and storing material for the next time it is to be used. Taking care of equipment is part of the responsibilities we seek to foster.

Laboratory Reports and Data Processing Recording data and preparing reports on laboratory experimentation are important skills in all science courses and, of course, are part of the IAC program. Although you may have your own methods of student reporting, some of the suggestions that IAC teachers have found successful have been included for your consideration.

It is helpful for students to keep a laboratory notebook. A quadrille-ruled laboratory notebook with a sheet of carbon paper allows a student to produce two data sheets and copies of the report summary. Each page can be permanently retained in the notebook, and the duplicate copy can be submitted for evaluation or tabulation.

You will find it helpful if data summaries, including all written observations, are submitted at the end of the laboratory period, even though the calculations and/or questions are not due until a later date.

You will then be able to assemble a summary of all student results for a particular investigation on the chalkboard or on an overhead transparency. Such data permit useful discussion on determining a “best” value through a median or mean value, a histogram, or through some other visual report of overall student results.

A realistic view of laboratory work suggests that in the most fundamental sense there are no wrong laboratory results. All students obtain results consistent with the particular experimental conditions (either correct or incorrect) they have established. Because careful work will yield more precise results, encourage each student to take personal pride in experimental work. If students disagree on a result, discuss the factors that might account for the difference. A student who provides a thoughtful analysis of why a particular result turned out to be “different” (incomplete drying, a portion of the sample was spilled, etc.) deserves credit for such interpretation.

Laboratory Safety The IAC program introduces many new laboratory procedures and activities to students. To use the IAC program safely you should become thoroughly familiar with all student activities in the laboratory. Do all the experiments and carry out all the demonstrations yourself before presenting them to your class. We have tested each experiment and have suggested the use of chemicals that provide the least chance of causing a safety problem in the laboratory. The teacher’s guide has many suggestions to help you provide your students with safe laboratory experiences. Have the students read Appendix I: Safety. Then conduct a brief orientation to laboratory safety before the students encounter their first laboratory experience in each module. Review, when necessary, and discuss precautions and safety each time a symbol appears in the student text. In addition, the Suggested Readings in the teacher’s guide of Reactions and Reason lists safety manuals that give detailed instructions on the handling of hazardous chemicals, disposal of chemicals, and general laboratory safety.

Materials for IAC In light of increasing costs for equipment and supplies, as well as decreasing school budgets, we have tried to produce a materials list that reflects only the quantities needed to do the experiments with minimal surplus. Thus, the laboratory preparation sections contain instructions for only a 10 to 20 percent surplus of reagents. Add enough materials for student repeats and preparation errors.
Evaluating Student Performance

There are many ways of evaluating your students’ performances. One of the most important forms of evaluation is observing your students as they proceed through the IAC program. IAC has developed skill tests and knowledge tests for use with this module. These test items have been suggested and tested by IAC classroom chemistry teachers. You are encouraged to add these to your own means of student evaluation. The module tests are at the end of the teacher’s guide.

In addition to the problems and questions incorporated in the student module text and illustration captions, there are suggested evaluation items at the end of each module section in the teacher’s guide. Answers to all of the evaluation items are included to help you in your classroom discussion and evaluation.

For information on evaluating students’ attitudes while using this module, see Reactions and Reason: An Introductory Chemistry Module.

Module Concepts

BASIC PROPERTIES OF MATTER

- All atoms consist of fundamental particles that are distinguished from one another by their mass, electric charge, and half-life.
- The fundamental particles include the neutron, the proton, and the electron.
- Gravity, electromagnetism, and the nuclear force are three basic forces that may act upon the fundamental particles. These forces are responsible for holding our Universe together.
- In nuclear reactions three entities are conserved: the sum of the mass and energy, the total charge of the system, and the total number of nucleons.
- Interactions between the particles and basic forces in the nucleus determine the stability of the nucleus.

THE MAKEUP OF OUR SOLAR SYSTEM

- The stability of nuclides is related to the ratio of neutrons to protons.
- Nuclear stability is enhanced when protons and neutrons achieve a closed-shell configuration.
- Nuclides may be classified as either stable or radioactive; radioactive nuclides may be either natural or synthetic.

NUCLEOSYNTHESIS AND STELLAR EVOLUTION

- Many different star types exist in our Universe.
- Different star types represent different processes of element formation.
- A star is believed to evolve through a sequence beginning with the main sequence stage, continuing through the red giant stage, followed by a supernova stage, destruction, and a new main sequence star.
- Main sequence stars involve fusion of hydrogen to helium.
- Red giants involve helium "burning.”
- Successive stages of carbon burning and silicon burning lead to ^{56}Fe.
- Nuclei heavier than ^{56}Fe are believed to be formed by a process that involves neutron capture and β-decay. This process is called the r-process and is terminated by nuclear fission.
- Heavy elements can be formed also by the s-process in a manner similar to that in which they are formed by the r-process but at a much slower rate.

- The relative abundances of the elements give an indication of how they were formed.
RADIOACTIVE DECAY
- Half-life is the time required for one-half of the particles in a radioactive sample to decay.
- Four processes of radioactive decay are gamma decay, beta decay, alpha decay, and spontaneous fission.
- The rate of radioactive decay of naturally occurring nuclides provides a means by which the age of the Earth and archaeological samples can be approximated.
- Radiation is emitted in all directions and its intensity varies with distance, according to the inverse square law.

THE SEARCH FOR NEW ELEMENTS
- The production of synthetic elements relies heavily on the use of nuclear reactors.
- The production of superheavy elements relies on the use of heavy-ion accelerators.

USES OF RADIATION
- Background radiation exists because of the decay of naturally occurring radioactive substances and the presence of cosmic rays.
- Applications of radioactive tracers include the study of the mechanisms of chemical reactions, the nature of chemical bonds, and the diagnosis of illnesses.
- Radiation can be used to split molecules, thus forming free radicals for use in genetic and agricultural research and in the treatment of diseases such as cancer.

NUCLEAR POWER
- Energy is produced in nuclear reactors by means of fission reactions.
- The generation of nuclear power has an effect on the environment.
- Nuclear-fusion reactors are being developed based on fusion reactions that occur in the Sun.
- The components of a nuclear reactor include the fuel rods, control rods, moderator, heat exchanger, shielding, and containment shield.
- ^{235}U is the most common fuel used for nuclear reactors, which derive their energy from nuclear-fission reactions.
- Nuclear power provides a means of making our country independent in terms of its energy needs. However, as with the burning of coal, oil, and gas, there are also tradeoffs for our environment. Among these are the exposure of individuals to radiation, the contamination of the environment with radioactivity in the event of an accident, the reprocessing of nuclear fuel, and the storage of radioactive wastes.
Module Objectives

We have attempted to group module objectives in three broad categories: concept-centered, attitude-centered, and skill-centered. The categories are not mutually exclusive; there is considerable overlap. The conditions for accomplishing each objective are not given, since they can easily be found in the respective section in the module. Note also that concept and skill objectives are more specific than those in the affective domain. It is very difficult to classify objectives in this way, but we have been encouraged to do so by classroom teachers who have helped in this difficult task.

The objectives identified here should provide you with a useful starting point in clarifying your own goals in teaching this module. We encourage you to identify alternate objectives, using this list as a point of departure. Assessment items can be found throughout the text and at the end of major sections in the student module in the form of Problems. Other Evaluation Items are included after each major section in this guide and in the form of module tests for knowledge and skill objectives, located in the appendix.

<table>
<thead>
<tr>
<th>Concept-Centered Objectives</th>
<th>Attitude-Centered Objectives</th>
<th>Skill-Centered Objectives</th>
</tr>
</thead>
</table>

BASIC PROPERTIES OF MATTER

N-1
- Identify the atomic nucleus as the factor that determines whether or not an element can exist in nature and what its chemical characteristics will be.

N-2
- Define the term *stellar nucleosynthesis*.

N-3
- Characterize the fundamental particles of the atom, including their mass, electric charge, and half-life.

N-4
- Inquire about the possible origins of elements in the Universe.
- Recognize the importance of controlling variables in an experiment.

N-5
- Name the three basic binding forces in the Universe. Compare the relative strengths of these forces. Describe how these forces affect particles in the atom.

N-6
- Solve problems that involve the half-lives of radionuclides.
- Determine the probability of the occurrence of simple events.

N-6
- Performed calculations based on the law of conservation of mass-energy.

N-9
- Measure amounts of radiation using a radiation detector.
- Determine the relationship between the activity of a radioactive source and the distance of that source from a detector.
<table>
<thead>
<tr>
<th>Concept-Centered Objectives</th>
<th>Attitude-Centered Objectives</th>
<th>Skill-Centered Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-7</td>
<td>• Describe the effects that the basic forces have on interactions between the fundamental particles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Explain the operation of a radiation detector.</td>
<td></td>
</tr>
<tr>
<td>N-8</td>
<td>• Explain how nuclear particles are accelerated.</td>
<td></td>
</tr>
<tr>
<td>N-9</td>
<td>• State the relationship between the activity of a radioactive source and the distance of that source from a detector.</td>
<td></td>
</tr>
</tbody>
</table>

THE MAKEUP OF OUR SOLAR SYSTEM

N-10	• Define and differentiate between nuclide, nucleon, isotope, isotone, and isobar.	• Become aware of how small the Earth is in relation to the Sun, the solar system, and the Universe.
N-11	• Describe factors that influence the stability of a nucleus.	• Write nuclear representations for nuclides.
N-12	• Explain the meaning of the term transmutation.	• Determine the amount of eluant needed to separate a radioactive reactant-product isotope pair.
N-14	• Compare the abundances of elements in the solar system.	

NUCLEOSYNTHESIS AND STELLAR EVOLUTION

<p>| N-15 | • Discuss the big bang theory of element synthesis. | • Recognize that a theory may be useful in explaining facts but must be rejected or modified when facts are presented that cannot be explained by the theory. |
| N-16 | • Discuss how stars and galaxies were formed from big bang dust. | • Complete nuclear equations for reactions related to the big bang theory. |</p>
<table>
<thead>
<tr>
<th>Concept-Centered Objectives</th>
<th>Attitude-Centered Objectives</th>
<th>Skill-Centered Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-17</td>
<td></td>
<td>N-17</td>
</tr>
<tr>
<td>• Identify the source of energy in a main sequence star.</td>
<td></td>
<td>• Write equations for the hydrogen-burning process.</td>
</tr>
<tr>
<td>N-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Explain how helium burning follows hydrogen burning in a star’s evolution.</td>
<td></td>
<td>• Balance nuclear reaction equations using both the longhand and the shorthand methods.</td>
</tr>
<tr>
<td>N-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Explain how carbon and silicon burning follow helium burning in a star’s evolution.</td>
<td></td>
<td>• Perform calculations showing the conversion of matter into energy in nuclear reactions.</td>
</tr>
<tr>
<td>N-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Explain the production of heavy elements through the r-process.</td>
<td></td>
<td>N-18</td>
</tr>
<tr>
<td>N-21</td>
<td></td>
<td>• Write equations that illustrate helium burning.</td>
</tr>
<tr>
<td>• Describe how radioactivity was first discovered.</td>
<td></td>
<td>N-19</td>
</tr>
<tr>
<td>N-22</td>
<td></td>
<td>• Write equations that illustrate carbon and silicon burning.</td>
</tr>
<tr>
<td>• Discuss the production of heavy elements through the s-process.</td>
<td></td>
<td>N-20</td>
</tr>
<tr>
<td>• Compare the ability of the r-process and that of the s-process to synthesize heavy elements.</td>
<td></td>
<td>• Write equations that illustrate the r-process.</td>
</tr>
<tr>
<td>N-23</td>
<td></td>
<td>N-22</td>
</tr>
<tr>
<td>• Discuss the production of heavy elements through the s-process.</td>
<td></td>
<td>• Illustrate the effect of radiation on photographic film.</td>
</tr>
<tr>
<td>RADIOACTIVE DECAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-24</td>
<td></td>
<td>N-25</td>
</tr>
<tr>
<td>• Explain why the terms stable and radioactive are relative terms.</td>
<td></td>
<td>• Perform calculations based on the rate of radioactive decay.</td>
</tr>
<tr>
<td>N-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Define and give an equation for both radioactivity and half-life.</td>
<td></td>
<td>N-26, 27, 29</td>
</tr>
<tr>
<td>N-26, 27, 29, 30</td>
<td></td>
<td>• Write equations that illustrate the four basic modes of radioactive decay.</td>
</tr>
<tr>
<td>• State the four modes of radioactive decay. List the particles given off in each form of radioactive decay.</td>
<td></td>
<td>N-28</td>
</tr>
<tr>
<td>• Discuss the effects of radioactive decay particles on our environment.</td>
<td></td>
<td>• Determine experimentally the half-life of a radioactive isotope.</td>
</tr>
<tr>
<td>Concept-Centered Objectives</td>
<td>Attitude-Centered Objectives</td>
<td>Skill-Centered Objectives</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| ● Compare the four modes of radioactive decay, including their penetrating powers and their changes in atomic number, atomic mass, and the energy of the reactant nucleus. | | N-31
● Explain the use of radioactive isotopes to determine the age of materials. |
| | | N-32
● Measure the half-life of a radioisotope commonly found in the environment. |

THE SEARCH FOR NEW ELEMENTS

N-33, 34
- ● Compare the number of elements known before 1940 to the number presently known.
- ● Discuss applications of synthetic elements in daily life.

N-33, 34
- ● Discuss the importance of synthesizing new elements.
- ● Write equations that illustrate the synthesis of transuranium elements.

USES OF RADIATION

N-35
- ● List and discuss the sources of our daily exposure to radiation.

N-37, 40, 41
- ● Give examples of the use of radioactive tracers in chemistry, medicine, and agriculture.

N-39
- ● Discuss the effects of nuclear radiation on people and materials.

N-43
- ● Describe the operation of an ionization smoke detector.

N-44
- ● Provide examples of how neutron activation analysis is used in different scientific disciplines.

N-36
- ● Discuss the future influence of nuclear chemistry with respect to our society.
- ● Discuss the beneficial uses and the detrimental effects of radiation.

N-38
- ● Graph activity vs. shielding thickness data.
- ● Determine half-thickness of a shielding material.

N-42
- ● Locate radioisotopes using a radiation detector.

N-44
- ● Demonstrate the uptake of radioactive phosphorus by a plant.
<table>
<thead>
<tr>
<th>Concept-Centered Objectives</th>
<th>Attitude-Centered Objectives</th>
<th>Skill-Centered Objectives</th>
</tr>
</thead>
</table>

NUCLEAR POWER

N-45
- List the basic components of a nuclear reactor.
- Discuss the operation of a nuclear reactor.
- Discuss the advantages and disadvantages of using nuclear energy as a power source.

N-46
- Discuss the effects of a nuclear power station on the environment.

N-47
- Discuss the application of nuclear power to miniature power sources.

N-48
- Describe the efforts being made to control nuclear fusion reactions for the production of electric power.
Teaching The Heart of Matter

Nuclear chemistry as taught in high school has definite meanings for most of us: the three simple types of radioactive decay, the balancing of nuclear equations, a study of nuclear reactors, and the applications of radioactivity—such as tracers, dating, and radiation therapy.

In *The Heart of Matter: A Nuclear Chemistry Module*, we have developed a new and highly successful approach to the teaching of nuclear chemistry. Although we discuss conventional topics, the major portion of the module is devoted to nontraditional topics, including stellar synthesis of the elements. We have also restructured the approaches to the activities so that concepts such as half-life and half-thickness will acquire definite meanings for the students after they have explored them experimentally.

An excellent laboratory program is available in the form of the package MINIGENERATOR Nucleonics Kit and MINIGENERATOR Nuclear Laboratory for Chemistry and Physics*. Many of the activities in this module have been structured around the MINIGENERATOR program because of its adaptability to many different situations. The kit provides a safe, well-planned, and instructive program.

The heart of the MINIGENERATOR program is the MINIGENERATOR [also see *Journal of Chemical Education* 46(1969): 287], which consists of a long-lived source of radioactivity that is tightly bound on an ion-exchange resin in a self-contained unit. The radioactive decay of the atomic nuclei absorbed on the column produces a new element that is also radioactive but that has a much shorter half-life. The MINIGENERATOR can be used as a constant source of radiation, or the products of decay can be eluted from the resin and used to perform other measurements. Because the radioactive products decay to stable isotopes, there is no danger of radioactive contamination in these experiments.

In the module we suggest a series of experiments that illustrate the principles of nuclear detection, the penetrating power of radiation, ion-exchange elution, half-life measurement, and tracer applications. Depending on the interest level of your class, you can carry out a more extensive program with activities suggested in the MINIGENERATOR program. Three options for conducting the laboratory program follow.

Option I: MINIGENERATOR Program The MINIGENERATOR Nucleonics Kit contains the complete equipment necessary for an extensive nuclear laboratory program. Its components, which serve up to five students per laboratory, include a radiation detector, two MINIGENERATORS, the required laboratory supplies (solutions, containers, etc.), and a manual, *MINIGENERATOR Experiments in Nucleonics**. There are no problems in using the kits in successive laboratories. Because of the expense involved, kits can be shared by several schools. For the school that makes use of the kit, we have suggested additional experiments at appropriate places in this teacher’s guide.

Option II: MINIGENERATORS A less expensive way of operating the laboratory program involves purchasing only the MINIGENERATORS and gathering the remaining materials from local sources. Surplus radiation detectors, for example, can be acquired from your local Civil Defense Authority, as regulations require that these battery-operated devices be replaced every three years. These detectors are usually in good working condition. Ideally, it would be desirable to have two different MINIGENERATORS per group of five students: one 137Cs source, for which the product half-life is 2.6 minutes, and one 113Sn source, for which the product half-life is 100 minutes. If you can purchase only one kind of source, the 137Cs is probably more valuable for the experiments suggested here. The remaining equipment, such as solutions and containers, can easily be prepared or else obtained as common laboratory stock.

*Available from Redco Science Inc., Danbury, CT 06810 and from other distributors.

Option III: Demonstration For the even more restricted budget, the purchase of a single MINI-genera tor and the acquisition of a surplus detector will make it possible for you to demonstrate the experiments. Instructors who are electronically inclined can add a simple circuit to provide an audio output to the detector, which will result in a more impressive demonstration. Students can record the data as an experiment is done.

Student groups can also work with the MINI- generator to repeat the experiments that are demonstrated, or you may wish to have student groups provide the demonstrations for the remainder of the students in the class.

To allow for individual preferences, we are leaving the teaching schedule and time plan up to the individual teacher. We would like to advise you, however, that a brisk pace is preferable. Because of the modular structure of the IAC curriculum, many concepts are treated several times from different points of view, and an intensive treatment every time is not necessary. Most teachers allow about six weeks of teaching for The Heart of Matter.

Basic Properties of Matter

Discuss with your students the long history of study that has led to the present understanding of the basic properties of matter. Emphasize that these properties have enabled scientists to understand how matter behaves. Using this information, scientists have developed theories concerning the origin of the elements and have continued to acquire new knowledge in this field.

N-1 ELEMENTS: A QUESTION OF BEGINNING

Begin the lesson with a review of the students' understanding of matter. Refer to the key question in the text, "How did the chemical elements in our environment come into existence?" Then point out the Periodic Table of the Elements on the inside back cover of the student module. Call on a student to interpret the table. Invite others in the class to add to the student's interpretation and, if necessary, to correct any errors that may have been expressed. What do the students know about the basic properties of matter? What do they know about the structure of an atom?

The term superheavy elements refers to the elements near the theoretically predicted, doubly magic nucleus $^{298}_{114}$, discussed in more detail in sections N-11 and N-34.

N-2 FROM THE SMALLEST TO THE LARGEST

Appropriate survey films on astronomy can be useful in giving students a feeling for the size of our solar system and of the Universe itself. A film that can help students gain more insight into relative sizes is Powers of Ten (color, 9 minutes. Pyramid Films, Santa Monica, CA 90406).

N-3 FUNDAMENTAL PARTICLES: BUILDING BLOCKS

This section is extremely important because it forms the basis for future discussions. We have purposely avoided listing the complete array of the fundamental particles in the nuclear "zoo." Although many of these particles—such as the neutrino—are highly important to researchers, the students are only required to differentiate between the four particles listed in the student module in order to understand the material presented there or to proceed to higher-level courses. Some emphasis should be given to discussion of the photon, since this particle is important in the laboratory program. The following list of particles has been included for advanced classes or independent study.

Even some of these particles may not be fundamental, since they may consist of smaller particles. For example, the nucleon may actually be
composed of simpler particles called **quarks**, which have been hypothesized to have a one-third integral electric charge. Various combinations of quarks with a total charge of +1 make up the proton, and combinations of quarks with a net neutral charge make up the neutron. Scientists at many high-energy nuclear laboratories are presently searching to confirm the existence of the quark. For further discussion of fundamental particles, see the article by D. B. Cline, A. K. Mann, and C. Rubbia, “The Search for New Families of Elementary Particles,” *Scientific American* (January 1976), page 44.

It should also be mentioned that for each of the particles there exists an **antiparticle** with properties exactly the opposite of those listed in the table. For example, the antielectron, or **positron**, has a charge of +1, instead of −1. Antiparticles of all the particles listed, except for the theoretical graviton, have been observed in the laboratory. Although our galaxy is made up of particles, it is conceivable that an antiparticle galaxy exists somewhere in space. If you were to live there, everything would seem very much the same as it does on Earth—unless the antigalaxy were to encounter a normal galaxy, in which case the two would destroy each other instantaneously with one magnificent “zap.” This has been observed to happen in the laboratory when particles and antiparticles collide. They annihilate one another and give off more energy than any other known process—that is, an energy equal to the total mass of the particles.

The atomic mass unit has been arbitrarily defined in such a way that the atom \(^{12}\text{C}\) has a mass of 12.000 000\ldots\text{u}. This definition has been made because of the ease of using carbon as a standard in mass spectrometry measurements. An actual mass measurement of \(^{12}\text{C}\) in grams defines the value of the atomic mass unit.

\[1 \text{ u} = 1.660 \times 10^{-24} \text{ g or 931.48 MeV/c}^2\]

This value also serves to define the mole.

\[1 \text{ mole} = \text{atoms contained in one gram-atomic mass} = \left(\frac{12.000 \text{ g}}{12.000 \text{ u}} \right) (1.660 \times 10^{-24} \text{ g/uc}^2) = 6.023 \times 10^{23} \text{ atoms}\]
The other way of expressing mass, 931.48 MeV/c², is an example of the application of Einstein's equation:

\[m = \frac{E}{c^2} \]

Note also that the difference between the mass of 6 protons and 6 neutrons (12.098 944 u) and the mass of the \(^{12}\text{C}\) atom (12.000 000 u) is the mass that is converted into the binding energy necessary to hold the \(^{12}\text{C}\) nucleus together. This amounts to 92.16 MeV, or an average of 7.68 MeV for each particle in the nucleus. (Average binding energy is discussed in section N-11.)

Spin is a fundamental property which we have not discussed in the text. It is a quantum-mechanical property that is classically related to rotation about an axis (as in a spinning top or Earth’s daily cycle) and revolution in an orbit (a ball on a string or Earth’s yearly cycle around the Sun). Since the qualitative discussions in this text do not depend on spin, this property is best omitted from discussions at the high-school level.

MINIEXPERIMENT

N-4 HEADS/TAILS AND HALF-LIFE

The introduction to the concept of half-life in this section is essential to the understanding of later discussions in this module. The miniexperiment should prove helpful in this respect, provided you have an honest class and you do not obtain results of high improbability.

Concepts In performing this miniexperiment, a student will encounter these important ideas:

- The chances of any random event occurring are determined by the laws of probability.
- Radioactive decay of the neutron can be likened to the tossing of a coin, where one side (tails) represents neutrons that have decayed, and the other side (heads) represents neutrons that have not decayed. Both are random processes.

Objective After completing this miniexperiment, a student should be able to:

- Determine the half-life of a substance from a knowledge of the number of particles that have decayed or remained after an integral number of half-lives.

Estimated Time One-half period

Student Grouping Students should work individually.

Materials You will need the following materials for a class of thirty students:

- a coin provided by each member of the class
- linear graph paper

Advance Preparation None

Prelab Discussion None

Laboratory Tips Appoint a starter to oversee the flips of the coin.

Postlab Discussion The one danger in this experiment is that the students may get the idea that the nuclei wait for one half-life and then suddenly half of them decay and the other half remain intact. Stress that the decay process occurs continuously—but that the net result after one half-life is that half of a sample will have decayed. For an advanced class the importance of statistics can be pointed out. The statistical error in this measurement is approximately equal to the square root of the number of events. Thus, in the first flip period (half-life), suppose you obtain a total of 100 tails. The error in this number is ±10, or 10 percent. In the sixth period, you may have only four tails. The error here is ±2, or 50 percent. Thus, for small numbers of events, one cannot expect ideal agreement with theory.

There are many variations on the theme of this miniexperiment, and you may wish to develop your own approach.

*This statement appears only with this first miniexperiment, but it applies each time this section appears in an experiment or a miniexperiment, unless otherwise noted.

**The Materials list for each experiment or miniexperiment in this module is planned for each group of two to five students, unless otherwise noted.*
ANSWER TO PROBLEM
(Student module page 6)

A total of 256 neutrons will remain after 25.6 minutes, and 768 protons will form \([N = \left(\frac{1}{2} \right)^2 \times 1024 = 256] \).

N-5 THE BASIC FORCES: NATURE’S GLUE

The formulas for the three basic forces given in the text are not intended for quantitative use but rather as a guide to the understanding of the qualitative behavior of the forces. It should be noted also that the formula for the electromagnetic interaction applies to electric charges at rest—that is, the electrostatic force. At this level there is no need for introducing any mathematical formulas for magnetic interactions of charged particles.

The on-off nature of the nuclear force is much more difficult to put into visual form. Despite fifty years of intensive study, nuclear scientists are still unable to write an exact mathematical expression for the nuclear force. Although more sophisticated approximations to the nuclear force are currently used, the formula we give here—the on-off force—is sufficiently close to the best current equations, and we use it because of its mathematical simplicity. A pool table with a single ball is probably as good a classical analog as can be found. That is, you can think of the pool table as being composed of a nucleon (the ball), six centers of the nuclear force (the pockets), and space (the table). As long as the ball is bouncing around from cushion to cushion, it is unaffected by the existence of the pockets. Of course, this wouldn’t be true for the gravitational and electromagnetic forces because they exert themselves over long distances. However, once the ball is on the edge of a pocket, it drops in and is bound to the pocket, no longer able to roam freely in space.

A fourth force, the weak nuclear force that accounts for interactions involving leptons, has been omitted from these discussions. Another omission from this section is a review of how photons (which have no mass, charge, or nucleon number) are involved in the forces. Whenever changes in electric or magnetic fields occur—such as when an electron, a proton, or a neutron (which has a small magnetic field but no charge) changes its orbit in an atom or nucleus—a photon is produced or absorbed. Although these subjects are fascinating, they are not essential to our discussion and, therefore, are left to more advanced courses.

All forces are thought to exert themselves on particles by means of the transfer of a fundamental particle. The graviton is believed to be the fundamental particle of gravity, the photon is the fundamental particle of electromagnetism, and the pion is the fundamental particle of the nuclear force.

Miniactivity

The objective of this activity is to have the students demonstrate their qualitative understanding of the basic forces. Assuming that pairs of the particles listed in Table 3 (student module page 7) are the same distance apart, students are to arrange them in order from the strongest to the weakest attraction. For example, the gravitational force depends on mass. Consequently, it affects only neutrons, protons, and electrons. The neutron, which is the heaviest of the elementary particles listed, is most strongly attracted by another neutron because of the gravitational force. Two electrons exhibit the weakest gravitational attraction. The nuclear force turns out to be independent of whether the interaction involves neutrons or protons. However, students should not be penalized if they recognize that the total proton–proton interaction may be weaker because of electrostatic repulsion. When both forces are taken into account, the proton–proton force is actually a little weaker.

Present the following problem to your students.

By considering all possible pairs of particles (except photons) in Table 2 (namely, n-n, n-p, p-p, n-e, p-e, and e-e) to be separated by the same distance \(r \), complete the following table for each type of force. As a guide, part of the following table has already been completed. For example, the nuclear force involves only neutrons and protons and is the same for all possible combinations of \(n \) and \(p \). No nuclear attraction occurs for nucleons and electrons. In the case of the electromagnetic force, charge determines the strength of the attraction. Remember that electric charges can (a) attract one another (opposite charges), (b) have no effect (at least one charge neutral), or (c) repel one another (like charges). The gravitational force depends on mass for its...
strength. Consult Table 2 in the student module for the masses of the particles. Note that the n-n pair has the strongest attraction; this is because the neutron is the heaviest particle.

<table>
<thead>
<tr>
<th>TYPE OF FORCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Particles</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>n-n</td>
</tr>
<tr>
<td>p-p</td>
</tr>
<tr>
<td>n-e</td>
</tr>
<tr>
<td>e-e</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Particles</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>n-n</td>
</tr>
<tr>
<td>n-p</td>
</tr>
<tr>
<td>n-e</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gravity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Particles</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>n-n</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note: In this table, a strength of 1 is greater than a strength of 2, 2 is greater than 3, and so on.

Answers:

<table>
<thead>
<tr>
<th>Particles</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-n</td>
<td>(1)</td>
</tr>
<tr>
<td>n-p</td>
<td>(1)</td>
</tr>
<tr>
<td>p-p</td>
<td>(1)</td>
</tr>
<tr>
<td>n-e</td>
<td>(2)</td>
</tr>
<tr>
<td>p-e</td>
<td>(2)</td>
</tr>
<tr>
<td>e-e</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Comment:
The nuclear force involves only nucleons; therefore, the force is the same for n-n, n-p, and p-p interactions, and zero nuclear force exists for n-e, p-e, and e-e interactions.

<table>
<thead>
<tr>
<th>Particles</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-e</td>
<td>(1)</td>
</tr>
<tr>
<td>n-n</td>
<td>(2)</td>
</tr>
<tr>
<td>n-p</td>
<td>(2)</td>
</tr>
<tr>
<td>n-e</td>
<td>(3)</td>
</tr>
<tr>
<td>e-e</td>
<td>(3)</td>
</tr>
<tr>
<td>p-p</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Comment:
The electromagnetic force involves electric charge; therefore, the p-e force is attractive, no net force exists for n-n, n-p, or n-e, and the force is repulsive for e-e and p-p.

<table>
<thead>
<tr>
<th>Particles</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-n</td>
<td>(1)</td>
</tr>
<tr>
<td>n-p</td>
<td>(2)</td>
</tr>
<tr>
<td>p-p</td>
<td>(3)</td>
</tr>
<tr>
<td>n-e</td>
<td>(4)</td>
</tr>
<tr>
<td>p-e</td>
<td>(5)</td>
</tr>
<tr>
<td>e-e</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Comment:
The gravitational force involves mass; therefore, the order is in terms of the product masses. (See Table 2 in the student module.)

N-6 CONSERVATION LAWS: THE GROUND RULES

The rules given here for the conservation laws are the justification for the balancing of chemical reactions as well as of nuclear reactions. The conservation of nucleons simply requires the total mass number on the left-hand side of the equation be equal to that on the right-hand side. The same is true for the conservation of charge. Thus, the justification for the balancing of equations is not that mass must be conserved but rather that nucleons must be conserved. For example, in balancing the chemical equation

\[2 \text{H}_2\text{O}_2 \rightarrow 2 \text{H}_2\text{O} + \text{O}_2 \]

we are, in effect, saying that there are 36 protons (4 from H and 32 from O) and 32 neutrons (all from O) before the reaction and that after the reaction there are still 36 protons and 32 neutrons. They are simply rearranged by the altering of chemical bonds.

The law of conservation of mass and energy implies that in all reactions that occur spontaneously—chemical or nuclear—there is a change of mass and energy. In nuclear reactions the mass change as well as the energy change can be measured directly because the mass change is so large. However, in chemical reactions, only the energy change can be directly measured; the mass change is too small to be measured with current experimental techniques. Nonetheless, it still occurs. Thus, it is incorrect to state that mass alone is conserved in chemical reactions. Such a statement would mean that \(E = mc^2 \) is not valid; but this relationship has proved so accurate in nuclear measurements that there is no basis for challenging it on the chemical scale of energies.

The quantity \(c^2 \), the velocity of light squared, can be expressed in many different units. The common units for \(c \) are cm/s:

\[c = 2.99 \times 10^{10} \text{ cm/s} \]

However, if one is interested in converting mass into energy and vice versa in nuclear reactions, it is desirable to express \(c^2 \) in more useful units. Thus,

\[c^2 = \frac{\text{cm}^2}{\text{s}^2} = \frac{\text{(mass)}\text{cm}^2}{\text{(mass)}\text{s}^2} = \text{energy} \times \frac{1}{\text{mass}} = 931.48 \text{ MeV/u} \]

The MeV is the typical unit of energy used in expressing nuclear reactions, just as the eV represents the typical unit of chemical-reaction energy. If you have previously placed emphasis on units such as ergs and calories, a few conversion problems might be in order. Note:

\[1 \text{ MeV} = 3.8 \times 10^{-14} \text{ cal} = 1.6 \times 10^{-6} \text{ ergs} \]
Remember, this is the energy of a single atom, not a mole of atoms. Thus, if a chemical reaction liberates 10 kcal per mole, this energy corresponds to 10 kcal/6 × 10^{23}, or about 5 × 10^{-7} MeV.

ANSWER TO PROBLEM
(Student module page 8)

Mass values from section N-3

\[
egin{align*}
\text{E}(I) &= m(\text{II})c^2 + E(\text{II}) \\
E(\text{II}) &= [m(I) - m(\text{II})]c^2 + E,I) \\
E(I) &= 0 \text{ as stated} \\
E(\text{II}) &= [236.100 \text{ g} - 235.903 \text{ g}]c^2 + 0 \\
E(\text{II}) &= (0.197 \text{ g}) (931.5 \text{ MeV/u}) \\
E(\text{II}) &= (0.197 \text{ g}) (12.000 \text{ u}) (931.5 \text{ MeV/u}) \\
E(\text{II}) &= 1.11 \times 10^{26} \text{ MeV}
\end{align*}
\]

N-7 INTERACTIONS: GETTING IT TOGETHER

This section can be taught in a variety of ways, depending on the facilities available and the interests of the instructor. For example, a discussion of the concept of temperature could come into play here. It is worth remembering that temperature is a measure of the average kinetic energy of the particles in a system. Thus, the temperature of the room you are in right now is a measure of the average energy of the nitrogen and oxygen molecules that are flying around. As a consequence of the high temperatures inside stars, particles have enough energy to initiate nuclear reactions.

Electromagnetism provides many examples of interactions. In preparation for the discussion of a cyclotron, you might find it worthwhile to demonstrate a simple electromagnet. The principles behind them both are the same, but the effects are the opposite. In the electromagnet, electric charges follow a circular path and produce a magnetic field. In the cyclotron a magnetic field induces electric charges to move in a circular path.

The nuclear force can be demonstrated with an overhead projector in the following way. Obtain a small cup (2-3 cm high and 2-3 cm in diameter) and place it in the center of a 22-cm × 28-cm transparent sheet (about 0.01 cm thick). Then stretch plastic wrap over the cup, cut a hole in the wrap over the cup, and tape the wrap to the edges of a frame and the cup.

The apparatus on the right is used to demonstrate the competition between the nuclear force and the electromagnetic force in proton–nucleus interactions. The apparatus on the left is used to demonstrate neutron–nucleus interactions, where only the nuclear force is important. When the apparatus is placed on an overhead projector, marbles rolled across the surface of the plastic wrap can simulate nuclear reactions.
The proton interaction shows that if the marble approaches the cup with sufficient velocity and the proper trajectory, it will be absorbed and will disappear. If the trajectory is not correct or the velocity is too slow, the marble will curve around the cone created by the apparatus and will miss the cup, much like the effect caused by the Coulomb force in normal low-energy nuclear collisions (such as the Rutherford scattering experiment). If the marble is moving too fast, it will jump over the cup and appear to pass through the nucleus. This demonstrates the transparency of nuclear matter that is observed in high-energy reactions. The neutron–nucleus apparatus shows similar results, except that the particle follows a straight path if its trajectory does not intersect the nucleus, illustrating the absence in neutron reactions of effects caused by the electromagnetic force.

N-8 ACCELERATING PARTICLES

In this section we have described only the cyclotron. If there is a Van de Graaff generator or other accelerator in your area, you might discuss it instead of the cyclotron. A diagram of a simple Van de Graaff generator is shown here. In this device a positive charge is stored on a large hollow sphere by removing electrons from the atoms of the sphere. Positively charged protons are then produced inside the sphere and are subsequently repelled by the charge on the sphere. Therefore, it is electrostatic repulsion that serves to accelerate particles in the Van de Graaff generator, whereas attraction accelerates particles in a cyclotron.

Modern accelerators of this type are called tandem Van de Graaffs. They work on a two-stage (tandem) acceleration principle. In these devices negative ions (−1) are accelerated toward the positively charged sphere (terminal). Then, as they pass through a tube in the terminal, a very thin foil or gas is placed in the path of the beam of particles. In passing through this matter, the −1 ions are stripped of their electrons, thus becoming positively charged ions (+3, +4, or even higher for some elements). These are then repelled by the positive terminal, thereby increasing the energy of the ions even further.

If there is a nuclear-particle accelerator nearby, a tour of this facility can usually be arranged. The physics department of your local university is a good source of information about tours in your vicinity, or you can write to the U.S. Department of Energy, Division of Technical Information, Box 62, Oak Ridge, TN 37830.

The interaction of gamma rays with gas molecules in the probe of a radiation detector allows for the measurement of the amount of radiation present. The gamma ray ionizes the gas molecules to form electrons and positive ions. The electrons are then collected on the detection wire of the probe. This causes an electric current to flow, which is indicated on the meter. The amount of current is proportional to the amount of radiation present.

The radiation is emitted as if from a point source, so that the radiation detected is related to the distance of the detector from the source. This distance/activity relationship is investigated in experiment N-9.
radiation detectors and serves to alert the student to the inadvisability of altering the detector-source distance while doing such experiments. The direct measurements are intended to illustrate the inverse square law—that is, the fact that the counting rate of any radioactive source decreases as the square of the distance R from the source. Mathematically, this can be written as

$$\text{activity} \propto \frac{1}{R^2}$$

This derives from simple geometric considerations. If one has a detector of radius r, then it will intercept an area of πr^2 on the surface of a sphere that surrounds a source.

The total area of this sphere, which intercepts the total radiation emitted by the source, is $4\pi R^2$. Thus, the fraction of events collected in the detector is $\pi r^2/4\pi R^2$. Since r is constant for any given detector, the activity gives the $1/R^2$ dependence.

Concepts

- Gamma rays are a form of electromagnetic radiation.
- Radiation is emitted in all directions from a source.
- The intensity of radiation varies with distance from the source according to an inverse square law.

Objectives

- Use a detector to measure the activity of radioactive materials.
- Graph and interpret data from such measurements.
- Explain the relationship between distance and intensity with respect to radiation in either mathematical or narrative terms.
- Suggest safety precautions that might be useful in handling radioactive materials.

Estimated Time One period

Student Grouping Students should work in teams of two, if possible, or in larger groups, depending on the availability of materials.

Materials

- radiation detector (usually a Geiger counter)
- ruler, centimeter
- radioactive source (MINIGENERATOR)
- ring stand
- 2 test-tube clamps for holding the detector tube
- radioactive sample tape to hold the radioactive source in place
- linear graph paper
- pair of rubber gloves for handling the MINIGENERATOR

Advance Preparation The radiation tube should be prechecked, especially if it is battery operated. For practical background, read *Handle Radioisotopes Safely*, a publication in the "How To" series published by the National Science Teachers Association.

Prelab Discussion Demonstrate the use of the detector tube and show students how to read the meter, allowing for the fluctuations in the counting rate. Explain the use of different scale factors.

Laboratory Safety Review with your students the standard laboratory safety rules they should be following. Point out the safety section in the Appendix at the end of the student module.

Laboratory Tips The size of the container as well as the radius of the detector tube must be included in the total distance measured. When students take activity readings, the distance between the MINIGENERATOR and the detector must be accurately measured. Although the MINIGENERATOR is not strictly a point source, dimensional effects are minimized by standing the MINIGENERATOR on its end and measuring the distance from the radioactivity symbol on the cylinder to the face of the detector.

Remind your students to subtract the average background radiation from each reading. Statistical fluctuations of the count rate will be important when the detector is at large distances from the source. Consequently, as...
the counting rate decreases to levels near background, the data will deviate more from the expected curve.

Range of Results Have students put collected data on the chalkboard. Use the average of the data for drawing conclusions.

Postlab Discussion This experiment illustrates the concept of a field of radiation surrounding any source of radioactivity. The gamma rays emitted from the ¹¹³Sn/¹¹³mIn MINIGENERATOR effectively demonstrate this principle.

It is useful to describe the field in terms of an absolute number of lines of flux that extend radially outward through concentric spherical shells. The same number of lines of flux pass through each shell (which has a surface area of $4\pi R^2$), but because the lines spread apart, the flux density decreases. We can consider flux density to mean the number of lines of flux that pass perpendicularly through a unit area (1 cm^2) on the surface of any shell.

To illustrate the unity of the properties of all electromagnetic waves, the field description of gamma radiation is compared to light photons emanating from a point source. If any lab study of light propagation has been done by the students, it would be useful to point out the parallels between the two experiments. Also, the principle of distance affecting radiation dosage is fundamental to the safe handling of radioactive materials, as well as the use of microwave ovens, dental and medical X-ray machines, and so on.

Answers to Questions

1. The activity is usually more than the expected $\frac{1}{4}$. This is in part because the source is not a point in space but has a finite size.
2. The gamma-ray intensity becomes $\frac{1}{6}$ as great.
3. The farther you stand from a radioactive source, the safer you are. By doubling the distance, you reduce your exposure fourfold.

Additional Activities

1. Students can check the radiation intensity of other sources, such as an old radium-dial watch or a piece of old orange Fiesta ware.
2. A wide range of experiments that have been tested for high-school use are described in the following paperbacks.

ANSWERS TO PROBLEMS
(Student module page 15)

1. Proton, neutron, and electron; all have mass.
2. $5 - 2 = 3$
3. $7 + 8 = 15$ nucleons
4. \[
\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = 2000 \text{ nuclei remaining after 1 h}
\]
\[
\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = 1000 \text{ nuclei remaining after 2 h}
\]
\[
\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = 250 \text{ nuclei remaining after 4 h}
\]
5. $\frac{200}{800} = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$; therefore, 40 minutes represents two half-lives; $t_{1/2} = 20 \text{ min}$
6. a. Yes; mass of products is greater than mass of reactants.
 b. No.
 c. $E = mc^2$

\[
E = (m_1 - m_2)c^2
= (17.999 \, 876 \, u - 18.000 \, 003 \, u)c^2
= (-0.000 \, 127 \, u)c^2
= (-0.000 \, 127 \, u) = (931.5 \, \text{MeV/u})
= - 0.118 \, \text{MeV}
\]
Therefore, 0.118 MeV will be required.
7. We are not concerned here with the conservation of leptons. The leptons include neutrinos, which we do not discuss in this text. For this reason our treatment here is not complete for the weak interaction, which involves leptons.
 a. No; charge is not conserved.
 b. Yes. (Note: leptons are not conserved.)
 c. No; nucleons are not conserved.
 d. Yes.
 e. No; nucleons and mass are not conserved (2 CI on left and 3 on right).
EVALUATION ITEMS

The following are additional evaluation items that you may wish to use with your students at various times during the preceding unit. The correct answer to each question is indicated by shading.

1. Of the three basic forces—gravitational, electromagnetic, and nuclear—which two are able to attract a proton and a neutron to one another?
 - gravitational, nuclear

2. Of the three basic forces—gravitational, electromagnetic, and nuclear—which two are able to attract a proton and an electron to one another?
 - gravitational, electromagnetic

3. Of the three basic forces—gravitational, electromagnetic, and nuclear—which two are able to attract two neutrons to one another?
 - gravitational, nuclear

4. A nucleus is composed of
 - A. electrons and protons.
 - B. neutrons and protons.
 - C. electrons, protons, and neutrons.
 - D. electrons and neutrons.

5. Match the following.
 - D. isobars
 - A. nuclides with same number of protons
 - C. atomic mass (in grams)
 - B. total number of protons and neutrons in a nucleus
 - E. atomic number
 - C. mass of a mole of atoms of an element
 - B. mass number
 - D. nuclides with equal mass numbers
 - A. isotopes
 - E. total number of protons in a nucleus

6. The nuclide $^{238}_{92}$U has all of the following, except:
 - A. 92 protons
 - B. 92 neutrons
 - C. 238 nucleons
 - D. 92 electrons

7. Given the reaction $^{10}_{5}$B + n → $^{4}_{2}$He + __, the missing product is
 - A. $^{9}_{5}$Be
 - B. $^{3}_{1}$Li
 - C. $^{6}_{4}$Be
 - D. $^{3}_{1}$He

8. If a radioactive sample has an activity of 400 cpm at a distance of 2 cm from a Geiger counter, what will be its activity at a distance of 4 cm?
 - A. 100 cpm
 - B. 200 cpm
 - C. 50 cpm
 - D. 400 cpm

9. Assume that the oxygen atom consists of eight hydrogen atoms and eight neutrons. Calculate the binding energy of oxygen per nucleon, given the following masses.
 - mass $^{16}_{8}$O = 15.99491 u
 - mass $^{1}_{1}$H = 1.007825 u
 - mass $^{1}_{0}$n = 1.008665 u
 - $7.976 \text{ MeV/nucleon}$

10. One of our greatest hopes for long-range power production is the controlled, nuclear-fusion reaction. If $^{6}_{3}$Li and $^{2}_{1}$H are used as reactants in such a device, the reaction that takes place is $^{6}_{3}$Li + $^{2}_{1}$H → 2 $^{4}_{2}$He. (Remember that $E = mc^2$, where $c^2 = 931 \text{ MeV/u}$.) Use the following atomic masses:
 - $^{6}_{3}$Li = 6.0161 u; $^{2}_{1}$H = 2.0141 u; $^{4}_{2}$He = 4.0026 u.)
 - The number of MeV produced in the reaction is
 - A. 3724 MeV
 - B. 30.1 MeV
 - C. 23.3 MeV
 - D. 14.896 MeV

11. In the reaction $^{1}_{1}$H → $^{1}_{0}$β + gamma ray, the conservation law that is violated is
 - A. the conservation of charge.
 - B. the conservation of energy.
 - C. the conservation of nucleons.
 - D. all of the above

12. Stars and cyclotrons are similar in that they both
 - A. undergo nuclear fission.
 - B. are particle accelerators.
 - C. undergo nuclear fusion.
 - D. emit cosmic rays.

13. The neutron has
 - A. a positive charge.
 - B. a negative charge.
 - C. no charge.
 - D. approximately the same mass as an electron.
The Makeup of Our Solar System

As an introduction to this unit, you might review briefly with your students their understanding of the solar system. Then refer to the photograph of the planets that is shown on page 16 of the student module and ask: How do the planets differ from one another? What are the special features of Mars and Venus? Of Jupiter? Conclude your introductory comments with a reference to the key questions in the student module: What elements exist in our solar system? How much of each element is present in nature?

N-10 IDENTIFYING THE NUCLIDES

This section provides the basic definitions and nomenclature required to discuss atomic nuclei. One additional point is worth noting. In the nuclear representation

\[^A_Z \text{Nu} \]

the upper right is reserved for the chemical ion state. For example, the complete description of the sodium ion is

\[_{11}^{23} \text{Na}^+ \]

Point out that the prefix iso means "same"; thus, the term isoelectronic, as used in inorganic chemistry, means "having the same number of electrons."

ANSWERS TO PROBLEMS

(Student module page 18)

1. a. \(_{31}^{71} \text{Na} \)
 b. \(_{16}^{35} \text{S} \)
 c. \(_{18}^{33} \text{O} \)

2. \(_{12}^{24} \text{Mg} \) and \(_{12}^{26} \text{Mg} \) are isotopes
 \(_{10}^{20} \text{Ne} \) and \(_{11}^{22} \text{Na} \) are isobars
 \(_{11}^{23} \text{Na} \) and \(_{12}^{24} \text{Mg} \) are isotones
NUCLEAR STABILITY

The "sea of nuclear instability" (Figure 4, student module page 18) is an extremely valuable analogy, if properly utilized. Because it summarizes most of the features of nuclear structure needed for an understanding of the remainder of the module, we urge you to place special emphasis on Figure 4 in your preparation of this section. The key is that the higher the elevation, the more likely it is that a given number of neutrons and protons will stick together to form a stable nucleus. For the nuclear species below sea level, the nuclear force is such that radioactive transformations occur faster than we can observe them. The "island of stability" beyond the "peninsula" is purely theoretical at this time. It may turn out to be below sea level; only future experiments will tell.

A large number of experiments designed to detect the existence of superheavy elements in nature, or to produce them in the laboratory, have been carried out, but none have been successful as of this writing. The greatest hope for our observation of these elements probably lies in specially designed superheavy-ion accelerators recently built in the United States, France, West Germany, and the Soviet Union.

Heavy nuclei tend to be more stable when they have an excess of neutrons over protons, since this eases the competition between the nuclear and electromagnetic forces. As more and more protons are added to a nucleus, the electrostatic repulsion between identical charges acts in opposition to the nuclear attraction. The presence of additional neutrons serves as insulation for the protons against their charge repulsion. This also accounts for the fact that the "peninsula of stability" eventually drops off into the sea; that is, for very heavy nuclei the charge becomes so great that the nuclear force is no longer strong enough to hold the nucleus together. The "island of stability" can exist only because of the special stability afforded by closed nuclear shells that are predicted to exist at $Z = 114$ and $N = 184$.

The elevation of the peninsula in the sea of instability is measured in an absolute sense by the average binding energy of a nucleus. This is the average amount of mass that is converted into energy to bind nucleons together in a nucleus. Figure 6 (student module page 20) is a plot of the average binding energy for those nuclides that run along the uppermost ridge in the sea of stability, or the continental divide, so to speak. Zero binding energy corresponds to the bottom of the ocean, and sea level is about 5–6 MeV/nucleon in most cases. Mathematically, the average binding energy, $\overline{B.E.}$, for any nucleus is computed as

$$\overline{B.E.} = \frac{Z \, m_H + N \, m_n - m(A,Z)c^2}{A}$$

Here, Z is the number of protons, m_H is the mass of the hydrogen atom \(\text{(which simultaneously accounts for the mass of the atomic electrons)},\) N is the number of neutrons, m_n is the mass of the neutron, $m(A,Z)$ is the mass of a nuclide having A nucleons and Z protons, and A is the number of nucleons. A large value of $\overline{B.E.}$ corresponds to a system that is tightly bound together and, therefore, very stable. Consequently, it rises high out of the sea of instability. Low values, by contrast, are submerged below sea level. As a sample computation, the average binding energy of ^{12}C is calculated here.

$$\overline{B.E.} \left(^{12}C\right) = \frac{\left[6m_H + 6m_n\right] - m \left(^{12}C\right)c^2}{12}$$

$$= \frac{[6(1.007825) + 6(1.008665)] - 12.000000]u (931.48 \text{ MeV/u})}{12}$$

$$\overline{B.E.} = 7.68 \text{ MeV for } ^{12}C$$

In relation to the criteria for nuclear stability, it may also be worth mentioning to your students that stable nuclei prefer even numbers of neutrons and protons as compared to odd numbers. This is shown in the following table.

<table>
<thead>
<tr>
<th>Nuclear Type</th>
<th>Number of Stable Nuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-even, N-even</td>
<td>171</td>
</tr>
<tr>
<td>Z-even, N-odd</td>
<td>55</td>
</tr>
<tr>
<td>Z-odd, N-even</td>
<td>50</td>
</tr>
<tr>
<td>Z-odd, N-odd</td>
<td>4</td>
</tr>
</tbody>
</table>

The closed-shell configurations (or magic numbers) for nucleons are derived in the same way as are those for electrons in atoms. That is, a quantum-mechanical problem describing the forces that act on the particles in the system is solved by using the Schrodinger equation. For atoms, the particles consist of electrons and a nucleus; the forces are the electromagnetic attraction between oppositely charged particles and the repulsion between electrons. For nuclei, the particles are neutrons and protons; the forces are the
nuclear force of attraction and the electromagnetic repulsion between protons. Because the forces and particles are different in the two cases, it is not surprising that the magic numbers are different. The predictions of closed shells at $Z = 114$ and $N = 184$ are the results of a large number of modern calculations. One final word: The next proton shell beyond 82 is predicted to occur at $Z = 114$ instead of at 126 (as observed for neutrons) because of the influence of the electromagnetic force on protons, a force that doesn’t exist for neutrons.

Enlarged versions of the illustrations that appear on pages 18, 19, and 20 of the student module have been included on the following pages. You may reproduce these pages in classroom quantities or make overhead projectuals for use in your classroom discussion.

The effect of isotopes on elemental atomic masses can be demonstrated here. Although we have defined the atomic mass of 12C as 12.000 000 u, the student may note that the tabulated atomic mass for carbon shown on many charts is 12.01u. This is because carbon in nature consists primarily of two isotopes, 12C and 13C. Their relative abundances are 98.892 percent for 12C and 1.108 percent for 13C. Therefore, the element carbon has the following average atomic mass.

$$m(^{12}C) \times \frac{\%(^{12}C)}{100} = (12.000\,000\,u)(0.988\,92) = 11.867\,u$$
$$m(^{13}C) \times \frac{\%(^{13}C)}{100} = (13.003\,355\,u)(0.011\,08) = 0.1441\,u$$
$$(11.867 + 0.1441)u = 12.011\,u$$

This is also a useful exercise in significant figures; as you will note, the multiplication products are determined by the significant digits in the percentages of carbon, and the addition sum is limited by the mass times percentage product for 12C. Many exercises such as these can be readily generated.

At this point in the student module, the three basic types of radioactive decay are introduced. Although these will be discussed in detail in *Radioactive Decay*, a qualitative idea of the actual processes that occur in radioactive decay will help students understand both nuclear stability and nucleosynthesis of the elements.

N-12 TRANSFORMATION OF ELEMENTS

This section emphasizes the very important concept that an element can be spontaneously transformed (transmuted) into a new element by radioactive decay. This concept, of course, is not true for chemical reactions in which the identity of the elements always remains unchanged. In addition, section N-12 serves as an introduction to experiment N-13, in which transmutation is illustrated by means of a chemical separation technique. A similar demonstration can be performed with 137Cs/137mBa MINIGENERATORS. Because of the short half-life of 137mBa, it is necessary to correct the results caused by the radioactive decay of that nuclide. However, if one works quickly (within 5 minutes), a qualitatively correct result can be obtained, even with the uncorrected data.

EXPERIMENT N-13 THE CHEMISTRY OF RADIOACTIVE NUCLIDES

The actual placement of this experiment* is somewhat up to your discretion. Logically, it should precede the measurement of a half-life for nuclear decay in order to give the student experience with the techniques of eluting the MINIGENERATOR. The purpose of the experiment is to introduce the student to the process of eluting the MINIGENERATOR and handling an eluted isotope in liquid form.

Concepts

- Radioactive decay transmutes one element into another.
- The concentration of a liquid radioactive source is the ratio of its activity to the volume of solution in which it is found.
- Substances can be separated by differences in their chemical attraction to ion-exchange resins.

THE SEA OF NUCLEAR INSTABILITY
Objectives

- Separate two radioactive nuclides by elution from an ion-exchange resin.
- Determine the volume of eluant needed to separate 113mIn from 113Sn.
- Measure and record radioactivity in counts per minute.
- Graph data and interpret the graph.

Estimated Time One period

Student Grouping Group size (two to five students) will depend on the equipment available.

Materials

- 2 cm3 eluant solution of HCl and NaCl
- 113mSn/113Sn source
- 25 planchets
- plastic squeeze bottle
- graph paper
- pair of rubber gloves

Advance Preparation To prepare the eluant solution, dilute 3.3 cm3 12 M HCl (concentrated) to 100 cm3 and then add 9 g NaCl. You can easily make the planchet by cutting circles of aluminum foil 2.5 cm in diameter. Be sure the rubber caps are replaced on the MINIGENERATOR. If they are not, the ion-exchange resin dries out and future "milking" are not possible.

Two cubic centimeters of the eluant will yield approximately 35 drops of eluate from the MINIGENERATOR. It is not important that exactly 25 drops be available to the student for 25 planchets. In this experiment the student will deposit one drop on each planchet before taking any activity readings.

Prelab Discussion Describe the principle of a radioisotope generator. Also, discuss what happens in the elution process.

Laboratory Safety Although this experiment has been safety tested, students should learn to handle radioactive materials with caution. Provide brief instructions on the handling and disposing of waste materials. Students handling the radioactive isotopes should wear gloves.

Laboratory Tips You may wish to instruct your students in the use of semilog graph paper. Remind them that it is not necessary to take the logarithm of the number on the ordinate scale—the graph paper does that. Simply plot one number against the other, taking care to read the scales properly.

Range of Results

<table>
<thead>
<tr>
<th>Drop Number</th>
<th>cpm</th>
<th>cpm Corrected for Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1764</td>
<td>1574</td>
</tr>
<tr>
<td>2</td>
<td>1060</td>
<td>870</td>
</tr>
<tr>
<td>3</td>
<td>732</td>
<td>542</td>
</tr>
<tr>
<td>4</td>
<td>628</td>
<td>438</td>
</tr>
<tr>
<td>5</td>
<td>560</td>
<td>370</td>
</tr>
<tr>
<td>6</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>208</td>
<td>18</td>
</tr>
</tbody>
</table>

Postlab Discussion The point to emphasize in this experiment is that radioactive decay transmutes one element into another. This is clearly evident because the tin is tightly held by an ion-exchange column and cannot be washed off easily. On the other hand, the indium product is readily removed from the column. Do not worry about the mechanism of decay in this section. As evidence for the fact that it is indium and not tin that is eluted from the column, note that the last few drops contain almost no...
activity, and that the MINIGENERATOR still gives evidence of its original activity.

The concentration of a radioactive source is the ratio of its activity to the volume of solution in which it is contained. The concentration is often expressed in microcuries per cubic centimeter. When eluting the MINIGENERATOR, students will find that the greatest amount of activity occurs in the first few drops eluted. As more eluant is used, the sample is diluted and the concentration decreases, although the absolute activity continues to increase slowly. You might point out to the students that the concept of concentration is important in administering radioactive tracers to patients, where the dosage is often defined in volume units rather than in specific activity (the ratio of activity of a radioisotope to the weight of all the isotopes, both stable and radioactive, of that element in the sample).

Answers to Questions

1. The first drop yields the greatest activity.
2. It is suggested that the students figure out for themselves a method to determine how many drops will be needed to elute at least 75 percent of the potential total activity. The students should be asked to explain their reasoning. The number of drops required will be between five and ten. The purpose of this question is to have each student carefully think through the elution process rather than just arrive at a "right" answer.
3. After one day all the 113mIn will have decayed to stable 113In. The resultant solution will no longer be radioactive, and the total number of indium atoms ($\sim 10^7$) will be so small that they will not constitute any potential chemical pollution source.

Additional Activity If students wish more experience with the type of activity that experiment N-13 presents, refer them to Experiment 6 in *Experiments in Nucleonics* (Danbury, Conn.: Redco Science Inc., 1968). This experiment adds the complication that the barium product has a short (2.6 minutes) half-life, so that decay during the experiment must be taken into account. This is not necessary in the Sn/In experiment because little decay occurs during the long (100 minutes) half-life of indium.

N-14 THE ELEMENTS IN OUR SOLAR SYSTEM

A feeling for the relative distribution of the elements in our solar system should result from a study of this section. The data listed in Table 4 (student module page 26) constitute a fundamental piece of information that theories of nucleosynthesis must reproduce. Note that Li, Be, and B are only briefly mentioned and have very low abundances. The mechanisms that generated these elements are still the subject of debate, but it seems highly improbable that they were formed in the same way that most of the other elements were. They probably originated in cosmic-ray-induced nuclear reactions between protons and C, N, and O. The absence of stable nuclides with $A = 5$ and $A = 8$ accounts for the zero percentage of these mass numbers in the solar system. The nuclides 5Li and 5He live only 10^{-21} seconds, at most. All nuclides with mass $A = 8$ decay to 8Be, which has a half-life of only 10^{-16} seconds.

The abundance of information given in this section of the student module has been obtained from various sources. Particularly important are the data from analyses of meteorites and from the radiation spectrum of the Sun. Meteorites are thought to be "primordial" material of the solar system; they condensed into solid bodies soon after their formation and have experienced little chemical change since then. However, this is not true of the Earth, which has a molten core and an active atmosphere. Therefore, the chemical analysis of meteorites is a very important source of information about the solar system. The light emitted by excited atoms on the surface of the Sun and other stars is also of great importance in deducing relative chemical abundances. Because the Sun is the most massive object in the solar system, the distribution of elements in the Sun is an important factor in the overall picture of the solar system. From a knowledge of the spectra of elements on the Earth, we can identify the elements in stars by comparing stellar spectra with known values.
ANSWERS TO PROBLEMS
(Student module page 28)

1. a. potassium
 b. 19
 c. 40
 d. 19
 e. 39.1
 f. 21
 g. 19
 h. 18
 i. Yes. If the average mass of all isotopes is 39.1, then at least one stable isotope with mass of less than 40 must be present. The actual abundances of the K isotopes are 39K(93.26%), 40K(0.011%), and 41K(6.73%).

2. a. 7Li
 b. 24Mg
 c. 32S

3. a. 15C; N = Z
 b. 56Fe; most stable nucleus; N = Z
 c. 23Na; N = Z
 d. 56Fe; most stable nucleus; N = Z
 e. 4He; nearer 56Fe; closed neutron and proton shells

4. a. Fe
 b. Mg
 c. O
 d. Si
 e. Cu

5. Given the atom
 \[^{31}_{16}\text{Si} \]
 list the number of protons, neutrons, and nucleons in the nucleus.
 16 protons
 15 neutrons
 31 nucleons

4. Which one of the following nuclear types has the greatest number of stable nuclei?
 A. Z-even, N-even
 B. Z-even, N-odd
 C. Z-odd, N-even
 D. Z-odd, N-odd

5. Which nuclide of each pair is more stable?
 A. \(^{32}_8X \) or \(^{32}_8\text{X} \)
 B. \(^{32}_16\text{X} \) or \(^{40}_16\text{X} \)
 C. \(^{210}_84\text{X} \) or \(^{212}_8\text{X} \)

SUGGESTED READINGS

Scientific American, September 1975. (Entire issue is devoted to the solar system.)

SUGGESTED FILMS

Through the art of the film, vast distances are overcome and the solar system is presented in amazing detail and perspective.
Nucleosynthesis and Stellar Evolution

The rationale for beginning this discussion with elementary particles and building up to more complex nuclei is that such a process does not have to be very efficient but can still produce the observed elemental abundances. (See Table 4 in the student module.) That is, the solar system has lots of hydrogen and helium but very little of the elements beyond iron. If complex nuclei were the starting material for element synthesis, the nuclear processes necessary to produce the observed abundances would have had to be very efficient.

N-15 THE "BIG BANG" THEORY

The big bang theory of the Universe has come to be generally accepted during the past decade. Since the studies by Hubble in the early part of the twentieth century, the theory of the expansion of the Universe has become recognized. More recently, in the 1960s, the discovery of the 3-K background radiation in the Universe by Penzias and Wilson (for which they received the Nobel prize in physics in 1978) solidified arguments that the expansion of the Universe originated in the big bang. For an intriguing discussion of the big bang in general terms, refer to S. Weinberg’s book The First Three Minutes (New York: Basic Books, 1977), which is listed in the Selected Readings of the student module. (Weinberg was a corecipient of the Nobel prize in physics in 1979.)

In addition to the reasons stated in the student module, there is further evidence that the big bang probably did not produce the elements beyond lithium. The widely different element compositions of stars implies that the elements were produced by other means as well. This observation, together with the technetium data discussed in the student module, indicates that it is probable that element synthesis is a continuing process in stars rather than something that occurred in only a single big bang event.

Demonstration This is a useful demonstration of the competition between the electromagnetic force and the force of gravity. Its purpose is to show how increasing mass can reduce the effects of electromagnetic repulsion. The same situation is found in stars, although, of course, on a much larger scale. The necessary apparatus consists of the following items.

- a set (4-6) of annular magnets (similar to those used in many kitchen gadgets for attaching hooks to metal surfaces)
- a smooth, nonmagnetic rod mounted vertically (The magnets will be slipped over the rod. Friction losses should be made as small as possible by applying light oil or glycerine to the rod.)

Setup to demonstrate competition between magnetic and gravitational forces.

To demonstrate the desired effect, two magnets are slipped over the rod with like poles facing one another. Measure the equilibrium distance between these two magnets. Now, add a third magnet so that it repels the magnet below it. Again measure the equilibrium distance between the first two magnets. Continue adding magnets in this fashion (similar poles facing each other) and record the distance between the first two magnets each time.

You will observe that as more magnets (mass) are added, the distance between the bottom two magnets becomes smaller. You can point out that this is not an effect of the electromagnetic attraction between the first, third, and fifth magnets because the distance between the highest two magnets on the stack remains about equal to that when only two magnets were on the stack.
The balancing of nuclear reactions is simpler than the balancing of chemical reactions. Simply stated, the sum of the A superscripts must be the same on both the right- and left-hand sides of an equation. The same must be true of the Z subscripts. In principle, any nucleus can be formed in a nuclear reaction if enough energy is available.

The neutrons that remained at the end of the big bang explosion were unstable and underwent decay to protons.

$$^{0}\text{n} \rightarrow ^{1}\text{H} + ^{0}_{-\beta}\text{e}$$

It would be more precise to write the neutron-decay equation as

$$^{0}\text{n} \rightarrow ^{1}\text{H} + ^{0}_{-\beta}\text{e} + \nu$$

An antineutrino is formed in this reaction. Neutrinos commonly accompany the formation of electrons and are associated with the weak nuclear force. We have omitted discussion of neutrinos in the student module in order to simplify the presentation.

In writing the nuclear equation for the neutron decay, one would also be more accurate to write that the hydrogen ion (or bare proton) is formed and not the hydrogen atom. However, in balancing nuclear equations, one usually does not write ionic states. By always using the mass of a neutral atom (which has its exact complement of electrons), one always obtains the correct answer in nuclear calculations.

ANSWERS TO PROBLEMS

(Student module page 31)

1. $^2\text{H} + ^0\text{n} \rightarrow ^3\text{H}$
2. $^4\text{He} + ^0\text{n} \rightarrow ^7\text{Be}$
3. $^4\text{He} + ^{1}\text{H} \rightarrow ^8\text{Li}$
4. $^4\text{He} + ^3\text{He} \rightarrow ^8\text{Li}$
5. $^4\text{He} + ^4\text{He} \rightarrow ^8\text{Li}$

N-16 STARS FROM BIG BANG DUST

The point to stress in this section is that because of gravity, condensation of the cosmic dust can occur in localized regions of space. This results in an increase in density and subsequent temperature rise for the matter in this region. This process represents the initial stages of star formation and develops the conditions that eventually lead to element synthesis.

It should be noted that at temperatures above about 10,000 K the atoms that constitute the big bang dust are completely ionized into nuclei and electrons. The electrons are present in the core of a star (preserving overall electrical neutrality), but they probably exist in the form of an electron gas rather than being confined to discrete atomic orbitals. Because of the complicated nature of this electron gas, it is not discussed in this module. Once the stellar material cools below about 10,000 K, the electrons that are present attach themselves to the nuclei and thus form neutral atoms.

N-17 H-BURNING: MAIN SEQUENCE STARS

In addition to describing the principles by which the Sun generates energy, this section stresses the concept of mass–energy conversion. The calculation of energy changes in nuclear reactions is introduced in the student module. The nomenclature defines the energy change ΔE in such a way that ΔE is positive when energy is released and negative when it is absorbed. The calculation for the amount of energy released in equation (3) of section N-17 follows.

ANSWER TO PROBLEM

(Student module page 35)

Equation (3) in N-17 is

$$^3\text{He} + ^3\text{He} \rightarrow ^6\text{He} + 2^1\text{H} + 12.9\text{ MeV}$$

To prove that the energy released is 12.9 MeV, we can use the formula $E = mc^2$.

$$\Delta E = [2, m(3\text{He}) - m(6\text{He}) - m(1\text{H})]c^2$$
$$\Delta E = [2(3.016 030) u - (4.002 603 u) - 2(1.007 825) u]c^2$$
$$\Delta E = (0.013 807 u) (931.5\text{ MeV/u})$$
$$\Delta E = 12.90\text{ MeV}$$

In addition to the proton-proton cycle, there are other ways in which hydrogen burning can occur. For example, in stars where ^{12}C is present,
the following set of reactions, known as the Carbon-Nitrogen-Oxygen cycle, can occur.

\begin{align*}
12^4C + 1^1H &\rightarrow 13^5N; \\
12^4C + 1^1H &\rightarrow 14^7N \\
15^7N + 1^1H &\rightarrow 16^8O; \\
15^7N + 1^1H &\rightarrow 18^8O + 2^2He \\
\text{Net: } 4^1H &\rightarrow 2^2He + 2 ^9\beta + 26.7 \text{ MeV}
\end{align*}

Note that the net reaction, equation (5), is the same as that given in equation (4) in the student module.

This reaction was originally proposed by Hans Bethe, one of the pioneers in the field of applying nuclear reactions to stellar processes. It differs from the hydrogen-burning process given in the student module only in that 12C nuclei serve as a catalyst for the reaction. The CNO cycle does occur to a small extent in the Sun. However, the cycle requires a higher temperature than that which we believe exists in the center of the Sun.

Thermonuclear fusion reactions (as in the hydrogen bomb) operate on the same principle. A solid such as 6Li2H or 6Li3H (which are composed of the less common isotopes of lithium and hydrogen) is used as the energy source. By achieving sufficiently high temperatures, the following self-sustaining set of reactions can occur. A neutron source is needed to trigger the reaction.

\begin{align*}
^6$Li + $^1n &\rightarrow 2^2He + 3^1H + 4.8 \text{ MeV} \\
^3$H + 4He &\rightarrow 2^2He + $^1n + 17.6 \text{ MeV} \\
^3$H + 4He &\rightarrow 2^2He + 2 $^1n + 1.3 \text{ MeV}
\end{align*}

The energy released is generated very rapidly (the entire reaction is over in about 10^{-6} seconds) and, consequently, is highly explosive. Although the military applications of thermonuclear explosions have received great attention, underground tests have been conducted to investigate the possibility of using such blasts to produce new heavy elements. However, practical applications of such techniques are unlikely to occur except under very unusual conditions.

As can be noted through an examination of these equations, thermonuclear explosions produce a large number of neutrons. This fact is pointed out in the discussion of the r-process in section N-20.

Some success has been achieved with the controlled-fusion process containing 2H, which is magnetically confined at very high densities in the form of a plasma. As discussed in section N-48, however, much work remains to be done before this process will ever provide usable energy.

ANSWERS TO PROBLEMS

(Student module page 37)

1. 3H
2. 2He
3. 2^1n

Shorthand notation for the equations is as follows.

1. 6Li (1n, 3H) 2He
2. 3H (1n, 1n) 2He
3. 3H (1n, $^2^1n$) 2He

N-18 HELIUM BURNING: RED GIANTS

The reactions we might expect to occur in a star that has burned much of its hydrogen into helium are

\begin{align*}
^3$He + $^1H &\rightarrow A = 5 \quad \text{not stable} \\
^4$He + 1He &\rightarrow A = 8 \\
^4$He + 2He &\rightarrow 6^3$Li \quad \text{collisions disintegrate products rapidly at } 10^6K \\
^2$He + 3He &\rightarrow 76Be \\
3 2He &\rightarrow 12^6C + 7.6 \text{ MeV} \quad \text{stable}
\end{align*}

Only the last of these reactions—helium burning—is thought to be successful in producing heavier elements. Because the probability of forming a 8Be nucleus and then capturing another 4He during the lifetime of the 8Be (10^{-16} seconds) is very small, the rate of nuclear burning is quite slow. This fact accounts for the long lifetimes of red giant stars. Nonetheless, the rate of exothermic nuclear burning is sufficient to balance gravitational contraction. Consequently, the red giants appear to be stable.
The $^3\text{He} + ^1\text{C} \rightarrow ^{12}\text{C}$ reaction cannot occur until a temperature of 100,000,000 K has been reached because the electric charge of the He nucleus is twice that of the proton. A much higher temperature is therefore required to make the He-He and He-Be collisions sufficiently energetic to overcome the mutual electric-charge repulsion and permit nuclear attraction to occur. In addition, at such temperatures nuclear reactions between ^4He and any Li, Be (except ^8Be), and B that might be formed in these reactions disintegrate these latter nuclei very rapidly. For this reason, the element-synthesis chain skips over the elements Li, Be, and B, which accounts for their low abundance in nature. (See Table 4, student module page 26.)

Besides the ^3He reaction and the $^{12}\text{C}(^4\text{He}, \gamma)^{16}\text{O}$ reaction, small amounts of other nuclei in or near the core of a red giant take part in other types of nuclear reactions. For instance, reactions such as

\[
\begin{align*}
^{16}\text{O} + ^3\text{He} & \rightarrow ^{20}\text{Ne} \\
^{13}\text{C} + ^1\text{H} & \rightarrow ^{14}\text{N} \rightarrow ^{13}\text{C} + ^{\beta+} \\
^{15}\text{O} + ^3\text{He} & \rightarrow ^{17}\text{F} \rightarrow ^{17}\text{O} + ^{\beta+}
\end{align*}
\]

can produce isotopes of Ne, C, O, and others.

Another type of reaction that can occur in red giant stars produces neutrons:

\[
\begin{align*}
^{13}\text{C} + ^3\text{He} & \rightarrow ^{16}\text{O} + ^{\alpha+} \\
^{12}\text{O} + ^3\text{He} & \rightarrow ^{16}\text{O} + ^{\alpha+}
\end{align*}
\]

It is thought that these two reactions are the source of neutrons for the s-process (section N-23). An important point to remember is that as more new elements are produced in a star, the possibilities for nuclear reactions become greater.

The name red giant comes from the fact that these stars are very large and emit light in the red part of the visible spectrum. The increased size comes about because the intense heat of the stellar core expands the envelope of hydrogen gas surrounding it. Since the visible radiation from a star is emitted from its surface, a red giant has the appearance of being very large. However, the actual size of its nuclear furnace is smaller than that in a normal hydrogen-burning star. In about 5 billion years, the Sun is expected to reach the red giant stage and to envelop the Earth.

Miniactivity Have students use the shorthand notation to express the last two nuclear reactions discussed.

Answer: $^{13}\text{C}(^4\text{He}, n)^{16}\text{O}$ $^{17}\text{O}(^4\text{He}, n)^{20}\text{Ne}$

N-19 EXPLOSIVE NUCLEOSYNTHESIS

Explosive nucleosynthesis is an incompletely understood phase of stellar evolution that is currently the subject of much research. Because of the array of nuclei present in a star at this stage, a complex series of nuclear reactions is possible. Two important experimental facts influence our understanding of this process. First, reactions such as $^{28}\text{Si} + ^{28}\text{Si} \rightarrow ^{56}\text{Ni}$ are not very probable because of the large electrostatic charge between two +14 charges. The temperature needed to overcome the electric-charge repulsion between two +14 charges is so high that the nuclei would disintegrate first. Second, ^4He nuclei are probably important in this stage of a star because nuclei with mass numbers 28, 32, 36, 40, 44, 48, 52, and 56 are unusually abundant in nature, compared with nuclei with mass numbers between these values.

Remember that in all these cycles it is because nuclear reactions give off energy that a star is stabilized against gravitational contraction. Therefore, it is essential that at each stage of element synthesis the reactions are exothermic. A star can be stabilized by reactions that build up to ^{56}Fe because the process represents a rise on the binding-energy curve (Figure 6, student module page 20). As more stable nuclei are produced, energy is given off, and the gravitational force that acts to contract the star is opposed. Once ^{56}Fe is reached in the synthesis chain, further nuclear reactions with charged particles can lead only downhill on the binding-energy curve. This absorbs energy from the star, the gravitational force takes over, and the star is no longer in equilibrium.

This section of the student module can be eliminated if you desire to shorten the origin-of-the-elements portion of the module. It is sufficient to state that a complex series of reactions occurs, synthesizing the elements C through Fe, and that the process stops at iron because the reactions no longer give off energy, as described above.
HEAVY ELEMENTS: ZAP, THE
r-PROCESS

An interesting feature of the r-process is that neutron capture must occur within a time span of about 10 to 1000 seconds. The closest experimental analog to this situation is a thermonuclear fusion explosion, or hydrogen-bomb blast. Much information about the r-process has been gained in the study of such explosions. The extreme conditions of a short time scale and a large number of neutrons are necessary to satisfy the special requirements of gravitational collapse in the star, as well as to bypass the relative instability of nuclei with mass numbers \(A = 210-230 \) (which do exist independently in nature).

The residues of the r-process are unusual neutron-rich nuclei, which undergo negatron decay after the implosion-explosion stage has ceased to produce neutrons.

\[
^{238}_{80}\text{Hg} \rightarrow ^{238}_{90}\text{U} + 12 \beta
\]

This series of decays occurs in steps, of course. The following diagram aids understanding of the step-by-step development of the r-process. This diagram illustrates the r-process path after it has already evolved from \(^{56}_{26}\text{Fe} \) to \(^{228}_{78}\text{Pt} \).

Schematic diagram for average r-process path in the heavy element region. Neutron capture occurs along lower path (heavy arrows) starting with \(^{228}_{78}\text{Pt} \). Equilibrium concentrations of each nuclide along capture path are reached when rate for \((n,\gamma)\) reaction equals rate of \((\gamma,n)\) reactions. Reaction path moves to higher \(Z \) when beta decay lifetimes become comparable to time required to achieve equilibrium concentrations. At the upper mass limits neutron-induced fission terminates capture path. Nuclides on the r-process capture path eventually decay to the line of maximum beta stability, where alpha decay and/or spontaneous fission occur.
It is not clear at what point fission becomes dominant in the r-process and terminates the chain of mass-building reactions. It seems most probable that this limit occurs in the vicinity of mass number \(A = 270 \), in which case nearly all possible products are known. The final excess-neutron products would then undergo radioactive beta decay to form the most stable isobar for each mass number. These subsequently decay to form uranium and other lighter elements. On the other hand, mass numbers as high as \(A = 300 \) may possibly have been achieved, which would permit synthesis of the "superheavy elements" as well. However, even if the superheavy elements could be formed in the r-process, it would be essential that their half-lives for alpha decay and spontaneous fission be as long as the age of the solar system if such elements were to be found in nature. As of yet, no clear evidence has been found to prove the existence of such species in nature.

One question concerning the terminal fate of a star could be discussed. That is, what remains after the implosion-explosion stage? This question is an absorbing one. The observation of unusual stellar objects called pulsars has created much excitement among scientists during the past few years. These stars are thought to be giant "nuclei" composed of neutrons, or neutron stars. Their density would be that of nuclear matter \((10^{11} \text{ grams/cm}^3) \), and they would have a mass nearly that of the Sun but a diameter of only about 16 kilometers. One of these objects is found in the Crab Nebula, where the existence of a supernova has been recorded—a fact that gives further support to the hypothesis that the r-process is associated with supernova explosions.

No attempt has been made here to discuss the fission process in detail. The existence of neutron emission in fission (the basis for a chain reaction) is discussed in section N-23. It should be pointed out that the nuclear products of fission reactions are nonspecific—that is, a large variety of products can be formed. A typical distribution of the mass numbers of the final products in uranium fission is shown in the following diagram.

The diagram shows that the mass split in fission is usually asymmetric. In balancing fission equations, one can choose a wide variety of products. The only conditions that must be fulfilled are \(Z = Z_1 + Z_2 \) and \(A = A_1 + A_2 + \text{neutrons} \).

ANSWERS TO PROBLEMS
(Student module page 43)

1. carbon burning/explosive nucleosynthesis
2. r-process
3. hydrogen burning
4. silicon burning/explosive nucleosynthesis
5. helium burning
6. helium burning
7. hydrogen burning
8. r-process/fission
9. silicon burning/explosive nucleosynthesis
10. r-process

N-21 DETECTING THE REMNANTS

In this section you have an opportunity to discuss one of the important accidental discoveries in science. The depth of presentation will depend on your interest and that of your students. This section introduces N-22.

MINIEXPERIMENT

N-22 RADIOAUTOGRAPHY: CATCHING THE RAYS

This experiment duplicates Becquerel's initial discovery of the effect of nuclear radiation on photographic film.

Concepts

- Radioactive elements emit radiation that will expose photographic film.
- The radioactive source can take its own picture.
Objectives

- Expose film, using a radioactive source.
- Relate the white and black areas on exposed film to the location of the radioactive material.

Estimated Time One-half period on each of two days, with one day in between.

Student Grouping Group size will depend on the amount of film and the number of radioactive sources available.

Materials

Polaroid Type 57 black-and-white film (speed 3000) radioactive sources (such as a 137Cs MINIGENERATOR)
Polaroid Type 545 film holder or a suitable film roller

Advance Preparation Be sure your radiation sources have enough activity to produce satisfactory images.

Prelab Discussion None

Laboratory Safety Review with your students the standard laboratory safety rules they should be following. Note Appendix I: Safety at the end of the student module.

Laboratory Tips The experiment as described is designed to make use of the MINIGENERATORS as radiation sources and common Polaroid film as the detector. Other sources of radioactivity can be used, and obviously it is desirable to use as many different sources as possible. The most convenient film-exposure arrangement is that described in the student module—the Polaroid Type 57 black-and-white single-sheet film used with the Polaroid Type 545 holder. The primary problem that may be encountered here is that the Type 57 film size is "4 × 5 inches" and so cannot be developed in ordinary Polaroid cameras. Since the Type 545 holder is not a common item, it may be necessary to find a roller arrangement to develop the film. An alternative to this is to use standard Polaroid Film packs, such as Type 667 black-and-white film, which contains eight sheets to the pack. Unfortunately, none of the standard-size Polaroid Film packs is available in single sheets. With this arrangement, eight exposures can be obtained simultaneously; or, through the insertion of a sheet of lead (~0.16 cm thick) between the uppermost and lower sheets of film in the pack, only the top sheet will receive significant exposure. The top sheet of film can then be developed in any standard Polaroid camera case.

There are many versions of the Becquerel experiment in existence. One of the more sensitive approaches is that described in G. Chase et al., Experiments in Nuclear Science (Minneapolis: Burgess Publishing Co., 1971). If you have access to a photographic developing laboratory, you might wish to try this approach, which uses X-ray film and saves time.

Range of Results In an exposure that uses a 137Cs MINIGENERATOR as a source, the image is approximately circular. This demonstrates that the radiation is not uniformly spread out across the MINIGENERATOR (and consequently, the image is not the same shape as the MINIGENERATOR). The actual location of the radiation is not directly adjacent to the film and therefore the image is spread out.

Postlab Discussion Tracks are left in mineral rocks by radioactive decay. These tracks can be used to determine facts about the history of the Earth. See section N-31 and J. D. Macdougall, "Fission Track Dating," Scientific American (December 1976), pp. 114–122. Also discuss X-ray procedures in medicine and dentistry. The exposure of photographic film is still used in nuclear science today, although the techniques are much more sophisticated than the one we use here.

N-23 HEAVY ELEMENTS VIA THE s-PROCESS

The difference in time scales between the s-process and the r-process contributes to the formation of different isotopes of the elements. Because the r-process involves nuclei with an oversupply of neutrons, it synthesizes the heaviest isotopes of a given element. On the other hand, the long time that elapses between neutron captures in the s-process (~5000 years) permits radioactive decay to occur if the nucleus formed is sufficiently unstable. Consequently, the s-process, in which the path of nucleosynthesis tends to follow the uppermost ridge along the peninsula of stability (refer to Figures 4, 5, and 6 in the student module), is responsible for forming the most stable isotopes of each heavy element.
To illustrate differences between the two processes, the following diagram indicates the two alternative paths for neutron-capture reactions with ^{56}Fe.

The s-process cannot produce the superheavy elements or even uranium or thorium. It must stop at ^{209}Bi. This limitation is set by the high instability of nuclei with mass numbers $A = 210 - 212$, which emit 4He ions to form lighter nuclei (alpha decay) before another neutron can be captured.

One additional mechanism of nucleosynthesis that is not described in the student module is the p-process, which is responsible for forming the lightest isotopes of the heavy elements. The p stands for either protons or photons. This process involves secondary nuclear reactions that occur at all stages of later-generation stars. It results in slight alterations of the elemental abundances, as follows. Consider the stable nuclide ^{34}Se (selenium), which cannot be produced in either the s-process or the r-process. However, ^{75}As (arsenic) can be synthesized in both processes, and ^{74}Se is thought to be produced by the following proton- and photon-induced nuclear reactions.

That is, ^{74}As is the product of both reactions and undergoes radioactive decay to stable ^{34}Se. This process is not very probable, as is evidenced by the fact that the abundance of ^{74}Se is only 0.87 percent of the selenium isotopes in nature. Similarly low abundances for the lightest isotopes of an element are generally found for all the elements beyond iron.

For advanced students only, differences in the s-, r-, and p-processes can be illustrated through a consideration of the stable isotopes of selenium. In the diagram that follows, nuclides in the unshaded boxes are radioactive. The isotope ^{74}Se can be produced only by the p-process in the previously described reactions. The p-process involves reactions of the type (γ, n) (p, γ), which involve cosmic-ray reactions and are relatively rare. The r-process is blocked because ^{74}Ge is stable and beta decay cannot occur; whereas the s-process is blocked because ^{74}Ge is stable, and therefore it must capture a neutron rather than undergo beta decay to ^{73}As or ^{74}Se. The isotopes ^{76}Se, ^{77}Se, and ^{78}Se are produced in the s-process by slow neutron capture. ^{80}Se may also be produced in the s-process; this depends somewhat upon the s-process time scale because of the long half-life of ^{79}Se. ^{82}Se cannot be produced by the s-process because ^{81}Se has only an 18-minute half-life. The isotopes ^{77}Se, ^{78}Se, ^{80}Se, and ^{82}Se can all be produced in the r-process following the beta decay of their lower-Z isobars (for instance, Fe or Ni). ^{76}Se is not involved in the r-process because ^{76}Ge is stable.

In this section we have included the fact that neutrons are emitted in the fission process. When fission takes place, the two fragments usually have a large amount of extra energy, some of which is dissipated by the emission of neutrons (usually one or two) from each fragment. These neutrons are usually included in any balanced equation for a nuclear fission reaction, but for the beginning student this step can be omitted at the discretion of the teacher. The emission of neutrons in a fission reaction is essential for the propagation of chain reactions in nuclear fission reactors (discussed in section N-45). Such chain reactions have apparently occurred in nature as well. For an excellent description of the natural reactor that was discovered in Africa, see G. A. Cowan, "A Natural Fission Reactor," Scientific American (July 1976), pp. 36-47.
Nuclides in shaded boxes are stable; the percentage abundance of each isotope of an element is given in parentheses; e.g., 9.02% of all selenium is ^{76}Se. Unshaded boxes represent radioactive nuclides. The half-life of each is given along with the decay mode.

Answers to Problems (Student module page 46)

1. a. ^3He
 d. ^9Li
 g. ^{26}Ca
 b. ^2H
 e. ^1H
 h. ^7n
 c. ^{12}C
 f. ^1n
 i. ^7H

2. a. ^{238}U, nuclei of Fe and heavier (usually with an excess of neutrons)
 b. ^2H, ^3He, ^4He
 c. primarily ^{32}S, ^{36}Ar, ^{40}Ca, ^{44}Ca, ^{46}Ti, ^{52}Cr, ^{56}Fe; in general, $28 \leq A \leq 56$
 d. ^{12}C, ^{16}O
 e. Nuclei of Fe and heavier, up to Pb; number of neutrons is usually equal to that of the most stable nucleus for a given A
 f. ^{24}Mg, ^{23}Na, ^{20}Ne, ^{28}Si; in general, $12 \leq A \leq 28$
 g. ^2H, ^3He, ^4He, ^7Li

Miniactivity

Topics that may be suggested for reports are well covered in several Scientific American articles listed under Selected Readings in the student module. In particular, the following references are pertinent.

Expanding Universe and Black Holes
- Penrose, R., *Scientific American* (May 1972)
- Thorne, K., *Scientific American* (December 1974)

Extraterrestrial Life
3. a. r-process
b. s- or r-process
c. big bang (or hydrogen burning—minor)
d. helium burning
e. carbon burning/explosive nucleosynthesis
f. silicon burning/explosive nucleosynthesis
g. big bang or hydrogen burning

4. Combining light nuclei indicates moving up the left-hand part of the binding-energy curve (Figure 6) and releasing energy.

5. Match the following:

G. s-process A. most stable nucleus in the sea of instability
F. r-process B. most abundant element in solar system
E. Z = 114 C. used in dating archeological findings
C. 14C D. used as fuel in fission reactors
A. 56Fe E. superheavy element
D. 92U F. similar to a thermonuclear explosion

3. A nuclear process responsible for limiting the build-up of heavy elements in both stars and the laboratory is
A. position decay. C. nuclear fission.
B. electron capture. D. gamma decay.

4. Match the following processes with the appropriate equations.

<table>
<thead>
<tr>
<th>Process</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. H-burning</td>
<td>A. (_{2}^{235}\text{U} + 16 \alpha \rightarrow _{92}^{239}\text{U})</td>
</tr>
</tbody>
</table>
| A. r-process | B. \(_{56}^{99}\text{Co} + \alpha
+ _{27}^{60}\text{Ni} + \beta \) |
| B. s-process | C. \(_{11}^{2}\text{H} + _{1}^{1}\text{H} \rightarrow _{1}^{2}\text{H} + _{0}^{1}\beta \) |
| D. spontaneous fission | D. \(_{90}^{255}\text{Cf} \rightarrow _{42}^{106}\text{Mo} + _{56}^{142}\text{Ba} + 4 \alpha \) |

SUGGESTED READINGS

Gott, J. R. III; Gunn, J. E.; Schramm, D. N.; and Tinsley, B. M. "Will the Universe Expand Forever?" Scientific American, March 1976, pp. 62–79.

Radioactive Decay

You can introduce this section by referring once again to the Periodic Table of the Elements. Call on a student to identify elements that are radioactive. The term radioactivity has long been familiar to high-school chemistry students, and their conceptualization of the phenomenon is probably accurate. The references in the student module to nuclei and to neutron-proton combinations may require a brief review of atomic structure. Refer to the discussion of stability in the student module. As the module explains, stability is a relative condition. Clarify this point for your students.

N-24 FROM STABLE TO RADIOACTIVE

You can try the following experiment on your desk top at the beginning of a class to illustrate the dependence of stability on time. Build stacks of soft-drink cans, making each stack successively higher, until you run out of luck. The stack that has one can more than the highest stable stack is stable, but only in the sense of a very short time. If everyone were to leave the room quietly at this point, the students would have to conclude that all the stacks were stable. However, during the course of the lecture the least stable structures should give way, whereas the more stable ones should remain unchanged. If your class is such that the single can falls over, apply for a week of R and R.

N-25 RATE OF DECAY: THE WAY IT GOES

We have not employed natural numbers and logs, and yet we have still provided mathematical exposition of the principles of the first-order decay kinetics. The more advanced student can begin with the first-order decay-rate expression.

\[\frac{dN}{dt} = -\lambda N \]

where \(N \) is the number of atoms at any time \(t \) and \(\lambda \) is a constant characteristic of the radioactive decay of any given nuclide. Integrating from \(N_0 \) atoms initially to \(N \) atoms at time \(t \), one obtains

\[\int_{N_0}^{N} \frac{dN}{N} = -\int_0^t \lambda dt \]

which gives

\[N = N_0 e^{-\lambda t} \]

The half-life, \(t_{1/2} \), is defined as the time it takes for one half of the nuclei in a sample to decay, so that \(t_{1/2} \) is the time at which \(N = N_0/2 \). Substituting for \(N \) in the last equation, one obtains

\[e^{-\lambda t_{1/2}} = \frac{1}{2} \]

or

\[\lambda t_{1/2} = \ln 2 = 0.693 \]

so that

\[t_{1/2} = 0.693/\lambda \]

Thus, if the half-life of a nuclide is known, the number of atoms present after a time \(t \) can be determined from \(N = N_0 e^{-\lambda t} \).

The nuclide \(^{244}\text{Pu}\), with a half-life of \(8 \times 10^7 \) years, has recently been found in nature, although in extremely small quantities. \(^{244}\text{Pu}\) measurements of nuclei cannot detect species with half-lives greater than about \(10^{16} \) years. Consequently, nuclei with half-lives greater than this value are said to be stable in nature. There are 280 of these nuclides, as mentioned in Table 5 (student module page 27). At the other extreme, it is possible to measure half-lives as short as about \(10^{-9} \) seconds. This fact has made it possible to detect a large number of synthetic
elements and isotopes. Scientists have managed to synthesize more than 1500 radioactive nuclides that do not exist in nature. Many of these have important applications in chemistry, physics, medicine, and the biological sciences. We will discuss application of radioactive nuclides in Uses of Radiation.

ANSWERS TO PROBLEMS
(Student module page 49)

1. a. \(R = \frac{0.693 \times (24{,}000 \text{ atoms})}{(12 \text{ years}) \times (365 \text{ days/year})} = 3.8 \text{ atoms/day} \)

b. \(N = (24{,}000 \times \frac{1}{2}) = 12{,}000 \)
\(N = (24{,}000 \times \frac{1}{2})^2 = 6000 \)

c. \(N \text{ decayed} = N_0 - N \text{ remaining} = 24{,}000 - 6000 = 18{,}000 \)

2. a. \(R = \frac{0.693 \times (1500 \text{ atoms})}{(12 \times 365)} = 0.24 \text{ atoms/day} \)

b. 22500

c. 1500

N-26 GAMMA DECAY

Note that gamma decay is the type of radiation that is emitted by the minigenerator. Gamma decay follows nearly every nuclear reaction. Usually it is a very rapid process that occurs with nuclides having half-lives of about \(10^{-12}\) seconds. The gamma ray usually is not included in the equation for a nuclear reaction, although it could be. For example,

\[3^4\text{He} \rightarrow ^{12}\text{C} + \gamma \]

and

\[^{12}\text{C} + ^4\text{He} \rightarrow ^{16}\text{O} + \gamma \]

are appropriate equations for helium-burning reactions. Because the half-lives are so short, the inclusion of the gamma ray in the equation is arbitrary, depending on whether or not one wishes to emphasize this feature of the process being expressed. As in the case of judging stability, it depends somewhat on the time scale one is considering.

Although gamma decay usually occurs very rapidly, in some nuclei it is slowed down because of nuclear-structure effects. The symbol \(m \) (for metastable) is usually added after the mass number of these nuclei to indicate this factor. A similar process occurs with the fluorescent decay of atomic states, in which the emission of light from atoms is delayed.

N-27 BETA DECAY

In general, for each mass number \(A \) there are only a few isobars that are stable against beta decay. For all nuclides that have an odd-\(A \) value, only one stable isobar exists. For even-\(A \) values, there are frequently two, and sometimes three, isobars that are stable against beta decay.

This situation is a consequence of the tendency for nucleons of the same type to pair with one another—the pairing effect. Studies of nuclear structure have shown that nuclei with paired neutrons or paired protons (even \(N \) and/or even \(Z \)) are usually more stable than their immediate neighbors that have odd-\(N \) or odd-\(Z \) values. Evidence to support this statement can be found through an examination of the distribution of even-\(Z/\text{even}-N \), odd-\(A \), and odd-\(Z/\text{odd}-N \) nuclides for the naturally occurring nuclides (which are nature's most stable nuclear species), reviewed in section N-14 of this guide. An odd-\(A \) nucleus must always have one odd neutron or proton. There is usually only one stable isobar for odd-\(A \) nuclides, since all beta-decay chains produce a nuclide with one odd nucleon. Even-\(A \) isotopes may have as many as three stable isobars because between each successive pair of even-\(Z/\text{even}-N \) isobars there is an odd-\(Z/\text{odd}-N \) isobar, which is usually less stable. Therefore, it is possible for all the even-\(N/\text{even}-Z \) isobars of mass \(A \) with atomic numbers \(Z - 2, Z, \) and \(Z + 2 \) to be stable, because the odd-\(Z/\text{odd}-N \) isobars with \(Z - 3, Z - 1, Z + 1, \) and \(Z + 3 \) are all unstable and undergo beta decay to their neighbors. Beta decay from \(Z + 2 \) to \(Z \) (double beta decay) has never been observed.
An important example of negatron decay occurs in the r-process. In N-20 we indicated that the nuclide \(^{238}\text{Hg}\) (mercury) was probably formed in the r-process. After the explosion this decays to \(^{238}\text{U}\) by a series of twelve negatron decays:

\[
\begin{align*}
^{238}\text{Hg} & \longrightarrow ^{238}\text{TI} + \mu^- \beta \\
^{238}\text{TI} & \longrightarrow ^{238}\text{Pb} + \mu^- \beta \\
^{238}\text{Pb} & \longrightarrow ^{238}\text{Bi} + \mu^- \beta \\
& \quad \text{and so on, to} \\
^{238}\text{Pa} & \longrightarrow ^{238}\text{U} + \mu^- \beta
\end{align*}
\]

Therefore, the maximum stability for \(A = 238\) (or \(^{238}\text{U}\)) is reached via this process. In order to be rigorously correct in writing equations for beta decay, we should also include the antineutrino, \(\bar{\nu}\) (see sections N-2 and N-15), as follows.

\[
^{238}\text{Pa} \longrightarrow ^{238}\text{U} + \mu^- \beta + \bar{\nu}
\]

Because of the difficulty in detecting neutrinos and the fact that they are not necessary for the level of presentation in this module, discussion of these particles has been omitted here. Two important conservation laws relating to neutrinos have also been omitted. These are (1) the conservation of leptons (electrons, muons, and neutrinos) and (2) the conservation of spin. (See the table in section N-3 of this guide.) The creation of an electron in the above example is balanced by the simultaneous creation of an antineutrino; the lepton (electron) and antilepton (antineutrino) cancel each other out to give a net of zero leptons. This conserves leptons, since there were none to begin with. Also, because the electron has spin \(\frac{1}{2}\), conservation of spin (a vector quantity, subject to the rules of vector addition) requires another particle with spin \(\frac{1}{2}\), which is satisfied by the antineutrino's spin \(\frac{1}{2}\).

Positron decay involves the emission of an antiparticle. After the positron leaves the nucleus, it eventually loses its energy through collisions with electrons. Finally, it forms the lightest "element"—positronium—that is, an "atom" composed of a positron and an electron. This "element" lasts only a fraction of a second, and then the pair annihilate one another with the creation of two gamma rays. All the mass of the electron and the positron is converted into the energy of the gamma rays. This conversion is

\[
E = mc^2 = (2m_e)c^2 = 2(0.0005486 \text{ u}) 931.48 \text{ MeV/u} = 1.02 \text{ MeV, or 0.51 MeV per gamma ray}
\]

With regard to the nucleus, the net results of positron decay and of electron-capture decay are identical. However, the electronic configurations of the two products are quite different. The resulting atom of positron emission has an extra electron, which gives the atom a \(-1\) charge state. The resulting atom of electron-capture decay has electrical neutrality, but a vacancy exists in one of its innermost electron orbits. As a result, X-ray emission generally accompanies electron-capture decay.

EXPERIMENT

N-28 THE HALF-LIFE OF \(^{137}\text{mBa}\)

The purpose of this experiment* is to determine the half-life of the radioactive nuclide \(^{137}\text{mBa}\).

Concepts

- The half-life of a radioactive element is the time it takes for the number of atoms in a sample (or its activity) to be reduced by one-half.
- Nuclides are classified as stable or unstable, depending on their half-lives.

Objectives

- Graph sample radioactive-decay activity against time.
- Determine graphically the half-life of a radioactive nuclide.

Estimated Time One period

Student Grouping Group size will depend on the equipment available.

Experiment 8 in Experiments in Nucleonics (Union Carbide Corp., 1968. Available from Redco Science Inc., Danbury, CT 06810.) Experiment 7 is similar to Experiment 8, but it can prove impractical because of the longer half-life of \(^{113}\text{mIn}\).
Materials

137Cs/137mBa MINIGENERATOR
plastic squeeze bottle
small beaker, 20 cm3
2 cm3 eluant solution
radiation detector
linear graph paper
rubber gloves (required for person handling the liquid isotope)

Advance Preparation

Prepare the eluant solution (see experiment N-13 in this guide). Be sure students adjust the source-to-detector distance to achieve the maximum meter reading.

Prelab Discussion

None, except for a brief safety review.

Laboratory Safety

Review with your students the standard laboratory safety rules they should be following. Note Appendix I: Safety at the end of the student module.

Laboratory Tips

You may wish to use semilog graph paper. Remind your students that it is not necessary to take the logarithm of the number on the ordinate scale; the graph paper does that. They should simply plot one number against the other, taking care to read the scales properly.

Range of Results

SAMPLE DATA (minute intervals only)

Background = 190 cpm

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Activity (cpm)</th>
<th>cpm Corrected for Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1635</td>
<td>1445</td>
</tr>
<tr>
<td>2</td>
<td>1300</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>1025</td>
<td>835</td>
</tr>
<tr>
<td>4</td>
<td>840</td>
<td>650</td>
</tr>
<tr>
<td>5</td>
<td>645</td>
<td>455</td>
</tr>
</tbody>
</table>

The data, when graphed, should yield a half-life of about 2.6 minutes.

Postlab Discussion

137mBa is a metastable isomer of stable 137Ba. It is formed by the emission of a beta particle from the nucleus of 137Cs. It exists in this radioactive isomeric state until the nucleus achieves a stable ground state by emitting a gamma ray. Most metastable isomers emit their gamma rays in a fraction of a second.

Some, however, such as 137mBa, exhibit delayed gamma-ray emission and have half-lives ranging from seconds to months. The gamma rays emitted have energies measured in thousands of electron volts (keV), and these are attributable to rearrangements of nucleons into lower energy levels. 137mBa emits a 662-keV gamma ray, which the students will detect.

The students' data should yield a half-life of approximately 2.6 minutes. The major sources of error include the fact that the detectors being used are simple devices; statistical fluctuations of the data and background corrections will also lend some uncertainty to the final result.

Answers to Questions

1. All points will not fall on a smooth line because of statistical fluctuations in the decay rate, inaccuracies in reading the counter, and decay during counting.
2. Two times the measured half-life, ideally 5.2 minutes.

N-29 ALPHA DECAY

We have not emphasized alpha decay in the radioactive decay of the products of the r-process. After neutron capture produces heavy elements, successive beta decays occur until a beta-stable nuclide is reached. In the heavy-element region ($A \geq 210$), all such nuclides are unstable toward alpha decay and spontaneous fission. As a result, at some time in the distant past, elements that we now synthesize, such as plutonium and curium, were present in the solar system. The half-lives of these species are short compared with the age of the solar system. Therefore, these elements have long since decayed to the only nuclides that are both heavier than bismuth and that have long enough half-lives to have survived until now (238U, 235U, 232Th), or they have decayed to the stable isotopes of lead and bismuth.

The short half-life of 210Po is one reason why the s-process

210Po \rightarrow 206Pb + 4He ($t_{1/2}$ = 138 days)

(neutron capture on a slow time scale) cannot proceed beyond element 83, bismuth. Every time
210Po is produced after the 209Bi (n,γ) reaction and the beta decay of 210Bi, it decays back to 206Pb before another neutron can be captured. Therefore, it is not possible to build up more mass. The same limitation prevents the formation of heavy elements in a nuclear reactor; the extreme instability of 212Po is responsible for the limitation in this case ($t_{1/2} = 10^{-7}$ seconds).

Note that 208Pb has both a closed proton shell and a closed neutron shell. Consequently, this nucleus is similar in many respects to a noble gas atom. On the other hand, 212Po is just an alpha particle beyond closed shells for both neutrons and protons. Its unstable behavior is similar to that of metallic elements: it likes to lose its last couple of neutrons and protons.

The reason that alpha decay occurs rather than 1H, 2H, 3H, or 3He decay is that these reactions are not energetically possible; that is, ΔE (section N-11) is negative and the occurrence of such decays is prohibited by the law of conservation of mass-energy. Because 4He is a doubly magic nucleus, energy is given off when it is formed. Energetically, it is also possible for 12C and 16O decay to occur. However, because of the large charges on these nuclei, charged particles cannot get out easily. The same electrostatic repulsion barrier that hinders a charged particle's entry into a nucleus when it is on the outside keeps it from getting out when it is on the inside. The net result of all these effects is that the alpha particle is the only light particle that can escape from a nucleus with any appreciable probability.

It is the alpha-decay process—along with spontaneous fission, which is discussed in the next section—that currently limits our ability to make new elements in the laboratory. The heaviest known element, element 106, is highly unstable toward alpha decay. It decays rapidly to lawrencium (element 103) according to the equation

$$^{263}106 \rightarrow ^{259}104 + \frac{3}{2}\text{He} \ (t_{1/2} = 0.9 \text{ seconds})$$

Therefore, although element 106 is stable enough so that its momentary existence can be observed, it is too unstable for large amounts of it to accumulate in nuclear-particle accelerators.

It is possible that the superheavy elements corresponding to the island of stability may have alpha-decay half-lives much longer than this, perhaps even as long as the age of the solar system. Scientists are currently pursuing the answer to this problem, but no unambiguous evidence for the existence of such elements has been found as yet. The new superheavy-ion accelerators that are currently being completed at a few laboratories around the world should provide an answer to this compelling question in the near future.

N-30 SPONTANEOUS FISSION

Although instability caused by alpha decay severely limits the production of new heavy elements, it is most likely spontaneous fission that prevents any extension of the Periodic Table of the Elements. Spontaneous fission does not occur for elements lighter than thorium ($Z = 90$), but its probability increases rapidly with an increase in atomic number. For example, consider the following list of spontaneous-fission half-lives.

- 238U $t_{1/2} = 10^{16}$ years
- 252Cm $t_{1/2} = 10^4$ years
- 258Fm $t_{1/2} = 2.6$ hours

Note how the half-life decreases with increasing Z. Only the special stability of closed nuclear shells can alter this pattern. Therefore, even if elements around 296114 do exist, it seems highly unlikely because of spontaneous fission that heavier elements could exist.

Fission fragments, because of their high energy and large mass, cause a great deal of radiation damage when they pass through matter. The total distance they travel through air is comparable to that of alpha particles. The radiation damage in crystals from fission fragments has found a useful application in the determination of the ages of deep-sea sediments. The ocean contains a large amount of uranium, which undergoes spontaneous-fission decay in sedimentary rocks. The radiation damage is so great that it leaves a permanent record in the structure of the rock. By appropriate chemical and microscopic analysis, it is possible for scientists to determine the number of fission events that have occurred per number of uranium atoms present in the rock. From knowledge of this quantity and the spontaneous-fission half-life of uranium, it is then possible to determine the age of the rock.
ANSWERS TO PROBLEMS
(Student module page 57)
1. $^{144}\text{Nd} \rightarrow ^{140}\text{Ce} + ^{4}\text{He}$
2. $^{40}\text{K} \rightarrow ^{40}\text{Ca} + ^{0}\beta$
3. $^{22}\text{Na} \rightarrow ^{22}\text{Ne} + ^{0}\beta$
4. $^4\text{Be} + ^{0}\beta \rightarrow ^3\text{Li}$
5. $^{241m}\text{Am} \rightarrow ^{241}\text{Am} + ^{0}\gamma$
6. $^{254}\text{Fm} \rightarrow ^{125}\text{Sn} + ^{125}\text{Sn} + 4^0\nu$

Miniactivity The following additional problems parallel the previous problems. Have students write equations for the following decay processes.
1. Alpha decay of ^{241}Am
2. Beta decay of ^{26}Al
3. Positron decay of ^{14}C
4. Electron-capture decay of ^{52}Fe
5. Gamma decay of ^{117m}Sn
6. Spontaneous fission of ^{254}Cf, with two neutrons from each of two fragments that have equal mass and charge

Answers:
1. $^{241}\text{Am} \rightarrow ^{237}\text{Np} + ^{4}\text{He}$
2. $^{26}\text{Al} \rightarrow ^{26}\text{Si} + ^{0}\beta$
3. $^{14}\text{C} \rightarrow ^{14}\text{B} + ^{0}\beta$
4. $^{52}\text{Fe} + ^{0}\beta \rightarrow ^{52}\text{Mn}$
5. $^{117m}\text{Sn} \rightarrow ^{117}\text{Sn} + ^{0}\gamma$
6. $^{254}\text{Cf} \rightarrow 2^{125}\text{In} + 4^0\nu$

N-31 THE DATING GAME
Dating techniques that utilize long-lived radioactive isotopes are widespread. We have touched on only a few of the most important dating techniques in the student module. Determining the average age of element formation (nucleosynthesis in the r-process) by measuring the ratio $^{235}\text{U}/^{238}\text{U}$ in natural ores is an example of some of the other applications. The ratio in this application is found to be 1/139. Assuming that both ^{235}U and ^{238}U were produced in nearly equal amounts during nucleosynthesis, we derive an average age of about 6.5 billion years for the elements of the solar system. We say average age here because the elements may have been formed during many stages of stellar evolution. We feel certain the Sun is at least a second-generation star, and it may well be a later-generation star. Consequently, we can speak only of an average age. Note that the elements had to be formed before the Earth and the planets solidified (4.5 billion years ago). Thus, our dating procedures are self-consistent.

The assumption that the radioactivity of ^{14}C in our environment has been at a nearly constant value of about 15.0 disintegrations per minute per gram of carbon throughout time is not quite valid. Studies of the age rings of redwood trees have shown slight variations in the ^{14}C concentration as a function of time. These variations may have resulted from changes in the intensity of the cosmic-ray flux that reached our atmosphere. Another more recent source of variation is the large increase in the use of fossil fuels for energy during the last 150 years, which has enriched the amount of $^{12}\text{CO}_2$ in the atmosphere. This has been counterbalanced somewhat during the last twenty-five years by atmospheric testing of nuclear weapons, which has produced additional $^{14}\text{CO}_2$.

Miniactivity The following are sample problems for advanced students.
1. A potassium ore is found to contain 2.24×10^{-3} cm3 of ^{40}Ar gas at STP and 4.0×10^{-6} grams of ^{40}K. How old is the ore if the half-life of ^{40}K is 1.3×10^9 years? Ignore any decay to ^{40}Ca.

Answer:

$N(\text{K}) = 4 \times 10^{-6} = 10^{-7}$ moles
$N(\text{K}) = 6.0 \times 10^{16}$ atoms
$N_0 = N(\text{Ar}) + N(\text{K}) = 12 \times 10^{16}$ atoms
$N(\text{K}) = N_0 (1/2)^n$
\[(\frac{1}{2})^n = \frac{N(K)}{N_0} = \frac{6 \times 10^{16}}{12 \times 10^{16}} = \frac{1}{2} \]

\[n = 1 = \frac{t}{t_{1/2}} \]

\[t = t_{1/2} = 1.3 \times 10^9 \text{ years} \]

2. Suppose that someone reports having found an original record of an ancient ship that shows the crew visited America over 2000 years ago. When the document is subjected to \(^{14}\text{C}\) dating, it is found that the activity is 15.0 ± 0.3 disintegrations per minute per gram of carbon. Is the document genuine? What would the activity be if it were genuine?

Answer: It's a fake. The activity would be about 10.7 disintegrations per minute if the document were genuine.

\[A = (1.5 \text{ dpm/g})(-0.693) (5730 \text{ yr}) (2000 \text{ yr}) \]

EXPERIMENT

N-32 RADIOACTIVE DECAY IN OUR ENVIRONMENT

This experiment was designed to demonstrate that many common substances in our environment are radioactive, as in the case of \(^{40}\text{K}\). In addition, the experiment shows how the half-life of a very long-lived substance can be measured without actually following its decay through several half-lives. Some approximations are made in the experiment, but surprisingly good results can be obtained for the \(^{40}\text{K}\) half-life with the simple method outlined here. It is worth remembering that most important experiments are first carried out by using approximations. The refinements that lead to a definitive experiment usually come well after the initial attempt.

Concepts

- Many common substances in our environment are radioactive.
- The half-life of a very long-lived radioactive nuclide can be determined from its mass and decay rate.
- The accuracy of an experiment's result depends on how carefully the detection instrument is calibrated.

Objectives

- Measure the half-life of \(^{40}\text{K}\) that is in a sample of KCl.
- Show that common substances in our environment are radioactive.

- Calibrate a detector relative to an absolute standard, in this case a MINIGENERATOR.
- Emphasize the importance of background radiation in radioactive-decay measurements.

Estimated Time One to two periods.

Student Grouping Groups of two to five, depending on the number of detectors available.

Materials

- MINIGENERATOR
- radiation detector
- 10 g of reagent-grade KCl
- watch or clock with second hand
- balance
- 20-cm³ beaker or watch glass

Advance Preparation Since a number of steps are involved in this experiment, it is worthwhile to discuss each step prior to assigning it. Caution students that it is important to observe the fluctuations that may occur in the readings. In particular, have students check to see if the counters go off scale when placed next to the MINIGENERATOR. If so, the counting rate will have to be estimated from the maximum detector reading obtainable.

Prelab Discussion Three important facts need to be stressed prior to taking measurements. First, the equation

\[R = 0.693 \frac{N}{t_{1/2}} \]

involves many concepts. Among these are: mass percent; the determination of the number of atoms (N) in a sample; and the decay rate of a sample, as the number of decays observed in a given period of time. The importance of background radiation must also be stressed. Probably one-third of the background observed in these measurements is caused by \(^{40}\text{K}\) in the surroundings, apart from the KCl sample itself. The amount of radiation danger posed by synthetic radioactivity must be considered relative to the background radiation. The extent to which radioactive \(^{40}\text{K}\) exists in our environment should be emphasized. It is found in rocks, seawater, and our own body fluids.

Laboratory Safety Review with your students the standard laboratory safety rules they should be following. Note Appendix I: Safety at the end of the student module.
Range of Results These results were obtained through the use of a 137Cs MINIGENERATOR and a John-son end-window survey meter.

- **Step I Background, at 10-second intervals**

<table>
<thead>
<tr>
<th>Counting Period</th>
<th>Meter Reading (in cpm)</th>
<th>Counting Period</th>
<th>Meter Reading (in cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Average background = 37 cpm

- **Step 2 Number of 40K atoms**

mass of KCl = 3.96 g

\[
N(\text{K}) = \frac{(3.96 \text{ g}) \times (6.02 \times 10^{23} \text{ atoms/mole})}{(74.6 \text{ g/mole})} = 3.20 \times 10^{22} \text{ atoms}
\]

\[
N(\text{K}) = N(\text{K}) \times 1.1 \times 10^{-4} = (3.20 \times 10^{22}) (1.1 \times 10^{-4}) = 3.5 \times 10^{18} \text{ atoms}
\]

The factor 1.1×10^{-4} is the fraction of natural K atoms that are in the form of 40K.

- **Step 3 Detection** Results of ten counts with cov-er removed from detector.

<table>
<thead>
<tr>
<th>Counting period</th>
<th>Meter Reading (in cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>130</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
</tr>
</tbody>
</table>

\[
R(\text{total}) = R(\text{40K}) + \text{background} = 123 \text{ cpm}
\]

\[
R(\text{40K}) = R(\text{total}) - \text{background} = 86 \text{ cpm}
\]

- **Step 4 Counter Efficiency**

\[
R(\text{MINIGENERATOR}) = 450 \text{ cpm} \times 100 = 4.5 \times 10^{4} \text{ cpm}
\]

\[
R'(\text{40K}) = \frac{(86 \text{ cpm}) (3.3 \times 10^{4} \text{ cps})}{(4.5 \times 10^{4} \text{ cpm})}
\]

This step corrects for the detector efficiency (about 2.3%, in this case) and gives

\[
R'(\text{40K}) = 63 \text{ cps:}
\]

- **Step 5 Half-life for 40K**

\[
t_{1/2} = \frac{(0.693) (3.5 \times 10^{18} \text{ atoms})}{(63 \text{ atoms decayed/s})} = 3.9 \times 10^{16} \text{ s,}
\]

or,

\[
t_{1/2} = \frac{3.9 \times 10^{16} \text{ s}}{3.16 \times 10^{7} \text{ s/yr}} = 1.2 \times 10^{9} \text{ yr}
\]

This compares very well with the accurately determined half-life of 1.3×10^{9} years for 40K. However, expect deviations up to a factor of five in your students' results, especially if any difficulties are encountered with measurement of the MINIGENERATOR activity. Ordinarily this will not be a problem.

Postlab Discussion Compare students' results with the accepted value (1.3×10^{9} years), and discuss possible errors. Discuss the significance of the background radiation and the use of an absolute standard for obtaining results. Point out the usefulness of this method of half-life determination in contrast to directly observing half the material decay!

ANSWERS TO PROBLEMS

(Student module page 62)

1. **a.** \(N = N_0 \left(\frac{1}{2} \right)^n = (4.0 \times 10^5)(\frac{1}{2})^1 = 2.0 \times 10^5 \text{ atoms} \)

 b. \(1.0 \times 10^5 \text{ (another half-life has passed)} \)

 c. \(8.0 \times 10^5 \)

 d. \(N(\text{11B}) = N(\text{11C at 9:00}) - N(\text{11C at 10:00}) = 8.0 \times 10^5 - 1.0 \times 10^5 = 7.0 \times 10^5 \)

 e. approximately \(8.0 \times 10^5 \)

absolute value of 137Cs MINIGENERATOR
2. From the chemical atomic masses,

\[N^{(238}\text{U}) = \frac{1.0 \text{ g} (6.02 \times 10^{23} \text{ atoms/mole})}{238.0 \text{ g/mole}} = 2.5 \times 10^{21} \text{ atoms} \]

\[R = \frac{(0.693) (2.5 \times 10^{21} \text{ atoms})}{(4.5 \times 10^9 \text{ yr}) (365 \text{ d/yr}) (24 \text{ h/d}) (60 \text{ min/h})} = 7.3 \times 10^5 \text{ atoms/min} \]

3. Since \(R \) is proportional to \(N \), then

\[R = (\frac{1}{2})^n R_0 \]

\[3.8 = (\frac{1}{2})^n 15.1 \]

\[(\frac{1}{2})^n = \frac{3.8}{15.1} \]

\[n = 2 \text{ half-lives} \]

\[\text{age} = 11 \times 460 \text{ yr} \]

4. a. \(^{240}\text{Pu} \rightarrow ^{9}\text{Be} + ^{236}\text{U} \)
b. \(^{210}\text{Bi} \rightarrow ^{0}\beta + ^{210}\text{Po} \)
c. \(^{55}\text{Fe} \rightarrow ^{0}\beta + ^{55}\text{Mn} \)
d. \(^{55}\text{Fe} + ^{0}\beta \rightarrow ^{55}\text{Mn} \)
e. \(^{242}\text{mAm} \rightarrow ^{242}\text{mAm} + ^{\gamma} \)

5. a. beta
b. gamma
c. gamma

evaluation items

The following are additional evaluation items that you may wish to use with your students at various times during the preceding unit. The correct answer to each question is indicated by shading.

1. The reaction that represents positron emission is:

A. \(^{9}\text{Be} \rightarrow ^{9}\text{Be} + ^{0}\beta \)
B. \(^{14}\text{C} \rightarrow ^{14}\text{N} + ^{0}\beta \)
C. \(^{137}\text{Ba} \rightarrow ^{137}\text{Ba} + ^{\gamma} \)
D. \(^{235}\text{U} + ^{0}\text{n} \rightarrow ^{137}\text{Cs} + ^{96}\text{Kr} + 3 ^{0}\text{n} \)

2. A certain radioactive nuclide has a half-life of 50 minutes. If a sample containing 640 atoms is observed to decay for 100 minutes, how many atoms will remain?

A. 320 atoms C. 60 atoms
B. 120 atoms D. 160 atoms

3. Write balanced equations for the following reactions:

A. the alpha decay of \(^{236}\text{U} \)

\(^{236}\text{U} \rightarrow ^{233}\text{Th} + ^{3}\text{He} \)

B. the negatron decay of \(^{239}\text{U} \)

\(^{239}\text{U} \rightarrow ^{239}\text{Np} + ^{0}\beta \)

C. the fusion of four \(^1\text{H} \) nuclei to form \(^4\text{He} \)

\(^4\text{He} + 2 ^0\beta \)

4. Which of the following is not a mode of radioactive decay?

A. positron emission C. fission
B. fusion D. negatron emission

5. If \(^{14}\text{C} \) has a half-life of 5730 years, and initially there are 800 carbon atoms, how many carbon atoms will remain after 17 190 years?

A. 267 B. 400 C. 100 D. 200

6. Given the following data for a \(^{113}\text{Sn} / ^{113}\text{In} \) experiment, construct a graph of activity versus time in minutes.

<table>
<thead>
<tr>
<th>Time</th>
<th>Corrected Activity cpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:45</td>
<td>3700</td>
</tr>
<tr>
<td>10:40</td>
<td>2500</td>
</tr>
<tr>
<td>11:00</td>
<td>2100</td>
</tr>
<tr>
<td>11:45</td>
<td>1400</td>
</tr>
<tr>
<td>1:00</td>
<td>900</td>
</tr>
<tr>
<td>1:30</td>
<td>700</td>
</tr>
</tbody>
</table>

Using the graph, determine the experimental half-life for \(^{113}\text{In} \), expressed in minutes.

The dotted line on the graph shows the determination of approximately a 100-minute half-life.
7. Four hours after chemical separation a radioactive nuclide with a half-life of 8 hours has 1000 atoms left. How many atoms were present at the time of separation? 1414

8. \[^{241}\text{Am} \rightarrow ^{241}\text{Am} + \gamma \]

9. \[^{60}\text{Co} \rightarrow ^{60}\text{Co} + \gamma \]

SUGGESTED READINGS

SUGGESTED FILMS

Alpha, Beta, and Gamma. Color, 44 minutes. U.S. Department of Energy, Film Library, P.O. Box 62, Oak Ridge, TN 37830.

Explores the origin and nature of alpha, beta, and gamma radiation.

Presents archaeological uses of atomic energy—the atomic clock, the atomic fingerprint, and the atomic X ray.

The Search for New Elements

We recommend that you read G. Seaborg, *Man-made Transuranium Elements* (Englewood Cliffs, N.J.: Prentice-Hall, 1963), which is listed in the *Suggested Reading* of this unit. It presents an excellent, although now somewhat dated, review and history of those elements.

N-33 MODERN ALCHEMY

This section gives a historical account of the nuclear chemists’ "alchemy"—the manufacture of elements heavier than uranium. Help your students to grasp the significance of the research that has been conducted during the past forty years by reviewing with them the development of the transuranium elements. Be sure your class understands the use of the cyclotron and other accelerators in the transmutation of elements. Your students may have learned about reactors and accelerators in their previous study of science, but some clarification may be necessary at this point.

Refer to Table 7 (student module page 65). Call on a student to interpret the table. Ask the following questions. "What is the half-life of \(^{237}\text{Np}\) (neptunium)? Of \(^{224}\text{Pu}\) (plutonium)?" (As the table indicates, the half-life of \(^{237}\text{Np}\) is \(2.2 \times 10^6\) years, and the half-life of \(^{224}\text{Pu}\) is \(8 \times 10^7\) years.) "What kind of decay does plutonium undergo?" (Alpha decay) Ask a student to identify the inner transition elements.

Discuss the equations described in the text for the synthesis of transuranium elements.

It should be noted that scientists in the Soviet Union have reported the discovery of isotopes of elements 104-107 and their decay by spontaneous fission. However, the results of recent work have indicated that many of these discoveries may need further investigation.

N-34 SUPERHEAVY-ELEMENT SYNTHESIS

The chemical properties of the transuranium elements are much like those of their neighbors directly above them in the *Periodic Table of the Elements*. Elements 93-103 complete the inner transition, or actinide, series. Elements 104, 105, and 106 are expected to behave similarly to the transition metals, \(^{72}\text{Hf}\) (hafnium), \(^{73}\text{Ta}\) (tantalum), and \(^{74}\text{W}\) (tungsten), respectively. The superheavy elements will complete the transition metal series with elements 110, 111, and 112 (analogous to Pt, Au, and Hg). These will be followed by a series of normal elements: element 113, belonging to the boron family, element 114, belonging to the carbon family, and element 115, belonging to the nitrogen family. All these elements are expected to be metals, but they will probably have some unusual chemical properties. Note that element 118 is expected to be a "noble gas," but because of its large atomic mass it is most likely to be a "noble liquid."
A number of reports of the observations of superheavy elements have appeared in the scientific literature and the popular press. However, as of this writing, none of the observations reported have been verified. In each case an alternative explanation has been found to discount the reports of evidence for the existence of superheavy elements.

ANSWERS TO PROBLEMS

(Student module page 68)

1. Berkeley, California
2. ^{232}Th, ^{235}U, and ^{238}U (also ^{40}K, ^{87}Rb, ^{50}V)
3. $N \propto m$:
 \[(m) = (m_0) \left(\frac{1}{2}\right)^n = (0.50 \text{ g}) \left(\frac{1}{2}\right)^2 = 0.35 \text{ g}\]
4. Tremendous speeds are required to overcome the electric-charge repulsion between the two positively charged nuclei.
5. Electric and magnetic fields are used to accelerate the particles. These act only on charged particles; therefore, the atoms must be ionized.

EVALUATION ITEMS

The following are additional evaluation items that you may wish to use with your students at various times during the preceding unit. The correct answer to each question is indicated by shading.

1. Place the elements with $Z = 110$–126 into the periodic table. Predict their chemical properties based on their position in the table.
 Answers determined by teacher.
2. What methods are being used to try to synthesize the superheavy elements?
 heavy-ion reactions and the r-process

SUGGESTED READING

SUGGESTED FILMS

The Alchemist's Dream. Color, 29 minutes. U.S. Department of Energy, Film Library, P.O. Box 62, Oak Ridge, TN 37830. Members of the Argonne Chemistry Division explain the use of the cyclotron in the transmutation of curium to berkelium.

Uses of Radiation

Suggest to your students that they refer to magazines and newspapers for stories about the uses of radiation. Give the students an opportunity to collect clippings from magazines and newspapers and then make comparisons. Discuss and exchange information. You might also plan a field trip to a hospital in your community. A technician in the radiology department of your local hospital could be asked to give a presentation on the use of radiation in the treatment of patients.

N-35 RADIATION IN OUR ENVIRONMENT

Among the sources of natural radioactivity that we are exposed to daily are radioactive atoms of the inert gas radon, ^{222}Rn and ^{220}Rn. These nuclei and their alpha-decay products occur naturally in the air as a result of the decay of ^{232}Th and ^{238}U in the Earth's crust and in the ocean. Although these constitute minimal radiation hazards, they are constant ones and must be considered whenever we discuss the hazards of synthetic radiation, such as that in nuclear reactors.

To give some idea of the extent of radiation in our environment, it is necessary to compare the amount of natural radiation to which we are exposed annually with the standards for the maximum permissible amount of radiation per year. Radiation dosage is measured in terms of the rem, which is a measure of the amount of biological damage caused by a given source of radiation. The U.S. Department of Energy has established a
maximum safe dosage per year for persons whose work involves the use of radiation. This maximum is 5 rems per year. It should be stressed that this limit has been established to represent an amount of radiation that will not be harmful in any way to the recipient. This limit is based on studies of radiation effects on animals and of radiation accidents involving people.

Natural radiation constitutes about 5 percent of the established safety limit. Several variations should be noted. People living at high altitudes receive more radiation because fewer cosmic rays are attenuated by the atmosphere there. You are better protected from radiation if you live in a log cabin than in a brick house because the latter contains much more 40K. Water supplies that originate in soils rich in potassium, uranium, and thorium are responsible for much more exposure than water that is free of those elements.

Synthetic sources of radiation are medical and dental X rays, radioactive fallout, and industrial sources such as nuclear reactors. The latter two sources together constitute less than 0.5 percent of the maximum safe limit at the present time. In the past, X rays have been our most common source of radiation exposure. Improvements in the design of X-ray devices, however, have greatly reduced their danger. But it is still worthwhile for people to inquire about the safety of X-ray equipment to make sure it is of modern design.

A worksheet to accompany your discussion of the text and illustration on pages 70 and 71 of the student module has been included on the following page. You may reproduce this worksheet in classroom quantities or make an overhead projectual for use in your classroom discussion.

Excellent source material for students that is related to this and the following sections can be found in the Department of Energy's Understanding the Atom series. Although the series is out of print, it may still be available in your local library.

Several experiments in Experiments in Nucleonics (New York: Union Carbide Corp., 1968. Available from Redco Science Inc., Danbury, CT 06810.) can be added to this section to show how radioactive nuclei can be used as tracers in chemical reactions. These include the following.

Experiment 16 Precipitation of Indium Hydroxide

Experiment 17 Co-precipitation of Indium Hydroxide

Experiment 19 Tracing

Experiment 23 Determination of the Amount of Liquid in a Container

Experiment 25 Diffusion

ANSWERS TO PROBLEMS
(Student module page 70)

1. Answers will vary. Sample answer (not including work-related exposure):

<table>
<thead>
<tr>
<th>Source</th>
<th>Radiation Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmic radiation</td>
<td>46 mrem</td>
</tr>
<tr>
<td>House construction</td>
<td>45 mrem</td>
</tr>
<tr>
<td>Ground</td>
<td>15 mrem</td>
</tr>
<tr>
<td>Water, food, air</td>
<td>25 mrem</td>
</tr>
<tr>
<td>Weapons-test fallout</td>
<td>4 mrem</td>
</tr>
<tr>
<td>X-ray diagnosis</td>
<td>9 mrem</td>
</tr>
<tr>
<td>Jet airplane travel</td>
<td>36 mrem</td>
</tr>
<tr>
<td>Television viewing</td>
<td>0.10 mrem</td>
</tr>
</tbody>
</table>

Annual radiation dose = 180 mrem

2. a. Yearly exposure = 180 mrem (from Problem 1);

MINIGENERATOR radiation at 60 cm

= 10^{-4} mrem/h

Therefore,

\[
\text{time} = \frac{180 \text{ mrem}}{10^{-4} \text{ mrem/h}} = 180 \times 10^4 \text{ h} = 200 \text{ yr}
\]

b. Radiation from 3 hours of TV viewing per day = 0.45 mrem

\[
\text{time} = \frac{0.45 \text{ mrem}}{10^{-4} \text{ mrem/h}} = 4.5 \times 10^3 \text{ h} = 0.5 \text{ yr}
\]

EXPERIMENT N-36 GAMMA-RAY PENETRATION

To compare the penetrating powers of various types of radiation, students will find the diagram on page 55 of the student module to be useful. The thickness of material that is required to stop equal-energy alpha, beta, and gamma rays of a few MeV is shown here.

This experiment is intended to illustrate the high energy of nuclear radiation. It also aims to determine the amounts of material required to absorb nuclear radiation and shows the dependence of absorption on the type of material.
Sources and Amounts of Radiation per Year

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount (mrem)</th>
<th>Your Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmic radiation (at sea level) elevation: add 1 for every 100 feet of elevation.</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>House construction (3/4 time spent indoors; U.S. average)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>brick</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>stone</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>wood</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>concrete</td>
<td>45</td>
</tr>
<tr>
<td>Ground (3/4 time spent outdoors; U.S. average)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Water, food, air (U.S. average)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Weapons test fallout</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>X-ray diagnosis</td>
<td>9 (each)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chest X ray</td>
<td>9 (each)</td>
</tr>
<tr>
<td></td>
<td>gastrointestinal tract X ray</td>
<td>210 (each)</td>
</tr>
<tr>
<td>Jet airplane travel (6000-mile flights)</td>
<td>4 (each)</td>
<td></td>
</tr>
<tr>
<td>Television viewing</td>
<td>0.15 (\times) number of hours per day</td>
<td></td>
</tr>
<tr>
<td>How close you live to a nuclear power plant</td>
<td>0.2 (\times) annual average number of hours you spend there per day</td>
<td></td>
</tr>
<tr>
<td>At site boundary</td>
<td>0.02 (\times) number of hours you spend there per day</td>
<td></td>
</tr>
<tr>
<td>1 mile away</td>
<td>0.002 (\times) number of hours you spend there per day</td>
<td></td>
</tr>
<tr>
<td>5 miles away</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>over 5 miles away</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The period of time of exposure is one year unless otherwise stated.

Total **59**
Concepts
- Gamma radiation has great penetrating power.
- Some materials are better able to absorb radiation than others.
- The ability of a given material to absorb radiation depends on its thickness.
- The amount of material necessary to reduce the intensity of radiation to one-half its original value is called the half-thickness of the material.

Objectives
- Determine experimentally the half-thicknesses of sheets of aluminum (Al), copper (Cu), and lead (Pb).
- Graph radiation intensity versus sheet thickness and graphically determine half-thickness.
- Compare shielding abilities of various metals and explain the differences.

Estimated Time One period

Student Grouping Groups of two to five, depending on the equipment available.

Materials
- radiation detector
- MINIGENERATOR or other gamma-ray source
- 3 sheets of aluminum (each sheet approximately 25 cm square and 0.1 cm thick)
- 3 sheets of copper
- 10 sheets of lead
- linear graph paper
- ruler, centimeter
- ring stand and ring
- pair of rubber gloves

Advance Preparation Check the background radiation yourself before instructing the students to proceed with the experiment. If the students' average readings are questionable, you can have them take more readings to verify their initial findings.

Prelab Discussion This experiment relates directly to the student because it provides a basis for knowledge about shielding individuals from radiation. This knowledge is important for X-ray technicians and their patients, for the nuclear power industry and its employees, for people who work on nuclear-powered ships, and for any other people who work in an area that has radioactive materials.

Laboratory Safety Review with your students the standard laboratory safety rules they should be following. Note Appendix I: Safety at the end of the student module.

Laboratory Tips Several count-rate readings of each intensity should be taken and averaged to reduce the possibility of statistical errors. This is always good practice if time permits. If the MINIGENERATOR is placed in a counting chamber below the detector, the sheets of lead shielding can be cut into disks that neatly fit on the trays of the counting chamber. Typical lead sheets are about one millimeter thick. The intensity reading will be substantially reduced by the time ten sheets have been placed between the MINIGENERATOR and the detector.

The graph of count rate versus thickness can be plotted on semilogarithmic graph paper. With semilog paper a straight line should result, whereas with linear paper the plot will produce a curved line. The thickness may be plotted in centimeters or merely in units of single sheets of lead, as in the sample data, in which a 137Cs/137mBa MINIGENERATOR and a scintillation detector were used. Remind your students that it is not necessary to take the logarithm of the number on the ordinate scale; the graph paper does that. Have them simply plot one number against the other, taking care in reading the scales.

Range of Results One experimental determination of the half-thickness of lead is illustrated by the sample data and the accompanying graph.

<table>
<thead>
<tr>
<th>Sheets of Lead</th>
<th>Activity (cpm)</th>
<th>cpm Corrected for Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5475</td>
<td>4245</td>
</tr>
<tr>
<td>1</td>
<td>4940</td>
<td>3710</td>
</tr>
<tr>
<td>2</td>
<td>4580</td>
<td>3350</td>
</tr>
<tr>
<td>3</td>
<td>4210</td>
<td>2880</td>
</tr>
<tr>
<td>4</td>
<td>3870</td>
<td>2640</td>
</tr>
<tr>
<td>5</td>
<td>3650</td>
<td>2420</td>
</tr>
<tr>
<td>6</td>
<td>3375</td>
<td>2145</td>
</tr>
<tr>
<td>7</td>
<td>3090</td>
<td>1860</td>
</tr>
<tr>
<td>8</td>
<td>2880</td>
<td>1650</td>
</tr>
<tr>
<td>9</td>
<td>2690</td>
<td>1460</td>
</tr>
<tr>
<td>10</td>
<td>2480</td>
<td>1250</td>
</tr>
</tbody>
</table>

SAMPLE DATA
Background = 1230 cpm
With these data the curve of the attenuation of gamma-ray intensity caused by shielding indicates a half-thickness of 6.3 sheets of lead. If each sheet is one millimeter thick, the half-thickness is 0.63 cm. The point shown on the graph indicates how the half-thickness of lead was experimentally determined from the sample data.

Postlab Discussion As gamma rays pass through matter they interact with the atoms of that matter. Some of the gamma rays lose all their energy and are absorbed. Other gamma rays lose only some of their energy by colliding with atoms and being deflected. The overall effect of these interactions is a loss of gamma-ray intensity, which can be expressed by Lambert's law.

\[I = I_0 e^{-\mu x} \]

In this equation, \(I_0 \) is the original gamma-ray intensity; \(I \) is the intensity of gamma rays after they pass through the absorbing material; \(x \) is the thickness (cm) of the absorbing material; \(e \) is the natural logarithm base; and \(\mu \) is a linear absorption coefficient (cm\(^{-1}\)), which depends on the number of electrons in an atom of the absorbing material and on the energy of the gamma radiation. In general, the higher the atomic number of the absorbing material, the more effective it is in stopping radiation.

The ability of a material to decrease gamma-ray intensity is usually measured by a half-thickness value. This value is the thickness (expressed in centimeters) of a material that decreases the intensity of the gamma ray by one-half. Therefore,

\[I = \frac{1}{2} I_0 e = 2.3 \]

\[2.3 \log \left(\frac{1}{2} I_0 \right) = 2.3 \log 2 = \mu x_\frac{1}{2} \]

\[x_\frac{1}{2} = 0.693/\mu \]

When gamma rays traverse matter, they give up energy by interacting with the electrostatic field around atomic electrons. Few interactions occur with nuclei because of the very small volume of the nucleus. The nuclear volume is more than \(10^{12} \) times smaller than the volume of the atom. Once a photon undergoes any interaction, it is no longer considered to be part of the primary beam. This experiment investigates the shielding ability of lead without considering the nature of the photon–electron interaction. Refer to Experiment 13 in *Experiments in Nucleonics* (New York: Union Carbide Corp., 1968. Available from Redco Science Inc., Danbury, CT 06810.)

The student has been exposed to several new terms and concepts that might seem bewildering if taken in aggregate. It is not suggested that high-school students be held responsible for the derivation of Lambert's law or geometry effects. Half-thickness can perhaps best be explained by an example of what happens to a quantity of radiation after it passes through several layers of a material, as illustrated in the following diagram. This is basically what the student is doing in identifying half-thickness from a graph of radiation intensity versus thickness of material. After the students establish a value for the thickness of shielding that will reduce radiation to one half of the previous intensity, they will be asked to consider several implications (Questions 1, 2, 3, and 4).

\[\frac{I_0}{2} \rightarrow \frac{I_0}{4} \rightarrow \frac{I_0}{8} \]

Schematic representation of the concept of half-thickness (\(X_{1/2} \)). Gamma rays (eight of them) pass through one half-thickness, and on the average four of them are transmitted; for example, the initial intensity \(I_0 \) is cut in half: \(I_1 = 1/2 I_0 = 4 \). A second sheet of the same thickness cuts the intensity in half again; for example,

\[I_2 = 1/2 I_1 = 2 \text{ gammas.} \]

Similarly,

\[I_3 = 1/2 I_2 = 1/4 I_1 = 1/8 I_0 = 1 \text{ gamma.} \]
Answers to Questions

1. The counting rate decreased from Al to Cu to Pb.
2. The counting rate decreases as the shielding thickness increases.
3. Answers here depend on the MINIGENERATOR source used. For 137Cs/137Ba, about 0.6 cm of lead is expected; for 113Sn/113In, approximately 0.3 cm of lead. (Gamma-ray energies vary by source.)
4. Increased distance will lead to a lower result and decreased distance to a higher result.

N-37 RADIOACTIVE TRACERS IN CHEMISTRY

Other examples of radioactive tracing can also be presented. For example, if the labeled solid $\text{Pb}^+(\text{NO}_3)_2$ is mixed in water with a previously prepared precipitate of PbSO$_4$, it is found that after a while the PbSO$_4$ solid will also contain radioactive lead. This results from the exchange of lead ions between the solution and the solid and demonstrates the ionic nature of PbSO$_4$ and Pb(NO$_3$)$_2$.

\[
\begin{align*}
\text{Pb}^+(\text{NO}_3)_2(s) & \rightarrow \\
\text{Pb}^{2+}(aq) + 2 \text{NO}_3^-(aq) & \text{ (dissolves completely)} \\
\text{PbSO}_4(s) & \rightarrow \\
\text{Pb}^{2+}(aq) + \text{SO}_4^{2-}(aq) & \text{ (dissolves very slightly)} \\
\text{Pb}^{2+}(aq) + \text{SO}_4^{2-}(aq) & \rightarrow \text{Pb}^+(\text{SO}_4)_2(s)
\end{align*}
\]

On the other hand, if labeled sulfide ions, S^{2-}, are mixed with unlabeled sulfate ions, SO$_4^{2-}$, no exchange for the labeled atoms by the latter is observed. This is because of the strong covalent bonds between the sulfur and oxygen atoms in SO$_4^{2-}$.

\[
\begin{align*}
\text{sulfide ion} & \quad \text{sulfate ion} \\
\left[\begin{array}{c} \ddots \\ \vdots \end{array} \right]^{2-} & \left[\begin{array}{c} \ddots \\ \vdots \end{array} \right]^{2-}
\end{align*}
\]

One important technique that has proved useful for the analysis of complex organic and biochemical compounds is isotope dilution. In this method a known mass (or volume) of a labeled compound is added to a mixture (the unknown) that contains the same compound that is unlabeled. The compound is then separated by chemical means. Because the radioactive molecules are chemically the same as those in the unknown mixture, they will behave alike during the separation procedures. Then the total mass (or volume) of the compound (added tracer plus unknown) and its radioactive decay rate are measured. From the ratios of the initial masses and radioactivity to the final masses and radioactivity, the amount of material present in the original unknown sample can then be determined. The equation for this experiment on isotope dilution is

\[
\frac{\text{mass of final sample}}{\text{radioactivity of final sample}} = \frac{\text{mass of unknown} + \text{mass of initial tracer}}{\text{radioactivity of initial tracer}}
\]

MINIEXPERIMENT N-38 TRACERS

In this experiment the student differentiates between compounds in a group of substances to determine which are radioactive and which are stable. A group of six to eight samples, each having a mass of 10–20 grams, is usually adequate. Easily obtainable radioactive compounds include salts of potassium, rubidium, thorium, and uranium. Old uranium and thorium compounds are most desirable, and if mineral samples of pitchblende or other uranium or thorium ore are available, these will work well. Other possible sources of radioactivity include old radium-dial wristwatches and orange Fiesta cooking ware that is more than fifteen years old. The latter two sources are no longer on the market but can frequently be found in homes as keepsakes. If you have access to the old Fiesta ware, handle it with care. The orange color was obtained through the use of a uranium compound, and the item or items may be very radioactive.

In the group of substances include a number of "blanks," such as NaCl. Also, remember that the activity of the potassium and rubidium compounds is quite low, and so the student must exercise some care in distinguishing between those compounds and other nonradioactive substances. Careful background measurements are essential. In fact, there may be some difficulty in determining the radioactivity of rubidium compounds if the radiation detectors you use are not very sensitive.
EFFECTS OF RADIATION DOSES

The effects of nuclear radiation on biological systems have been extensively studied. In particular, the survivors of the Hiroshima and Nagasaki nuclear explosions in World War II have been carefully followed. This project continues today. From these and other studies we know that excessive radiation exposure results in an increased incidence of leukemia. For example, if a dose of 500 rems is received by a population sample in a few hours, about 50 percent of those exposed can be expected to die as a direct result of the exposure. However, this dose is 100 times the maximum annual safety limit established for people who work with radiation. It is almost 3000 times the annual background exposure.

Determination of the maximum safe exposure to radiation is the subject of extensive research at the present time. The problem is very complex because of a lack of available data on the effects of low-level radiation on human subjects (although we know what high levels do) and because of the extreme variability in the responses of different individuals. With regard to the latter point, the problem is somewhat like trying to establish a fixed number of minutes one can be exposed to the Sun without getting a sunburn and then applying that limit to the entire population. Various environmental effects add to the problem. For example, the average background radiation in Colorado is more than twice that in Pennsylvania. Yet Pennsylvania ranks about tenth nationally in cancer mortality, whereas Colorado has one of the lowest rates, ranking forty-sixth.

NUCLEAR TECHNIQUES IN MEDICINE

The application of tracers in medicine is established by the following criteria. A radioactivity-tagged compound that is specific to a given constituent of the body must be available. For example, iodine concentrates in the thyroid gland. Thus, 131I is a good tracer for investigation of the thyroid.

The tracer nucleus should decay by beta- or gamma-ray emission (or both) rather than by alpha decay. This facilitates detection of the radiation, since gamma and beta rays are not absorbed as readily by the human body as are alpha particles. See the illustration on page 55 of the student module for a comparison of the relative penetrating powers of alpha, beta, and gamma rays.

A suitable detection device for the emitted radiation must be available. Modern instrumentation includes scanning devices such as the one shown on page 76 of the student module; these provide a high degree of accuracy in measuring radiation.

You might check with your local hospital to see if radioisotope imaging is performed there as a diagnostic procedure. The field of nuclear medicine has grown very rapidly in the past ten years, and there are now more cyclotrons in hospitals in this country than there are in nuclear research laboratories. Tracer diagnosis has certainly become one of the most effective demonstrations of the benefits of radioactivity. You may want to arrange for a speaker to visit your class to discuss uses of tracers in medicine.

NUCLEAR TECHNIQUES IN AGRICULTURE

An interesting approach to the constructive use of radiation has been employed in insect control. For example, the screwworm fly is an insect that is common in the southern United States, where it causes considerable damage to livestock. One method of controlling these flies has been to breed them and then to sterilize them with radiation when they reach the adult stage. Large numbers of the sterilized flies are then released in the infested area and allowed to mingle with the normal flies. The mating between sterile flies and the normal population leads to such a high percentage of sterile eggs that very few eggs hatch and, as a result, the next generation of flies is effectively eliminated. This method has proved very successful in the control of the screwworm fly during the past several years.

In applications similar to those discussed in the student module, harmful insects can be labeled in order to track their life cycles and thus gain a better idea of the range of their migration and also to learn what their natural predators are. For example, by using radioactivity-tagged aphids, scientists have learned that these pests are eaten by the praying mantis but not by other large insects. Consequently, the praying mantis can serve as an effective, nontoxic method of aphid control.
Another area of nuclear application is in the study of animal nutrition. Tracers have been found to be valuable in determining the feed that most economically produces the most nutritious meat. They have also been used to test the effects of growth-stimulating hormones and tranquilizers given to cattle. (Cattle are sometimes given tranquilizers during shipment to market—otherwise they get nervous and lose weight.) The tracer technique makes it possible to examine meat processed from such cattle to ensure that these drugs do not appear as contaminants.

EXPERIMENT
N-42 PLANT ABSORPTION OF PHOSPHORUS

This experiment is intended to demonstrate the usefulness of tracers in agriculture. The students will trace the flow of 32P uptake through the roots and stems of a plant to final deposition in the leaves.

Concepts
- Agricultural scientists can use tracers to monitor the flow of materials through plant tissues.
- Plants absorb minerals through their roots, and their stem tissue distributes the minerals to the leaves.

Objectives
- Demonstrate the uptake of 32P by plants.
- Demonstrate the distribution of 32P by the stem tissue to the leaves.

Estimated Time One and one-half periods.

Student Grouping Groups of two to five, depending on the number of radiation detectors available.

Materials
- 2.5 cm³ (5 μCi) of 32P solution
- potted plant
- balance, 0.01 g sensitivity
- scissors
- plastic wrap
- radiation detector
- pair of rubber gloves
- 400-cm³ beaker

Advance Preparation Dilute 2.5 cm³ (5 μCi) of 32P solution to 100 cm³. Prepare enough solution for all the plants. Use 100 cm³ per plant.

Prelab Discussion Remind the students that this experiment demonstrates a typical use of tracers in agriculture.

Laboratory Safety Review with your students the standard laboratory safety rules they should be following. Note the safety section in Appendix I of the student module.

Laboratory Tips Try this experiment yourself beforehand to determine the amount of plant material needed to provide an activity level that your detectors can measure. Each group may need more than one plant, or, if you wish, the groups can pool their different plant tissues.

Range of Results Variable

Postlab Discussion Review the data collected and discuss the relative amounts of 32P in the different types of plant tissues. Perhaps a biology teacher would offer suggestions regarding the use of 32P made by each type of tissue.

Answers to Questions
1. leaf tissue
2. Minerals such as phosphorus are metabolized primarily by the leaves of plants.
3. The distance between the detector and the radiation source should be constant so that the relative amounts of radioactivity among the plant parts can be accurately compared.

N-43 RADIATION AND CONSUMER PRODUCTS

With the exception of the ionization smoke detector, most commercial applications of nuclear techniques are employed in product quality control, where they are very useful in gauging the thickness and uniformity of materials, for locating structural defects, and for similar diagnostic procedures.
ACTIVATION ANALYSIS

You can evaluate your students' understanding of neutron-activation analysis by asking, "How does a criminologist use neutron activation analysis to determine whether a murder suspect has fired a gun?" A student who understands neutron-activation analysis can readily answer this question. Proceed with your lesson by calling attention to Table 10 (student module page 84).

Miniactivity Many criminology laboratories and environmental studies laboratories use neutron activation analysis as a routine technique. If there is such a laboratory near your school, a guest speaker can be invited to talk about this important analytical technique.

ANSWERS TO PROBLEMS
(Student module page 84)

The answers to the discussion problems will depend on the reading that the students have done. Pursue these problems as time, interest, and information will allow.

Miniactivity Help the students organize a debate on the impact of radiation on society.

EVALUATION ITEMS

The following are additional evaluational items that you may wish to use with your students at various times during the preceding unit. The correct answer to each question is indicated by shading.

1. Give two examples of sources of natural background radiation.
 Sample answers: long-lived, naturally occurring nuclides, such as 40K and 238U; cosmic radiation and its products, such as 14C and 3H.

2. Give two examples of synthetic sources of radiation.
 Sample answers: medical X rays; radioactive fallout.

3. List three uses of radioactive tracers in medicine and agriculture.
 Refer to sections N-40 and N-41.

4. Which nuclide has been used as a tracer in medical diagnosis?
 A. 90Sr C. 131I
 B. 238U D. 14C

5. Which material would have the highest half-thickness value when tested with gamma radiation?
 A. paper C. copper
 B. aluminum D. lead

SUGGESTED READINGS

SUGGESTED FILMS

Nuclear Spectrum. Color, 28 minutes. U.S. Department of Energy, Film Library, P.O. Box 62, Oak Ridge, TN 37830. Scientists directly involved in nuclear research introduce viewers to their laboratories and discuss new investigations and the development of spinoff applications.

This Nuclear Age. Color, 28 1/2 minutes. Canadian Consulate General, 1251 Avenue of the Americas, New York, NY 10020. An up-to-date account of both pure and applied nuclear research and development in Canada.

Nuclear Power

An understanding of the principles of energy production is becoming increasingly essential for all members of our society. Many of the important decisions we must make as citizens involve energy-related matters that have an important bearing on the future quality of life in our country. Certainly nuclear power falls into this category. Unfortunately, even the conventional means of power production, such as fossil-fuel burning and hydroelectric power, are poorly understood. In order to permit a comparison of principles and problems associated with all forms of energy generation, it would be useful to introduce this unit with a review of sections E-52 and E-62 in The Delicate Balance: An Energy and the Environment Chemistry Module.

N-45 Nuclear Reactor Operation

Perhaps a utility company in your community operates a nuclear power plant for generating electricity. If so, schedule a field trip to the power plant to give your students an opportunity to observe for themselves how nuclear energy is being used to generate electricity. The list on the following pages can help you identify nearby facilities, many of which will arrange tours for school groups. A university in your area may operate a training reactor, and arranging a tour of it would be an excellent alternative. Refer to and discuss the uses of nuclear power that are mentioned in the student module. Ask and discuss, "Will nuclear power be used increasingly in the years ahead? What about the distant future?" Compare the environmental problems of nuclear-power generation with those of fossil-fuel burning and hydroelectric power. (See The Delicate Balance: An Energy and the Environment Chemistry Module.)

The breeder-reactor concept is attractive in that such a reactor produces fuel and power simultaneously. The reactions

\[^{238}\text{U} + \beta \rightarrow ^{239}\text{Th} \rightarrow ^{233}\text{U} (1.6 \times 10^5 \text{ yr}) \]

each involve a neutron-capture reaction followed by two successive beta decays. The resultant \(^{233}\text{U}\) and \(^{239}\text{Pu}\) are both better nuclear fuels than \(^{235}\text{U}\). For a reactor to function in the breeder mode, it must operate at substantially higher temperatures than those of conventional reactors. This means that water cannot be used as the coolant in a breeder reactor, and as a result many complications are introduced into the design. However, the technology has been worked out and plans are being effected for such reactors in Europe. But the fact that \(^{233}\text{U}\) and \(^{239}\text{Pu}\) are materials that can be used in the creation of nuclear weapons has caused great concern about the proliferation of such weapons.

N-46 Nuclear Power and the Environment

Miniactivity Since the controversy concerning nuclear power is a subject that appears frequently in newspapers and magazines, it presents an excellent opportunity to relate classroom work to current affairs. A class debate in which sections of the class are given responsibility for certain topics can be very useful. The following is just a partial list of the topics that can be assigned.

- The Need for Nuclear Power
- Storage of Nuclear Wastes and Fuel Reprocessing
- Environmental Hazards of Nuclear Power
- The Threat of Nuclear Weapons
- Environmental Hazards of Fossil-Fuel Burning and Hydroelectric Power
- The Danger of Theft of Nuclear Material
- Should the United States Export Its Nuclear-Power Technology?

Each of the listed topics has its pros and cons. Besides the daily newspapers, excellent sources include the appropriate Scientific American articles listed in the Selected Readings of the student module and in the Suggested Readings in this guide.
Nuclear Power Reactors

<table>
<thead>
<tr>
<th>Site</th>
<th>Plant Name</th>
<th>Utility</th>
<th>Commercial Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decatur</td>
<td>Browns Ferry Nuclear Power Station: Unit 1</td>
<td>Tennessee Valley Authority</td>
<td>1974</td>
</tr>
<tr>
<td>Decatur</td>
<td>Browns Ferry Nuclear Power Station: Unit 2</td>
<td>Tennessee Valley Authority</td>
<td>1975</td>
</tr>
<tr>
<td>Decatur</td>
<td>Browns Ferry Nuclear Power Station: Unit 3</td>
<td>Tennessee Valley Authority</td>
<td>1977</td>
</tr>
<tr>
<td>Dothan</td>
<td>Joseph M. Farley Nuclear Plant: Unit 1</td>
<td>Alabama Power Co.</td>
<td>1977</td>
</tr>
<tr>
<td>Dothan</td>
<td>Joseph M. Farley Nuclear Plant: Unit 2</td>
<td>Alabama Power Co.</td>
<td>1980</td>
</tr>
<tr>
<td>Arkansas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russellville</td>
<td>Arkansas Nuclear One: Unit 1</td>
<td>Arkansas Power & Light Co.</td>
<td>1974</td>
</tr>
<tr>
<td>California</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Station</td>
<td>Rancho Seco Nuclear Generating Station</td>
<td>Sacramento Municipal Utility District</td>
<td>1975</td>
</tr>
<tr>
<td>Eureka</td>
<td>Humbolt Bay Power Plants: Unit 3</td>
<td>Pacific Gas & Electric Co.</td>
<td>1963</td>
</tr>
<tr>
<td>San Clemente</td>
<td>San Onofre Nuclear Generating Station: Unit 1</td>
<td>Southern California Edison Co. & San Diego Gas & Electric Co.</td>
<td>1968</td>
</tr>
<tr>
<td>Colorado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platteville</td>
<td>Ft. St. Vrain Nuclear Generating Station</td>
<td>Public Service Co. of Colorado</td>
<td>1973</td>
</tr>
<tr>
<td>Connecticut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterford</td>
<td>Millstone Nuclear Power Station: Unit 1</td>
<td>Northeast Nuclear Energy Co.</td>
<td>1971</td>
</tr>
<tr>
<td>Waterford</td>
<td>Millstone Nuclear Power Station: Unit 2</td>
<td>Northeast Nuclear Energy Co.</td>
<td>1975</td>
</tr>
<tr>
<td>Florida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida City</td>
<td>Turkey Point Plant: Unit 3</td>
<td>Florida Power & Light Co.</td>
<td>1972</td>
</tr>
<tr>
<td>Florida City</td>
<td>Turkey Point Plant: Unit 4</td>
<td>Florida Power & Light Co.</td>
<td>1973</td>
</tr>
<tr>
<td>Ft. Pierce</td>
<td>St. Lucie Plant: Unit 1</td>
<td>Florida Power & Light Co.</td>
<td>1976</td>
</tr>
<tr>
<td>Red Level</td>
<td>Crystal River Nuclear Plant: Unit 3</td>
<td>Florida Power Co.</td>
<td>1977</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baxley</td>
<td>Edwin I. Hatch Nuclear Plant: Unit 1</td>
<td>Georgia Power Co.</td>
<td>1975</td>
</tr>
<tr>
<td>Illinois</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordova</td>
<td>Quad-Cities Station: Unit 1</td>
<td>Commonwealth Edison & Iowa-Illinois Gas & Electric Co.</td>
<td>1972</td>
</tr>
<tr>
<td>Cordova</td>
<td>Quad-Cities Station: Unit 2</td>
<td>Commonwealth Edison & Iowa-Illinois Gas & Electric Co.</td>
<td>1972</td>
</tr>
<tr>
<td>Morris</td>
<td>Dresden Nuclear Power Station: Unit 1</td>
<td>Commonwealth Edison Co.</td>
<td>1960</td>
</tr>
<tr>
<td>Site</td>
<td>Plant Name</td>
<td>Utility</td>
<td>Commercial Operation</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Morris</td>
<td>Dresden Nuclear Power Station:</td>
<td>Commonwealth Edison Co.</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>Unit 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morris</td>
<td>Dresden Nuclear Power Station:</td>
<td>Commonwealth Edison Co.</td>
<td>1971</td>
</tr>
<tr>
<td></td>
<td>Unit 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zion</td>
<td>Zion Nuclear Plant: Unit 1</td>
<td>Commonwealth Edison Co.</td>
<td>1973</td>
</tr>
<tr>
<td>Zion</td>
<td>Zion Nuclear Plant: Unit 2</td>
<td>Commonwealth Edison Co.</td>
<td>1974</td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palo</td>
<td>Duane Arnold Energy Center: Unit 1</td>
<td>Iowa Electric Light & Power Co.</td>
<td>1975</td>
</tr>
<tr>
<td>Maine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiscasset</td>
<td>Maine Yankee Atomic Power Plant</td>
<td>Maine Yankee Atomic Power Co.</td>
<td>1972</td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lusby</td>
<td>Calvert Cliffs Nuclear Power Plant: Unit 1</td>
<td>Baltimore Gas & Electric Co.</td>
<td>1975</td>
</tr>
<tr>
<td>Lusby</td>
<td>Calvert Cliffs Nuclear Power Plant: Unit 2</td>
<td>Baltimore Gas & Electric Co.</td>
<td>1977</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Pilgrim Nuclear Power Station:</td>
<td>Boston Edison Co.</td>
<td>1972</td>
</tr>
<tr>
<td>Plymouth</td>
<td>Unit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rowe</td>
<td>Yankee Nuclear Power Station</td>
<td>Yankee Atomic Electric Co.</td>
<td>1961</td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Rock Point</td>
<td>Big Rock Point Nuclear Plant</td>
<td>Consumers Power Co.</td>
<td>1963</td>
</tr>
<tr>
<td>Bridgman</td>
<td>Donald C. Cook Nuclear Power Plant: Unit 1</td>
<td>Indiana & Michigan Electric Co.</td>
<td>1975</td>
</tr>
<tr>
<td>Bridgman</td>
<td>Donald C. Cook Nuclear Power Plant: Unit 2</td>
<td>Indiana & Michigan Electric Co.</td>
<td>1978</td>
</tr>
<tr>
<td>South Haven</td>
<td>Palisades Nuclear Plant</td>
<td>Consumers Power Co.</td>
<td>1971</td>
</tr>
<tr>
<td>Minnesota</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monticello</td>
<td>Monticello Nuclear Generating Plant</td>
<td>Northern States Power Co.</td>
<td>1971</td>
</tr>
<tr>
<td>Red Wing</td>
<td>Prairie Island Nuclear Generating Plant: Unit 1</td>
<td>Northern States Power Co.</td>
<td>1973</td>
</tr>
<tr>
<td>Red Wing</td>
<td>Prairie Island Nuclear Generating Plant: Unit 2</td>
<td>Northern States Power Co.</td>
<td>1974</td>
</tr>
<tr>
<td>Nebraska</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brownville</td>
<td>Cooper Nuclear Station</td>
<td>Nebraska Public Power District</td>
<td>1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& Iowa Power & Light Co.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omaha Public Power District</td>
<td>1973</td>
</tr>
<tr>
<td>New Jersey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fort Calhoun</td>
<td>Ft. Calhoun Station: Unit 1</td>
<td>Public Service Electric & Gas Co.</td>
<td>1977</td>
</tr>
<tr>
<td>Salem</td>
<td>Salem Nuclear Generating Station: Unit 1</td>
<td>Jersey Central Power & Light Co.</td>
<td>1969</td>
</tr>
<tr>
<td>Toms River</td>
<td>Oyster Creek Nuclear Power Plant: Unit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buchanan</td>
<td>Indian Point Station: Unit 1</td>
<td>Consolidated Edison Co. of New York, Inc.</td>
<td>1962</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buchanan</td>
<td>Indian Point Station: Unit 2</td>
<td>Consolidated Edison Co. of New York, Inc.</td>
<td>1973</td>
</tr>
<tr>
<td>Site</td>
<td>Plant Name</td>
<td>Utility</td>
<td>Commercial Operation</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Buchanan</td>
<td>Indian Point Station: Unit 3</td>
<td>Power Authority of State of New York</td>
<td>1976</td>
</tr>
<tr>
<td>Ontario</td>
<td>R. E. Ginna Nuclear Power Plant: Unit 1</td>
<td>Rochester Gas & Electric Corp.</td>
<td>1979</td>
</tr>
<tr>
<td>Scriba</td>
<td>Nine Mile Point Nuclear Station: Unit 1</td>
<td>Niagara Mohawk Power Corp.</td>
<td>1969</td>
</tr>
<tr>
<td>Scriba</td>
<td>James A. FitzPatrick Nuclear Power Plant</td>
<td>Power Authority of State of New York</td>
<td>1975</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Brunswick Steam Electric Plant: Unit 1</td>
<td>Carolina Power & Light Co.</td>
<td>1977</td>
</tr>
<tr>
<td>Southport</td>
<td>Brunswick Steam Electric Plant: Unit 2</td>
<td>Carolina Power & Light Co.</td>
<td>1975</td>
</tr>
<tr>
<td>Ohio</td>
<td>Davis-Besse Nuclear Power Station: Unit 1</td>
<td>Toledo Edison Co. & Cleveland Illuminating Co.</td>
<td>1977</td>
</tr>
<tr>
<td>Oregon</td>
<td>Trojan Nuclear Plant: Unit 1</td>
<td>Portland General Electric Co.</td>
<td>1976</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Three Mile Island Nuclear Station: Unit 1</td>
<td>Metropolitan Edison Co.</td>
<td>1974</td>
</tr>
<tr>
<td>Middletown</td>
<td>Peach Bottom Atomic Power Station: Unit 2</td>
<td>Philadelphia Electric Co.</td>
<td>1974</td>
</tr>
<tr>
<td>Peach Bottom</td>
<td>Peach Bottom Atomic Power Station: Unit 3</td>
<td>Philadelphia Electric Co.</td>
<td>1974</td>
</tr>
<tr>
<td>South Carolina</td>
<td>Shippingport Atomic Power Station</td>
<td>Duquesne Light Co.</td>
<td>1957</td>
</tr>
<tr>
<td>Hartsville</td>
<td>Vermont Yankee Nuclear Power Station</td>
<td>Vermont Yankee Nuclear Power Corp.</td>
<td>1972</td>
</tr>
<tr>
<td>Seneca</td>
<td>Oconee Nuclear Plant: Unit 1</td>
<td>Carolina Power & Light Co.</td>
<td>1971</td>
</tr>
<tr>
<td>Seneca</td>
<td>Oconee Nuclear Plant: Unit 2</td>
<td>Duke Power Co.</td>
<td>1973</td>
</tr>
<tr>
<td>Seneca</td>
<td>Oconee Nuclear Plant: Unit 3</td>
<td>Duke Power Co.</td>
<td>1974</td>
</tr>
<tr>
<td>Vermont</td>
<td>Vernon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>Surry Power Station: Unit 1</td>
<td>Virginia Electric & Power Co.</td>
<td>1972</td>
</tr>
<tr>
<td>Gravel Neck</td>
<td>Surry Power Station: Unit 2</td>
<td>Virginia Electric & Power Co.</td>
<td>1973</td>
</tr>
<tr>
<td>Gravel Neck</td>
<td>North Anna Power Station: Unit 1</td>
<td>Virginia Electric & Power Co.</td>
<td>1978</td>
</tr>
<tr>
<td>Washington</td>
<td>N-Reactor/WPPSS Steam</td>
<td>Department of Energy</td>
<td>1966</td>
</tr>
<tr>
<td>Richland</td>
<td>Kewaunee Nuclear Power Plant: Unit 1</td>
<td>Wisconsin Public Service Corp.</td>
<td>1974</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Lacrosse (Genoa) Nuclear Generating Station</td>
<td>Dairyland Power Cooperative</td>
<td>1969</td>
</tr>
<tr>
<td>Carlton</td>
<td>Point Beach Nuclear Plant: Unit 1</td>
<td>Wisconsin Michigan Power Co.</td>
<td>1970</td>
</tr>
<tr>
<td>La Crosse</td>
<td>Point Beach Nuclear Plant: Unit 2</td>
<td>Wisconsin Michigan Power Co.</td>
<td>1973</td>
</tr>
</tbody>
</table>
Undoubtedly the best source of information on the controversial nature of nuclear materials is the *Bulletin of the Atomic Scientists*. This monthly periodical maintains continual debates on questions of nuclear safety and represents the concerns of many of the world’s leading experts on the subject. Refer interested students to the article by H. Bethe, “The Necessity of Fission Power,” *Scientific American* (January 1976), pp. 21–31.

Remember that scientific objectivity is the goal to strive for in all discussions. Frequently, arguments concerning the use of nuclear materials become based on emotional rather than scientific grounds. There are valid arguments on both sides of the question and, in the author’s opinion, anyone who claims to have all the correct answers should be viewed with suspicion. This does not mean that taking a stand should be avoided; eventually decisions must be made.

N-47 MINIATURE POWER SOURCES

The *Understanding the Atom* series produced by the Atomic Energy Commission (now a part of the Department of Energy) contains a useful module on this subject entitled “Power from Radioisotopes.” Also, see the article by H. J. Sanders, “Cardiac Pacemakers,” *Chemistry* (July 1971), pp. 14–17. For more up-to-date information, you can write to the Technical Information Division, U.S. Department of Energy, Box 62, Oak Ridge, TN 37830.

N-48 NUCLEAR FUSION: REACH FOR THE SUN

A detailed discussion of nuclear-fusion power goes beyond the aims of most high-school courses, and it is probably best discussed at the level presented here. However, students should be made aware of the possibility that this form of energy may someday become available.

ANSWERS TO PROBLEMS

(Student module page 95)

1–4. General discussion items based on the student module.

5. a. ^{131}I; shortest half-life

b. $\frac{1}{2^{10}} = \frac{1}{1024} = 9.8 \times 10^{-4}$

c. 9.5×10^{-7}

d. ^{131}I; 160 days

^{90}Sr; 560 years

^{239}Pu; 4.9×10^5 years

6. $^{238}\text{Pu} \rightarrow ^{234}\text{U} + \frac{1}{2}\text{He}$

EVALUATION ITEMS

The following are additional evaluation items that you may wish to use with your students at various times during the preceding unit.

1. Discuss the advantages and disadvantages of nuclear-power generation.

2. Discuss the problem of where a nuclear power plant could be built in your area, or discuss why the present site was chosen if there already is one.

3. Compare the impact of nuclear, fossil-fuel burning, and hydroelectric generation of power on the environment.

4. Describe the major components and the operation of a nuclear power plant.

SUGGESTED READINGS

Summary

The summary provides you with an opportunity to tie together many of the various nuclear phenomena discussed in this module. It would also be of value to discuss what new discoveries can be expected in the field of nuclear science. Searches will continue for new elements, exotic nuclei with unusual neutron-to-proton ratios, and more fundamental particles, such as quarks. These investigations, along with sophisticated studies of the shape and structure of nuclear matter, promise to provide exciting new insights into the microscopic aspects of the Universe.

At the same time, astronomy and space science continue to provide new clues about the makeup of the Universe. It might be interesting to speculate on how the Universe would be affected if certain basic features of nuclear stability were altered. For example, if lithium, beryllium, and boron nuclei were more stable, the abundances of these elements in the Universe would be greater. These elements would exist at the expense of those elements that we know to be essential to life and that are plentiful in our environment—carbon, nitrogen, and oxygen. The reaction

\[^3_2\text{He} \longrightarrow ^{12}_8\text{C} \]

would be supplanted by others as important ones. In addition, beryllium is highly toxic to biological systems as they presently exist. Perhaps life could not exist at all in such an environment, or it might be adapted to the different conditions. One can envision other such modifications that would result from changes in the abundances of the elements in the Universe.

Finally, it is highly probable that the use of nuclear phenomena in technology will continue to expand in the future. Besides the current widespread uses in medicine, industry, and power generation, your students may be able to suggest some new applications. Also, in light of the controversy over nuclear power, a worthwhile exercise would be to imagine a reversal in the historical roles of nuclear- and fossil-fuel generation of power. Assume that nuclear power is the established technology and imagine that coal and oil have just been introduced as power sources during the last twenty-five years. Then discuss the environmental concerns that such a development might pose in relation to strip mining, the price of oil, air pollution, and so on. This exercise will emphasize the difficulties inherent in the introduction of any major advance in technology.

The Heart of Matter conveys to your students some of the exciting ideas and research problems in the realm of nuclear science. The knowledge that your students obtain from studying this module should heighten their awareness and appreciation of their personal relationship to this science.
Appendix : Safety

SAFETY IN THE LABORATORY

Proper conduct in a chemistry laboratory is really an extension of safety procedures normally followed each day around your home and in the outside world. Exercising care in a laboratory demands the same caution you apply to driving a car, riding a motorbike or bicycle, or participating in a sport. Athletes consider safety measures a part of playing the game. For example, football players willingly spend a great deal of time putting on equipment such as helmets, hip pads, and shoulder pads to protect themselves from potential injury.

Chemists must also be properly dressed. To protect themselves in the laboratory, they commonly wear a lab apron or a coat and protective glasses. Throughout this course you will use similar items. Hopefully their use will become second nature to you, much as it becomes second nature for a baseball catcher to put on a chest protector and mask before stepping behind home plate.

As you read through a written experimental procedure, you will notice that specific hazards and precautions are called to your attention. Be prepared to discuss these hazards with your teacher and with your fellow students. Always read the entire experimental procedure thoroughly before starting any laboratory work.

A list of general laboratory safety procedures follows. It is not intended that you memorize these safety procedures but rather that you use them regularly when performing experiments. You may notice that this list is by no means complete. Your teacher may wish to add safety guidelines that are relevant to your specific classroom situation. It would be impossible to anticipate every hazardous situation that might arise in the chemistry laboratory. However, if you are familiar with these general laboratory safety procedures and if you use common sense, you will be able to handle potentially hazardous situations intelligently and safely. Treat all chemicals with respect, not fear.

GENERAL SAFETY GUIDELINES

1. Work in the laboratory only when the teacher is present or when you have been given permission to do so. In case of accident, notify your teacher immediately.

2. Before starting any laboratory exercise, be sure that the laboratory bench is clean.

3. Put on a laboratory coat or apron and protective glasses or goggles before beginning an experiment.

4. Tie back loose hair to prevent the possibility of its contacting any Bunsen burner flames.

5. Open sandals or bare feet are not permitted in the laboratory. The dangers of broken glass and corrosive liquid spills are always present in a laboratory.

6. Fire is a special hazard in the laboratory because many chemicals are flammable. Learn how to use the fire blanket, fire extinguisher, and shower (if your laboratory has one).

7. For minor skin burns, immediately immerse the burned area in cold water for several minutes. Then consult your teacher for further instructions on possible additional treatment.

8. In case of a chemical splash on your skin, immediately rinse the area with cold water for at least one minute. Consult your teacher for further action.

9. If any liquid material splashes into your eye, wash the eye immediately with water from an eyewash bottle or eyewash fountain.

10. Never look directly into a test tube—view the contents of the tube from the side. (Why?)

11. Never smell a material by placing your nose directly at the mouth of the tube or flask. Instead, with your hand, “fan” some of the vapor from the container toward your nose. Inhale cautiously.

12. Never taste any material in the laboratory.

13. Never add water to concentrated acid solutions. The heat generated may cause spattering. Instead, as you stir, add the acid slowly to the water or dilute solution.

14. Read the label on a chemical bottle at least twice before removing a sample. H_2O_2 is not the same as H_2O.

15. Follow your teacher’s instructions or laboratory procedure when disposing of used chemicals.

The following guidelines are of special concern in working with radioactive materials.

16. The radioactive materials that you will be working with in the laboratory consist of only very small quantities of radiation and do not require a special license to use. Nuclear materials are very strictly regulated by state and federal laws. Great care has been exercised to ensure that the materials you will be handling do not constitute any danger to you. Nonetheless, you should treat all samples you handle with the same care required for federally licensed materials. In this way, you will minimize the amount of radiation you are exposed to during the experiment.

17. When handling radioactive materials, always wear rubber or plastic gloves.

18. Do not bring food of any kind into the laboratory when you are working with radioactive materials. Foodstuffs can be easily contaminated during handling, which could result in internal ingestion of radioactive materials.

19. Be sure that no radioactive material comes in contact with your counter. In this way the radiation counter will not become contaminated with radiation, which could lead to high background readings and less accurate results.

20. Never discard liquids down the drain or throw away glassware into the trash receptacle. All used material should be collected in an appropriate storage vessel provided by your instructor and monitored before being discarded.

21. Always check your hands with a radiation monitor before leaving the laboratory.

This symbol indicates the presence of radioactive material. It appears with certain experiments in this module to alert you to the need for special precautions.
Metric Units

<table>
<thead>
<tr>
<th>PHYSICAL QUANTITY</th>
<th>SI BASE OR DERIVED UNIT</th>
<th>OTHER UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAME</td>
<td>SYMBOL AND DEFINITION</td>
</tr>
<tr>
<td>length</td>
<td>meter*</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>area</td>
<td>square meter</td>
<td>m²</td>
</tr>
<tr>
<td>volume</td>
<td>cubic meter</td>
<td>m³</td>
</tr>
<tr>
<td>mass</td>
<td>kilogram*</td>
<td>kg</td>
</tr>
<tr>
<td>time</td>
<td>second*</td>
<td>s</td>
</tr>
<tr>
<td>amount of substance</td>
<td>mole*</td>
<td>mol</td>
</tr>
<tr>
<td>concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Celsius temperature</td>
<td></td>
</tr>
<tr>
<td>thermodynamic temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>force</td>
<td>newton</td>
<td>N = kg · m/s²</td>
</tr>
<tr>
<td>pressure</td>
<td>pascal</td>
<td>Pa = N/m² = kg/(m · s²)</td>
</tr>
<tr>
<td></td>
<td>joule</td>
<td>J = N · m = kg · m²/s²</td>
</tr>
</tbody>
</table>

*SI base unit, exactly defined in terms of certain physical measurements.
Module Tests

Two module tests follow, one to test knowledge-centered objectives and the other to test skill-centered objectives. If you choose to use either or both of these module tests as they are presented here, duplicate copies for your students. Or, you may wish to select some questions from these tests that you feel apply to your introductory chemistry course and add questions of your own. Either way, make sure that the test you give reflects your emphasis on the chemistry you and your students experienced in this introductory module.

The skill-centered test will require that you set up several laboratory stations containing materials for your students to examine or work with. You may wish to add additional test items to round out the types of skills you and your students have worked on.

Answers to test questions in this section are provided. If you wish to use a standard-type answer sheet with these tests, one is provided in the appendix of the teacher's guide for Reactions and Reason: An Introductory Chemistry Module. Duplicate enough copies for each of your students to use, or revise the format to fit your own testing situation.

ANSWERS FOR KNOWLEDGE-CENTERED MODULE TEST

Skill-Centered Module Test

Using the skill-centered test items will require certain advance preparations on your part. The numerals in the following list indicate the items for which you will have to prepare special laboratory stations. Be sure to test each of the lab stations before allowing students to determine the answers to the skill-centered items. When students are ready to answer these questions, they should go to the numbered station and follow the directions that are given there and in the printed test item. When they finish with the materials at the station, instruct them to leave the materials in proper order for the next student.

ANSWERS FOR SKILL-CENTERED MODULE TEST

 *Evaluate according to teacher standards.
1. The mass number of Al in the reaction \(^{27}\text{Mg} + ^{13}\text{Al} + _0^1\beta\) is:
 A. 26 B. 27 C. 28 D. 29

2. The nuclear process responsible for limiting the buildup of heavy elements in both stars and the laboratory is
 A. positron decay. C. electron capture.
 B. gamma decay. D. nuclear fission.

3. A student placed thin sheets of an unknown metal between a radioactive source and a Geiger counter and recorded the following data.

<table>
<thead>
<tr>
<th>Thickness of Metal Sheets</th>
<th>Activity Corrected for Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 cm</td>
<td>4200 cpm</td>
</tr>
<tr>
<td>1 cm</td>
<td>3700 cpm</td>
</tr>
<tr>
<td>2 cm</td>
<td>3350 cpm</td>
</tr>
<tr>
<td>3 cm</td>
<td>3000 cpm</td>
</tr>
<tr>
<td>4 cm</td>
<td>2600 cpm</td>
</tr>
<tr>
<td>5 cm</td>
<td>2400 cpm</td>
</tr>
<tr>
<td>6 cm</td>
<td>2100 cpm</td>
</tr>
<tr>
<td>7 cm</td>
<td>1900 cpm</td>
</tr>
<tr>
<td>8 cm</td>
<td>1600 cpm</td>
</tr>
</tbody>
</table>

 The half-thickness of the metal is
 A. 2 cm. B. 4 cm. C. 6 cm. D. 8 cm.

4. Protons are accelerated in spiral paths in
 A. cyclotrons.
 B. Van de Graaff generators.
 C. nuclear reactors.
 D. linear accelerators.

5. The term *stellar nucleosynthesis* describes the processes responsible for the
 A. condensation of gas clouds in space.
 B. origin of the elements.
 C. formation of the earth.
 D. radioactive decay of elements.

6. The element that has the most stable nucleus is:
 A. \(^{56}\text{Fe}\) B. \(^{28}\text{Si}\) C. \(^{12}\text{C}\) D. \(^{232}\text{U}\)

7. If a radioactive sample has an activity of 200 cpm at a distance of 20 cm from a Geiger counter, what will its activity be at a distance of 40 cm?
 A. 25 cpm C. 75 cpm
 B. 50 cpm D. 100 cpm

8. When a star has a core of helium and an outer envelope of hydrogen, it evolves into a
 A. main sequence star. C. supernova.
 B. red giant. D. white dwarf.

9. Nuclear chemists agree that stars are continuously producing their own elements. If you were a nuclear chemist, which finding would best support the above statement?
 A. There is a greater proportion of lighter elements than heavier ones in a star.
 B. The size of a star grows during part of its lifetime.
 C. An element that no longer exists on Earth has been identified in a star.
 D. The density of a star increases during part of its lifetime.
10. An important medical use of radiation is
 A. activation analysis.
 B. nuclear power.
 C. radiotherapy.
 D. all of the above

11. The nuclide $^{255}_{98}$Cf has
 A. 98 nucleons.
 B. 154 neutrons.
 C. 154 electrons.
 D. 252 protons.

12. A certain radioactive nuclide has a half-life of 100 minutes. If a sample containing 1600 atoms is allowed to decay for 300 minutes, how many atoms of the radioactive nuclide will remain?
 A. 100 atoms
 B. 200 atoms
 C. 400 atoms
 D. 800 atoms

13. An isobar of $^{238}_{92}$U is
 A. $^{235}_{92}$U
 B. $^{244}_{92}$Pu
 C. $^{237}_{90}$Th
 D. $^{239}_{93}$Np

14. A proton has
 A. no charge.
 B. a 12.8-minute half-life.
 C. the same charge as an electron.
 D. approximately the same mass as a neutron.

15. The r-process is represented in which of the following equations?
 A. $^{56}_{26}$Fe + 10 $^{0}_{1}$n \rightarrow $^{56}_{26}$Fe
 B. $^{56}_{26}$Co + $^{1}_{0}$n \rightarrow $^{56}_{26}$Co \rightarrow $^{58}_{26}$Ni + $^{0}_{0}$β
 C. $^{4}_{1}$H \rightarrow $^{2}_{2}$He + 2 $^{0}_{0}$β
 D. $^{3}_{2}$He \rightarrow $^{1}_{0}$C

16. The s-process is represented in which of the following equations?
 A. $^{29}_{26}$Co + $^{1}_{0}$n \rightarrow $^{30}_{26}$Co \rightarrow $^{32}_{26}$Ni + $^{0}_{0}$β
 B. $^{4}_{1}$H \rightarrow $^{2}_{2}$He + 2 $^{0}_{0}$β
 C. $^{12}_{6}$C + $^{12}_{6}$C \rightarrow $^{24}_{12}$Mg + γ
 D. $^{3}_{2}$He \rightarrow $^{1}_{0}$C

17. Carbon burning is represented in which of the following equations?
 A. $^{56}_{26}$Fe + 10 $^{0}_{1}$n \rightarrow $^{56}_{26}$Fe
 B. $^{4}_{1}$H \rightarrow $^{2}_{2}$He + 2 $^{0}_{0}$β
 C. $^{12}_{6}$C + $^{12}_{6}$C \rightarrow $^{24}_{12}$Mg + γ
 D. $^{3}_{2}$He \rightarrow $^{1}_{0}$C

18. The dominant reaction believed to be occurring in main sequence stars is
 A. $^{4}_{1}$H \rightarrow $^{2}_{2}$He + 2 $^{0}_{0}$β + energy.
 B. $^{2}_{12}$C \rightarrow $^{24}_{12}$Mg + energy.
 C. $^{3}_{2}$He \rightarrow $^{1}_{0}$C + energy.
 D. $^{2}_{2}$He \rightarrow $^{2}_{2}$He + 2 $^{1}_{0}$H + energy.

19. In a nuclear reaction, the products are 0.02 u lighter than the reactants. Using the conversion $c^2 = 931$ MeV/u, the amount of energy produced in this reaction is approximately
 A. 0.02 MeV.
 B. 1 MeV.
 C. 20 MeV.
 D. 50 000 MeV.

20. The half-life of $^{14}_{6}$C is 5730 years, and in living matter it decays at the rate of 15 dpm per gram of carbon. If a silver of wood from an ancient wheel has a decay rate of 1.875 dpm per gram of carbon, its age is
 A. 5730 years.
 B. 11 400 years.
 C. 17 160 years.
 D. 22 880 years.

21. The two most abundant elements in our solar system are
 A. hydrogen and nitrogen.
 B. hydrogen and oxygen.
 C. oxygen and helium.
 D. hydrogen and helium.
22. The big bang theory does not account for
 A. the red shift.
 B. the expanding Universe.
 C. the production of elements beyond \(^3\text{Li} \).
 D. the production of \(^3\text{He} \).

23. Spontaneous fission is represented in which of the following equations?
 A. \(^{252}\text{Cf} \rightarrow ^{106}\text{Mo} + ^{146}\text{Ba} + 4 \, \frac{1}{2}n \)
 B. \(^{238}\text{U} \rightarrow ^{234}\text{Th} + ^{2}\text{He} \)
 C. \(^{239}\text{Np} \rightarrow ^{239}\text{Pu} + _{\beta}^{} \)
 D. \(^{15}\text{N} + ^{4}\text{He} \rightarrow ^{17}\text{O} + ^{1}\text{H} \)

24. Beta decay is represented in which of the following equations?
 A. \(^{238}\text{U} \rightarrow ^{234}\text{Th} + ^{2}\text{He} \)
 B. \(^{239}\text{Np} \rightarrow ^{239}\text{Pu} + _{\beta}^{} \)
 C. \(^{137}\text{Ba} \rightarrow ^{137}\text{Ba} + ^{\gamma} \)
 D. \(^{15}\text{N} + ^{4}\text{He} \rightarrow ^{17}\text{O} + ^{1}\text{H} \)

25. Alpha decay is represented in which of the following equations?
 A. \(^{252}\text{Cf} \rightarrow ^{106}\text{Mo} + ^{146}\text{Ba} + 4 \, \frac{1}{2}n \)
 B. \(^{238}\text{U} \rightarrow ^{234}\text{Th} + ^{2}\text{He} \)
 C. \(^{239}\text{Np} \rightarrow ^{239}\text{Pu} + _{\beta}^{} \)
 D. \(^{137}\text{Ba} \rightarrow ^{137}\text{Ba} + ^{\gamma} \)

26. Gamma decay is represented in which of the following equations?
 A. \(^{238}\text{U} \rightarrow ^{234}\text{Th} + ^{2}\text{He} \)
 B. \(^{239}\text{Np} \rightarrow ^{239}\text{Pu} + _{\beta}^{} \)
 C. \(^{137}\text{Ba} \rightarrow ^{137}\text{Ba} + ^{\gamma} \)
 D. \(^{15}\text{N} + ^{2}\text{He} \rightarrow ^{17}\text{O} + ^{1}\text{H} \)

27. The attractive forces holding a proton and an electron together are the
 A. nuclear and electromagnetic forces.
 B. gravitational and nuclear forces.
 C. gravitational, electromagnetic, and nuclear forces.
 D. electromagnetic and gravitational forces.

28. In the nuclear reaction
 \[^{15}\text{N} + ^{2}\text{He} \rightarrow ^{17}\text{O} + X, \]
 the letter \(X \) represents
 A. \(^{3}\text{He} \)
 B. \(^{3}\text{H} \)
 C. \(^{3}\text{H} \)
 D. \(^{1}\text{H} \)
THE HEART OF MATTER
Skill-Centered Module Test

1. Go to station #1 and, using the centimeter ruler provided, determine the distance between the two lines drawn on the piece of masking tape. Record your answer at the bottom of your answer sheet next to #1.

2. Which graph (below) represents the given data for the decay of a radioactive sample?

<table>
<thead>
<tr>
<th>Activity (cpm)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>199</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>2</td>
</tr>
<tr>
<td>66</td>
<td>4</td>
</tr>
<tr>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>43</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
</tr>
</tbody>
</table>

3. By not subtracting background activity from sample radioactivity readings, the largest error will be in samples where

A. the sample has high activity.
B. the sample has low activity readings.
C. the scale multiplication factor is one.
D. only half-thickness and half-life values are being determined.

4. By using the following data, determine the distance of the detector from the source if the detector reads 64 cpm. The distance is

A. 6 cm. C. 10 cm.
B. 8 cm. D. 12 cm.

<table>
<thead>
<tr>
<th>Detector Distance from Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts/min</td>
</tr>
<tr>
<td>1024</td>
</tr>
<tr>
<td>254</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

5. Go to station #5 and, using the radiation detector provided, measure the activity of the sample taped to the counter top. Record your answer on the bottom of your answer sheet next to #5. Turn off the radiation detector when finished.

6. If a reading were taken every 15 seconds, how much time elapsed when the following data were collected?

A. 2.00 min C. 1.50 min
B. 1.25 min D. 1.75 min

<table>
<thead>
<tr>
<th>Reading</th>
<th>cpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
</tr>
</tbody>
</table>

7. The activity shown on the meter pictured below is

A. 280 cpm. C. 40 cpm.
B. 400 cpm. D. 28 cpm.
8. Using the graph below, determine the half-life of the sample. The half-life is
 A. 6.5 h. C. 12.0 h.
 B. 5.5 h. D. 5.0 h.

9. When measuring the half-thickness of a sample as you did in this module, which of the following would not be a probable source of error?
 A. not subtracting background activity from sample activity
 B. not having metal plates of uniform thickness
 C. not multiplying scale reading by the multiplication factor if the scale is changed
 D. not having enough metal plates (thickness) to reduce activity to zero

10. Using the graph (below), determine the half-thickness of lead. The half-thickness is
 A. 55 cm. C. 100 cm.
 B. 250 cm. D. 175 cm.
Materials List

NONEXPENDABLE ITEMS

Item
- Aluminum sheets (5 cm x 5 cm x 0.1 cm)
- Balance
- Beaker, 20-cm³
- Beaker, 400-cm³
- Bottle, plastic squeeze
- Clamps, test-tube
- Copper sheets (5 cm x 5 cm x 0.1 cm)
- Lead sheets (5 cm x 5 cm x 0.1 cm)
- Planchets (aluminum foil)
- Radiation detector
- Radioactive sample tape
- Radioactive source (MINIGENERATOR)
- Ring stands
- Rubber gloves
- Ruler, centimeter
- Scissors
- Watch or clock (with second hand)

EXPENDABLE ITEMS

Item
- Film, Polaroid type 57 (black and white, speed 3000)
- Film holder (Polaroid type 545)
- Graph paper, linear
- Graph paper, semilog (optional)
- Hydrochloric acid, conc.
- Phosphorus solution, ³²P (10 µCi/5 cm³)
- Plants, potted
- Plastic wrap
- Potassium chloride
- Sodium chloride
- Sources of radioactivity

Note: Quantities required will depend on the number of MINIGENERATORS and/or detectors available to the class. MINIGENERATORS are manufactured by Redco Science Inc., Danbury, CT 06810. Redco also sells a MINIGENERATOR Nucleonics Kit, which contains two MINIGENERATORS, lead plates, copper plates, and other chemicals for further work with radioactivity.

*Quantity is based on six teams of five students each. Adjust for other groupings.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>18 sheets*</td>
</tr>
<tr>
<td>32, 42</td>
<td>1</td>
</tr>
<tr>
<td>28, 32</td>
<td>6*</td>
</tr>
<tr>
<td>42</td>
<td>6*</td>
</tr>
<tr>
<td>13, 28</td>
<td>6*</td>
</tr>
<tr>
<td>9, 36</td>
<td>12*</td>
</tr>
<tr>
<td>36</td>
<td>18 sheets*</td>
</tr>
<tr>
<td>36</td>
<td>60 sheets*</td>
</tr>
<tr>
<td>13</td>
<td>25 per group</td>
</tr>
<tr>
<td>9, 13, 28, 32, 36</td>
<td>See note</td>
</tr>
<tr>
<td>38, 42</td>
<td>See note</td>
</tr>
<tr>
<td>9</td>
<td>1 roll</td>
</tr>
<tr>
<td>9, 13, 22, 28, 32</td>
<td>See note</td>
</tr>
<tr>
<td>36, 38, 42</td>
<td>See note</td>
</tr>
<tr>
<td>9, 36</td>
<td>6*</td>
</tr>
<tr>
<td>9, 13, 28, 36, 42</td>
<td>6 pairs*</td>
</tr>
<tr>
<td>9, 36</td>
<td>6*</td>
</tr>
<tr>
<td>42</td>
<td>6*</td>
</tr>
<tr>
<td>32</td>
<td>6*</td>
</tr>
<tr>
<td>22</td>
<td>6 sheets*</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>4, 9, 13, 28, 36</td>
<td>1 or 2 pads</td>
</tr>
<tr>
<td>28, 36</td>
<td>1 pad</td>
</tr>
<tr>
<td>13, 28</td>
<td>7 cm³*</td>
</tr>
<tr>
<td>42</td>
<td>15 cm³*</td>
</tr>
<tr>
<td>42</td>
<td>6*</td>
</tr>
<tr>
<td>42</td>
<td>1 roll</td>
</tr>
<tr>
<td>32</td>
<td>60 g*</td>
</tr>
<tr>
<td>13, 28</td>
<td>20 g*</td>
</tr>
<tr>
<td>38</td>
<td>See N-38</td>
</tr>
</tbody>
</table>

See Teaching The Heart of Matter in this teacher’s guide for detailed advice concerning laboratory options. It is assumed in listing quantities here that six MINIGENERATORS and six radiation detectors are available for six teams of five students each in a class of thirty.
Acknowledgments

IAC Test Teachers

Linwood Adams, Bowie High School, Prince George’s County, MD
Thomas Antonucci, Archbishop Curley High School, Baltimore, MD
Nicholas Baccala, Milford Mill High School, Baltimore County, MD
Rosemary Behrens, Bethesda-Chevy Chase High School, Montgomery County, MD
Virginia Blair, Holton-Arms School, Bethesda, MD
Ethyl duBois, Crossland and Oxon Hill High Schools, Prince George’s County, MD
Sally Buckler, High Point High School, Prince George’s County, MD
Therese Butler, Bowie High School, Prince George’s County, MD
Kevin Castner, Bowie High School, Prince George’s County, MD
Robert Cooke, Kenwood High School, Baltimore County, MD
Wilmer Cooksey, Woodrow Wilson High School, Washington, DC
Frank Cox, Parkville High School, Baltimore County, MD
Richard Dexter, John F. Kennedy High School, Montgomery County, MD
Elizabeth Donaldson, John F. Kennedy High School, Montgomery County, MD
Chira Douthit, Chief Sealth High School, Seattle, WA
Lawrence Ferguson, Milford Mill High School, Baltimore County, MD
Harry Gemberling, DuVal and Eleanor Roosevelt High Schools, Prince George’s County, MD
Alan Goldstein, Laurel High School, Prince George’s County, MD
Marjorie Green, McLean High School, Fairfax County, VA
William Guthrie, Parkdale High School, Prince George’s County, MD
Laura Hack, Annapolis High School, Annapolis, MD
Margaret Henderson, Fort Hunt High School, Fairfax County, VA
Martina Howe, Bethesda-Chevy Chase High School, Montgomery County, MD
Glendal Jenkins, Surrattsville High School, Prince George’s County, MD
Martin Johnson, Bowie High School, Prince George’s County, MD
Harold Koch, Southwest High School, Minneapolis, MN
Jane Koran, Arundel High School, Anne Arundel County, MD
Marilyn Lucas, Euclid High School, Euclid, OH
David McElroy, Albert Einstein High School, Montgomery County, MD
Marilu McGoldrick, Wilde Lake High School, Howard County, MD
John Malek, Meade High School, Ft. Meade, MD
Robert Mier, Bowie and Eleanor Roosevelt High Schools, Prince George’s County, MD
George Milne, Oxon Hill High School, Prince George’s County, MD
David Myers, Crossland High School, Prince George’s County, MD
George Newett, High Point High School, Prince George’s County, MD
Daniel Noval, Patapsco High School, Baltimore County, MD
M. Gail Nussbaum, Northwestern High School, Prince George’s County, MD
Elena Pisciotta, Parkdale High School, Prince George’s County, MD
Andrew Pogan, Poolesville High School, Montgomery County, MD
Charles Raynor, Dulaney High School, Baltimore County, MD
Rosemary Reimer Shaw, Montgomery Blair High School, Montgomery County, MD
E. G. Rohde, Academy of the Holy Names, Silver Spring, MD
Doris Sandeolal, Springbrook High School, Montgomery County, MD
Earl Shaw, Damascus High School, Montgomery County, MD
George Smoler, Robert Peary High School, Montgomery County, MD
Howard Smith, Parkville High School, Baltimore County, MD
Larry Sobotka, Parkville High School, Baltimore County, MD
Roger Tatum, Takoma Academy, Takoma Park, MD
Yvette Thicierg, Fairmont Heights High School, Prince George’s County, MD
Barbara Tracey, Bishop McNamara High School, Forestville, MD
Ronald Trivane, Pikesville High School, Baltimore County, MD
Jeanne Vaughn, Governor Thomas Johnson High School, Frederick County, MD
Drew Wolfe, Randallstown High School, Baltimore County, MD
Pauline Wood, Springbrook High School, Montgomery County, MD
James Woodward, Walt Whitman High School, Montgomery County, MD
Clement Zidick, Dimond and Wasilla High Schools, Anchorage, AK

IAC 1978 Revision Teacher Consultants

Robert Andrews, Bothell High School, Bothell, Washington;
Minard Bakken, The Prairie School, Racine, Wisconsin; Ervin Forgy, J. I. Case High School, Racine, Wisconsin; Margaret Henley, Kennedy High School, Granada Hills, California; Bernard Hermanson, Sumner Community Schools, Sumner, Iowa; Merlin Iverson, Mason City High School, Mason City, Iowa; Harold Koch, Southwest High School, Minneapolis, Minnesota; Philippe Lemieux, Lincoln-Sudbury Regional High School, Acton, Massachusetts; Robert Sherwood, New Palestine High School, New Palestine, Indiana; Kenneth Spengler, Palatine High School, Palatine, Illinois; David Tanis, Holland Christian High School, Holland, Michigan; Dale Wolfram, Grand Blanc High School, Grand Blanc, Michigan; Clement Zidick, Dimond and Wasilla High Schools, Anchorage, Alaska
Index

Accelerators, 44
Activation analysis, 58
Alpha decay, 43-44
Antiparticle, 13
Atomic mass unit, 13
Atomic number, 13
Beta decay, 41-42
Big bang theory, 30-31
Binding energy, 23
Burning
 helium, 32-33
 hydrogen, 31-32
Carbon-Nitrogen-Oxygen cycle, 32
Conservation laws, 16
Dating, radioactive, 45-46
Decay, 40-47
 alpha, 43-44
 beta, 41-42
 gamma, 41
 negatron, 42
 positron, 42
 radioactive, 14, 40-47
Electromagnetic force, 15, 17-18
Element(s), 12, 28, 49-50
 heavy, 23
 origin of, 33-35
 superheavy, 12, 23, 49-50
 transuranium, 49-50
Experiments
 chemical behavior of nuclides, 24-28
 detecting radiation, 18-21
 half-life, 42-43
 penetrating power of gamma radiation, 51-55
 radiation in plants, 57
 radioactive decay, 46-47
Explosive nucleosynthesis, 33-34
Fission, 35-37, 44
Force(s), 15
 electromagnetic, 15, 17-18
 nuclear, 15, 17, 23
Fundamental particles, 12-14
Fusion, 63
 reactions, 32
Gamma decay, 41
Gamma radiation (rays), 18, 51-55
Generator, Van de Graaff, 18
Gravity, 31
Half-life, 40-44, 42-43
Heavy elements, 23, 34-35, 49-50
Helium burning, 32-33
Hydrogen burning, 31-32
Island of stability, 43-45
Isobars, 41-42
Isoelectronic, 22
Isotope dilution, 55
Isotopes, 24
Main sequence stars, 31
Matter, properties of, 12-20
Minirexperiments
 radioactive decay, 14
 radioautography, 35-36
 testing for radioactivity, 56
Negatron decay, 42
Nuclear fission, 35-37, 44
Nuclear force, 15, 17, 23
Nuclear fusion, 63
Nuclear power, 59-63
 and the environment, 59-63
Nuclear reactions, 16-17, 32-33
Nuclear reactor, 59
Nucleon(s), 12
 closed-shell configurations for, 23-24
 pairing effect of, 41
Nucleosynthesis, 30-37
 explosive, 33
 stellar, 32-34
 Nuclides, 22
 metastable, 41
Particle accelerators, 18
Particles
 fundamental, 12-14
 table of, 13
 Peninsula of stability, 23
Positron decay, 42
p-process, 37
Pulsars, 35
Radiation, 50-58
 in consumer products, 57
 detection of, 18-21, 56
 effects, 56
 in the environment, 50-51
 gamma, 18
Radioactive dating, 45-46
Radioactive decay, 14, 40-47
Radioactive tracers, 51, 55-56
Radioactivity, 40, 56
Radioautography, 35-36
Reactors, 59
Red giant stars, 32-33
Rem, 50-51
r-process, 34-35
Sea of nuclear instability, 23-24
Solar system, elements in, 22-28
Spontaneous fission, 44
s-process, 36-37
Star(s), 31-32, 34-35
 main sequence, 31
 red giant, 32-33
Stellar nucleosynthesis, 32-34
Superheavy elements, 23, 34-35, 49-50
 synthesis of, 34-35
Superheavy-ion accelerators, 44
Theory
 big bang, 30-31
 Thermonuclear explosion, 34-35
 reactions, 32
Tracers, 51
 in agriculture, 56-57
 in medicine, 56
Transmutation, 24
Transuranium elements, 49-50
Van de Graaff generator, 18
X rays, 51
Table of International Relative Atomic Masses*

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Atomic Mass</th>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Atomic Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinium</td>
<td>Ac</td>
<td>89</td>
<td>227.0</td>
<td>Mercury</td>
<td>Hg</td>
<td>80</td>
<td>200.6</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Al</td>
<td>13</td>
<td>27.0</td>
<td>Molybdenum</td>
<td>Mo</td>
<td>42</td>
<td>95.9</td>
</tr>
<tr>
<td>Americium</td>
<td>Am</td>
<td>95 (243)**</td>
<td></td>
<td>Neodymium</td>
<td>Nd</td>
<td>60</td>
<td>144.2</td>
</tr>
<tr>
<td>Antimony</td>
<td>Sb</td>
<td>51</td>
<td>121.8</td>
<td>Neon</td>
<td>Ne</td>
<td>10</td>
<td>20.2</td>
</tr>
<tr>
<td>Argon</td>
<td>Ar</td>
<td>18</td>
<td>39.9</td>
<td>Neptunium</td>
<td>Np</td>
<td>93</td>
<td>237.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>As</td>
<td>33</td>
<td>74.9</td>
<td>Nickel</td>
<td>Ni</td>
<td>28</td>
<td>58.7</td>
</tr>
<tr>
<td>Astatine</td>
<td>At</td>
<td>85 (210)</td>
<td></td>
<td>Niobium</td>
<td>Nb</td>
<td>41</td>
<td>92.9</td>
</tr>
<tr>
<td>Barium</td>
<td>Ba</td>
<td>56</td>
<td>137.3</td>
<td>Nitrogen</td>
<td>N</td>
<td>7</td>
<td>14.0</td>
</tr>
<tr>
<td>Berkelium</td>
<td>Bk</td>
<td>97 (247)</td>
<td></td>
<td>Nobelium</td>
<td>No</td>
<td>102 (259)</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>Be</td>
<td>4</td>
<td>9.01</td>
<td>Osmium</td>
<td>Os</td>
<td>76</td>
<td>190.2</td>
</tr>
<tr>
<td>Bismuth</td>
<td>Bi</td>
<td>83</td>
<td>209.0</td>
<td>Oxygen</td>
<td>O</td>
<td>8</td>
<td>16.0</td>
</tr>
<tr>
<td>Boron</td>
<td>B</td>
<td>5</td>
<td>10.8</td>
<td>Palladium</td>
<td>Pd</td>
<td>46</td>
<td>106.4</td>
</tr>
<tr>
<td>Bromine</td>
<td>Br</td>
<td>35</td>
<td>79.9</td>
<td>Phosphorus</td>
<td>P</td>
<td>15</td>
<td>31.0</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cd</td>
<td>48</td>
<td>112.4</td>
<td>Platinum</td>
<td>Pt</td>
<td>78</td>
<td>195.1</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>20</td>
<td>40.1</td>
<td>Plutonium</td>
<td>Pu</td>
<td>94 (244)</td>
<td></td>
</tr>
<tr>
<td>Californium</td>
<td>Cf</td>
<td>98 (251)</td>
<td></td>
<td>Polonium</td>
<td>Po</td>
<td>84 (209)</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>C</td>
<td>6</td>
<td>12.0</td>
<td>Potassium</td>
<td>K</td>
<td>19</td>
<td>39.1</td>
</tr>
<tr>
<td>Cerium</td>
<td>Ce</td>
<td>58</td>
<td>140.1</td>
<td>Praseodymium</td>
<td>Pr</td>
<td>59</td>
<td>140.9</td>
</tr>
<tr>
<td>Cesium</td>
<td>Cs</td>
<td>55</td>
<td>132.9</td>
<td>Promethium</td>
<td>Prm</td>
<td>61 (145)</td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl</td>
<td>17</td>
<td>35.5</td>
<td>Protactinium</td>
<td>Pa</td>
<td>91</td>
<td>231.0</td>
</tr>
<tr>
<td>Chromium</td>
<td>Cr</td>
<td>24</td>
<td>52.0</td>
<td>Radium</td>
<td>Ra</td>
<td>88</td>
<td>226.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co</td>
<td>27</td>
<td>58.9</td>
<td>Radon</td>
<td>Rn</td>
<td>86 (222)</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
<td>29</td>
<td>63.5</td>
<td>Rhenium</td>
<td>Re</td>
<td>75</td>
<td>186.2</td>
</tr>
<tr>
<td>Curium</td>
<td>Cm</td>
<td>96 (247)</td>
<td></td>
<td>Rhodium</td>
<td>Rh</td>
<td>45</td>
<td>102.9</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>Dy</td>
<td>66</td>
<td>162.5</td>
<td>Rubidium</td>
<td>Rb</td>
<td>37</td>
<td>85.5</td>
</tr>
<tr>
<td>Einsteinium</td>
<td>Es</td>
<td>99 (254)</td>
<td></td>
<td>Ruthenium</td>
<td>Ru</td>
<td>44</td>
<td>101.1</td>
</tr>
<tr>
<td>Erbium</td>
<td>Er</td>
<td>68</td>
<td>167.3</td>
<td>Samarium</td>
<td>Sm</td>
<td>62</td>
<td>150.4</td>
</tr>
<tr>
<td>Europium</td>
<td>Eu</td>
<td>63</td>
<td>152.0</td>
<td>Scandium</td>
<td>Sc</td>
<td>21</td>
<td>45.0</td>
</tr>
<tr>
<td>Fermium</td>
<td>Fm</td>
<td>100 (257)</td>
<td></td>
<td>Selenium</td>
<td>Se</td>
<td>34</td>
<td>79.0</td>
</tr>
<tr>
<td>Fluorine</td>
<td>F</td>
<td>9</td>
<td>19.0</td>
<td>Silicon</td>
<td>Si</td>
<td>14</td>
<td>28.1</td>
</tr>
<tr>
<td>Francium</td>
<td>Fr</td>
<td>87 (223)</td>
<td></td>
<td>Silver</td>
<td>Ag</td>
<td>47</td>
<td>107.9</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>Gd</td>
<td>64</td>
<td>157.3</td>
<td>Sodium</td>
<td>Na</td>
<td>11</td>
<td>23.0</td>
</tr>
<tr>
<td>Gallium</td>
<td>Ga</td>
<td>31</td>
<td>69.7</td>
<td>Strontium</td>
<td>Sr</td>
<td>38</td>
<td>87.6</td>
</tr>
<tr>
<td>Germanium</td>
<td>Ge</td>
<td>32</td>
<td>72.6</td>
<td>Sulfur</td>
<td>S</td>
<td>16</td>
<td>32.1</td>
</tr>
<tr>
<td>Gold</td>
<td>Au</td>
<td>79</td>
<td>197.0</td>
<td>Tantalum</td>
<td>Ta</td>
<td>73</td>
<td>160.9</td>
</tr>
<tr>
<td>Hafnium</td>
<td>Hf</td>
<td>72</td>
<td>178.5</td>
<td>Technetium</td>
<td>Tc</td>
<td>43 (97)</td>
<td></td>
</tr>
<tr>
<td>Helium</td>
<td>He</td>
<td>2</td>
<td>4.00</td>
<td>Tellurium</td>
<td>Te</td>
<td>52</td>
<td>127.6</td>
</tr>
<tr>
<td>Holmium</td>
<td>Ho</td>
<td>67</td>
<td>164.9</td>
<td>Terbium</td>
<td>Tb</td>
<td>65</td>
<td>158.9</td>
</tr>
<tr>
<td>Hydronium</td>
<td>H</td>
<td>1</td>
<td>1.008</td>
<td>Thallium</td>
<td>Tl</td>
<td>81</td>
<td>204.4</td>
</tr>
<tr>
<td>Indium</td>
<td>In</td>
<td>49</td>
<td>114.8</td>
<td>Thorium</td>
<td>Th</td>
<td>90</td>
<td>232.0</td>
</tr>
<tr>
<td>Iodine</td>
<td>I</td>
<td>53</td>
<td>126.9</td>
<td>Thulium</td>
<td>Tm</td>
<td>69</td>
<td>168.9</td>
</tr>
<tr>
<td>Iridium</td>
<td>Ir</td>
<td>77</td>
<td>192.2</td>
<td>Tin</td>
<td>Sn</td>
<td>50</td>
<td>118.7</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
<td>26</td>
<td>55.8</td>
<td>Titanium</td>
<td>Ti</td>
<td>22</td>
<td>47.9</td>
</tr>
<tr>
<td>Krypton</td>
<td>Kr</td>
<td>36</td>
<td>83.8</td>
<td>Tungsten</td>
<td>W</td>
<td>74</td>
<td>183.8</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>La</td>
<td>57</td>
<td>138.9</td>
<td>Uranium</td>
<td>U</td>
<td>92</td>
<td>238.0</td>
</tr>
<tr>
<td>Lawrencium</td>
<td>Lr</td>
<td>103 (260)</td>
<td></td>
<td>Vanadium</td>
<td>V</td>
<td>23</td>
<td>50.9</td>
</tr>
<tr>
<td>Lead</td>
<td>Pb</td>
<td>82</td>
<td>207.2</td>
<td>Xenon</td>
<td>Xe</td>
<td>54</td>
<td>131.3</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
<td>3</td>
<td>6.94</td>
<td>Ytterbium</td>
<td>Yb</td>
<td>70</td>
<td>173.0</td>
</tr>
<tr>
<td>Lutetium</td>
<td>Lu</td>
<td>71</td>
<td>175.0</td>
<td>Yttrium</td>
<td>Y</td>
<td>39</td>
<td>88.9</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>12</td>
<td>24.3</td>
<td>Zinc</td>
<td>Zn</td>
<td>30</td>
<td>65.4</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn</td>
<td>25</td>
<td>54.9</td>
<td>Zirconium</td>
<td>Zr</td>
<td>40</td>
<td>91.2</td>
</tr>
<tr>
<td>Mendelevium</td>
<td>Md</td>
<td>101 (258)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Based on International Union of Pure and Applied Chemistry (IUPAC) values (1975).

**Numbers in parentheses give the mass numbers of the most stable isotopes.
The discovery of elements 104, 105, and 106 has been claimed by both American and Soviet scientists. The Americans have suggested the name *rutherfordium* and *hahnium* for these same elements. No name has yet been proposed for element 106.
I. DOCUMENT IDENTIFICATION:

<table>
<thead>
<tr>
<th>Title:</th>
<th>Teacher's Guide for The Heart of Matter: A Nuclear Chemistry Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s):</td>
<td>Vic Viola and Robert Hearle</td>
</tr>
<tr>
<td>Corporate Source:</td>
<td>Chemistry Associates of Maryland, Inc.</td>
</tr>
<tr>
<td>Publication Date:</td>
<td>1980</td>
</tr>
</tbody>
</table>

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

1. Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

2A. Level 2A release, permitting reproduction and dissemination in microfiche and electronic media for ERIC archival collection subscribers only.

2B. Level 2B release, permitting reproduction and dissemination in microfiche only.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: Howard Delue, Assoc. Prof., Emeritus
Organization/Address: University of Maryland, College Park, MD
Printed Name/Position/Title: Howard Delue, Assoc. Prof., Emeritus
Telephone: FAX: E-Mail Address: hdelue@umd.edu
Date: 9/23/03